
Topics in Analysis and Computation of Linear
Wave Propagation

MOHAMMAD MOTAMED

Doctoral Thesis in Numerical Analysis
Stockholm, Sweden 2008



TRITA-CSC-A 2008:07
ISSN-1653-5723
ISRN-KTH/CSC/A–08/07–SE
ISBN 978-91-7178-961-7

KTH School of Computer Science and Communication
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framläg-
ges till offentlig granskning för avläggande av teknologiedoktorsexamen tisdagen
den 20 maj 2008 klockan 10.15 i D2, Huvudbyggnaden, Kungl Tekniska högskolan,
Lindstedsvägen 3, Stockholm.

© Mohammad Motamed, maj 2008

Tryck: Universitetsservice US AB



iii

To my sister, POUNEH,

for bringing me back enthusiasm for life.



iv



v

Abstract

This thesis concerns the analysis and numerical simulationof wave propagation problems
described by systems of linear hyperbolic partial differential equations.

A major challenge in wave propagation problems is numericalsimulation of high fre-
quency waves. When the wavelength is very small compared to the overall size of the com-
putational domain, we encounter a multiscale problem. Examples include the forward and the
inverse seismic wave propagation, radiation and scattering problems in computational elec-
tromagnetics and underwater acoustics. In direct numerical simulations, the accuracy of the
approximate solution is determined by the number of grid points or elements per wavelength.
The computational cost to maintain constant accuracy growsalgebraically with the frequency,
and for sufficiently high frequency, direct numerical simulations are no longer feasible. Other
numerical methods are therefore needed. Asymptotic methods, for instance, are good approx-
imations for very high frequency waves. They are based on constructing asymptotic expan-
sions of the solution. The accuracy increases with increasing frequency for a fixed computa-
tional cost. Most asymptotic techniques rely on geometrical optics equations with frequency
independent unknowns. There are however two deficiencies inthe geometrical optics solution.
First, it does not include diffraction effects. Secondly, it breaks down at caustics. Geometrical
theory of diffraction provides a technique for adding diffraction effects to the geometrical op-
tics approximation by introducing diffracted rays. In papers 1 and 2 we present a numerical
algorithm for computing an important type of diffracted rays known as creeping rays. Another
asymptotic model which is valid also at caustics is based on Gaussian beams. In papers 3 and
4, we present an error analysis of Gaussian beams approximation and develop a new numerical
algorithm for computing Gaussian beams, respectively.

Another challenge in computation of wave propagation problems arises when the system
of equations consists of second order hyperbolic equationsinvolving mixed space-time deriv-
atives. Examples include the harmonic formulation of Einstein’s equations and wave equations
governing elasticity and acoustics. The classic computational treatment of such second order
hyperbolic systems has been based on reducing the systems tofirst order differential forms.
This treatment has however the disadvantage of introducingauxiliary variables with their as-
sociated constraints and boundary conditions. In paper 5, we treat the problem in the second
order differential form, which has advantages for both computational efficiency and accuracy
over the first order formulation.

Finally, paper 6 concerns the concept of well-posedness fora class of linear hyperbolic
initial boundary value problems which are not boundary stable. The well-posedness is well
established for boundary stable hyperbolic systems for which we can obtain sharp estimates
of the solution including estimates at boundaries. There are, however, problems which are
not boundary stable but are well-posed in a weaker sense, i.e., the problems for which an
energy estimate can be obtained in the interior of the domainbut not on the boundaries. We
analyze a model problem of this type. Possible applicationsarise in elastic wave equations
and Maxwell’s equations describing glancing and surface waves.
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Preface

This thesis consists of six papers and an introduction.

Paper I: M. Motamed and O. Runborg,“A Fast Phase Space Method for Comput-
ing Creeping Rays”, Journal of Computational Physics, vol. 219, issue 1, pp.
276–295, 2006.
The author of this thesis contributed to the ideas and developing the numerical
algorithm, performed the numerical computations, and wrote parts of the ma-
nuscript.
This paper is also part of the licentiate thesis [44].

Paper II: M. Motamed and O. Runborg,“A Multiple-patch Phase Space Method
for Computing Trajectories on Manifolds with Applicationsto Wave Propaga-
tion Problems”, Communications in Mathematical Sciences, vol. 5, no. 3, pp.
617–648, 2007.
The author of this thesis contributed to the ideas and developing the numerical
algorithm, performed the numerical computations, and wrote parts of the ma-
nuscript.
This paper is also part of the licentiate thesis [44].

Paper III: M. Motamed and O. Runborg,“Taylor Expansion Errors in Gaussian
Beam Summation”, Preprint, 2008.
The author of this thesis contributed to the ideas and formulation and proof of
theorems and lemmas, performed the numerical computations, and wrote parts
of the manuscript.

Paper IV: M. Motamed and O. Runborg,“A Wave Front-based Gaussian Beam
Method for Computing High Frequency Waves”, Preprint, 2008.
The author of this thesis contributed to the ideas and developing the numerical
algorithm, performed the numerical computations, and wrote the manuscript.
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Paper V: M. Motamed, M. Babiuc, B. Szilagyi, H-O. Kreiss and J. Winicour, “Fi-
nite Difference Schemes for Second Order Systems Describing Black Holes”,
Journal of Physical Review D, vol. 73, issue 12, 2006.
The author of this thesis contributed to the ideas, developing the numerical
algorithms and formulation and proof of theorems, performed the numerical
computations in Section 5, and wrote Sections 3 and 5 of the manuscript.

Paper VI: M. Motamed and H-O. Kreiss,“Hyperbolic Initial Boundary Value Prob-
lems which are not Boundary Stable”, Preprint, 2008.
The author of this thesis contributed to the ideas and formulation and proof of
theorems and lemmas, and wrote the manuscript.
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Chapter 1

Introduction

Many physical problems are formulated as systems of partialdifferential equations
(PDEs). Accurate treatment of such problems requires a careful combination of ana-
lysis and computation. The existence of solution to PDEs is investigated by theoret-
ical studies. For most PDEs it is however not possible to derive explicit formulas for
solutions. Numerical studies are therefore needed to compute approximate solutions.

In the theoretical study of PDEs, a fundamental concept iswell-posedness. A
given problem for a PDE is said to be well-posed if it has a solution, the solution is
unique and the solution depends continuously on the data given in the problem. Well-
posedness is a desirable requirement for physical problems. The first two conditions
are minimal requirements for a reasonable problem, and the last condition ensures
that small perturbations, such as small errors in measurements or interpolation of
data, do not change the solution unduly. A second important concept isrobustness. A
PDE is said to be robust if the qualitative behavior of the solution is unaffected by the
addition of lower-order terms in the equation or by small changes in the coefficients.
The robustness property is important because almost all PDEs modeling physical
processes are derived based on some simplifying assumptions and ignoring certain
effects. We want this simplification to not affect the conclusions of the analysis.

Numerical studies of PDEs concern the construction and implementation of ac-
curate and efficient numerical algorithms for computing approximate solutions. A
PDE is usually solved by first discretizing the equation on a grid or mesh, bringing it
into a finite dimensional subspace, and then solving the resulting system of equations
in this finite dimensional space. The first stage is usually done by the finite differ-
ence method, the finite element method or the finite volume method. The most basic
property that a numerical algorithm must have is that its solutions approximate the
solution of the corresponding PDE and that the approximation improves as the grid

1



2 CHAPTER 1. INTRODUCTION

spacings or the size of elements tend to zero. Such an algorithm is calledconver-
gent. Usually, it is not easy to verify convergence for a given algorithm. However,
there are two related concepts that are easier to investigate,consistencyandstability.
Consistency implies that the solution of the PDE, if it is smooth, is an approxim-
ate solution of the numerical scheme. Stability, on the other hand, implies that the
numerical solution is bounded in some sense. A fundamental theorem of numerical
analysis, known as the Lax-Richtmyer equivalence theorem,states that a consistent
approximation to a well-posed linear problem is convergentif and only if it is stable.
In solving PDEs, the primary challenge is therefore to construct algorithms which
are numerically stable.

This thesis concerns mainly some challenging problems in the analysis and com-
putation of wave propagations described by systems of linear hyperbolic equations.
A major challenge is numerical simulation of high frequencywaves. When the
wavelength is very small compared to the overall size of the computational domain,
we encounter a multiscale problem. Examples include the forward and the inverse
seismic wave propagation, radiation and scattering problems in computational elec-
tromagnetics and underwater acoustics. In direct numerical simulations, the accuracy
of the approximate solution is determined by the number of grid points or elements
per wavelength. The computational cost to maintain constant accuracy grows al-
gebraically with the frequency, and for sufficiently high frequency, direct numerical
simulations are no longer feasible. Other numerical methods are therefore needed.
Papers 1-4 concern geometrical optics and Gaussian beams which are computation-
ally much less costly models based on asymptotic approximations of the equations.

Another challenge in computation of wave propagation problems arises when
the system of equations consists of second order hyperbolicPDEs involving mixed
space-time derivatives. Examples include the harmonic formulation of Einstein’s
equations and wave equations governing elasticity and acoustics. The classic com-
putational treatment of such second order hyperbolic systems has been based upon
reducing the systems to first order differential forms. Thistreatment has however
the disadvantage of introducing auxiliary variables with their associated constraints
and boundary conditions. Paper 5 treats the problem in the second order differential
form, which has advantages for both computational efficiency and accuracy over the
first order formulation.

Finally, Paper 6 concerns the concept of well-posedness fora class of linear hy-
perbolic initial boundary value problems which are not boundary stable. The well-
posedness is well established for two classes of problems: symmetric systems with
maximally dissipative boundary conditions and boundary stable hyperbolic systems.
For the first class of problems, an energy estimate can be derived using integration by
parts. For the second class, the mode analysis and symmetrizer technique are used to
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obtain sharp estimates of the solution including estimatesat boundaries. Existence of
such estimates imply that the problem is boundary stable. There are, however, prob-
lems which are not boundary stable but are well-posed in a weaker sense, i.e., the
problems for which an energy estimate can be obtained in the interior of the domain
but not on the boundaries. We analyze a model problem of this type. Possible applic-
ations arise in elastic wave equations and Maxwell’s equations describing glancing
and surface waves.





Chapter 2

Linear Hyperbolic Equations

Hyperbolic partial differential equations are in general interpreted as equations sup-
porting “wave-like” solutions. In this chapter we briefly review the definition and
properties of linear hyperbolic equations and address somechallenging problems in
theory and numerics of such equations which are topics of thepapers in this thesis.

2.1 Initial Value Problems

The simplest hyperbolic equation is the one-way wave equation

ut + a ux = 0, (x, t) ∈ R × R+, (2.1)

wherea ∈ R is a constant,t > 0 denotes time,x ∈ R represents the spatial variable,
andu : R × R+ → R is the unknown,u = u(x, t). We specify the initial condition

u(x, 0) = f(x), (2.2)

where the functionf : R → R is given. Equation (2.1) together with (2.2) is called
an initial value problemor Cauchy problem. It is easy to show that the solution to
this initial value problem is

u(x, t) = f(x − at),

and can be regarded as a wave that propagates with speeda without any change of
shape. The solution at(x, t) depends only on the value ofξ = x − at. The lines in
the(x, t) plane for whichx−at is constant are calledcharacteristics. The solution is
constant along characteristics. In general, whena is not constant, characteristics are
curves and give important information about the solution ofhyperbolic equations.

5



6 CHAPTER 2. LINEAR HYPERBOLIC EQUATIONS

Another hyperbolic equation involving second-order derivatives is the scalar wave
equation

utt − ∆u = 0, (x, t) ∈ R
n × R+, (2.3)

where the Laplacian∆ is taken with respect to the spatial variablesx = (x1, . . . , xn).
Forn = 1, 2, the wave equation (2.3) is a simplified model for a vibratingstring and
a membrane, respectively. In these physical interpretations, u(x, t) represents the
displacement of the pointx at timet. We augment (2.3) with the initial data

u(x, 0) = f(x), ut(x, 0) = g(x), (2.4)

where the functionsf andg are given. Forn = 1, the wave equation can be rewritten
in the form

(

∂

∂t
+

∂

∂x1

) (

∂

∂t
−

∂

∂x1

)

u = 0,

or as a system of two equations

vt + vx1
= 0,

ut − ux1
= v,

which are one-way wave equations. The solution to this initial value problem consists
of two waves that propagate with finite speeds and is given by d’Alembert’s formula,
[14],

u(x1, t) =
1

2
[f(x1 + t) + f(x1 − t)] +

1

2

∫ x1+t

x1−t

g(y)dy.

Many practical problems in science and engineering are described by systems of
differential equations, not only by a single equation. One important class of such
systems consists of linear first-order equations which is a natural generalization of
the one-way wave equation (2.1),

ut +

n
∑

j=1

Aj(x, t)uxj
= f(x, t), (x, t) ∈ R

n × R+, (2.5)

subject to the initial condition

u(x, 0) = g(x). (2.6)

The unknown isu : Rn × R+ → Rm, u = (u1, . . . , um)⊤, and the functions
Aj : Rn × R+ → Rm×m, f : Rn × R+ → Rm, andg : Rn → Rm are given.



2.1. INITIAL VALUE PROBLEMS 7

Definition 1. The system of PDEs (2.5) is called hyperbolic if the symbol

P (x, t; ω) :=

n
∑

j=1

Aj(x, t)ωj ,

has real eigenvalues and is uniformly diagonalizable for eachx andω = (ω1, . . . , ωn)
in R

n and t ≥ 0. The system is called strictly hyperbolic if the eigenvalues of the
symbol are real and distinct.

Another important class is the system of second-order hyperbolic equations,

utt−

n
∑

j,k=1

Ajk(x, t)uxjxk
+

n
∑

j=1

Bj(x, t)uxj
+C(x, t)u = f(x, t), (x, t) ∈ R

n×R+,

(2.7)
with the initial condition

u(x, 0) = g(x), ut(x, 0) = h(x). (2.8)

Such systems can be seen as natural generalization of the wave equation (2.3).

Definition 2. The system of PDEs (2.7) is called hyperbolic if there is a positive
constantδ such that

n
∑

j,k=1

Ajk(x, t)ωj ωk ≥ δ|ω|2 I,

for all x andω = (ω1, . . . , ωn) in Rn and t ≥ 0. Here,I is them × m identity
matrix.

We now quantify the concept of well-posedness introduced inthe introduction.
For two C∞-functionsu, v : Rn → Cm which are 1-periodic inx, we define the
L2-inner product and norm by

(u, v) =

∫ 1

0

. . .

∫ 1

0

< u(x), v(x) > dx1 . . . dxn, ||u|| = (u, u)1/2,

where

< u, v > =
m
∑

j=1

ūj vj .

Consider the initial boundary value problem (2.5), (2.6) with C∞-coefficients and
data which are 1-periodic in every spatial dimension.
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Definition 3. The initial boundary value problem (2.5), (2.6) is well-posed if:

(1) for every 1-periodic andC∞ dataf, g, there exists a unique solutionu(x, t) ∈
C∞(x, t), which is 1-periodic in every spatial dimension;

(2) for eachT > 0, there is a constantK(T ), independent off andg, such that

||u(., t)||2 ≤ K(T )

(

||g(.)||2 +

∫ t

0

||f(., τ)||2dτ

)

. (2.9)

In order to motivate the above definition, we change the initial data (2.6) to

ũ(x, 0) = g(x) + δ h(x), 0 < δ ≪ 1, ||h(.)|| = 1.

The differencew(x, t) = ũ(x, t)−u(x, t) is then a solution of (2.5) withf ≡ 0 and
initial data

w(x, 0) = δ h(x).

If the estimate (2.9) holds, then

||ũ(., t) − u(., t)||2 ≤ K(T ) δ2 ||h(.)||2 = K(T ) δ2.

Therefore, (2.9) guarantees that for any finite time interval 0 ≤ t ≤ T , small per-
turbations of the initial data results in small changes in the solution, i.e, the solution
depends continuously in the initial data.

By reducing second-order systems to first-order systems, similar to reducing the
wave equation to two one-way wave equations, we can also define well-posedness
for second order systems. From the theory of linear hyperbolic systems, [14, 37], it
is well known that the initial value problems for first and second order hyperbolic
systems are well-posed. Moreover, the wave solutions have finite propagation speed
in the sense that the solution at a given point(x0, t0) depends only on the data in
(x, t) ∈ Ω, whereΩ is a finite region of space and time. In other words, we can
change the data outside the regionΩ without affecting the solution at(x0, t0).

2.2 Boundary Conditions

Most physical applications of partial differential equations involve domains with
boundaries, and interesting phenomena frequently occur near these boundaries. The
formulation of boundary conditions therefore play an important role. The problem
of determining a solution to a partial differential equation when both initial data and
boundary data are present is called aninitial boundary value problem. One fun-
damental question is then how to impose proper boundary conditions such that the
problem becomes well-posed.
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In the case of hyperbolic equations, the characteristics play an important role in
determining correctly posed boundary conditions. To illustrate this, we consider the
one-way wave equation

ut + a ux = 0,

in the strip0 ≤ x ≤ 1, t ≥ 0. If a > 0, the characteristics in this region propagate
from the left to the right. The solution must therefore be specified on the boundary at
x = 0, in addition to the initial data, in order to be defined for alltime. Moreover, no
data need to be supplied at the other boundary atx = 1, since otherwise the solution
will be overdetermined. In general, values for the ingoing characteristic variables
must be provided at the boundaries.

Consider the initial boundary value problems for (2.5) withinitial conditions
(2.6) in the half-space

R0 = {x |x1 ≥ 0, −∞ < xj < ∞, j = 2, . . . , n}, (2.10)

and boundary conditions, atx1 = 0,

S u(0, x−, t) = h(x−, t), x− = (x2, . . . , xn), (2.11)

whereS ∈ Rr×m is a rectangular matrix, withr being the number of ingoing char-
acteristic variables.

Definition 4. Let f ≡ g ≡ 0. We call the half-space problem (2.5), (2.6), (2.11)
boundary stable if for all smooth boundary datah, there is a unique solutionu, and
in each time interval0 ≤ t ≤ T there is constantKT independent of the data such
that

∫ t

0

||u(0, x−, τ)||2R
−

dτ ≤ KT

∫ t

0

||h(0, x−, τ)||2R
−

dτ.

Here,||.||R
−

denote theL2-norm over the space

R− = {x− | −∞ < xj < ∞, j = 2, . . . , n}.

The theory of linear hyperbolic initial boundary value problems is well developed
in the case when the problem isboundary stable, i.e., when there exist proper estim-
ates of the solution based on the data at the boundaries. In the general theory, the
following concept of well-posedness is introduced.

Definition 5. Letg ≡ 0. The half-space problem (2.5), (2.6), (2.11) is called strongly
well-posed in the generalized sense if for all smooth compatible data,f andh, there
is a unique solutionu, and in each time interval0 ≤ t ≤ T , there is a constantKT

independent of the data such that
∫ t

0

||u(x, τ)||2R0
+||u(0, x−, τ)||2R

−

dτ ≤ KT

∫ t

0

||F (x, τ)||2R0
+||g(0, x−, τ)||2R

−

dτ.
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We then have

Theorem 1. Assume that the half-space problem is boundary stable. Thenit is
strongly well-posed in the generalized sense.

There are, however, problems which are not boundary stable but are well-posed
in a weaker sense. Examples include surface waves and glancing waves in electro-
magnetic and elastic wave propagation problems described by Maxwell’s equations
and elastic wave equations with certain types of boundary conditions. It is therefore
necessary to develop a theory for such types of problems. In paper 6, [46], we con-
sider a model problem which may not be boundary stable and extend the theory of
boundary stable problems to this case. We consider (2.5) with n = m = 2 and

A1 =

(

1 0
0 −1

)

, A2 =

(

0 −1
−1 0

)

, (2.12)

in the half-space (2.10). We augment this system with the initial condition (2.6) and
the boundary condition atx1 = 0,

u1(0, x2, t) = α u2(0, x2, t) + h(x2, t), α ∈ C. (2.13)

Hereu(x1, x2, t) = (u1, u2)
⊤ is a vector-valued function, and the dataf, g, h are

assumed to be compatible smooth functions with compact support. Different values
of α in the boundary condition result in different behavior of the problem. Here, we
summarize the result, [46]:

1) if |α| < 1, then the problem is boundary stable and therefore stronglywell-
posed in the generalized sense.

2) if |α| = 1, then the problem is not boundary stable but is well-posed inthe
sense that there are proper energy estimates inside the domain, but not at the
boundary.

3) if |α| > 1, α ∈ R, then the problem is ill-posed in the sense that the solution
“looses” one derivative at each reflection from the boundary.

4) if |α| > 1, α /∈ R, then the problem is ill-posed in the sense that there are
solutions which grow exponentially, arbitrarily fast.

We formulate a theorem for this model problem and conjecturethat the theorem holds
also for the more general initial boundary value problem (2.5), (2.6), (2.11), which
is the topic of future work.



2.3. NUMERICAL METHODS 11

2.3 Numerical Methods

For most hyperbolic initial boundary value problems, it is not possible to derive expli-
cit formulas for solutions. Numerical methods are employedto compute approximate
solutions. There is a wide range of different methods for solving linear hyperbolic
problems. The most commonly used numerical methods includethe finite difference
method, the finite volume method, the finite element method, spectral methods and
the boundary element method.

The finite difference method, [19, 61] is one of the oldest numerical methods. In
this method, the PDE is discretized on a grid by approximating the derivatives of the
solution in terms of the values of the solution on a set of discrete grid points. This
gives a large algebraic system of equations which needs to besolved. For systems
of first-order hyperbolic equations, upwind-type methods based on the direction of
characteristics are frequently used. For second-order hyperbolic systems, leapfrog
schemes on staggered grids are more attractive. For example, a widely used class
of this type is the finite difference time-domain method (Yeescheme) for solving
Maxwell’s equations of electromagnetics, [74].

In the finite volume method, [39], instead of calculating thesolution at discrete
grid points, the total integral of the solution is approximated over grid cells which
are small volumes surrounding each grid point. It is based onthe integral form of the
PDE. Finite volume methods are particularly useful for solving nonlinear hyperbolic
problems. One advantage of these methods is that they are easily formulated to
allow for unstructured grids. We should emphasize that the computational treatment
of nonlinear PDEs is more difficult than that of linear equations, due to possible
discontinuity and non-uniqueness of the solutions. For such problems essentially
non oscillatory (ENO) and weighted essentially non oscillatory (WENO) schemes
are employed, [60].

The finite element method, [13], is based on discretizing theweak form of the
boundary value problem in a finite dimensional space. This method is particularly
useful for solving PDEs over complex domains. The domain is decomposed into
small elements, which may be simply triangles or more complicated curvilinear poly-
gons. The solution obtained by the finite element method is a linear combination of
basis functions that are nonzero only over small subdomains. Two classes of finite
element methods which are widely used for hyperbolic problems are the discontinu-
ous Galerkin method, [7], in which there is no continuity restriction on the interface
of the elements, and the streamline diffusion method, [28],in which the basis func-
tions are modified to produce a small amount of artificial diffusion in the direction of
streamlines. These methods are particularly useful for problems with discontinuous
solutions.

In spectral methods, [5], the solution is first written as itsFourier series. This
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series is next substituted into the equation and a system of ordinary differential equa-
tion (ODE) is obtained. The ODEs are then solved using an ODE solver. The spec-
tral method is similar to the finite element method in approximating the solution as
a linear combination of basis functions. However, in contrast to the finite element
method, the basis functions are continuous and nonzero overthe whole domain. As a
result of this, the spectral method usually works better when the solution is smooth.
Moreover, it can only be applied to problems with simple computational domains,
such as cubes.

In the boundary element method, [18], the PDE is rewritten asa boundary in-
tegral equation defined on the boundary of the domain using the Green’s theorem.
Therefore, only the boundary of the domain needs to be discretized, which in turn
results in reducing the dimension of the problem at least by one. This is beneficial
from computational complexity point of view. However, in contrast to the finite dif-
ference or the finite element method where the resulting system of linear equations
has a sparse structure, here we get a dense system. Moreover,the boundary element
method is applicable to problems for which Green functions can easily be calculated,
for instance when the speed of wave propagation is constant.

It is beyond the scope of this thesis to study all these numerical methods for
wave propagation problems. We only note that each numericalmethod is applicable
for a certain type of problem. In order to choose a proper numerical algorithm, one
usually considers the accuracy and efficiency of the method.A major part of the
thesis focuses on developing accurate and efficient algorithms for some challenging
wave propagation problems.

One challenging computational problem, which is treated inpaper 5, [45], is
when the system of equations consists of second order hyperbolic PDEs, involving
mixed space-time derivatives. For instance, the harmonic formulation of Einstein’s
equations is a system of ten nonlinear second order hyperbolic equations with mixed
space-time derivatives. After linearizing and reducing tofirst order form, we obtain
a system of about sixty first order equations. This results ina notable increase in
the computational complexity. As a better alternative, theproblem can be treated in
the second order form without any order reduction. Althoughthe discretization of
the second order system involves more subtle analysis because of numerical stability
issues which are not present in first order formulations, this approach has advantages
for both computational efficiency and accuracy over the firstorder formulation. The
main difficulty in treating such second order systems is due tothe presence of mixed
space-time derivatives. For instance, if we simply use central difference approxima-
tions for both time and space derivatives, the scheme will not be stable for particular
choices of the coefficients in the equations.

As a model problem with similar properties, we consider the initial value problem
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for the second order hyperbolic system (2.7) with constant coefficientsAjk andBj ≡
C ≡ f ≡ 0, and the initial conditions (2.8). In order to introduce mixed derivatives
into the equations, we use a shifted coordinate

x = x̃ + β t, x̃ = (x̃1, . . . , x̃n) ∈ R
n, β = (β1, . . . , βn) ∈ R

n
+,

and obtain the shifted system

utt = 2P1(∂/∂x̃)ut − P 2
1 (∂/∂x̃)u + P0(∂/∂x̃)u, (2.14)

with the operators

P1(∂/∂x̃) =

n
∑

j=1

βj
∂

∂x̃j
, P0(∂/∂x̃) =

n
∑

j,k=1

Ajk
∂

∂x̃j

∂

∂x̃k
.

The shifted system (2.14) is an important model for describing black holes in nu-
merical relativity. The study of this system also provides afirm basis for solving the
harmonic Einstein system of equations, because of the existence of the mixed space-
time derivatives which are essential features of the Einstein equations. This type
of systems also arises in acoustic wave propagation in a medium with nonuniform
macroscopic motion.

We use the method of lines and reduce the system of partial differential equations,
in their second-order form, to a system of ordinary differential equations in time on
a spatial grid. We then apply the energy method and Fourier-Laplace transformation
to analyze and establish stable approximations.

Another challenging problem is numerical simulation of high frequency waves,
which is the subject of papers 1-4. We discuss such numericalmethods in the next
chapter in more detail.





Chapter 3

High Frequency Waves

Simulation of high-frequency wave propagation is important in many engineering
and science fields. Examples include radar and sonar technology, wireless commu-
nication, seismic tomography, medical imaging and non-destructive testing.

In this chapter, we study the numerical simulation of waves at high frequencies
and the underlying mathematical models used. For simplicity we will mainly discuss
the linear scalar wave equation,

utt − c(x)2∆u = 0, (x, t) ∈ R
n × R+, (3.1)

wherec(x) is the local speed of wave propagation of the medium. We comple-
ment (3.1) with initial data that generate high-frequency solutions. The exact form
of the data will not be important here, but a typical example would beu(x, 0) =
A(x) exp(iωk · x) where|k| = 1 and the frequencyω ≫ 1. With slight modifica-
tions, the techniques we describe will also carry over to systems of wave equations,
like the Maxwell equations and the elastic wave equation. See, for instance, [24]
where the linear Schrödinger equation is treated. We also define theindex of refrac-
tion asη(x) = c0/c(x) with the reference velocityc0 (e.g. the speed of light in
vacuum). For simplicity we will henceforth letc0 = 1.

