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Abstract

This thesis concerns two closely related lines of research: (i) We contribute to the se-
mantics of typed object calculus by giving (a) a denotational semantics using partial maps
making use of an algebraic compactness assumption on the ambient category, (b) a no-
tion of “wrappers” by which algebraic datatypes can be represented as object types, and
(c) proofs of computational soundness and adequacy of typed object calculus via Plotkin’s
FPC (with lazy operational semantics), thus making every denotational model of FPC (with
these properties) a computationally adequate model also for a first-order typed object cal-
culus (with recursive objects supporting method update, but not subtyping). In this way, we
give a mathematical foundation for studying program algebras for object-based program-
ming languages, since a valid equation in the model is proved to induce operationally con-
gruent terms in the language. For (c), we also develop a variation of Abadi and Cardelli’s
first-order typed object calculus with recursive object types and sum types (and some other
extensions), and prove subject reduction for this calculus. (ii) The second part concerns
recursion principles on datatypes including the untyped lambda calculus as a special case.
Freyd showed that in certain domain theoretic categories, locally continuous functors have
minimal invariants which possess a structure that he termed dialgebra. This gives rise to
a category of dialgebras and homomorphisms, where the minimal invariants are initial, in-
ducing a powerful recursion scheme (direcursion) on a complete partial order. We identify
a problem that appears when (co)iterative functions (on a fixed parameterised datatype)
are translated to direcursion (on the same datatype), and as a solution to this problem we
present a recursion scheme (primitive direcursion), generalising and symmetrising primi-
tive (co)recursion for endofunctors. To this end, we give a uniform technique for translating
(co)iterative maps into direcursive maps. This immediately gives a plethora of examples
of direcursive functions, improving on the situation in the literature where only a few ex-
amples have appeared. Moreover, an ad-hoc solution proposed elsewhere is avoided for
the translated maps, while interesting new examples appear (bisimulations, higher-order
coalgebra), also in the context of models of typed object calculus.
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Chapter 1

Introduction

This thesis concerns the denotational semantics approach to the semantics of pro-
gramming languages. This approach is based on assigning elements in suitable
mathematical structures to the various language constructions. To this end, we
will be interested in object-based programming languages, a class of program-
ming languages based on entities known as objects, which consist of a family of
self-referential methods acting on the object. These objects compute in response
to method invocation or method update. The former stimulus is similar to function
evaluation, but there is no argument or input, as the evaluation is with respect to
the present self of the object, which provides a local state for the computations be-
ing carried out. Method update makes change possible, and a sequence of method
updates and method invocations together give the ability to simulate in particular
purely functional programs, so that any partial recursive function can be repre-
sented solely by objects. Moreover, the popular class-based paradigm, with repre-
sentative languages such as Java [GJSB00], arises as a special case by restricting
to method updates with constant methods (which are sometimes called fields).

From a software engineering point of view, object-oriented languages have
been argued to offer advantages over the traditional structured/imperative or purely
functional programming approaches. Firstly, these languages are based on a cor-
respondence between computer simulated physical systems and the physical sys-
tem itself. This correspondence has lead to the development of a vast number
of software engineering methodologies and programming libraries and is often
held to support activities such as analysis, design and maintenance of computer
programs, i.e. as being resilient with software models. As a result, the object-
oriented approach has been postulated to be “proven uniquely successful” [AC96].

1
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It can therefore seem surprising that, from a mathematical viewpoint, quite little
is known about these languages, and that formal methods for object-oriented and
object-based languages are arguably still at their infancy (and in particular so from
a program algebra and equational logic perspective). In this thesis, we focus our
attention on the relationship between models of the untyped lambda calculus and
object-based programs and study computation principles (recursion schemes) that
we argue can improve this paradigm and our understanding of objects as math-
ematical structures, thus contributing in particular to the development of formal
methods. Interestingly, some of our results are also of more general importance
(recursion schemes on mixed-variant datatypes, with applications to bisimilarity),
and this research sets the stage for further investigations on such topics.

We study the denotational semantics, or model theory, of object-based pro-
gramming languages following some particular directions. Firstly, we have chosen
a class of programming languages based on the existing formalism called typed
object calculus (developed by Abadi and Cardelli [AC94a, AC94b, AC96] over a
period of some years, see below). This formalism takes objects as primitives. In
particular, there are only object types; ground types are not needed, since many use-
ful datatypes can be defined using pure objects. Moreover, this calculus supports
subtyping, the ability to use an extended object, i.e. one with additional methods,
instead of an object of the specified type. This last feature is, however, not directly
considered in this thesis, since it is a known open problem for the approach we
have chosen [AC96, Aba07]. Secondly, we have taken an axiomatic categorical ap-
proach to denotational semantics. By contrast to the more traditional interpretation
based on environments, we will use composition in a category to give a more ab-
stract and versatile treatment. The axioms that we require are taken from a branch
of domain theory known as axiomatic domain theory [Fio96b, Fre90, Fre91]. The
most important axiom is algebraic compactness which states that initial algebras
and final coalgebras coincide.

The operational semantics formally determines what we mean with concepts
such as “method update” and “object” in the first paragraph. It does so by means
of syntactical operations and the responses to such operations in any program con-
text and by means of a rule system. In this respect, the operational semantics
describes the meaning of the language by stating how it is executed on an abstract
machine (or rewrite system) which manipulates syntactical expressions. Although
an analysis of such a machine can be important, c.f. proof theory, the denota-
tional semantics approach, as pioneered by Dana Scott and Christopher Stratchey
[SS71], provides a more abstract explanation of programming concepts, indepen-
dent of syntax. Moreover, finding mathematical structures that give meaning to
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programming languages typically makes a more diverse mathematical toolkit avail-
able, which can be used to make progress on programming language design, attain
soundness and suitable completeness properties, etc. For instance, the denotational
semantics of untyped lambda calculus more or less gave birth to the area known as
domain theory, which describes a program in terms of approximations. When we
have a model, i.e. denotational semantics, we can be sure that no paradoxes exist
in the equational theory (here: untyped lambda calculus). This was far from obvi-
ous [Bar84] before a model had been discovered by Dana Scott [Sco69], notably
because of lambda terms which can be applied to themselves.

However, a model does not generally characterise the programming language
notions (objects, functions, etc), and therefore does not say what these are in a more
strict sense. In particular, it often happens that the model does not quite match the
operational semantics since semantic completeness (truth implying provability for
a particular model) cannot hold in general for programming languages with higher
types and recursion (e.g. untyped lambda calculus or typed object calculus). To see
this, note that completeness is here the property that two programs with same deno-
tation must be provably equal in the equational theory given by the programming
language. The problem is that in general there can be many normal forms (clearly
not provably equal), which in the more abstract universe (i.e. in the model) de-
termine the same relationship between input and output, and, hence, are the same
functions. Since such extensionality is a most natural mathematical property, we
have to let go of completeness. As an alternative, Milner and Plotkin formulated a
notion of full abstraction in the 70ies. This involved a notion of operational equiv-
alence which is (generally) different to the provability relation of the equational
theory. Two programs (or program “snippets”) are said to be equivalent if in all
program contexts (programs with a hole, as it were), these two programs will (if
inserted at the same hole) reduce to the same value using the operational seman-
tics; otherwise, they both diverge. In this way, full abstraction could be formulated:
the property that any two programs with equal denotations are also operationally
equivalent, and vice versa. In particular, two normal forms which have equal de-
notations are therefore required to respond to all the syntactical operations in the
operational semantics similarly.

Untyped lambda calculus has no classical set-theoretic models beyond the triv-
ial one-element model (as Scott showed [Sco69]). The same is true for other pro-
gramming languages, such as polymorphic lambda calculus [Rey84]. Moreover,
many typed programming languages, such as simply typed lambda calculus, have
found natural and versatile interpretations using category theory. In particular,
Lambek and Lawvere’s notion of cartesian closed category turned out to be es-
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sentially equivalent to such simple type theories. As a result, any cartesian closed
category, such as Set of sets and total functions, can be used as a model of a simply
typed lambda calculus (all we need is a functor). (Such categorical semantics of
logic has driven the development of new logics [Pit01].) The situation for untyped
lambda calculus is more complex in one important respect, since it requires a solu-
tion to an equation of the form D � DD. This requirement is largely incompatible
with cartesian closure and since an initial solution arises as the singleton set, and
no other solution can exist because of cardinality arguments, sets are themselves
not sufficient as models. This motivated Dana Scott to develop domain theory.
He equipped D with a suitable ordering and constrained the space DD to contain
precisely the functions that preserves this ordering in a suitable sense. The order-
ing gives a level of refinement between programs, the undefined program ⊥, being
least. The structure on D is a Scott-Ershov domain. A substantial body of research
has aimed at finding suitable categories of domains, having sufficient closure prop-
erties and structure for the interpretation of programming languages (or for other
applications). This has turned out to be a remarkably complex task, and research
on finding suitable categories still progresses (see e.g. [BBS04, FJM+96]).

When we formulate a categorical semantics for typed object calculus we face
similar problems, since typed object calculus is similar to untyped lambda calculus
in requiring roughly the same domain equation to be solved (notably, the untyped
lambda calculus is a special case). But in addition, the types demand suitable type
structure in the category, and this places two rather orthogonal (and incompatible)
demands on the universe of discourse. Because of this, the present thesis builds
on previous work on axiomatic domain theory: our categorical semantics relies on
carefully chosen axioms on an enriched ambient category, in the vein of e.g. Freyd
[Fre90], Fiore [Fio96b] and Moggi [Mog89].

To summarise our approach to object-based programming language models,
we identify what we regard as the most fundamental questions underlying this line
of research:

• What is an object? Several operational semantics have been proposed, and
there is also a natural self-application semantics which uses domain theory.
However, the latter has so far not been combined with subtyping. Moreover,
no fully abstract model is known, as self-application semantics, in particular,
is not fully abstract.

• What is a model of typed object calculus? The developments of axiomatic
domain theory, and computational effects via monads, makes possible to
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view a model as a somewhat abstract notion, which depends on the choice of
a particular mathematical universe, monad, etc. It remains uncertain, how-
ever, what exactly the appropriate axioms are, and what categorical struc-
tures must be considered in this case? Moreover, it is not evident what
constitutes a fully abstract model, what the appropriate observational con-
gruence relation is, what (bi)simulation relations on programs are of interest,
how those relations are characterised denotationally, and what properties can
be established for them.

• How can object-based programming languages be improved? In particular,
present techniques of combining two objects are quite limited, and the com-
putation schemes on object-based programs have to date been remarkably
limited compared to the complex recursive domain equations that are gen-
erally involved in models. In particular, what are the recursion schemes on
objects, and how can these be used in programming and in formal methods?
How much structure from the denotational semantics should be pushed back
into the operational semantics in the future, and what proof principles should
be added?

In approaching these underlying major questions, any of which is too great
to be fully covered in a single treatise, other more technical questions inevitably
appear (c.f. untyped lambda calculus). To this end, this thesis consists of three re-
search papers, organised in chronological order. The first develops a denotational
semantics based on partial maps, with an algebraic compactness assumption on the
ambient category. The second develops an interpretation of a variation of Abadi
and Cardelli’s typed first-order calculus, which is proved to possess the subject re-
duction property, and then gives a proof showing that every computationally sound
and adequate model of Plotkin’s metalanguage FPC, automatically gives a model
of this typed object calculus, which again has these two properties. Our result in
other words establish that work on FPC models carry over to typed object calculus
semantics in a strong technical sense (adequacy), while also showing that some
care must be taken, since the property breaks unless a lazy operational semantics is
considered for FPC. It follows that any model of lazy FPC can be used for studying
program transformations (program algebras) for typed object calculus. The third
paper develops a new recursion scheme which is shown to be useful for denota-
tional semantics of such calculi, although it is also of more general interest e.g. for
untyped lambda calculus and bisimilarity. This third paper provides a main tech-
nical result given together with a case study showing its relevance to denotational
semantics of typed object calculus.
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1.1 Aims

This thesis contains two main themes, which are demonstrated to be closely con-
nected: (i) semantics of typed object calculus and (ii) recursion schemes.

1.1.1 Semantics of Typed Object Calculus

In this thesis, we consider object-based programming languages in the sense of
Abadi and Cardelli’s typed object calculus [AC96], to which operational seman-
tics we make some amendments. We give a denotational semantics of typed object
calculus using a category of domains and partial maps. The use of partial maps
has some appeal (which we discuss more in detail in Paper I), and we are able to
develop a functorial semantics where types are modelled as symmetric functors
and terms as indexed families of morphisms. This demonstrates an intriguing con-
nection to Freyd’s mixed-variant recursion principle, and shows that we can define
objects by the recursion principle afforded by the categorical interpretation.

An alternative approach to models is given in chapter four (Paper II), where
we show that, by using a translation, and by excluding subtyping, object types can
be seen as certain kinds of recursive types in Plotkin’s FPC (fixed-point calculus)
(with lazy evaluation strategy). We establish a computational adequacy result and
various soundness properties for this translation. This gives immediately that any
model for lazy FPC gives a computationally adequate model for typed object cal-
culus without subtyping.

Although the thesis is not directly concerned with methods for formally prov-
ing object-based program correct, such methods are strongly connected to model
theory, since new proof methods can often be discovered through a model (e.g.
[Pit96]). We have left as future work to carry out more comprehensive practical
studies, extend the framework to suit formal methods (e.g. by considering rela-
tional specifications, refinement, etc) and to extend the equational theory of object
calculus with suitable proof principles. We also have omitted a treatment of full
abstraction and bisimilarity (along the lines of [Gor98] and [Vis98]), which will
appear elsewhere.

1.1.2 Recursion

Solutions to recursive domain equations involving function spaces can be given as
initial Ĝ-algebras in suitable categories, where Ĝ is an endofunctor given by sym-
metrising G. This was shown by Freyd [Fre90, Fre91] (based on work by Smyth
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and Plotkin [SP82]) and later refined by Fiore [Fio96c] in a framework of enriched
category theory. Initial Ĝ-algebras (also called dialgebras) generalise usual alge-
bras and coalgebras. Moreover, a recursion principle arises for Ĝ-algebras. Hence-
forth, this principle is called direcursion; it is one of the main topics of the present
thesis.

More specifically, we will investigate the relationships between (co)iteration
and direcursion for a fixed datatype. With (co)iteration we mean the unique homo-
morphisms associated to the initial (final) Ĝ(µĜ, )-(co)algebras by Bekič’s Lemma,
i.e., (co)iterative maps on this particular parameterised datatype. Since the carrier
of this (co)algebra coincides with the solution O = µĜ, we address the question
of how these schemes compare to direcursion for the same functor G. Our result
shows that by generalising direcursion (by precomposing with an injection map or
postcomposing with a projection map), we can express all such (co)iterative maps
as a canonical direcursive map such that the same computation is carried out at
every stage. We call this generalisation primitive direcursion since it is primitive
recursion for symmetric functors Ĝ, i.e., it is simultaneously primitive recursion
and primitive corecursion for recursive types. One aim of the present thesis is to
develop this notion and to provide examples of how it can be used, particularly
in the semantics of object-based programming languages. To this end, primitive
direcursion as developed in chapter five (Paper III) forms a main theoretical result
of this thesis.

1.2 Related Work

This study could have taken many different starting points. One could have been
to emphasise formal methods, namely proof techniques and practical examples
of program equivalences. This is not our present approach, partly because the
model theory of object-based programming languages itself deserves a thorough
investigation in the light of the limited research in the area (the only model beyond
the self-application approach that we follow is to the best of our knowledge the
one due to Abadi and Cardelli [AC96], for which see below). In this section we
will discuss in more detail how our present approach compares to existing work in
related research areas.

1.2.1 Models of Programming Languages

As this thesis is concerned with sequential programming languages without global
state, we will consider next some related work in denotational semantics of func-
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tional, class-based and object-based sequential languages.

Functional Languages

The first models for untyped lambda calculus were discovered by Scott [Sco69,
Sco73], although the graph model is due to Plotkin [Plo72]. In particular, the
model D∞ was based on a colimit of complete lattices (which forms a cartesian
closed category such that DD has same cardinality as D), but can also be carried
out in CPO. Additional results were developed by e.g. Wadsworth [Wad76], in-
cluding the characterisation of the compact elements. Meyer [Mey82] compared
various approaches to models of untyped lambda calculus and proposed the so-
called environment model. Note that the untyped lambda calculus has a model
which is a canonical (initial/final) solution to a recursive domain equation, though
it arises from a chain created from a given object D [SP82]. That is, the solution is
free but not initial.

Abramsky [Abr90] noted that the untyped lambda calculus is not commonly
implemented in programming languages. From this observation, he developed a
theory of lazy lambda calculus, which is based on weak head reduction and weak
head normal forms. In other words, terms are not reduced under lambda binders,
and terms such as λx.Ω are already in (weak head) normal form and regarded as val-
ues. Furthermore, Abramsky developed a notion of applicative bisimilarity which
he showed characterises the observational equivalence for lazy lambda calculus.
He also proved an internal full abstraction result and established that lazy lambda
calculus extended with parallel combinators is (inequationally) fully abstract with
respect to his domain-theoretic model. Other results included finding a canonical
domain equation D � (DD)⊥ (for non-strict exponential in CPO). Abramsky’s
approach has subsequently been generalised by Honsell et al [HL99] and Fiore
[Fio96c], among others.

Egidi et al [EHR92] is instead concerned with the lazy call-by-value lambda
calculus and its associated notion of applicative bisimilarity, based on Abramsky’s
work. This language turns out to also have a canonical recursive domain equa-
tion, namely D = [D,D]⊥ where [D,D] is the space of strict (Scott-continuous)
functions. This makes the work by Egidi et al strongly connected to the present
thesis, which is based on generalisation of their domain equation. It also highlights
the fact that typed object calculus has an evaluation strategy which is somewhere
in between call-by-value and call-by-name [AC96], since the argument is always
the object itself. For lazy call-by-value lambda calculus, an application MN is
evaluated by first reducing M into an abstraction, and then reducing N into an ab-
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straction before substitution. Note that in lazy lambda calculus, the substitution
happens before N has been reduced.

Type theories date back at least to the philosopher Bertrand Russel [Hin97] and
were introduced mainly to avoid paradoxes coming from e.g. self-application. The
simply typed lambda calculus is due to Church [Chu40], based on a typed combina-
tory logic due to Curry a few years before. Henkin [Hen50] proved a completeness
theorem for simply typed lambda calculus (based on work by Gödel) and later
formulated what came to be known as Henkin models. Such models consist of
typed applicative structures (an operation · : BA × A → B for all interpreted types
A and B, essentially) subject to extensionality. Such models can be characterised
using environment models, which use the syntactical set of terms to assert that
there are enough points. An alternative is the combinatory model that requires two
constants s and k at each suitable type, subject to certain axioms. Subsequently,
it was realised (most notably by Lambek) that cartesian closed categories gener-
alise the notion of Henkin models. Later, Lambek established a correspondence
between cartesian closed categories and simply typed lambda calculus [Lam80],
showing that theories formulated over simply typed lambda calculus correspond
to product-preserving functors on cartesian closed categories, giving a similar sit-
uation to Lawvere’s algebraic theories (which capture finitary universal algebra,
i.e. the first-order case) [Law64], but for “higher types”. (For more details, see
e.g. [LS86, BW85].) In summary, there has been a vast development of cartesian
closed categories and their use for models of typed lambda calculus, even though
these are, after all, quite basic type structures. In this thesis, we will as much as
possible build on this work, in particular by developing a categorical semantics
which mimics Lawvere’s functorial semantics. However, we leave as further work
to express models as functors from a classifying category (Cl(ς), to wit), and we
will not go as far as e.g. [Jac99] and pursue a fibred category theoretic semantics,
since the recursive types will still be comparably simple (not having dependencies
on terms, or polymorphism).

There has been quite a bit of research on algebraic approaches to formal meth-
ods of functional programming languages. We will refer to this line of work as the
algebra of programming-school (it is elsewhere also known as Bird-Meertens for-
malism or “squiggol”). This approach is detailed in a book by Bird et al [BdM97]
on the topic, but the underlying ideas trace back at least to Bird’s theory of lists
[Bir87, Bir89]. Between these milestones, much research was devoted to the use of
recursion schemes in functional programming [Mee86, Mee96, Mee92, BJJM99,
Fok94, MH95, MJ95, Hoo96, Mal90, Mee92] and to finding suitable program-
ming languages to make use of such schemes [Jan00, JC94, CF92, Hag93]. This
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line of work is relevant for the present thesis as it was the main inspiration for
studying Freyd’s direcursion scheme in the first place. Moreover, once recur-
sion schemes and models have been developed, the question of suitable proof
principles [Acz88, TR98, Rut00] and their application to functional languages
[GH05, Gor94]) should be addressed. Regarding such proof principles, direcur-
sion is less well-understood than (co)induction (although [Pit96] provides a proof
technique, this view is also held by Fiore [Fio96b], who began to improve on it
in [Fio96c]). Secondarily, the question regarding which programming languages
should be used to express such recursion principles arises. For object-oriented lan-
guages, but not for object-based languages and direcursion, this latter question has
already been addressed [Wei02].

Class-Based Languages

Coalgebraic techniques are by now well-established for reasoning about class-
based programming languages [Rei95, Jac98, HHJT98]. There are some relation-
ships between this work and the present for object-based languages but there are
also some profound differences which we now will outline.

In the coalgebraic approach to classes, an endofunctor F : Set → Set is taken
as the interface of a class, and a structure map c : S → F(S ) constitute a class
“implementation”. The set S consists of the states, and an object is one particular
element s ∈ S . We immediately get a notion of bisimulation from the fact that c
is a F-coalgebra. Moreover, since there is a final coalgebra (νF, f ) in Set, there
is also a greatest bisimulation, i.e. bisimilarity. Hence it is possible to state that
two objects are bisimilar, meaning that after no sequence of transitions, those two
objects can be observed to be distinct, although they could generally be distinct
elements of S at any point. Thus this approach benefits from being quite natural.

The object-based programming languages cannot use endofunctors on Set,
since the involved structures are mixed-variant rather than polynomial functors.
This means that we must move to the category CPO (or a similar category). In
this setting, the theory of universal coalgebra is far less well-understood (see e.g.
[Len98]). There have been efforts to remedy this, e.g. [TR98, Pit96, Fio96c], but
the structures appearing for object-based programs are not generally coalgebraic,
but rather dialgebraic [Fre90], meaning that they are simultaneously coalgebraic
and algebraic (while also enriched over domains). Moreover, bisimulations take
a different form than prior work, since for object-based languages the object it-
self constitutes the state. In the most basic case, one can endow an object type
with a coalgebraic structure through the self-application morphism. However, this
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does not capture the observational equivalence intended. Therefore, the situation is
less obvious; further analysis is required (the author has recently began to analyse
what bisimulations exist and what are their properties - but these results will appear
elsewhere, and are linked to the full abstraction problem).

Some research has been devoted to giving denotational semantics for a parallel
object-oriented programming language [dB91, AdB91, Rut90, AdBKR89]. This
line of work uses a category of complete metric spaces, i.e. a different approach to
denotational semantics than the one pursued in the present thesis. Their approach
uses Banach’s fixpoint theorem which ensures that certain “contractive” endomaps
have unique fixpoints (this being the analogue of the existence of least fixpoints
of continuous functions in the domain-theoretic realm). A notable difference with
respect to domain theory is that two denotations are assigned a distance, indicat-
ing (quantitatively rather than qualitatively) the extent to which a program is a
better approximation than another program (see De Bakker et al [DD96] for an
overview of this approach). In this setting it is also possible to solve recursive “do-
main” equations. The latter is done following work by America and Rutten [AR89]
who introduced a notion of locally contractive endofunctor in the vein of work by
Smyth and Plotkin [SP82] in domain theory. Subsequently, Turi and Rutten [TR98]
showed that the category CMS is in fact an algebraically compact category. As a
consequence, it would have been possible also to use complete metric spaces in-
stead of domain-theoretic categories in this thesis (see in particular the denotational
semantics we give in Paper I, but also the recursion scheme in Paper III).

One early approach to the semantics of class-based programming languages
was the so-called recursive record semantics [Car88, KR94, Wan94, Coo87, Coo89,
CP89, Bou04]. This semantics is based on a typed lambda calculus with records
and record types, and objects are values which are defined using a fixed point
operator on terms (i.e. to create an object we apply the fixed point operator on
a record-valued function abstracted on self). This essentially hard-wires the self
into the term, and renders updates impossible. Subsequently, semantics of class-
based programming languages have often been given by providing an “encod-
ing” into a suitable typed lambda calculus (see e.g. [BCP99, PT94]); recursive
records is one example. Various encodings with existentials have also been studied
(e.g. [PT94, BCP99]). The target calculi can be powerful systems, including e.g.
Cardelli’s F<: [Car91] or Fµ<:. Yet, Thomas Streicher has argued that this approach
to semantics was potentially “built on sand” [Str02] because the target calculi are
not simpler than the source calculi. An alternative would instead be to develop de-
notational semantics directly, or to use a target calculus which has existing models
(such as Plotkin’s FPC). In this thesis, both alternatives will be investigated, but



12 CHAPTER 1. INTRODUCTION

the emphasis is on denotational models.

Object-Based Languages

Unlike class-based languages such as Java, an object-based language treats the
methods of an object as part of the state, and not as belonging to a fixed set of
classes. The most important related work in this area is the typed object calculus
developed by Abadi and Cardelli [AC94a, AC94b, AC96]. Closely related is the
work by Mitchell et al on the lambda calculus of objects [Mit90, FHM94, Fis96],
which partly predates Abadi et al’s work. While typed object calculus follows the
Church-style in terms of typing, the latter uses Curry-style and also supports both
method extension and method extraction. The last two features are not usually
part of Abadi and Cardelli’s calculus, which instead supports (full) subtyping (and
polymorphism). However, several papers have been devoted to combining subtyp-
ing with method extension purely in terms of operational semantics and encodings
(e.g. [Liq98, BL95, BBL96]). Most notably, Liquori [Liq97] developed an exten-
sion of Abadi and Cardelli’s adding precisely method extension in the spirit of the
lambda calculus of objects. Subsequently, Di Gianantonio et al [DHL98] studied
self-inflicted method extension, i.e., the ability of an object to add more methods
to itself as a result of method invocation.

Object-based programming languages can be modelled using self-applicative
functions, as was noted already by Kamin [Kam88] in his denotational semantics
for Smalltalk-80 (see also [KR94]). This kind of semantics differs from the re-
cursive record semantics [Car88, KR94, AC96], where the recursion is in the out-
put or covariant position while the contravariant occurrence of “self” is replaced
by having a separate state type, and a fixed point operator at the level of terms.
(Note that contravariance is present also in the existential encodings of objects
(e.g. [PT94, BCP99]), but there it is hidden under an existential quantifier.)

Reus and Streicher [RS04] take self-application semantics as the starting point
for their denotational semantics, and their work is in this respect similar to the
approach chosen in the present thesis. They are concerned with certain kinds of
program logics for object-based programming languages. Particularly, they prove
(in [RS06] ) that a Hoare logic developed earlier by Abadi and Leino [AL97] is
sound, and they investigate the existence of recursively defined specifications of
object-based programs. The Hoare logic approach was also investigated by Tang
[Tan02] in his PhD thesis. The present thesis does, however, not concern Hoare
logic. Instead, the emphasis is on the development of equational program logics,
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and for these purposes categorical semantics and recursion schemes are of central
importance.

Aceto et al [AHIK00] proves an computational adequacy result for Abadi and
Cardelli’s per model [AC96] and a functional first-order typed object calculus (with
recursive types). This result is similar to the result in Paper II, but for a model
based on an untyped universe on which partial equivalence relations are used for
interpreting types. Schwinghammer [Sch05] gave a computational adequacy proof
as part of his dissertation (which appeared after our Paper II, and cites it). His proof
uses a formal approximation relation rather than an encoding into lazy FPC, and is
for an untyped universe (with self-application semantics) and an imperative object
calculus.

1.2.2 Process Algebra

Although this thesis concerns sequential programming languages, related work on
process algebra is abundant. In particular, several formalisms in the π-calculus
family (for which see e.g. [MPW92, SW01, Mil99]) have been used to model im-
perative or concurrent objects. For example, Walker [Wal95] developed a transla-
tion of POOL (an object-oriented language with parallelism) into π-calculus while
Sangiorgi [San98a] gives a translation of Abadi and Cardelli’s first-order (func-
tional) typed object calculus into π-calculus such that subtyping rules are valid
via a sorting discipline extension of the π-calculus. Moreover, Sangiorgi proved
a computational adequacy result for his translation, and argues that the π-calculus
is useful as a metalanguage for typed object-based programming languages. Gor-
don and Hankin [GH98] extended Abadi and Cardelli’s typed object calculus with
primitives for concurrency. Their system is based on an imperative object calcu-
lus, but in addition provides facilities for assigning names to objects, for parallel
composition, and name scoping operators from the π-calculus. (As far as we know,
there is no known denotational semantics for this quite complex language.) More
recently, Kleist [Kle00] has translated (typed and untyped) object calculus into π-
calculus, again with a computational adequacy result. He has also given further
arguments that process algebra techniques are useful for reasoning with object-
based programs.

Here, we will offer some arguments towards the view that typed object-based
programming languages should be studied in their own right, and not solely via
reductions to calculi of mobile processes such as π-calculus:

• Whereas π-calculi models are tailored for handling the nominal aspects of
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the calculi (see e.g. Ghani and Yemane [GVY04] for a denotational seman-
tics based on functor categories), treatments of untyped lambda calculus such
as Barendregt [Bar84] aims specifically at abstracting away from syntactical
aspects of substitution by means of the well-known variable convention. One
could argue that it is an extra complication to handle such nominal aspects
when they are not strictly needed, and that a mathematical model should
aim precisely at abstracting from such aspects (when they are not an ex-
plicit part of the language under consideration, such as in loc. cit.). To this
end, we view denotational semantics as serving the purpose of providing an
syntax-independent characterisation of what an object is (here, an element in
a suitable domain given from a recursive domain equation).

• λ-calculi (including typed and untyped, eager and lazy ones) have been en-
coded into π-calculus (e.g. [MPW92]), and similar translations have also
been studied for Abadi and Cardelli’s object calculus [Kle00]. For untyped
(lazy) lambda calculus, it has been shown that these translations in gen-
eral cannot be fully abstract (i.e the translation equates all operationally
equivalent terms and no other terms), unless non-confluent extensions of
untyped lambda calculi are considered [SW01]. This gives an indication
that π-calculus encodings are not appropriate for giving semantics of un-
typed lambda calculus. Similar results are obtained by Kleist and Hüttel
[Kle00] for object calculus (i.e. full abstraction of their untyped encoding
did not hold). In addition, encodings does not deal with concepts such as
approximation/convergence, totality, etc, which becomes available through
a syntax-independent denotational semantics based on e.g. domain theory,
as developed in Paper I. 1 Note also that both untyped lambda calculus and
(typed or untyped) object calculus can encode π-calculus, since these lan-
guages are Turing complete.

• Kleist [Kle00] has argued that process algebra techniques can be used for
reasoning with object-based programming languages (although he also states
that his coauthors disagree with him on this assessment). However, even if
process algebra techniques can help to further our understanding of object-

1It is, however, interesting to note that much research has been devoted to higher order oper-
ational techniques (see e.g. [GP97]), and that notions such as approximations (compact elements)
have made their way into operational semantics. We will not here judge whether a purely oper-
ational approach suffices, but we observe that much of the developments in the area uses domain
theoretic or coalgebraic techniques and notions, indicating that such techniques are not independent
of denotational semantics research and are likely to benefit from progress of the latter.
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based programming languages (or at least provide tools for reasoning with
them), this should not preclude studies of the latter in their own right. In par-
ticular, it is important to find suitable mathematical abstractions, rather than
relaying the interpretation of the sequential language via a process/mobility
calculi and a complicated encoding from one syntax to another, since, in the
end, this typically reveals quite little about what objects really are in the am-
bient mathematical universe, and hence does not support the development
of proof techniques tailored specifically for objects to the extent of a direct
mathematical model.

It is suggested, therefore, that process algebra encodings alone are not sufficient
or appropriate for giving a full understanding of sequential object-based program-
ming languages, and that the latter require their own denotational semantics to be
developed and analysed.

1.2.3 (Co)Recursion and (Co)Induction

A substantial amount of research has been devoted to finding and expressing no-
tions of recursion, and dually corecursion, in suitable category-theoretic terms.
First, the idea of a category-theoretic notion of iteration on the natural numbers
is due to Lawvere, who introduced the notion of natural number object [Law64].
(While iteration was of course well known to any recursion theorist at the time,
Lawvere provided an elegant characterisation of it as a universal property.) From
this notion, it followed that parametric iteration and also primitive recursion could
be expressed in a topos [LS86]. Subsequently, with the study of (co)algebraic
datatypes, it was realised that this situation is hardly unique for the functor (·) + 1,
but actually happens for arbitrary functors which possesses initial algebras and final
coalgebras as well. (This was subject to an understanding of (co)completeness, e.g.
[SP82].) This in turn gave birth to a plethora of publications within the functional
programming community, aiming to develop suitable formal methods for reason-
ing with such schemes. One notable reasoning principle is initiality and finality
itself, which is called fusion (see Paper I and Paper III).

Much work has been devoted to generalising (co)iteration further, e.g. [Bar03,
Len99, CHL03, UVP01, Ven00], including parametric variants [Mos01, Par02,
Par01, Gib93], generalisations to cover bialgebraic structures, etc. All these devel-
opments are relevant to the present thesis, although our focus on dialgebras rather
than (co)algebras renders the situation more complex in at least one respect: we
have to deal with both contravariant and covariant variables, and are also forced
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to work in a domain-theoretic universe (or some similar mathematical structure
with the algebraic compactness property) since existence of initial/final dialgebras
cannot otherwise be granted.