3.1 Time-harmonic Helmholtz equation

We consider time harmonic waves of typeu(x, t) = v(x) exp(iωt) with ω fixed.
Inserting it into the time-dependent wave equation (3.1), we get the Helmholtz equa-
tion

c(x)2∆v + ω2v = 0. (3.2)

15
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When the wave frequency is high and the wavelength is short compared to the
size of the computational domain, we encounter a multiscaleproblem with a highly
oscillatory solution. Direct simulations based on the standard wave equations are
very expensive, since a large number of grid points is required to resolve the wave
oscillations. It is, therefore, a difficult computational problem, and computations are
a major challenge.

In general, numerical methods for high-frequency wave problems can be classi-
fied into three categories:

• Direct methods: One class of direct methods is based on the standard wave
equations. The accuracy of the solution is then determined by the number of
grid points or elements per wavelength, and the computational cost for a fixed
accuracy increases with increasing frequency. The computational complexity
is at leastO(ωn). Another class is based on integral equations. Given a bound-
ary condition, and a constant speed of propagation, the problem can be formu-
lated as an integral equation on the boundary. Therefore only the boundary
needs to be discretized instead of the whole domain, and the effective dimen-
sion isn − 1. Standard methods for solving the boundary integral equations
include the method of moments [21] and finite element methods[73, 55]. Us-
ing a fast iterative solver such as the fast multilevel multipole technique [9, 72],
the complexity of these methods will be almostO(ωn−1). There are, however,
efforts to find robust algorithms of complexityO(1), [17].

• Asymptotic methods: These methods are based on constructing asymptotic
expansions of the solution which are valid whenω → ∞. The accuracy in-
creases with increasing frequency for a fixed computationalcost. Most asymp-
totic techniques rely on geometrical optics equations withfrequency independ-
ent unknowns. Among other asymptotic methods are wave optical methods
(physical optics and physical theory of diffraction) and Gaussian beam meth-
ods.

• Hybrid methods: They combine direct and asymptotic techniques [43, 20].
Direct methods are applied on the regions where the geometric variations or
the variations inc(x) are of the same scale as the wavelength, and asymptotic
methods are applied elsewhere. In some cases a linear combination of both
methods are used.

In what follows, we will briefly review variants of geometrical optics approxim-
ations. Instead of the oscillating wave field the unknowns instandard geometrical
optics are the phase and the amplitude, which typically varyon a much coarser scale
than the full solution. Hence, they should in principle be easier to compute numer-
ically. The main drawbacks of the infinite frequency approximation of geometrical
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optics are that diffraction effects at boundaries are lost,and that the approximation
breaks down at caustics, where the predicted amplitude is unbounded. For these situ-
ations more detailed models are needed, such as the geometrical theory of diffraction
[31], which adds diffraction phenomena by explicitly taking into account the geo-
metry of Ω and boundary conditions. The solution’s asymptotic behavior close to
caustics can also be derived, and a correct amplitude for finite frequency can be com-
puted [36, 42, 22]. Numerically this can for instance be donewith Gaussian beams
[53, 2].

3.2 Geometrical Optics

In order to solve the Helmholtz equation (3.2) for large values ofω, we seek solutions
of the form

v(x) = a(x, ω)eiωφ(x), x ∈ R
3. (3.3)

The real-valued phase functionφ(x) is independent ofω, and the amplitude function
a(x, ω) is assumed to be expanded in inverse powers ofω,

a(x, ω) ≈

∞
∑

k=0

ak(x)(iω)−k =

n
∑

k=0

ak(x)(iω)−k + O(ω−n). (3.4)

It means that the series is an asymptotic expansion ofa asω → ∞. It is known as
the asymptotic WKBJ expansion, [22]. Geometrical optics (GO) only considers the
leading term of the series (k = 0), which is called the the geometrical optics term.
Putting (3.3) with the leading term of (3.4) into (3.2) and canceling the phase factor
eiωφ, we get

|∇φ|2 = η(x)2, (3.5)

2∇φ · ∇a0 + a0∆φ = 0. (3.6)

Equation (3.5) is theeikonal equation, which is a first order non-linear PDE for
φ(x). Equation (3.6) is thetransportequation, which is a linear PDE with variable
coefficients fora0, onceφ is known.

GO can also be formulated in terms of ODEs. We first note that the eikonal equa-
tion is a nonlinear Hamilton-Jacobi equation with HamiltonianH(x, p) = |p|/η(x) ≡
1, wherep = ∇φ is theslownessvector. We let(x(t), p(t)) be a bi-characteristic
related to this Hamiltonian. SinceH is constant along them,H(x(t), p(t)) =
H(x0, p0), we get the so calledray equations,

dx

dt
= ∇pH =

1

η2
p,

dp

dt
= −∇xH =

∇η

η
. (3.7)
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There are also ODEs for the amplitude, [11].
There is yet another formulation for GO based on a kinetic viewpoint. Con-

sidering rays as trajectories of particles (photons) and introducing the phase space
(t, x, p), we note that the evolution of these particles in the phase space is given by
the ray equations (3.7). We letf(t, x, p) be a particle density function. It will then
satisfy theLiouville equation,

ft + ∇pH · ∇xf −∇xH · ∇pf = 0, (3.8)

where∇pH and∇xH are given by (3.7).
There are different numerical techniques based on the threedifferent mathemat-

ical models of GO:

1. Numerical methods based on theray equations (3.7) includeray tracing[8, 29,
38]. In this method the ODEs (3.7) together with the ODEs for the amplitude
are solved with standard ODE solvers such as 2nd or 4th order Runge-Kutta
methods, giving the phase and amplitude along the rays. The solution at a
desired point is then interpolated from the solutions alongthe rays. This can be
rather difficult in the regions where ray tracing produces diverging or crossing
rays. Moreover, ray tracing is only of interest for problemsinvolving a small
number of source points. For problems with many source points, ray tracing
may be computationally expensive.

2. Numerical methods based on theeikonalequation (3.5) are Hamilton-Jacobi
methods. They solve the eikonal and transport equations on auniform Eulerian
grid to control the error everywhere. Different types of numerical techniques
have been proposed to compute the unique viscosity solutionof the eikonal
equation, including upwind methods of ENO or WENO type [69, 68, 52], fast
marching method [66, 58, 59, 54], group marching method [32]and sweeping
method [57, 33, 65]. However, since the eikonal equation is anonlinear equa-
tion for which the superposition principle does not hold, these methods fail
to capture multivalued solutions corresponding to crossing rays. Among the
methods proposed for computing multivalued solutions are adomain decom-
position based method by detecting kinks [15], big ray tracing [3, 1] and slow-
ness matching method [62, 63]. The multivalued solutions, in these methods,
are constructed by putting together the solutions of several eikonal equations.
Nevertheless, finding a robust technique to compute multivalued solutions is
still a computational challenge.

3. Numerical methods based on thekinetic equation (3.8) are so called phase
space methods. The Liouville equation, like ray equations,benefits from the
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linear superposition principle. Moreover, its solution can be computed on a
fixed Eulerian grid. There is, however, a drawback with directly solving the
Liouville equation. Because of introducing the phase spaceand increasing the
number of independent variables, a direct simulation will computationally be
very expensive. There are two different approaches to overcome this draw-
back; wave front methods and moment-based methods. In the former, special
wave front solutions are computed, and the later is based on transforming the
Liouville equation to a system of conservation law equations for moments of
f in the reduced space(t, x). See, for instance, [40, 6, 10, 56]. The clas-
sical wave front methods include Lagrangian front tracking, wave front con-
struction [70], the segment projection method [12, 64] and level set method
[51, 41, 27, 26, 25]. Related methods are the fast phase spacemethod [16] and
the phase flow method [76].

See [11, 4] for a survey of geometrical optics approximations.

3.3 Geometrical Theory of Diffraction

There are two deficiencies in the GO solution described above. First, it does not
include diffraction effects. Secondly, it breaks down at caustics, wherea0 is unboun-
ded. To overcome the first deficiency, in addition to the incident and reflected rays of
GO, new classes of rays, namelydiffracted rays, should be introduced to construct
the full asymptotic expansion of the solution.

Geometrical theory of diffraction (GTD), developed by J. Keller [31], provides
a technique for adding diffraction effects to the geometrical optics approximation.
GTD is often used in scattering problems in computational electromagnetics, where
boundary effects are of major importance, for example in radar cross section calcu-
lations and in the optimization of base station locations for cell phones in a city.

There are various kinds of diffracted rays. One type of diffracted rays is generated
when there is a discontinuity in the scatterer surface, suchas edges, tips or changes
in material properties. At these singular points an infiniteset of diffracted rays are
produced which obey the usual geometrical optics equations. The amplitude of each
diffracted ray is proportional to the amplitude of the ray hitting the corner and a
diffraction coefficientD. The coefficientD depends on the directions of the inducing
and diffracted rays, the frequency, the local boundary geometry and the shape of the
incident wave front. In Figure 3.1 (left), the incident ray hitting the tip of a wedge
generates a reflected ray, another ray that continues past the tip, and infinitely many
diffracted rays in all directions.
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Figure 3.1: Diffraction by discontinuous and smooth scatterers. Left figure shows
diffraction of an incident fielduinc by a wedge. The incident ray hitting the tip
of the wedge generates a reflected ray, another ray that continues past the tip, and
infinitely many diffracted raysud in all directions. Right figure shows a creeping
ray uc induced by the incident fielduinc at the north pole of a perfectly conducting
cylinder, where the incident direction is orthogonal to thesurface normal. As the
creeping ray propagates on the boundary, it continuously emits surface-diffracted
raysud with exponentially decreasing initial amplitude.

One typical improved expansion adds diffracted rays to GO byadding extra cor-
rection terms to the asymptotic solution (3.3-3.4),

v(x) = a(x, ω)eiωφ(x) + b(x, ω)eiωφd(x), b(x, ω) ≈
∞
∑

k=0

bk(x)(iω)−k− 1

2 ,

(3.9)
whereφd(x) andbk(x) are the phase and amplitudes associated with diffracted rays.
More elaborate expansions must sometimes be used, such as those given by theuni-
form theory of diffraction(UTD), [35].

Another type of diffraction is generated even for smooth scatterers. When an
incident field hits a smooth body there will be a shadow zone behind it and the geo-
metrical optics solution will again be discontinuous. There is a curve (point in 2D)
dividing the shadow part and the illuminated part of the body. Along thisshadow
line (shadow point in 2D) the incident rays are tangent to the bodysurface. The
shadow line will act as a source forcreeping rays, that propagate along geodesics on
the scatterer surface, if the surrounding medium is homogeneous,η ≡ 1. The creep-
ing ray carries an amplitude proportional to the amplitude of the inducing ray. At
each point on a convex surface with perfectly conducting material, the creeping ray
sheds surface-diffracted rays in the tangential direction, with its current amplitude.
The amplitude decays exponentially along the creeping ray’s trajectory. In three di-
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mensions, the amplitude also changes through geometrical spreading on the surface.
The diffracted rays follow the usual geometrical optics laws. A 2D example is shown
in Figure 3.1 (right). The incident ray hitting the north poleof a perfectly conduct-
ing circular cylinder generates a creeping ray propagatingon the cylinder boundary
and shedding diffracted rays along its way. Note that another creeping ray will be
generated by the incident ray hitting the south pole.

The diffracted rays generated by discontinuities and shed by creeping rays obey
the usual geometrical optics equations. The main computational task is thus based
on the standard GO approximation discussed in Section 3.2. However, computing
creeping ray contribution to the field involves more technicalities, and one needs to
find geodesics on the scatterer surface as well. We assume that the scatterer surface
can be represented by a regular parameterizationx = X̄(u), wherex = (x, y, z) ∈
R3 is the coordinate in3D physical space, and the parametersu = (u, v) belong to
a setΩ ⊂ R2. Let the scatterer be illuminated by incident rays in a certain direction,
and assume that the shadow lineu0(s) is represented by a curve in parameter space,
with s being the arc length parameterization. A wave field, associated to the creeping
rays, is generated on the surface

vs(u) = a(u)eiωφ(u), (3.10)

whereφ(u) anda(u) are surface phase and amplitude. The creeping rays are related
to (3.10) in the same way as the standard GO rays are related tothe leading term of
the series (3.3-3.4). Like in GO, the surface wave field can beformulated as a system
of either ODEs or PDEs. In the ODE formulation, we obtain a system of equations
known assurface rayequations. In the PDE formulation, we getsurface eikonaland
surface transportequations. See [30, 44]. Based on these two formulations, there
are different numerical techniques for computing creepingrays. Lagrangian tech-
niques are based on surface ray equations. The simplest and most common method
is standard ray tracing which solves these ODEs on triangulated surfaces [23]. As-
suming the geodesic paths are given by piecewise linear curves, it is possible to find
the linear ray path on each triangle, analytically. This method gives the surface phase
and amplitude solutions along creeping rays. Interpolation must then be applied to
obtain the solution everywhere. But, in regions where rays cross or diverge this can
be rather difficult. However, the interpolation can be simplified by using wave front
methods [71, 20] in which, instead of individual rays, an interface representing a
wave front is evolved. Nevertheless, for some problems, such as radar cross section
(RCS) computations, where creeping rays from all illumination angles must be com-
puted, Lagrangian methods can be computationally expensive. Eulerian techniques
are based on surface eikonal and surface transport equations. These PDEs are discret-
ized on fixed computational grids, and there is no problem with interpolation [34].
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However, these equations only give the correct solution when it is a single wave. In
the case of crossing waves, more elaborate schemes have beendevised to capture
multivalued solutions, [47, 75].

In paper 1, [47], we present an adaptation of the fast phase space method, [16], for
standard geometrical optics to computation of creeping waves. This method is based
on a new PDE formulation of creeping rays given by so calledescape equations.
The escape PDEs solutions contain information about all possible creeping rays in
all directions. To extract properties like phase and amplitude for a ray family, post-
processing of the solution is needed.

This method requires one fixed parameterization of the scatterer. It has however
been modified in paper 2, [48], for more complex scatterer surfaces which cannot be
represented by a single non-singular explicit parameterization. The surface is split
into several simpler surfaces with explicit parameterizations. These multiple patches
collectively cover the scatterer surface in a non-singularmanner. The escape PDEs
are solved in every patch, individually. The creeping rays on the scatterer are then
computed by connecting all individual solutions through a fast post-processing. The
inter-patch boundaries are treated by the continuity of creeping rays.

3.4 Gaussian Beams

Close to caustics the amplitude grows rapidly in the geometrical optics approxima-
tion and blows up at the caustic itself. In reality the amplitude remains bounded, but
increases with the frequencyω. The error in the standard series expansion (3.3-3.4)
is thus unbounded around caustics. To capture the actual solution behavior there are
better expansions that have small errors uniformly inω, derivede.g.by Ludwig [42]
and Kravtsov [36]. The expansions are different for different types of caustics. For
a fold caustic there are two ray families meeting at the caustic, with phasesφ+ and
φ−. Letting ρ = 3

4 (φ+ − φ−) a more suitable description of the solutionu in this
case is

u(x) = ω1/6 eiωφ(x)

(

Ai(−(ωρ(x))2/3)

∞
∑

k=0

Ak(x)(iω)−k

+ iω−1/3Ai ′(−(ωρ(x))2/3)
∞
∑

k=0

Bk(x)(iω)−k

)

,

where Ai is the Airy function. The dominant term close to the caustic,|ρ|ω ≪ 1 is of
the orderO(ω1/6) with an error ofO(ω−1/3). Away from the caustic, on the convex
side whereρ > 0, we can use the fact that|Ai(−x)| ∼ x−1/4 and|Ai ′(−x)| ∼ x1/4
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for largex, to conclude that the dominant term is of the orderO(1) with an error of
O(ω−1), i.e. the standard situation for geometrical optics.

We will now discuss the Gaussian beam method for computing the wave field at
caustics. The Gaussian beam method is an asymptotic method for computing high-
frequency wave fields in smoothly varying inhomogeneous media. It was proposed
by Popov [53], based on an earlier work of Babic and Pankratova [2]. Gaussian
beams are closely related to ray tracing, but instead of viewing rays just as character-
istics of the eikonal equation, Gaussian beams are fatter rays: They are approximate
high frequency solution to the wave equation or the Helmholtz equation which are
concentrated on a standard ray. Contrary to standard GO rays, Gaussian beams ac-
cept complex valued phase functions. The main advantage of this construction is that
Gaussian beams give the correct solution also at caustics where standard geometrical
optics breaks down.

We now review the governing equations. We first note that because of the con-
straintH(x, p) = 1, or |p| = η(x), the dimension of the phase space(x, p) can
actually be reduced by one. For example in two dimensions, with x = (x, y), by
settingp = η(cos θ, sin θ) and usingθ as a dependent variable in (3.7) instead ofp,
we get the reduced equations,

dx

dt
= c(x, y) cos θ, (3.11a)

dy

dt
= c(x, y) sin θ, (3.11b)

dθ

dt
=

∂c

∂x
sin θ −

∂c

∂y
cos θ. (3.11c)

We consider a ray in a two-dimensional Cartesian coordinatesystemx, y given by
the ray tracing system (3.11). In orthogonal ray-centered coordinates(t, q), whereq
is the axis perpendicular to the ray at pointt with the origin on the ray, the paraxial
Gaussian beam solution closely concentrated about the central ray is given by

u(t, q, ω) = A(t, q) exp {iωφ(t, q)}. (3.12)

Here the complex-valued amplitudeA and the phaseφ are given by the eikonal and
transport equations with complex initial data forφ of the typeφ(0, q) ∼ iq2 to give
u(0, q) a Gaussian profile. They are approximated by Taylor expansions. For first-
order Gaussian beams, for instance, we have

A ≈ A(t, 0) =
√

c(x(t), y(t))/Q(t), (3.13)

φ ≈ φ(t, 0) + qφq(t, 0) +
q2

2
φqq(t, 0) = t +

q2

2

P (t)

Q(t)
. (3.14)
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The complex-valued scalar functionsP andQ satisfy thedynamic ray tracingsystem

dQ

dt
= c2 P,

dP

dt
= −

1

c
(cxx sin2 θ − 2cxy sin θ cos θ + cyy cos2 θ)Q.

(3.15)

As initial data for (3.15), we may choose

Q(0) = Q0 > 0, P (0) = i.

One can show that this choice will guarantee that two important conditions are satis-
fied along the ray:Q(t) 6= 0 andIm(P (t)/Q(t)) > 0. The first condition guarantees
the regularity of the Gaussian beam (with finite amplitudes at caustics). The second
condition guarantees the concentration of the solution close to the ray. Note that for
higher order Gaussian beams, we need to include more terms inthe Taylor expan-
sions and in the WKBJ expansion.

In the Gaussian beam summation method, the initial/boundary condition for the
wave field is decomposed into initial conditions for Gaussian beams. Individual
Gaussian beams are computed by solving the ray tracing and dynamic ray tracing
systems (3.11,3.15). The contributions of the beams concentrated close to their cent-
ral rays are determined by the approximations (3.13,3.14) entered in (3.12). The
wave field at a receiver is then obtained by a superposition ofthe Gaussian beams
situated close to the receiver, [67].

In paper 3, [49], we study the accuracy of Gaussian beam summation method
and derive error estimates related to the Taylor expansionsfor beams of any order.
For first-order beams, for example, we show that the error is of orderO(ω−1). In
fact, because of error cancelation effects between the beams, the error is smaller than
O(ω−1/2) which a simple analysis would indicate. Moreover, we investigate the
effect of beam widths on the accuracy when the speed of propagation is constant.
It has been proposed that the optimal choice of the initial parameters,Q(0) and
P (0), produce Gaussian beams of minimum width at a receiver point, see [67] for
instance. The main motivation for this choice is that for wide beams the Taylor
expansion error should be large. Moreover, from the computational point of view, it
is more convenient to work with beams which are as narrow as possible, because in
the case of variable speed of propagation, where the centralrays can bend, at some
distance from the rays the phase may become non-smooth and therefore the Gaussian
beam approximation may break down. However, we show that this choice will not
necessarily give the minimum error in the case of constant speed of propagation.
The optimal choice of the parameters should minimize the error and is still an open
question.
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In paper 4, [50], we construct a wave front method based on Gaussian beams.
The method tracks a front of Gaussian beams with only two particular initial values
(Q1(0), P1(0)) = (1, 0) and(Q2(0), P2(0)) = (0, 1), where(Q1, P1) and(Q2, P2)
solve (3.15). This allows direct recreation of any other beam propagating from the
initial front into the computational domain at no extra cost.Therefore, optimization,
based on the minimization of either the beam width or the error is possible in the
algorithm.





Chapter 4

Summary of Papers

4.1 Paper I: A Fast Phase Space Method for Computing
Creeping Rays

In this paper, we consider creeping ray contributions to high frequency scattering
problems. We assume that the scatterer surface can be represented by a single para-
meterization and present a new Eulerian formulation for theproblem. Following
the discussions in Section 3, we derive a set ofescapepartial differential equations
in a three-dimensional phase space. The equations are then solved on a fixed com-
putational grid using a version of first-order accurate fastmarching algorithm. The
solution to the escape equations contain information aboutall possible creeping rays.
This information includes the phase and amplitude of the rayfield, which are extrac-
ted by a fast post-processing.

We consider an application to mono-static radar cross section problems where
creeping rays from all illumination angles must be computedand present the numer-
ical results of the fast phase space method.

This paper is published in Journal of Computational Physicsand has entry [47]
in the bibliography.

4.2 Paper II: A Multiple-patch Phase Space Method for
Computing Trajectories on Manifolds with Applications to
Wave Propagation Problems

In this paper, we present a multiple-patch phase space method for computing tra-
jectories on two-dimensional manifolds possibly embeddedin a higher-dimensional

27
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space. The dynamics of trajectories are given by systems of ordinary differential
equations (ODEs). We split the manifold into multiple patches where each patch
has a well-defined regular parameterization. The ODEs are formulated asescape
equations, which are hyperbolic partial differential equations (PDEs) in a three-
dimensional phase space. The escape equations are solved ineach patch, individu-
ally. The solutions of individual patches are then connected using suitable inter-patch
boundary conditions. Properties for particular families of trajectories are obtained
through a fast post-processing.

We apply the method to two different problems: the creeping ray contribution
to mono-static radar cross section computations and the multivalued travel-time of
seismic waves in multi-layered media. We present numericalexamples to illustrate
the accuracy and efficiency of the method.

This paper is published in Communications in Mathematical Sciences and has
entry [48] in the bibliography.

4.3 Paper III: Taylor Expansion Errors in Gaussian Beam
Summation

In this paper, we study the accuracy of Gaussian beam summation method and derive
error estimates related to the Taylor expansion of the phaseand amplitude off the
center of the beam. Unlike standard geometrical optics, Gaussian beams compute the
correct solution of the wave field also at caustics. We show that in the case of using
odd order beams, the error is smaller than a simple analysis would indicate because
of error cancellation effects between the beams. Since the cancellation happens only
when odd order beams are used, there is no remarkable gain in using even order
beams. Moreover, in the case of constant coefficient equations, i.e. when the speed
of propagation is constant, the local beam width is not a goodindicator of accuracy,
and there is no direct relation between the error and the beams width. We present
numerical examples to verify the error estimates.

This paper has entry [49] in the bibliography.

4.4 Paper IV: A Wave Front-based Gaussian Beam Method for
Computing High Frequency Waves

In this paper, we present a wave front method based on Gaussian beams for com-
puting high-frequency wave propagation problems. The method tracks a front of
Gaussian beams with two particular initial values for widthand curvature which al-
lows the direct recreation of any other beam propagating from the initial front into
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the medium. This is used to approximate the field with different, optimally chosen,
beams in different points on the front. The performance of the method is illustrated
with two numerical examples.

This paper has entry [50] in the bibliography.

4.5 Paper V: Finite Difference Schemes for Second Order
Systems Describing Black Holes

In this paper, we construct stable finite difference algorithms for second order hy-
perbolic systems arising in numerical relativity. We treatequations in second-order
differential form without reducing them to first-order form. We apply the algorithms
to a model black hole space-time consisting of a spacelike inner boundary excising
the singularity, a timelike outer boundary and a horizon in between. These algorithms
are implemented as stable, convergentnumerical codes and their performance is com-
pared in a 2-dimensional excision problem.

This paper is published in Journal of Physical Review D and has entry [45] in the
bibliography.

4.6 Paper VI: Hyperbolic Initial Boundary Value Problems
which are not Boundary Stable

In this paper, we extend the theory of boundary stable hyperbolic problems to a model
problem which is not boundary stable. The Kreiss symmetrizer technique gives sharp
estimates of the solution of hyperbolic initial boundary value problems including es-
timates at the boundaries. In this case, the problem is called boundary stable. There
are, however, problems which are not boundary stable but arewell-posed in a weaker
sense, i.e., we can obtain energy estimates in the interior of the domain. These types
of problems are important in many applications, including seismic, optical and grav-
itational waves. We consider a model problem which may not beboundary stable
depending on the choice of boundary conditions. We show thatthe general theory of
hyperbolic systems can be extended to this case, and the symmetrizer technique can
be used to derive estimates of the solution off the boundary.

This paper has entry [46] in the bibliography.
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Abstract

Creeping rays can give an important contribution to the solution of medium to high frequency scattering problems.
They are generated at the shadow lines of the illuminated scatterer by grazing incident rays and propagate along geodesics
on the scatterer surface, continuously shedding diffracted rays in their tangential direction.

In this paper, we show how the ray propagation problem can be formulated as a partial differential equation (PDE) in a
three-dimensional phase space. To solve the PDE we use a fast marching method. The PDE solution contains information
about all possible creeping rays. This information includes the phase and amplitude of the field, which are extracted by a
fast post-processing. Computationally, the cost of solving the PDE is less than tracing all rays individually by solving a
system of ordinary differential equations.

We consider an application to mono-static radar cross section problems where creeping rays from all illumination
angles must be computed. The numerical results of the fast phase space method and a comparison with the results of
ray tracing are presented.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Creeping rays; High frequency wave propagation; Scattering problems; Numerical methods; Geometrical theory of diffraction;

Eikonal equation

1. Introduction

The general problem that we are interested in is the scattering of a time-harmonic incident field by a
bounded scatterer D. If the total field is split into an incident and a scattered field, this can be formulated
as a boundary value problem for the scattered field in the region outside D, consisting of the Helmholtz
equation,

DW þ nðxÞ
2
x2W ¼ 0; x 2 R

3 n �D; ð1Þ

augmented with Dirichlet, Neumann or Robin boundary conditions on the boundary of the scatterer oD, and
the Sommerfeld radiation condition at infinity. Here n(x) is the index of refraction, and x is the angular
frequency.
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In direct numerical simulations of (1) the accuracy of the solution is determined by the number of grid
points or elements per wave length. The computational cost to maintain constant accuracy grows algebraically
with the frequency, and for sufficiently high frequencies, a direct numerical simulation is no longer feasible.
Numerical methods based on approximations of (1) are needed.