A milestone in the development of categorical recursion schemes was made
through Freyd’s seminal papers [Fre90, Fre91, Fre92]. Freyd generalised the work
by Smyth et al [SP82] and demonstrated that by separating the contravariant and
covariant variable, a remarkably powerful mixed variant recursion scheme arises.
This scheme was subsequently studied by Pitts [Pit96, Pit94] who developed proof
principles based on it. Around that time, Meijer et al were able to provide some
examples for functional programming languages, demonstrating that the scheme
could be useful [MH95, WW03, FS96]. Some other notable theoretical results
are: the reduction to inductive types as given by Freyd [Fre90] and the relation-
ship to dinaturality [Fre91], the derivation of an associated proof principle [Pit94,
Pit96], programming examples dealing with higher-order abstract syntax [WW03],
lambda calculus interpreters [MH95], and circular datatypes [FS96]. However,
Freyd’s scheme, called direcursion in this thesis, remains relatively unexplored as
regards to termination properties and its relationships to other recursion schemes
(and programming examples have so far been rather scarce). This thesis, and par-
ticularly Paper III, is a step towards improving this situation.

1.2.4 Coalgebraic Semantics

Coalgebraic (or final) semantics can be viewed as being the dual of initial algebra
semantics. However, final semantics uses a functor induced by the operational
semantics whereas initial algebra semantics is driven by the syntax (and notably by
a functor induced by the signature of the language). The duality between coalgebra
and algebra stretches quite far. For example, congruence is the dual of bisimulation
(a notion due to Park [Par81]), induction the dual of coinduction, and so forth. The
coalgebraic approach to semantics of programming languages have been developed
by a number of researchers over the years, including Aczel, Rutten, Turi, Lenisa,
Honsell, and Jacobs (see e.g. [Len98], which includes a comprehensive survey of
final semantics and coalgebraic methods).

Final semantics has its roots in research on set theory, which was (to some
extent) motivated by work on process algebra. Forti and Honsell [FH83] and Aczel
[Acz88] studied anti-foundation axioms (including AFA aka X1). The purpose of
these axioms was to be able to explain “circular phenomena” such as those that
appeared in Milner’s process algebra [Mil89]. Circular here refers to self reference
that arises from trying to solve equations (or equation systems) of sets. Let us
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consider an example:
X = {0, X}

The well-foundedness of the membership relation in Zermelo-Fraenkel set theory
means that no such set can exist. Nevertheless, one could argue that infinite “sets”
of the form {0, {0, {0, ...}}} could be regarded as solutions. In general, we wish to
solve such equations in order to give natural set-theoretic explanations of process
algebras (or to generally account for other seemingly “viciously circular” phenom-
ena, see e.g. [BM96]). Therefore, the axiom of foundation was replaced by alter-
native axioms such as Aczel’s AFA (or, equivalently, Forti et al’s X1). The theory
of coalgebra developed substantially through the work by Aczel [Acz88], which
used a category Class where the objects are subclasses of the universe of non-well-
founded sets (satisfying AFA), and the morphisms are (tagged) class functions. On
this category, he identified two kinds of functors: the standard functors (namely
those that preserves weak pullbacks) and the functors which are uniform on maps
(in a technical sense). For each of these classes, he proved (in his Final Coalgebra
Theorem and Special Final Coalgebra Theorem, respectively) that the functors pos-
sess a final coalgebra. In the first case, this amounts to a quotient construction and
in the second case, it gives a characterisation of the final coalgebra as a maximal
fixpoint of an operator on sets induced by the functor under consideration. Aczel’s
results sparked much of the development that then followed, including work by
Rutten and Turi, which demonstrated that the duality between algebra and coalge-
bra can be taken quite far, and the extensive study of final semantics carried out by
Lenisa [Len98].

It is interesting to note that well-founded sets can be viewed as approximations
of non-well-founded sets, the latter thus being construed as limits of the former
(c.f. domain theory) [Acz88] (this approach was taken up by Hallnäs [Hal85] and
further by Lindström [Lin89] within Martin-Löf type theory). Furthermore, Scott
[Sco60] developed a model of Zermelo-Fraenkel set theory without the foundation
axiom, which may have inspired his work on domain theory.

Next, we will sketch why these developments are relevant for the semantics of
programming languages (such as object calculi). Given a term algebra, which we
can regard as the programming language itself, the equational theory over the as-
sociated signature induces a quotient algebra, which we call the term model. This
term model need not be fully abstract, since the equivalence classes are, after all,
just the provably equal terms. However, the observational equivalence may itself
be a congruence, and we can then quotient the term model once again to arrive at
another, albeit still syntactical, model. However, we will generally not be able to
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construct a fully abstract model in this way, since the term model, and consequently
also a second quotient with respect to observation equivalence, identifies all pro-
grams that diverge. On the other hand, observational congruence will typically
distinguish many non-terminating programs, e.g., programs that terminate at two
different depths with respect to applicative contexts. Thus, a model constructed in
this way will also identify all non-terminating programs and, for the lazy lambda
calculus [Abr90] and indeed for typed object calculus, this is not the route one gen-
erally wishes to take. Consider, for example, the lazy lambda calculus term YK.
This should be seen as an “infinite process”, and should clearly not be identified
with the term Ω = ωω = (λx.xx)λx.xx. These problems can be avoided if we
consider a coalgebraic semantics instead.

The final coalgebra (in Set) over the signature induced by a given program-
ming language includes infinite terms. By constructing a suitable bisimulation
relation, one can quotient this coalgebra to arrive at a fully abstract model. This
is done by using a coinductive extension (corecursion) into the final coalgebra for
the behaviour functor (which is induced by the operational semantics). This ap-
proach is well-suited for object-based programming; previous work by Gordon et
al [GR96a, GR96b, Gor98] provides significant progress in this direction. How-
ever, this kind of semantics has already been studied comprehensively (by e.g.
Lenisa et al [Len96]), and for that reason, we favour other results in this thesis.
Coalgebraic semantics can also be combined with domain-theoretic semantics (see
e.g. [Abr90]), particularly to obtain interesting fully abstract models. In that con-
text, we are faced with at least two additional problems: 1) a quotient in Set need
not enrich, i.e., need not be equipped with any (complete) ordering; 2) it is not
straightforward to equip the recursive function space datatypes in question with a
suitable coalgebra structure. We will return to several of these issues in the further
work section of chapter 6.

1.2.5 Domain Theory

Plotkin [Plo85] proposed an alternative approach to domain theory, based on con-
sidering cpos without least elements and partial maps on these. He introduced the
category pCPO, which is better fitted for standard formulation of recursion the-
ory. Around the same time, Moggi et al [LM84] introduced the notion of partial
cartesian closed category. Later the notion of Kleisli exponential [Mog89] was in-
troduced as well (apparently not known by that name until the work of Simpson
[Sim92]). Subsequently, Fiore wrote a dissertation on axiomatic domain theory
[Fio96b] which spelled out enriched notions of algebraic compactness (as induced
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by Freyd’s work), analysed these in detail, and gave an axiomatic account of ea-
ger FPC (i.e. Plotkin’s metalanguage with recursive datatypes). In particular, he
included a characterisation of a class of order-enriched computationally adequate
models of FPC. One novelty in Fiore’s work (with respect to Freyd’s) is the use
of categorical abstraction of partiality (generalising the approach advocated by
Plotkin in [Plo85]). For the present thesis, we have not used Fiore’s recasting of
Freyd’s work into enriched category theory, nor have we capitalised on the abstact
notion of partiality used by Fiore (which we merely survey very briefly in Paper
II). In Paper I, we even fix the ambient category to be pCPO of partial continuous
maps, although we have as much as possible explicated our assumptions on the
universe of discourse, thus making alternative concrete categories viable as well.
(To this end, Turi and Rutten [TR98] showed that the category of complete metric
spaces and non-expansive maps is algebraically compact with respect to locally
contractive functors, i.e., satisfies our most important assumption on the ambient
category.) It is possible also to consider an even more abstract approach to do-
main theory using Kleisli exponentials (with respect to a suitable strong monad),
building on Simpson’s work [Sim92] as manifested also in more recent work (e.g.
[Mø06]) and also discussed in Fiore’s dissertation for models of FPC.

1.3 Contributions

The following original technical contributions to the literature are made in this
thesis:

1. We develop a generalisation of Freyd’s direcursion termed primitive direcur-
sion, which generalises primitive (co)recursion. This recursion scheme pro-
vides a new technique for defining elements in models of untyped lambda
calculus and is also linked to previous work in (higher-order) bisimilarity,
as our examples shows; it is a main result of the present thesis as is its use
in the semantics of object-based programming languages. We show that
it closes a gap between parametric (co)iterative maps and direcursive maps.
These results are presented in chapter five, which consists of a paper that was
accepted for the Conference on Algebra and Coalgebra in Computer Sci-
ence (CALCO 2007), and subsequently appeared in Springer-Verlag, Lec-
ture Notes of Computer Science [Gli07b].

2. We prove a computational adequacy result and give an encoding into Plotkin’s
typed lambda calculus with recursive types (FPC) under a lazy evaluation
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strategy. This result establishes that a program algebra of typed object cal-
culus can be anchored in a computationally adequate model of lazy FPC (or
indeed in a categorical axiomatisation of such a model, c.f. work by Fiore
and Plotkin [Fio96b, FP94]), since a valid equation in the model will corre-
spond to operationally congruent terms in the language. This paper, which
is presented in chapter four, appeared as a technical report [Gli07a] at the
School of Computer Science and Communication, Royal Institute of Tech-
nology, Sweden.

3. We give a denotational semantics using recursive domain equations, but
based on an axiomatised category of partial maps. To the best of our knowl-
edge, this is the first categorical semantics of an object-based programming
language and as such contributes with a category-theoretic foundation which
can be used in the study of program algebra, program transformations, etc.
An important, but non-technical, contribution of this paper is that it, appar-
ently for the first time, identifies and demonstrates the usefulness of Freyd’s
recursion scheme (direcursion) for object-based programming language mod-
els, and thus paves the way for refined programming language designs and
formal methods. This was joint work [GG05] with Dr. Neil Ghani and was
published in Electronic Notes in Theoretical Computer Science, Elsevier,
2005. It appears as chapter three in this thesis.

4. We provide a first case study with examples that include definition of ob-
jects in typed object calculus. These examples also include the encoding
of algebraic datatypes as objects (Paper I) and, moreover, a family of other
examples of using direcursion and primitive direcursion for defining and rea-
soning with objects (Paper III).

1.4 Overview

In the second chapter, we provide a background survey which explains the context
in which we make our contributions. This chapter also establishes terminology and
category theoretic preliminaries.

In chapter three (Paper I), we develop a model of typed object calculus us-
ing a domain theoretic category of partial maps. This is similar to the work by
Fiore [Fio96b] although we work in a concrete category. Moreover, we develop
“wrappers” which give a connection between algebraic datatypes and object-based
programs, and similarly for coalgebraic datatypes. As a result, simple datatypes,



1.4. OVERVIEW 21

as well as bisimulations, carry over to an object calculus model. This is achieved
using direcursion. The latter capitalises on the observation that direcursion can
be used for defining and reasoning with objects in such models (a topic explored
further in the examples given in chapter five).

In chapter four (Paper II), we define a typed object calculus with recursive ob-
jects. We have modified a calculus due to Abadi and Cardelli by adding a sum type
so that booleans and natural numbers can be represented directly using suitable ob-
ject types, and by combining recursive types with object types into a single type of
recursive objects. This calculus is proven to possess subject reduction (i.e., types
are preserved by reduction). The main result in this chapter is a translation of typed
object calculus into Plotkin’s metalanguage FPC. We show that a lazy evaluation
strategy is required for such a translation, and, moreover, that this translation turns
every computationally adequate and sound model of FPC into such a model for
typed object calculus.

In chapter five (Paper III), we introduce Freyd’s notion of dialgebra and the
associated recursion principle called direcursion. In this chapter we develop prim-
itive direcursion, which extends Freyd’s work so that additional maps can more
easily be defined. Moreover, we show that primitive direcursion is related to para-
metric (co)iteration, thus giving a link between direcursion and (co)iteration which
will later be used for characterising bisimilarity and defining object-based pro-
grams.

The final chapter six summarises our conclusions and briefly lists some topics
for further investigation. In particular, such topics include further studies of dire-
cursion (e.g. in order to allow for parameters and to characterise suitable classes of
definable maps) and, for typed object calculus, the problem of full abstraction and
the addition of a new communication operator.





Chapter 2

Categories and Domains

This chapter provides the theoretical background for the thesis, while also survey-
ing some related work.

2.1 Categories

We will assume knowledge merely of the basic notions of category and functors,
and therefore review other relevant concepts from elementary category theory in
this section. Details can be found in e.g. [Mac97] on most topics, but notions
such as involutory category, dialgebra and difunctor, (co)algebra, which may be
less familiar, are introduced here, while notation and terminology is given more
generally1.

Convention 2.1.1. We will write |C| for the “set” of objects of a category C, and
C(A, B) for the homset, elsewhere also written Hom(A, B) [Mac97]. The domain
and codomain of a morphism (arrow) f in C(A, B) will also be shown by writing
f : A → B, and we write A ∈ |C| to say that A is an object in C. As usual,
the identity morphism on an object A will be written as A, 1A, or idA, omitting
subscripts when possible.

A category C is small if its morphisms can be indexed by a set. In particular
|C| is a set in this case. C is locally small if each homset C(A, B) (i.e. morphisms
from A to B) can be indexed by a set, for each pair of objects A, B ∈ C. We say
that any other category is large. Though Mac Lane [Mac97] includes the small

1Further references to category theory include [AL91, BW85, BW99, Bor94, Cro93, Joh02,
LS86, LS97, LR02, McL92, Pie91, Poi92, Tay99, Oos95, Wal92].

23
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and locally small categories among the large ones, these distinctions are other-
wise standard (and regarded as quite independent of the axiomatic set theory under
consideration). Most categories that we will consider will be locally small but
not small (e.g. the category of sets), although functor categories are sometimes
even large. However, if C is small and D is locally small, then it follows that the
functor category [C,D] is locally small. The distinction between small and large
categories is needed, since a “comprehension principle” of e.g. Zermelo-Fraenkel
set theory [Cie97, Gol96] hinders us to speak of a “set of all sets”, as Russell’s
paradox demonstrates. Some classes formed by this principle will not be sets, but
rather proper classes. Hence, there are corresponding precise set-theoretic notions
to the above kinds of categories. Large categories such as Class (the category of
classes and class functions over a suitable set-theory) have been used in previous
work [Len96, HL00] for studying free construction principles and recursive type
equations, with a view on programming language semantics. There has been work
on formally relinquishing the dependence category theory in this way have on an
axiomatic set theory. For example, Mac Lane [Mac97] formalises a minimal set
theory with a universe, while Lawvere abandons set theory altogether and takes the
category of all categories as being the most fundamental notion [Law66]. For this
thesis, we stick to the standard distinctions as given above, and assume that the
set-theoretic universe is a Zermelo-Fraenkel-like set theory.

In this thesis, we often use locally small categories (such as Set and CPO).
Set and CPO are examples of concrete categories, namely categories C for which
there exists a functor U : C → Set which is faithful. Recall that a functor F is
faithful if for each A, B ∈ |C| and every pair f , g : A → B F f = F g implies
f = g. Similarly, a functor is full if when for each A, B ∈ |C| and h : F A → F B
there exists h′ in C such that h = F h′. Both kinds of functors are closed under
composition. We say that a D is a subcategory of C if there is a faithful inclusion
functor J (and the objects/morphisms in D are also in C). If such a functor J is full,
we say that D is a full subcategory. This means that if A, B ∈ C, then automatically
C(A, B) = D(A, B). Thus, a full subcategory of some given category is determined
solely by giving its objects.

The category Cat has small categories as objects and all functors between these
categories as arrows. On the other hand we write CAT for the category of all large
categories, which also includes the small ones. We will use the standard functor
( )op on Cat which maps a category C to its opposite (or dual) category Cop (with
all arrows reversed, c.f. [Mac97]). For a functor F : C → D, i.e., a morphism
in Cat, we have Fop : Cop → Dop, making ( )op a covariant functor. It takes a
morphism f : A→ B to F f : A→ B since (F f op)op = F f .
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Left inverses of a morphism are called retractions. Morphisms with retractions
are known as split monics. Some morphims have right inverses (also called sec-
tions) – the terminology is split epic. These are special cases of monic morphisms,
i.e. morphisms which are left-cancellable, and of epic morphisms, namely those
that are right-cancellable. (See e.g. [Mac97, McL92].) A morphism which is both
split monic and split epic is known as an isomorphism. (Though, it suffices to show
that it is monic and split epic.) Note that in Set, monos (i.e. monic morphisms) are
injective functions and epis (i.e. epic morphisms) are surjective functions. This is
however not generally the case for arbitrary concrete categories.

Much of this thesis will be based on a particular kind of bifunctor. To avoid
confusions that otherwise tend to arise (i.e., reference to a “bifunctor on C” be-
comes ambiguous), we introduce specific terminology, in the vein of Freyd’s asso-
ciated notions [Fre90]:

Definition 2.1.1 (Difunctor). We say that a functor G : Cop×C→ C is a difunctor.

Difunctors satisfy the usual bifunctor properties, but in the mixed variant set-
ting these have the following well-known form [Mac97], restated here for conve-
nience:

Corollary 2.1.1 (Properties of Difunctors). Suppose G is a difunctor. Then the
following is true:

(i) G(1A, 1B) = 1G(A,B)

(ii) G(g ◦ g′, h ◦ h′) = G(g′, h) ◦G(g, h′)

(iii) if g : A→ B and h : C → D, then G(g, h) : G(B,C)→ G(A,D)

Note that for G(A, B) = BA we have for morphisms G(g, h)( f ) = h ◦ f ◦ g,
which explains the contravariance in this case. For g : A → B and h : C → D, we
therefore have G(g, h) : G(B,C)→ G(A,D).

For any category C, C2 is the associated arrow category whose objects are
morphisms f in C, and whose morphisms in C2( f , f ′) are pairs (g, h) of morphisms
in C such that the following diagram commutes:
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A
f - B

A′

g

?

f ′
- B′

h

?

Definition 2.1.2 (Natural Transformation). Given functors F, F′ : C→ D, a natu-
ral transformation α : F ⇒ F′ consists of a family of arrows αX : FX → F′X for
X ∈ |C| such that for every arrow f : X → Y in C the following diagram commutes:

X FX
αX - F′X

Y

f

?
FY

F f

?

αY
- F′Y

F′ f

?

The morphisms αX are known as the components of the natural transformation.

For a fixed set S , an evaluation map eX : XS × S → X is natural (in X). The
diagonal map ∆X : X → X×X is also natural (in X), as is projection π : X×Y → X
(in both X and Y), etc. (These maps will be detailed below.) Many other examples
arise in categorical semantics, as [Pit01] shows in detail.

Natural transformations are the morphisms of a category [A,B] where the ob-
jects are all the functors F : A→ B. Composition of α : F ⇒ G and β : G ⇒ H is
given by γ : F ⇒ H determined by the following diagram:

F X
αX - G X

βX - H X

F Y

F f

? αX - G Y

G f

? βX - H Y

H f

?

That is, the components of γ are the composites of the components of α and β for
the same object. This is termed “vertical” composition (because the categories are
fixed), and written as ·. In more concise terms, we have that γX = (α·β)X = αX◦βX .
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We write [A,B] (or BA) for this so-called functor category and Nat(F,G) for a
particular homset (which, generally, need not be small). Note that there are identity
natural transformations on each functor F, the components of which are the identity
morphisms idF(X) on F X.

There is also vertical composition of natural transformations. Let F,G : A→ B
and F′,G′ : B → C be functors on the given categories. For natural transforma-
tions γ : F ⇒ G and δ : F′ ⇒ G′, we define δ ◦ γ : F′F ⇒ G′G, the vertical
composite, by giving the components (δ ◦ γ)X = G′γX ◦ δFX = δGX ◦ F′ γX , i.e. the
diagonal of this square (which commutes because of naturality of δ):

F′F(X)
δFX- G′F(X)

F′G(X)

F′γ

?

δGX
- G′G(X)

G′γ

?

See e.g. [Mac97] for the proof that this defines a natural transformation.
A special case which is useful for our purposes, is the composition of a natural

transformation η : F ⇒ G for F,G : A → B, with a functor H : C → B.
Then, the functor is regarded as the identity transformation H : H ⇒ H. We have
ηH : FH ⇒ GH. Similarly H′ : C → A gives H′η : H′F ⇒ H′G. Note as a
special case that the composition of a functor with itself can with good conscience
be written as FF (or even F2), and similarly in the general case (as we have indeed
done, see below).

In summary, we have seen two different ways of composing natural transfor-
mations, as the following illustration shows:

-

⇓α - -

A - B A ⇓γ B ⇓δ C
⇓β - -

-

There is also a weaker notion of “naturality” for functors G,H : Cop ×C→ D:

Definition 2.1.3 (Dinaturality). Given categories C,D and functors G,H : Cop ×

C → D, a dinatural transformation α : G V H is a family of arrows αX :
G(X, X) → H(X, X) indexed over |C|, such that for every arrow f : X → Y in
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C, the following diagram commutes:

G(X, X)
αX - H(X, X)

G(Y, X)

G( f , id
X)

-

H(X,Y)

H(idX , f )
-

G(Y,Y)
αY

-

G(idY , f ) -

H(Y,Y)
H( f , id

Y)

-

Note that any natural transformation G ⇒ H, i.e. family of mappings natural
in both the contravariant and the covariant component, respectively, is a dinatu-
ral transformation (by restricting to the diagonal components), but generally not
conversely.

Examples.

• A fixpoint operator Y : XX → X is a dinatural transformation. Simpson
[Sim93] showed that for many common domain-theoretic categories, the
least fixpoint operator is uniquely characterised as a certain such transfor-
mation.

• The map eval (defined below) gives the components of an extranatural trans-
formation, i.e. a dinatural transformation as above, but where H is dummy in
both its arguments, i.e. is a constant object (it is also known as a wedge). The
general case is the counit of an adjunction with parameters, see [Mac97].

2.1.1 Adjunctions

One of the most important concepts that category theory has helped to develop,
is possibly the notion of adjunction [Mac97, LS86]. Adjoints occur “throughout
mathematics”, and aspects of the idea were known before the advent of category
theory (loc. cit.).

One way of introducing adjunctions is to consider partially ordered sets (as in
[AJ94, LS86, Cro93], and elsewhere), noting that every preorder induces a trivial
category with a morphism f : A → B when A ≤ B in the preorder (associativity
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and identities follows immediately from transitivity and reflexivity). A functor
F : A→ B between two preordered sets (A,≤A) and (B,≤B) is a monotonic (order-
preserving) mapping because of preservation of composition. In this concrete case,
a functor U : B→ A is said to be a right adjoint to F if we have that the following
holds:

F(A) ≤B B if and only if A ≤A U(B)

This is classically called a Galois connection between the orderings. It follows
immediately that UF : A → A is a closure operation, namely that A ≤A UF(A),
UFUF(A) ≤A UF(A), and that UF is again monotone. The dual construction of
FU is called an interior operation instead. Adjunctions are generalisations of Ga-
lois connections, while monads and comonads generalise closure and interior op-
erations, respectively. An important consequence of an adjoint situation as above,
is that a one-to-one correspondence arises between the elements UF(A) � A and
the elements FU(B) � B where � means that UF(A) ≤A A and A ≤A UF(A) and
similarly for the other isomorphism (for a partial order, we have therefore equal-
ity). This is a principle of “unity of opposites”, which determine an equivalence,
equiv, between said subset of A and subset of B:

A
F -�
G

B

A0
6

6

�
equiv

- B0
6

6

As a final remark, note that if we write F a U for the above situation, and anal-
ogously also have F′ a U′, then it follows that F′F a U′U, i.e. Galois connec-
tions are closed under composition. (The reader will note a similarity with vertical
composition above.) Next, we will generalise and formalise this idea in category
theoretic language, particularly by using natural transformations.

Definition 2.1.4 (Adjoint). Let A and B be categories, with F : A → B and
U : B → A functors. We say that F is a left adjoint to U and write F a U, or
equivalently that U is a right adjoint to F while writing U ` F, provided there is a
natural transformation η : 1A ⇒ UF such that for any objects A ∈ |A| and B ∈ |B|,
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and any morphism f : A→ UB, there is a unique morphism g : FA→ B such that

A
ηA - FA

UB

Ug

?

f
-

commutes.

This definition is remarkably powerful – note that it states the existence of a
family of maps, followed by a universal quantification over maps of certain form,
such that a uniqueness property holds. In effect, it gives a translation of maps
f : A→ UB into maps g : FA→ B, such that g is the unique solution to the above
diagram. The data (F,U, η) is called an adjunction, and η is said to be the unit of
the adjunction.

Proposition 2.1.1. Let F and G be as in the previous definition, i.e. F a U etc.
Then there is a natural transformation ε : FU ⇒ 1B such that for any g : FA→ B,
there is a unique arrow f : A→ UB such that

FUB

FA
g

-

F f
-

B

εB

?

commutes.

For a proof, see e.g. [BW99]. The transformation ε is called the counit of the
adjunction. When we write (F,U, η, ε) it is understood that η and ε are the unit and
counit of F a U, respectively.

An important consequence of adjoints (or adjointness as it were) is that they es-
tablishe a strong bijective correspondence between maps (generalising the preorder
situation discussed above):

Proposition 2.1.2 (Adjunction). We have F a U for functors as in the previous
definition (with A and B locally small), if and only if there is a bijective correspon-
dence between the homsets

B(FA, B) � A(A,UB)
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natural in both A and B.

For the standard proof see e.g. [Cro93] or [Mac97]. Note that the left hand-side
gives a functor

Aop × B
Fop × 1B- Bop × B

B(−,=)- Set

where B(−,=) is the the mixed variant hom-functor (see [Mac97]). The right-hand
side produces

Aop × B
1A × U- Aop × A

A(−,=)- Set

analogously, so that we can indeed speak of a natural transformation having an
inverse (i.e. natural isomorphism).

We will write f̄ : X → UY for the morphism which corresponds to the mor-
phism f : FX → Y . We will analogously write ḡ : FX → Y for the morphism that
corresponds to g : X → UY via the bijection on homsets. We call both of these
maps a transpose, although there is some ambiguity in this (standard) terminology
and notation.

There are a number of important theorems for adjoints (some due to Peter
Freyd), which will not be used directly in this thesis, (but see e.g. [Mac97] for
(co)limit preservation implications generalising the preorder situation as shown in
e.g. [Cro93]). We conclude this section by giving a first example of an adjunc-
tion. For this purpose, we consider functors on Set, noting that we have a covariant
powerset functor P : Set → Set and an inverse image functor (−)−1 : Set → Set,
defined as follows:

P(X) = {Y : Y ⊆ X} (X)−1 = P(X)
P( f )(X) = { f (x) : x ∈ X} = f∗(X) ( f )−1(Y) = {x : ∃y ∈ Y. f (x) = y}

As a consequence, we have both a left and a right adjoint to the inverse image
functor (−)−1 (these functors are named ∃ and ∀, respectively). Thus, we have for
each function f : A→ B in Set also functions ∃ f : P(A)→ P(B) and ∀ f : P(A)→
P(B). These functions can explicitly be given as follows:

∃ f (A′) = { f (a) : a ∈ A′} ∀ f (A′) = {y ∈ B : f −1({y}) ⊆ A′}

The more abstract definitions of universal and existential quantification using ad-
joints, due to Lawvere [Law69], have turned out to be ubiquitous in categorical
logic and in topos theory, see e.g. [Joh02, McL92]. This example also illustrates
the usefulness of a categorical approach to semantics, like the one pursued for pro-
gramming languages in this thesis (see [Cro93, Pit01] for further motivation). One
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can argue that category theory used in this way abstracts from concrete situations
the essence or the character of the mathematical objects involved, and associates
reasoning principles to the resulting abstractions that it can express (from adjunc-
tions, universal properties, etc). Used in the appropriate way, category theory thus
seems to play an important part of mathematics, particularly for denotational se-
mantics of programming languages, where it can further our understanding of the
involved mathematical structures and help us discover novel examples of such.
Moreover, there is a close correspondence between category theory and various
type theories, since the limits/colimits that a category may have are essentially
means by which new types can be constructed from existing types. The latter will
be detailed in the following section.

2.1.2 (Bi)Cartesian Closure

Most interesting categories carry additional categorical structure such as products
and coproducts. For example, the familiar category Set has a rich categorical struc-
ture. Rather than expressing products etc abstractly as (co)limits (surveyed in a
later section), we will here review them in more concrete terms, given their impor-
tance. For convenience, we fix an arbitrary category C in this section.

Definition 2.1.5 (Initial and final object, elements). An initial object is an object
0 ∈ |C| such that for any object X ∈ |C|, there exists a unique morphism ! : 0→ X.
Dually, a final/terminal object 1 is an object in C for which there exists a unique
! : X → 1 in C for each object X ∈ C. A morphism e : 1→ X is known as a global
element, written e ∈ X, or e ∈1 X. An arbitrary morphism f : E → X is known as
an E-element, or generalised E-element, written f ∈E X.

Note that the global elements in Set each correspond to a member of the asso-
ciated set. Moreover, the initial object 0 is the empty set, and the final object 1 is
the singleton (unique up to isomorpism). It is easy to prove that both initial and
final objects are unique up to isomorphism in any category.

Definition 2.1.6 (Binary product). A product of objects X and Y is an object X ×Y
together with arrows (“projections”) π1 : X×Y → X and π2 : X×Y → Y such that
for any arrows f : Z → X, g : Z → Y there exists a unique arrow 〈 f , g〉 making the
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following diagram commute:

Z

X �
π1

�

f

X × Y

〈 f , g〉

?

π2
- Y

g

-

If a product exists for any two such objects in C, we say that C has binary products.

Binary products arise precisely when the diagonal functor ∆ : C → C × C
has a right adjoint, i.e. ∆(−) a Π(−, A), with ∆(X) = (X, X) (and similarly for
morphisms). Note that products are created by the bifunctor Π : C × C → C. The
dual situation is the following:

Definition 2.1.7 (Binary coproduct). A coproduct of objects X and Y is an object
X+Y together with arrows (“injections”) inl : X → X+Y → X and inr : Y → X+Y
such that for any arrows f : X → Z, g : Y → Z there exists a unique arrow [ f , g]
making the following diagram commute:

X
inl

- X + Y �
inr

Y

Z

[ f , g]

?�

gf

-

If a coproduct exists for any two such objects in C, we say that C has binary co-
products.

Coproducts arise precisely when the diagonal functor ∆ has a left adjoint, i.e.

C(Σ(A, A′), B) � C × C((A, A′),∆B)

natural in A and B). We have from the adjunction Σ(−, A) a ∆(−) a bifunctor
Σ : C×C→ C which maps two objects to their coproduct. This can also be written
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as C(A, B) × C(A′, B) � C(A + A′, B) using the homsets. More details are given in
e.g. [Mac97].

Binary (co)products generalise to the finite case:

Definition 2.1.8 (Finite products and coproducts). A category C is said to have
finite products if to any finite number of objects A1, ..., An there exists a product
diagram as above, but with n projections π1, ..., πn, subject to the same universal
property. In particular, there is a nullary product, which is the terminal object
of the category. Dually, C is said to have finite coproducts if the same holds for
coproducts and its universal property. For the latter, we write ini for the injections,
and note that the nullary sum must be an initial object.

In fact, we have:

Theorem 2.1.1. Any category C with binary products and terminal object has fi-
nite products, and a category with binary coproducts and initial object has finite
coproducts.

Proof. See [Mac97]. The second statement arises dually. �

Definition 2.1.9 (Exponentials). LetC be a category with finite products and termi-
nal object. The exponential of B by A is an object BA (also written [A, B]) together
with arrow eval : BA × A → B such that for every f : C × A → B there exists an
arrow curry f : C → BA such that the following diagram commutes:

BA × A
eval - B

C × A

curry f × idA

6

f

-

A category has exponentials if for any objects A, B the above is the case.

Definition 2.1.10 (Cartesian closed categories, ccc). A cartesian closed category
(ccc) is a category C with finite products, exponentials and a terminal object. More
concisely, C is a ccc if (1) it has products, and (2) for each A ∈ |C| the product
functor − × A has a right adjoint being the exponential −A, where the counit ε is
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the evaluation map. Moreover, we say that a category is bicartesian closed if it is
cartesian closed and has finite coproducts, i.e. ∆ has both a left and a right adjoint,
and × has a right adjoint.

Note that Set and Cat are examples of cartesian closed categories.

Remark 2.1.1 (Stable initial object). Suppose 0 is an initial object in C. Then it
does not generally follow that X × 0 is an initial object as well [Pit01]. If this
property holds, we say that the category has stable initial objects. This is automat-
ically the case for any cartesian closed category (as it follows from the adjunction:
X×0→ Y � X → Y0 � X → 0), and stable initiality is equivalent to π2 : X×0→ 0
being an isomorphism for each object X.

Remark 2.1.2 (Zero). If the initial object 0 and the terminal object 1 are isomor-
phic, then this object 0 � 1 is said to be a zero (elsewhere called also a bitermina-
tor) and the category is said to be punctuated. For such a category X × 0 � X, so
it clearly cannot have stable initial objects unless it is trivial. Such categories will
be dealt with in Paper I and Paper III of this thesis.

One sometimes also speaks about weak products, coproducts and other univer-
sal arrows, in which case uniqueness of the the mediating morphism is not required,
merely its existence (see [Mac97])

Proposition 2.1.3. In a bicartesian closed category, there is at most one morphism
f : X → 0 for any object X. Moreover, the following holds:

A + 0 � A A × 0 � 0 A0 � 1 A + B � B + A

(A + B) +C � A + (B +C) (A + B) ×C � (A ×C) + (B ×C)

AB+C � AB × AC

Proof. See e.g. [LS86] for the first part (uniqueness of f ). Proofs for the isomor-
phisms are straightforward. �

The sixth isomorphism above expresses distributivity of binary products over
binary coproducts. This is also known as stable coproducts [Pit01], which arises
in any bicartesian closed category, as it is exactly the property that each functor
A× (−) preserves binary coproducts (and this functor has of course a right adjoint).
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Proposition 2.1.4. The following holds in any cartesian closed category:

A × 1 � 1 A × B � B × A (A × B) ×C � A × (B ×C)

Moreover, we have:

A1 � A 1A � 1 (A × B)C � AC × BC AB×C � (AC)B

When explicitly needed, we will write cA,B for the isomorphism A×B � B×A,
and aA,B,C for the isomorphism for associativity of × in a ccc (dropping subscripts
when we can). Note also that we have naturality in each component of cA,B and
aA,B,C .