Fortunately, there exist good such approximations precisely for the difficult case of high frequency solu-
tions. In free space, a typical high frequency solution can be approximated by a simple wave,

W ðxÞ � aðxÞeix/ðxÞ; x 2 R
3; ð2Þ

where the amplitude a(x) and the phase function /(x) depend only mildly on the parameter x and vary on a
much coarser scale than W(x) itself. Geometrical optics (GO) considers the case when x ! 1. The frequency
then disappears from the model and the equations can be solved at a computational cost independent of x.
GO can be formulated as the partial differential equations for / and a. The phase function / satisfies the eik-
onal equation,

jr/j ¼ nðxÞ; ð3Þ

and the leading order amplitude term a satisfies the transport equation,

2r/ � raþ D/a ¼ 0. ð4Þ

GO can also be formulated in terms of ordinary differential equations (ODE). It corresponds to solving the
eikonal equation (3) through the method of characteristics, i.e. solving the system of ODEs,

dx

dt
¼ rpHðx; pÞ;

dp

dt
¼ �rxHðx; pÞ; Hðx; pÞ ¼

jpj

nðxÞ
; ð5Þ

where t is time. As long as / is smooth, the relationship between the models is given by /(x(t)) = /(x(0)) + t.
There are also ODEs giving the amplitude a(x(t)) along the characteristics.

The main drawbacks of the infinite frequency approximation of geometrical optics are that diffraction
effects at boundaries are lost, and that the approximation breaks down at caustics, where the predicted ampli-
tude a is unbounded. Geometrical theory of diffraction (GTD), pioneered by J. Keller in the 1950s [14], adds
diffraction effects to the GO approximations. One type of diffracted rays are creeping rays, which are generated
at the shadow line of the scatterer, i.e. where the incident ray strikes the surface of the scatterer at grazing
angle. At this point the incident ray divides into two parts: one part continues straight on, and a second part
propagates along geodesics on the surface, continuously shedding diffracted rays in its tangential direction. See
Fig. 1. In analogy with (2), a wave field is generated on the surface

W sðuÞ ¼ aðuÞeix/ðuÞ; ð6Þ

where /(u) and a(u) are now the surface phase and amplitude and u 2 R
2 is a parameterization of the surface.

The creeping rays satisfy a system of ODEs similar to (5). They are related to (6) in the same way as the stan-
dard GO rays are related to (2).

Creeping rays can give an important contribution to the solution at medium to high frequencies, for
instance in radar cross section (RCS) computations for low observable objects [3] and in antenna coupling
problems [16]. We want to compute the creeping rays and the associated wave field in (6).

Various methods have been devised to compute the geometrical optics solution. They can be divided into
Lagrangian and Eulerian methods.

Lagrangian methods are based on the ODE formulation (5). The simplest Lagrangian method is standard
ray tracing where the ODEs in (5) together with ODEs for the amplitude are solved directly with numerical
methods for ODEs. This approach is very common in standard free space GO, [4,19], but is also done for the
creeping ray case, [12,22]. Ray tracing gives the phase and amplitude solution along a ray, and interpolation
must be applied to obtain those quantities everywhere. This can be rather difficult, in particular in regions
where rays cross. Another problem with ray tracing is that it may produce diverging rays that fail to cover
the domain. Even for smooth n(x) there may be shadow zones where the field is hard to resolve. The interpo-
lation can be simplified by instead using so-called wave front methods [30,11]. They are related to ray tracing,
but instead of individual rays, an interface representing a wave front is evolved according to the ray equations.
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More recently, Eulerian methods based on PDEs have been proposed to avoid some of the drawbacks of
ray tracing. These methods discretize the PDEs on fixed computational grids to control accuracy everywhere
and there is no need for interpolation. The simplest Eulerian methods solves the eikonal and transport equa-
tions (3,4). This technique has been used in standard GO, [29,28,7] and also in the surface case, [15]. However,
the eikonal and transport equations only give the correct solution when it is a single wave of the form (2).
When there are crossing waves, more elaborate schemes must be devised. In the free space GO case a number
of methods have been developed in the last ten years using different approaches. Many of them are based on a
third formulation of geometrical optics as a kinetic equation set in phase space. They include ‘‘big’’ ray tracing
[1], patching together multiple eikonal solutions [2], moment methods [24,25,9], segment projection method
[6], level set methods [21,23], slowness matching [26], the phase flow method [31] and fast phase space methods
[8]. A survey of this research effort is given in [5].

These more advanced methods have so far not been used for the creeping ray case. In this paper we propose
an adaptation of the fast phase space method of Fomel and Sethian [8] to this case. This method is compu-
tationally expensive if only a few solutions are computed. It becomes attractive when the solution is sought for
many different sources but with the same index of refraction. In the creeping ray case this happens for instance
when the solution for all illumination angles of a fixed scatterer is of interest. We consider one such example:
computing the mono-static RCS.

Fig. 1. Diffraction by a smooth cylinder. Top figure shows the solution schematically. The incident field uinc induces a creeping ray uc at

the north (and south) pole of the cylinder, where the incident direction is orthogonal to the surface normal. As the creeping ray propagates

along the surface, it continuously emits surface-diffracted rays ud with exponentially decreasing initial amplitude. Bottom figure shows real

part of a solution to the Helmholtz equation. The surface diffracted waves can be seen behind the cylinder.
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Following [8] we formulate the ray propagation problem as a time-independent partial differential equation
(PDE) in a three-dimensional phase space. We use a fast marching method to solve the PDE. The PDE solu-
tion contains information for all incidence angles. The phase and amplitude of the field are extracted by a fast
post-processing. Computationally the cost of solving the PDE is less than tracing all rays individually. If the
surface is discretized by N2 points the complexity is OðN 3 logNÞ, while ray tracing would cost OðN 4Þ if a com-
parable number of incidence angles (N2) and rays per angle (N) are considered.

In Section 2, we formulate the governing equations. The numerical method for solving the equations are
discussed in Section 3. In Section 4, we show how to extract the information for a particular ray through
post-processing. An application to a mono-static RCS problem is shown as an example in Section 5.

2. Governing equations

For simplicity we consider the case when the scatterer surface has an explicit parameterization. Let X be a
regular hypersurface, representing a scatterer surface, with the parametric equations X ¼ X ðuÞ, where
X ¼ ðx; y; zÞ 2 R

3 is the coordinate in 3D physical space, and the parameters u = (u,v) belong to a bounded
set X � R

2. Let the scatterer be illuminated by incident rays in a direction represented by a normalized vector
bI ¼ ½ı1; ı2; ı3�. The shadow line is then defined as the set of points where

bN >bI ¼ 0; ð7Þ

where bN ðuÞ is the surface normal at X ðuÞ,

bN ¼
X u � X v

jX u � X vj
. ð8Þ

Here the subscripts denote differentiation with respect to u and v. We will assume that (7) defines a curve in
parameter space, which we denote u0(s), and s is the arc length parameterization.

2.1. Geodesics

We start by deriving the equations for creeping rays, which are indeed geodesics on the scatterer surface.
According to Keller and Lewis [13], the surface phase satisfies the surface eikonal equation,

j er/j ¼ n; ð9Þ

where n(u) is the index of refraction at the surface, and er is the surface gradient, defined as

er/ :¼ JG�1r/; G ¼ J>J ;

with

J ¼ ½X uX v� 2 R
3�2.

We prescribe boundary conditions for (9) on the shadow line, which acts as the source for the creeping rays.
The boundary condition is that the surface phase agrees with /inc, the phase of the incoming wave,

/ðu0ðsÞÞ ¼ /0ðu0Þ :¼ /incðX ðu0ðsÞÞÞ; ð10Þ

To avoid ambiguities as to which direction the surface waves propagate, we add the condition

er/ðu0ðsÞÞ ¼ r/incðX ðu0ðsÞÞÞ; ð11Þ

which is consistent with (9) since /inc satisfies the free space eikonal equation (3) and with (10) since

d

ds
ð/ðu0ðsÞÞ � /incðX ðu0ðsÞÞÞÞ ¼ r/>u00 �r/>

inc

dX

ds
¼ ðJ> er/Þ

>
u00 �r/>

inc

dX

ds
¼ ð er/�r/incÞ

> dX

ds
.

In the case when n = 1 and the incoming wave is a plane wave in direction bI , we have /incðxÞ ¼ bI>x. Then (10),
(11) reduce to
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/0ðu0ðsÞÞ :¼ bI>X ðu0ðsÞÞ; er/ðu0ðsÞÞ ¼ bI . ð12Þ

We can write (9) as a Hamilton–Jacobi equation H(u,$/) = 0, with the Hamiltonian

Hðu; pÞ �
1

2
p>G�1ðuÞp�

n2ðuÞ

2
.

Note that in the case n = constant, the geometrical rays associated with the eikonal equation (3) becomes
straight lines. Analogously, for the surface eikonal equation (9), the creeping rays for constant n are geodesics,
or shortest paths between two points on the surface. Henceforth, we will assume n ” 1 and a plane incoming
wave.

Introducing a parameter s, the bicharacteristics (u(s), p(s)) are determined by the solution of the following
Hamiltonian equations

_u ¼ H p ¼ G�1p; ð13aÞ

_p ¼ �H u. ð13bÞ

Here the dot denotes differentiation with respect to the parameter s. At the shadow line, the initial direction of
the geodesic should be parallel to the incident field. We demand that

d

ds
X ðuðsÞÞ

����
s¼0

¼ bI .

This implies that pð0Þ ¼ G _uð0Þ ¼ J>J _uð0Þ ¼ J> _X ð0Þ ¼ J>bI . The initial condition for the system (13) therefore
reads,

uð0Þ ¼ u0ðsÞ; ð14aÞ

pð0Þ ¼ p0ðsÞ :¼ J>ðu0ðsÞÞbI . ð14bÞ

We note that by (12),

pð0Þ ¼ J>ðu0ðsÞÞ er/ðu0ðsÞÞ ¼ J>JG�1r/ðu0ðsÞÞ ¼ r/ðuð0ÞÞ.

As for any Hamiltonian system it therefore follows that

pðsÞ ¼ r/ðuðsÞÞ; ð15Þ

for all s P 0, as long as / is smooth. As a consequence, (13) and (15) give

j _X j ¼
dX

ds

����
���� ¼ jJ _uj ¼ jJH pj ¼ jJG�1pj ¼ 1; ð16Þ

and we can identify the parameter s with arc length along the creeping rays X ðuðsÞÞ. In this case, the system of
four first-order ODEs (13) can be written as a system of two second-order equations [13],

€uþ C1
11 _u

2 þ 2C1
12 _u _vþ C1

22 _v
2 ¼ 0; ð17aÞ

€vþ C2
11 _u

2 þ 2C2
12 _u _vþ C2

22 _v
2 ¼ 0. ð17bÞ

Here Ck
ijðuÞ are Christoffel symbols, defined by

Ck
ij ¼

X2

m¼1

1

2
gkm½ðgjmÞi þ ðgimÞj � ðgjiÞm�;

where (gij) = G and (gij) = G�1, and subscripts 1 and 2 denote differentiation with respect to u and v,
respectively.

Now if we set _u ¼ du
ds
¼ q cos h and _v ¼ dv

ds
¼ q sin h, then _v ¼ _u tan h, and by differentiating with respect to s,

€v ¼ €u tan hþ _u
1

cos2 h
_h. ð18Þ

Moreover by (16),
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q ¼ qðu; v; hÞ ¼ J
cos h

sin h

� �����
����
�1

¼ jX u cos hþ X v sin hj
�1.

Let c:¼(u,v,h). Using (18), we get

_h ¼ qðcÞVðcÞ;

where

VðcÞ :¼ ðC1
11 cos

2 hþ 2C1
12 cos h sin hþ C1

22 sin
2
hÞ sin h� ðC2

11 cos
2 hþ 2C2

12 cos h sin hþ C2
22 sin

2
hÞ cos h.

Therefore the system of ODEs (17), for geodesics, reduces to

_u

_v

_h

0
B@

1
CA ¼

qðcÞ cos h

qðcÞ sin h

qðcÞVðcÞ

0
B@

1
CA ¼: gðcÞ. ð19Þ

2.2. Phase and amplitude

Let us now derive the ODEs for the surface phase / and amplitude a. As before, we parametrize the creep-
ing ray with the arc length s in the physical space. In the surface field associated with the creeping ray (6), the
phase function /(u(s)) and the amplitude a(u(s)) of the field vary with the distance s along the ray.

From (13) and (15) it follows that the phase of the geodesic satisfies the ODE,

d/ðuðsÞÞ

ds
¼ r/ � _u ¼ r/ � G�1r/ ¼ j er/j

2
¼ 1; /ð0Þ ¼ /0ðu0Þ. ð20Þ

Hence, the phase is the length of the ray.
Now consider a narrow strip of a creeping ray, starting at the incident point Q0 on the shadow line and

propagating along a geodesic on the scatterer surface. See Fig. 2.
To determine an equation for the amplitude, we apply the optical form of energy conservation principle in a

small interval from s to s + ds, [18], and get

d

ds
½aðsÞ2drðsÞ� ¼ �2aðsÞ½aðsÞ2drðsÞ�; ð21Þ

where dr(s) is the width of the strip at distance s from Q0, and a(s) is an attenuation factor. Solving (21) gives
us

aðsÞ ¼ a0
dr0

dr

� �1
2

exp �

Z s

0

aðrÞdr

� �
; ð22Þ

where a0 and dr0 are the amplitude and strip width at Q0, respectively. There are thus two parts in this equa-
tion which we can treat separately: the attenuation, represented by the exponential, and the geometrical
spreading of the creeping ray, represented by dr

dr0
.

dσ

dττ

Q 0

Fig. 2. A narrow strip of a creeping ray on the surface.
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2.2.1. Attenuation

We will here show that the attenuation can be obtained by solving an ODE coupled to the geodesic system
(19).

The attenuation factor a is given by [18,20],

a ¼
q0
qg

exp i
p

6

� � xqg

2

� �1=3

:¼ x1=3ea.

Here q0 � 2.33811 is the smallest positive zero of the Airy function, and qg is the radius of curvature of the
surface with respect to arc length along the ray trajectory, given by [10],

qg ¼
1

�bT >Du
bN _u

; bT ¼
dX

ds
ðuðsÞÞ ¼ J _u.

Here, bT is the tangent vector to the surface in the geodesics direction, and Du
bN ¼ ½bN u

bN v� is the Jacobian of the
normal vector bN . Note that jbT j ¼ 1 by (16). Since bT , bN and _u are functions of (u,v,h), so is ea ¼ eaðu; v; hÞ. We
can therefore add the ODE

db

ds
¼ eaðu; v; hÞ; bð0Þ ¼ 0; ð23Þ

to the geodesic system (19), and then express the attenuation as

exp �

Z s

0

aðrÞdr

� �
¼ expð�x1=3bðsÞÞ.

Note that b is independent of the frequency x.

2.2.2. Geometrical spreading

To compute the amplitude of the creeping ray from (22), we also need to compute the geometrical spread-
ing. We consider again a narrow strip of a geodesics, as in Fig. 2, and let dr0(s) and dr(s,s) be the strip width
at the shadow line and at the distance s from the shadow line, respectively.

Set euðs; sÞ :¼ uðsÞ, where (u(s),p(s)) is a solution to (13) with the initial data (14) so that euðs; 0Þ ¼ u0ðsÞ.
Moreover, let

eX ðs; sÞ :¼ X ðeuðs; sÞÞ.
Then eX is the point on the geodesic at the distance s from the shadow line, and eX 0ðsÞ ¼ eX ðs; 0Þ is the starting
point on the shadow line. Denote the geometrical spreading of the creeping ray at the point eX ðs; sÞ in the phys-
ical space by

Qðs; sÞ :¼
drðs; sÞ

dr0ðsÞ
.

Moreover, let dr0
0 and dr 0 be the strip width in the direction of the shadow line, defined by dr0

0 ¼ jeX 0sjds and
dr0 ¼ jeX sjds. See Fig. 3. Then we have

cos b0 ¼
dr0

dr0
0

¼
eX ?

0s

jeX ?
0sj

�
eX 0s

jeX 0sj
; ð24Þ

cos b ¼
dr

dr0
¼

eX ?
s

jeX ?
s j

�
eX s

jeX sj
; ð25Þ

where the s- and s-subscripts denote differentiation along the ray and the shadow line, respectively, and eX ?
s is

orthogonal to eX s in the tangent plane to the surface. Since j eX ?
0s j¼j eX ?

s j¼ 1 by (16), the geometrical spread-
ing is then computed as,

Qðs; sÞ ¼
eX ?

s � eX s

eX ?
0s � eX 0s

. ð26Þ
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We will show how to calculate the right hand side of (26) numerically, below.

2.3. Eulerian formulation

There are a number of drawbacks with Lagrangian methods based on solving the ODEs (19), (20) and (23).
In particular, in the regions where rays diverge or cross, interpolation can be difficult. Instead, we use an Eule-
rian formulation and derive time-independent PDEs, which can be solved on a fixed computational grid.

We introduce the phase space P ¼ R
2 � S, where S is the periodic sphere. We consider the triplet

c = (u,v,h) as a point in this space. The geodesics on the scatterer are then confined to a subdomain
Xp ¼ X� S � P in phase space.

Let us now introduce an unknown function F : P ! P,

F ðcÞ ¼

UðcÞ

V ðcÞ

HðcÞ

0
B@

1
CA; ð27Þ

which is the point where the geodesic starting at u = (u,v) 2 X with direction h 2 S will cross the boundary of
Xp. See Fig. 4. Since F is constant along a geodesic, we have

0 ¼
d

ds
F ðuðsÞ; vðsÞ; hðsÞÞ ¼

du

ds
F u þ

dv

ds
F v þ

dh

ds
F h. ð28Þ

,

,

Fig. 4. A geodesic in the parameter space. The function F is defined as F(u,v,h) = (U,V,H), with the notation as in the figure.

Shadow

line

dσ 0

dσ 0

dσ

dσ

X̃ 0 ( )

(s, τ )

0

⊥
0 τ

⊥
τ

β

β

0X̃

X̃

X̃
X̃

X̃

s

s

Fig. 3. Geometrical spreading of a creeping ray on the surface, starting at the shadow line and ending at the boundary.
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Using (28) and (19), we can write the escape PDE for F as

cos hF u þ sin hF v þVðcÞF h ¼ 0; c 2 Xp; ð29Þ

with the boundary condition at inflow points, i.e., the points on oXp at which geodesics are out-going,

F ðcÞ ¼ c; c 2 oXinflow
p .

Note that inflowing characteristics correspond to out-going geodesics.
Now we define a surface phase U : P ! R, such that U(c) is the distance traveled by a geodesic starting at

the point u with direction h before it hits the boundary of Xp. Using (20), we can derive the PDE for U as

cos hUu þ sin hUv þVðcÞUh ¼
1

qðcÞ
; c 2 Xp; ð30Þ

with the boundary condition at inflow points

UðcÞ ¼ 0; c 2 oXinflow
p .

In the same way we define a function B : P ! R as the b-value of a geodesic starting at the point c 2 Xp

when it hits the boundary of Xp. We then use (23) and derive the PDE for B as

cos hBu þ sin hBv þVðcÞBh ¼
eaðcÞ
qðcÞ

; c 2 Xp; ð31Þ

with the boundary condition at inflow points

BðcÞ ¼ 0; c 2 oXinflow
p .

For the geometrical spreading we consider a fixed shadow line c0(s) = (u0(s),v0(s),h0(s)) and like in Section
2.2.2 we define

euðs; sÞ ¼ uðsÞ; evðs; sÞ ¼ vðsÞ; ehðs; sÞ ¼ hðsÞ;

where (u,v,h) solves (19) with initial data (u0(s),v0(s),h0(s)). Setting ec ¼ ðeu;ev; ehÞ we thus have

ecs ¼ gðecÞ; ecðs; 0Þ ¼ c0ðsÞ;

with g defined in (19).
For a given shadow line, the creeping rays will lie on a submanifold of phase space P which we define as

Lðc0Þ ¼ fecðs; sÞ : s P 0g. We then introduce the function Q : Lðc0Þ ! R as

Qðecðs; sÞÞ :¼ Qðs; sÞ.

which is a Eulerian version of the geometrical spreading, restricted to Lðc0Þ. We will use the following simple
Lemma.

Lemma 1. The Jacobian DcF ðcÞ 2 R
3�3 has rank two for all c 2 Xp where it is well-defined. Its null space is

spanned by g(c).

Proof 1. That DcF(c)g(c) = 0 is just a restatement of (29). Suppose DcF(c)v = 0 and construct a curve
c0ðsÞ � P satisfying c0(0) = c and c00ð0Þ ¼ v. Let ecðs; sÞ be defined for this curve in the same way as above.
Then d

ds
F ðc0ðsÞÞ ¼ 0 for s = 0. Moreover, since DcF(c) is well-defined there is a differentiable function bsðsÞ

such that F ðc0ðsÞÞ ¼ ecðs;bsðsÞÞ in a neighborhood of s = 0. Together this means that

0 ¼
d

ds
ecðs;bsðsÞÞ

����
s¼0

¼ ecsð0;bsð0ÞÞ þ bs0ð0Þecsð0;bsð0ÞÞ. ð32Þ

Since �bs0ð0Þecsð0; sÞ is a solution to the ODE ðecsÞs ¼ DcgðecÞecs for s = 0, uniqueness of ODE solutions implies
that (32) holds for all s P 0, in particular

ecsð0; 0Þ þ bs0ð0Þecsð0; 0Þ ¼ 0 () v ¼ �bs0ð0ÞgðcÞ.
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Hence, if v is in the nullspace, then it is parallel to g(c), and the nullspace is thus one-dimensional. h

In order to compute Q we first find a solution z = z(s,s) to

DcF ðecÞz ¼
d

ds
F ðc0ðsÞÞ. ð33Þ

We note that F ðecðs; sÞÞ ¼ F ðc0ðsÞÞ for all s P 0, so this z satisfies

DcF ðecÞz ¼ DcF ðecÞecs.

By Lemma 1 we therefore get

zðs; sÞ ¼ ecs þ agðecÞ ¼ ecs þ aecs;
for some a and since eX s ¼ bT ðecÞ by (16), we have

½bT ðecÞ � bN ðeu;evÞ�>Jðeu;evÞez ¼ eX ?
s � ðeX s þ aeX sÞ ¼ eX ?

s � eX s;

where ez 2 R
2 contains the first two components of z. Consequently, since bT ðc0ðsÞÞ ¼ bI ,

QðecÞ ¼ ½bT ðecÞ � bN ðeu;evÞ�>Jðeu;evÞez
½bI � bN ðu0ðsÞÞ�

> eX 0sðsÞ
: ð34Þ

On the boundary, when ec 2 oXp we can simplify the computation and avoid solving for z in (33). Let
bX : R ! R

3 be defined by bX ðsÞ :¼ X ðUðc0ðsÞÞ; V ðc0ðsÞÞÞ with U, V defined in (27). As in the proof of Lemma
1 there is a function bsðsÞ such that

bX ðsÞ ¼ eX ðs;bsðsÞÞ. ð35Þ

After differentiating (35) with respect to s, we get

bX sðsÞ ¼ eX sbs0ðsÞ þ eX s.

Therefore, for ec on the boundary, i.e. ec ¼ F ðc0Þ,

QðecÞ ¼ ½bT ðecÞ � bN ðeu;evÞ�> bX sðsÞ

½bI � bN ðu0ðsÞÞ�
> eX 0s

. ð36Þ

Note that bX sðsÞ can easily be computed from the numerical solution to the PDE (29).

3. Numerical solution of the PDEs

All PDEs (29)–(31) are of the general form

af u þ bf v þ cf h ¼ dðu; v; hÞ; ð37Þ

which are time-independent hyperbolic equations.
In the phase space P, the direction of characteristics at the points on the boundary determines if boundary

conditions are needed at that point. We assign boundary conditions at the points where a characteristic is in-
going. For example a characteristic is in-going if _u ¼ q cos h > 0 on the left boundary and if _v ¼ q sin h > 0 on
the lower boundary. More precisely, suppose X is the unit square and �p < h 6 p. Then we prescribe bound-
ary condition on oXinflow

p given by

oXinflow
p ¼ u ¼ 0; jhj <

p

2

n o[
u ¼ 1; jh� pj <

p

2

n o[
fv ¼ 0; h > 0g

[
fv ¼ 1; h < 0g.

We always use periodic boundary conditions in the h direction.
To solve these equations, we use a Fast Marching algorithm, given by Fomel and Sethian [8]. We let

f = (F,U,B) and discretize the phase space domain Xp ¼ X� S uniformly, setting ui = iDu, vj = jDv and
hk = kDh, with the step sizes Du ¼ Dv ¼ 1

N
and Dh ¼ 2p

N
. Then by solving the PDEs (37), we get the approximate

solution
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fijk ¼ ðF ijk;Uijk;BijkÞ � ðF ðui; vj; hkÞ;Uðui; vj; hkÞ;Bðui; vj; hkÞÞ.

The complexity is OðN 3 logNÞ. See [8] for more details.

4. Post-processing

To extract properties like phase and amplitude for a ray family, post-processing of the solution to the
escape PDEs (37) is needed. It is based on the following simple observation. By the uniqueness of solutions
of ODEs,

F ðc1Þ ¼ F ðc2Þ;

if and only if the points c1 and c2 lie on the same geodesic.
As an example, suppose we want to compute the surface phase at a point on the scatterer, when the scat-

terer is illuminated. We assume that the shadow line c0(s) = (u0(s),v0(s),h0(s)) is known. For each point
(u,v) 2 X covered by the surface wave there is at least one creeping ray passing that point starting at the sha-
dow line c0(s). By the argument above, we can thus find s = s*(u,v) and phase angle h = h*(u,v), as the solution
to

F ðc0ðsÞÞ ¼ F ðu; v; hÞ. ð38Þ

The phase at (u,v) is then given by

/ðu; vÞ ¼ /0ðu0ðs
	ÞÞ þ Uðc0ðs

	ÞÞ � Uðc	Þ; c	 ¼ ðu; v; h	Þ;

with /0 as in (12). Note that c* is now in the submanifold Lðc0Þ which was defined in Section 2.3. There may be
multiple solutions (s*,h*) to (38), giving multiple phases.

We now introduce a function A : Lðc0Þ ! R as the amplitude at the point c 2 Lðc0Þ on the geodesic starting
at the shadow line c0(s). By (22) we can write

Aðc	Þ ¼ A0Qðc
	Þ

�1
2 exp �x

1
3ðBðc0ðs

	ÞÞ � Bðc	ÞÞ
� �

;

where A0 is the amplitude at the point c0(s*), and Q(c*) is computed by (34).
The main difficulty here is to solve (38). We now show how to solve it. Since F = (U,V,H) is a point

on the phase space boundary oXp, it can be reduced to a point (S,H) in R
2. For example in a rectangular

domain X, Fig. 5, we choose S 2 [0, 2p] along oX to be zero at the lower left corner, p at the upper right
corner, and 2p again at the lower left corner. Now the left and right hand sides of (38) are curves in R

2

parameterized by s and h, and solving the algebraic equation (38) amounts to finding crossing points of
these curves. See Fig. 5.