Having surveyed some of the properties of (bi)cartesian closed categories, we
note that any suitable category for solving domain equations (in a strict sense made
precise in a later section) will necessarily have to be punctuated, although in our
case it will be a subcategory of a cartesian closed category. This means that we
often have to settle for a weaker structure known as symmetric monoidal category
(as explained in e.g. [Mac97]. In other words, we have a tensor, i.e. bifunctor ⊗,
together with natural transformations for associativity, symmetry, and left and right
identity with respect to a given unit object I). In Paper I and and Paper III, we will
assume a symmetric monoidal closed category, which is a symmetric monoidal
category where in addition the tensor has a right adjoint.

2.1.3 Algebraic Structures

Fix a category C.

Definition 2.1.11 (Algebra, Coalgebra). Given a covariant functor F : C→ C, an
F-algebra is a pair (A, α) where α : F A→ A. A is the carrier and α the structure
map. The dual notion is that of F-coalgebra, i.e., pairs with a reversed arrow
α : A → F A. The arrows between (co)algebras are called F-homomorphisms
(or (co)algebra maps), i.e., arrows h such that for algebra maps the left diagram
commutes and for coalgebra maps the right diagram commutes:

FA
Fh - FB A

h - B

F-Alg F-Coalg

A

α

?

h
- B

β

?
FA

α

?

Fh
- FB

β

?
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Algebras and their homomorphisms form a category F-Alg (dually F-Coalg for
coalgebras). An initial object (when such exists) in F-Alg is called an initial al-
gebra. We write (µF, ιF) for such an object. A final object, denoted (νF, ι◦F), in
F-Coalg category (when such exists) is instead called a final coalgebra. (We omit
suffixes when we can.)

Note that algebra structures allow construction of (generalised) elements in the
carrier, whereas coalgebra structures allow destruction of them. This has recently
led to an intense study of coalgebras as a means for retrieving/observing informa-
tion from a dynamic system (the information being the “behaviour” provided by
the functor F other than the states themselves in the carrier), which has given rise
to a research area sometimes referred to as universal coalgebra [Rut00]. More-
over, note that coalgebras are closely connected to labelled transition systems and
to process algebras, as explained in loc. cit.

Lemma 2.1.1 (Lambek’s Lemma). An initial algebra (νF, ιF) is an isomorphism
νF � F(νF) (called fixpoint or invariant). Dually for the final coalgebra (νF, ι◦F).

Proof. The proof, credited to Joachim Lambek, is based on noting that ιF is also a
F-homomorphism:

FµF
F!- F2µF

FιF- FµF

µF

ιF

?

!
- FµF

FιF
?

ιF
- µF

ιF

?

We have the unique homomorphism ! into (FµF, FιF). But when we compose
it with ιF , we have ιF◦! = id because id is the unique homomorphism from the
initial algebra to itself. For the other direction, note that the square for ! gives
! ◦ ιF = FιF ◦ F! = F(ιF◦!) = F(id) = id. This establishes that ! is a two-sided
inverse and therefore ιF is an isomorphism. We write ι−1

F for ! therefore. �

The categorical notions of algebra/coalgebra can be generalised in several di-
rections. Work by Turi and Plotkin [TP97] and Freyd [Fre90] has shown that the
following generalisations are fruitful:

Definition 2.1.12 (Bialgebra). For endofunctors F,G, a 〈F,G〉-bialgebra is a triple
(A, α, β) where (A, α) is an F-algebra and (A, β) is an G-coalgebra. We also have
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a category 〈F,G〉-Bialg whose objects are bialgebras, and whose morphisms h are
morphisms h : A → B between carriers of bialgebras (A, α, β) and (B, α′, β′) such
that the following diagram commutes:

FA
α - A

β - FA

FB

Fh

?

α′
- B

h

?

β′
- FB

Fh

?

The notion of bialgebra given above has been studied also in forms where the
two structure maps are dependent on each other, see loc. cit. for the notion of λ-
bialgebra, and also [CHL03] for a further generalisation. (In this work, conditions
for when F lifts to a coalgebra functor (and dually) has been studied, so that either
map becomes a homomorphism. Sufficient conditions for this involve distributive
laws [Bec69], hence the notation λ.) We will use bialgebras of the more simple
form above when we give categorical semantics. We will also use the following
generalisation of (co)algebra due to Freyd (loc. cit):

Definition 2.1.13 (Dialgebra [Fre90]). A G-dialgebra for bifunctor G : Cop ×C→

C is a quadruple (A, B, φ, ψ) of objects A, B and associated arrows φ : G(B, A)→ A
and ψ : B→ G(A, B).

Note that in the case when G is dummy in its contravariant argument (i.e., an
endofunctor F on C), this definition gives precisely that (A, φ) is an F-algebra and,
independently, that (B, ψ) is a F-coalgebra. Dialgebras for a bifunctor G form a
category G-Dialg with the following morphisms:

Definition 2.1.14 (Dialgebra map [Fre90]). Given G-dialgebras (A, B, φ, ψ) and
(A′, B′, φ′, ψ′), a G-homomorphism (or dialgebra map/dimap) is a pair of arrows
(h : A→ A′, g : B′ → B) such that the following diagrams commute:

G(B, A)
φ - A B

ψ- G(A, B)

G(B′, A′)

G(g, h)

?

φ′
- A′

h

?
B′

g

6

ψ′
- G(A′, B′)

G(h, g)

6
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More details about dialgebras are given in section 2.4.3, as well as in Paper I
and Paper III.

Finally, the notion of congruence and bisimulation on, respectively, an F-
algebra or F-coalgebra are important for this thesis. The former states that a
relation is compatible with the structure map of an algebra, and the latter simi-
larly for a coalgebra. Here lies a problem, since we have not said what a relation
over a pair of objects is. For the category of sets, the required relations would be
R ⊆ µF × µF or R ⊆ νF × νF, but in other categories, such as domain theoretic
(or order-enriched) categories, only “approximable” relations, arises as subobjects,
i.e. monics r : R � µF × µF (which are subject to Scott-continuity etc). As we
will work in an enriched setting, where sets underlie cpos, we here settle for Set-
theoretic relation rather than insisting on the relations themselves being part of the
same ambient category (like in [TR98], for example). This implies a certain strat-
ification between proof principles and our universe of discourse (c.f. Pitts work
[Pit96]). (One might want to close this gap in the future: for a discussion see e.g.
[Fio96a], and for some progress towards it, see [Fio96c].)

Definition 2.1.15 (Congruence). Given an endofunctor F : Set → Set and F-
algebras (A, α) and (B, β), an F-congruence relation between (A, α) and (B, β) is
a relation R ⊆ A × B such that there exists another F-algebra (R, r) that make the
following diagram commute (with projections restrictions of those on the product):

FA � Fπ1 FR
Fπ2 - FB

A

α

?
�

π1
R

r

?

π2
- B

β

?

Note that this says that the projections are F-homomorphisms, as indicated.

Definition 2.1.16 (Bisimulation). Given an endofunctor F : Set → Set and F-
coalgebras (A, α) and (B, β), an F-bisimulation relation between (A, α) and (B, β)
is a relation R ⊆ A × B such that there exists another F-coalgebra (R, r), making
the following diagram commute (where π1 and π2 are the restrictions of the usual
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projections for the product):

A � π1 R
π2 - B

FA

α

?
�

Fπ1
FR

r

?

Fπ2
- FB

β

?

Note that this says that the projections are F-homomorphisms as indicated. The
greatest such relation R on a single F-coalgebra is called F-bisimilarity, if it exists.

The notion of bisimulation gives a technique for proving that two states (el-
ements of carriers) are bisimilar, i.e. contained in the greatest bisimulation (any
bisimulation obviously being sufficient for this to happen). Rutten [Rut00] estab-
lishes many results regarding coalgebras and bisimulations in Set. His work was
predated by the development of process algebra (notably the work of Robin Mil-
ner), coalgebra [Acz88] and applicative bisimilarity [Abr90] (on domain-theoretic
categories), see loc. cit. and [TR98] for some references and more detailed history.

2.2 Limits and Colimits

Limits (classically called inverse or projective limits) and colimits (direct or induc-
tive limits) generalise many important constructions. The present thesis rests on
previous results by e.g. Smyth and Plotkin, and by Scott in the context of solving
recursive domain equations. These constitute theoretical machinery which implies
existence of the domain-theoretic models studied in the thesis. Also, limits are the
categorical counterpart of the algebraic concept of an equationally specified subset
of a product [BW99] and can be defined as such (i.e. by using equalisers). Alter-
natively, they can be concisely defined using (co)universal arrows. Here, we will
examine a more direct approach which is equivalent and more concrete.

To begin with, say that a functor ∆ : J → C is a J-diagram where J is the
index category (or shape of the diagram), although in fact it suffices to use graph
morphisms as in e.g. [AC98].

Definition 2.2.1 (Cone, cocone). A cone under a diagram ∆ : J → C from A is a
pair (A, µ) where µ is a natural transformation µ : KA ⇒ ∆ where KA is a constant
functor with KAX = A, and A ∈ |C|. The dual notion of cocone is as follows: a
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cocone over a diagram ∆ : J → C to A is a pair (A, ν) consisting of A ∈ |C| and
ν : ∆⇒ KA.

The components of the respective natural transformations are often called the
legs of the (co)cones. The constant functor KA determines the vertex A of the cone,
and for each J ∈ |J|, a component µJ : A → ∆J gives a morphism in C from the
vertex. Moreover the definitions mean that, for any morphism ∆ j : ∆J → ∆J′,
we have that the leg µJ into ∆J, the leg µJ′ into ∆J′, and ∆ j form a commuting
diagram:

∆J
∆ j - ∆J′

A

µ J′

-
�

µ
J

Definition 2.2.2 (Universal cone and cocone). A cone (A, µ) under ∆ is a limiting
cone (also universal cone) if for each other cone α : ∆→ KB, there exists a unique
mediating morphism !B : B → A such that for each J ∈ J we have µJ◦!B = αJ .
A cocone (A, ν) over ∆ is a colimiting cocone (also universal cocone), if for each
cocone β : KB → ∆, there exists a unique mediating morphism !B : A → B such
that for each J ∈ J we have βJ◦!B = νJ .

The following diagram shows the situation for the universal cone, for any given
pair of projections µJ and αJ as in the definition, with J ∈ J:

∆J � αJ B

A

µJ

6

�

! B

This clearly amounts to saying that the universal (co)cone is the initial object
in what obviously is a category of (co)cones. Moreover, the universal cone can
be viewed as the “greatest” cone and the universal cocone as the “least”. This
intuition comes from considering a preorder category where a morphism e : A→ B
witnesses that A ≤ B. Hence, a universal cone is a cone such that any other cone is
“smaller” (and dually for cocones).
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Definition 2.2.3 ((Co)limit). When it exists, the limit Lim
←−
∆ of a diagram ∆ is given

as the vertex A of the universal cone (A, µ). When it exists, the colimit Colim
−→
∆ is

the vertex A′ of the universal cocone (A′, ν).

The construction, which implicitly selects initial and terminal objects of a
(co)cone category, gives immediately the following:

Proposition 2.2.1 (E.g. [Mac97]). Limits and colimits are unique up to isomor-
phism.

Definition 2.2.4 ((Co)completeness). We say that a category is complete if it has
limits for all diagrams ∆ (and small-complete if this is true when J is a small
category). Dually, we say that a category is cocomplete if it has the colimits.

Note that we have to be careful with regards to the size of J. Unless we say
otherwise, we assume (as is standard) that it is a small category (but for certain
coalgebraic semantics large shapes must also be considered). Even for small dia-
grams, completeness is quite a strong property, which implies that the category has
arbitrary products (i.e. with respect to an arbitrary diagonal operator, and dually so
for cocompleteness and coproducts), see [Mac97]. We have spoken about functors
preserving products. Now we can express the general notion:

Definition 2.2.5 ((Co)continuous functor). Fix a category C and shape J. If for all
functors ∆ : J→ C we have

F Lim
←−
∆ = Lim

←−
F∆,

then we say that F preserves limits of shape J. If for all such ∆ we have

F Colim
−→
∆ = Colim

−→
F∆,

then we say F preserves colimits of shape J. If F preserves all limits for all J it is
said to be continuous. If it similarly preserves all colimits for all J, it is said to be
cocontinuous.

Initial F-algebras arise from certain colimits under suitable assumptions on the
involved functor and categories. The first assumption is that J = ω, i.e. the ordinal
ω considered as a category, i.e. just a chain 0→ 1→ 2... (plus identities).

Convention 2.2.1. We will write (Di, di)i∈ω for a diagram ∆ : ω → C, where
di : Di → Di+1, for which di are morphisms in C (see [SP82]). We also write dm,n

for the composite dn−1 ◦ ... ◦ dm : Dm → Dn. A diagram ∆ : ω → C is obviously
induced by this data.
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The main idea is outlined as follows:

F Colim
−→
∆ � Colim

−→
F∆ = Colim

−→
∆− = Colim

−→
∆

First, ∆ : ω → C is assumed, and we construct ∆ by iterating the functor on the
initial object, giving 0

!
- F(0)

F!
- F2(0), and so forth. Next, we apply the

functor to the limit of such a diagram (which we must assume exist in the category
C). Next, we must use a “commutativity” property (preservation of limits), after
which a basic observation about manipulating the diagram gives the fixpoint. It
remains to show that the fixpoint is the initial one. Now, we give the proofs in
detail.

These proofs are due to Smyth and Plotkin [SP82], based in turn on work by
Wand [Wan79]. (Both these papers stem from work by Scott [Sco72] on models of
untyped lambda calculus using special colimits.)

Lemma 2.2.1 ([SP82]). Let F : C → C be a functor where C is a ω-cocomplete
category. Let ∆ be the ω-chain (Fi(0), di = Fi(!))i∈ω where ! is the unique mor-
phism 0→ F(0). Then, the following holds:

• Every F-algebra (VA, α) gives a cocone (A, vA) over ∆.

Proof. First, we have the diagram

0
! - F0

A

!A

?
�

α
FA

F!A

?

which trivially commutes. We define v0 =!A, v1 = α ◦ F(!A) (we drop the subscript
for v temporarily) and by induction vn+1 = α ◦ F(vn). We prove by induction that
each diagram of the following form commutes:

Fn(0)
Fn(!)- Fn+1(0)

A

vn+1

?

vn
-
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We have for n + 2:

vn+2 ◦ Fn+1(!), by definition

= α ◦ F(vn+1) ◦ Fn+1(!)

= α ◦ F(vn+1 ◦ Fn(!)), by I.H.

= vn+1

�

It remains to prove that there is a unique F-homomorphism given from the
universal cone, thus giving an initial F-algebra. This requires a suitable mediating
morphism, and thus some additional notation becomes handy:

Convention 2.2.2. For ∆ = (Di, di)i∈ω an ω-chain, we will write ∆− for the ω-
chain given by removing the first object and morphism in the chain, i.e. ∆− =
(Di+1, di+1)i∈ω. For such ∆, we write F∆ for (FDi, Fdi)i∈ω. For a cocone (A, µ) we
write (A, µ−) for µ− : ∆− ⇒ KA with component µi+1 at the object i of J. Note,
finally, that (FA, Fµ) is a cocone over F∆, where Fµ : F∆ ⇒ FKA = KFA for
endofunctor F on C.

Theorem 2.2.1 ([SP82]). Let F : C → C be a ω-cocontinuous functor where C is
a ω-cocomplete category. Let ∆ be the ω-chain (Fi(0), di = Fi(!))i∈ω where ! is the
unique morphism 0→ F(0). Then the following holds:

• The colimiting cone (A, µ) yields existence of an initial F-algebra (C, ιF) where
ιF : FA→ A is the mediating morphism from (FC, Fµ) to (C, µ−).

Proof. Let (A, vA) and (B, vB) be the cocones arising from arbitrary F-algebras
(A, α) and (B, β), as in the previous theorem. Suppose we have a F-homomorphism
h : (A, α) → (B, β). We will show that we then have a mediating morphism vA →

vB. We proceed by induction on a natural number n, to show that for all i ∈ ω
we have vB

i = h ◦ vA
i as required. For n = 0 we have vB

0 =!B so by initiality the
statement holds. For n + 1 we have

h ◦ vA
n+1, by definition of vA

n+1 in the previous theorem

= h ◦ α ◦ F(vA
n ), by homomorphism property of h

= β ◦ F(h) ◦ F(vA
n )

= β ◦ F(h ◦ vA
n ), by I.H.

= β ◦ F(vB
n ), by the definition of vB

n+1 in the previous theorem

= vB
n+1
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Our candidate for the initial F-algebra is the mediating morphism (and indeed F-
algebra) ιF from (FC, Fµ) to (C, µ−). Let (B, vB) be the cocone from a given F-
algebra (B, β) as in the previous theorem. We have shown that any homomorphism
also gives a mediating morphism. Since F is ω-cocontinuous, also (FC, Fµ) is
colimiting, and uniqueness follows. It remains to show that there exists such an
F-homomorphism h : (C, ιF) → (B, β). Let h be mediating morphism from (C, µ)
to (B, vB). We will show that h ◦ ιF and β ◦ Fh are both mediating morphisms
from (FC, Fµ) to (FB, (vB)−), since the required F-homomorphism property then
follows. For the first case, h ◦ ιF ◦ Fµi = vB

i+1 by definition of h. For the second
case:

β ◦ Fh ◦ Fµi

= β ◦ F(h ◦ µn), by h being mediating morphism

= β ◦ vB
n , by definition of vB from previous theorem

= vB
n+1

This completes the proof. �

To summarise: it is established that the carrier µF (= C above) of the initial
F-algebra (µF, ιF) is constructible as a certain colimit, and that the unique homo-
morphism to some other F-algebra arises as the unique mediating morphism to
the respective cocone for that F-algebra. We close the section by dualising these
important results:

Corollary 2.2.1. A ω-cocomplete category has final F-coalgebras. Their carriers
are the limits of shape ωop given by iteration F on 1. Their structure maps ι◦F :
νF → F(νF) are given by the mediating morphism from ν− to F(ν).

These results for initial F-algebra and final F-coalgebra can readily be seen
as generalisations of the existence of a least fixpoint of a (suitably) continuous
function on a (semi-) complete lattice, which dualises also in the lattice theoretic
case (this is due to Tarski, see [Tar55, DP02]). For lattices, we require existence of
least element (here initial object), suitable supremum (here ω-(co)completeness),
and preservation of suprema (infima), i.e. continuity (here (co)complete functor).

2.2.1 Monads and Comonads

Recall the closure operation for UF in the setting of preorder categories. The
notion has a generalisation, which, in category theory, corresponds to a monoid at
the level of functors and natural transformations:
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Definition 2.2.6 (Monad and comonad). A monad M = (M, η, µ) where M : C→ C
is an endofunctor and η : 1C ⇒ M and µ : MM ⇒ M are natural transformations,
such that identity/unit and associativity laws hold, i.e. the following diagrams com-
mute:

MM
µ - M

M

Mη

6

�
µ

==
==
==
==
==
==
==
==
==
==

id

MM

ηM

?

MMM
Mµ- MM

MM

µM

?

µ
- M

µ

?

A comonad M = (M, ε, δ) is subject to the dual commutative diagrams for natural
transformations ε : M ⇒ 1C and δ : M ⇒ MM.

The notion of monad finds its origins in homological algebra (see [Mac97]). It
was studied by Moggi [Mog88], and subsequently became very popular through-
out programming language research and functional programming, since it gives a
structuring principle for programs based on the “effects” that they produce. Exam-
ples of monads are the trivial identity monad id, but also the state monad S A(X) =
A ( (A × X), which we next describe in more detail. Given two maps f : X →
S A(Y) and g : Y → S A(Z), we can uncurry them into f̄ : A × X → A × Y and
ḡ : A × Y → A × Z, which case we see that g • f = ḡ ◦ f̄ , using transpose again
to recover the curried map X → S A(Z). This explains how µ is defined for S A,
i.e. via the so-called Kleisli composition (written as •, see below). The unit η is
determined by the mapping X 7→ AA×idX , which is easily seen to define a natural
transformation id ⇒ S A. This monad is particularly important since it can be used
to pass a parameter through a computation while also allowing that parameter to
be updated.

There is a close connection between (co)monads and adjunctions, as every
adjunction F a U induces both a monad and a comonad in the following way:
(UF, η,UεF) and (FU, ε, FηU) where η and ε are the unit and counit of the ad-
junction, respectively. For details, see e.g. Barr et al [BW85].

2.2.2 Kleisli and Eilenberg-Moore Categories

Each monad M on a category C determines two important categories: the Kleisli
category CM and the Eilenberg-Moore category CM. We define these in turn:

Definition 2.2.7 ((co)Kleisli category). Given a monad M on a category C, let
CM denote the category with objects all the objects in C, and CM(A, B) containing
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all arrows in C(A,M(B)). Given f ∈ CM(A, B) and g ∈ CM(B,C), we define the
composite g • f to be the map µC ◦Mg ◦ f from C. Note that identities on an object
A are given as certain maps A→ M(A), namely as ηA. It immediately follows that
CM is a well-defined category, since • inherits associativity from the monad M.
The co-Kleisli category arises dually for a comonad (for which we use the same
notation).

Note that the Kleisli category arises from the bijection between monads and
adjunctions, since an adjunction gives a translation of a homset C(FA, FB) into
C(A,UFB), in particular (see [BW85]).

Each monad defines a lifting functor (̂·) : C→ CM by X̂ = X and f̂ = ηB ◦ f for
any f : A → B, where indeed f̂ : A → M(B) is an arrow in CM. Similarly there is
always a forgetful functor U : CM → C which is M on objects (i.e. U(X) = M(X))
and maps an arrow f : A → M(B) to U( f ) : M(A) → M(B). It is immediate that
these constructions give functors. Moreover, it follows that ·̂ a U, i.e. the lifting is
the left adjoint of the forgetful functor. This has an important consequence, which
we will use below:

Corollary 2.2.2. Let C be a category and M a monad on C. Suppose I is the
colimit of the diagram ∆ in C. Then Î is a colimit of the diagram ∆̂ in CM.

For a proof of this, and more details about the above topics, see e.g. Mac Lane
[Mac97].

There is a close connection between algebras (actually Lawvere theories) and
monads, at least in the first-order case [RB86]:

Definition 2.2.8 (Eilenberg-Moore category). Each monad M = (M, η, µ) with
M : C → C gives rise to a category of algebras, known as the Eilenberg-Moore
category. The objects of this category, denoted CM, are pairs (A, α) with α an
F-algebra, subject to the commutativity of the following diagrams:

A
ηA - MA M2A

µA - MA

A
�

α

====================

=

MA

Mα

?

α
- A

α

?

Morphisms in CM are usual F-homomorphisms. Note that composition and iden-
tities are given as in M-Alg.
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For M-Alg, there is a forgetful functor UM : M-Alg → C mapping an M-
algebra (A, α) to the object O, and homomorphisms to the underlying morphism in
C. Such a forgetful functor obviously also exists for CM as UM : CM → C as it is a
full subcategory of M-Alg. In the second case, there is a left adjoint FM : C→ CM

which maps an object (carrier) to the associated free (Eilenberg-Moore) algebra. It
is defined as follows:

FM(A) = (MA, µA)
FM( f ) = M f

Note that for f : A → B, we have indeed that FM( f ) is an M-homomorphism in
M-Alg as the following diagram shows

MA
µA

- M2A

MB

M f

?

µB
- M2B

M2 f

?

The above adjunction UM a FM determines M via the definition of the monad
associated to an adjunction in the previous section. (In fact, every monad can be
defined by a pair of adjunctions [Mac97].)

2.2.3 Kleisli Products and Exponentials

While the above notions related to monads are well known in the category theorists
toolbox, the following is a more recent development, that has turned out to be
useful in the semantics of programming languages. It is a notion of function space
parameterised by a monad. More precisely, we say that a category C has Kleisli
exponentials if for each X ∈ |C| the functor FM ◦ (− × X) : C → CM has a right
adjoint (−)X

M : CM → C. Alternatively, we formulate this in more elementary
terms:

Definition 2.2.9 (Kleisli exponentials [Mog89, Mog91, Sim92, FP94, Fio96a]).
The Kleisli exponential of Y by X is an object YX

M (also written [X (M Y]) together
with arrow evalM : YX

M ⊗ X → Y such that for every f : Z × X → M Y there exists
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a unique arrow curryM( f ) : Z → YX
M such that the following diagram commutes:

YX
M × X

evalM - M Y

Z × X

curryM( f ) × idX

6

f

-

Note that having Kleisli exponentials is a weaker property than having expo-
nentials, since we can take M = 1C as a special case, yielding the usual exponential
on C. However, in this thesis we postulate axioms (satisfied by several existing
concrete categories) such that cartesian closure cannot hold, but the above Kleisli
exponentials are available instead (via partiality/lifting monads).

Note that the free functor (̂−) : C → CM preserves colimits (including F-
algebras if these are given by colimits). In particular CM has coproducts, pullbacks,
coequalisers etc.

2.3 Recursion and Corecursion

Initiality of an F-algebra gives both existence of inductive extensions and unique-
ness of these. The former is useful for making definitions using induction, whereas
the second gives a proof principle. The situation is dual for coinduction/coalgebra.
This was realised already by Lawvere, to whom we owe the following notion (and
much more):

Definition 2.3.1 (Natural number object, nno[Law64]). A natural number object
N in a cartesian closed category C consists of two morphisms z : 1 → N and
s : N → N such that for each pair of morphisms a : 1 → A and f : A → A
with for A ∈ |C|, their exists a unique h : N → A such that the following diagram
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commutes:

1
z - N

s - N

1

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
a

- A

h

?

f
- A

h

?

When one merely wishes to make iterative definitions in a category, it suffices
with a so-called weak nno [LS86]. Such objects N are central in topos theory2

[LS86, McL92, Joh02], where they automatically generalise to covering definitions
by “primitive recursion” by using merely cartesian closure:

Theorem 2.3.1 (Primitive recursion using nno). Let (N, z, s) be a natural number
object in a cartesian closed category. Then, given objects A and B equipped with
with morphisms g : A → B and h : A × N × B → B, there exists a unique
f : A × N→ B such that the diagram

A × 1
1 × z- A × N �1 × s

A × N

A

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
g

- B

f

?
�

h
A × N × B

〈1, f 〉

?

commutes.

Proof. See e.g. [LS86] or [Joh02]. �

Next, we show how the above notions generalise to datatypes other than the
natural numbers. For this, consider an arbitrary endofunctor F : C→ C which has
an associated initial F-algebra (µF, ιF).

2A topos has a somewhat richer structure than the categories in this thesis, since it in addition
to cartesian closure has a notion of subset (subobject classifier). The question how topos theory
fits with domain theory is, and has been, subject to a lot of research, e.g. synthetic domain theory
[Hyl82, Tay91, Hyl92, Ros94] as envisioned by Dana Scott in 1977.
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Definition 2.3.2 (F-iteration). Let (µF, ιF) be the initial F-algebra, and φ : F A→
A an arbitrary F-algebra. (|φ|) : µF - A is defined to be the unique homomor-
phism in the following commuting diagram:

F µF
ιF - µF

F A

F (|φ|)

?

φ
- A

(|φ|)

?

In the category Set, the object N is the carrier of the initial algebra for 1 + ( ).
The structure map ι1+( ) is [zero, succ], and many familiar functions can be defined
using its universal property:

add (n,m) = (|[λx.m, succ]|)(n)
mult (n,m) = (|[λx. zero, λx. add(m, x)]|)(n)
pred = (|[id + [zero, succ]]|)

Several basic properties that are frequently used by functional programmers
arise from iteration. Our exposition follows Vene [Ven00] and regards these as
important for formal methods:

Corollary 2.3.1 (Basic properties of iteration). Let (µF, ιF) be the initial F-algebra.

• Cancellation: For any other F-algebra φ : F A→ A we have

(|φ|) ◦ ιF = φ ◦ F(|φ|) ((|·|)-S)

• Reflection:

id = (|ιF |) ((|·|)-R)

• Fusion: For any F-algebras φ : F A → A and ξ : F B → B, and arrow
f : A→ B

f ◦ φ = ξ ◦ F f ⇒ f ◦ (|φ|) = (|ξ|) ((|·|)-F)

It is trivial to dualise F-iteration to the useful notion of F-coiteration simply
by reversing the arrows. The “conaturals” arises from such dualisation, namely the
ordinal ω+1 regarded as a cpo. Note that there hence is an extra “infinite” element
adjoined.
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Definition 2.3.3 (F-coiteration). Let (νF, ι◦F) be the final F-coalgebra, and ψ :
A → F A an arbitrary F-coalgebra. [(ψ)] : A - νF is defined to be the unique
homomorphism in the following commuting diagram:

νF
ι◦F - F νF

A

[(ψ)]

?

ψ
- F A

F [(ψ)]

?

A basic example of a coinductive datatypes, i.e. a final coalgebra, is a stream.
A stream of natural numbers is, for example, given by the functor N× ( ). Note that
the associated initial algebra in Set merely contains a list of one element, whereas
the final coalgebra for this functor (in Set) consists of infinite sequences of natural
numbers.

Some standard examples of coiterative functions on streams are the following:

nats = [(〈id, succ〉)]
zip = [(〈π1 × π1, π2 × π2〉 ◦ (ι◦ × ι◦))]
iterate ( f ) = [(〈id, f 〉)]

The basic properties dualise directly (again, these are often used in functional
programming):

Corollary 2.3.2 (Basic properties of coiteration). Let (A, ι◦F) be the final F-coalgebra.

• Cancellation: For any other F-coalgebra ψ : B→ F B we have

ι◦F ◦ [(ψ)] = F[(ψ)] ◦ ψ ([(·)]-S)

• Reflection:

id = [(ι◦F)] ([(·)]-R)

• Fusion: For any F-coalgebras ψ : B → F B and ξ : C → F C, and arrow
f : B→ C

ψ ◦ f = F f ◦ ψ ⇒ [(ψ)] ◦ f = [(ξ)] ([(·)]-F)
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It is sometimes better to use other recursion schemes than iteration and coit-
eration (with respect to a functor), when defining and reasoning with functional
programs. For example, it is well known from recursion theory that the factorial
function fact is primitive recursive rather than iterative (on the natural numbers):

fact
def
= π1 ◦ (|[λx.〈1, 0〉, λ〈 f , n〉 ◦ 〈(n + 1) ∗ f , n + 1〉]|)

Note that fact makes use of its recursive argument, which decreases from the
provided argument in decrements of 1. Hence, primitive recursion is a generali-
sation of iteration on the natural numbers, where an extra parameter is maintained
during the otherwise iterative computation. Since iteration is defined for arbitrary
functors and arbitrary instantiations of the involved carrier of the target algebra, we
have the following:

Definition 2.3.4 (F-primitive recursion). Given φ : F(A × µF)→ A, the paramor-
phism 〈|φ|〉 : µF - A is defined to be the unique arrow, which makes the follow-
ing diagram commute:

FµF
ιF - µF

F(A × µF)

F 〈〈|φ|〉, idµF〉

?

φ
- A

〈|φ|〉

?

Although this recursion scheme in a sense is more expressive than F-iteration,
it can still be expressed by using the latter up to a post-composed projection:

Lemma 2.3.1 (Meertens [Mee92]). 〈|φ|〉 = π1 ◦ (|〈φ, ι ◦ Fπ2〉|)

The reader may note that the situation for a general functor is not entirely dif-
ferent to the situation for a natural number object and primitive recursion. (How-
ever, work by Uustalu and Vene [UV99] has demonstrated that milder assumptions
suffices, namely that cartesian closure is not required.) We collect some useful
properties for this principle:

Corollary 2.3.3 (Properties of F-primitive recursion). Let (A, ιF) be the final F-
algebra.

• Cancellation: For any arrow φ : F(A × µF)→ A we have

〈|φ|〉 ◦ ι = φ ◦ F〈〈|φ|〉, id〉 (〈|·|〉-S)
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• Reflection:

id = 〈|ιF ◦ Fπ1|〉 (〈|·|〉-R)

• Fusion: For any arrows φ : F(A × µF) → A, ψ : F(B × µF) → B and
f : A→ B we have

f ◦ φ = ψ ◦ F( f × id) ⇒ f ◦ 〈|φ|〉 = 〈|ψ|〉 (〈|·|〉-F)

Finally, suppose we want to define a map µF×Γ→ A such that the parameter Γ
is, intuitively, passed between each recursive call. This is achieved by the following
construction of a unique homomorphism h, whose transpose h̄ : µF × Γ → A is
exactly such a map:

F(µF) - µF

F(Γ( A)

F(h)

?

φ
- Γ( A

h

?

Several other (co)recursion schemes have been studied in the literature. These
range from parametric (co)recursion [Spe93, CF92, CS92, Mos01] to e.g. monadic
recursion [Fok94, MJ95, Par01]. Recently, coiteration has been generalised by us-
ing distributive laws (based on Lenisa’s identification of pointed functors in this
context, i.e. a functor for which there exists a natural transformation η : F ⇒ 1)
[Len99, Bar03, Bar04] and a related notion of bisimulation up-to-context [San98b].
Paper III will explore a recursion scheme that generalises F-(co)iteration and is
based on the more general notion of dialgebra rather than (co)algebra. Since this
means tat we move to a domain-theoretic category which is algebraically com-
pact (see below), we must let go of some type structure, and cartesian closure in
particular. Moreover, we consider mixed-variant functors (difunctors) rather than
endofunctors, in order to cover the recursive types required for interpreting typed
object calculus.

2.3.1 Involutions

The following construction is due to John Power [Fio96b], and formalises the no-
tion of self-dual via an involution. In this thesis, it will be used both implicitly and
explicitly:
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Definition 2.3.5 (Involutory category). Let C be a category. We say that ( )◦ is an
involution on C, when we have

( )◦ ◦ ( )◦ = IdC.

That is, for any f ∈ C(A, B) we have f ◦ ◦ f ◦ = f , implying that f ◦ ∈ C(B, A).
Given such an involution, we define the category Inv(C, ( )◦) to be the category
where objects are pairs (A, a : A◦ → A) such that a ◦ a◦ = idA. These objects are
called involutory objects. A morphism f : (A, a : A◦ → A) → (B, b : B◦ → B) in
Inv(C, ( )◦) is a morphism f from C such that the following diagram commutes in
C:

A◦
a - A

B◦

f ◦

?

b
- B

f

?

Note that this says that the involutory category consists of ( )◦-algebras, a, which
are split epic in C, with the right inverse given as a◦.

Before considering an the important example, we note that we have two func-
tors Π1 and Π2 given as morphisms in Cat (which has products):

Π1 : Cop × C→ Cop

Π2 : Cop × C→ C

We apply the functor ( )op on Cat to these, giving

Π
op
1 : C × Cop → C

Π
op
2 : C × Cop → Cop

Hence we also have a functor

〈Π
op
2 ,Π

op
1 〉 : C × Cop → Cop × C

which we will call ( )§.

Example 2.3.1. We have that Inv(Cat, ( )op) is an involution. In this category
(Aop ×A, 〈Π2,Π1〉) is an involutory object for any category A. This can be seen by
noting that (Aop × A)op = A × Aop. Hence, we for example have that the functor
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〈Π2,Π1〉 : A×Aop → Aop ×A is an ( )op-algebra since (〈Π2,Π1〉)op = 〈Π2,Π1〉 is
self-dual. The morphisms H are homomorphisms between ( )op algebras:

Aop F - A

Bop

Hop

?

G
- B

H

?

Let us denote by C̆ the category Cop × C and note that (C̆)n = ˘(Cn). Let us
consider some special morphisms arising from the previous example by taking
both F and G to be 〈Π2,Π1〉 (but for different categories) and A = C̆ = Cop × C

and B = D̆:
C × Cop 〈Π2,Π1〉- CopC

D × Dop

Hop

?

〈Π2,Π1〉
- Dop × D

H

?

This diagram requires exactly that H1( f , g) = H2(g, f ). Motivated by this obser-
vation, morphisms in Inv(Cat, ( )op), seen to be functors of the form C̆ → C̆, are
hereafter called symmetric functors.

Each symmetric functor F induces two functors F1 and F2 by post-composition
with the projections Π1 and Π2 in Cat. In fact, each symmetric functor is uniquely
determined by F2, i.e., by the associated difunctor C̆ → C. This is shown in the
following adjunction in Cat:

C̆
F- C

C̆
F̆- C̆

The bijections are explicitly given as follows:

F̆ 7→ F̆2
F 7→ 〈Fop ◦ ( )§, F〉

That is, a difunctor gives a symmetric functor using a “doubling trick” which is
due to Freyd [Fre90], and symmetric functors give difunctors through projections.
These translations also apply to a contravariant functor G : Aop → A which can be
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extended into G ◦ Π1 : Ă→ A dummy in its positive component. We will write Ğ
for these (G ◦ Π1) ,̆ being slightly flexible with the notation.

2.4 Domain Theory

Domain theory [SHLG94, AJ94, AC98] is a branch of mathematics that aims at
explaining computations in terms of processes of approximation of ideal values.
This theory can give a fine-grained explanation of programming language con-
cepts and computable functions, since it explicates the intermediate (approxima-
tive) stages of computations and views a computation as being the limit point of a
generalised sequence of such approximations. It moreover can be used for comput-
ing on generalised datatypes such as the real numbers or object types. One goal in
domain theory research has been to construct categories of domains that are carte-
sian closed (thus allowing simply typed lambda calculi, and other type theories,
to be interpreted), but also to give solutions to recursive domain equations. The
latter is central to the interpretation of many programming languages, including
concurrent languages (see e.g. [AC98]), and in particular the untyped lambda cal-
culus [Bar84]. In this thesis, we will use such domain equations also when giving
a denotational semantics to typed object calculus. The equations that we will be
using generalise those typically used for models of untyped lambda calculus. The
reason why such domain equations are natural also for object-based programming
languages is that objects are used both as data and as functions (i.e., when a method
is invoked, it can be viewed as a function that regards itself as being part of the in-
put). In this respect, models of typed object calculi inherits many characteristics
from models of untyped lambda calculus (see e.g. [Wad76]), while types must
also be appropriately modelled. This places models of typed object calculus well
within the scope of domain theory. For example, method invocation involves a se-
ries of approximations which in the limit corresponds to a result (typically another
object). From a programming language perspective, we obviously wish that this
result arises at a finite stage of the computation. These intuitions are captured by
notions such as directed sets (sequences of approximations), compact elements (fi-
nite stage) and limit (ideal value). Moreover, we must view methods as continuous
functions between such domains, which preserve the sequences and the limit points
in a suitable manner. This in particular means that function spaces on domains will
themselves be domains.
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2.4.1 Predomains

The category CPO consists of Scott-continuous functions and directed-complete
partial orders (henceforth just called cpos). This category is the familiar one [AJ94,
SHLG94]:

Definition 2.4.1 (Category of complete partial orders).

• Objects are quadruples A = (A;vA,tA) where (A;vA) is a partial order for
which every directed subset ∆ ⊆ A has tA∆ ∈ A. Such partial orders are
directed-complete. (A directed set is a nonempty subset that contains all of
its binary suprema, i.e. x, y ∈ ∆ implies x tA y ∈ ∆.)

• Morphisms f : A → B are monotonic functions such that for any directed
set ∆ ⊆ D, f (∆) is directed and moreover f (tA(∆)) = tB(∆), i.e. suprema of
directed sets are preserved. The latter property is called (Scott-) continuity.

From now on, we will drop the subscripts of the supremum operator and order-
ing when these can be inferred from the context.

Theorem 2.4.1. CPO is bicartesian closed, complete, and cocomplete.

Proof. We will sketch the proof, which is by now standard (e.g. [AJ94]). Products
are cartesian products with the componentwise order, and a function space BA is
the space of continuous functions A → B under the pointwise order, i.e. f v g
precisely when ∀a ∈ A f (a) vB g(b). Thus it is the codomain of the functions that
dictates the order structure. Coproducts are disjoint unions of the underlying sets,
equipped with the obvious inherited order. Based on these, we have that −×A a −A

and so cartesian closure. The limit of a diagram ∆ : J→ CPO is given as follows:

Lim
←−
∆ = {(xJ)J∈|J| ∈

∏
J∈|J|

∆(J) : for all morphisms j : A→ B in J xB = ∆( j)(xA) }

Note that a limit is an equationally defined subset of a |J|-indexed product. The
dual holds for colimits (using coproducts instead). �

The full subcategory of CPO⊥ of CPO consists of all cpos which have a dis-
tinguished least element ⊥ (called pointed cpos). This category is merely cartesian
closed, since coproducts do not exist (the universal property fails to hold for the
coalesced sum, and the disjoint union lacks least element). Despite the rich struc-
ture CPO is not itself a suitable category for solving recursive domain equations.
Neither will CPO⊥ provide sufficient structure for our purposes, but it is equipped
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with an operator fix, which assigns a least fixpoint to any continuous endomap.
This category is therefore useful for explaining computation phenomena, as the
following theorem shows:

Theorem 2.4.2 (Least fixpoint operator). Let f : D→ D be a continuous function
on a pointed cpo D. Then the following is true:

1. f has a least fixpoint given by tn∈N f n(⊥).

2. The assignment fix : DD → DD, f 7→ tn∈N f n(⊥) is continuous.

For a proof, see [AJ94, SHLG94]. This fixpoint operator enjoys a principle
known as uniformity (due to Plotkin):

Lemma 2.4.1 (Uniformity of the fixpoint operator). Let D and E be pointed cpos.
Suppose moreover that the following diagram commutes for continuous functions
f , g, h where h(⊥) = ⊥:

D
h - E

D

f

?

h
- E

g

?

Then it follows that fix(g) = h(fix( f ))

Proof. The result follows from the following simple calculation:

h(fix( f )) = h(tn∈N f n(⊥)), by continuity

= tn∈Nh ◦ f n(⊥), by assumption

= tn∈Ngn ◦ h(⊥), by strictness

= fix(g)

�

This uniformity principle characterises fix uniquely among all fixpoint opera-
tors [GS90], and is moreover used by Pitts [Pit96] in an alternative proof a universal
property of recursive types due to Freyd [Fre90] (see below).

By requiring that each continuous map f is strict, i.e. f (⊥) = ⊥, one arrives
at a third subcategory of CPO, again with pointed cpos as objects. This category
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(denoted CPO⊥!) has (cartesian) products, but not exponentials, since [X
⊥!
→ Y]

(the set of strict continuous maps) has a universal property expressed using smash
products which are not the categorical product of this category. Nevertheless, this
category (and its subcategories) has some important structure useful for solving
recursive domain equations, and therefore is of central importance to this thesis.

Scott-Ershov Domains

Each of the previous categories has full subcategories, known as (Scott-Ershov)
domains. We consider the case for CPO, since the other subcategories will then be
obvious.

Definition 2.4.2 (Compact elements). The set of compact elements Dc ⊆ D of a
cpo D consists of elements c ∈ D such that for any directed set ∆ ⊆ D, the following
equivalence holds:

c vD tD∆ if and only if c ∈ ∆.

That is, the compacts are the elements which cannot be ignored when approx-
imating some other elements. In other words, the compact (or finite) elements are
those that carries essential information in the cpo.

Definition 2.4.3 (Scott-Ershov domains). A (Scott-Ershov) domain D is a cpo
(D;vD,tD) subject to the following two conditions:

• Consistent completeness: every bounded set of elements E ⊆ D has a supre-
mum tDE in D.

• Algebraic: every element d ∈ D is equal to the supremum of the compact
elements below it, i.e. d = tD approx(d) = tD{c ∈ Dc : c vD d}.

Note that the previous definition also defined the sets approx(d) of compacts
below an element, and that algebraicity means that any element d in the domain D
is fully determined by those elements.

Lemma 2.4.2. Let D be a domain. Then the following is true:

(i) For x, y ∈ D, x v y if and only if approx(x) ⊆ approx(y).

(i) If ∆ ⊆ D is directed, then approx(t∆) = ∪{approx(x) : x ∈ ∆}.

(i) Every monotonic function f : Dc → E for a cpo E has a unique Scott-
continuous extension f̄ : D→ E.
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Proof. E.g. [SHLG94]. �

The subcategories Dom, Dom⊥, Dom⊥! inherit the structure of respectively
CPO, CPO⊥, and CPO⊥!, but in addition enjoy a natural structure for making
approximations. (That is, the domains in Dom⊥ have least elements, while in
addition the maps in Dom⊥! preserve these least elements.)

2.4.2 Recursive Domain Equations

For subcategories of CPO, there is a subcategory of embedding-projection pairs
denoted CPOep (and respectively for subcategories of CPO). In this category,
limits coincide with colimits, so that for (locally) (co)continuous endofunctor F we
simultaneously construct a final F-coalgebra and an initial F-algebra. In this case,
we say that the category has bilimits, meaning that a particular kind of diagram in
CPOep has such coincidence for its (co)limit. The idea of using the subcategory
of ep-pairs is due to Scott [Sco72]. This technique was first recasted by Wand
[Wan79] using order-enriched categories, and then further by Smyth and Plotkin
[SP82]. In this section, we will summarise some important results ([AJ94, AC98,
Gun92, Plo81] adds many more details).

The restriction to a particular class of functors, was exploited by Smyth and
Plotkin (loc. cit.) (and further emphasised by Fiore [Fio96b] in his dissertation),
by means of enriched category theory [Kel82]. A main idea behind enriched cat-
egory theory is that a category can carry additional structure on the homsets, e.g.
complete partial orders or metric spaces. This is, as we saw in the previous para-
graph, useful extra structure because it allows certain limits to be constructed using
functors that preserves the local structure. However, this enriched structure can also
be forgotten. This is useful because e.g. completeness of an enriched category A
is a stronger property than completeness of A0 (generally speaking), and similarly
for continuity, adjunctions, etc. In the case of a CPO-category, this is witnessed
by the fact that not all functions in Set are actually Scott-continuous. Similarly, the
enriched category may not have all the F-(co)algebras that the underlying one pos-
sesses. The former problem is particularly important in this context, since we will
often require an initial F-algebra, or similar structures, which are subject to suit-
able enrichment for their (non-trivial) existence. A branch of domain theory known
as axiomatic domain theory was initiated in the footsteps of Freyd [Fre90]. Later,
Fiore [Fio96b] clarified and expanded much of Freyd’s pioneering work by tak-
ing it into the framework of enriched category theory, and developing additional
results. The two most important notions, both due to Freyd, are algebraic com-
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pleteness and algebraic compactness. Both these notions concerns the existence
of (co)algebras for a suitable class of functors, where “suitable” is understood as
enrichment. However, we will recast these notions without the framework of en-
riched category theory and let “suitable” be understood as the locally continuous
functors.

Definition 2.4.4 (Algebraic (co)completeness, compactness). A category A is said
to be algebraically complete if every endofunctor F on A (belonging to a suitable
pre-specified class) possesses an initial algebra. We dually say that A is alge-
braically cocomplete if every such F possesses a final coalgebra. Finally, we say
that A is algebraically compact if (i) it is algebraically complete, and (ii) the in-
verse of the initial algebra of each such functor is the final coalgebra.

Note that algebraic completeness follows from the property of havingω-colimits
(and dually), provided all enriched F are ω-cocontinuous.

The fact that CPO⊥! satisfies this condition is due to Freyd [Fre90] (but see
also pioneering work by [SP82] in the more concrete setting of a subcategory of
embedding-projection pairs). We survey Freyd’s work here, in particular by recall-
ing that, for a difunctor F, an object X is called F-invariant if there is an isomor-
phism α : F(X) � X. If fix (λe. α ◦ F(e) ◦ α−1) ∈ A → A is the identity, X is
called special F-invariant (where fix is the usual fixpoint operator in CPO⊥). If it
is the only idempotent map A→ A for which e ◦ α = α ◦ F(e), it is called minimal
invariant [Fre90]. Freyd [Fre90] showed that in CPO⊥! there exists an F-invariant
object for every locally continuous functor that is minimal in this sense.

An initial dialgebra for a bifunctor G is a dialgebra (A, B, φ, ψ) such that for any
other G-dialgebra (A′, B′, φ′, ψ′) there is a unique dialgebra map (h : A → A′, g :
B′ → B). The existence of initial dialgebras in CPO⊥! was established by Freyd:

Theorem 2.4.3 (Existence of Initial Dialgebras [Fre90]). CPO⊥! has initial dial-
gebras for every locally continuous bifunctor G : CPOop

⊥! × CPO⊥! → CPO⊥!.
In addition, initial dialgebras in CPO⊥! are of the form (OG,OG, ιG, ι

◦
G) where

ιG ◦ ι
◦
G = id and ι◦G ◦ ιG = id.

Proof. In the category CPO⊥ (which includes also non-strict Scott-continuous
maps and therefore the usual least fixed point operator fix), this follows from ex-
istence of minimal invariants together with Plotkin’s uniformity of the fixpoint
operator (given above). For details, see [Pit96]. �

We close this background chapter with a remark on terminology:
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Remark 2.4.1. There is a certain ambiguity in the term continuous. We have said
that a functor is (J-) (co)continuous if it preserves (co)limits (of shape J). Moreover,
we will say that a functor is (locally) continuous when it preserves the cpo-structure
on all homsets (something quite different). Finally, we will say that a function is
continuous in the usual domain-theoretic sense. It will be clear which of these
concepts we mean from any context. Moreover, we can subsume the notion of local
continuity using terminology from enriched category theory.
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Abstract

In this paper, we give a denotational model for Abadi and Cardelli’s first order object
calculusFOb1+×µ (without subtyping) in the categorypCpo. The key novelty of our model
is its extensive use of recursively defined types, supporting self-application, to model ob-
jects. At a technical level, this entails using some sophisticated techniques such as Freyd’s
algebraic compactnessto guarantee the existence of the denotations of the object types.

The last sections of the paper demonstrates that the canonical recursion operator in-
herent in our semantics is potentially useful in object-oriented programming. This is wit-
nessed by giving a straightforward translation of algebraic datatypes into so called wrapper
classes.

∗ This paper was published inV. Bono, M. Bugliesi, S. Drossopoulou (editors), Workshop on
Object-Oriented Developments (WOOD 2004), Electronic Notes in Theoretical Computer Science,
138(2), Elsevier, 2005; this version includes some minor corrections.
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1 Introduction

The semantics of objects is inherently complicated. Firstly, objects are recursive
in the sense that they contain methods which operate on the object itself and may
return the object as a result. This reference is known as theself parameter to the
method. Secondly, object types are usually combined with a notion of subtyping,
which can introduce anomalies in the operational semantics. Thirdly, method up-
date (including inheritance) is difficult to model, particularly in combination with
subtyping and binary methods. Fourthly, objects often comewith some notion of
class, which leads to the problem of finding an encoding of classes (pre-methods
[1], new functions [22], etc have been studied) and an associated mechanism for
creating new object instances from classes. Arguably, all these listed problems
arise from the recursive nature of objects (see e.g. [3]).

There has been much research on finding good approaches to dealing with the
recursion inherent in objects.Self-application semantics [16, 10]takes the point
of view that objects should be modelled as complicated recursive types. There
are other approaches involvinghigher-order polymorphism [17, 18]which hide
all recursion under an existential quantifier.Recursive record semantics [5, 6, 22]
can be seen as a compromise where (covariant) recursive types are used for self-
returning methods, and where a fix-point operator at the level of terms is needed
to handle references to the object’s instance variables. Unfortunately, a direct self-
application encoding intoFω

<: fails to support subtyping, while the other two ap-
proaches do not support method update (note, however, that [4] gives an encoding
with both recursion and bounded existentials that, in fact,support method update).
Abadi and Cardelli [1] proposed a variety of different object calculi which support
method update and gave them aprimitive semanticsbased upon reduction rules.

Our starting point is that method update indeed is an important ingredient in
the object-oriented paradigm, and we believe that recursive types should be used in
modelling objects. For reasons explained in [1], we therefore consider the notion
of object fundamental and, hence, prefer a streamlined theoretical approach rather
than an encoding viaFω

<:. One aim of our work is to provide a mathematical foun-
dation for logics of object calculi, particularly logics ofprogram transformations.
Direct denotational models of object calculi are more suited for this purpose.

This paper presents the first steps in this program. We develop a categorical
model for object calculusFOb1+×µ presented in [1] (with minor modifications),
based on an interpretation of object types as recursive types via mixed variance
functors. The encoding of object types has the flavour of a self-application seman-
tics. The main novelty with this model is in its extensive useof recursively defined
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types to model object types. Our mathematical setting is thecategorypCpo where
we model objects as solutions ofself � self → F self, whereF is a covariant
functor representing the type of the methods. The simplest objects give rise to a
constant functorF while the full generality allows us to define what we termwrap-
per classesfor algebraic datatypes. We believe that this model can be extended
to support subtyping by natural transformations on the underlying functor F and,
by regardingF as apattern functor, opens the way to a polytypic style of object
oriented programming.

The paper is structured as follows: after setting up the mathematical framework
of Freyd’s algebraically compact categories in section 2, we present the calculus
FOb1+×µ in section 3. In section 4, we give a semantics for the calculus in pCpo.
In section 5, we discuss wrapper classes, i.e., link our semantics of objects to the
algebraic and coalgebraic style of programming. Section 6 summarises our contri-
bution and compares to related work.

2 Mathematical Preliminaries

We assume familiarity with elementary category theory and,particularly, the basic
concepts of category theory such as product, and exponential — see Mac Lane [13]
for details. As mentioned in the introduction, we propose a denotational model of
typed object calculi whose key novelty is the use of recursively defined types. A
simple example, e.g. finding an objectD such thatD � [D,D], indicates that the
existence of such recursively defined types is not at all obvious, e.g. there clearly is
no setD such thatD � [D,D]. The key feature of this example is that the mapping
of an objectD to the object [D,D] is not a functor in that the left occurrence of
D in the expression [D,D] occurscontravariantly while the right occurrence is
covariant. Such mappings are calleddifunctors.

Definition 2.1 (Difunctor). If C is a category, a difunctor is a functorF : Cop ×

C - C. A fixed point of such a difunctor is an object X such that X� F X X

There has been much research on finding fixed points for difunctors. The clas-
sic paper [21] defines a category of embedding and projectionpairs where the
functorF acts covariantly and from which a fixed point ofF can be derived. More
recently, [12, 11, 8, 9] have used the more axiomatic settingof algebraically com-
pact categories. i.e., categories where (in a suitably qualifiedsense) all covariant
functors have an initial algebra the inverse of whose structure map is the final coal-
gebra. The related, but weaker, property ofalgebraic completenessmerely requires
all (again, in a suitably qualified sense) covariant functors to have an initial algebra.



70 PAPER I

The axiomatic approach is potentially easier to apply to non-domain theoretic
models such as realizability models and models containing intensional features.
Since we do not wish to over commit ourselves to a specific semantic setting at this
stage, we therefore implicitly follow the axiomatic setting of [8, 9] in working in
the Kleisli category of a lifting monad. However, for the purpose of concreteness
and simplicity of this presentation, we chosen to work with the canonical model of
the categorypCpo of w-complete partial orders and partial continuous functions.
We denote byCpo the subcategory ofpCpo consisting of all cpos and total con-
tinuous functions. The salient facts about the categoriespCpo and Cpo can be
found in [19]. Cpo has the standard structure of being cartesian closed with finite
coproducts. We give a brief summary of the structure ofpCpo:

• Zero object: The empty cpo is a zero object inpCpo. That is, it is both an
initial object and a terminal object.

• Coproducts: If A andB are cpos, their disjoint union is the coproduct ofA
andB in pCpo.

• Partial Products: If A andB are cpos, the cartesian product of the underly-
ing sets is their partial product. It is not a product as the domain of definition
of the pairing (f , g) is the intersection of the domains off andg and hence
f st( f , g) , f etc. We denote the partial product byA⊗B to remind ourselves
that it is not a product.

• Kleisli /Partial Exponentials: If A andB are cpos, the set of partial contin-
uous functions fromA to B forms a cpo, as usual. We denote this cpo [A, B]
or A ⇀ B. As expected, partial exponentials are right adjoint to thepartial
product.−⊗A ⊣ [A,−] : Cpo - pCpo. Note the domains and codomains
for the functors involved in this adjunction.

• Compactness:pCpo is algebraically compact in that all locally continuous
functors have coinciding initial algebras and final coalgebras [11].

Here, it is worth noting that, apart from compactness, we would have liked our
ambient category to be cartesian closed and have finite coproducts so that we could
manipulate polynomial functors and their (co-)algebras using the standard tech-
niques. Indeed, settling for partial products and Kleisli exponentials may seem like
a poor alternative. However, any compact category has a zeroobject (induced as
the fixed point of the identity functor), and a CCC with a zero object is inconsistent
as

A � A× 1 � A× 0 � 0
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Hence we cannot get away from working in a non-cartesian closed setting. Nev-
ertheless, the subcategoryCpo (where values take their denotation) is, of course,
still cartesian closed.

So, given a category likepCpo, how does one find fixed points for difunctors?
Recall that in the simpler case of a covariant endofunctorF : C - C, one finds
an objectA � FA as the initialF-algebra or finalF-coalgebra.

Definition 2.2 (Algebra, Coalgebra). Given a functorF we say that an arrowα :
F A → A is an F-algebra with carrier A. SuchF-algebras are the objects in
a categoryAlg(F) for every functorF. The dual notion is that ofF-coalgebra,
i.e. reversed arrowsα : A → F A. The arrows between (co)algebras areF-
homomorphisms, i.e. arrows h such that, forF-algebras the left diagram below
commutes and, forF-coalgebras the right diagram below commutes:

F A
F h - F B A

h - B

Alg(F) Coalg(F)

A

α

?

h
- B

β

?
F A

α

?

F h
- F B

β

?

When working with difunctors, algebras and coalgebras generalise todialge-
bras. Note the presence of both covariance and contravariance ina difunctor means
that we have no need for the dual notion of a dialgebra. The term dialgebra has sev-
eral definitions in the literature. We give ours here:

Definition 2.3 (Dialgebras). A G-dialgebrafor difunctor G : Cop × C → C is a
pair of objects A, B together with an associated pair of arrows f: G A B→ B and
g : A→ G B A.

The category of dialgebras has maps between dialgebras given as follows:

Definition 2.4 (Dialgebra Maps). GivenG-dialgebras(A, B, φ, ψ) and(A′, B′, φ′, ψ′),
a G-homomorphismis a pair of arrows(g : B → B′, h : A′ → A) such that the
following diagrams commute:

G A B
φ - B A

ψ- G B A

G A′ B′

G g h
?

φ′
- B′

h
?

A′

g
6

ψ′
- G B′ A′

G h g
6
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A key idea in axiomatic domain theory is to use algebraic compactness to find
fixed points for difunctors. Here is a sketch of the construction:

Lemma 2.5. Let G : Cop × C - C be a difunctor on an algebraically compact
categoryC. ThenG has a fixed point.

Proof. Form the functorG′ : Cop × C → Cop × C by following thedoubling trick
proposed by Freyd:

G′ X Y, (G(Y,X),G(X,Y))

SinceC is algebraically complete, so isCop × C and thusG′ has an initial alge-
bra, sayG′(X,Y)→(X,Y), which is given by mapsinnG : X→G(Y,X) andoutG :
G(X,Y)→Y. By Lambek’s lemma,innG andoutG are isomorphisms. Next, the pair
(outG, innG) : (Y,X)→G′(Y,X) is easily seen to be the finalG′-coalgebra. SinceC
is algebraically compact, so isCop × C and hence the initialG′-algebra and final
G′-coalgebra coincide. ThusX = Y and we have aG-fixed point as required. �

Of course, while the above proof may seem simple, much of the work is hid-
den in proving that i) algebraic completeness and compactness are preserved by
taking products and opposite categories; ii) formalising exactly the class of difunc-
tors which are to be considered; and iii) proving that certain categories are alge-
braically complete and compact. Further subtle and technical issues arise, e.g. that
these fixed points should be suitably parameterised etc, butfor this presentation we
have decided to gloss over the details. See [8] for details. Having said this, the
modularisation of the construction of fixed points is very elegant. Notice also that
more is true than we claimed. In particular we constructed a specific fixed point
of a difunctor with a universal property, namely, the initial dialgebra. We shall put
this universal property to use later.

3 Object Calculus

We will now give the syntax and operational semantics of a first-order object cal-
culus, henceforth referred to asFOb, which is essentially Abadi and Cardelli’s
FOb1µ extended with unit, product and coproducts.FOb hence has method up-
dates, but not subtyping or higher-types. There are no real surprises in the calculus
and its inclusion is merely for the sake of the completeness of the paper.

We assume countable setsL (method labels),V (type variables), andU (term
variables) and will use Greek letters for type variables, lower case letters for term
variables, andl i with index i ∈ N for method labels.
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Definition 3.1 (FOb-types). The setTFOb is defined by induction with

τ := v type variables
∣

∣

∣ 1 terminal type
∣

∣

∣ τ1 × τ2 product types
∣

∣

∣ τ1 + τ2 sum types
∣

∣

∣ τ1→τ2 function types
∣

∣

∣ µv.τ recursive types
∣

∣

∣ [l1 :τ1, . . . , ln :τn] object types

where v∈ V, and for each i, li ∈ L.

Notice that there is no restriction on the occurrences of type variables in re-
cursive types which means this calculus is expressive in including a variety of
sophisticated types such asLam = µX.N+ (X→X) whereN = µX.1+ X. As usual,
one next defines the pre-terms ofFOb.

Definition 3.2 (FOb-preterms). The setNFOb is defined by induction with U⊆
NFOb. Inductively, if m,m′, b ∈ NFOb, τi ∈ TFOb, li ∈ L and xi ∈ U (with i ∈ N)
then∗, [l1 = ς(x1 : τ1)b1, ..., ln = ς(xn : τn)bn], m.l, m m′, λ(x : τ)b, m.l↼↽ ς(x :
τ)m′, inl m, inr m, case(b, x.m, y.m′), f st m, snd m,(m,m′), inn(τ,m), and out(m)
are inNFOb.

We will adopt the following convention for meta-variables denoting terms: the
symbolo is a term of the form [l1 = ς(x1 : τ1)b1, ..., ln = ς(xn : τn)bn] for some
n ∈ N. Sometimes we also write [l i = ς(xi : τi)bi ] i∈I for such terms, forI a finite
subset ofN. Terms of these two equivalent forms are known asobjects.

For convenience we will identify any two terms (types) whichare equal up to
the order of method labels, e.g. [l1 = ..., l2 = ....] ≡ [l2 = ..., l1 = ....], and we
assume that method labels occurring inside the same enclosing brackets [...] are
distinct. We use Abadi and Cardelli’s definition of substitution, and writem[a/b]
meaninga is substituted for all free occurrences ofb in m [1]. Further,m(x) means
x is free inm (hence possibly not even occurring inm), and thenm(a) ≡ m[a/x].

Definition 3.3 (FOb-Environments). An environment E is a finite sequence of the
form x1 :τ1, . . . , xn :τn with no variable occurring twice in the sequence.

The typing judgments are of the formE ⊢ a : σ whereE is an environment,a
is a pre-term andσ is a type. We also letE ⊢ σ abbreviate∃a ∈ NFOb such that
E ⊢ a : σ, i.e. the statement thatσ is a well-formed inhabited type.
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Definition 3.4 (FOb-Typing judgments). The typing judgments ofFOb are

E, xi : σ ⊢ b1 : τ1, ..., bn : τn σ = [l1 :τ1, . . . , ln :τn]
E ⊢ [l1 = ς(x1 : σ)b1, ..., ln = ς(xn : σ)bn] : σ

(object intro)

E ⊢ a : σ, E, x : σ ⊢ b : τ j σ = [l1 : τ1, ..., ln : τn]

E ⊢ a.l j ↼↽ ς(x : σ)b : σ
(object update)

E ⊢ a : [l1 : τ1, ..., ln : τn] 0< i<n+1
E ⊢ a.l i : τi

(object elim)

E ⊢ c : σ1 + σ2 E, xi : σi ⊢ mi : τ (i = 1, 2)
E ⊢ case(c, x1.m1, x2.m2) : τ

(case)

E ⊢ a : τ
E ⊢ inl a : τ + σ

(inl)

E ⊢ b : σ
E ⊢ inr b : τ + σ

(inr)

E ⊢ a : τ × σ
E ⊢ f st a : τ

(fst proj)

E ⊢ a : τ × σ
E ⊢ snd a: σ

(snd proj)

E ⊢ a : τ E ⊢ b : σ
E ⊢ (a, b) : τ × σ

(pair form)

E ⊢ m : τ1→ τ2, n : τ1

E ⊢ m n : τ2
(λ-elim)

E, x : τ1 ⊢ b : τ2

E ⊢ λ(x : τ1)b : τ1 → τ2
(λ-intro)

E ⊢ ∗ : 1
(unit-unit)

E ⊢ b : σ[µ α.σ(α)]
E ⊢ inn(τ, b) : µα.σ(α)

(µ-in)

E ⊢ b : µ α.σ(α)
E ⊢ out(b) : σ[µ α.σ(α)]

(µ-out)

We say a pre-term m∈ NFOb is well-typed iff there exists a typeτ ∈ TFOb and an
environment E such that E⊢ m : τ. We letMFOb denote the set of well-typed terms up to
the obvious notion ofα-equivalence induced by the term-bindersλ, ς and case.

4 Difunctorial Semantics

In this section we give a denotational model ofFOb using the categorypCpo. The
key feature of this semantics is that it reflects our intuition that the object types of
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FOb are fixed points of recursive type equations. More specifically, the recursion
is over the self-parameter which occurs negatively. This intuition is clearly seen
in the object-intro typing rule forσ = [l1 : τ1, . . . , ln : τn] which suggests thei’th
method will consume the self-parameter, which has typeσ, to produce something
of typeτi . Thus, intuitively, the interpretation ofσ should satisfy

[[σ]] � [[σ]] ⇀ [[τ1]] × · · · × [[τn]]

and hence the denotation ofσ should be the fixed point ofµX.X ⇀ [[τ1]]×· · ·×[[τn]].
Crucially, the following lemma shows that such an interpretation supportsself-
application [10] which our semantics both requires and supports. We state the
lemma specifically forpCpo to make clear we are not using cartesian closure in
the proof.

Lemma 4.1. Let F : pCpo - pCpo be a covariant functor and O satisfy O�
[O, FO]. Then there is a self-application map sapp: O→FO.

Proof. All isomorphisms are total and hence the isomorphism uncurries to give
a mapO ⊗ O→FO. Now precompose with the diagonal which partial products
posses. �

Notice how this differs with the recursive record semantics [1], where the re-
cursion is in the output or covariant position while the contravariant occurrence of
sel f is replaced by having a separate state type, and a fixed point operator at the
level of terms. Our semantics also differs from other encodings such as various
encoding with existentials [18, 4] where the contravariantoccurrence is present but
hidden under the existential quantifier. In our model ofFOb we instead explicate
the contravariantsel f parameter and interpret all object types into more elaborate
recursive types which, as we have seen, support self-application.

If C is a category we denote bŷC the categoryCop × C and note that (̂C)n =
ˆ(Cn). The doubling trick used to obtain fixed points of difunctors assigns to each

difunctorF : Cop×C - D a functorF̂ : Cop×C - Dop×D. We call functors
that arise in this waysymmetric- see [8] for a full definition. Each symmetric
functorF induces two functorsF1 andF2 by post-composition with the projections
Π1 andΠ2 arising from the product onCat. In fact the mappingF 7→ F̂ is a
bijection between difunctors and symmetric functors with inverse sendingF to F2.
This fact will be used below to define symmetric functors by giving difunctors.
Finally letP be the categorypCpoop× pCpo.
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With this notation we can give a semantics to types as follows. If a typeτ has
n-free type variables1, its interpretation is a symmetric functor

[[τ]] : P
n - P

Using the bijection mentioned above, we define the symmetricfunctor [[τ]] by giv-
ing [[τ]]2. The exceptions to this rule are for the interpretations of recursive types
and object types.