,

,

Fig. 5. Left figure shows a geodesic in a rectangular domain in the parameter space and the choice of S on the boundary. Right figure

shows two crossing curves. One curve is for all points on the shadow line, parameterized by s. The other curve is for a single point in the

parameter space with all directions, parameterized by h.
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Numerically, we discretize the parameterization of the shadow line in N grid points {sm}, m = 1, . . . , N.
For each point {u0(sm)} on the parameter space shadow line, the ray direction h0(sm) at the shadow line is
computed using the fact that the tangential vector bT to the hypersurface at the point c0(sm) should be in
the same direction as the incident angle bI :

bT ðc0ðsmÞÞ ¼ bI . ð39Þ

After obtaining the discretized phase space shadow line {c0(sm)}, we then interpolate the approximate solution
fijk (available on a regular grid) to find the approximate solution on the shadow line:

ef sm ¼ ðeF sm ; eUsm ; eBsmÞ � ðF ðc0ðsmÞÞ;Uðc0ðsmÞÞ;Bðc0ðsmÞÞÞ.

Having the discretized solution on the shadow line and at the point (u,v) 2 X for all N directions h 2 [0, 2p], we
then need to find crossing points of two complex lines of N straight line segments. These crossing points will
then be the solutions to (38). The amount of work to do this is proportional to N, by using a monotonic sec-
tions algorithm; see e.g. [27]. For all N2 points on the surface the computational cost for finding crossing
points will then be OðN 3Þ. The complexity to solve the PDEs using the Fast Marching method is
OðN 3 logNÞ. Therefore the total complexity will be OðN 3 logNÞ.

If we only need to compute the field for one shadow line, it could be done faster. For example by using wave
front tracking or solvers based on the surface eikonal equation, the complexity is OðN 2Þ. But there are appli-
cations when we need the field for many shadow lines. In such cases, using the Fast Marching method can be
much faster. We will show one such application in the next section.
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Fig. 6. Ray propagation on the shadow zone of an ellipsoid. Top figures show the creeping rays (left) and iso-phase curves (right) in the

parameter space between two shadow lines. Bottom figure shows the iso-phase curves and the shadow line (bold) in the physical space.

M. Motamed, O. Runborg / Journal of Computational Physics 219 (2006) 276–295 287



As an example, in Fig. 6, the iso-phase curves are shown for an ellipsoid illuminated by incident rays in
direction bI ¼ ½0; 1; 0�. In the shadow zone between the two shadow lines, there are either one, two or three
phases. As it can be seen, multiple phases can be captured. The solution here is computed by the Fast March-
ing method on a 1203 grid and using the post-processing described above.

0 0.4 0.8 1.2 1.6

4

5

6

S

Θ

1 2
0

1

2

3

4

5

6

u

v

s
1

s
2

Fig. 8. Right figure shows all creeping rays starting at the shadow line (dashed) and ending at the boundary. The two bold curves are the

backscattered ray. Left figure shows two curves corresponding to the rays hitting the top and bottom boundaries in the parameter space.

Circles denote the values computed by the Fast Marching method and solid lines denote the values computed by a high order accurate ray

tracing method. The crossing point corresponds to the backscattered ray. (a) F(c(s1)) and F(c(s2)) + C; (b) creeping rays in (u,v) space.
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Fig. 7. Shadow line in the physical and parameter space: (a) shadow line in (x,y,z)-space; (b) shadow line in (u,v)-space.
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5. An application to mono-static RCS computations

Mono-static RCS is a measure of backscattered radiation in the direction of incident waves, when an
object is irradiated. Normally most part of it consists of direct reflections, but for not too high frequencies
there are situations where creeping rays can give important contribution [3]. The rays that propagate on the
surface of the scatterer and return in the opposite direction of incident waves are called backscattered creep-

ing rays.
In this section we apply the fast phase space method on a scattering problem and compute the contri-

bution of the backscattered creeping rays to RCS. For simplicity we only consider the amplitude on the
scatterer, ignoring the effect of diffraction coefficients and geometrical spreading outside the scatterer.
We assume that the incoming amplitude is one on the shadow line and compute the backscattered ampli-
tude on the shadow line before the ray leaves the scatterer. We compare the results with standard ray
tracing.

5.1. Scattering problem

As a test case we consider a hypersurface X ¼ X ðu; vÞ which is a patch of an ellipsoid with the following
parametric equations:

x ¼ �r1 cos u;

y ¼ r2 sin u cos v;

z ¼ r3 sin u sin v;

where r1 = 2, r2 = 1, and r3 = 0.5 are the ellipsoid’s semiaxes. Notice that in order to avoid the irregularity at
the points (±r1, 0,0), we cut off these points from the parameter space.

First, we need to compute the shadow lines on the scatterer. For this hypersurface we can find them ana-
lytically. By (7) and (8), the shadow line corresponding to the incident direction bI ¼ ½ı1; ı2; ı3� is given by

ı1r2r3 cos u0ðsÞ � ı2r1r3 sin u0ðsÞ cos v0ðsÞ � ı3r1r2 sin u0ðsÞ sin v0ðsÞ ¼ 0.

The ray directions h0(s) at the shadow line are then computed using (39). For example, in Fig. 7 the shadow
line is shown for bIk½0:9; 1; 0:1� in physical and parameter space, respectively.
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Fig. 9. Length of the backscattered creeping rays for many illumination angles.
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5.2. Finding the backscattered rays

The goal is to find the length and amplitude of the backscattered creeping rays for different incident angles.
In order to find the backscattered creeping rays, we use post-processing as before. A backscattered ray starting
at point s1 and ending at point s2 on shadow line should satisfy

F ðcðs1ÞÞ ¼ F ðcðs2ÞÞ þ C; ð40Þ

where the constant C accounts for the fact that the upper and lower boundaries in the parameter space coin-
cide on the hypersurface. It means that the points with S = p, . . . , 3p/2 should be changed to S = p/2, . . . , 0
and at the same time their H values should be added by p. The reason for adding by p is that we need to re-
verse the direction of the geodesic starting at s2. Notice that we only consider the geodesics which hit the upper
and lower boundaries, because the left and right boundaries are indeed artificial boundaries, introduced to
avoid the irregularity.

As before, the right and left hand sides of (40) are curves in R
2 parameterized by s, and to find the back-

scattered ray we need to find crossing points of these curves. Fig. 8(a) shows the intersecting curves in the
(S,H)-plane for the points on the shadow line corresponding to geodesics hitting the lower and upper bound-
aries in parameter space, c.f. Fig. 5. Fig. 8(b) shows the creeping rays starting at all N points on the shadow
line and the backscattered ray (bold line).

5.3. Length and amplitude of backscattered ray

The length and amplitude of the backscattered creeping rays are computed by a third order interpolation of
the solution to the PDEs (37). For a given incident direction bI ¼ ½ı1; ı2; ı3�, the horizontal and vertical incident
angles are calculated as

Fig. 10. Amplitude of the backscattered creeping rays for many illumination angles for x = 1.
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Fig. 11. The backscattered creeping rays for four different illumination angles and two different frequencies. Left figures show the

backscattered rays in the physical space by bold solid lines. The view direction is in the illumination direction, so that the shadow line is the

outer most curve around the ellipsoid. Right figures show the backscattered rays in the parameter space. Shadow lines here are shown by

dashed lines. The amplitudes for x = 1 and x = 20 are denoted by a1 and a20, respectively. (a) w1 = 0, w2 = 0, length = 2.44, a1 = 0.022;

(b) w1 = 0, w2 = 56, length = 2.43, a1 = 0.044; a20 = 2.40 · 10�5; (c) w1 = 58, w2 = 0, length = 2.89, a1 = 0.010; a20 = 6.84 · 10�6; (d) w1 =

58, w2 = 56, length = 2.16, a1 = 0.012; a20 = 8.73 · 10�6.
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w1 ¼ arctan
ı1

ı2

� �
; w2 ¼ arctan

ı3

ı2

� �
.

They vary from �60� to 60�. Fig. 9 shows the length for different incident angles.
For computing the geometrical spreading, we again use the fact that the upper and lower boundaries of the

doman X in the parameter space coincide on the hypersurface. Therefore, one can consider a new domain eX
consisting of two domains X on top of each other, connected by the boundary v = 0. The creeping ray starting
at the point cðs1Þ in the upper domain continues in the lower domain and hits the shadow line at the point

ecðs2Þ ¼ cðs2Þ þ C, with C ¼ ð0;�2p; pÞ. Now, let eF be the escape location and direction on oeX for the

extended doman eX. We will have eF ðcðs1ÞÞ ¼ F ðF ðcðs1ÞÞ þ eCÞ � eC and eF ðecðs2ÞÞ ¼ F ðecðs2Þ þ eCÞ � eC where
eC ¼ ð0; 2p; 0Þ. We can then use (34) to compute the geometrical spreading Qðecðs2ÞÞ at the point ecðs2Þ from
the starting point cðs1Þ The amplitude is computed by

Aðcðs2ÞÞ ¼ Aðcðs1ÞÞðQðecðs2ÞÞÞ
�1
2 exp �x

1
3ðBðcðs1ÞÞ þ Bðcðs2ÞÞÞ

� �
:

Fig. 10 shows the amplitude for different incident angles. For some incident angles, the geometrical spreading
of the creeping ray becomes zero, These rays are called caustic backscattered creeping rays, and their amplitude
is infinite at the shawod line. However, away from the scatterer their contribution is bounded because of geo-
metrical spreading outside the scatterer. Note that in Fig. 10 the amplitudes larger than a certain value are not
shown.

Fig. 11 shows the backscattered creeping rays in the physical and parameter space for four different incident
directions.

5.4. Convergence and complexity

We use a first order Fast Marching algorithm. Fig. 12 shows the length U(u,p,p/2) obtained using a coarse
mesh of the size 603 and a fine mesh of the size 1203. We compare the solution with a reference solution
obtained by a high order accurate Ray tracing method. It confirms the first order accuracy of the Fast March-
ing algorithm.

0 1 2 3
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3.8

u

Ray tracing

Fig. 12. The length Uðu;p; p
2
Þ obtained using Fast Marching on a coarse and fine grid. They converge to a reference solution obtained by a

high order solver using Ray tracing.
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The convergence of the length and amplitude (at x = 1) of the backscattered creeping ray is shown in
Fig. 13 for a fixed vertical incident angle w2 = 6� and different horizontal incident angles w1. Although the rel-
ative error is worse for the amplitude than for the phase, the rate of convergence confirms the first-order accu-
racy of the method. The accuracy of amplitude can be improved either by using a higher order fast marching
method or by computing the geometrical spreading Q directly by using another ODE instead of numerically
differentiating the functions U and V with respect to u, v and h to compute bX sðsÞ in (36) as done in [17,31].

The complexity of using the fast phase space method proposed here consists of two parts. First, the cost of
solving the PDEs by the Fast Marching method is OðN 3 logNÞ. Second, the cost of finding the backscattered
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Fig. 13. Length and amplitude (at x = 1) of the backscattered ray for different horizontal incident angles w1 and a fixed vertical incident

angle w2 = 6. Solutions of Fast Marching algorithm converge to a reference solution obtained by Ray tracing as we use a finer grid. (a)

Length; (b) amplitude
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rays for each shadow line is OðNÞ. For all N2 shadow lines, it is OðN 3Þ. Therefore the total complexity will be
OðN 3 logNÞ. The total cost by using other methods, like wave front tracking and solvers based on the surface
eikonal equation, will be OðN 4Þ, if the cost for each shadow line is OðN 2Þ. In this case, using the Fast Marching
method will then be much faster.

6. Conclusion

We have presented a new phase space method for computing creeping rays in an Eulerian framework. We
have formulated the ray propagation problem as a set of time-independent PDEs in a three-dimensional phase
space. To solve the PDEs we have used a first-order fast marching method. Properties like phase and ampli-
tude for a ray family as well as wavefronts can be extracted through a fast post-processing. The method is
computationally attractive when the solution is sought for many different sources but with the same index
of refraction, for example in RCS computations.

In this paper, the surface is assumed to be represented by a single parameterization. In future work, we plan
to extend the method to be applicable to more complicated and realistic geometries which can be represented
by multiple parameterizations. The information can then be extracted by combining multi-patches through a
post-processing. Moreover, we will use a higher order method in order to increase the accuracy.
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Abstract.We present a multiple-patch phase space method for computing trajectories on two-dimensional
manifolds possibly embedded in a higher-dimensional space. The dynamics of trajectories are given by
systems of ordinary differential equations (ODEs). We split the manifold into multiple patches where each
patch has a well-defined regular parameterization. The ODEs are formulated as escape equations, which are
hyperbolic partial differential equations (PDEs) in a three-dimensional phase space. The escape equations
are solved in each patch, individually. The solutions of individual patches are then connected using suitable
inter-patch boundary conditions. Properties for particular families of trajectories are obtained through a
fast post-processing.

We apply the method to two different problems: the creeping ray contribution to mono-static radar cross
section computations and the multivalued travel-time of seismic waves in multi-layered media. We present
numerical examples to illustrate the accuracy and efficiency of the method.

Keywords. ODEs on a manifold; Phase space method; Escape equations; High frequency wave propagation;
Geodesics; Creeping rays; Seismic waves; Travel-time

1 Introduction

We want to compute trajectories on two-dimensional compact manifolds possibly embedded
in a higher-dimensional space. The dynamics of the trajectories we consider are given by
systems of ODEs in a phase space. In many problems, we need to compute a large number
of trajectories. In other words, the dynamical systems of ODEs need to be integrated for
many different initial conditions. Examples include geodesics computation in computational
geometry [11], robotics [2] and the theory of general relativity.

Our motivation for this comes from high frequency wave propagation problems. We
consider the problem of scattering of a time-harmonic incident field by a bounded scatterer
D. We split the total field into an incident and a scattered field. The scattered field in the
region outside D is given by the Helmholtz equation,

∆W + n(x)2ω2W = 0, x ∈ R
3 \ D̄, (1)

where n(x) is the index of refraction, and ω is the angular frequency. We can impose either
a Dirichlet, Neumann or Robin boundary condition on the boundary of the scatterer ∂D
and the Sommerfeld radiation condition at infinity.

The computational cost of direct numerical simulations of (1) grows algebraically with
the frequency. Therefore, at high frequencies, numerical methods based on approximations
of (1) are needed.

Geometrical optics (GO), for example, considers simple waves,

W (x) ≈ a(x)eiωφ(x), x ∈ R
3, (2)
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when ω → ∞. The amplitude a(x) and the phase function φ(x) depend only mildly on ω,
and the computational cost will then be independent of ω. GO can be formulated either as
PDEs for φ and a, known as eikonal and transport equations, respectively, or as a system of
ordinary differential equations (ODEs).

Geometrical theory of diffraction (GTD), [18] is a correction to the GO approximations by
adding diffraction effects. One type of diffracted rays are creeping rays which are generated
at the shadow line of the scatterer and propagate along geodesics on the surface, continuously
shedding diffracted rays in their tangential direction. A wave field, associated to a creeping
ray, is generated on the surface

Ws(u) = a(u)eiωφ(u), (3)

where φ(u) and a(u) are surface phase and amplitude and u ∈ R
2 is a parameterization of

the surface. The creeping rays are related to (3) in the same way as the standard GO rays
are related to (2). Similar to GO rays, creeping rays can also be formulated either as PDEs
or as a system of ODEs. There are two different approaches to compute the standard GO
and creeping rays and the associated wave fields in (2) and (3); Lagrangian and Eulerian
methods. Lagrangian methods are based on ODEs. The simplest Lagrangian method is
standard ray tracing [6, 24, 13, 29] which gives the phase and amplitude solution along a
ray. Interpolation must then be applied to obtain the solution everywhere. But, in regions
where rays cross or diverge this can be rather difficult. The interpolation can be simplified
by using wave front methods [38, 10]. In these methods, instead of individual rays, an
interface representing a wave front is evolved. Eulerian methods, on the other hand, are
based on PDEs. The PDEs are discretized on fixed computational grids to control accuracy
everywhere, and there is no problem with interpolation. The simplest Eulerian methods
solves the eikonal and transport equations [37, 36, 8, 20]. However, these equations only give
the correct solution when it is a single wave. In the case of crossing waves, more elaborate
schemes have been devised based on a third formulation of geometrical optics as a kinetic
equation set in phase space. A survey of this research effort, in the free space GO case, is
given in [7, 31, 25]. In the surface ray case, see [26, 39] for some recent works.

Fomel and Sethian [9] presented a fast phase space method for computing solutions of
static Hamilton-Jacobi equations in phase space. Their method is based on escape equations
which are time-independent PDEs in a three-dimensional phase space. The PDE solutions,
computed by a fast marching method, give the information for all trajectories from all
possible starting configurations.

Recently, the authors extended the fast phase space method [26] to efficiently computing
all possible creeping rays on a hypersurface. The escape solutions contains information
for all incident angles. The phase and amplitude of the field are then extracted by a fast
post-processing. This method is computationally attractive when the solution is sought for
many different sources but with the same index of refraction, for example for computing the
mono-static radar cross section (RCS). The computational cost of solving the PDEs is less
than tracing all rays individually. If the surface is discretized by N2 points the complexity
is O(N3 log N), which is close to optimal. In the mono-static RCS case, direct ray tracing
would cost O(N4) if a comparable number of incidence angles (N2) and rays per angle (N)
are considered.

However, it is only applicable for the scatterer surfaces with simple geometries. It assumes
that the surface is represented by a single parameterization, and therefore surfaces with
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coordinate singularities cannot be treated, and the singularity has to be excised. Most
scatterer surfaces with complicated geometries, for example, cannot be represented by a
single non-singular explicit parameterization. This problem can be resolved by splitting the
scatterer surface into several simpler surfaces with explicit parameterizations. These multiple
patches collectively cover the scatterer surface in a non-singular manner. Moreover, one can
get other benefits by this way:

1. Smaller gradients in the solution by refining the patches with higher varying velocity
coefficients.

2. Possibility to parallelize, since the patches can be handled independently.

3. Less internal memory needed.

4. Using the possible symmetry of the scatterer (for example for an ellipsoid).

In this paper, we consider a two-dimensional compact manifold M embedded in R
d and

compute trajectories on the manifold. We first consider the case when the manifold is
represented by a single regular parameterization and modify the fast phase space method
[9, 26] to a more general class of problems. Second, we consider the case when the manifold
is represented by an atlas of charts and modify the single-patch phase space method to this
case. In both cases, dynamics of trajectories are given by systems of first-order ODEs.

Multiple-patch (or multi-block) finite difference schemes have long been used in compu-
tational science. They are a sub-class of domain decomposition methods for solving PDEs
by iteratively solving sub-problems on smaller sub-domains [5]. However, the scheme pre-
sented here is not based on iterations. Another domain decomposition method related to
the multiple-patch algorithm is the slowness matching Eulerian method [34], where local
single-valued solutions of the eikonal equations are patched together by slowness matching
to obtain a global, multi-valued traveltime field.

In Section 2, we give the governing equations describing the dynamics of trajectories
on two classes of compact manifolds: the manifolds which can be represented by a single
regular parameterization and the manifolds which are described by an atlas of charts. The
construction of the single and multiple-patch schemes are described in Section 3 and 4,
respectively. In Section 5 and 6, we present applications in computing creeping rays and
seismic waves, together with sample numerical results from a prototype implementation of
the scheme.

2 Governing Equations

Consider a two-dimensional compact manifold M embedded in R
d. We want to compute

trajectories on the manifold. Since we are interested in applications to wave propagation
problems, it is natural to consider the trajectories as rays, and we will use this terminology
henceforth.

We consider two cases: when the manifold is represented by a single regular parameteri-
zation, and when the manifold is represented by an atlas of charts. In both cases, dynamics
of rays are given by systems of three first-order ODEs describing the rate of change of the
rays’ location and direction along the ray trajectories.
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2.1 Single-Patch Manifolds

First, assume that the manifold can be represented by a regular parameterization x = X̄(u),
where x ∈ M , and the parameters u = (u, v) belong to a set Ω ⊂ R

2. Note that if M is a
hypersurface or a plane embedded in R

3, then x = (x, y, z) ∈ R
3, and if M is a plane in R

2,
then x = (x, y) ∈ R

2.
We introduce the phase space P = R

2 × S, where S = [0, 2 π], and consider the triplet
γ = (u, v, θ) as a point in this space. Let the rays be given by a system of three ODEs

γ̇ = g(γ), (4)

where the dot denotes differentiation with respect to the parameter τ being the arc length
along the rays, and g = (g1, g2, g3) is a given three-vector function which is periodic in θ ∈ S.
The ray trajectories on M are then confined to a subdomain Ωp = Ω×S ⊂ P in phase space.
Note that the parameter values u = (u, v) represent the rays’ location X̄(u) on M , and the
angle θ represents the direction of the rays.

Remark 1. A generic Hamiltonian system with Hamiltonian H(u,p) in four-dimensional
space Ω×R

2, with p ∈ R
2, can typically be reduced to the form (4). Here, θ can, for instance,

be an angle representing the direction of vector p. For example, if H = |p|2 + V (u) ≡ C,
one can reduce it by setting

p = (C − V (u))1/2 (cos θ sin θ)⊤,

where C is determined by initial data. See also Section 5 and Section 6 for more examples.

Moreover, let any information transporting along the rays, represented by a (possibly
vector-valued) function β(τ), be given by a more general system of the form

β̇ = α(γ, β), (5)

where α(γ, β) is some given function. For example, when β is the length of the ray, we have
α ≡ 1.

2.2 Multiple-Patch Manifolds

There are two main classes of problems for which representing the manifold by a single
parameterization is not applicable: the manifolds which cannot be described by a single
regular parameterization due to singularities, e.g. an airplane surface, and the manifolds
with different (discontinuous) material properties, e.g. earth consisting of materials with
different seismic velocities. The former is of topological and geometrical nature related to
the underlying manifold, and the latter is more special application oriented.

We therefore, secondly, consider the more general case when M is described by an atlas of
charts (Mj , wj), with j = 1, . . . , P , where the sets Mj collectively cover M , and the mapping
wj : Mj → Ω is bijective. In particular, we assume that Ω is the unit square and Mj are
patches with parametric equations

x = X̄j(u) : [0, 1]2 → Mj ⊂ R
d,

and the mappings are wj = X̄−1
j . Then M =

⋃

j w−1
j ([0, 1]2). Note that although the sets are

closed, we still consider M as an atlas. We assume further that the patches stick together
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along their sides (patch boundaries) and denote the side between two connected patches Mj

and Mj′ by Sjj′. Note that it is possible to have j = j′, for instance when M is a torus.
When j 6= j′, we have Sjj′ = Mj ∩Mj′. It is also possible that a patch does not share a side
with another patch, for example, if the manifold has boundary (e.g. a finite cylinder). We
denote such a side by S0j which belongs only to Mj. Denote the set of all sides by S.

For each patch with the id number j, let the rays be given by a system of three equations
set in Ωp,

γ̇ = gj(γ), (6)

where gj = (gj
1, g

j
2, g

j
3) is a given three-vector function. Note that gj may be different for

different j. As before, the systems (6) are natural structures for Hamiltonian systems on
four-dimensional spaces Ω×R

2 with Hamiltonian Hj(u,p) whose order are reduced by one.
Correspondingly, let any information transporting along the rays, represented by a (pos-

sibly vector-valued) function β(τ), be given by a system of the form

β̇ = αj(γ, β), (7)

where αj(γ, β) is a given function.
A main difference between the numerical methods for the single patch representation

of the manifold and the multiple-patch case is that in the latter we need to connect the
solutions of adjacent patches and impose suitable conditions at the inter-patch boundaries.
In order to treat this problem, we need to introduce a global space, which is bijective with
the space ZP × Ωp, and in which the boundary conditions are defined and can easily be
handled. Here ZP = {1, 2, . . . , P}. We first note that by our assumptions above, there is a
bijective mapping between (j,u) ∈ ZP ×Ω and x ∈ M , except when x is at patch boundaries
(x ∈ Sjj′). Now, let TxM be the tangent plane (the set of tangent vectors) to M at point
x ∈ M and TM =

⋃

x∈M TxM be the tangent bundle of M . The dimension of TM is twice
the dimension of M . An element of TM is a pair Γ := (x,q) where x ∈ M and q ∈ TxM .
We consider the unit tangent bundle UTM of M which contains all unit-normed tangent
vectors (‖q‖ = 1). Note that UTM is a three-dimensional manifold embedded in R

2d.
We now want to prove that the unit tangent bundle UTM is in fact the global manifold

which is bijective with the space ZP ×Ωp. But, before the proof, we notice that, by construc-
tion, for each point Γ = (x,q) ∈ UTM , there is a well-defined patch id number j = J (Γ),
except when x is on patch boundaries. We extend this function also to the patch boundaries
as follows:

• if x ∈ Sjj′ and q 6‖ Sjj′, then J (Γ) = limǫ→0 arg minj dist(x + ǫq, Mj), which means
that J (Γ) is the id of the patch into which the ray starting at Γ enters.

• if x ∈ Sjj′ and q ‖ Sjj′, then J (Γ) = max(j, j′).

Where by q ‖ Sjj′, we mean that q is parallel to the patch boundary in an interval around
x ∈ Sjj′. Therefore in this case, Γ belongs to both UTMj and UTMj′ , and we can choose
either of j′ and j′ as the value of the function J (Γ). In order to have a well-defined function,
we choose the larger one. Moreover, if x is at a corner sharing several patches j, j′, j′′, . . . ,
and q is parallel to Sjj′, we again choose J (Γ) = max(j, j′).

We now prove the following Lemma.
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Lemma 1. Suppose the Jacobian Jj = DuX̄j ∈ R
d×2 has full rank for all (j,u) ∈ ZP × Ω.

For each j there is then a bijective mapping Wj : UTMj → Ωp given by Wj(Γ) = γ, where

Γ = (x,q), q =
Jj(wj(x))ŝ(θ)

|Jj(wj(x))ŝ(θ)| , ŝ(θ) =

(

cos θ
sin θ

)

, γ = (wj(x), θ). (8)

Moreover, there is a bijective mapping between (j, γ) ∈ ZP × Ωp and Γ = (x,q) ∈ UTM .

Proof. First assume that x ∈ Mj and q ∈ UTxMj . Since the mapping wj = X̄−1
j is bijective,

there is u such that X̄j(u) = x, given by u = wj(x). Moreover, since the Jacobian Jj(u) has
full rank, its columns span the tangent plane at x, and since q belongs to this plane, there
exists a solution θ to

Jj(u)ŝ(θ)

|Jj(u)ŝ(θ)| = q, ŝ(θ) =

(

cos θ
sin θ

)

.

The second statement follows since J (Γ) is well-defined for all Γ ∈ UTM . This proves the
lemma.

Note that the atlas of charts (UTMj , Wj) describe the space UTM =
⋃

j W−1
j (Ωp).

Figure 1 shows a schematic representation of the two-dimensional manifold M , the three-
dimensional space UTM and the corresponding bijective mappings to the parameter space
Ω and phase space Ωp.

M UTM

Mj UTMj

wj Wj

Ω

Ωp

Figure 1: A schematic representation of the two-dimensional manifold M embedded in R
d and the three-

dimensional space UTM embedded in R
2d. The bijective mappings wj and Wj map a chart j of these

manifolds to the two-dimensional parameter space Ω and the three-dimensional phase space Ωp, respectively.

2.2.1 Boundary Conditions

We may have different boundary conditions at the patch boundaries. In some problems, the
rays are continuous at the patch boundaries. Such problems include geodesics and creeping
rays computations on a hypersurafce with constant index of refraction. In these problems,
the boundary conditions are determined easily by the continuity of rays. In some problems,
the rays may not be continuous at the patch boundaries. For example, seismic propagation
in a multi-layered media with different seismic velocities is such a problem, in which the
boundary conditions are determined by Snell’s law of refraction or the law of reflection.
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As was mentioned before, the inter-patch boundary conditions are given in physical space
in terms of Γ ∈ UTM , rather than in terms of γ ∈ Ωp. Let Γ = (x,q), where x ∈ Sjj′

and j′ = J (Γ) 6= j, which means that the ray arrives at the side Sjj′ from patch Mj . The
inter-patch boundary condition at Sjj′ is given by,

Γ̃ = Ljj′(Γ),

where Ljj′ is some known function, and Γ̃ = (x̃, q̃) ∈ UTM
J (Γ̃). For example, depending

on the ray arriving at the side Sjj′ from patch Mj , we may have the following boundary
conditions:

• if the ray is continuous, then Ljj′ is the identity function

x̃ = x, q̃ = q.

• if the ray is refracted, then
x̃ = x, q̃ = S̃(x,q).

• if the ray is reflected, then
x̃ = x, q̃ = R̃(x,q).

Here, the functions S̃ and R̃ are determined by Snell’s law of refraction and the law of
reflection, respectively. See Section 6.2 for more details.

In the next two sections, we present a patch-based phase space method for computing ray
trajectories on manifolds. First, we consider the case when the manifold is represented by a
single parameterization and construct a single-patch phase space method based on writing
the systems (4-5) in a Eulerian framework. Next, we consider a wider class of manifolds which
are represented by multiple parameterizations and introduce a multiple-patch phase space
method based on solving the Eulerian version of systems (6-7) in each patch and connecting
the solutions of individual patches using suitable inter-patch boundary conditions. In both
methods, properties for particular ray families are obtained through a fast post-processing.

3 Single-Patch Phase Space Scheme

We consider the case when the two-dimensional manifold M embedded in R
d is represented by

a single regular parameterization. The objective is to compute the ray trajectories together
with the information transported along them on M . First, the system of ODEs (4) and (5),
describing rays and other information, are formulated as time-independent Eulerian PDEs
in phase space. These equations are then solved numerically on a fixed computational grid.
The solution to the PDEs is post-processed to extract information for a particular family of
rays.

3.1 Mathematical Formulation

We consider a ray γ̄(τ) satisfying (4), starting at γ̄(0) = γ = (u, v, θ) ∈ Ωp and ending at
the boundary ∂Ωp = ∂Ω × S. We call this end point (U, V, Θ) ∈ ∂Ωp the escape point of the
ray. See Figure 2. We then define three types of unknown escape functions for this ray, as
follows:
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• F : P → P, F (γ) = (U, V, Θ) is the escape point.

• Φ : P → R is the length of the ray. We also refer to this as the travel-time of the ray.

• B : P → R is a function representing a relation between the β-values at the escape and
starting points, where β satisfies (5).

(u, v)

θ

Θ(U, V )
∂Ω

Figure 2: A ray trajectory in the parameter space, starting at γ = (u, v, θ) ∈ Ωp and ending at the escape
point F (γ) = (U, V, Θ) ∈ ∂Ωp.

Each escape function f(γ) of the above types satisfies an ODE,

d

dτ
f(γ(τ)) = h

(

γ(τ), f(γ(τ))
)

, (9)

where the forcing term h is 0, 1 and α(γ, f) for f = F , f = Φ and f = B, respectively.
Using the chain rule, the escape PDE for each escape function f(γ) reads

g1(γ) fu + g2(γ) fv + g3(γ) fθ = h(γ, f), γ ∈ Ωp, (10)

with the boundary condition at inflow points of ∂Ωp,

f(γ) = b, γ ∈ ∂Ωinflow
p , ∂Ωinflow

p =
{

γ ∈ ∂Ωp | n̂(γ)⊤ g(γ) < 0
}

,

with n̂ being the outward normal vector in the phase space.
Note that for the first two types of escape functions f = F and f = Φ, the boundary

value b is γ and 0, respectively. For the third type f = B, if for instance B is the difference
or ratio between β-values at the escape and starting points, the boundary value are b = 0 or
b = 1, respectively.

The escape equation (10) is a linear hyperbolic equation, and the variable velocity coef-
ficients g = (g1, g2, g3) are known and determine the characteristic direction at every point
γ ∈ Ωp.

One important property of the solutions to the escape PDEs is that they are in general
discontinuous due to discontinuous boundary conditions. This happens, for example, when
a characteristic touches a boundary tangentially, such that at some points on the plane the
characteristic is in-going, and suddenly it becomes out-going.
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3.2 Numerical Solution of the escape PDEs

We now want to solve (10) numerically. We discretize the phase space domain Ωp = Ω × S

uniformly, setting ui = i∆u, vj = j∆v and θk = k∆θ, with the step sizes ∆u = ∆v = 1
N

and

∆θ = 2π
N

, assuming Ω is the unit square. Moreover, let fijk approximate an escape function
f(ui, vj , θk).

In addition to the boundary condition at inflow points, since the function f is periodic in
θ, we use periodic boundary conditions,

f(u, v, 0) = f(u, v, 2 π),

as numerical boundary conditions.
There are different methods for solving the escape equation (10). One way is to discretize

the PDEs in the phase space using a finite difference, finite volume or finite element approxi-
mation and arrive at a system of linear equations Af̄ = b̄, where A is a N3×N3 matrix with
a sparse structure and b̄ ∈ R

N3
represents the boundary conditions. This system can then

be solved iteratively, and one can speed up the computations using suitable preconditioners
[12, 4]. However, in the case that characteristics change direction many times in the phase
space domain, it is difficult to find good preconditioners.

Another way to solve the escape equations is to write them as

ft + g1 fu + g2 fv + g3 fθ = h,

and solve these time-dependent equations until the steady state ft = 0. This method can be
seen as an iterative method. Finding a fast algorithm which is not much restricted by the
CFL condition is analogous to finding a good preconditioner in the iterative method.

Yet, another way to solve the equation (10) is to compute the approximate solution
fijk using a ray tracing method, which traces back along the characteristic to the initial
boundary from each grid point (i, j, k). The main drawback with this method is that it will
be expensive, because one needs to trace back all N3 points in the domain all the way to
the boundary.

Instead, we use a Fast Marching algorithm, given by Fomel and Sethian [9]. A similar
method in two-dimensional space was also proposed in [16]. The basic idea of the algorithm
is to march the solution outwards from the boundary and use the characteristic directions
to update grid values. Note that in the algorithm, we always also compute Φijk besides fijk.

First, the grid points are divided into three classes:

• Accepted: the correct values of fijk and Φijk have been computed.

• Considered: adjacent to Accepted for which fijk and Φijk have already been computed,
but may be corrected by a later computation.

• Far: the correct values of fijk and Φijk are not known.

The major steps of the algorithm are then as follows:

0. Start with all nodes (ui, vj , θk) ∈ Ωp in Far, and assign Φijk at these nodes a large value.
This large value needs to be greater than the length (travel-time) of every possible ray in
the computational domain. Put the boundary nodes (ui, vj, θk) ∈ ∂Ωinflow

p in Accepted,
and assign fijk and Φijk at these nodes the correct boundary values. Put all nodes
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adjacent to Accepted, for which the characteristic1 at that node points back to the
boundary, in Considered. Each Considered node is then given a value by using a local
cell characteristic method.

1. Take the Considered node with the smallest arrival time Φijk as Accepted.

2. Find the octant toward which the characteristic going through that node points.

3. For each neighboring grid point in the octant which is not Accepted use the local cell
characteristic method to (possibly) compute new values for fijk and Φijk. In the case
we can compute new values for a Far node, put it in Considered.

4. Loop to step 1 until all points are Accepted.

Since in [9] the local cell characteristic method, used in steps 0 and 3 of the algorithm, is
not discussed, we will here describe a version of first and second order local cell-based ray
tracing methods using a local linear and parabolic ray tracing and the Taylor expansion of
the trajectory near the starting point.

Consider a grid cell in Ωp, and assume we want to compute the value of fijk at a corner
of this cell, knowing the correct values of f at some neighboring grid points. The output
of the local ray tracing would be either a new value for fijk or no new value, depending on
whether the neighboring points, to which the characteristic points back, are Accepted or not.
See Figure 3.

Let τ be the arc length parameterization along the characteristic γ(τ). We start at
γ(0) = (ui, vj, θk), where we want to compute a possibly new value, and trace backwards
along the characteristic to intersect a cell face at γ(τ ∗), τ ∗ < 0. We Taylor expand f near
the starting point,

f(γ(τ ∗)) = f(γ(0)) + τ ∗
d

dτ
f(γ(0)) +

τ ∗2

2

d2

dτ 2
f(γ(0)) + O(τ ∗3), (11)

with local truncation error O(τ ∗3) ≈ O(∆u3). Note that d
dτ

f(γ(0)) and d2

dτ2 f(γ(0)) in (11)
are given by:

d

dτ
f(γ(0)) = h(γ(0), f(γ(0))),

d2

dτ 2
f(γ(0)) =

d

dτ
h
(

γ(0), f(γ(0))
)

= g(γ(0)) · ∇γh
(

γ(0), f(γ(0))
)

+ hf

(

γ(0), f(γ(0))
)

h
(

γ(0), f(γ(0))
)

.

Therefore, to find f(γ(0)), with accuracy of O(τ ∗3), we need to know τ ∗ and f(γ(τ ∗)). Note
that for f = F and f = Φ, since d

dτ
F (γ(τ)) = 0 and d

dτ
Φ(γ(τ)) = 1, the expansion (11)

reduces to
F (γ(τ ∗)) = F (γ(0)), (12)

Φ(γ(τ ∗)) = Φ(γ(0)) + τ ∗. (13)

1We approximate the characteristic by a piecewise linear curve for a first order method and piecewise parabolic for a second
order method.

10



3.2.1 First Order Method

We assume that characteristics are linear in each cell. Therefore, we can write

γ(τ) ≈ σ1 + σ2 τ, σ1 = γ(0), σ2 = γ̇(0) = g(γ(0)).

Note that σ1 and σ2 are known. There are six possible planes, u = ui±1, v = vj±1 and
θ = θk±1, which this line can intersect. We, therefore, get six crossing points τ1, . . . , τ6,
which are solutions of six linear equations. It is then clear that τ ∗ = maxτj<0 τj . Knowing
the crossing face and the crossing point γ(τ ∗), we continue as follows:

a. If all four points of the cell face are Accepted, use these points to interpolate a value of
f(γ(τ ∗)). Then use the first two terms of the Taylor expansion (11) to compute a new
value for fijk ≈ f(γ(0)). Note that we need to solve a (possibly) nonlinear algebraic
equation, when h depends on f ,

f(γ(0)) = f(γ(τ ∗)) − τ ∗ h(γ(0), f(γ(0))).

Put this node in Considered. Since the method is first order, a two dimensional bilinear
interpolation is used. See Figure 3.

b. If no points on the cell face are Accepted, do not update the value.

c. Else, continue tracing along the characteristic until either (a) or (b) occurs. Note
that each time the characteristic enters a new cell, the new starting point needs to be
updated.

A

B

u

v

θ

Considered

Accepted

Figure 3: A grid cell in Ωp. Point A is updated by tracing the characteristic back to point B and interpolating
from the accepted values. Here, points A and B correspond to γ(0) and γ(τ∗), respectively.

3.2.2 Second Order Method

We assume that characteristics are parabolic in each cell and write

γ(τ) ≈ σ1 + σ2 τ + σ3 τ 2, σ1 = γ(0), σ2 = γ̇(0), σ3 =
1

2
γ̈(0) =

1

2
Dγ γ̇(0) γ̇(0).

Note that σ1, σ2 and σ3 are known. In this case, there are nine possible cell faces which
can intersect this parabola; u = ui, v = vj , θ = θk and the six faces in the linear case. By
intersecting the parabola with the faces, we get nine crossing points τ1, . . . , τ9, which are
solutions of simple quadratic equations. We then get τ ∗ = maxτj<0 τj and continue in the
following way:

11



a. Pick the crossing face and eight faces around it in the same plane, sharing sixteen grid
points in total. If all sixteen points are Accepted, use these points to interpolate a value
of f(γ(τ ∗)). Then use the first three terms of the Taylor expansion (11) to compute a
new value for fijk ≈ f(γ(0)). Note that, again, we need to solve a (possibly) nonlinear
algebraic equation, when h depends on f ,

f(γ(0)) = f(γ(τ ∗)) − τ ∗ h(γ(0), f(γ(0))) − τ ∗2

2

d

dτ
h
(
γ(0), f(γ(0))

)
.

Put this node in Considered. Because the solution can be discontinuous, we use a
version of two dimensional essentially non-oscillatory (ENO) interpolation based on
Newton divided differences and the Newton formulation of the interpolation polynomial.
Among four points in each dimension, we pick up either the left three or the right three
points which have a smaller divided difference and use a second order polynomial. See
[33].

b. If no points on the cell face are Accepted, do not update the value.

c. Else, continue tracing along the characteristic until either (a) or (b) occurs. Note
that each time the characteristic enters a new cell, the new starting point needs to be
updated.

The algorithm is a one-pass algorithm and is of complexity O(N3 log N). Note that we
use heap sort algorithm for extracting the smallest arrival time Φijk of Considered nodes
and for inserting new updated values of Considered nodes. There is however no proof of
convergence for the method.

3.3 Post-Processing

Solutions of the escape PDEs (10) give the escape point, length and other information for
rays with all possible starting points in the phase space. These solutions need to be post-
processed to extract properties for a ray family.

As an example, suppose we want to compute the length of the ray between two points
u1 and u2 in the parameter space Ω. We first observe that F (γ1) = F (γ2), if and only if the
points γ1 and γ2 lie on the same ray. We can thus find θ1 and θ2, as the solution to

F (u1, θ1) = F (u2, θ2). (14)

The length is then given by |Φ(u1, θ1)−Φ(u2, θ2)|. Note that there may be multiple solutions
to (14), giving multiple lengths. If u2 ∈ ∂Ω, the expression simplifies to solving

(
U(u1, θ1), V (u1, θ1)

)
= u2, (15)

for θ1 to get the length Φ(u1, θ1).
To solve (14), we note that since F = (U, V, Θ) ∈ ∂Ωp is a point on the phase space

boundary, it can be reduced to a point (S, Θ) in R
2, where S represents the escape location

on the boundary ∂Ω. For example if Ω = [0, 1]2, we can choose S ∈ [0, 2 π] along ∂Ω such
that S = 0, S = π and S = 2π for (U, V ) = (0, 0), (U, V ) = (1, 1) and (U, V ) = (0, 0),
respectively. The left and right hand sides of (14) are then curves in R

2 parameterized by θ1

and θ2, and solving the algebraic equation (14) amounts to finding crossing points of these
curves.
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Having the discrete solutions at the points u1 and u2 for all N directions, we then need
to find crossing points of two complex lines of N straight line segments as the solutions
to (14). This can be done with a complexity of O(N); see e.g. [35]. We note that in
the case that a second order method for solving the escape equations is used, the linear
intersection algorithm will not affect second order accuracy of the method. In fact, the
intersection algorithm is performed only to find the intersection’s neighboring points. We
use a higher order interpolation to compute the initial angles θ1 and θ2 and the escape
functions corresponding to these angles. The complexity of finding the ray length between
one fixed source point and all other N2 points in Ω is then O(N3), and the total complexity,
including solving the escape PDEs, will therefore be O(N3 log N). This is expensive for
computing this so called travel-time field for only one source point. For example by using
wave front tracking or solvers based on the surface eikonal equation, the complexity is O(N2).
However, if the solutions are sought for many source points, the phase space method can be
more efficient. See Section 5 for such an example.

4 Multiple-Patch Phase Space Scheme

We now consider the more complicated and realistic case when the manifold M cannot be
represented by one regular parameterization. We let M be described by an atlas of charts
or multiple patches and want to compute the ray trajectories together with the information
transported along them on the manifold. First, the system of ODEs (6) and (7) in each
chart (patch) are formulated as time-independent Eulerian PDEs and solved numerically on
a fixed computational grid in phase space. The solutions to the PDEs in each chart are
then connected using suitable inter-patch boundary conditions. Information for a particular
family of rays are then extracted through a fast post-processing.

We describe the multiple-patch scheme and the key design choices in such a scheme,
including the number and shape of patches, the treatment of inter-patch boundaries and the
choice of escape boundary.

4.1 Multiple-Patch Construction

We first want to define a function F for the multiple patch case that corresponds to the single
patch solution F described in Section 3. Let R be some curve in M , representing an escape
boundary. We consider a ray starting at a point Γ ∈ UTM and define F(Γ) : UTM → UTM
as mapping the point Γ to another point in the space UTM where the projection of the ray
onto M first crosses R (assuming such a point exists).

If the compact manifold has a boundary (e.g. a finite cylinder), we let this be the escape
boundary, similar to the case of a single-patch manifold. Hence, R =

⋃

j S0j . However,

for a compact boundaryless manifold (e.g. a sphere or a torus), there is no obvious escape
boundary, as in the single patch case. In this case we will let

R =
⋃

(j,j′)⊂R

Sjj′ ⊂ S (16)

be the escape boundary, where R is some index set, to be determined (see below).
To compute F(Γ), we first recall that, by construction, for each point Γ = (x,q) ∈ UTM ,

there is a well-defined patch id number j = J (Γ) and a well-defined mapping Wj : UTMj →
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Ωp.
Now, suppose Fj(γ) are the solutions to the escape PDE (10), with f = F , in Ωp cor-

responding to each patch with j = 1, . . . , P . The function F(Γ) is then given recursively
by

Γ̃0 = Γ, (17)

and while x̃n 6∈ R, where Γ̃n = (x̃n, q̃n),

j = J (Γ̃n), Γn+1 = W−1
j Fj(Wj(Γ̃n)), j′ = J (Γn+1), Γ̃n+1 = Ljj′(Γn+1), (18)

where Ljj′ is the operator representing the inter-patch boundary conditions between patches
Mj and Mj′. Then F(Γ) = Γn∗ , where n∗ is the smallest index for which xn∗ ∈ R.

Remark 2. If the rays are continuous at the patch boundaries, Ljj′ will be the identity

function (Γ̃n+1 = Γn+1). From the above recursive formula, it is easy to see that, in order to
compute the function F for all points in UTM it is enough to know the escape PDE solutions
Fj in all patches and the patch transfer functions Tjj′ = Wj′W

−1
j at all sides connecting two

patches Mj and Mj′. Note that these transfer functions can be easily calculated from the
mappings Wj. As an example, in Section 5, we will discuss the computation of creeping rays
which are continuous at patch boundaries.

If the rays are not continuous at the patch boundaries, each time they pass a boundary,
the coordinates of Γn+1 may change (Γ̃n+1 6= Γn+1). It happens when, for example, the
rays change their direction as they enter another patch with different properties. The patch
transfer functions are then changed to Tjj′ = Wj′ Ljj′ W

−1
j . Here, transfer functions are

again easily calculated from the mappings Wj and the inter-patch boundary conditions. We
will consider such examples in Section 6, where the rays change direction according to Snell’s
law of refraction and the law of reflection.

Similar to F(Γ), we can define the functions Φ(Γ) and B(Γ) in UTM for the multiple
patch case corresponding to the single patch functions Φ and B described in Section 3.
Assuming Φj(γ) and Bj(γ) are the solutions to the escape PDE (10), with f = Φ and
f = B, respectively, in Ωp corresponding to each patch with j = 1, . . . , P , we can write

Φ(Γ) =
n∗−1∑

n=0

Φj(Wj(Γ̃n)),

with j and Γ̃n as in (17)-(18), and

B(Γ) =

n∗−1∑

n=0

Bj(Wj(Γ̃n)),

if B is, for example, the difference between β-values at Γn∗ and Γ0, and

B(Γ) =

n∗−1∏

n=0

Bj(Wj(Γ̃n)),

if B represents, for example, the ratio between β-values.
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4.2 Post-Processing

Suppose we want to compute the length of a ray connecting two points x1 ∈ Mj1 and
x2 ∈ Mj2 . In order to find this ray, if the manifold has a boundary, we let this be the escape
boundary, and the post-processing is similar to the single patch case with F replaced by
F. In the case of a boundaryless manifold, we choose the boundaries of Mj1 as the escape
boundary R. We then find F

(
W−1

j1
(wj1(x1), θ1)

)
for all directions θ1 ∈ S.

We now modify the function F(Γ) by Fn(Γ), where n is the number of times which the
ray starting at Γ hits the escape boundary. It is therefore obvious that F1(Γ) = F(Γ). In
the case where the rays at the patch boundaries are continuous, we have,

Fn(Γ) = F ◦ F · · · ◦ F
︸ ︷︷ ︸

n times

(Γ). (19)

In general, the boundary function Ljj′ must be applied in composition too. Analogously, we
can define functions Φn and Bn.

For all directions θ2 ∈ S we then find Fn

(
W−1

j2
(wj2(x2), θ2)

)
. Since we do not know how

many times the ray, which starts at x2 and passes through x1, hits R, we need to find Fn

for several values n = 1, 2, . . . . See Figure 4 for three different cases where n is 1, 2 and 3.

x2

x1

Mj

Mj′

(a) n = 1, (j1 = j2 = j)

x2

x1

Mj

Mj′

(b) n = 2, (j1 = j, j2 = j′)

x2

x1

Mj

Mj′

(c) n = 3, (j1 = j2 = j)

Figure 4: Two neighboring patches Mj and Mj′ . The ray (dashed curve) starting at x2 and passing through
x1, hits the escape boundary R (thick curves) n times. Here, three different cases are shown where n is 1, 2
and 3.

We then find θ1, θ2 and n as the solutions to the algebraic equations

F
(
W−1

j1
(wj1(x1), θ1)

)
= Fn

(
W−1

j2
(wj2(x2), θ2)

)
, (20)

analogous to (14) in the single-patch case. There will be at most four systems of equations
corresponding to four sides of patch Mj1 , for each value of n. The solutions to (20) can be
computed by finding intersections of four sets of possibly crossing curves.

The length is then given by
∣
∣Φ

(
W−1

j1
(γ1)

)
− Φn

(
W−1

j2
(γ2)

)∣
∣,

with γ1 = (wj1(x1), θ1) and γ2 = (wj2(x2), θ2).

4.3 Number and Shape of Patches and Parameterizations

One of the key design choices in such a multiple-patch scheme is the choice of patches and
parameterizations. The important things are:
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1. Patches should cover the physical domain with nonsingular parameterizations.

2. Parameterizations should have small coordinate distortions to make finite differencing
accurate.

3. The right hand side h(γ, f) in the escape PDEs should be well resolved by the patch
discretization.

Remark 3. Using overlapping patches, one can possibly reduce the number of patches. How-
ever, the objective in this work has not been optimizing the number of patches.

4.4 Choosing Escape Boundary

Another key design choice is the choice of escape boundary. Two things are important about
R, and R:

1. The projection of each ray, which is of interest, onto M should cross R at some point.
Otherwise F(Γ) is not well defined for all points. It is not obvious how to verify this
rigorously. Having nonzero coefficients, g(γ) 6= 0, everywhere is a necessary condition,
but it is still possible to have rays that never reaches a given boundary, see e.g. [23].

2. If the compact manifold has a boundary, we can choose this as the escape boundary,
similar to the single-patch manifold.

4.5 Limitations and Extra Problems

There are a couple of difficulties and problems:

1. In some cases, one cannot capture all rays of interest by only one choice of escape
boundary. Different choices of escape boundary might be needed. A good implemen-
tation of the algorithm will then be the one which considers different combinations of
patch boundaries as the escape boundary. Note that this is done in post-processing and
does not require recomputation of the fj solutions.

2. When a ray hits an inter-patch boundary, in order to find the escape solution at this
point, we need to interpolate the discrete solutions computed on a fixed grid. The
interpolation can be difficult if a ray is tangent to the inter-patch boundary. One possible
way to overcome such a problem is to use overlapping patches. Another possibility is
to choose another atlas of charts for the manifold.

5 Application to Creeping Ray Computations

Creeping rays are a type of diffracted rays which are generated at the shadow line2 of the
scatterer and propagate along geodesic paths on the scatterer surface. On a perfectly con-
ducting convex body, they attenuate along their propagation path by tangentially shedding
diffracted rays and losing energy. On a concave scatterer, they propagate on the surface and
importantly, in the absence of dissipation, experience no attenuation.

The study of creeping rays is important in many high frequency problems, such as design
of sophisticated and conformal antennas [19], antenna coupling problems [21], radar cross

2Shadow line or horizon is the locus of the points at which the incident rays are tangent to the scatterer surface.
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section (RCS) computations [3, 19, 32, 26] and control of scattering properties of metallic
structures coated with dielectric materials [28, 1, 22, 27].

In this section, we consider the application of the multiple-patch phase space method to
computing creeping rays. Here, the computational domain is a scatterer surface which is a
two-dimensional hypersurface embedded in R

3. We split the surface into multiple patches
represented by different parameterizations. The escape PDEs describing creeping rays are
solved in each patch, individually. The creeping rays on the scatterer are then computed by
connecting all individual solutions. The inter-patch boundaries are treated by the continuity
of characteristics.

We first consider the case when the scatterer surface has a regular explicit parameteri-
zation and write the governing equations for computing creeping rays. We then discuss the
multiple-patch scheme and give two numerical examples where the contribution of creeping
rays to mono-static RCS is computed.

5.1 Governing Equations

We consider a scatterer surface with a regular explicit parameterization, represented by
x = X̄(u), where x = (x, y, z) ∈ R

3, and the parameters u = (u, v) belong to a set Ω ⊂ R
2.

Let the scatterer be illuminated by incident rays in a direction denoted by a normalized
vector Î = [ı1, ı2, ı3]. We assume that the shadow line u0(s) is represented by a curve in
parameter space, with s being the arc length parameterization. The objective is to compute
the geodesic paths on the scatterer surface together with the phase and amplitude of the
wave field of creeping rays generated on the scatterer.

According to Keller and Lewis [17], the surface phase satisfies the surface eikonal equation,

|∇̃φ| = n, (21)

where n(u) is the index of refraction at the surface, and ∇̃ is the surface gradient, defined
as

∇̃φ := JG−1∇φ, G = J⊤J, J = [X̄u X̄v] ∈ R
3×2.

We can write (21) as a Hamilton-Jacobi equation H(u,∇φ) = 0, with the Hamiltonian

H(u,p) ≡ 1

2
p⊤ G−1(u)p− n2(u)

2
. (22)

Note that in the case n = constant, the rays associated with the surface eikonal equation
(21) are geodesics, or shortest paths between two points on the surface. Henceforth, we will
assume n ≡ 1.

We write (without derivation) the set of equations which are used in computing creeping
rays and are obtained by reducing the order of the Hamiltonian system corresponding to
(22) by one. For derivations see [26].

A geodesic on the surface is uniquely characterized by its location, (u, v), and direction,
θ. Letting γ := (u, v, θ), the geodesics satisfy the system of ODEs (4) with

g(γ) =





ρ(γ) cos θ
ρ(γ) sin θ
ρ(γ)V(γ)



 . (23)
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The parameter τ is the arc length along the geodesic in the physical space, and

ρ = ρ(u, v, θ) =
∣

∣X̄u cos θ + X̄v sin θ
∣

∣

−1
,

V(γ) = (Γ1
11 cos2 θ + 2Γ1

12 cos θ sin θ + Γ1
22 sin2 θ) sin θ−

(Γ2
11 cos2 θ + 2Γ2

12 cos θ sin θ + Γ2
22 sin2 θ) cos θ,

where Γk
ij(u) are Christoffel symbols.