[[1]] 2X = 1
[[τ1 + τ2]]2X = [[τ1]]2X + [[τ2]]2X
[[τ1 × τ2]]2X = [[τ1]]2X ⊗ [[τ2]]2X
[[τ1→τ2]]2X = [[τ1]]1X ⇀ [[τ2]]2X
[[µv.τ]]X = ([[τ]]X)†

where ([[τ]]X)† is the fixed point of [[τ]]X : P - P. Finally, for an object type
σ = [l1 :τ1, . . . , lm:τm], we have

[[[ l1 :τ1, . . . , lm :τm]]] = [[µv. v→ τ1 × · · · × τm]]

Unwinding the definition, we thus have

[[σ]]2X � [[σ]]2X ⇀ [[τ1]]2X ⊗ · · · ⊗ [[τm]]2X

and note that, in this situation, lemma 4.1 applies since we can takeF to be the
constant functor returning [[τ1]]2X⊗· · ·⊗ [[τm]]2X. Just as we gave an interpretation
to types, so we give one to environments. IfE is an environment withn-free type
variables, then

[[E]] : P
n - P

is the symmetric functor defined by

[[ x1 :τ1, . . . , xm:τm]]2X = [[τ1]]2X ⊗ · · · ⊗ [[τm]]2X

Finally we come to the interpretation for term judgments. IfE ⊢ e:τ is a judgment
usingn-type variables, then its interpretation is an indexed family of morphisms

[[E ⊢ e:τ]] A : [[E]]2A - [[τ]]2A

1At this point we play a slight price of informality for not indexing judgments by free type
variables. However we previously gained by having less notationally cumbersome judgments. We
leave the reader to decide if this was an appropriate choice.
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for each symmetric functorA : Pn, i.e. for someX : pCpon the functorA is
of the formA = ((X1,X1), . . . , (Xn,Xn)). Since the semantic clauses for the term
constructs associated with the basic types 1,+,×,→ are as expected, we leave them
as an exercise and focus instead on the judgments for object introduction, update
and elimination which we take verbatim from Definition 3.4

• Object Introduction: By assumption we are given maps

[[E, x : σ ⊢ bi:τi ]] A : [[E, x : σ]]2A - [[τi ]]2A

in pCpo. Using the definition of [[E, x : σ]]2 and the the adjunction be-
tween partial product and and partial exponentials, these correspond to the
following mapsin the categoryCpo:

[[E]]2A - ([[σ]]2A ⇀ [[τi ]]2A)

and hence we get, for eachA, one map

[[E]]2A - ([[σ]]2A ⇀ [[τ1 × · · · × τn]]2A)

But, since [[σ]]2A ⇀ [[τ1× · · · × τn]]2A is isomorphic to [[σ]]2A, we are done.

• Object Elimination: We are given a family of maps

[[E ⊢ a:σ]] A : [[E]]2A - [[σ]]2A

and want a map
[[E ⊢ a:σ]] A : [[E]]2A - [[τ j ]]2A

This can be constructed by postcomposing with the self-application map
[[σ]]2A - [[τ1]]2A× · · · [[τn]]2A and then thej’th projection.

• Object Update: Start with the map

[[E ⊢ a:σ]] A : [[E]]2A - [[σ]]2A

Unwind the isomorphism defining [[σ]]2A. Replace thej’th component of
the tuple with

[[E, x : σ ⊢ b:τ j ]] A : [[E, x : σ]]2A - [[τ j ]]2A

and then refold the isomorphism to get the required map.
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5 Wrapper Classes

We saw in the previous section how object types and the associated term judgments
can be given a semantics by solving recursive equations of the formO � O→K for
some constantK representing the types of the fields of the object type. Thereis
thus an asymmetry in that the self parameter can be consumed by the methods but
the methods can’t produce new self’s or objects. More generally one would like
methods to be able to both consume and return the self parameter - this would make
sense in both functional and imperative object calculi. Doing this means solving
equations of the form

O � [O,F O]

whereF is some covariant functor. Such generalised objects are clearly supported
by the semantics we have already developed. Also note by instantiatingF with the
identity functor we get the classic equationD � [D,D].

We put this idea to use by asking the following question. Given that both the
initial algebra and final coalgebra styles of programming have proven to be very
popular in the functional world, can we incorporate them into the world of objects?
More precisely, ifF is a covariant functor with initial algebraµF and final coalgebra
νF, can we find an objectOwhich supports the kind of programming enjoyed byµF
andνF. Of course, since we work in an algebraically compact category µF = νF.

We provide a partial positive answer to this question by choosing O to be the
fixed point of the equationO � [O,F O]. Note that our analysis is semantic in that
we treat all covariant functors rather than retreating intosome restricted syntactic
class of functors such as polynomials. For the rest of this section, fix a covariant
functor F and define the difunctorG(X,Y) = X→F Y. Also we writeinn andout
for the structure maps

inn : [O, FO] - O out : O - [O, FO]

of the initial G-dialgebra. Our first result is that objects can be ”evaluated” into the
final coalgebra and hence enjoy a notion of equality induced by bisimulation.

Lemma 5.1. O is an F-coalgebra and hence there is aF-coalgebra homomorphism
O - νF.

Proof. From lemma 4.1, self application gives a coalgebraO - FO. �

Not only is there a map fromO to the finalF-coalgebra, but also there is a map
from the initial algebra toO
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Lemma 5.2. O is anF-algebra and hence there is aF-algebra homomorphism
µF - O.

Proof. We would like constructors forO, that is forO to be anF-algebra. Using
the isomorphism definingO, the structure mapF O - O can be given by a map
F O - [O,F O] which we take to be the first projection after uncurrying. Now
thatO is anF-algebra, thefold operation of the initial algebra defines anF-algebra
homomorphismµF - O. �

That the compositeµF - O - νF is the canonical map induced by the
initiality of µF and/or the finality ofνF relies on the regularity ofO. In this setting
O is therefore a retract ofµF showing it contains the elements ofµF but a whole
lot more as well.

Next, we wish to consider recursion principles. Initial algebras come with a
canonical recursion operatorfold which arises as the unique map from the ini-
tial algebra to some other algebra. Similarly there is a recursion operatorunfold
which arises as the unique map from some coalgebra to the finalcoalgebra. As
we mentioned earlier,O has the universal property of being the initial dialgebra
and hence comes with its own recursion principle for definingmaps fromO to any
other dialgebra. Unwinding the definition of dialgebra etc,this gives the principle
of direcursion.

Definition 5.3 (Direcursion). Let (φ, ψ) be a dialgebra with types given in the di-
agram below. Define([φ]) : O - B and [(ψ)] : A - O to be the unique
dialgebra homomorphism such that the following diagram commutes:

[O,F O]
innG- O O

outG- [O,F O]

[A,F B]

G [(ψ)]([φ])
?

φ
- B

([φ])
?

A

[(ψ)]
6

ψ
- [B,F A]

G ([φ])[(ψ)]
6

By simply chasing the above diagram, one can extract the direcursion principle
as two mutually recursive combinators:

Definition 5.4 (Direcursion - combinators).

([φ, ψ]) o , φ ((F ([φ, ψ])) ◦ (outG o) ◦ [(φ, ψ)])

[(φ, ψ)] o , innG ((F [(φ, ψ)]) ◦ (ψ o) ◦ ([φ, ψ]))
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This recursion scheme has been developed as a programming tool by by [7, 15]
and also opens the way for potential optimisations of based upon fusion, deforesta-
tion etc and gives laws for object-oriented programs a laAlgebra of Programming-
school. In future work we plan to test whether thesis is practically viable.

Here, we use direcursion to show thatO can be used to simulate the unfold
operation of the finalF-coalgebra. That is given anyF-coalgebraα : A→F A,
we define a map fromA to O. This can be done by instantiating the direcursion
principle by takingB to be the one element cpo. The mapφmust then be the unique
total map, while the mapA→[1,F A] sendsa to the total function returningα(a).

To summarise, we have defined a translation of some of the key features of
initial algebra and final coalgebra programming into the world of objects. That is,
we have defined an object type which contains the elements of the initial algebra,
has constructors for pattern matching, can be evaluated into the final coalgebra,
supports a notion of bisimulation and supports an unfold operator. That these con-
structions are quite simple suggests to us that these wrapper objects are natural and
gives us hope that further concepts can be incorporated intothe model without it
becoming intractable. But that is of course the subject for future research.

6 Conclusion and Further Work

Our approach in this paper differs from the original denotational semantics given
in [1]. Firstly and most fundamentally, they use the ideals/metric approach [14]
while our approach is based on Fiore’s category of partial maps instantiated for
pCpo, thus mimicking the more abstract order-enriched setting of [21, 2]. Sec-
ondly, Abadi and Cardelli interpret types as partial equivalence relations (pers)
over a universal domain, while we interpret object types by solving recursive type
equations inpCpo. As a result, we get a more intuitive model of objects, with an
associated principle of recursion. We think the translation of inductive types into
wrappers shows the simplicity and naturalness of this model. However, subtyping
has known problems in combination with recursive types, andfurther research is
needed in order to model subtyping together with the direcursion principle.

Reus and Streicher [20] have recently treated untyped object calculus in a do-
main theoretic setting. They use an induction principle to reason with such objects.
However, in their work there is one single induction principle, whereas in our typed
setting, there is an instantiation for every object type.
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Abstract

By giving a translation from typed object calculus into Plotkin’s FPC, we demonstrate
that every computationally sound and adequate model of FPC (with lazy operational se-
mantics), is also a sound and adequate model of typed object calculus. This establishes
that denotational equality is contained in operational equivalence, i.e. that for any such
model of typed object calculus, if two terms have equal denotations, then no program (or
rather program context) can distinguish between those two terms. Hence we show that FPC
models can be used in the study of program transformations (program algebra) for typed
object calculus. Our treatment is based on self-application interpretation and subtyping is
not considered. The typed object calculus under consideration is a variation of Abadi and
Cardelli’s first-order calculus with sum and product types, recursive types, and the usual
method update and method invocation in a form where the object types have assimilated
the recursive types. As an additional result, we prove subject reduction for this calculus.

∗This paper was published as technical report TRITA-CSC-TCS 2007:2 at the School of Com-
puter Science and Communication, Royal Institute of Technology.
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1 Introduction

In this paper we will define System S−, a typed object calculus without subtyp-
ing, and interpret this calculus into the metalanguage FPC [19, 20] using a self-
application encoding, and prove computational soundness and adequacy of S− with
respect to this interpretation. As a corollary, every model of lazy FPC that exhibits
these two properties, is automatically such a model of typed object calculus. As a
consequence, our results make it feasible to use models of FPC as a starting point
for the study of semantics of typed object calculus. Given previous research on FPC
models, notably by Plotkin and Fiore [19, 6, 8], this formal connection seems to
be quite useful (and gives access to a class of computationally adequate models).
In particular, program transformations and reasoning principles from FPC mod-
els carry over to typed object calculus (notably Freyd’s mixed-variant recursion
scheme [10]). As an additional result, we establish the subject reduction property
of S−, which unlike any calculus studied by Abadi and Cardelli [1] has sum types
(and thus can define many standard datatypes more easily).

The importance of computational adequacy is well-known since Plotkin’s pio-
neering work for PCF [21]. Consider a model M of typed object calculus. Com-
putational adequacy of M is the property that if a term has a converging (total,
not-bottom) denotation, then that term reduces to a value using the rules of the
operational semantics (given by a partial function{). This property is the reverse
implication of the following equivalence, the forward direction being known as
computational soundness:

∃v t{ v ⇐⇒ [[t]] total (1)

Let us say that t ' t′ whenever for each program context C of ground type we
have either that (i) C[t] { v and C[t′] { v′ such that v and v′ are equal, or
(ii) both C[t] ⇑ and C[t′] ⇑ (where ⇑ means divergence, i.e. @v C[t] { v and
similarly for t′) and C[t′] ⇑. This is operational equivalence relation that Plotkin
[21] studied for PCF and, after him, many others for other programming languages.
The bi-implication (1) implies the following useful property (assuming that we
have soundness, i.e. that t{ v implies [[t]] = [[v]]):

[[t]] = [[t′]] =⇒ t ' t′ (2)

For a proof, suppose [[t]] = [[t′]]. It follows by soundness that [[C[t]]] = [[C[t′]]]
holds for any program context C. Since contexts have ground type, computational
adequacy ensures that either C[t] = C[t′] or else C[t] and C[t′] both diverge. Hence
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we have t ' t′. This demonstrates that computational adequacy is a very desirable
relationship between operational semantics and denotational semantics, and in par-
ticular makes possible to study program transformations (and hence a program
algebra) using the model theory of the programming language. This is indeed also
the motivation for the present paper.

The idea of using self-application semantics for modelling (or here, interpret-
ing) typed object calculus is not new. It is mentioned by Abadi and Cardelli [1],
and appeared already with the work of Kamin [16]. However, recently this ap-
proach has been used by Reus, Streicher, and Schwinghammer [23, 22], who have
studied it in the context of program logics. We expect our results to be useful for
their line of work, although some care must be taken in analysing our computa-
tional adequacy result since we are not directly considering any particular model
such as theirs.

To the best of our knowledge this is the first full account of these results, and in
particular the first proof of computational adequacy of a self-application interpre-
tation with respect to FPC or any of its models. While Viswanathan [25] considers
full abstraction for a related typed object calculus, this is not for a self-application
interpretation but for a less natural (but interesting, at least from a theoretical view-
point) interpretation based on a fixed-point operator at the level of terms. Under
such an interpretation, it becomes much more complicated to reason with object
types, since the universal property associated to recursive types cannot be used
directly. Moreover, we demonstrate in this paper that actually a lazy operational
semantics must be considered for FPC for the results to be attainable. Hence, our
detailed account turned out to provide new insights on the relationship between
FPC and typed object calculus.

2 Typed Object Calculus with Recursive Objects

Abadi and Cardelli have developed a family of object calculi, some of which are
more powerful than others, e.g. by having subtyping, recursive types, variance an-
notations, polymorphism, or Self -type in addition to the standard first-order frag-
ment [1]. Table 2.1 gives an overview of some typed object calculi, including S
from Abadi and Cardelli’s textbook [1] which is particularly expressive, and the
simplified calculus S− considered in this paper.

The table shows, for example, that variance annotations are not considered at
all in this chapter (this is however no fundamental limitation since such annotations
can easily be adjoined to an extended system). S− will be defined in detail in the
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Definition 2.1 (Object Calculi)

FOb1 FOb1〈: FOb1〈:µ S− S
Subtyping • • •

Recursive types • • •

Obj-binder • •

Self -type •

Variance ann. •

Products •

Coproducts •

Functions • • • •

Note that S− is not a subset of S, but contains some extensions such as sum types
and functions. These extensions can however also be given to S (but Abadi and
Cardelli’s original presentation of S did not include them).

following sections. It is based on the syntax of S of [1], but omits the primitive
covariant self type and adds some other types instead. A notable omission is sub-
typing, for which it is currently not known if FPC interpretations (as studied in this
paper) can be used. S− is essentially a superset of FOb1µ of Abadi and Cardelli
[1], but with Obj-binder instead of the µ-binder, and with the extensions listed in
the diagram. Note that we have combined recursive types and object types (using
the Obj binder) in the sense of S, also without the primitive covariant self type.
Since S− is endowed with products and coproducts, FPC will contain a subset of
the rules of S−.

We will now define S− and give some simple examples. We choose n-ary prod-
ucts and coproducts to simplify these examples. We give an operational seman-
tics with a clear notion of values. Our choice of an operational approach permits
us to prove computational soundness and adequacy with respect to a denotational
model. These results could not be proven were we to have used the reduction based
approach as certain reductions are in fact unsound. The reason for this is that a
reduction-based semantics admits a degree of non-determinism in evaluations that
invalidates the soundness proof. Notably, an object with some terminating meth-
ods and some non-terminating methods, is interpreted as a product of functions,
such that even the terminating method may become non-terminating under some
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reduction strategies in FPC.
We assume a countable set of method labels L, type variables V , and term

variables U. The types of S− are given in definition 2.2. Notationally, we write
[`i : τi]i∈I for [`1 : τ1, ..., `n : τn] with n ∈ N and equate object types which are
equivalent under permutation of the order of labels or under the obvious notion of
α-equivalence induced by the type binder Obj. We introduce shorthand τ1 × τ2 =∏

i∈{1,2} τi and similarly τ1 + τ2 =
∐

i∈{1,2} τi for binary products and coproducts.
Definition 2.2 also gives the preterms of S−. We identify preterms which are

equal up to the order of method labels or are equivalent under the obvious notion
of α-equivalence induced by the term-binders λ, ς, and case and the type binder
Obj. We use the standard definition of substitution which can be found in Abadi
and Cardelli, and write m{{a/x}} to mean that a is substituted for all free occurrences
of x in m [1]. Further, m(x) means x may occur free in m. We use similar notation
for the substitution of types for type variables in both types and terms. When clear
from the context, we eliminate the type or term variable being substituted for and
simply write m{{a}} and m{{τ}}.

Type Theory

A type judgement consists of a sequence of distinct type variables (a type context)
together with a type whose free type variables appear in the sequence. The formal
definition of type contexts appear in definition 2.3.

Here are a couple of examples:

Example 2.1. One may consider representing the Java-like interface

interface Point {public void bump(); public int val(); }

as the following type in S− (assuming a type Int exists):

Point = Obj(X)[val : Int, bump : X]

Example 2.2. The Java-like interface

interface UnLam {public void bump(); }

gives rise to an object type of the form

UnLam = Ob j(X)[bump : X]
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Definition 2.2 (Syntax of S−)

Syntax for Types
The set T̂ of pretypes is defined by induction with

τ F X type
1 terminal type∏

i∈I τi product types∐
i∈I τi coproduct types
τ1→τ2 function types
Obj(X)[`i : τi(X)]i∈I object types (`i distinct)

where X ∈ V , and for each i in a finite set I, `i ∈ L are pairwise distinct.

Syntax for Terms
The set L̂ of preterms is defined by induction with

m F ? unit
xi term variables
〈m0, . . . ,mn〉 tupling
πi m projections
case(m0, x1.m1, . . . , xn.mn) case
ιi m injections
m0 (m1) λ-application
λx : τ.m λ-abstraction
Obj(X = σ)[`i = ς(xi : X)bi]i∈I object introduction
m1.`↼↽ ς(x : τ)m2 method update
m.` method invocation

where for each i ∈ N, xi ∈ U, X ∈ V , σ, τi ∈ T̂, and for each i ∈ I ⊆ N `i ∈ L.

Once we have the type judgements, we can define term contexts (definition 2.4)
and then term judgements (definition 2.5). As one would expect, terms are closed
under substitution. That is, if Θ, 〈Γ, x : τ′〉 ` t : τ and Θ,Γ ` t′ : τ′ are derivable
then so is Θ,Γ ` t{{t′/x}} : τ.

Convention 2.1. We say a preterm m ∈ L̂ is well-typed if there exists well-formed
contexts Θ,Γ and a type judgement Θ ` τ such that Θ,Γ ` m : τ is derivable. We
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Definition 2.3 (Types and Type Contexts in S−)

Type Contexts
Type contexts are generated by the following rules

TC E
` 〈〉

TC X
` Θ

` 〈Θ, X〉
where X ∈ V, X < Θ

Well-formed Types
The typing judgments Θ ` τ are those generated by the following rules:

T X
` Θ

Θ ` X
where X ∈ Θ

T U
` Θ

1

T F
Θ ` τ1 Θ ` τ2

Θ ` τ1 → τ2

T O
Θ, X ` τi i ∈ I

Θ ` Obj(X)[`i : τi(X)]i∈I

Θ ` τi i ∈ I
Θ ` �i∈Iτi

where � ∈ {
∏
,
∐
}

We let T denote the set of well-formed types.

let L denote the set of well-typed terms up to α-equivalence and permutations of
method labels.

Example 2.3. A point whose value is 0 and whose bump method adds 1 to the
value can be represented in S− as

p , Obj(X = Point)[ val = ς(x : X)0,
bump = ς(x : X)x.val↼↽ ς(y : X)x.val + 1 ]

Unlike Java, S− makes no distinction between objects and classes. Therefore,
a class is represented by an object, which can be cloned or copied into new objects
which will (initially at least) have the same methods. There are other differences:
object calculus allows methods to be updated, which is impossible in Java, and S−
has no imperative features. Since we have method updates, there is no need to have
separate attributes. Attributes, like val, are instead identified with method bodies
in which the self variable does not occur.
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Definition 2.4 (Term contexts for S−)

Well-formed term contexts are given by the rules

C E
` Θ

Θ ` 〈〉

C 
Θ ` τ,Γ

Θ ` 〈Γ, x : τ〉
where x ∈ U, x < Γ

where 〈〉 is the empty sequence.

We recall some standard substitution lemmas (for a proof, see e.g. Barendregt
[3] or Sørensen et al [24]), where we use notation FV for free variables of a term
and similarly FTV for type variables (both for terms and types), and write ≡ for
syntactical equality.

Lemma 2.1 (Substitution commutativity).

(i) If X . Y, X < FTV(τ2), then the following is true:

τ{{τ1/X}}{{τ2/Y}} ≡ τ{{τ2/Y}}{{τ1{{τ2/Y}}/X}}

(ii) If x . y, x < FV(t2), then the following is true:

t{{t1/x}}{{t2/y}} ≡ t{{t2/y}}{{t1{{t2/y}}/x}}

(iii) If X . Y, X < FTV(τ2), then the following is true:

t{{τ1/X}}{{τ2/Y}} ≡ t{{τ2/Y}}{{τ1{{τ2/Y}}/X}}

Lemma 2.2 (Substitutivity). The following rules are valid:

 

〈X,Θ〉 ` σ Θ ` σ′

Θ ` σ{{σ′/X}}

 

Θ, 〈x : σ,Γ〉 ` t : σ′ Θ,Γ ` s : σ

Θ,Γ ` t{{s/x}} : σ′

 

〈X,Θ〉,Γ ` t : σ′ Θ ` σ′′

Θ,Γ ` t{{σ′′/X}} : σ′{{σ′′/X}}
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Definition 2.5 (Typing judgments for S−)

V O
σ ≡ Obj(X)[`i : τi(X)]i∈I

Θ, 〈Γ, xi : σ〉 ` bi{{σ}} : τi{{σ}} ∀i ∈ I

Θ,Γ ` Obj(X = σ)[`i = ς(xi : X)bi]i∈I : σ

V S
o ≡ Obj(X = σ)[`i = ς(xi : X)bi]i∈I

Θ,Γ ` o : σ ∀i ∈ I

Θ,Γ ` o.`i{{σ/X}} : τi{{σ}}

V U
σ ≡ Obj(X)[`i : τi(X)]i∈I

Θ,Γ ` m : σ Θ, 〈Γ, x : σ〉 ` b{{σ}} : τ j{{σ}} j ∈ I

Θ,Γ ` m.` j↼↽ ς(x : σ)b : σ

V 
Θ ` 〈Γ, xi : τi, ...〉

Θ, 〈Γ, xi : τi, ...〉 ` xi : τi

V U
Θ,Γ ` ? : 1

V P
Θ,Γ ` a :

∏
i∈I

τi j ∈ I

Θ,Γ ` π j a : τ j

V P
Θ,Γ ` a1 : τ1 . . . Θ,Γ ` an : τn

Θ,Γ ` 〈a1, . . . , an〉 :
∏
i∈I

τi

V S
Θ,Γ ` a : τ j j ∈ I

Θ,Γ ` ιi a :
∐
i∈I

τi

V C
Θ,Γ ` m :

∐
i∈I

σi Θ, 〈Γ, x j : σ j〉 ` m j : τ j ∈ I

Θ,Γ ` case(m, x1.m1, ..., xn.mn) : τ

V E
Θ,Γ ` m1 : τ1 → τ2,m2 : τ1
Θ,Γ ` m1(m2) : τ2

V F
Θ, 〈Γ, x : τ1〉 ` b : τ2

Θ,Γ ` λx : τ1.b : τ1 → τ2

Proof. By induction on the derivation of a well-formed type 〈X,Θ〉 ` σ and well-
typed term Θ, 〈x : σ,Γ〉 ` t : σ′ or 〈X,Θ〉,Γ ` t : σ′, respectively. For ( )
and ( ) this is similar to the theorems given by Abadi et al [1] including
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for their calculi Ob1<:µ and S. The sum type cases are covered as in e.g. Pierce
[18] or Sørensen et al [24].

The rule ( ) is proved by induction on the derivation of 〈Θ, X〉,Γ ` t :
σ′ for an arbitrary but fixed substitution {{σ′′/X}} such that Θ ` σ′′. The basis is
vacuous since a type substitution acts on term variables as identity. The only cases
where free type variables can occur in terms is in an object type σ occurring in a
term of the form Obj(Y = σ)[`i = ς(xi : Y)bi]i∈I . For t = Obj(Y = σ)[`i = ς(xi :
Y)bi]i∈I we have either that X is free in σ and thus X . Y , or else we are done.
Suppose X . Y . Then by induction hypothesis, we have for each i ∈ I that the
following holds:

X,Θ,Γ ` bi{{σ/Y}} : τi{{σ/Y}} Θ ` σ′′

Θ,Γ ` bi{{σ/Y}}{{σ′′/X}} : τi{{σ/Y}}{{σ′′/X}}

Via lemma 2.1 we have that the following rule is also derivable (the condition on
the free type variables is ensured by the variable convention):

X,Θ,Γ ` bi{{σ/Y}} : τi{{σ/Y}} Θ ` σ′′

Θ,Γ ` bi{{σ
′′/X}}{{σ{{σ′′/X}}/Y}} : τi{{σ′′/X}}{{σ{{σ′′/X}}/Y}}

†

Note that the premises of these rules must hold by an argument that uses a genera-
tion lemma. Moreover, the rule ( ) gives that Θ ` σ{{σ′′/X}} is an object
type. It remains to show that

Θ,Γ ` t{{σ′′/X}} : σ{{σ′/X}}

i.e. the conclusion of the ( ) rule in this case. For this note that the
premises for the rule ( ) are precisely the conclusion of the derived rule
(†) above, so we are done. The situation for ( ) is similar, and ( )
is trivial. �

Operational Semantics

We have now defined the language of S−, and will give it an operational semantics.
The semantics is call-by-value and, in particular, each component of a product
must have a value for a projection of the product to attain a value. The rules for
the non-object part of the calculus are standard while we feel that those for the
introduction, eliminating, and updating objects are reasonable, e.g. one does not
reduce under the binder in object intro terms and hence all object intro terms are
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values. This feeling is reinforced by the results we derive later on soundness and
adequacy. The values (or normal/canonical forms) are as follows:

v F x | 1 | ιi v | 〈v1, . . . , vn〉 | λx : τ.m |
Ob j(X = σ)[`i = ς(xi : X)mi]i∈I

The actual operational rules are given in definition 2.6. Note that the values
are precisely the terms v such that v { v, where{ means the reduction relation.
This is the statement that values are irreducible in a formal sense. A program p is
a term such that for some type τ we have ` p : τ, i.e. a well-typed term with empty
contexts. The key theorem which means that the implementation of the calculus,
as given by its operational semantics, respects compile time type information is the
preservation of types as shown in the next theorem.

Theorem 2.1 (Subject Reduction). If t is a well-typed term Θ,Γ ` t : τ such that
t{ t′, then Θ,Γ ` t′ : τ.

Proof. The proof is by induction on the derivation of t { t′ and is fairly routine.
Suppose Θ,Γ ` t : τ and t{ t′. We have omitted trivial cases:

Case (R C): We have t = case(m, x1.m1, . . . , xn.mn) and Θ,Γ ` t : τ.
Since t is well-typed we have Θ,Γ ` m :

∐
i∈I σi and Θ, 〈Γ, x : σ〉 ` mi : τ for i ∈ I.

We have subderivation m { ιkv and mk{{v/xk}} { t′. But by induction hypothesis
this means, by substitutivity, t′ : τ.

Case (R P): We have t = πi(m) and Θ,Γ ` t : τ, which is to say
m = 〈a1, . . . , an〉 for someΘ,Γ ` ai : τi. The result follows by induction hypothesis
on the required component.

Case (R E): We have t = m1(m2) and Θ,Γ ` t : τ2. Therefore Θ,Γ ` m1 :
τ1 → τ2 and Θ,Γ ` m2 : τ1. That is to say m1 = λx : τ2.b. Now for m2 { v we
have Θ,Γ ` b{{v/x}} : τ2 and by induction hypothesis t′ : τ2 as required.

Case (V S): we have t = m.`i and Θ,Γ ` t : τi for m = Obj(X = σ)[`i =
ς(xi : X)bi]i∈I and Θ,Γ ` m : σ with σ = Obj(X)[`i : τi(X)]i∈I . For m { v′ and
bi{{v′, σ}}{ t′ we have Θ,Γ ` t′ : τi{{σ}} by induction hypothesis.

Case (V O): we have t = m.` j↼↽ ς(x : σ).b and t : σ. Since Θ, 〈Γ, x :
σ〉 ` b j{{σ}} : τ j{{σ}} we have Θ,Γ ` t′ : σ as required. �
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Definition 2.6 (Operational semantics for S−)

R 
x{ x

R U
?{ ?

R P
m1 { v1 . . . mn { vn

〈m1, . . . ,m2〉{ 〈v1, . . . , vn〉

R P
m{ 〈v1, . . . , vn〉 1 ≤ i ≤ n

πi(m){ vi

R S
m{ v

ι j m{ ι j v

R C
m{ ι j(v) m j{{v/x j}}{ v′ j ∈ [1, n]

case(m, x1.m1, ..., xn.mn){ v′

R F
λx : τ.m{ λx : τ.m

R E
m1 { λx : τ.b m2 { v b{{v/x}}{ v′

m1(m2){ v′

R O
v ≡ Obj(X = σ)[`i = ς(xi : X)bi]i∈I

v{ v

R S
v′ ≡ Obj(X = σ)[`i = ς(xi : X)bi]i∈I

m{ v′ bi{{v′, σ}}{ v

m.`i { v

R U
v ≡ Obj(X = σ)[`i = ς(xi : X)bi]i∈I

m{ v

m.` j↼↽ ς(x : σ)b{{σ}}{ Ob j(X = σ)[`i = ς(x : X)bi, ` j = ς(x : X)b]i∈I−{ j}

where in the last rule we delete the j’th method from v and then add the updated
method ` j = ς(x : X)b.
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Definition 3.1 (Eager FPC)

V I
X < Θ

Θ,Γ ` m : τ{{µX.τ/X}}

Θ,Γ ` inµX.τ(m) : µX.τ

V O
Θ,Γ ` m : µX.τ

Θ,Γ ` out(m) : τ{{µX.τ/X}}

T R
〈Θ, X〉 ` τ

Θ ` µX.τ

R I
e{ v

in(e){ in(v)

R O
e{ in(v)

out(e){ v

3 FPC

Our intention is to interpret object types as solutions of certain recursive equations.
We do this syntactically by translating the object calculus into the FPC. In previous
work [11], we have done it also semantically by giving denotational models for
the object calculus using some sophisticated categorical model, in which case the
equations become domain equations rather than, like here, type equations in the
metalanguage FPC.

The target calculus of recursive types is known in the semantics literature as
FPC. This system is originally due to Plotkin [19], but detailed expositions are
given e.g. by Gunter [14] and Fiore [8]. FPC intuitively arises from S− by delet-
ing the types and terms related to objects and inserting types and terms related to
fixed points of mixed variant type constructors. Thus FPC uses the same countable
supplies U and V of type and term variables. We summarise the formal rules in
definition 3.1.

The notions of substitution, α-congruence, contexts, well-formed types, are
all identical, except that we replace object type formation with the following rule
for well formed recursive types. The preterms of FPC are exactly those of S−,
omitting all terms derived from the object formation rule, method updates, and
method invocation, and adding to the grammar terms of the form inµX.τ for µ-
introduction (V I) and out for µ-elimination (V O). The term judgments for
FPC are similarly obtained from those of S−, but the V O, V S and
V U rules are replaced by two rules for typing recursive types. Finally, the
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Definition 3.2 (Lazy FPC)

Operational Semantics
The following rules take the place of R P, R C, and R E and all
other rules are the same:

RL E
m1 { λx : τ.b b{{m2/x}}{ v

m1(m2){ v

RL P
m{ 〈m1, . . . ,mn〉 mi { v

πi(m){ v

RL C
m{ ι j(k) m j{{k/x j}}{ v′ j ∈ [1, n]

case(m, x1.m1, .., xn.mn){ v′

operational semantics of FPC is obtained by deleting V O terms as values,
removing the operational rules for R O, R S and R U and
adding the following values and rules from definition 3.1 to cope with recursive
types.

vF . . . | inµX.τ(v)

In addition to this eager (call-by-value) version of FPC, we will briefly also
recall the lazy (call-by-name) operational semantics that can be given to this lan-
guage.

Under a lazy semantics, we have more values than we had in the eager seman-
tics. If ti, λx.m are closed terms, the values now also include:

vF . . . ι j t | λx.m | 〈t1, ..., tn〉 | inµX.τ(v)

4 Translating Object Calculus into FPC

This section contain a translation of S− into (lazy) FPC. This translation is at the
level of types, terms and operational semantics and we find an excellent fit whereby
the operational semantics for FPC is both sound and complete. This allows us to
transport the well-understood theory of FPC, in particular its denotational models
(e.g. [8, 26, 14]), to S−.
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The encoding of objects uses recursive types contrary to e.g. the recursive
record semantics in the literature, e.g. [5, 1]. Notably, the recursive record seman-
tics would give the following interpretation of the p : Point object given in the
previous examples:

p = Y λp.〈0, 〈π1 p + 1, π2 p〉〉
where Y : (τ→τ)→τ is a fixed point combinator (which can be encoded into

FPC). The type of p is µX.Int × X, but as seen in this example we cannot replace
the first component of p without giving a completely new definition of p. We will
give p the type µX.(X→Int) × (X→X). This means that p is denoted simply by a
product which enjoys the ordinary projections on each component.