Moreover, we know that the phase φ is the length of the ray, given by (5) with β = φ and
α ≡ 1, and the amplitude a is computed by,

a(τ) = a0Q(s, τ)
−1
2 exp

(

−ω1/3β(τ)
)

, (24)

where a0 is the amplitude at the starting point on the shadow line, Q(s, τ) is the geometrical
spreading at distance τ from the starting point, and β(τ) is a function representing the
attenuation factor given by (5) with

α(γ) =
q0

ρg(γ)
exp

(

i
π

6

(

ρg(γ)

2

)1/3
)

, q0 ≈ 2.33811. (25)

Here ρg(γ) is the radius of curvature of the surface along the ray trajectory. We then let the
escape function B be the difference between the β-values at the escape and starting points.
All escape functions F , Φ and B satisfy equation (10), with the right hand side h being 0,
1 and α given by (25), respectively.

In order to compute the amplitude, in addition to β, we need also to compute geometrical
spreading. We set ũ(s, τ) := u(τ), with ũ(s, 0) = u0(s) and let X̃(s, τ) := X̄

(

ũ(s, τ)
)

be

a point on the geodesic at the distance τ from the starting point X̃0(s) = X̃(s, 0) on the
shadow line. The geometrical spreading of the creeping ray at X̃(s, τ) in the physical space
is given by, [26],

Q(s, τ) =
X̃⊥

τ · X̃s

X̃⊥
0τ · X̃0s

. (26)

We consider a fixed shadow line γ0(s) = (u0(s), v0(s), θ0(s)) and define γ̃(s, τ) := γ(τ), where
γ solves (4) with initial data γ0(s). Let L(γ0) = {γ̃(s, τ) : τ ≥ 0} be a sub-manifold of
phase space P on which the creeping rays generated at γ0(s) lie. The Eulerian version of the
geometrical spreading Q : L(γ0) → R, restricted to L(γ0) and defined as Q(γ̃(s, τ)) := Q(s, τ)
is then given by

Q(γ̃) =
[T̂ (γ̃) × N̂(ũ, ṽ)]⊤J(ũ, ṽ)z

[Î × N̂(u0(s))]⊤X̃0s(s)
, T̂ = Ju̇, (27)

where z = z(s, τ) is a solution to

DγF (γ̃)z =
d

ds
F (γ0(s)). (28)

For γ̃ on the boundary, i.e. γ̃ = F (γ0), the formula (27) can be simplified as,

Q(γ̃) =
[T̂ (γ̃) × N̂(ũ, ṽ)]⊤X̂s(s)

[Î × N̂(u0(s))]⊤X̃0s

, (29)
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where X̂ : R → R
3 is defined by X̂(s) := X(U(γ0(s)), V (γ0(s))).

Note that X̂s(s) in (29) and DγF (γ̃) and Fs(γ0(s)) in (28) can be computed by numerically
differentiating the solution to the PDEs in (10) with f = F , as was done in [26]. Instead,
one can also directly compute X̃s in (26) by adding other ODEs to the geodesic system (4)
as follows: First, we note that X̃s = Jũs. We then differentiate (4) with respect to s and
derive the following ODE system

˙̃γs = Dγg γ̃s, γ̃s(s, 0) = γ̃0s(s). (30)

By solving this ODE, ũs and therefore X̃s can be computed. One can also write the escape
PDE for (30) in the same way as before and post-process the phase space solution.

5.2 Multiple-Patch Scheme

We now split the scatterer surface M into several simpler surfaces with explicit regular
parameterizations. As before, let M be given by an atlas of charts (Mj , wj), where the
patches Mj ⊂ R

3 have the parametric equations x = X̄j(u) : [0, 1]2 → Mj and collectively
cover M . Moreover, the mappings wj = X̄−1

j : Mj → [0, 1]2 are bijective.

Since on a geodesic T̂ in (27) has unit length, we can consider the unit tangent bundle
UTM of M as the global space. Note that UTM is a three-dimensional manifold embedded
in R

6. By Lemma 1, there is therefore a bijective mapping Wj : UTMj → Ωp for each j,
defined by Wj(Γ) = γ, with γ and Γ as in (8).

Knowing the bijective mappings wj and Wj, and the solution to the escape PDEs in each
patch, Fj , Φj and Bj , we can compute the multiple-patch escape functions F, Φ and B as
described in Section 4.1.

5.3 Post-Processing

In order to compute phase and amplitude of a ray family, post-processing of the solutions to
the escape PDEs (10) is needed.

For a given illumination direction, assume that the shadow line is known and given by
Γ0(s) in the unit tangent bundle UTM . For each point x ∈ Mj covered by the surface
wave, there is at least one creeping ray which starts at the shadow line and passes through
that point. In order to find this ray, assuming the scatterer surface is boundaryless, we first
choose the escape boundary R as the boundaries of Mj . Note that in the case of a surface
with boundary, we choose its boundary as the escape boundary, and the post-processing will
be similar to the single-patch case discussed in [26]. We then find F

(

W−1
j (wj(x), θ)

)

for all
directions θ ∈ S. Moreover, for all points on the shadow line we find Fn (Γ0(s)), defined by
(19), with n = 1, 2, . . . . We then find s = s∗, θ = θ∗ and n = n∗ as the solutions to the
algebraic equations

F
(

W−1
j (wj(x), θ)

)

= Fn (Γ0(s)) , (31)

analogous to (14) in the single-patch case. There will be at most four systems of equations
corresponding to four sides of patch Mj , for each value of n. The solutions to (31) can be
computed by finding intersections of four sets of possibly crossing curves.

Now we can use (28) to compute z with γ0 = Wj0(Γ0(s
∗)) and γ̃ = (wj(x), θ∗) where

j0 = J (Γ0(s
∗)). Note that F (γ̃) and F (γ0) in the left and right hand sides of (28) are
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replaced by Wj

(

F(W−1
j (γ̃))

)

and Wj

(

Fn∗(Γ0(s
∗))
)

, respectively. The geometrical spreading
Q(γ̃) at point x will be therefore computed by (27), and phase and amplitude are given by

φ(wj(x)) = φ0 + Φ
(

W−1
j0

(γ0)
)

− Φ
(

W−1
j (γ̃)

)

,

A(γ̃) = A0 Q(γ̃)
−1
2 exp

(

− ω
1
3

(

B
(

W−1
j0

(γ0)
)

−B
(

W−1
j (γ̃)

)

)

)

,

where φ0 and A0 are the phase and amplitude at the point γ0, respectively.

5.4 Example 1 - A Scalene Ellipsoid

We consider the scatterer surfaces to be a scalene ellipsoid (an ellipsoid with different semi-
axes) and apply the multiple-patch phase space method to compute the contribution of
backscattered creeping rays to mono-static RCS, i.e., the rays that propagate on the surface
of the scatterer and return in the opposite direction of incident waves. We assume that
the incoming amplitudes are one at attachment points on the shadow line and compute the
backscattered amplitude at detachment points on the shadow line. We also compute the
length of the backscattered rays.

We consider an ellipsoid given by

x2

a2
+

y2

b2
+

z2

c2
= 1,

with a = 2, b = 1 and c = 0.5. Since there is no single non-singular parameterization for the
ellipsoid, we split it into six patches with non-singular parameterizations (see Figure 5) and
solve for f(γ) in each patch, as described in Section 3.2.

In order to find the backscattered creeping ray by post-processing, we first choose the
escape boundary consisting of six sides, as highlighted in Figure 6. We then continue as
follows,

0. Given a pair of incident angles (Ψ1, Ψ2) ∈ [0, 90]2, find the incident direction Î =
[sin Ψ1 cos Ψ2, cos Ψ1 cos Ψ2, sin Ψ2].

1. Find the shadow line γ0(s) = (u0(s), θ0(s)) in the phase space Ωp using the relations

N̂⊤ Î = 0 and T̂ (γ0(s)) = Î in patch j(s). Let the parameterization of the shadow line
be discretized in N grid points {sn} with n = 1, . . . , N .

2. For each point on the shadow line find F
(

W−1
j(sn)(γ0(sn))

)

as discussed in Section 4.1.

3. A backscattered ray starting at attachment point sa and ending at detachment point
sd on the shadow line should satisfy

F
(

W−1
ja

(γ0(sa))
)

= F
(

W−1
jd

(γ0(sd))
)

+ C,

where ja = j(sa) and jd = j(sd), and C is a constant accounting for the fact that the
directions of creeping rays starting at sa and sd differ by a π on the escape boundary.
The right and left hand sides of this equation can be represented as six sets of curves
in R

2 parameterized by s, corresponding to six sides of the escape boundary. To find
the backscattered ray we need to find crossing points of these curves, as is done in the
single patch case.
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Figure 5: Upper left figure shows an ellipsoid with a single patch parameterization which is singular at two
poles. Upper right figure shows the ellipsoid divided into 6 patches. Note that the singularities have been
removed using non-singular multiple parameterizations. Lower figure shows the structure of patches and
patch boundaries in parameter space. Patches j = 1, . . . , 6 correspond to left, front, up, right, back and
down patches, respectively. These 6 patches share 12 sides in total, shown with italic numbers.

4. For each crossing point, there is a pair of backscattered rays (two backscattered rays
lying on top of each other); one starting at point sa and ending at point sd, the other
starting at point sd and ending at point sa. Although these two rays have the same
lengths, they do not have the same geometrical spreading and therefore not the same
amplitude. Compute two geometrical spreadings as described in Section 5.3 with γ0 =
γ(sd) and γ̃ = γ(sa) for the first backscattered ray and γ0 = γ(sa) and γ̃ = γ(sd) for
the second one.

5. The length and amplitudes are then computed as,

φ = Φ(Γsa
) + Φ(Γsd

), Γsa
= W−1

ja
(γ(sa)), Γsd

= W−1
jd

(γ(sd)),

A1 = Q(γ(sa))
−1
2 exp

(

−ω
1
3

(

B(Γsa
) + B(Γsd

)
))

,

A2 = Q(γ(sd))
−1
2 exp

(

−ω
1
3

(

B(Γsa
) + B(Γsd

)
))

.
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Figure 6: The ellipsoid with its patch boundaries. Thick lines show the escape boundary.

Figure 7 shows the backscattered rays for two different incident angles. There are three
pairs of backscattered rays which can be detected by the algorithm. Every two rays of each
pair lie on top of each other.

Figure 7: Left figure shows the backscattered creeping rays (thick curves) for Ψ1 = 30 and Ψ2 = 0. Right
figure shows the backscattered creeping rays for Ψ1 = 30 and Ψ2 = 10. Thin curves represent the shadow
lines.

We notice that in [26], because of using a single patch and excising the singularity at
two poles, only the shortest backscattered ray could be captured. Figure 8 shows the length
and amplitudes of the shortest backscattered ray for different incident angles, with ω = 1.
The peaks in the amplitude correspond to caustic backscattered creeping rays which have
infinite amplitudes. Such rays are particularly important in near-field RCS computations.
However, in far-field RCS, due to the the geometrical spreading outside the scatterer, their
contribution may not be as important.

Figure 9 shows the convergence of length and amplitudes of the backscattered creeping
ray for a fixed vertical angle Ψ2 = 70 and different horizontal incident angles Ψ1 ∈ [−90, 90].
We use a second order Fast Marching algorithm on a coarse grid of the size 503 and a fine
grid of the size 1003. We compare them with a reference solution obtained by a high order
ray tracing method. The rate of convergence confirms the second order accuracy of the
algorithm. We note that comparing to the results in [26], where a first order algorithm was
used, the accuracy of amplitude has been improved dramatically. It shows that using a first
order accurate method for computing the phase and amplitude results in a worse relative
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Figure 8: Length and amplitudes (with ω = 1) of backscattered creeping rays for many illumination angles.
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error for the amplitude than for the phase. Therefore, higher order algorithms are required
to obtain low relative errors for the amplitude, as observed also in [30].

The complexity of using the fast phase space method proposed here consists of two parts.
First, the cost of solving the PDEs by the Fast Marching method is O(N3 log N). Second, the
cost of finding the backscattered rays for each shadow line is O(N). For all N2 shadow lines,
it is O(N3). Therefore the total complexity will be O(N3 log N). The total cost by using
other methods, like wave front tracking and solvers based on the surface eikonal equation,
will be O(N4), if the cost for each shadow line is O(N2). In this case, using the phase space
method will then be much faster.

Remark 4. A graph structure can be useful for a general computer implementation. The
topology of the surface can be described by a graph, in which each patch is a node and the
edges go between connected patches. Figure 10a shows the graph corresponding to the ellipsoid
divided into six patches which are connected through twelve sides (see Figure 5). The graph
therefore has six nodes and twelve edges.

We can also introduce another topology graph, in which the nodes are the sides of the
patches and the edges correspond to the patches themselves. Each node (side) is therefore
connected to six other nodes through two patches which are connected by that side. See
Figure 10b. This structure can be useful for imposing inter-patch boundary conditions and
computing F.

5.5 Example 2 - A Balloon

We consider a balloon-shape surface consisting of a hemisphere in the positive side of the
z-axis, centered at the origin and with radius r, and the surface created by rotating the part
of parabola z2 = 2r(r−y) over the interval −

√
2r ≤ z ≤ 0 about the z-axis. This is a simple

smooth version of the cone-hemisphere studied in [3] as a model for low-observable objects
where creeping rays are important for RCS. We divide this surface into six patches, as shown
in Figure 11; The hemisphere is split into five patches j = 1, . . . , 5, and the parabolic part
is represented by one patch j = 6. We excise the singularity at the vertex of the balloon by
cutting it off. The lower boundary of patch j = 6 will therefore be an excision boundary and
is not considered as a patch boundary. We also partition the upper boundary of patch j = 6
into four boundaries connecting to lower boundaries of patches j = 1, . . . , 4. Note that the
left and right boundaries of patch j = 6 are in fact the same. Therefore, there are in total
thirteen sides connecting six patches. See Figure 11.

Since the surface is symmetric about the z-axis, we consider a fixed horizontal incident
angle Ψ1 = 90, and due to symmetry about the yz-plane, we consider the vertical angles
Ψ2 ∈ [−90, 90]. Figure 12 shows the backscattered rays for two different incident angles
Ψ2 = 40 and Ψ2 = −40. For positive vertical incident angles, there are four pairs of
backscattered rays which can be detected by the algorithm. Two of them are symmetric
and have the same length and amplitudes. For negative vertical incident angles, only one
backscattered ray can be captured. We notice that in the case Ψ2 = 90, there will be
infinitely many backscattered rays which results in high observability of the object in this
incident direction. On the other hand, for Ψ2 = −90, there will be no backscattered ray
because we have excised the vertex. In fact even if we did not excise it, all creeping rays
would go to the vertex and diffract in different directions.
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Figure 9: Length and amplitude (with ω = 1) of the backscattered creeping rays for different horizontal
incident angles and a fixed vertical angle Ψ2 = 70. By refining the grid, solutions of the second order phase
space algorithm converge to a reference solution obtained by a high order ray tracing method with a correct
rate. Right figures show zoomed views of left figures.
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Figure 10: Representation of an ellipsoid divided into 6 patches by two different graph structures. Left figure
shows the graph with 6 nodes and 12 edges. Here, the nodes 1 to 6 denotes the left, front, up, right, back
and down patches, respectively. Right figure shows the graph with 12 nodes and 72 edges.
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Figure 11: Left figure shows the balloon divided into 6 patches. Right figure shows the structure of patches
and patch boundaries in parameter space. Patches j = 1, . . . , 6 correspond to front, right, back, left, up and
down patches, respectively. These 6 patches share 13 sides in total, shown with italic numbers.

Figure 13 shows the length and amplitude of backscattered rays in a polar coordinate
system for all incident directions Ψ ∈ [0, 360]. The angles Ψ ∈ [0, 90] in the polar system
correspond to Ψ2 ∈ [0,−90], and the angles Ψ ∈ [270, 360] correspond to Ψ2 ∈ [90, 0]. The
values for Ψ ∈ [90, 270] are then calculated using the symmetry of the surface about the
yz-plane.
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Figure 12: Backscattered creeping rays (thick curves) for Ψ2 = 40 (left figure) and Ψ2 = −40 (right figure).
Thin curves represent the shadow lines.

6 Application to Seismic Wave Computations

The inhomogeneity of earth causes deflection and reflection of seismic waves. The numerical
study of seismic wave propagations, therefore, helps us to learn about the inhomogeneous
structure of earth, which is important in direct and inverse problems of seismology and
seismic exploration of oil.

In this section, we apply the multiple-patch phase space method to compute the travel-
time of seismic rays. We consider a two-dimensional multi-layered medium whose different
layers have different wave speeds. We split the medium into multiple patches corresponding
to different layers. The escape PDEs describing seismic waves are solved in each patch,
individually. The travel-time of the waves in the medium are then computed by connecting
all individual solutions. The inter-patch boundaries are treated by Snell’s law and the law
of reflection.

We first consider the case when the medium has a regular explicit parameterization and
derive the governing equations. We then discuss the multiple-patch scheme and give a
numerical example for computing the travel-times.

6.1 Governing Equations

Consider a two-dimensional medium M represented by parametric equations x = X̄(u),
where x = (x, y) ∈ M ⊂ R

2 and u = (u, v) ∈ Ω ⊂ R
2.

The phase φ of the wave satisfies the eikonal equation,

|∇φ| = n(x), (32)

which is a Hamilton-Jacobi equation. The Hamiltonian for the eikonal equation can be
written in the form

H(x,p) = c(x)|p| ≡ 1, (33)

where c(x) = 1/n(x) is the wave speed and p = ∇φ. Introducing the arc length parameter
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Figure 13: Length and amplitude (with ω = 1) of the backscattered creeping rays for all illumination
directions Ψ ∈ [0, 360]. Upper left and right figures show the length and amplitude of the backscattered
rays, respectively. There are four pairs of rays among which two (illustrated by ◦) are symmetric. Note
that at Ψ = 90 (Ψ2 = −90), there will be no backscattered ray because all creeping rays go to the vertex
and diffract in different directions. At Ψ = 270 (Ψ2 = 90), however, there are infinitely many backscattered
rays resulting in high observability of the object in this incident direction, and therefore the values are not
shown. Because of the excision, the longest backscattered ray (illustrated by ×) can be captured only for
Ψ ∈ [220, 320] (Ψ2 ≥ 40). Bottom figure shows the total amplitude, Atot =

√

A2
1 + A2

2 + A2
3 + A2

4, of all four
backscattered creeping rays.

τ , a ray trajectory (u(τ),p(τ)) in Ω × R
2 is given by the Hamiltonian system

ẋ = c(x)
p

|p| = c2(x)p, (34a)

ṗ = −|p| ∇xc(x) = −∇xc(x)

c(x)
, (34b)
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where the dot denotes differentiation with respect τ .
Since ẋ = J(u) u̇ with the Jacobian J = [X̄u X̄v] ∈ R

2×2, we have

u̇ = J−1(u) ẋ = c2(X̄(u)) J−1(u)p. (35)

Moreover, inspired by |p| = 1
c(x)

, we set p = (p1, p2)
⊤ = 1

c(x)
(cos θ, sin θ)⊤. Differentiating p

with respect to τ , we get

ṗ =

(

∇x
1

c(x)
· ẋ cos θ − 1

c(x)
sin θ θ̇

∇x
1

c(x)
· ẋ sin θ + 1

c(x)
cos θ θ̇

)

. (36)

By (34) and (36), we get θ̇ = cx(x) sin θ−cy(x) cos θ. Therefore, setting γ := (u, v, θ) ∈ Ωp,
the function g(γ) in (4) will be

g(γ) =





c(X̄(u)) (g11 cos θ + g12 sin θ)
c(X̄(u)) (g21 cos θ + g22 sin θ)
cx(X̄(u)) sin θ − cy(X̄(u)) cos θ



 , (37)

where (gij) = J−1(u). Note that since ẋ ‖ p by (34), the angle θ represents the direction of
the ray trajectory at x in the physical space. Moreover, with our choice of Hamiltonian,

φ̇(x(τ)) = ∇φ(x(τ)) · ẋ(τ) = p · p
c(x(τ))

|p|
= |p| c(x(τ)) = 1,

implying that φ corresponds to travel-time.

6.2 Multiple-Patch Scheme

We assume that the physical domain, representing a medium, is a two-dimensional compact
manifold M ⊂ R

2 with boundary. Since the wave speed distribution in a multi-layered
inhomogeneous medium is not continuous, it is natural to split the medium to different
patches with continuous wave speed distributions. We now let M be described by an atlas
of charts (Mj , wj) as before. The three-dimensional unit tangent bundle UTM is embedded
in R

4. In this case, there is an easier way to represent UTM by simplifying the mapping
Wj : UTMj → Ωp to be Wj(Γ) = γ, where

Γ = (x,q), q = ŝ(θ) =

(

cos θ
sin θ

)

, γ = (wj(x), θ). (38)

In the same way as before, we can define and compute multiple-patch escape functions
F(Γ) and Φ(Γ). However, here the rays are not continuous at the patch-boundaries due to
the change of the wave speed at these points. When a ray passes the boundary between two
layers (two neighboring patches) with different wave speeds, part of the ray is reflected (by
the law of reflection), and part of it is refracted or transmitted into the second layer (by
Snell’s law of refraction). At each interface, therefore, the ray field splits into two new ray
families, one reflected and one transmitted.

Figure 14a shows the reflection and refraction of a ray at the interface between two media
of different wave speeds, with cL > cR. The law of reflection gives the relation between the
angles of incidence (θinc) and of reflection (θref) as

θinc = θref . (39)
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The relation between the angles of incidence and of refraction (θtr) for a ray crossing a
boundary between different media is given by Snell’s law

sin θinc

sin θtr

=
cL

cR

. (40)

When a ray moves from a dense to a less dense medium (cL < cR), Snell’s law cannot
be used to calculate the refracted angle if sin θtr = sin θinc (cR/cL) > 1. At this point, the
ray is reflected in the incident medium, known as internal reflection. There is therefore
a critical angle (θcr) for which the ray travels directly along the surface between the two
refractive media. The critical angle is found by Snell’s law, putting in a transmitted angle
of 90 degrees. This gives:

θcr = arcsin
cR

cL

. (41)

For any angle of incidence larger than the critical angle (θinc > θcr), the ray is totally
reflected off the interface, obeying the law of reflection. This phenomena is called total
internal reflection. See Figure 14b.

θinc

θref

θtr

cL cR

(a)

θinc

θref

θtr

cL cR

θcr

(b)

Figure 14: Reflection and refraction of a ray at the interface between two media of different wave speeds.
Left figure shows the reflection and refraction when cL > cR. Right figure shows the internal reflection when
θinc ≥ θcr.

From (39)-(41), we can easily find the inter-patch boundary functions S̃ and R̃ discussed
in Section 2.2.1. Post-processing in this case is similar to that of the single-patch case,
because the escape boundary that we chose coincides with the external boundary of the
medium.

Note that the inter-patch boundary conditions above can be seen as a way to preserve the
Hamiltonian (33) for a ray across the patch boundary. In cases where the discontinuity in c(x)
is not aligned with the patch boundary, the solution of the escape equations is not unique.
Uniqueness can however be recovered by enforcing the extra condition that solutions should
be continuous along constant Hamiltonian paths also inside the patches. This is the idea of
so called Hamiltonian-preserving methods developed in [14, 15]. These methods capture the
effect of a discontinuous c(x) on uniform grids not aligned with the discontinuity.

6.3 Example 3 - A Multi-Layered Medium

We consider a multi-layered medium M = [0, 6]2 consisting of three layers with different
wave speeds (see Figure 15):
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• Top layer: c1(x, y) = 1 + 0.05 (x − 3)2 + 0.25 y,

• Middle layer: c2(x, y) = 3

1+e−((x−3)2+(y−3)2)
,

• Bottom layer: c3(x, y) = 0.5 + 0.2 x + 0.5 y.

Figure 15: The medium consisting of three layers and grey scale plot of the wave speed field.

We want to compute multivalued travel-time of seismic rays in the medium from a given
source point x0 on the boundary. We split the medium into three patches corresponding to
the three layers, as shown in Figure 15. The escape equations for the escape point F and
the travel-time Φ are derived and solved in each patch.

In order to find the travel-time with a given source point by post-processing, we first
choose the four outermost boundaries of the entire physical domain as the escape boundary.
We then continue as follows:

0. The source point x0 on the boundary is first reduced to a point S0 ∈ R.

1. For each point x ∈ M , find F(Γ) = (U,V,Θ) with Γ = (x,q(θ)) for all θ ∈ S. Now
(U,V) can again be reduced to points S ∈ R, parameterized by θ.

2. Find θ = θ∗ such that S0 = S(θ).

3. Travel-time at x ∈ M will then be Φ(Γ∗) with Γ∗ = (x,q(θ∗)).

Figure 16 shows the distribution of transmitted seismic rays and equiarrival curves, i.e.,
the locus of all points in physical domain which have the same travel-time, from two different
source points, x0 = (3, 6) and x0 = (3.5, 6). Note that we can track both reflected and
transmitted ray families, but not at the same time. In order to get all rays, one needs to
follow all ray families. Figure 17 shows the equiarrival curves of rays reflected from the top
and bottom interfaces inside the top and the middle layers, respectively, for a source point
at x0 = (3, 6). If we repeat this procedure, we can also capture multiple rays reflected from
the two interfaces that get trapped inside the middle layer and reverberate to infinity. Here,
we do not consider reflections from the domain boundaries, as we have a truncated domain
much smaller than the physical space in which the waves propagate.
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Figure 16: The equiarrival curves and the distribution of seismic rays for two different source points.
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Figure 17: The equiarrival curves of reflected seismic rays from the top (left figure) and bottom (right figure)
interfaces for a source point on the center of the top of the domain.

7 Conclusion

We have modified the single-patch phase space method for computing creeping rays to a
multiple-patch method for computing trajectories on two-dimensional manifolds possibly
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embedded in a higher-dimensional space. The dynamics of trajectories are given by systems
of first-order ODEs in a phase space. We split the manifold into multiple patches where
each patch has a well-defined regular parameterization. The escape equations, which are
hyperbolic PDEs in a three-dimensional phase space, are derived and solved in each patch,
individually, using a second-order version of the fast marching method. The solutions of
individual patches are then connected using suitable inter-patch boundary conditions. Prop-
erties for particular families of trajectories are obtained through a fast post-processing. For
some applications, the complexity of the method is attractive. Such applications include
mono-static and bi-static RCS computations, antenna coupling problems, and travel-time
computations of seismic waves when the solution is sought for many different sources.
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Abstract.Gaussian beam summation method is an asymptotic method for computing high frequency
wave fields in smoothly varying inhomogeneous media. In this paper we study the accuracy of Gaus-
sian beam summation method and derive error estimates related to the Taylor expansion of the phase
and amplitude off the center of the beam. We show that in the case of using odd order beams, the
error is smaller than a simple analysis would indicate because of error cancellation effects between the
beams. Since the cancellation happens only when odd order beams are used, there is no remarkable
gain in using even order beams. Moreover, in the case of constant coefficient equations, i.e. when the
speed of propagation is constant, the local beam width is not a good indicator of accuracy, and there
is no direct relation between the error and the beams width. We present numerical examples to verify
the error estimates.

Keywords. wave propagation, high frequency, asymptotic approximation, summation of Gaussian
beams, accuracy, error estimates

1 Introduction

Simulation of wave propagation is expensive when the frequency becomes high. In this
case, a large number of grid points are needed to resolve the wave oscillations, and
the computational cost to maintain constant accuracy grows algebraically with the
frequency. At sufficiently high frequencies, therefore, direct simulations are no longer
feasible.

Instead one can use high frequency asymptotic models for wave propagation. The
most popular one is geometrical optics, which is obtained when the frequency tends
to infinity. The unknowns in geometrical optics are phase and amplitude which are
independent of the frequency and vary on a much coarser scale than the full wave
solution. They can therefore be computed at a computational cost independent of the
frequency. However, a main drawback of geometrical optics is that the model breaks
down at caustics, where geometrical optics rays intersect and the predicted amplitude
is unbounded.

Gaussian beams approximation is another high frequency asymptotic model which
is valid also at caustics. It was introduced by Popov [1], based on an earlier work of
Babic and Pankratova [2]. A Gaussian beam is an approximate high frequency solution
to the linear wave equation which is concentrated close to a standard ray of geometrical
optics, called the central ray of the beam. Although the phase function is real-valued
along the central ray, Gaussian beams accept complex-valued phase functions off their
central ray. The imaginary part of the phase is chosen such that the solution decays

1



exponentially away from the central ray, maintaining a Gaussian-shaped profile. The
main advantage of this construction is that it gives the correct solution also at caustics.
It has been proved to be beneficial in seismic imaging, [6, 7].

Numerical methods based on Gaussian beams use the superposition principle. In-
dividual beams are computed via ray tracing like equations, where quantities such as
the curvature and width of beams are calculated from ordinary differential equations
(ODEs) along the central rays, and contribution of the beams concentrated close to
their central rays are determined by Taylor expansion. The result is then summed to
find the full wave field. See for example [3, 4, 5, 6, 7]. For a rigorous mathematical
analysis of Gaussian beams we refer to [8].

In this paper we derive error estimates for the beam summation method. Some
error estimates for this method have been derived earlier, [9, 10]. We aim to give a
more complete picture of the error by also including the error due to the spreading of
the beams, which is related to the Taylor expansion of the phase and amplitude off the
center of the beam. This error is recognized as important in e.g. [9]. It turns out that,
in the case of using odd order beams, the error is smaller than a simple analysis would
indicate because of error cancellation effects between the beams. Since the cancellation
happens only when odd order beams are used, there is no remarkable gain in using
even order beams. Moreover, we show that in the case of constant coefficient equations,
i.e. when the speed of propagation is constant, the local beam width is not a good
indicator of accuracy, and there is no direct relation between the error and the beams
width. However, this may not be true in the case of varying speed of propagation,
where the beam width can be an important factor in Taylor expansion error.

In Section 2, we review the construction of Gaussian beams and the Gaussian beam
summation method. Accuracy of Gaussian beam summation is studied in Section
3, where the main result is formulated together with numerical examples verifying
the obtained error estimates. In Section 4, the proof of the main theorem is given
in detail. Finally, in Section 5, we compute the errors analytically in the case of
constant coefficient equations and give some remarks on how to select the Gaussian
beam parameters.

2 Gaussian beam summation method

Gaussian beams are obtained when the linear wave equation is solved with initial or
boundary data in the shape of a Gaussian bell. A Gaussian beam is an asymptotic
solution concentrated on its central ray in the domain. By the superposition principle
for linear equations, such solutions can be added to find the full wave field. The
initial/boundary data for beams are obtained such that the wave data at the source is
well approximated. In this section, we consider the Helmholtz equation (or the reduced
wave equation) and review the construction of Gaussian beams and their summation.
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2.1 Construction of Gaussian beams

Consider the Helmholtz equation

∆u(x) +
ω2

c(x)2
u(x) = 0, x ∈ R

2,

where ω ≫ 1 and c(x) are the frequency and speed of propagation, respectively. We
substitute the WKBJ ansatz

uGB(x) = eiωφ(x)
∞

∑

k=0

Ak(x)(iω)−k, (1)

into the Helmholtz equation. Here, the phase function φ and the amplitude functions
Ak are assumed to be smooth and independent of ω. Equating coefficients of powers
of ω to zero gives us the eikonal equation and the transport equation for the phase and
the first amplitude term in the frequency domain,

|∇φ| = 1/c(x), 2∇A0 · ∇φ+ A0 ∆φ = 0.

For the remaining amplitude terms, we get additional transport equations

2∇Ak+1 · ∇φ+ Ak+1 ∆φ+ ∆Ak = 0.

When ω is large, only the first term in the WKBJ expansion is significant. Therefore, in
the standard Gaussian beam method only the first order term in the expansion is kept.
In this paper, without loss of generality, we only consider the first term (with k = 0)
and drop zero, writing A instead of A0. The same result holds also with including
higher order terms.

While in the standard geometrical optics, the phase is real-valued, in Gaussian beam
construction, the phase is real-valued only on the central ray of the beam. Away from
the central ray, it is complex-valued with positive imaginary part. The solution will
then be exponentially decreasing away from the central ray, maintaining its Gaussian
shape. Another difference between geometrical optics and Gaussian beams is that in
the Gaussian beam construction, φ is constructed based on one specific ray (the beam’s
central ray), while in geometrical optics it is globally defined for all rays. Note that
the Gaussian beam method can also be formulated globally. In this case we obtain
a complex eikonal equation, [11, 12]. But unfortunately, the question of existence
and uniqueness of the complex eikonal equation is to a certain extent still open. In
particular what precise boundary conditions are well-posed for the above setting is not
known.

The Gaussian beam approximation breaks down when φ(x) becomes non-smooth.
This is also typical for complex eikonal equation. It happens in general some distance
away from the central beam. On the other hand, away from the beam the solution
rapidly goes to zero and the precise value of the phase is not important. One usually
deals with this problem by multiplying the amplitude with a smooth cut-off function
that is one close to the central ray, and zero for some fixed distance away from it.

uGB(x) = ϕ(x)A(x)eiωφ(x). (2)
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Here ϕ(x) is smooth and compactly supported around the central ray.
For a beam starting at point x0 with direction p0, the corresponding central ray

satisfies the ray tracing ODEs

dx

dt
= c2(x)p,

dp

dt
= −∇c(x)

c(x)
, x(0) = x0, p(0) =

p0

|p0|c(x0)
, (3)

with t being the real-valued travel time along the ray. Note that since p(t) = ∇φ(x(t))
satisfies the eikonal equation, we can set p = (cos θ sin θ)⊤/c(x) and reduce (3) to

dx

dt
= c(x) cos θ,

dy

dt
= c(x) sin θ,

dθ

dt
= cx(x) sin θ − cy(x) cos θ. (4)

The complex-valued A and φ close to the central ray are then approximated by Taylor
expansions around the ray,

A(x) ≈ A(x∗) + (x − x∗) · ∇A(x∗) +
1

2
(x − x∗)⊤D2A(x∗) (x − x∗) + · · · , (5)

φ(x) ≈ φ(x∗) + (x − x∗) · ∇φ(x∗) +
1

2
(x − x∗)⊤D2φ(x∗) (x − x∗) + · · · , (6)

where x∗ = x(t) for some t. The Taylor coefficients φ(x(t)), ∇φ(x(t)), A(x(t)), etc.
on the central ray can be computed. The lowest ones are given directly,

φ(x(t)) = φ(x0) + t, ∇φ(x(t)) = p(t),

and the higher ones can be obtained by solving ODEs similar to (3). The most common
approximation by far is to approximate A(x) to zeroth order and φ(x) to second order
(a first order Gaussian beam). In this case we have, [5],

A(x(t)) = A(x0)

(

c(x(t))

c(x0)

Q(0)

Q(t)

)1/2

, D2φ(x(t)) = HNH−1,

with

H =

(

sin θ cos θ
− cos θ sin θ

)

, N =

(

P/Q −c1/c2
−c1/c2 −c2/c2

)

,

(

c1
c2

)

= H−1∇c,

where the complex-valued scalar functions P and Q satisfy the dynamic ray tracing
ODEs

dQ

dt
= c2(x)P, Q(0) = Q0, (7)

dP

dt
= −cxx sin2 θ − 2cxy sin θ cos θ + cyy cos2 θ

c(x)
Q, P (0) = P0. (8)

It can be shown that if Q0 6= 0 and ℑ(P0/Q0) > 0, then Q(t) 6= 0 and ℑ(P (t)/Q(t)) > 0
along the central ray, [1]. Therefore, by a proper choice of initial data Q0 and P0, each
beam will be regular (with finite amplitude at caustics) and concentrate along the
central ray. A common choice is Q0 > 0 and P0 = i. Note that the quantities P and
Q determine the wavefront curvature and the beam width.
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2.2 Beam summation

Let the source be a curve x0(s) in R
2 parameterized by s. We introduce the notation

A(x, s), φ(x, s) and ϕ(x, s) for the amplitude, phase and cut-off of a beam with ini-
tial position x0(s). In the Gaussian beam summation method, the initial/boundary
condition on x0(s) for the wave field is decomposed into initial conditions for several
beams with different initial positions x0(sj). Individual Gaussian beams are computed
by solving the ODEs (3) and (7,8). The contributions of the beams concentrated close
to their central rays are determined by the approximations (5,6) entered in (2). The
wave field is then obtained by summing over the beams

us(x) =
∑

j∈Z

ϕ(x, sj)A(x, sj)e
iωφ(x,sj). (9)

The initial conditions for the Taylor coefficient ODEs are chosen such that us well
approximates the exact initial/boundary data.

As an example, a plane wave on the y-axis, x0(s) = (s, 0), can be approximated by
a sum of beams, [6],

1 =
∑

j

1√
π

h

w0
e−(s−sj)2/w2

0 + O(e−(w0/h)2), sj = jh, (10)

with h and w0 representing the initial spacing of the beams and the initial beam
widths, See Figure 1. To properly choose the initial data, one must therefore take

Figure 1: The sum of several Gaussian functions is almost constant. A plane wave can therefore be
decomposed approximately to a sum of parallel Gaussian beams.

the parameters w0 and h such that w0 > h. Note that for computational efficiency, h
should not be taken too small. Choosing a real-valued, positive Q0, P0 = i and using
first order beams, the wave field (9) produces a plane wave on x0(s) = (s, 0), if

w0 =

(

2Q0

ω

)1/2

, A(x0, sj) =
1√
π

h

w0

.

Motivated by this example, we write

us(x) =
∑

j∈Z

αh

w0
ϕ(x, sj)A(x, sj)e

iωφ(x,sj), (11)

where α is a constant. For an initial plane wave, we have α =
√

1/π and A(x0, sj) = 1.
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Note that since w0 ∝ ω−1/2,

us(x) ∝ ω1/2h
∑

j∈Z

ϕ(x, sj)A(x, sj)e
iωφ(x,sj) ≈ ω1/2

∫

ϕ(x, s)A(x, s)eiωφ(x,s)ds, (12)

meaning that the summation (11) approximates the superposition integral.
In what follows, in order to simplify the calculations, we assume that all beams,

originating from x0(s), shoot out orthogonally. We denote by X(t, s) the location of
the center ray originating in x0(s) after time t. We further assume that φ(x0(s), s) = 0.

We make one observation that will be used in the analysis below. It is well-known
that X t ‖ ∇xφ, X t · ∇xφ = 1 and Xs ⊥ X t under the assumptions made above.
Therefore, since φ(X(t, s), s) = t,

0 =
d

ds
φ(X(t, s), s) = Xs · ∇xφ+ φs. = φs(X(t, s), s) (13)

Hence φs = 0 everywhere on the central rays.

3 Accuracy of Gaussian beams summation

In this section we study the accuracy of summation of Gaussian beams. One can
distinguish five different types of errors in the approximation:

1. High frequency approximation.

2. Error in initial data.

3. Taylor expansion error.

4. Cut-off error.

5. Error in numerical integrators for solving Taylor coefficient ODEs.

The first error depends on the number of terms used in the WKBJ approximation. For
example, for standard beams it is of the order O(1/ω), meaning that each beam is a
solution to the Helmholtz equation up to order O(1/ω). The second error represents
how well the exact initial/boundary data is approximated by a sum of Gaussian beams.
The third error is due to the fact that A and φ are not computed globally, and only their
derivatives on the central beams are computed. One therefore needs to approximate
their values around the central beams by Taylor expansions. The fourth error is caused
by multiplying the solution by a smooth cut-off function in order to account for possible
irregularities away from the central rays. Finally, the last error is the numerical error
in solving the ODEs for computing Taylor coefficients. For example the global error in
a fourth order Runge-Kutta method is O(∆t4), with ∆t being the time-step.

Here, we will only concentrate on the Taylor expansion error.
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3.1 Motivation and preliminaries

Let the source be a curve x0(s) and assume that we look for the solution along a line
x = (x, y∗). We simplify the notation by setting A(x, s) = A(x, s), φ(x, s) = φ(x, s),
ϕ(x, s) = ϕ(x, s) and sj = jh, with h representing the initial spacing of the beams,

us(x) =
∑

j∈Z

αh

w0
ϕ(x, sj)A(x, sj)e

iωφ(x,sj), sj = jh.

To approximate this sum we let X(s) denote the location of the center beam on the
line (x, y∗) when the initial data is given at x0(s). Hence, X(s) is implicitly defined by

X(t(s), s) = (X(s), y∗),

for some function t(s). Figure 2 shows the setting for x0(s) = (s, 0), as an example.

x

y

x0(s) = (s, 0)

s

X(s)
x = (x, y∗)

Figure 2: A schematic representation of the initial source and a beam central ray.

Then we approximate A up to level q and φ up to level q + 2,

A(x, s) ≈ Ãq(x, s) := A(X(s), s) + · · ·+ (x−X(s))q

q!
∂qxA(X(s), s), (14)

φ(x, s) ≈ φ̃q(x, s) := φ(X(s), s) + · · · + (x−X(s))q+2

(q + 2)!
∂q+2
x φ(X(s), s), (15)

and assume that the approximate Gaussian beam solution is given by

ũs(x) =
∑

j∈Z

αh

w0

ϕj(x)Ãq(x, sj)e
iωφ̃q(x,sj), ϕj(x) := ϕ(x, sj).

We call this a (q+ 1)-th order Gaussian beam solution. Note that for q ≥ 2, one needs
to include more terms in the WKBJ expansion in order to balance the high frequency
approximation error and the Taylor expansion error. For example, for a third order
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Gaussian beam with q = 2, the first amplitude term A0 in (1) is approximated up to
level 2, the second amplitude term A1 in (1) is approximated up to level 0, and φ is
approximated up to level 4.

Our motivation for considering the Taylor expansion error comes from the following
observation. We define the width of the Gaussian beam passing through (x, y∗) as

w(x) :=
1

√

ωℑφxx(x,X−1(x))
.

Because of the term eiω(x−X(s))2φxx/2 the solution will be close to zero for |x−X(s)| >
w(x). A simple error analysis would therefore give

us− ũs = (A− Ãq)e
iωφ̃q +Aeiωφ̃q(eiω(φ−φ̃q) − 1) = O(wq+1)eiωφ̃q +Aeiωφ̃q(eiO(ωwq+3) − 1).

Hence, the error would be O(wq+1(1+ωw2)) = O(wq+1) = O(ω−(q+1)/2). In particular,
for first order beams with q = 0, the convergence rate in ω would be half order, i.e.
proportional to ω−1/2.

We now consider two numerical examples and use first order Gaussian beams to
verify this convergence rate. In the first example, a plane wave generated on the line
y = 0 propagates orthogonally into the computational domain with a variable speed
of propagation. Figure 3a shows the central rays of Gaussian beams, and Figure 3c
shows the absolute value of the Gaussian beams and geometrical optics solutions along
the line y = 0.6, shown in bold in Figure 3a. Figure 3e shows the logarithmic scale of
the maximum error between the Gaussian beams solution and the geometrical optics
solution as a reference solution. As it can be seen, the convergence rate of the error
is surprisingly proportional to ω−1, which is half order better than what we expected.
Note that the geometrical optics error is ω−1, and since a lower accuracy was expected
for the Gaussian beam method, it is fine to compare the solution with the geometrical
optics solution.

In the second example, a plane wave generated on the line x = 0 propagates with
an angle of 45o into the computational domain with a variable speed of propagation.
The convergence rate of the error, shown in Figure 3f, is again proportional to ω−1.

We will therefore study the Taylor expansion error more carefully to describe why
it is smaller than what we expected.

3.2 Main result

For our results we make the following precise assumptions

(A1) Smoothness of all coefficients. We assume A(x, s) ∈ Cp+q+2
b (R2), the space of

functions with p+ q + 2 continuous and bounded derivatives. Similarly φ(x, s) ∈
Cp+q+4 and X(t, s) ∈ Cp+1, with p ≥ 2.

(A2) Algebraic growth of phase off center beam. For p1, p2 ≤ p, we have

∂p1x ∂
p2
s φ(x, s) ≤ C(1 + |x−X(s)|k).

In particular, all derivatives are bounded on the center beam, x = X(s).
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Figure 3: Left and right top figures show the central rays of Gaussian beams by an initial plane wave
on x- and y-axis, respectively. Middle figures show the absolute value of the Gaussian beams and
geometrical optics solutions along the lines y = 0.6 and y = 2. Bottom figures show the logarithmic
scale of the maximum error between the Gaussian beams solution and the geometrical optics solution.
The convergence rate of the maximum error is ω−1.

(A3) No caustics. The derivative X ′(s) is bounded away from zero, 0 < c0 ≤ X ′(s) ≤
c1 <∞.

(A4) Non-degeneracy of each beam. The imaginary part of φxx is strictly positive

0 < c0 ≤ ℑφxx(X(s), s) ≤ c1 <∞. (16)
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This means that the approximate beams will have a fast decay off the central
beam for high frequencies, and also that the beam width never vanishes. The last
point is an important feature of Gaussian beams, related to the fact that Gaussian
beams can approximate the exact field at caustics.

(A5) Cut-off of fixed size. We use ϕ(x, s) = ϕ(x − X(s)) with ϕ ∈ C∞ such that
ϕ(x) = 1 for |x| ≤ α/2 and ϕ(x) = 0 for |x| > α. The size of α will be chosen
”small enough” depending on φ but independent of ω. Moreover, we assume
ϕ′(0) = 0.

Then we can show

Theorem 1. (Main Theorem) For the (q + 1)-th order Gaussian beams, we have

|us(x) − ũs(x)| = |Enon−osc + Eosc| ≤ C
(

ω− q∗

2 + ω
q+1

2 β−p
)

, (17)

where

β := w(x)/h, q∗ =

{

q + 2, q even,

q + 1, q odd.
.

The constant C depends on the initial data, P0 and Q0, for the beams but does not
depend on x, ω or h.

For the first part of the error we have
∣

∣

∣

∣

Enon−osc − αC∗(x)
wq

∗+1

w0

∣

∣

∣

∣

≤ C ′ w
q∗+2

w0
,

meaning that the leading order term of the error Enon−osc in ω is αC∗(x)wq
∗+1/w0,

with α being a constant and C∗ given by (26).

Remark 1. As the theorem shows, although the formal convergence rate, when β =
w(x)/h is held fixed, is just half order in ω for first order beams, but typically the second
term in (17) is smaller because of the ”fast” decay of β−p. In practice therefore the
convergence rate is full first order, which is the same as geometrical optics.

In order to make the second term of the error small, one should therefore take
h < w(x). However, h should not be chosen too small for computational complexity
reasons. It is also important to note that to balance the error with the error in initial
data, h should also relate to the initial beam width w0. For wider beams the first term
dominates.

Remark 2. As the estimate (17) suggests, there is no remarkable gain in using even
order beams (with an odd q). However, one should note that this is only true in the
case of the summation of beams. If we only have one beam, this does not hold.

Remark 3. The first term in (17) corresponds to the leading order error in the superpo-
sition integrals. The second term corresponds to the truncation error of the trapezoidal
rule applied to the superposition integrals. This latter error is also investigated in [9],
where it is called the discretization error.
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4 Proof of main result

Before going on to the proof of Theorem 1, we prove the following utility lemma
concerning estimates for the composition of two functions.

Lemma 1. Suppose f(z) and gδ(z) belongs to Cp(R) for each value of the parameter
δ. If

|g(n)
δ (z)| ≤ Cg(1 + |z|q), 1 ≤ n ≤ p, (18)

where Cg and q ≥ 0 are constants independent of z and δ, then, for 1 ≤ n ≤ p, there
are functions hm,n ∈ Cp−n(R) and constants Cm,n independent of z and δ, such that

dn

dzn
f(gδ(z)) =

n
∑

m=1

hm,n(z)f
(m)(gδ(z)), max

0≤k≤p−n
|h(k)
m,n(z)| ≤ Cm,n(1 + |z|qn). (19)

If q = 0 and |gδ(z)| ≤ Cg, then
∣

∣

∣

∣

dn

dzn
ez

rgδ(z)

∣

∣

∣

∣

≤ C(1 + |z|rn)ezrgδ(z), 0 ≤ n ≤ p, (20)

for some constant C.

Proof. We show (19) by induction. For n = 1 we have h1,1 = g′δ(z) ∈ Cp−1 and the
statement clearly holds. Suppose (19) is true for 1 ≤ n′ ≤ n < p. Then

dn+1

dzn+1
f(gδ(z)) =

n
∑

m=1

h′m,nf
(m)(gδ) + g′δhm,n(z)f

(m+1)(gδ).

Thus

hm,n+1(z) =











h′m,n, m = 1,

h′m,n + g′δhm−1,n, 1 < m ≤ n,

g′δhm−1,n, m = n+ 1.

Using the induction hypothesis, we immediately get that hm,n+1(z) ∈ Cp−n−1(R).
Moreover,

max
0≤k≤p−n−1

|h(k)
m,n+1(z)| ≤ max

0≤k≤p−n−1
|h(k+1)
m,n (z)| + max

0≤k≤p−n−1

k
∑

j=0

cjk|h(j)
m−1,n(z)||g

(k+1−j)
δ (z)|

The first term is bounded by C1,1(1 + |z|qn) by assumption and for the second term we
can estimate

|h(j)
m−1,n(z)||g

(k+1−j)
δ (z)| ≤ Cm−1,n(1 + |z|qn)Cg(1 + |z|q) ≤ C ′(1 + |z|q(n+1)),

which proves (19). When q = 0, we have for 1 ≤ n ≤ p,

dn

dzn
zrgδ(z) =

min(r,n)
∑

j=0

cj,ng
(n−j)
δ (z)

dj

dzj
zr ≤

min(r,n)
∑

j=0

Cg|z|r−j ≤ C ′(1 + |z|r).

By taking f(z) = ez in (19) the result (20) follows.
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We can now start with the main proof. The error that we need to bound is given
by

E(x) = us(x)− ũs(x) =
αh

w0

∑

j∈Z

ϕ(X(sj)−x)
(

A(x, sj) e
iωφ(x,sj) − Ãq(x, sj) e

iωφ̃q(x,sj)
)

.

For a fixed x we set

f(j) = ϕ(X(sj) − x)
(

A(x, sj) e
iωφ(x,sj) − Ãq(x, sj) e

iωφ̃q(x,sj)
)

.

Then the Poisson summation formula gives

E =
αh

w0

∑

j∈Z

f(j) =
αh

w0

∑

k∈Z

f̂(k),

where

f̂(k) =

∫

f(s)e−2πiskds

=

∫

ϕ(X(sh) − x)
(

A(x, sh) eiωφ(x,sh) − Ãq(x, sh) e
iωφ̃q(x,sh)

)

e−2πiskds

=
1

h

∫

ϕ(X(s) − x)
(

A(x, s) eiωφ(x,s) − Ãq(x, s) e
iωφ̃q(x,s)

)

e−2πisk/hds.

Let us denote X−1(x) by m(x) and then, since X ′(s) is bounded away from zero we
can use the change of variables

z =
X(s) − x

w(x)
⇒ s = m(x+ w(x)z).

We obtain

f̂(k) =
w

h

∫

ϕ(wz)
[

A(x,m(x+ wz)) eiωφ(x,m(x+wz))−

Ãq(x,m(x+ wz)) eiωφ̃q(x,m(x+wz))
]

e−2πim(x+wz)k/hm′(x+ wz) dz.

Finally, letting

DA(x, s) := A(x, s) − Ãq(x, s), Dφ(x, s) := φ(x, s) − φ̃q(x, s).

and recalling that suppϕ ⊂ [−α, α], we can write the integral as

f̂(k) =
w

h

∫

|z|≤α
w

ϕ
(

DA + A(eiωDφ − 1)
)

eiωφ̃qe−2πimk/hm′dz. (21)

We consider the non-oscillatory case k = 0 and the oscillatory case k 6= 0 separately
and write

E =
αh

w0
f̂(0) +

αh

w0

∑

k 6=0

f̂(k) =: Enon−osc + Eosc.

The non-oscillatory case will normally be the dominant contribution. The oscillatory
case corresponds to the truncation error when the superposition integral (12) is ap-
proximated by a trapezoidal rule discretization.
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4.1 Non-oscillatory case

We will now consider the case k = 0 and approximate the terms in the integral (21)
by their Taylor expansion. Let us use the shorthand

ãp(x) =
(−1)p

p!
∂pxA(x,m(x)), b̃p(x) =

1

p!

dp

dzp
A(x,m(x+ z))

∣

∣

∣

∣

z=0

.

and

p̃p(x) =
(−1)p

p!
∂pxφ(x,m(x)), r̃p(x) =

1

p!

dp

dzp
φ(x,m(x+ z))

∣

∣

∣

∣

z=0

.

We note that, in this notation

Ãq(x,m(x+ z)) = ã0(x+ z) + zã1(x+ z) + · · ·+ zqãq(x+ z),

φ̃q(x,m(x+ z)) = p̃0(x+ z) + zp̃1(x+ z) + · · ·+ zq+2p̃q+2(x+ z).

Let
a1(x) = ãq+1(x), a2(x) = ãq+2(x) + ã′q+1(x),

b1(x) = i
p̃q+3(x)

ℑφxx(x,m(x))
, b2(x) = i

p̃q+4(x) + p̃′q+3(x)

ℑφxx(x,m(x))
,

c1(x) = ℜ r̃2(x)

ℑφxx(x,m(x))
, c2(x) = i

r̃3(x) − σp̃3(x)

ℑφxx(x,m(x))
.

where σ = 1 for q = 0 and σ = 0 for q > 0. We then approximate

DA(x,m(x+ wz)) ≈ wq+1D̃A(x, z) := (wz)q+1a1(x) + (wz)q+2a2(x),

eiωDφ(x,m(x+wz)) − 1 ≈ wq+1B̃(x, z) := wq+1b1(x)z
q+3 + wq+2(b2(x)z

q+4 + σb21(x)z
2q+6/2),

eiωφ̃q(x,m(x+wz)) ≈ C̃(x, z) =: eiωφ(x,m(x))+iz2c1(x)−z2/2(1 + c2(x)wz
3).

The residual terms are denoted

DA(x,m(x+ wz)) − wq+1D̃A(x, z) =: wq+3RA(x, z),

eiωDφ(x,m(x+wz)) − 1 − wq+1B̃(x, z) =: wq+3RB(x, z),

eiωφ̃q(x,m(x+wz)) − C̃(x, z) =: w2RC(x, z).

Then we have

Lemma 2. Let the residual terms RA, RB and RC be defined as above. Under assump-
tions (A1) and (A2), for small enough α,

|RA| ≤ C|z|q+3, |RB| ≤ Cez
2/7, |RC | ≤ Ce−z

2/4, ∀|z| ≤ α/w,

where the constant C is independent of x, ω and z.
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Proof. We note that ãq(x + z) are the first q coefficients in the Taylor expansion of
A(x+ z−x′, m(x+ z)) around x′ = 0. Therefore, by Taylor’s theorem and assumption
(A1)

∣

∣DA(x,m(x+ z)) − zq+1ãq+1(x+ z) − zq+2ãq+2(x+ z)
∣

∣ ≤ C|z|q+3.