Recall the key feature of the encoding chosen for this work is that it reflects
our intuition that the object types of S− are fixed points of recursive type equa-
tions. More specifically, the recursion is over the self-parameter which occurs both
covariantly and contravariantly. This intuition is clearly seen in the V O
typing rule for σ = Obj(X)[`i : τi(X)]i∈I which suggests the i’th method will con-
sume the self-parameter, which has type σ, to produce something of type τi where
σ may occur free, e.g. also be produced. Thus, intuitively, the interpretation of σ
should satisfy

dσe � dσe→dτ1e × · · · × dσe→dτne

where, as we mentioned above, each of the τi may contain σ. Hence the interpre-
tation of σ should be the fixed point µX.X→dτ1e × · · · × X→[[τn]] where the τi may
contain X free. Thus the interpretations of the object types Point and UnLam are

dPointe = µX.(X→X) × (X→Int)
dUnLame = µX.X→X

Note the interpretation of this example shows how the type of untyped lambda
terms arises naturally as an object. We do not need to translate type contexts since
we have identified the sets of type variables. We thus begin by translating well-
formed S− types into FPC-types:

dXe , X
d1e , 1
dA→Be , dAe→dBe
d
∏

i∈I Aie ,
∏

i∈IdAie

d
∐

i∈I Aie ,
∐

i∈IdAiey
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As mentioned above, the translation of object types is into the solution of a mixed
variance recursive type equation.

dObj(X)[`i : τi(X)]i∈Ie , µX.X→dτ1e × ... × X→dτne

Notice that the translation of types respects substitutions, that is dτ[σ/X]e =
dτe[dσe/X]. We can now syntactically translate (term) contexts:

dΘ ` 〈〉e , Θ ` 〈〉

dΘ ` 〈Γ, x : τ〉e , Θ ` 〈dΓe, x : dτe〉

Now we extend our translation to typing judgments. The translations of terms
in the intersection of the calculi are just by induction.

dΘ,Γ ` xi : τe , Θ, dΓe ` xi : dτe
dΘ,Γ ` ? : 1e , Θ, dΓe ` ? : 1
dΘ,Γ ` 〈m0, . . . ,mn〉 : τe , Θ, dΓe ` 〈dm0e, . . . , dmne〉 : dτe
dΘ,Γ ` πi m : τe , Θ, dΓe ` πi dme : dτe
dΘ,Γ ` ι j m : τe , Θ, dΓe ` ι j dme : dτe
dΘ,Γ ` m0 m1 : τe , Θ, dΓe ` dm0edm1e : dτe
dΘ,Γ ` λ(x : σ)m : τe , Θ, dΓe ` λ(x : dσe)dme : dτe

dΘ,Γ ` case(m0, x1.m1, . . . , xn.mn) : τe
, Θ, dΓe ` case(dm0e, x1.dm1e, . . . , xn.dmne) : dτe

Based on translation of object types, we can translate object introductions,
method update, and object elimination (method invocation) in the obvious way:

dΘ,Γ ` m : σe
, Θ, dΓe ` in(〈λx : dσe.db1{{σ}}e, ..., λx : dσe.dbn{{σ}}e〉) : dσe
dΘ,Γ ` m.`ie
, Θ, dΓe ` (πi α)(dme) : dτi{{σ}}e
dΘ,Γ ` m.` j↼↽ ς(x : σ)b{{σ}}e
, Θ, dΓe ` in(〈π1α, . . . , π j−1α, λx : dσe.dbe{{σ}}, π j+1α, . . . ,

πnα〉) : dσe
where
α ≡ out(dme)
m ≡ Obj(X = σ)[`i = ς(xi : X)bi]i∈I

σ ≡ Obj(X)[`i : τi(X)]i∈I
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Here πl j is the projection of a labeled product.
Let Fi be a type expression for each i ∈ I, I = {1, ..., n}. We have interpreted

object types as µX.(X→F1 X)× ...× (X→Fn X) (where for method invocation, self
is applied after projection) rather than µX.(X→F X) where F =

∏
i∈I Fi. This is

because the latter interpretation would break soundness. Consider, for example
the interpretation of method invocation. For soundness, we need to prove that π` j

applied to a term reduces to a value in the case when m.` j reduces to a S−-value.
However, the eager operational semantics of projection in FPC requires that all
components of the tuple have a value, and we can easily construct an object for
which this would not hold. However, given a lazy operational semantics for FPC
(e.g. Winskel [26]) this argument would no longer apply, since partially evaluated
terms (in particular products) are included as values.

We will now prove an important lemma which shows that our interpretation
function d−e is substitutive on terms (it is trivially substitutive on types):

Lemma 4.1. dm{{v/x, σ/γ}}e = dme{{dve/x, dσe/γ}}

Proof. The proof is by induction on the image of terms under d−e. We need only
consider object intro, elim, update under d−e:

dObj(X = σ)[`i = ς(xi : X)bi]i∈I{{v/x, σ/γ}} : δe
= by definition

in(〈λx : τ.db1{{δ, v/x, σ/γ}}e, ..., λx : τ.dbn{{δ, v/x, σ/γ}}e〉)
= by induction hypothesis on bi

in(〈λx : τ.db1{{δ}}e{{dve/x, dσe/γ}}, ..., λx : τ.dbn{{δ}}e{{dve/x, dσe/γ}}〉)
= since d−e is substitutive on in, tupling, and λ

in(〈λx : τ.db1{{δ}}e, ..., λx : τ.dbn{{δ}}e〉){{dve/x, dσe/γ}}
= by definition

dObj(X = σ)[`i = ς(xi : X)bi]i∈Ie{{dve/x, dσe/γ}}

The situation is similar for method invocation and method update, in that d−e
will be substitutive on sub-terms formed according to the rules of FPC. �

Our translation preserves types:

Lemma 4.2. If Θ,Γ ` t : τ then dΘe, dΓe ` dte : dτe

Proof. The proof is by induction on well-typed terms. We consider only V O-
, V S, and Val Update, since the other cases follow by induction. Sup-
pose Θ,Γ ` Obj(X = σ)[`i = ς(xi : X)bi]i∈I : σ where σ = Obj(X)[`i : τi(X)]i∈I .
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We must show that Θ, dΓe ` in(〈λx : dσe.db1{{σ}}e, ..., λx : dσe.dbn{{σ}}e〉) : dσe
where dσe = µX.X→dτ1e × ... × X→dτne.

This follows from the premises of the (µI) rule holds, i.e. if

Θ, dΓe ` in(〈λx : dσe.db1e{{dσe}}, ..., λx : dσe.dbne{{dσe}}〉) :
X→dτ1e × ... × X→dτne
{{µ(X)X→dτ1e × ... × X→dτne/X}}

The premises of V O asserts Θ, 〈Γ, xi : σ〉 ` bi{{σ}} : τi{{σ}} which by
induction hypothesis means Θ, 〈dΓe, xi : dσe〉 ` dbi{{σ}}e : dτi{{σ}}e. We then have a
FPC-term of the required type from the bodies dbi{{σ}}e = dbie{{dσe}} by the substi-
tution lemma. The V F and V P rules gives us 〈λx : X.db1e{{X}}, ..., λx :
X.dbne{{X}}〉{{dσe/X}}. Finally V I gives us the required type.

The case for V U is almost identical. For V S we assume Θ,Γ `
m : σ where m = Obj(X = σ)[`i = ς(xi : X)bi]i∈I and σ = Obj(X)[`i : τi(X)]i∈I

and consider Θ,Γ ` m.`i : τi{{σ}}. We want Θ, dΓe ` (πli out(dme))(dme) : dτi{{σ}}e.
By induction hypothesis we have Θ, dΓe ` dme : dσe. Further Θ, dΓe ` out(dme) :
dσ{{µX.σ/X}}e and after projection we have the body bi of type τi{{σ}}, and the result
follows by applying the induction hypothesis to bi. �

5 Soundness and Adequacy

We will prove the soundness and adequacy of our translation of S− into FPC. This
means that the translation of S− into FPC is given in such a way that the operational
semantics of FPC is strong enough to interpret the operational semantics of S−
while not being so strong as to give extra computations which were not present in
S−.

We will show that t{ v implies dte{ dve. This establishes that our translation
is correct (soundness). We also prove an adequacy result of the operational seman-
tics of S−. These two results establish that any denotational model of lazy FPC
(given along the lines of Plotkin and Fiore [6]) is, via the self-application interpre-
tation, a suitable mathematical setting for object calculus. For example, a category
such as pCPO immediately gives us a denotational model of object calculus (via
e.g. [26]).

In what follows we will let [[−]] denote the interpretation of FPC with respect
to some denotational semantics equipped with a notion of totality. Such an inter-
pretation is defined in the usual way by induction on the well-formed types and the
well-typed terms, see Fiore and Plotkin [6, 8]. We will speak about a denotation
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being “total”. As in loc. cit. we require that the interpretation is with respect to a
category of partial maps [8], viz. pK. A term Θ,Γ ` t : τ is understood to be inter-
preted by an indexed family of partial maps [[Γ]]A ⇀ [[τ]]A (where A ranges over
objects in pK). The types and type contexts are interpreted by symmetric functors
on the ambient category, i.e. self-dual functors of the form Cop × C → C (hence-
forth, Cop × C is written as C̆). To summarise, we assume that we have indexed
partial maps and (symmetric) functors as follows:

[[Θ,Γ ` t : τ]]A : [[Θ ` Γ]](A)2 ⇀ [[Θ ` τ]](A)2

[[Θ ` Γ]] : ˘pK
|Θ|
→ ˘pK

for A ∈ | ˘pK||Θ| where |Θ| is the number of type variables appearing in Θ. We wrote
F(X)2 for Π2 ◦ F(X).

Formally, a partial map is described as a pair [m, f ] where m is an admissible
mono drawn from a subcategory D of K. The total maps [m, f ] are such partial
maps where m = id. However, we must identify some representations [m, f ] since
a single partial map can be written in this form in more than one way. For this, we
proceed like Fiore et al [6, 8], and say that partial maps [m, f ] and [n, g] describe
the same partial map if and only if

m = n ◦ i and f = g ◦ i for some isomorphism i .

This immediately gives the formal notion of total maps for pK as the maps [id, f ]
up to the equivalence relation induced by such isomorphisms.

We remark that for a domain-theoretic model based on CPPO⊥! of strict con-
tinuous maps and cpos with least elements, totality of a map f is more simply the
property that f (x) = ⊥ implies x = ⊥ (via the isomorphism between this category
and pCPO as described e.g. in [8]). Also, for the concrete category pCPO of
predomains, the usual set-theoretic notion of total partial map can be used, rather
than the more general one described above. Moreover, in this case, the notion of
partial continuity implies that the domain of definition (admissible monos) must be
a Scott-open set [6].

Definition 5.1 (Computational Soundness). We say that an interpretation d−e of
S− into FPC is computationally sound if, for every Θ,Γ ` o : τ such that o { v
where v is a value, we have that [[dΘ,Γ ` o : τe]] is a total map.

Definition 5.2 (Computational Adequacy). We say that an interpretation d−e of
S− into FPC is computationally adequate if given any Θ,Γ ` o : τ, whenever
[[dΘ,Γ ` o : τe]] is a total map, we also have that o{ v for some value v.
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In order to establish computational soundness and adequacy for the interpre-
tation d−e, we require the following theorems. From these, the required result of
computational soundness and adequacy follows immediately as a corollary simply
by composing the relations appropriately, and by observing that dve is a value in
lazy FPC whenever v is a value in S−.

Theorem 5.1. The interpretation d−e has the property that t{ v, then dte{ dve

Proof. We only check the derivation rules V O, V S, and V U-
, since the result follows from induction for the other derivation rules. The
translation of an V O term is an FPC value and hence the theorem holds for
terms arising as the result of the V O rule.

For V S, suppose m { v′ and bi{{v′, σ}} { v, where v′ = Ob j(X =
σ)[l1 = ς(xi : X).bi]i∈I . We want to show that dm.`ie { dve. By induction dme {
dv′e and hence

πi(outdme){ λx : dσe.bi

Again, by induction, dme{ dv′e and dbi{{v′, σ}}e{ dve. The result then follows
by the substitution lemma since dbi{{v′, σ}}e = dbie{{dv′e, σ}}.

For method update, suppose m{ v where v = Obj(X = σ)[`i = ς(xi : X)bi]i∈I .
In order to prove dm.` j↼↽ ς(x : σ).be { dv′e where v′ = Ob j(X = σ)[li = ς(x :
X).bi, l j = ς(x : X).b]i∈I we must prove that

in(〈π1α, ..., λx : dσe.dbe, ..., πnα〉){
in(〈λx : dσe.db1e, ..., λx : dσe.dbe, ..., λx : dσe.dbne〉)

where α = out(dme). By induction

dme{ dve = in(〈λx : dσe.db1e, ..., λx : dσe.dbne〉)

and hence πiα{ λx : dσe.dbie as required. �

Corollary 5.1. If an FPC model has the property that t { v implies [[t]] = [[v]],
then S− has this property for the same model via the translation d−e.

We proceed with adequacy which shows that the operational semantics of FPC
is not too strong with respect to the operational semantics of S−.

Theorem 5.2. The interpretation d−e has the property that if dte{ v, then there is
a v′ such that t{ v′ and dv′e = v
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Proof. The proof is by induction on the derivation tree for dte{ v. If t is a variable
or any of the terms related to the standard type constructors of λ-calculus, then the
proof is as expected. If t is a V O term, then both t and dte are values and
hence the theorem trivially holds. There are two more cases:

If t is given by V S, say t ≡ m.` j, then dte{ v must have the following
form:

dme{ in〈. . . , λx.b, . . .〉

outdme{ 〈. . . , λx.b, . . .〉

π joutdme{ λx.b dme{ u db{{u/x, σ}}e{ v

(π joutdme)(dme){ v

We see that the derivation for db{{u/x, σ}}e{ v is contained in the above deriva-
tion. Therefore we can apply the induction hypothesis to it, and also to the term m.
The premises of the rule V S are now satisfied, and we can conclude that
t{ ξ for value ξ. It remains to be shown that dξe = v, but this is just the induction
hypothesis for db{{u/x}}e.

Finally, let t = m.`↼↽ ς(x : σ)b be a method update term given by V U,
and dte{ v for some value v. Such a term has the following derivation tree:

dme{ in v

outdme{ v ≡ 〈. . . , λx.b, . . .〉

in〈π1outdme, . . . , π j−1outdme,
λx : dσe.dbe{{σ}}, π j+1outdme, . . . , πnoutdme〉{ v

The derivation tree clearly shows that dte reduces to a value exactly when dme
reduces to a value which means, by induction hypothesis, that we have m{ u for
some value u. In other words, the premise of the V U rule is satisfied, so we
have indeed that t { u′ for some value u′. It remains to be shown that du′e = v.
However, v has the form indicated in the derivation tree (〈. . . , λx.b, . . .〉), which is
given as the interpretation of precisely the value Ob j(X = σ)[`i = ς(x : X)bi, l j =

ς(x : X)b]i ∈ I to which t reduces to by the (↼↽) rule. �

The following main result has now been established (it is a direct consequence
of the previous theorems):

Corollary 5.2 (Main result). Every computationally sound and adequate model of
lazy FPC is also such a model of S−.
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It follows from the proof given by Winskel [26] that the categories pCPO and
CPPO⊥! both give computationally sound and adequate models of S−.

Although adequacy holds, the stronger property of full abstraction does not
hold for self-application semantics [25]. In order to discuss full abstraction we
first need to define a notion of observation equivalence. Following Morris [17],
terms are taken to be equivalent if they are equal, in a suitable sense, in all program
contexts of a given kind. This can be understood as determining whether two terms
behave in the same way, operationally. A notion of contextual equivalence requires
(1) another equivalence relation to be chosen and (2) a class of program contexts
to be chosen. For typed languages, we can take program contexts of one or more
ground type (when such exist). For example, Plotkin [21] used boolean-valued
contexts in his pioneering work on PCF. In our case, the following definition can
be used instead, where we take Bool = 1 + 1:

Definition 5.3 (Contextual Equivalence [12, 13]). Say that two closed terms o and
o′ are contextually equivalent (or operationally congruent, written o � o′), if for
each closing one-hole contexts C[−] of type Bool, we have that C[o] { v if and
only if C[o′]{ v′. (A context is closing for a term t if ` C[t] : Bool.)

Note that here, we follow Gordon et al and have taken the equivalence (1) to
distinguish between terms merely based on their convergence behaviour, and not
on whether they reduce to the same values (unlike the equivalence Plotkin studied
for PCF).

Gordon et al [12] have demonstrated that this notion of contextual equivalence
can be characterised using bisimulations on a canonical labelled transition system
(i.e. bisimilarity). The terminology “observational congruence” is justified since
Gordon et al proved (using a technique due to Howe [15]) that the equivalence is in
fact a congruence relation. Note that this means that coinduction can be used when
reasoning with object-based programs, giving an alternative to using a denotational
semantics (i.e. to the approach followed in this paper), although without additional
structure other than that afforded by a labelled transition system (e.g. fixpoint
theorems, Freyd’s recursion scheme [10] are not available). At any rate, contextual
equivalence makes it possible to consider how closely the operational semantics
is connected to a denotational model. Ideally, one would like that programs that
behaves the same are exactly those that are denotationally the same, which the
following property formalises:

Definition 5.4 (Full Abstraction). Full abstraction is the property that for any
terms o, o′, [[ dΘ,Γ ` o : τe ]] = [[ dΘ,Γ ` o′ : τe ]] if and only if o � o′, i.e.
identified denotations correspond to observationally congruent terms.
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Viswanathan showed that self-application models (such as studied in this pa-
per) cannot have this property [25]. His counterexample is based on defining two
terms:

a = Obj(X = σ)[` = ς(x : X)x.`]
b = Obj(X = σ)[` = ς(x : X)case(x.`, y.ι1 ?, y.ι2 ?)]

Note that both these terms are typeable with type Obj(X)[` : 1 + 1] (where 1 + 1
represents a boolean type). Although, a � b, we do not have equal denotations
in any model of lazy FPC through our interpretation, since self-application admits
application of an object where the l method converges, which gives different func-
tion values (see loc. cit.). In retrospect, this is not surprising since there is no way
in typed object calculus to observe for a particular method the application of that
method to an object where the same method has been updated. Fortunately, the
most important direction of the bi-implication is generally regarded to be that de-
notational equality is included in operational equality, and this is exactly what we
have established in the present paper for certain kinds of models.

6 Conclusion and Further Work

In summary, we have developed an interpretation of S−, a typed object calculus
extended with functions, coproducts and products, into FPC, and proved computa-
tional adequacy and soundness. We considered both eager and lazy variations of
FPC, but we have demonstrated that lazy FPC is required for this result to hold im-
mediately. We have established that models of lazy FPC, such as Winskel’s com-
putationally adequate denotational semantics [26], are computationally adequate
also for typed object calculus. Since a direct proof of computational adequacy is
rather complicated in the presence of recursive object types (compare to the work
by Fiore and Plotkin [7]), the use of an interpretation into the metalanguage turned
out to simplify matters substantially, while in the end giving the same result.

As is well-known [25], full abstraction does not hold for self-application se-
mantics, although it is more abstract than many other so-called object encodings
[4]. However, from a pragmatic point of view, the simplicity of the interpreta-
tion is of greater importance than its precise characterisation of objects. The self-
application interpretation into FPC that we have studied is simple but comes with
a powerful recursion scheme. More precisely, models of FPC studied by Fiore and
Plotkin [7, 8] possess a recursion scheme due to Freyd [10]. Using our results, this
scheme and results surrounding it carry over to typed object calculus. Hence the
current paper has provided a formal connection that can be explored much further.
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It is known from work by Fiore and Plotkin [9, 8] that there is a class of en-
riched categorical model of FPC which are computationally adequate for eager
FPC. Notably, these authors gave a precise axiomatisation of a category of partial
maps (with order-enrichment), such that a computationally adequate model of FPC
arises. Examples included pCPO and other CPO-categories of partial maps, but
also functor categories of pCPO, etc. We leave as future work to decide whether
such more complex models are needed also for typed object calculus, and if there-
fore an axiomatic analysis of lazy FPC is called for.

Finally, we would like to remark that subtyping has not been studied in this
paper, but is certainly very important and needs to be addressed. To this end, FPC
can interpret subtyping using coercion functions, but the details are saved for future
work. Here, the work by Abadi and Fiore [2] gives some ideas on how to proceed
with such investigations.
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Abstract

Freyd showed that in certain CPO-categories, locally continuous functors have mini-
mal invariants, which possess a structure that he termed dialgebra. This gives rise to a cate-
gory of dialgebras and homomorphisms, where the minimal invariants are initial, inducing
a powerful recursion scheme (direcursion) on a cpo. In this paper, we identify a problem
appearing when translating (co)iterative functions (on a fixed parameterised datatype) to
direcursion (on the same datatype), and present a solution to this problem as a recursion
scheme (primitive direcursion), generalising and symmetrising primitive (co)recursion for
endofunctors. To this end, we give a uniform technique for translating (co)iterative maps
into direcursive maps. This immediately gives a plethora of examples of direcursive func-
tions, improving on the situation in the literature where only a few examples have appeared.
Moreover, a technical trick proposed in a POPL paper is avoided for the translated maps.
We conclude the paper by applying the results to a denotational semantics of Abadi and
Cardelli’s typed object calculus, and linking them to previous work on higher-order coal-
gebra and to bisimulations.
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1 Introduction

Solutions to recursive domain equations involving function spaces can be given as
initial Ĝ-algebras in suitable categories, where Ĝ is an endofunctor given by sym-
metrising G. This was shown by Freyd [11, 12] (based on work by Smyth and
Plotkin [29]) and later refined by Fiore [10] in a framework of enriched category
theory. Initial Ĝ-algebras (also called dialgebras) generalise usual algebras and
coalgebras. Moreover, a recursion principle arises for Ĝ-algebras. This principle is
hereafter called direcursion and it is the topic of this paper. It has previously been
investigated both in loc. cit. and as a tool for functional programming (with asso-
ciated proof principle) (see e.g. [20, 35, 8]). Some notable theoretical results are:
the reduction to inductive types as given by Freyd in his seminal paper [11] and
the relationship to dinaturality [12], the derivation of an associated proof principle
[22, 23], programming examples dealing with higher-order abstract syntax [35],
lambda calculus interpreters [20], and circular datatypes [8]. But direcursion re-
mains relatively unexplored as regards termination properties and its relationships
to other recursion schemes (and programming examples have so far been rather
scarce). In this paper we begin to remedy this situation.

We will here investigate the relationships between (co)iteration and direcursion
for a fixed datatype. With (co)iteration we mean the unique homomorphisms asso-
ciated to the initial (final) Ĝ(µĜ, )-(co)algebras by Bekič’s Lemma, i.e. (co)iterative
maps on this particular parameterised datatype. Since the carrier of this (co)algebra
coincides with the solution O = µĜ, we ask how these schemes compare to direcur-
sion for same functor G. Our main result is to show that by generalising direcursion
(by precomposing with an injection map or postcomposing with a projection map),
we can express all such (co)iterative maps as a canonical direcursive map such
that the same computation is carried out at every stage. We call this generalisation
primitive direcursion since it is primitive recursion for symmetric functors Ĝ, i.e. it
is simultaneously primitive recursion and primitive corecursion for recursive types.
The latter two principles have been studied in previous work by Meertens [18] and
Uustalu and Vene [32]. Primitive direcursion simultaneously gives both schemes
in the special case when the bifunctor is constant in its contravariant argument,
but also transports those schemes to cover domain equations involving function
spaces as well, i.e. to the mixed variant case, for which it has not previously been
considered.

The paper is structured as follows: the first few pages survey necessary back-
ground material. Next, we develop primitive direcursion from first principles. In
the same section, we give the translation of certain iterative/coiterative maps into
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primitive direcursive maps, which is our main result. This result can be viewed
as an internalised version of Bekic̆’s Lemma. The fourth section exemplifies the
results in the setting of program semantics, and the last section gives our conclu-
sions.

2 Mathematical Preliminaries

In this paper we are essentially considering the category CPPO⊥! of directed com-
plete pointed cpos and strict continuous maps (or subcategories with similar prop-
erties, e.g. Scott domains and strict maps), as defined in e.g. [3, 30]. Such a
category is used when solving domain equations, for instance in [29] based on
[28]. We will in this paper assume an ambient category C which abstracts from
CPPO⊥! exactly the properties that we require here. These are our assumptions on
C:

• C has products × and coproducts +.

• C is algebraically compact, so that each (suitably qualified) endofunctor has
an initial algebra and a final coalgebra, and these are canonically isomorphic
[12], i.e. the unique homomorphism from the inverse of the initial algebra to
the final coalgebra is an isomorphism. In particular, this family of endofunc-
tors is assumed to include the functors considered in this paper. It follows
also that C has a zero object 0 � 1, also known as a biterminator.

• C has regular initial dialgebras [11], as will be detailed below. Having regular
free dialgebras is in fact a consequence of algebraic compactness [12]. In a
weaker axiomatisation where we require merely free dialgebras for a class
of functors instead of algebraic compactness, this condition must however
remain explicit, see [11, 13] for examples.

• C is symmetric monoidal closed with tensor ⊗ and unit 1. The right adjoint
to this tensor is written( (with the natural isomorphisms curry and uncurry,
and counit eval).

• C has a generator I, i.e. for all f , g ∈ C(A, B) we have f = g iff for all
i : I → A we have that f ◦ i = g ◦ i.

An example of such a category is CPPO⊥! itself, in which case the tensor ⊗ is
smash product (with right adjoint strict function space, with curry etc). The product
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×, on the other hand, is the cartesian product of cpos (thus we have merely weak
exponentials in the sense of ⊗ being left adjoint to the function space rather than the
product), and coproduct is coalesced sum (i.e. the least elements are identified in
contrast to e.g. separated sum where a new one is adjoined). The generator for this
category is given by the Sierpinski space I = {⊥,>} (so it is in particular not well
pointed since I � 1). In CPPO⊥! the family of endofunctors considered above are
the CPPO⊥!-enriched (i.e. locally continuous) functors, i.e. functors F : C → C

given by maps |C| → |C| on objects (writing |C| for the class of objects), and arrow
maps given on homsets by a Scott-continuous mapping C(A, B) 7→ C(FA, FB) for
each A, B ∈ |C|, such that composition and identities are preserved. Such functors
are alternatively called locally continuous. Note that for bifunctors this means
that each section is locally continuous. In particular, for mixed variant functors
F : Cop × C → C we require that C(B, A) × C(A′, B′) 7→ C(F(A, A′), F(B, B′)) has
said property instead (see [3]).

Definition 2.1 (Algebra, Coalgebra). Given a covariant functor F : C → C we
say that an arrow α : F(A) → A is an F-algebra with carrier A. The dual notion
is that of F-coalgebra, i.e. reversed arrows α : A → F(A). The arrows between
(co)algebras are F-homomorphisms, i.e. arrows h such that the left or right dia-
gram below commute (in the respective case):

F(A)
F(h)- F(B) A

h - B

Alg(F) Coalg(F)

A

α

?

h
- B

β

?
F(A)

α

?

F(h)
- F(B)

β

?

We now recall some results concerning solutions to recursive domain equations
in CPPO⊥!. These results serve to motivate our axiomatised category C. Given a
locally continuous endofunctor F, we construct a diagram by iterating the functor,
beginning at the zero object 0. There are then unique morphisms 0 → F0 and
F0 → 0 so we can construct systems giving both a limit and a colimit. The limit
and colimit coincide in this case, and is denoted µF. This motivates the algebraic
compactness requirement for C. Further details are given in e.g. [29], [24], [3].
One particular result (not detailed here) is that µF carries an initial algebra and
also a final coalgebra (arising from considering respectively cones and cocones,
see loc. cit.). This is an important consequence since it together with the following
lemma shows that in CPPO⊥! we can solve domain equations (for locally continu-
ous endofunctors) up to isomorphism:
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Proposition 2.1 (Lambek’s Lemma). An initial algebra (OF , ιF) is an isomorphism
OF � F(OF). Dually for final coalgebra (OF , ι

◦
F)

The notation ιF and ι◦F is used for the initial algebra and final coalgebra re-
spectively (we drop suffixes when possible). Our next assumption for C is that it
has regular initial dialgebras. The fact that CPPO⊥! satisfies this condition is due
to Freyd [11] (but see also pioneering work by [29] in the more concrete setting
of a subcategory of embedding-projection pairs). We survey Freyd’s work here, in
particular by recalling that, for a (mixed-variant) functor F, an object X is called F-
invariant if there is an isomorphism α : F(X) � X. If fix e. α ◦ F(e) ◦ α−1 ∈ A→ A
is the identity, X is called special F-invariant. If it is the only idempotent map
A → A for which e ◦ α = α ◦ F(e), it is called minimal invariant [11]. Freyd [11]
showed that in CPPO⊥! there exists an F-invariant object for every locally contin-
uous functor that is minimal in this sense. A corollary of this result is the recursion
principle that we call direcursion, which relies on first generalising the notion of
(co)algebra to mixed-variance functors:

Definition 2.2 (Dialgebra). A G-dialgebra for bifunctor G : Cop × C → C is a
quadruple (A, B, φ, ψ) of objects A, B and associated arrows φ : G(B, A) → A and
ψ : B→ G(A, B).

Note that in the case when G is dummy in its contravariant argument, i.e. an
endofunctor F on C, this definition gives precisely that (A, φ) is an F-algebra and,
independently, that (B, ψ) is a F-coalgebra. Dialgebras for a bifunctor G form a
category Dialg(G) with the following morphisms:

Definition 2.3 (Dialgebra Map). Given G-dialgebras (A, B, φ, ψ) and (A′, B′, φ′, ψ′),
a G-homomorphism (or dialgebra map/dimap) is a pair of arrows (h : A → A′, g :
B′ → B) such that the following diagrams commute:

G(B, A)
φ - A B

ψ- G(A, B)

≡ ≡

G(B′, A′)

G(g, h)

?

φ′
- A′

h

?
B′

g

6

ψ′
- G(A′, B′)

G(h, g)

6

An initial dialgebra for a bifunctor G is a dialgebra (A, B, φ, ψ) such that for any
other G-dialgebra (A′, B′, φ′, ψ′) there is a unique dialgebra map (h : A → A′, g :
B′ → B). The existence of initial dialgebras in CPPO⊥! was established by Freyd:
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Theorem 2.1 (Existence of Initial Dialgebras [11]). CPPO⊥! has initial dialgebras
for every locally continuous bifunctor G : CPPO⊥!

op × CPPO⊥! → CPPO⊥!.
In addition, initial dialgebras in CPPO⊥! are of the form (OG,OG, ιG, ι

◦
G) where

ιG ◦ ι
◦
G = id and ι◦G ◦ ιG = id.

Proof. See e.g. [23]. �

The second property in the theorem is what Freyd termed regular initial dial-
gebra. The existence of such dialgebras was one of the conditions we listed for
C, and it will be frequently used in this paper. Note also that usual initial algebras
and final coalgebras for endofunctors follows from Freyd’s condition since the di-
functor can be constant in its negative argument, e.g. G(Y, X) = 1 + X. (In such
cases the intertwined diagrams for direcursion instead become two independent di-
agrams for iteration and coiteration, respectively.) Moreover, Freyd’s condition has
the following consequence, which is the recursion principle studied in this paper:

Definition 2.4 (Direcursion [11]). Let (O,O, ιG, ι◦G) be the initial G-dialgebra and
suppose (A, B, φ, ψ) is some other G-dialgebra. Then there exists unique mor-
phisms g : O - A and h : B - O such that the following diagrams commute:

G(O,O)
ιG - O O

ι◦G- G(O,O)

≡ ≡

G(B, A)

G(h, g)
?

φ
- A

g
?

B

h
6

ψ
- G(A, B)

G(g, h)
6

(direc-P)

We introduce the notation ([φ, ψ])G
def
= g and [(φ, ψ)]G

def
= h whenever the conditions

for φ and ψ are satisfied.

There are a number of standard properties that can be easily established. We
survey them here:

Lemma 2.1 (Basic properties of direcursion [20]). Let (O,O, ιG, ι◦G) be the initial
G-dialgebra and suppose (A, B, φ, ψ) is some other G-dialgebra. Then the follow-
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ing is true:

([φ, ψ]) ◦ ιG = φ ◦G([(φ, ψ)], ([φ, ψ])) (direc-S)

ι◦G ◦ [(φ, ψ)] = G(([φ, ψ]), [(φ, ψ)]) ◦ ψ

id = ([ιG, ι◦G]) (direc-R)

id = [(ιG, ι◦G)]

A = B and ψ ◦ φ = idG(A,A) implies [(φ, ψ)] ◦ ([φ, ψ]) = idO (direc-R)

Proof. The two first properties follow directly. The third one follows by pasting
the right square for direcursion below the left one, and vice versa. �

Lemma 2.2 (Direcursion Fusion [20]). Let (O,O, ιG, ι◦G) be the initial G-dialgebra.
Suppose that (A, B, φ : G(B, A)→ A, ψ : B→ G(A, B)) and (A′, B′, φ′ : G(B′, A′)→
A′, ψ′ : B′ → G(A′, B′)) are both G-dialgebras. For every dimap g : A → A′, h :
B′ → B such that

g ◦ φ = φ′ ◦G(h, g)

and
ψ ◦ h = G(g, h) ◦ ψ′

we have the following property

g ◦ ([φ, ψ]) = ([φ′, ψ′]) and [(φ, ψ)] ◦ h = [(φ′, ψ′)] (direc-F)

Symmetric Functors, Bekic̆’s Lemma and Parameterised
(Co)Algebras

As noted by Freyd [11] (and further detailed in [9]), we can by introducing sym-
metric endofunctors Cop × C → Cop × C, view a dialgebra as an algebra on the
product category. We have in particular the following result:

Lemma 2.3 ([11]). There is a bijective correspondence between functors F : Cop×

C→ C and symmetric functors F̂ : Cop × C→ Cop × C, where

F̂(X,Y) = (F(Y, X), F(X,Y))
F̂( f , g) = (F(g, f ), F( f , g))
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Proof. This is established e.g. using the notion of involutions (self-dual functors)
and a category Ĉ of involutory objects (due to John Power, see Fiore [9] for details).

�

In particular, this implies that direcursion can alternatively be formulated using
F̂, in which case the maps f = ([φ, ψ]) and g = [(φ, ψ)] are equivalently and more
abstractly defined as follows in the category Cop × C (see [9]):

Ĝ(O,O)
(ιG, ι◦G)

- (O,O)

≡

Ĝ(A, B)

Ĝ( f , g)

?

(φ, ψ)
- (A, B)

( f , g)

?

Given a bifunctor F : Cop × C → C and an object X ∈ |C| we have an endofunctor
F(X, ) : C→ C. This means that we can consider two different equation systems as
follows (where we already have shown that the initial F-dialgebra gives a solution
for the left-hand side (lhs) system).{

X � F(Y, X) = π1(F̂(X,Y))
Y � F(X,Y) = π2(F̂(X,Y))

{
X � F(µF(X, ), X)
Y � µF(X, )

The solution to the rhs system is said to be parameterised, and it is not immediately
clear if it has the same solutions as the lhs one. However, we have:

Lemma 2.4 (Bekic̆’s Lemma [4]). Let F : Cop × C → C be a locally continuous
endofunctor with initial dialgebra (O,O, ι, ι◦). Then we have that O � µF(O, ).

Proof. E.g. [3, 9]. �

The endofunctors of the form F(A, ) in this way have initial F(A, )-algebras
where A is the parameter.

Primitive (Co)Recursion and (Co)Iteration

It is well known since Lawvere, that iteration and primitive recursion (on natural
numbers) can be expressed in the form of universal properties (e.g. a so-called
natural number object, nno) in cartesian closed categories. Subsequent research on
functional programming has built on this idea, and considered other datatypes.
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A datatype within functional programming is typically modelled by an initial
algebra for suitable functor F, and this work has treated also the functor as a pa-
rameter of programs. Since each functor F on C has an initial algebra O, there is a
unique homomorphism into O from any other object A for which there is a struc-
ture φ : FA→ A. We call these F-iterative maps, written ([φ])F for easy reference.
The dually constructed maps are called F-coiterative maps, and are written [(ψ)]F .
From these, Meertens [18] constructed F-primitive recursion:

Theorem 2.2 (F-primitive recursion). Suppose (µF, ιF) is the initial F-algebra.
For every morphism φ : F(µF × A) → A there exists a unique morphism h (called
F-primitive recursion) such that the following diagram commutes:

F(µF)
ιF - µF

≡

F(µF × A)

〈id, h〉

?

φ
- A

h

?

Proof. For existence define a map φ′ : F(µF ×A)→ µF ×A by φ′ = 〈ι ◦F(π1), φ〉.
Hence there is a coiterative map ([φ′])F which satisfies the diagram when post-
composed with π2. For uniqueness suppose h = φ ◦ 〈id, h〉 ◦ ι◦F . But then 〈π1 ◦

([φ′])F , h〉 is a homomorphism into µF × A, and hence, by properties of pairing in C

together with initiality of (µF, ιF), we have h = π2 ◦ ([φ′])F . �

This result dualises into a scheme useful for coalgebraic datatypes, as was
shown by Uustalu et al [32, 33]. The definition of such F-primitive corecursion
is dual to the above construction, and so is the associated proof.

3 Primitive Direcursion

We will in this section consider a symmetrised version of primitive (co)recursion,
and prove a number of basic results for this recursion principle, followed by our
main result. We provide a quite detailed exposition here, and develop primitive
direcursion from first principles. Many proofs (but not our main result) can al-
ternatively be viewed as a special case of primitive recursion with the ambient
category Cop × C, i.e. F̂-primitive recursion, and are therefore omitted. Note that
direcursion itself by a similar argument is a special case of iteration, if one moves
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to the symmetrised category Cop ×C, as we mentioned in a previous section. How-
ever, we include some such proofs to highlight which properties of C they rely on
(including the regularity assumption).

Theorem 3.1 (Primitive Direcursion). Let (O,O, ιG, ι◦G) be the initial G-dialgebra.
Let A and B be two objects and φ : G(O+B,O×A)→ A and ψ : B→ G(O×A,O+B)
two morphisms. Then there exist g : O - A and h : B - O such that the
following diagrams commute:

G(O,O)
ιG - O O

ι◦G - G(O,O)

≡ ≡

G(O + B,O × A)

G([id, h], 〈id, g〉)
?

φ
- A

g
?

B

h
6

ψ
- G(O × A,O + B)

G(〈id, g〉, [id, h])
6

(prim-P)

Proof. Let φ and ψ be given as in the antecedent of the theorem. We instantiate
direcursion with A′ = O×A and B′ = O+B and define φ′ : G(O+B,O×A)→ O×A
and ψ′ : O + B→ G(O × A,O + B) by φ′ = 〈ι ◦G(inl, π1), φ〉 and ψ′ = [G(π1, inl) ◦
ι◦, ψ]. From these two maps, we define g = π2 ◦ ([φ′, ψ′]) and h = [(φ′, ψ′)] ◦ inr.
Finally, we verify that each square commutes (omitting the reasoning for the right
square as the following dualises):

g ◦ ι

= π2 ◦ ([φ′, ψ′]) ◦ ι by assumption

= π2 ◦ 〈ι ◦G(inl, π1), φ〉 ◦G([(φ′, ψ′)], ([φ′, ψ′])) by (direc-S)

= φ ◦G([(φ′, ψ′)], ([φ′, ψ′])) by (co)pairing

= φ ◦G([[(φ′, ψ′)] ◦ inl, [(φ′, ψ′)] ◦ inr], 〈π1 ◦ ([φ′, ψ′]),

π2 ◦ ([φ′, ψ′])〉) by surjective pairing

= φ ◦G([[(ι, ι◦)], h], 〈([ι, ι◦]), g〉) by (direc-F)

= φ ◦G([id, h], 〈id, g〉) by (direc-R)

�

The previous theorem in fact defines a unique pair of morphisms:

Theorem 3.2 (Primitive Direcursion Characterisation). Let (O,O, ιG, ι◦G) be the ini-
tial G-dialgebra. Suppose

(a) φ′ = 〈ι ◦G(inl, π1), φ〉, and
(b) ψ′ = [G(π1, inl) ◦ ι◦, ψ].
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Then the following two statements are equivalent:

(i) g ◦ ιG = φ ◦G([id, h], 〈id, g〉)

ι◦G ◦ h = G(〈id, g〉, [id, h]) ◦ ψ, and

(ii) g = π2 ◦ ([φ′, ψ′]) and h = [(φ′, ψ′)] ◦ inr. (prim-C)

We introduce the notation 〈|φ, ψ|〉G
def
= g and |〉φ, ψ〈|G

def
= h for any given pair of

(well-typed) maps φ and ψ.

Proof. Supposing (i) holds, we establish (ii).

g

= π2 ◦ 〈id, g〉 by pairing

= π2 ◦ ([〈ι ◦G(π1, inl), φ〉, [G(inl, π1) ◦ ι◦, ψ]]) by (?) below

We now complete the proof by spelling out the step (?), thus giving the first half
of the characterisation:

〈id, g〉 ◦ ι

= 〈id ◦ ι, g ◦ ι〉 by pairing

= 〈ι ◦G(id, id), g ◦ ι〉 by functor law

= 〈ι ◦G([id, h] ◦ inl, π1 ◦ 〈id, g〉), g ◦ ι〉 by pairing

= 〈ι ◦G(inl, π1) ◦G([id, h], 〈id, g〉), φ ◦G([id, h], 〈id, g〉)〉 by assumption (i)

= 〈ι ◦G(inl, π1), φ〉 ◦G([id, h]〈id, g〉) by pairing

The remaining case is dual. Using prim-P we are done. �

The following basic property follows directly:

Corollary 3.1. Let (O,O, ιG, ι◦G) be the initial G-dialgebra. Every function given
by G-primitive direcursion can also be given by G-direcursion up to a certain
pre/post-composed map:

〈|φ, ψ|〉 = π2 ◦ ([〈ι ◦G(inl, π1), φ〉, [G(π1, inl) ◦ ι◦, ψ]])
|〉φ, ψ〈| = [(〈ι ◦G(inl, π1), φ〉, [G(π1, inl) ◦ ι◦, ψ])] ◦ inr

(prim-D)

Proof. Straightforward. �
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Note here that primitive direcursive functions can generally not be defined by
purely direcursive functions, although the previous corollary establishes a close
relationship between the two notions.

Lemma 3.1. Let (O,O, ιG, ι◦G) be the initial G-dialgebra. Primitive direcursion
satisfies the following cancellation and reflection laws:

〈|φ, ψ|〉 ◦ ιG = φ ◦G([id, |〉φ, ψ〈|], 〈id, 〈|φ, ψ|〉〉) (prim-S)

ι◦G ◦ |〉φ, ψ〈| = G(〈id, 〈|φ, ψ|〉〉, [id, |〉φ, ψ〈|]) ◦ ψ

∀ψ id = 〈|ι ◦G(inl, π1), ψ|〉 (prim-R)

∀φ id = |〉φ,G(π1, inl) ◦ ι◦〈|

Proof. The cancellation law follows immediately from (prim-C) by just chas-
ing the diagram given in (prim-P). We show the first reflection law (the other is
dual):

〈|ι ◦G(inl, π1), ψ|〉

= 〈|ι ◦G(inl, π1), ψ|〉 ◦ ι ◦ ι◦ by regularity

= ι ◦G(inl, π1) ◦G([id, |〉φ, ψ〈|], 〈id, 〈|φ, ψ|〉〉) ◦ ι◦ by (prim-S)

= ι ◦G([id, |〉φ, ψ〈|] ◦ inl, π1 ◦ 〈id, 〈|φ, ψ|〉〉) ◦ ι◦ by composition

= ι ◦G(id, id) ◦ ι◦ by (co)pairing

= ι ◦ ι◦ by functor property

= id by regularity

�

The previous lemma, albeit a direct consequence of the construction, is of im-
portance since it gives a more efficient implementation of primitive direcursion in
a lazy functional programming language. The final basic property, the fusion law,
takes a particular form for primitive direcursion:

Corollary 3.2 (Primitive Direcursion Fusion). Let (O,O, ιG, ι◦G) be the initial G-
dialgebra. Suppose that (A, B, φ : G(O+ B,O×A)→ A, ψ : B→ G(O×A,O+ B))
and (A′, B′, φ′ : G(O + B′,O × A′) → A′, ψ′ : B′ → G(O × A′,O + B′)) are both
G-dialgebras. For every dimap g : A→ A′, h : B′ → B such that

g ◦ φ = φ′ ◦G(id + h, id × g)



PRIMITIVE DIRECURSION 127

and

ψ ◦ h = G(id × g, id + h) ◦ ψ′

we have the following property

g ◦ 〈|φ, ψ|〉 = 〈|φ′, ψ′|〉 and |〉φ, ψ〈| ◦ h = |〉φ′, ψ′〈| (prim-F)

We establish another relationship between direcursion and primitive direcur-
sion, showing that primitive direcursion generalises direcursion in the following
sense:

Lemma 3.2. Let (O,O,ι,ι◦) be the initial G-dialgebra. For any φ : G(B, A) → A
and ψ : B→ G(A, B), the following equalities hold:

([φ, ψ]) = 〈|φ ◦G(inr, π2),G(π2, inr) ◦ ψ|〉
[(φ, ψ)] = |〉φ ◦G(inr, π2),G(π2, inr) ◦ ψ〈|

(direc-P)

That is, every direcursive function is also a primitive direcursive function.

Proof. We first define two maps φ′ : G(O+B,O×A)→ (O×A) and ψ′ : (O+B)→
G(O × A,O + B):

φ′ = 〈ι ◦G(inl, π1), φ ◦G(inr, π2)〉

ψ′ = [G(π1, inl) ◦ ι◦,G(π2, inr) ◦ ψ]

By applying (prim-D) to the right hand side of (direc-P) and by definition
of φ′ and ψ′ it is sufficient to prove the following:

([φ, ψ]) = π2 ◦ ([φ′, ψ′])

[(φ, ψ)] = [(φ′, ψ′)] ◦ inr

We will now use (direc-F), and take a dimap (π2, inr) as the witness for the
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equality, as shown in the following diagrams:

G(O,O)
ι - O

ι◦ - G(O,O)

G(O + B,O × A)

G([(φ′, ψ)], ([φ′, ψ′]))

?

φ′
- O × A

�
([φ
′ ,
ψ
′ ])

O + B
ψ′

-

�
[(φ
′, ψ
′)]

G(O × A,O + B)

G(([φ′, ψ′]), [(φ′, ψ′)])

6

G(B, A)

G(inr, π2)

?

φ
- A

π2

?
B

inr

6

ψ
- G(A, B)

G(π2, inr)

6

The upper two squares commute simply by the universal property of direcursion,
i.e. by (direc-P). The lower two squares commute (i.e. we have the dimap
condition) since we have the following:

π2 ◦ φ
′ = π2 ◦ 〈ι ◦G(inl, π1), φ ◦G(inr, π2))〉 = φ ◦G(inr, π2)

For the second square we dually reason as follows:

ψ′ ◦ inr = [G(π1, inl) ◦ ι◦,G(π2, inr) ◦ ψ] ◦ inr = G(π2, inr) ◦ ψ

�

The (prim-S) law generalises into a statement that primitive direcursion is
universal in the sense of e.g. Proposition 4.3 in [6] (i.e. any map in the category
can be defined using the scheme):

Lemma 3.3. Let (O,O,ι,ι◦) be the initial G-dialgebra. Any morphism f : O → A
satisfies the following identity, for any ψ : B→ G(O × A,O + B):

f = 〈| f ◦ ι ◦G(inl, π1), ψ|〉

Furthermore, any morphism f ′ : B → O satisfies the following identity, for any
φ : G(O + B, A × O)→ A:

f ′ = |〉φ,G(π1, inl) ◦ ι◦ ◦ f ′〈|
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Proof. We first convince the reader that the equalities are well-typed:

G(O + B,O × A)
φ - A B

ψ- G(O × A,O + B)

≡ ≡

G(O,O)

G(inl, π1)

?

ι
- O

f

6

O

f ′

?

ι◦
- G(O,O)

G(π1, inl)

6

Let φ0 = f ◦ ι ◦G(inl, π1). For the first equality we reason as follows:

〈| f ◦ ι ◦G(inl, π1), ψ|〉

= ι ◦ ι◦ ◦ 〈| f ◦ ι ◦G(inl, π1), ψ|〉 by regularity

= f ◦ ι ◦G(inl, π1) ◦G([id, |〉φ0, ψ〈|], 〈id, 〈|φ0, ψ|〉〉) ◦ ι◦ by (prim-S)

= f ◦ ι ◦G([id, |〉φ0, ψ〈|] ◦ inl, π1 ◦ 〈id, 〈|φ0, ψ|〉〉) ◦ ι◦ by composition

= f ◦ ι ◦G(id, id) ◦ ι◦ by (co)pairing

= f by regularity

Let ψ0 = G(π1, inl) ◦ ι◦ ◦ f ′. For the second equality dually reason as follows:

|〉φ, f ◦ ι ◦G(inl, π1)〈|

= |〉φ, f ◦ ι ◦G(inl, π1)〈| ◦ ι ◦ ι◦ by regularity

= ι ◦G(〈id, 〈|φ, ψ0|〉〉, [id, |〉φ, ψ0〈|]) ◦G(π1, inl) ◦ ι◦ ◦ f ′ by (prim-S)

= ι ◦G(π1 ◦ 〈id, 〈|φ, ψ0|〉〉, [id, |〉φ, ψ0〈|] ◦ inl) ◦ ι◦ ◦ f ′ by composition

= ι ◦G(id, id) ◦ ι◦ ◦ f ′ by (co)pairing

= f ′ by regularity

�

We now turn to our main result. Suppose g is an iterative map as follows:

G(O,O)
ι - O

≡

G(O, A)

G(id, g)

?

φ
- A

g

?
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We ask: is g definable using direcursion? “Definable” here means that it belongs to
a class of functions defined inductively, closed under composition, and including
elementary functions such as (co)pairing, projections/injections, constants, id, as
well as any function defined by direcursion with parameters φ, ψ in this class. Can
we, for example, choose A, B, φ′, ψ′ such that the following diagrams commute
with this given g as a solution?

G(O,O)
ιG - O O

ι◦G- G(O,O)

≡ ≡

G(B, A)

G(h, g)

?

φ′
- A

g

?
B

h

6

ψ′
- G(A, B)

G(g, h)

6

To simulate iteration, we wish to force h = id in this definition. In other words, we
must specialise the above definition as follows:

G(O,O)
ιG - O O

ι◦G- G(O,O)

≡ ≡

G(O, A)

G(id, g)

?

φ′
- A

g

?
O

id

6

ψ′
- G(O, B)

G(g, id)

6

We conclude that for h = id we require the following condition:

G(g, id) ◦ ψ′ = ι◦

If g has a right inverse (g−1), then we can solve this equation:

ψ′ = G(g−1, id) ◦G(g, id) ◦ ψ′ = G(g−1, id) ◦ ι◦

We have therefore arrived at a problem: a sufficient condition is that the itera-
tive map g has a right inverse g−1, but this does not hold in many cases, for example
not for all those iterative maps that fail to be surjective. For instance, if A is a stan-
dard lazy list datatype (as a cpo) then we are forced to exclude maps without e.g.
the empty lists (or infinite lists etc) in their image. We therefore would like to have
a more generally applicable solution. Since we have merely identified a sufficient
condition, we are not in a hopeless situation. It turns out that primitive direcursion
provides a solution to this problem:
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Theorem 3.3 (Iteration as direcursion). Let G be a locally continuous functor Cop×

C → C and suppose that O is the carrier of the initial G-dialgebra. Suppose that
h = ([φ])G(O, ). Then h = π2 ◦ ([φ′, ψ′]) with φ′ : G(O,O × A) → O × A and
ψ′ : O→ G(O × A,O) given by

φ′ = (ι × φ) ◦ 〈G(id, π1),G(id, π2)〉, and (1)

ψ′ = G(π1, id) ◦ ι◦. (2)

Proof. We begin by asking when the following diagrams will commute where we
force g = 〈id, h〉.

G(O,O)
ιG - O O

ι◦G - G(O,O)

≡ ≡

G(O,O × A)

G(id, 〈id, h〉)

?

φ′
- O × A

〈id, h〉

?
O

id

6

ψ′
- G(O × A,O)

G(h, id)

6

For the right hand square we must find a canonical ψ′ satisfying the following
property:

G(〈id, h〉, id) ◦ ψ′ = ι◦

But we can take ψ′ = G(π1, id) ◦ ι◦ and show that it satisfies this property:

G(〈id, h〉, id) ◦G(π1, id) ◦ ι◦ = G(π1 ◦ 〈id, h〉, id) ◦ ι◦ = G(id, id) ◦ ι◦ = ι◦

It remains to show that we can always define also φ′ such that the left hand square
also commutes. To define φ′ we use that h is G(O, )-iterative, i.e.

h ◦ ι = φ ◦G(id, h).

From this property we will then prove that 〈id, h〉◦ι = φ′◦G(id, 〈id, h〉), by defining
a canonical φ′ from φ as follows:

φ′ = (ι × φ) ◦ 〈G(id, π1),G(id, π2)〉
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We can now establish the result for parametric iterative maps:

〈id, h〉 ◦ ι = (ι × φ′) ◦ 〈G(id, π1),G(id, π2)〉 ◦G(id, 〈id, h〉)) (3)

= (ι × φ′) ◦ 〈G(id, π1) ◦G(id, 〈id, h〉),G(id, π2)〉 ◦G(id, 〈id, h〉)) (4)

= (ι × φ′) ◦ 〈G(id, id),G(id, h)〉 (5)

= (ι × φ′) ◦ 〈id,G(id, h)〉 (6)

= 〈ι, φ′ ◦G(id, h)〉 (7)

= 〈ι, h ◦ ι〉 = 〈id, h〉 ◦ ι (8)

Note how we in (7) used that h is iterative. �

This result immediately dualises:

Theorem 3.4 (Coiteration as direcursion). Let G be a locally continuous functor
Cop × C→ C and suppose that O is the carrier of the initial G-dialgebra. Suppose
that h = [(ψ)]G(O, ). Then h = [(φ′, ψ′)] ◦ inr with φ′ : G(O + B,O) → O and
ψ′ : O + B→ G(O,O + B) given by

φ′ = ι ◦G(inl, id), and (9)

ψ′ = [G(id, inl),G(id, inr)] ◦ (ι◦ + ψ). (10)

We consider the first theorem again. Can we eliminate also the postcom-
posed projection in the construction? For this we seek a dialgebra homomorphism
(π2, id) : (O×A,O, φ′φ, ψ

′
φ)→ (A,O, φ′′, ψ′′) (in order to use fusion), i.e. we require

(for φ′ and ψ′ as in the theorem):

G(O,O × A)
φ′- O × A O

ψ′- G(O × A,O)

≡ ≡

G(O, A)

G(id, π2)

?

φ′′
- A

π2

?
O

id

6

ψ′′
- G(A,O)

G(π2, id)

6

That is, we wish to find another dialgebra (φ′′, ψ′′) such that the unique homo-
morphism from the initial G-dialgebra into that dialgebra factors through the maps
given in this diagram. The right-hand diagram forces the following property (using
the definition of ψ′):

G(π2, id) ◦ ψ′′ = ψ′ = G(π1, id) ◦ ι◦G
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For the left-hand side to commute we require:

φ′′ ◦G(id, π2) = π2 ◦ φ
′ = φ ◦G(id, π2)

We conclude that in general it will not be possible to eliminate the postcom-
posed projection, and dually not the precomposed injection. However, a sufficient
condition is that the iterative map g is split epic with right inverse g−1 as initially
remarked above. We close the section by summarising the development:

Corollary 3.3 (Main Result). Suppose G : Cop × C → C is a locally continuous
bifunctor and that (O,O, ι, ι◦) is the initial G-dialgebra. Then the following is true
for arbitrary maps φ : G(O, A)→ A and ψ : B→ G(O, B) and α, β:

([φ])G(O, ) = 〈|φ ◦G(id, π2), α|〉G, and (11)

[(ψ)]G(O, ) = |〉β,G(id, inr) ◦ ψ〈|G. (12)

In particular, we can take α and β to be the unique maps that factors through
the zero object for a suitably chosen object, e.g. zero 0 � 1 itself:

α = ⊥1,G(O×A,O) : 1→ G(O × A,O)
β = ⊥G(O+B,O),1 : G(O + B,O)→ 1

4 Example: Application to Object Calculus Semantics

Direcursion arises naturally in self-application semantics [17] of typed object cal-
culus based on recursive types, which has recently been subject to some research
[25, 27, 16, 15]. In this section, we will consider the interpretation in Glimming et
al [16], but for concreteness we work in CPPO⊥! rather than a category of partial
maps. For example, B⊥ is a flat cpo with underlying set {tt, ff,⊥}, and all maps
are strict. We conclude the paper by giving some examples. Note that all of these
examples (and others) have been implemented in a lazy functional programming
language:

Example 4.1 (Object-Based Natural Numbers). Abadi and Cardelli [1] model
object-based “natural numbers” essentially by defining a type σ = Ob j(X)[pred :
X, zero : Bool], and then giving suitable terms to represent numbers (see loc. cit.).
Under self-application semantics, this object type is modelled as a solution to the
domain equation O � O ( (O⊥ × B⊥). Writing (O,O, ι, ι◦) for the initial di-
algebra arising from the induced mixed variant functor G, we can define a map
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sapp : O → (O⊥ × B⊥) by sapp = eval ◦ 〈ι◦, id〉. Now we have for example
ι(λx.(⊥,⊥)), ι(λx.(x,⊥)) ∈ O and also zero = d0e = ι(λx.(x, tt)) ∈ O. Moreover,
define dn + 1e = ι(λx.(dne, ff)) ∈ O for n ∈ N. Note that in general the “meth-
ods” need not be constant functions, but can depend on the current “self” in a
non-trivial way. Now the extraction of a natural number in N⊥ (given by a flat cpo)
from an “object” in O can be defined as a G(O, )-iterative function as follows:

G(O,O)
ι - O

≡

G(O,O × N⊥)

G(id, h)

?

φ
- O × N⊥

h

?

In the diagram, φ is the following algebra map for taking one step during the
extraction:

φ = f ◦ 〈π2, eval〉 ◦ 〈G(1, π1⊥ ◦ π1), ι ◦G(1, 〈π1⊥ ◦ π1, π2〉)〉

where f : O × (N⊥)⊥ → O × N⊥ is defined as follows (for usual strict addition +):

f (o, n) =


(o, 0), if π2 ◦ sapp(o) = tt
(π1 ◦ sapp(o),m + 1), if n = m⊥
(o,⊥), otherwise

Note that the first case applies when the zero method evaluates to tt, and that the
second gives back the predecessor in the first component. It can now be inferred
that parametric iterative maps can be useful for defining functions on objects, since
more involved examples can be constructed similar to this simplified one for “nat-
ural numbers”. We have shown in this paper that the map h can equivalently be
defined as h = π1 ◦ k where k = ([φ′, ψ′])G for a suitable dialgebra (φ′, ψ′) as
detailed in previous sections. The resulting definition is shown in the following
diagrams:

G(O,O)
ι - O O

ι◦ - G(O,O)

≡ ≡

G(O,O × (O × N⊥))

G(id, k)

?

φ′
- O × (O × N⊥)

k

?
O

g = id

6

ψ′
- G(O × (O × N⊥),O)

G(k, id)

6
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Note that we need two different O here, since we cannot invert sapp. Our main
result states that we have φ′ = (ι×φ)◦〈G(id, π1),G(id, π2)〉 and ψ′ = G(π1, id)◦ ι◦.
(We can alternatively and equivalently define h = 〈|φ ◦G(id, π2),⊥|〉G according to
Corollary 3.3.)

Example 4.2 (Constructors). We next define a direcursive function δ which creates
an “object” when given a natural number, i.e. a “constructor”. In this case, we
consider the type σ′ = Ob j(X)[pred : X, zero : Bool, succ : X], which allows a
method for computing the successor of the number stored in an object as well. A
domain O′ arises from the equation O′ � O′ ( (O′⊥ × B⊥ × O′⊥). We dub the
induced mixed variant functor H, and define δ first using full direcursion:

H(O′,O′)
ιH - O′ O′

ι◦H- H(O′,O′)

≡ ≡

H(N, 1)

H(δ, γ)

?

⊥
- 1

γ

?
N

δ

6

δ−
- H(1,N)

H(γ, δ)

6

The unique solution arises by providing δ− as follows:

δ−(n) = λx.(n − 1, n ≡ 0, n + 1)

Note that the positive part of the diagram trivialises in this definition. In fact, there
is a more natural parametric coiterative definition:

O′
ιH - H(O′,O′)

≡

O′ × N⊥

δ′

6

δ′−
- H(O′,O′ × N⊥)

H(id, δ′)

6

Here, we require the following H(O, )-coalgebra:

δ′−(n) = λo.((o, n − 1), n ≡ 0, (o, n + 1))

Using Corollary 3.3 we have δ′ = |〉⊥,H(id, inr) ◦ δ′−〈|H . The general problem
of proving that two maps such as δ′ and δ compute the same “objects”, requires
suitable bisimulations (see example 5 and 6 below).
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Example 4.3 (Subtyping). Using direcursion, we will define an embedding-projection
(ep-) pair (α, β) : O → O′. Here β serves as a coercion function for subtyping,
whereas α gives an approximation function from a type into the given supertype.
The pair (α, β) is the unique solution to the following diagrams:

G(O,O)
ι - O O

ι◦- G(O,O)

≡ ≡

G(O′,O′)

G(β, α)

?

α+
- O′

α

?
O′

β

6

β−
- G(O′,O′)

G(α, β)

6

In these diagrams, we have chosen α+ and β− as follows:

α+ = ι ◦ 〈π1, π2,⊥〉
id

β− = 〈π1, π2〉
id ◦ ι◦

Here ⊥ : O′⊥ × B⊥ → O′⊥ is the constantly undefined map. It is straightforward
to show that β− ◦ α+ = id and moreover that α+ ◦ β− vO′ id. (Recall that vO′

is the coordinatewise order inherited from the infinitary product which determines
O′.) It follows that (α, β) is an ep-pair since G is locally continuous. Note that
since subtyping uses full direcursion, we can use a constructor that works with
both O′ and O, since the (prim-F) rule can be used, once both maps are given
in direcursive form using our main result.

Example 4.4 (Inheritance). We continue with the previous example by also consid-
ering the following function:

χ(o) = ι(λp.(π1 ◦ ι
◦(o)(p), π2 ◦ ι

◦(o)(p), ι(λq.(p, ff, ι◦(p)(q)))))

Note how χ serves to interpret the successor method from Abadi et al [1]. It takes
an element in O′ and equips it with the successor method. The definition involves
both using method updates to copy the previous predecessor and zero state, but also
the third component which adds “succ” such that it becomes constantly defined in
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the recursive structure. Now consider χ together with (α, β):

G(O,O)
ι - O O

ι◦- G(O,O)

≡ ≡

G(O′,O′)

G(β, α)

? α+ - O′

α

?
O′

β

6

β−- G(O′,O′)

G(α, β)

6

(a) (b)

G(O′,O′)

G(ξ, χ)

?

α′+
- O′

χ

?
O′

ξ

6

β′−
- G(O′,O′)

G(χ, ξ)

6

To unveil inheritance as a direcursive map, all we need to do is to find a dialgebra
(α′+, β′−) and a map ξ making (χ, ξ) a dimap into this new G-dialgebra. Since this
is a “standard” update (i.e. of the form Abadi and Cardelli considers in typed
object calculi), it is constant in the recursive structure. This means that the fusion
law gives us a unique dimap (α′, β′) for inheritance with ξ = id and β′− = β−:

G(O,O)
ι - O O

ι◦- G(O,O)

≡ ≡

G(O′,O′)

G(β′, α′)

? α+ - O′
χ - O′

α′

?
O′

β′

6

β−- G(O′,O′)

G(α′, β′)

6

(This gives again an ep-pair.) We would like to use the parametric (co)iterative
operations from example 1 and 2 also after we have inherited some of O into the
new O′. To use the fusion rule we must first apply Corollary 3.3 to the parametric
coiterative map. We “rotate” the diagrams for the ep-pair and paste them to the
definition of extraction provided in example 2, after which the (prim-F) rule
can readily be used once again, illustrating the usefulness of our results. However,
if we attempt this for example 1 instead (without moving to H-dialgebras), we
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arrive at these seemingly awkward diagrams:

G(O′,O′)
α+ - O′ O′

β− - G(O′,O′)

≡ ≡

G(O,O)

G(α, β)

? ι - O

β

?
O

α

6

ι◦ - G(O,O)

G(β, α)

6

≡ ≡

G(O,O × (O × N⊥))

G(id, k)

?

φ′
- O × (O × N⊥)

k

?
O

g

6

ψ′
- G(O × (O × N⊥),O)

G(k, id)

6

The diagrams that arise generalise a so-called “hylomorphism” (well-studied in
purely functional program algebra, see e.g. [21, 19]), i.e. that of a coiterative
map followed by a iterative map. Here, both maps are instead direcursive, but the
diagrams are combined such that the negative part of direcursion is followed by
the positive part of another direcursive map. Ongoing work investigates if e.g. the
so-called shift law [19] generalises to this setting using dinatural transformations.

Example 4.5 (Generalised Bisimulations). Tews [31] in his PhD thesis based a
notion of higher-order bisimulation on a certain kind of morphism between what
he termed generalised coalgebras. These maps, together with an associated notion
of bisimulation, were in his thesis demonstrated as useful in a number of practi-
cal examples. However, Tews found that almost all important closure properties
failed to hold in the category of sets unless strong restrictions were imposed. Via
Corollary 3.3, we have now linked Tews’ work to Freyd’s direcursion principle. To
see this, let h be a generalised coalgebra map in Tews’ sense, i.e. let the following
diagram commute:

A
α- G(A, A)

G(A, B)

G(idA , h)
-

B

h

?

β
- G(B, B)

G(h,
id B)

-
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One readily identifies h as a parameterised G(A, )-coalgebra map from (A, α) to
(B,G(h, idB) ◦ β) so our results apply to these maps. Existence of final generalised
coalgebras appears to be an open problem [31], but note that for us they are spe-
cial cases of a final parameterised coalgebras (with a carrier isomorphic to that
of the initial G-dialgebra). As Tews’ remarks, a coiteration scheme (as well as a
proof principle) of potential practical utility [31] would follow, if we can find a
class of coalgebras which guarantees the existence of such coalgebraic extensions.
We have in this paper shown that these extensions (when they exist) are primitive
direcursive maps, and hence unqiue. However, the results presented in this pa-
per do not close this problem but rather reopen it, and set the stage for further
investigations (existence may be subject to strong side conditions, so a class of
coalgebras would have to be identified, e.g. by verifying closure properties à la
Birkhoff). Moreover, the ambient category that we have used circumvents Tews’
counterexample.

Example 4.6 (Self-Applicative Bisimulations). Note that sapp can be made to
carry a G(O, )-coalgebra. This is achieved by defining O→ G(O,O) by K ◦ sapp
where K is the usual combinator (we abuse notation slightly and call this map
sapp as well). Hence there is a parametric coiterative function [(sapp)]G(O, ) from
O into the final G(O, )-coalgebra. The kernel ∼sapp of this coalgebra map is a
bisimulation equivalence [26]. Thus O/ ∼sapp is a well-defined quotient (on the
underlying set). This bisimulation collapses object-based programs into class-
based programs. The results of the present paper allow us to view this map as
a dialgebra homomorphism 〈|sapp ◦ G(id, π2),⊥|〉G (by Corollary 3.3), so that it
can be combined with the above examples (or more complex future ones). Note
that ∼sapp, although giving the link to class-based languages, is not the most suit-
able bisimulation for identifying object-based programs (and a type-indexed set of
similar domains Oσ do not give a fully abstract model of object calculus, since
Viswanathan’s counterexample [34] can readily be applied). For this we require
instead a finer notion, which we term OBP-bisimulation. It requires a structure
β : O → G(O × L+,O), which combines both mup and sapp behaviour, where
mup : O × L × O → O copies given method ` ∈ L from the first argument to the
third. Here β = sapp ◦ mup+ where mup+ is a generalisation of method update
which copies all the labels listed in L+ before the update. (L+ is a finite sequence
of labels to be updated.) Note that β is not a coalgebra map. We therefore regard β
as the negative part of a dialgebra map, i.e. require full direcursion. This outlines
our current direction for future work. We emphasise that our main result already
shows how ∼sapp (and any other bisimulation arising in this way) can be combined
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with Freyd’s direcursion so that a previous gap has been closed.

5 Conclusions and Further Work

In the 1990s, Freyd demonstrated in two well-known papers [11, 12] a principle
for defining functions on recursive types. However, he did not discuss how para-
metric (co)iterative maps can be written using his scheme. We have shown here
that all such maps can in fact easily be defined, after we found and developed a
certain variation of Freyd’s principle that we termed primitive direcursion (gener-
alising primitive recursion for endofunctors). Moreover, we have established some
elementary algebraic properties of primitive direcursion. Taken together, our re-
sult can be viewed as a set of corollaries of Bekic̆’s Lemma, giving a link between
direcursion and parameterised datatypes via a recursion scheme.

A consequence of our result is that we demonstrate that many direcursive maps
(previously known as difficult to exemplify [20]) arise by translating (more com-
mon) (co)iterative maps into Freyd’s principle. As an additional consequence,
functions defined on the parameterised initial algebra (and dually final coalgebra)
can be combined (as per the usual “fusion laws”) with more involved functions
(e.g. the interpreters from [20]) which require full direcursion. In such situations,
we can now use the reasoning principles of direcursion, even if the (co)iterative
function is not surjective (not injective), and we in such cases avoid having to
provide an “inverse-like” function which was previously identified as a problem
[8]. We have given some examples from the semantics of object calculi, which
demonstrates a situation where “fusion laws” can be used, showing that our results
could be practically useful. Current work aims to take this further and establish an
algebra of object-based programs in the spirit of Bird et al [5].

The author is presently developing bisimulations in the setting of denotational
models of object calculus, in the vein of the work of Abramsky [2], with a goal
to combine these with “fusion laws”. Indeed the developments of Fiore [10] show
that applicative bisimulations can be internalised into C. Notably, such bisimula-
tions use merely the parameterised final coalgebra since the contravariant argument
remains fixed.

Another topic for further investigation is the expressivity of (primitive) direcur-
sion. One would like to know if it is possible to naturally capture known classes of
functions given by circular definitions (in the spirit of e.g. [6], but see also [14, 7]).
The author is particularly interested in characterising the total direcursive maps.



PRIMITIVE DIRECURSION 141

Finally, taking the two kinds of maps given in Corollary 3.3 together (with two
suitable instantiations), we have the following (as in one of our examples):

π2 ◦ 〈|φ,G(id, π2), α|〉 ◦ |〉β,G(id, inr) ◦ ψ〈| ◦ inl : A→ B

For future work, we ask: when can direcursive maps be split into a pair of para-
metric (co)iterative maps of this form essentially computing results in two separate
stages (like e.g. fix or quicksort)? Note that we can allow two different (di)naturally
related mixed-variant functors, and choose A, B as well as an intermediate O into
which all partial results can be embedded. We hope that such an analysis could
further our understanding of direcursion.
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Chapter 6

Concluding Remarks

In this thesis, we have studied problems that arise in the denotational semantics of
typed object calculus (including a new recursion scheme which is of more general
interest). We asked three main questions in the introductory chapter.

The first question was: what is an object? In the preceding chapters, we have
modelled an object as a particular form of recursive type, equipped with maps
for method invocation and method update. Our computational adequacy result
shows that this answers the question as far as pragmatics are concerned (with the
exception of subtyping, which is an open problem). (But see our discussion on the
problem of full abstration below.)

The second question we stated was: what is a model of object calculus? To this
question, we provided a first answer in Paper I, by saying that a model is a category
of partial maps which is partial cartesian closed, algebraically compact and has
coproducts (when sum types are included in the calculus). These axioms are not
sufficient to ensure that we have a computationally adequate model, however, and
we therefore proceeded in Paper II by giving a formal connection to models of FPC.
We show there that a model of the object calculus under consideration in Paper II
is obtainable from any model of lazy FPC, such that computational adequacy is
preserved.

The third question we formulated was: how can object-based programming
be improved? We have shown that every object type is equipped with a recursion
principle (direcursion) and, further, that this recursion principle can be used for
defining and reasoning with objects (in the case study of Paper III and via encoded
algebraic datatypes in Paper I). We have shown that any program transformation
valid (on object denotations) in a model of lazy FPC induces a sound program law
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(Paper II). This is a fundamental result needed for the development of a program
algebra for object-based programs. In this way, we have also provided a founda-
tion for the development of polytypic object-based programming languages (in the
vein of Jansson [Jan00] or Weirich [Wei02]; the former is based on the theory of
algebraic datatypes, while we have studied recursive/dialgebraic datatypes here).

In addition, Paper III provides a theoretical result of relevance to axiomatic
domain theory and not only to models of typed object calculus. There, we demon-
strate a correspondence between direcursive maps on recursive datatypes and cer-
tain (co)recursive maps on associated parametric datatypes.

Paper I

In the first paper, we developed a denotational semantics different from the one
given in [AC96]. While Abadi et al use the ideals/metric approach [MPS84], we
used an approach based on Fiore’s category of partial maps instantiated for pCpo,
thus mimicking the more abstract order-enriched setting of [SP82, AP90]. Sec-
ondly, Abadi and Cardelli interpret types as partial equivalence relations (pers)
over a universal domain, while we interpret object types by solving recursive type
equations in pCpo. As a result, we get a more intuitive model of objects, with
an associated principle of recursion. We think the translation of inductive types
into wrappers shows the simplicity and naturalness of this model. We also showed
that every object carries a coalgebra structure, and so is equipped with a notion
of bisimilarity. This appears to be the first category-theoretic semantics of typed
object calculus.

The author has recently discovered a communication operator � which allows
two objects to exchange information (interact over a joint interface). The opera-
tional semantics of this operator interleaves the execution of two objects such that
the left argument initiates a communication with the right argument (over the in-
terface given by a suitable joint supertype). After each such step, the roles are
reversed, as the following preliminary operational semantics shows:
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m ⇓ (

o︷                               ︸︸                               ︷
Ob j(X=A)[`i=ς(xi : X)bi]i∈I � p) bi{{x 7→ p � o}} ⇓ q

m.`i ⇓ q

o ⇓ o′ p ⇓ p′

o � p ⇓ o′ � p′
o � p ⇓ q

(o � p).`↼↽ς(x : X)b ⇓ (q.`↼↽ς(x : X)b)

where o, p, q are values.

Ongoing work aims to give a denotational semantics for object calculus ex-
tended with this communication operator, while also studying if there exists any
relationships between it and communication operators in process calculi. Interest-
ingly, it seems possible to define [[a � b]] using direcursion.

Paper II

In this paper, we developed an interpretation of a variation of Abadi and Cardelli’s
first-order typed object calculus (with functions, coproducts and products) into
Plotkin’s FPC. We proved computational adequacy and soundness in the sense that
each model of FPC with lazy operational semantics with these properties is also
such a model of typed object calculus. Beyond the theorems that establish this, a
notable result is that while we considered both eager and lazy variations of FPC, it
turned out that lazy FPC is needed for this result to hold. As an immediate result,
we have that Winskel’s computationally adequate denotational semantics of lazy
FPC [Win93] is a computationally adequate model of the variation of typed object
calculus under consideration. Since a direct proof of computational adequacy is
rather complicated in the presence of recursive object types (compare to the work
by Fiore and Plotkin [FP94]), the use of an interpretation into the metalanguage
turned out to simplify matters substantially, while in the end giving the same re-
sult.

One important result established in Paper II is that if we have that [[dte]] = [[dse]]
holds in a denotational model of lazy FPC which is computationally adequate, then
it follows that t ' s in the typed object calculus under consideration (i.e. the terms
t and s are observationally congruent). This establishes that such a model of lazy
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FPC can be used in the study of program algebras for object-based programming
languages.

Paper III

In two well-known papers from the 1990s, Freyd demonstrated a principle for
defining functions on recursive types [Fre90, Fre91]. However, he did not dis-
cuss how parametric (co)iterative maps can be written using his scheme. We have
shown here that all such maps can in fact easily be defined, after we found and
developed a certain variation of Freyd’s principle that we termed primitive dire-
cursion (generalising primitive recursion for endofunctors). Moreover, we have
established some elementary algebraic properties of primitive direcursion. Taken
together, our result can be viewed as a set of corollaries of Bekic̆’s Lemma, giving
a link between direcursion and parameterised datatypes via a recursion scheme.

A consequence of our result is that we demonstrate that many direcursive maps
(previously known as difficult to exemplify [MH95]) arise by translating (more
common) (co)iterative maps into Freyd’s principle. As an additional consequence,
functions defined on the parameterised initial algebra (and dually final coalgebra)
can be combined (as per the usual “fusion laws”) with more involved functions (e.g.
the interpreters from [MH95]) which require full direcursion. In such situations, we
can now use the reasoning principles of direcursion, even if the (co)iterative func-
tion is not surjective (not injective), and we avoid having to provide an “inverse-
like” function which was previously identified as a problem [FS96]. We have given
some examples from the semantics of object calculi, which demonstrates a situa-
tion where “fusion laws” can be used, showing that our results could be practically
useful. Current work aims to take this further and establish an algebra of object-
based programs in the spirit of Bird et al [BdM97]. The author has recently also
studied a generalisation of this result called parametric direcursion. This would
allow not only the carrier of the free dialgebra to be a parameter, but also other
datatypes such as the set of method labels (for maintaining a label trace during
computation with objects).

The relationship between parametric (co)iterative maps and Freyd’s scheme
(via primitive direcursion) has relevance for bisimilarity, since applicative bisim-
ilarity is given on the parameteric final coalgebra for untyped lambda calculus
(lazy or otherwise). This suggests that our results may be useful for further work
on bisimilarity particularly when one wishes to move from coinductive types to
mixed-variant/recursive types, i.e. to a higher order.
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Further Investigations

In this final section, we will sketch how we hope to proceed with this research. Al-
though Paper III provides some novel insights on Freyd’s mixed-variant recursion
scheme (notably, the relationship to parametric (co)algebras and thus bisimilar-
ity), several open problems (identified below, most of which have been approached
to some extent already) remain to be investigated before Freyd’s scheme can be
claimed to be fully analysed. Other topics for further work appear within the area
of denotational semantics of typed object calculus, where at least two substan-
tial open problems exist: fully abstract denotational model and subtyping. Abadi
[Aba07] agees with the author that it remains open whether subtyping can, in fact,
be combined with the self-application approach followed in this thesis (apparently
revising the state of the art a decade earlier, c.f. [AC96]). The author believes
that this problem is to a large extent interconnected with further investigations of
direcursion.

• Set-theoretic direcursion. Non-well-founded set theory with AFA (as stud-
ied by Forti et al [FH83] and Aczel [Acz88]) ensures via the so-called Spe-
cial Final Coalgebra Theorem [Acz88] that, subject to a naturality condition
(see e.g. Turi and Rutten [TR98]), functors give rise to final coalgebras. It
is interesting to note that this theorem does not say anything directly about
mixed-variant functors, and the author would like to investigate in detail the
relationship between direcursion (or other reasoning principles on higher-
order datatypes) and final semantics, and also non-well-founded set theory.
It is interesting to note that algebraic compactness would require the least and
greatest fixpoint of the set-operator induced by a functor to coincide, which
seems to be a rather counter-intuitive requirement for sets. Moreover, there
are intriguing relationships between domain theory and non-well-founded
set theory, as discussed by e.g. Hallnäs [Hal85, Hal90]. One might there-
fore hope that an investigation of direcursion in non-well-founded set theory
leads to new insights about theories of approximation, given that dialgebraic
datatypes are especially challenging for domain theory (and was one of its
first applications, i.e. Scott’s D∞ model of untyped lambda calculus). Note
that Hallnäs considered non-well-founded sets to be (projective) limits of
well-founded sets, such that a bisimilarity relation is defined in stages (much
like in Abramsky’s work on lazy lambda calculus [Abr90], i.e. following
Moschovakis [Mos74]). It would presumably be interesting to study this
construction but to admit mixed-variant functors as well, thus understanding
exactly what set theory arises in this case. (Hallnäs construction lead him to
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consider an axiom that turned out to be equivalent to AFA [Acz88].) Note
that work by Smyth and Plotkin [SP82] on limit-colimit coincidence depends
heavily on the symmetry of a subcategory of embeddings, and that one might
wish to investigate some notion of embedding-projection pairs also for sets.
Furthermore, as Lenisa [Len98] points out, it remains to be discovered how
mixed-variant functors (à la Freyd) can be incorporated in the final semantics
approach.

• Effective direcursion. It also seems worthwhile to try to transport work on
effective algebra [SHT95], effective category theory [Kan81]) and on effec-
tive solutions to recursive domain equations [Kan79] to Freyd’s notion of
dialgebra (and indeed also to coalgebra). In this way, it would be interesting
to try to find appropriate notions of computability on object-based programs.

• Theory of “universal dialgebra”. It is possible to study F-bisimulations
abstractly using a category-theoretic generalisation of relations as (equiva-
lence classes of) pairs of morphisms that are jointly monic (see e.g. [FS90,
McL92]). With such a generalisation, results on F-bisimulations for metric
space, domain-theoretic and set-theoretic categories can all be established
in a single category-theoretic framework [Tur96]. It would be interesting
to develop a richer theory of dialgebra, starting from Freyd’s seminal work,
by following this approach. At least initially, one can work in a domain-
theoretic category and try to generalise as many as possible of the standard
results of universal coalgebra, e.g. the isomorphism theorems, based on a
suitable notion of mixed bisimilarity/congruence relations. For algebras, it
is minimality that gives the induction principle (i.e. not having subalgebras),
whereas for coalgebras it is simplicty (i.e. not having proper quotients).
One might expect to find an intertwined principle in the case of dialge-
bra, such that these two notions arises as special cases when the involved
functor is dummy in its contravariant argument. Much of this seems to be
closely related to previous work on relational proof principles for domains
[Pit94, Pit96], though one might hope to arrive at a coherent treatment in the
vein of universal (co)algebra, as developed by Birkhoff et al and Aczel et al
(for which see e.g. [MT92, Rut96, Rut00]).

• Total direcursion and total FPC. Previous work by Berger [Ber04] proved
strong normalisation for extensions of Gödel T with various forms of recur-
sion by using an inductively defined notion of totality in domain-theoretic
models. (The same author previously also studied totality more abstractly
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[Ber93].) It would be interesting to investigate the extent in which similar
techniques can be used also for recursive types, and if it is possible to ax-
iomatise one or more system of recursive types similar to FPC, where all
functions are strongly normalising. Berger considers in ibid. several notions
of recursion, but not direcursion.

• Extensional characterisation of direcursive maps. Previous work by Gib-
bons et al [GHA01] has given alternative characterisations of those func-
tions that are definable using iteration or coiteration (fold and unfold in the
established functional programming jargon) in a set-theoretic category. The
following property was identified in the case of iteration:

∃φ h = (|φ|) ⇔ Ker(Fh) ⊆ Ker(h ◦ ιF),

i.e. that the kernel of the morphism h is a congruence under the initial F-
algebra. A dual result follows for coiterative maps (with images instead of
kernels, and the rest of the condition also dualised). It would be interest-
ing to see if their work can be generalised to a domain-theoretic category
(without arbitrary subobjects and cartesian closure) and whether this leads
to combining their two criteria to a simultaneous/mixed-variant extensional
characterisation. This would further our understanding of direcursion since
it could give a more intuitive explanation of what maps can be defined using
the scheme. The author is currently investigating this problem, based on the
approach of relational spans (since a set-theoretic category is not applicable).

• Parametric direcursion. The author has for some time been developing a
further generalisation of direcursion that supports parameters. This makes
use of the adjunction Γ ⊗ (·) a (·)Γ between the tensor and the weak expo-
nential (i.e. in CPO⊥! smash product and strict function space), but we con-
jecture that generalisation to allow also other adjunctions is possible. When
traversing a graph (which like an object denotation can contain cycles), it is
important to keep track of the nodes that has been visited, in order to avoid
revisiting them indefinitely (see e.g. [Par01] for graph traversal). For object-
based programs, parametric direcursion similarly makes possible to maintain
(accumulate, as it were) a trace of method labels, and thus avoids revisiting
spurious paths indefinitely. This suggests to us that parametric direcursion
can be a useful computation scheme for object-based programming.

• Communication. Previous work has extended typed object calculus with
notions from π-calculus [Gor98]. Abramsky, on the other hand, have ex-
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tended his lazy lambda calculus [Abr90] with simpler (or at least less com-
plex) notions such as testers for parallel convergence. It would be interest-
ing to investigate if object calculus extended with facilities for communi-
cation (as sketched in a previous section above) can subsume the transition
to a name-passing calculus, and to evaluate the merits of either approach.
In particular, it is interesting to study how far object-based programs can
be used to capture various programming languages notions such as while-
loops, conditionals, etc, and to what extent the communication operator can
be used to combine the “local state” of such constructions incrementally
(c.f. [Red96]). Object-oriented languages based on games/game semantics
has recently been studied [LW06], and the communication operator we pro-
pose would amount essentially to a game being played by two objects, so a
comparison to this work seems appropriate.

• Extensionality. The equational theory of typed object calculus as presented
by Abadi and Cardelli [AC96], does not include an extensionality principle
in the spirit of the η-rule of lambda calculus. It would be interesting to study
such a rule, and prove that the theory extended with this rule remains con-
sistent, which is of course guaranteed immediately if this principle is valid
in a model (which is reasonable to expect since, after all, objects are in this
thesis modelled as certain self-applicative functions subject to an extension-
ality principle in the underlying set theory). The situation should however
be carefully analysed, particularly in relation to the full abstraction problem.

• Bisimilarity. Gordon et al [GR96a, GR96b, Gor98] have studied opera-
tional equivalences for several of Abadi and Cardelli’s object calculi, by in-
troducing a labelled transition system induced by the operational semantics.
The resulting notion of bisimilarity was termed experimental equivalence
and shown to coincide with contextual equivalence using Howe’s syntactical
proof technique [How96]. More recently, the present author has investigated
notions of bisimilarity also for the denotational semantics approach, and this
means the usual identification of a coalgebra structure. However, the candi-
date for such a morphism has the form of a map O → Gσ(O ⊗ L,O) for the
difunctor Gσ and the carrierO of the associated free dialgebra (as induced by
self-application semantics). For this reason, a parametric coalgebra has not
been identified, so previous work by e.g. Fiore [Fio96c] does, interestingly,
not seem to apply (i.e. a more general notion of bisimilarity for dialgebras
could be called for).
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• Coalgebraic models of object-based programming languages. When the
behaviour functor induced by the operational semantics has been identified,
a coalgebraic model using hypersets arises (i.e. by using one of several
available non-well-founded set theories). (This is known from work by e.g.
Lenisa [Len96, Len98].) This could nevertheless be a useful exercise, par-
ticularly since the method update may provide some additional obstacles
because of the contravariant argument that must be “frozen”.

• Fully abstract models of object calculus. While coalgebraic techniques
can give fully abstract models, it is also of primary interest to develop syntax-
independent models which have this property, since this provides additional
insights into the mathematical structure of objects, while also giving a frame-
work for reasoning with programs and extending the programming language.
Hence, the development of a fully abstract self-application semantics appears
to be an interesting topic for further investigation; in combination with our
results, research by Viswanathan [Vis98] suggests to us that this is possible
also for denotational semantics. To date, the author’s investigations has been
based on using the notion of bisimilarity that arises from inducing a suitable
extra coalgebra/dialgebra structure on the carrier O of the free dialgebra as-
sociated to an object type. To this end, the target is to use a denotational
characterisation of bisimilarity (as described above) and quotient the carrier
O with this relation, thus arriving at a fully abstract model up to potential
parallelism (for which an expansive approach might be required, i.e. addi-
tion of a communication operator or a tester for parallel convergence in the
vein of Abramsky [Abr90]). Technically, direcursion can be used for defin-
ing a suitable embedding-projection pair, thus ensuring that the “quotient”
again is a domain (i.e. enriches, as it were).

• Subtyping as homomorphisms. With subtyping we mean a preorder <: on
the set of types, together with the following subsumption rule:

Θ ` τ <: σ Θ,Γ ` t : τ

Θ,Γ ` t : σ

This rule shows that subtyping is a substitution property, which allows a
term to be used at any type above its currently assigned type. The most
intuitive explanation of subtyping is therefore that it means set inclusion.
For example, we may say that [[τ]] ⊆ [[σ]] holds whenever τ and σ are types
such that τ <: σ, thus making the subsumption rule valid. Now, consider the
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subtyping rule that is (usually) used for function types:

Θ ` τ′ <: τ Θ ` σ <: σ′

Θ ` τ→ σ <: τ′ → σ′

Suppose now that we have two types Float and Int of some kind of floating
point numbers and integers, such that Int <: Float following our intuition
about these “sets”. We would expect a function f : Int → Int also to be
typable as f : Int → Float, and, in general, for any type σ such that Int <: σ,
as f : Int → σ. For a set-theoretic interpretation, we therefore require a set
of all functions whose codomain contains that interpretation of Int, but this is
not a set, but a proper class. However, if we start from a given set of untyped
values, this problem can be circumvented. In particular, we can assume a
set D whose elements correspond to computable values in a suitable sense
(e.g. the solution to D � DD à la Scott, where continuity is taken as an
essential feature of a computable function). On this set D, we can give a
natural interpretation of functions σ→ τ as follows:

[[σ→ τ]] = { f ∈ D : ∀x ∈ [[σ]] f (x) ∈ [[τ]] }

However, even this approach has short-comings, particularly when we model
typed lambda calculus (extended with subtyping), where the type of a sub-
term depends on the type of its surrounding program context [Mit96]. An al-
ternative approach is to define partial equivalence relations, i.e. equivalence
relations on a subset of the given untyped universe. This is the approach used
by e.g. Abadi et al for their denotational semantics [AC96]. In this thesis,
we have emphasised the principle of direcursion as an important concept in
models of typed object calculus based on self-application. We would there-
fore like to define coercion maps using direcursion, i.e. rather model sub-
typing as conversion functions following work by Breazu-Tannen, Coquand,
Gunter, and Scedrov [BTCGS94] and Reynolds [Rey80]. In our context,
this seems to boil down to defining dialgebras using the natural transforma-
tions associated to each pair of difunctors associated to a provable subtype
judgement (usually projection functors). These dialgebras give rise to a di-
recursive map as we have showed in this thesis, but as coercion maps these
are required to respect the operational semantics, which amounts to them
being homomorphisms in two respects: they must commute with method in-
vocations (i.e. be coalgebra homomorphisms), but also with method updates
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(i.e. be algebra homomorphisms). The challenge is, then, to find a suit-
able generalisation of direcursion which is capable of defining maps with
those properties (for all object types). More generally, one may wish to
study coercion functions also for extended subsets of FPC, along the lines
of Abadi and Fiore [AF96]. It also seems worthwhile to make comparisons
with Viswanathan’s investigations [Vis98] and also to Freyd’s reduction of
recursive types to inductive types [Fre90].

• Program algebras for object-based programs. There is a substantial body
of work on program algebra for functional programming languages (see
e.g. [BdM97]). It seems worthwhile to study classes of algorithms and
object-oriented (or even object-based) design patterns [GHJV95] using sim-
ilar techniques, for example by parameterising calculations with respect to
(di)functors (i.e. object types) and use direcursion (and its variants) when
reasoning with specifications/implementations of an object-based program.
(Note that computational adequacy (Paper II) ensures that such reasoning
will be meaningful at the level of operational semantics.) Rypacek et al
[RBN06] has made some progress on formalising design patterns, and it
would be interesting to extend the coverage of their work to the object-based
paradigm.

• Equational logic for object-based programs. Abadi and Cardelli included
an equational theory for object calculus in their treatise [AC96]. This theory
arises by taking the compatible, symmetric, reflexive and transitive closure
of the reduction relation, and also includes the usual rules for method update,
method invocation, and object introduction. It would be very interesting to
extend this equational theory with alternative introduction/elimination rules,
giving a mixed induction/coinduction principle tailored for objects.

• Polytypic object calculus. Generic programming extensions have been de-
veloped for functional programming languages (for example [Jan00]), based
on the idea of defining programs by induction on a predetermined class of
datatype shapes/patterns (corresponding e.g. to polynomial functors). It
would be interesting to also develop such polytypic programming languages
starting from typed object calculus. Since direcursive maps involve two pa-
rameters φ and ψ, language support for inductive definitions of these with
respect to the shape of difunctors is required. Rather than considering all
possible difunctors in such inductive definitons, one could consider all di-
functors that arise from the denotations of subtypes of a predetermined type,
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thus guaranteeing a certain minimal interface. One would perhaps start by
identifying some classes of object-based programs (or design patterns) that
can be expressed generically by induction on the structure they use beyond
that provided by a shared supertype. Some elementary candidates may be
programs that compute over (single/double) linked lists.

• Axiomatic models of object-based programming langauges. Fiore and
Plotkin [FP94] studied axiomatically a class of computationally adequate
models of FPC. It seems interesting to carry out a similar development also
for typed object calculus, while also identifying universal properties of ob-
ject types rather than Freyd’s property for recursive types. For this, it would
presumably be worthwhile to identify the natural transformations induced by
the equational theory following e.g. Pitts [Pit01].
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[Poi92] Axel Poigné. Basic category theory. In S. Abramsky, D. M. Gab-
bay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science: Background - Mathematical Structures (Volume 1), pages
413–640. Clarendon Press, Oxford, 1992.

[PT94] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foun-
dations for object-oriented programming. Journal of Functional Pro-
gramming, 4(2):207–248, April 1994.

[RB86] David E Rydeheard and Rod M Burstall. Monads and theories: a
survey for computation. In Maurice Nivat and John C. Reynolds,
editors, Algebraic methods in semantics, pages 575–605. Cambridge
University Press, New York, NY, USA, 1986.

[RBN06] Ondrej Rypacek, Roland Backhouse, and Henrik Nilsson. Type-
theoretic design patterns. In WGP ’06: Proceedings of the 2006
ACM SIGPLAN workshop on Generic programming, pages 13–22,
New York, NY, USA, 2006. ACM Press.

[Red96] Uday Reddy. Global state considered unnecessary: An introduction
to object-based semantics. LISP and Symbolic Computation, 9(1):7–
76, 1996.

[Rei95] Horst Reichel. An approach to object semantics based on terminal co-
algebras. Mathematical Structures in Computer Science, 5(2):129–
152, 1995.

[Rey80] John C. Reynolds. Using category theory to design implicit conver-
sions and generic operators. In Semantics-Directed Compiler Gener-



174 BIBLIOGRAPHY

ation, Proceedings of a Workshop, pages 211–258. Springer-Verlag,
1980. Lecture Notes in Computer Science volume 94.

[Rey84] John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn,
David B. MacQueen, and Gordon D. Plotkin, editors, Semantics of
Data Types, International Symposium, volume 173 of Lecture Notes
in Computer Science, pages 145–156. Springer Verlag, 1984.

[Ros94] Giuseppe Rosolini. Notes on synthetic domain theory. Available
from the authors home page at DISI, Università di Genova, 1994.

[RS04] Bernhard Reus and Thomas Streicher. Semantics and logic of object
calculi. Theorertical Computer Science, 316(1):191–213, 2004.

[RS06] Bernhard Reus and Jan Schwinghammer. Denotational semantics for
a program logic of objects. Mathematical Structures in Computer
Science, 16(2):313–358, April 2006.

[Rut90] Jan J. M. M. Rutten. Semantic correctness for a parallel object-
oriented language. SIAM Journal of Computing, 19(2):341–383,
1990. Reprinted in [dBR92].

[Rut96] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Tech-
nical Report CS-R9652, CWI, 1996.

[Rut00] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. The-
oretical Computer Science, 249(1):3–80, 2000.

[San98a] Davide Sangiorgi. An interpretation of typed objects into typed π-
calculus. Information and Computation, 143(1):34–73, 1998. Earlier
version published as Rapport de Recherche RR-3000, INRIA Sophia-
Antipolis, August 1996.

[San98b] Davide Sangiorgi. On the bisimulation proof method. Mathematical
Structures in Computer Science, 8(5):447–479, 1998.

[Sch05] Jan Schwinghammer. Reasoning about Denotations of Recursive Ob-
jects. Ph.D. thesis, University of Sussex, 2005.

[Sco60] Dana Scott. A different kind of model for set theory. Unpublished
paper given at the 1960 Stanford Congress of Logic, Methodology
and Philosophy of Science, 1960.



175

[Sco69] Dana Scott. Lattice-theoretic models of the λ–calculus. Princeton
University, Princeton, N.J., 1969.

[Sco72] Dana Scott. Continuous lattices. In F. W. Lawvere, editor, Toposes,
Algebraic Geometry, and Logic, number 274 in Lecture Notes in
Mathematics, pages 97–136. Springer-Verlag, 1972.

[Sco73] Dana Scott. Lattice-theoretic models for various type-free calculi.
In Proceedings of the 4th International Congress for Logic Method-
ology, and the Philosophy of Science (Bucharest). North-Holland,
1973.

[SHLG94] Viggo Stoltenberg-Hansen, Ingrid Lindström, and Edward R. Griffor.
Mathematical theory of domains. Cambridge University Press, 1994.

[SHT95] V. Stoltenberg-Hansen and J. V. Tucker. Effective algebras. In Hand-
book of logic in computer science (vol. 4): semantic modelling, pages
357–526. Oxford University Press, Oxford, UK, 1995.

[Sim92] Alex K. Simpson. Recursive types in Kleisli categories. Unpublished
paper (University of Edinburgh), August 1992.

[Sim93] Alex K. Simpson. A characterisation of the least-fixed-point opera-
tor by dinaturality. Theoretical Computer Science, 118(2):301–314,
1993.

[SP82] Michael Smyth and Gordon Plotkin. The category-theoretic solu-
tion of recursive domain equations. SIAM Journal of Computing,
11(4):761–783, 1982.

[Spe93] Dwight L. Spencer. Categorical Programming with Functorial
Strength. PhD thesis, The Oregon Graduate Institute of Science and
Technology, January 1993.

[SS71] Dana Scott and Christopher Strachey. Toward a mathematical seman-
tics for computer languages. Programming Research Group Techni-
cal Monograph PRG-6, Oxford Univ. Computing Lab, 1971.

[Str02] Thomas Streicher. Message to the TYPES mailing list, October 2002.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: A Theory of
Mobile Processes. Cambridge University Press, 2001.



176 BIBLIOGRAPHY

[Tan02] Francis Hin-Lun Tang. Towards feasible, machine-assisted verifica-
tion of object-oriented programs. PhD thesis, LFCS, University of
Edinburgh, 2002.

[Tar55] Alfred Tarski. A lattice–theoretic fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5:285–309, 1955.

[Tay91] Paul Taylor. The fixed point property in synthetic domain theory.
In 6th Symp. on Logic in Computer Science, pages 152–160. IEEE
Computer Society Press, 1991.

[Tay99] Paul Taylor. Practical Foundations of Mathematics. Cambridge Uni-
versity Press, 1999.

[TP97] Daniele Turi and Gordon D. Plotkin. Towards a mathematical opera-
tional semantics. In Proceedings 12th Ann. IEEE Symp. on Logic in
Computer Science, LICS’97, Warsaw, Poland, 29 June – 2 July 1997,
pages 280–291. IEEE Computer Society Press, Los Alamitos, CA,
1997.

[TR98] Daniele Turi and Jan Rutten. On the foundations of final coalge-
bra semantics: non-well-founded sets, partial orders, metric spaces.
Mathematical Structures in Computer Science, 8(5):481–540, 1998.

[Tur96] Daniele Turi. Functorial operational semantics and its denotational
dual. PhD thesis, CWI, 1996.

[UV99] Tarmo Uustalu and Varmo Vene. Primitive (co)recursion and course-
of-value (co)iteration, categorically. Informatica, 10(1):5–26, 1999.

[UVP01] Tarmo Uustalu, Varmo Vene, and Alberto Pardo. Recursion schemes
from comonads. Nordic Journal of Computing, 8(3):366–390, Fall
2001.

[Ven00] Varmo Vene. Categorical programming with inductive and coinduc-
tive types. PhD thesis, University of Tartu, 2000.

[Vis98] Ramesh Viswanathan. Full abstraction for first-order objects with re-
cursive types and subtyping. In Proceedings of the Thirteenth Annual
IEEE Symposium on Logic in Computer Science (LICS), 1998). IEEE
Computer Society, 1998.



177

[Wad76] Christopher P. Wadsworth. The relation between computational and
denotational properties for scott’s d∞-models of the lambda calculus.
SIAM Journal of Computing, 5(3), 1976.

[Wal92] R. F. C. Walters. An imperative language based on distributive cate-
gories. Mathematical Structures in Computer Science, 2(3):249–256,
1992.

[Wal95] David Walker. Objects in the pi calculus. Information and Computa-
tion, 116(2):253–271, 1995.

[Wan79] Mitchell Wand. Fixed point constructions in order-enriched cate-
gories. Theoretical Computer Science, 8:13–30, 1979.

[Wan94] Mitchell Wand. Type inference for objects with instance variables
and inheritance. In C. A. Gunter and J. C. Mitchell, editors, Theoret-
ical Aspects of Object-Oriented Programming, pages 97–120. MIT
Press, London, 1994. Originally appeared as Northeastern Univer-
sity College of Computer Science Technical Report NU-CCS-89-2,
February, 1989.

[Wei02] Stephanie Weirich. Programming With Types. PhD thesis, Cornell
University, August 2002.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages.
MIT Press, 1993.

[WW03] Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: En-
coding higher-order abstract syntax with parametric polymorphism.
In Proceedings of the Eighth ACM SIGPLAN International Confer-
ence on Functional Programming, pages 249–262, Uppsala, Sweden,
August 2003. ACM SIGPLAN.




	Cover page
	Abstract
	Contents
	Acknowledgements
	1. Introduction
	1.1 Aims
	1.1.1 Semantics of Typed Object Calculus
	1.1.2 Recursion

	1.2 Related Work
	1.2.1 Models of Programming Languages
	1.2.2 Process Algebra
	1.2.3 (Co)Recursion and (Co)Induction
	1.2.4 Coalgebraic Semantics

	1.3 Contributions
	1.4 Overview

	2. Categories and Domains
	2.1 Categories
	2.1.1 Adjunctions
	2.1.2 (Bi)Cartesian Closure
	2.1.3 Algebraic Structures

	2.2 Limits and Colimits
	2.2.1 Monads and Comonads
	2.2.2 Kleisli and Eilenberg-Moore Categories

	2.3 Recursion and Corecursion
	2.3.1 Involutions

	2.4 Domain Theory
	2.4.1 Predomains
	2.4.2 Recursive Domain  Equations


	3. Paper I
	1. Introduction
	2. Mathematical Preliminaries
	3. Object Calculus
	4. Difunctorial Semantics
	5. Wrapper Classes
	6. Conclusion and Further Work
	Bibliography

	4. Paper II
	1. Introduction
	2. Typed Object Calculus with Recursive Objects
	3. FPC
	4. Translating Object Calculus into FPC
	5. Soundness and Adequacy
	6. Conclusion and Further Work
	Bibliography

	5. Paper III
	1. Introduction
	2. Mathematical Preliminaries
	3. Primitive Direcursion
	4. Example: Application to Object Calculus Semantics
	5. Conclusions and Further Work
	Bibliography

	6. Concluding Remarks
	Paper I
	Paper II
	Paper III
	Further Investigations

	Bibliography