Expanding the second and third terms around z = 0 gives the bound for RA.
We now estimate ωDφ in two different ways. By Taylor’s theorem as above,

|ωDφ(x,m(x+ wz))| ≤ Cω|wz|q+3|(1 + |wz|q∗),

where we used the growth condition (A2) for φ to bound the error term. Then, for
|z| ≤ α/w, and small enough α,

|ωDφ| ≤ Cwq+1|z|q+3, |ωDφ| ≤ Cz2αq+1(1 + αq
∗

) ≤ z2

8
,

implying
∣

∣

∣

∣

eiωDφ − 1 − iωDφ −
(iωDφ)

2

2

∣

∣

∣

∣

≤ 1

6
|ωDφ|3e|ωDφ| ≤ Cw3q+3|z|3q+9 exp

(

z2

8

)

.

Moreover, the same steps as for DA together with (A2) gives
∣

∣Dφ(x,m(x+ z)) − zq+3p̃q+3(x) − zq+4(p̃q+4(x) + p̃′q+3(x))
∣

∣ ≤ C|z|q+5(1 + |z|q∗), (22)

and since ω = 1/w2ℑφxx, when |z| ≤ α/w,
∣

∣iωDφ(x,m(x+ wz)) − wq+1zq+3b1(x) − wq+2zq+4b2(x)
∣

∣ ≤ Cwq+3|z|q+5.

Finally, for q > 0, clearly |ωDφ|2 ≤ Cw2q+2|z|2q+6 ≤ Cwq+3|z|2q+6 and for q = 0 we get

|(iωDφ)
2 − w2b21z

6| =
|D2

φ − (w3z3p̃3)
2|

w4ℑφ2
xx

=
|Dφ − w3z3p̃3||Dφ + w3z3p̃3|

w4ℑφ2
xx

≤ Cw3|z|7.

Thus,

|RB| ≤ Cw2q|z|3q+9 exp

(

z2

8

)

+C|z|q+5 + (1− σ)C|z|2q+6 + σC|z|2q+7 ≤ C ′ exp

(

z2

7

)

.

To show the third inequality, we note that since φs(x,m(x)) ≡ 0 by (13), we have
r̃1(x) = 0. Therefore by Taylor’s theorem and assumption (A2), for q′ ≥ 2,

∣

∣

∣

∣

∣

φ(x,m(x+ z)) − φ(x,m(x)) −
q′

∑

p=2

zpr̃p(x)

∣

∣

∣

∣

∣

≤ C|z|q′+1(1 + |z|q∗). (23)

Let v(x, z) = φ̃q(x,m(x+ z)) − φ(x,m(x)) − z2r̃2(x). Then, by (22) and (23),

|v(x, z)| = |φ(x,m(x+ z))−φ(x,m(x))−Dφ(x,m(x+ z))− z2r̃2(x)| ≤ C|z|3(1+ |z|q∗).
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Moreover,
|v(x, z) − z3(r̃3(x) + σp̃3(x))| ≤ C|z|4(1 + |z|q∗).

As above, if |z| ≤ α/w,

|eiωv(x,wz) − 1 − wz3c2(x)| ≤ |iωv(x, wz) − wz3c2(x)| +
1

2
|ωv|2e|ωv|

≤ Cω|wz|4(1 + |wz|q∗) +
1

2
|Cω|wz|3(1 + |wz|q∗)|2eCω|wz|3(1+|wz|q

∗

)

≤ Cw2|z|4(1 + αq
∗

) + Cw2|z|6(1 + αq
∗

)2eCz
2α(1+αq∗ ) ≤ Cw2ez

2/4,

for small enough α. The estimate for |RC | follows. It remains to note that, since
φs(x,m(x)) = ℑφx(x,m(x)) ≡ 0,

ℑr̃2 =
1

2
m′(x)2ℑφss =

1

2
m′(x)ℑ

(

d

dx
φs − φsx

)

= −1

2
ℑ

(

d

dx
φx − φxx

)

=
1

2
ℑφxx,

which shows that iωw2z2r̃2 = iz2c1 − z2/2.

We Taylor expand the remaining quantities in (21) and use the assumption (A5) to
get

ϕ(wz) ≈ 1,

A(x,m(x+ wz)) ≈ Ã(x, z) := A(x,m(x)) + wzb̃1(x),

m′(x+ wz) ≈ m̃(x, z) := m′(x) + wzm′′(x).

It is easy to see that the residual terms for these approximations can all be bounded
by Cw2z2. Since these residual terms as well as RA and RB above all grow slower than
exp(z2/4), we can replace the terms in the integral in (21) by their approximations and
control the error by O(wq+3),

∣

∣

∣

∣

∣

f̂(0) − w

h
wq+1

∫

|z|≤α
w

(D̃A + ÃB̃)C̃m̃dz

∣

∣

∣

∣

∣

≤ C
w

h
wq+3.

Introduce the functions

dp(x) =

∫

zpeiz
2c1(x)−z2/2dz =

{

Np(1 − 2ic1(x))
−(p+1)/2, p even,

0, p odd,
(24)

with Np being a constant. We note that dp(x) ≡ 0 when p is odd and it is bounded in

x when p is even. Therefore, since the leading order z in D̃A and B̃ is q + 1 and q + 3
respectively, when q is even the leading order term vanishes. Thus, when q is even we
get

∣

∣

∣
f̂(0) − w

h
wq+2eeven(x)

∣

∣

∣
≤ C

w

h
wq+3,
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where

eeven(x) = a1m
′′dq+2 + a1c2m

′dq+4 + a2m
′dq+2 + b1Am

′′dq+4 + b1Ac2m
′dq+6+ (25)

b1b̃1m
′dq+4 + b2Am

′dq+4 + σ
b21
2
Am′d2q+6.

When q is odd,
∣

∣

∣
f̂(0) − w

h
wq+1eodd(x)

∣

∣

∣
≤ C

w

h
wq+2,

where
eodd(x) = (a1 + Ab1)m

′dq+3.

We therefore write
∣

∣

∣

∣

f̂(0) − C∗(x)
wq

∗+1

h

∣

∣

∣

∣

≤ C
wq

∗+2

h
, q∗ =

{

q + 2, q even,

q + 1, q odd,
C∗(x) =

{

eeven, q even,

eodd, q odd.

(26)
Note that C∗(x) is independent of ω and h and can be bounded by a constant inde-
pendent of x. We then have

∣

∣

∣

∣

Enon−osc − αC∗(x)
wq

∗+1

w0

∣

∣

∣

∣

≤ C
wq

∗+2

w0
. (27)

Therefore, the leading order term of the error Enon−osc in ω is αC∗(x)wq
∗+1/w0.

4.2 Oscillatory case

In the oscillatory case we need to show that the functions in Lemma 2 also are smooth,
with bounded derivatives. Then the non-stationary phase lemma can be used to bound
f̂(k) since the phase derivative m′(x) never vanishes.

We need

Lemma 3. Under assumptions (A1) and (A2), for 0 ≤ k ≤ p and |z| ≤ α/w with
small enough α,

∣

∣

∣

∣

dk

dzk
DA(x,m(x+ wz))

∣

∣

∣

∣

≤ Cwq+1(1 + |z|q+1), (28)

∣

∣

∣

∣

dk

dzk
(eiωDφ(x,m(x+wz)) − 1)

∣

∣

∣

∣

≤ C ′wq+1ez
2/7, (29)

∣

∣

∣

∣

dk

dzk
eiωφ̃q(x,m(x+wz))

∣

∣

∣

∣

≤ C ′′e−z
2/5. (30)

The constants C, C ′ and C ′′ are independent of of k, x, ω and z.

Proof. For k = 0 the inequalities follow in the same way as in the proof of Lemma 2.
Now consider 1 ≤ k ≤ p. Since Ãq is q-th order Taylor expansion of A(x+z−x′, m(x+
z)) around x′ = 0, we can write

DA(x,m(x+ z)) =
(−1)q+1

q!

∫ z

0

∂q+1
x A(x+ t,m(x+ z))tqdt.
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Consequently, for k > 0,

dk

dzk
DA(x,m(x+z)) =

(−1)q+1

q!

∫ z

0

∂q+1
x

dk

dzk
A(x+t,m(x+z))tqdt+

dk−1

dzk−1
(ãq+1(x+ z)zq) ,

and therefore, by (A1), for k ≥ 0,
∣

∣

∣

∣

dk

dzk
DA(x,m(x+ z))

∣

∣

∣

∣

≤ C(|z|q+1 + |z|max(q+1−k,0)),

and (28) follows since wk(|wz|q+1 + |wz|max(q+1−k,0)) ≤ wq+1(1 + |z|q+1).
In the same way as for DA, and using (A2),

∣

∣

∣

∣

iω
dk

dzk
Dφ(x,m(x+ wz))

∣

∣

∣

∣

≤ Cωwk(|wz|q+3 + |wz|max(q+3−k,0))(1 + |wz|q∗)

≤ Cwq+1(1 + |z|q+3),

if |z| ≤ α/w. By Lemma 1 with f(gw) = egw and gw = iωDφ(x,m(x+wz)), using (19)
∣

∣

∣

∣

dk

dzk
eiωDφ(x,m(x+wz))

∣

∣

∣

∣

≤ Cwq+1(1 + |z|k(q+3))|eiωDφ| ≤ C ′wq+1ez
2/7.

Therefore (29) follows for 1 ≤ k ≤ p.
We now write

φ̃q(x,m(x+ wz)) =

q+2
∑

j=0

p̃j(x+ wz) (wz)j.

Then, since p̃′0 + p̃1 ≡ 0 by (13), we have

d

dz
φ̃q(x,m(x+ wz)) = w2p̃′1z +

q+2
∑

j=2

(

wj+1zj p̃′j(x+ wz) + jwjzj−1p̃j(x+ wz)
)

,

and therefore

d

dz

(

iωφ̃q(x,m(x+ wz))
)

=
i

ℑφxx(x,m(x))

q+2
∑

j=1

γj(x+ wz)wj−1zj ,

where
γj := p̃′j + (j + 1)p̃j+1, 1 ≤ j ≤ q + 1, γq+2 := p̃′q+2.

Since the phase derivatives are evaluated on a center beam, γj ∈ Cp
b are bounded, for

0 ≤ k ≤ p, uniformly in x and we therefore have
∣

∣

∣

∣

dk

dzk

(

iωφ̃q(x,m(x+ wz))
)

∣

∣

∣

∣

≤ Ck(1 + |z|q+2), 1 ≤ k ≤ p.

Thus, by Lemma 1 with f(gw) = egw and gw = iωφ̃q(x,m(x + wz)), using (19), the
inequality (30) follows for 1 ≤ k ≤ p. This completes the proof.

17



The remaining terms in (21), i.e. A(x,m(x + wz)), ϕ(wz) and m′(x + wx), are all
assumed to be smooth with derivatives of order up to p bounded uniformly in x by the
assumptions (A1) and (A5). Since the growth in (28) and (29) is offset by the rapid
decay in (30), the above Lemma shows that all z-derivatives of the integrand,

g(x, z) := ϕ
(

DA + A(eiωDφ − 1)
)

eiωφ̃q m′,

up to order p belongs to L1 and ||∂kz g(x, ·)|| ≤ Ckw
q+1 for 0 ≤ k ≤ p. The constants Ck

are independent of x and ω. We can then use the following version of the non-stationary
phase lemma.

Lemma 4. Suppose ψ(z) ∈ Cp+1(R) with ψ′(z) ∈ Cp
b (R) and ψ′(z) ≥ c0 > 0. More-

over, let ǫ < δ < 1 and suppose g(z) ∈W p,1. Then
∣

∣

∣

∣

∫

g(z)e−iψ(δz)/εdz

∣

∣

∣

∣

≤ C||g||W p,1

(ε

δ

)p

, (31)

where C depends on ψ(x) and p, but not on g(z), δ and ε.

Proof. For the proof we refer to [13]. It is an easy adaptation of that proof of theorem
7.7.1.

Taking ψ as 2πm(x+ ·), δ as w and ε as h/k we can apply this to (21),

|f̂(k)| =
w

h

∣

∣

∣

∣

∫

g(x, z)e−2πim(x+wz)k/hdz

∣

∣

∣

∣

≤ C
w

h
||g(x, ·)||W p,1

(

h

kw

)p

.

Consequently,
∣

∣

∣

∣

∣

∑

k 6=0

f̂(k)

∣

∣

∣

∣

∣

≤ C
w

h
||g(x, ·)||W p,1

∑

k 6=0

(

h

kw

)p

≤ C
w

h
wq+1

(

h

w

)p ∞
∑

k=1

k−p ≤ C ′w

h
wq+1

(

h

w

)p

.

Thus since by the assumptions (A1) p ≤ 2,

|Eosc| =
αh

w0
|
∑

k 6=0

f̂(k)| ≤ C ′w
q+2

w0

(

h

w

)p

.

Together with (27) this shows the theorem.

5 Constant coefficient equations

It is often claimed that the beam width is important in the accuracy of Gaussian
beams, because for wide beams the Taylor expansion error should be large. See for
example [4, 6]. We therefore in this section consider the constant coefficient Helmholtz
equation, with the speed of propagation c(x) ≡ 1, for which exact Gaussian beam
solutions and the dominant part of Taylor expansion error |Enon−osc| can be computed.
We investigate the importance of the beam width on Taylor error in this particular
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case. Our conclusion is that the local beam width is not a good indicator of accuracy,
and there is no direct relation between the error and the beams width.

We let q = 0 and consider the source x0(s) = (s, y0(s)) and assume all beams
originating from x0 shoot out orthogonally. Therefore θ0(s) = π

2
+tan−1(y′0(s)). In the

constant coefficient case c ≡ 1, for a central ray Ω with x(0) = x0(s) = s, y(0) = y0(s)
and θ(0) = θ0(s), we get from (4) at y = y∗,

θ(t(s)) =
π

2
+ tan−1(y′0(s)), (32)

x(t(s)) = X(s) = s− y′0(s) (y∗ − y0(s)), (33)

t(s) =
(

(X(s) − s)2 + (y∗ − y0(s))
2
)1/2

, (34)

which implies that the central ray is a straight line.
Here, we will only compute the error at x = (0, y∗). For this point, let s∗ :=

m(0) = X−1(0). To simplify the calculations, and without loss of generality, we assume
y0(s

∗) = y′0(s
∗) = 0. Therefore, by (32)-(34), the central ray starting at x0(s

∗) will lie
on the y-axis, and we have s∗ = X(s∗) = 0 and t(s∗) = y∗. See Figure 4.

y = y∗ (X(s∗), y∗)

x

y

s∗

Figure 4: A schematic representation of the initial source and central beam rays which are straight
lines.

Assuming the initial phase on x0(s) to be zero, φ(x0) = 0, we also get

φ(X(s), s) = t(s). (35)

To obtain ODEs for higher order Taylor coefficients, we introduce the orthogonal
ray-centered coordinates t, n, where n is the axis perpendicular to the ray at point
t with the origin on the ray. In this coordinate system, φ(t, n = 0) and A(t, n = 0)
correspond to φ(X(s), s) and A(X(s), s) in the Cartesian coordinate, respectively. The
eikonal equation and transport equation in the ray-centered coordinates read

φ2
t + φ2

n = 1, (36)

2∇A · ∇φ+ A∆φ = 0, ∇φ = (φt φn)
⊤ (37)
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Set φ(j)(t) := ∂jnφ(t, n = 0) and A(j)(t) := ∂jnA(t, n = 0), with j = 0, 1, 2, . . . . We
first note that by (35)

φ(0)(t) = t, ∂tφ(t, n = 0) = 1, ∂jt φ(t, n = 0) = 0, j = 2, 3, . . . .

Moreover, by (36) and (37) and taking several of their derivatives with respect to t and
n,

φ(1)(t) = 0, ∂t∂nφ(t, n = 0) = 0, ∂t∂
2
nφ(t, n = 0) = −φ(2)2(t),

∂t∂
3
nφ(t, n = 0) = 0, ∂2

t ∂nφ(t, n = 0) = 0, ∂3
t ∂nφ(t, n = 0) = 0,

∂2
t ∂

2
nφ(t, n = 0) = 2φ(2)3(t), ∂tA(t, n = 0) = −1

2
A(0)(t)φ(2)(t),

∂2
tA(t, n = 0) =

3

4
A(0)(t)φ(2)2(t), ∂t∂nA(t, n = 0) = 0.

Now, let

φ(t, n) ≈ t+
n2

2
φ(2)(t) +

n3

6
φ(3)(t) +

n4

24
φ(4)(t), (38)

and

A(t, n) ≈ A(0)(t) + nA(1)(t) +
n2

2
A(2)(t). (39)

Putting (38) and (39) into (36) and (37), we obtain the following ODEs for Taylor
coefficients,

d

dt
φ(2) + φ(2)2 = 0, (40)

d

dt
φ(3) + 3φ(2)φ(3) = 0, (41)

d

dt
φ(4) + 4φ(2)φ(4) + 3φ(2)4 + 3φ(3)2 = 0, (42)

d

dt
A(0) +

1

2
φ(2)A(0) = 0, (43)

d

dt
A(1) +

3

2
φ(2)A(1) +

1

2
φ(3)A(0) = 0, (44)

d

dt
A(2) +

5

2
φ(2)A(2) + 2φ(3)A(1) +

1

2
φ(4)A(0) +

3

2
φ(2)3A(0) = 0 (45)

Setting φ(2)(t) = P (t)/Q(t), the nonlinear Ricatti equation (40) can be reduced to
the system of linear ODEs (7-8),

d

dt
Q = P,

d

dt
P = 0.

Therefore, with P (0) = P0 and Q(0) = Q0, we obtain

φ(2)(t) =
P0

Q0 + P0t
.

20



Moreover, the equation (43) gives us

A(0)(t) =
Q

1/2
0

(Q0 + P0t)1/2
,

Note that we set A(0)(0) = 1 motivated by (10).
The rest of ODEs are linear first order equations. With zero initial conditions, we

get

φ(3)(t) = 0,

φ(4)(t) = −3
P 4

0 t

(Q0 + P0t)4
,

A(1)(t) = 0,

A(2)(t) = −3

2

Q
1/2
0 P 3

0 t

(Q0 + P0t)7/2
.

For a function f(x, s) = F (t, n) in two different coordinates, we have

∂jxf =

j
∑

i=0

ci,j ∂
j−i
t ∂inF sinj−i θ cosi θ, (46)

where θ is the angle between x-axis and t-axis, and ci,j are binomial coefficients. There-
fore

∂1
xφ(X(s), s) = cos θ(t(s)), (47)

∂2
xφ(X(s), s) = φ(2)(t(s)) sin2 θ(t(s)), (48)

∂3
xφ(X(s), s) = −3φ(2)2(t(s)) sin2 θ(t(s)) cos θ(t(s)), (49)

∂4
xφ(X(s), s) = φ(4)(t(s)) sin4 θ(t(s)) + 12φ(2)3(t(s)) sin2 θ(t(s)) cos2 θ(t(s)), (50)

∂1
xA(X(s), s) = −1

2
A(0)(t(s))φ(2)(t(s)) cos θ(t(s)), (51)

∂2
xA(X(s), s) = A(2)(t(s)) sin2 θ(t(s)) +

3

4
A(0)(t(s))φ(2)2(t(s)) cos2 θ(t(s)). (52)

At the point x = (0, y∗), where s = s∗ = 0, we have cos θ(y∗) = 0 and sin θ(y∗) = 1.
In fact, at this point the n-axis is parallel to the x-axis, and therefore ∂jx = ∂jn.

Therefore,

a1(0) = −∂1
xA(0, 0) = 0, b1(0) = − i

6

∂3
xφ(0, 0)

ℑ∂2
xφ(0, 0)

= 0.

Thus, eeven in (25) simplifies to

eeven(0) = m′(0) a2(0) d2(0) +m′(0)A(0, s∗) b2(0) d4(0),

and we therefore need only to calculate a2, b2 and c1.
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Differentiating (13), (47), (49) and (51) with respect to s, we obtain

φss(0, 0) = X ′2(0)φxx(0, 0) +X ′(0)
d

ds
θ(y∗),

φxxxs(0, 0) = −X ′(0)φxxxx(0, 0) + 3
P 2

0

(Q0 + P0y∗)2

d

ds
θ(y∗),

Axs(0, 0) = −X ′(0)Axx(0, 0) +
1

2

Q
1/2
0 P0

(Q0 + P0y∗)3/2

d

ds
θ(y∗).

Moreover, by (13),

r̃2(x) =
1

2

d2

dz2
φ(x,m(x+ z))

∣

∣

∣

∣

z=0

=
1

2
m′′φs +

1

2
m′2φss =

1

2
m′2φss.

Therefore, after some algebraic manipulation, we obtain

a2(0) = −3Q
1/2
0 P 3

0 y
∗ + 2Q

1/2
0 P0(Q0 + P0y

∗)2m′(0) d
ds
θ(y∗)

4(Q0 + P0y∗)7/2
,

b2(0) = −iP
4
0 y

∗ + 4P 2
0 (Q0 + P0y

∗)2m′(0) d
ds
θ(y∗)

8ℑ( P0

Q0+P0y∗
) (Q0 + P0y∗)4

,

c1(0) =
ℜ( P0

Q0+P0y∗
) +m′(0) d

ds
θ(y∗)

2ℑ( P0

Q0+P0y∗
)

.

Assuming P0 = i, ℑQ0 = 0, ℜQ0 > 0, we have

a2(0) = i
3Q

1/2
0 y∗ − 2Q

1/2
0 (Q0 + iy∗)2m′(0) d

ds
θ(y∗)

4(Q0 + iy∗)7/2
, (53)

b2(0) = i
(Q2

0 + y∗2)
(

−y∗ + 4(Q0 + iy∗)2m′(0) d
ds
θ(y∗)

)

8Q0(Q0 + iy∗)4
, (54)

c1(0) =
y∗ + (Q2

0 + y∗2)m′(0) d
ds
θ(y∗)

2Q0

, (55)

and

A(0, 0) =
Q

1/2
0

(Q0 + iy∗)1/2
. (56)

Note that by (32-34),

d

ds
θ(y∗) = y′′0(0), m′(0) = (X−1)

′
(0) = (1 − y∗y′′0(0))

−1
. (57)

Therefore, knowing y0(s) and by (53-57) and (24), we can calculate eeven(0). Note that
eeven(0) only depends on Q0, y

∗ and y′′0(0).
We consider the following two cases:
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(1) y′′0(0) = 0,

(2) y′′0(0) = −1.

The first case corresponds to a line y0 = 0. The second case corresponds to a circle
y0(s) = −1 +

√
1 − s2 or a parabola y0(s) = −s2/2. Note that with an initial curve

with positive second derivative, the rays will intersect and form caustic, and then our
theory does not hold.

For the first case, we obtain the simple expression

eleven(0) =
n0 y

∗Q2
0

(Q0 + iy∗)2 (Q2
0 + y∗2)3/2

, (58)

and for the second case, assuming 1 + y∗ ≈ y∗, i.e. for large distances from the source,
we have

eceven(0) ≈ n1Q
3
0 + n2Q

2
0 y

∗ + n3Q0 y
∗2 + n4 y

∗3

Q
1/2
0 y∗1/2 (Q0 + iy∗)2 (Q2

0 + y∗2)3/2
, (59)

where nj , with j = 0, 1, . . . 4, are constant complex numbers.
Now since

w(0) =

(

Q2
0 + y∗2

ωQ0

)1/2

, w0(0) =

(

Q0

ω

)1/2

,

and the amplitude of the geometrical optics solution is proportional to |1−y∗ y′′0(0)|−1/2,
by (27), the relative error will be

|Erel| = |Enon−osc| |1− y∗ y′′0(0)|1/2 =
w3(0)

w0(0)
|eeven(0)| |1− y∗ y′′0(0)|1/2.

We therefore obtain

|El
rel| =

∣

∣

∣

∣

n0 y
∗

ω (Q0 + iy∗)2

∣

∣

∣

∣

,

and

|Ec
rel| ≈

∣

∣

∣

∣

∣

n1Q
3
0 + n2Q

2
0 y

∗ + n3 Q0 y
∗2 + n4 y

∗3

ωQ
3/2
0 (Q0 + iy∗)2

∣

∣

∣

∣

∣

,

corresponding to (58) and (59), respectively.
Figure 5 shows the absolute values of the relative errors at y∗ = 3. Note that here,

|Ec
rel| is calculated exactly, without the assumption 1 + y∗ ≈ y∗.
As it can be seen from the formulas and figures, the relative error has a direct relation

with Q0, but not with the beam width w. It decreases as Q0 increases. This result has
also been noticed in [9] for the oscillatory part of the error (or the discretization error).

In many approximations, the optimal Q0, corresponding to the minimum beam
width at a receiver point, is chosen for computations, see [4] for instance. Although
using this Q0, we do not obtain the minimum error, but importantly the error does
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Figure 5: Upper and lower left figures show the absolute value of relative error as a function of Q0

and the width w, in the case when the initial source is a line, respectively. Upper and lower right
figures show the same variables when the initial source is a circle.

not increase as the distance from the source increases. Note that the minimum width
is attained at Q0 = y∗, and therefore

|El
rel| =

N

ω y∗
, |Ec

rel| ≈
N ′

ω y∗1/2
,

with N and N ′ being constant numbers. Moreover, in the general case of non-constant
coefficient equations, where the rays can bend, it may not be possible to have very
wide beams, since as was noted before, the Gaussian beam approximation may break
down when the phase becomes non-smooth, and this happens at some distance away
from the central ray (outside the regularity region). Also, in the presence of a varying
speed of propagation where the properties may change dramatically as we get farther
to the central rays, the Taylor expansion error can be large for wide beams. In this
case therefore, Q0 corresponding to the minimum beam width may be a proper choice.

Figure 6 shows the beam width as a function of Q0. Note that for Q0 > y∗, the
width will increases, and therefore selecting a very large Q0 results in having a very
wide beam.
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Figure 6: The beam width as a function of Q0 at y∗ = 3.
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Abstract.We present a wave front method based on Gaussian beams for computing high-frequency
wave propagation problems. Unlike standard geometrical optics, Gaussian beams compute the cor-
rect solution of the wave field also at caustics. The method tracks a front of Gaussian beams with
two particular initial values for width and curvature which allows the direct recreation of any other
beam propagating from the initial front into the medium. This is used to approximate the field with
different, optimally chosen, beams in different points on the front. The performance of the method is
illustrated with two numerical examples.

Keywords. wave propagation, high frequency, asymptotic approximation, summation of Gaussian
beams, wavefront methods

1 Introduction

The Gaussian beam method is an asymptotic method for computing high-frequency
wave fields in smoothly varying inhomogeneous media. It was proposed by Popov [1],
based on an earlier work of Babic and Pankratova [2]. The method was first applied by
Katchalov and Popov [3] and Cerveny et al. [4] to describe high-frequency seismic wave
fields by the summation of paraxial Gaussian beams. It was later applied to seismic
migration by Hill [5, 6]. For a rigorous mathematical analysis of Gaussian beams we
refer to [7]. The main advantage of this method is that Gaussian beams give the correct
solution also at caustics where standard geometrical optics breaks down.

In the Gaussian beam method, the initial/boundary condition for the wave field is
decomposed into initial conditions for Gaussian beams. Individual Gaussian beams are
computed by ray tracing, where quantities such as the curvature and width of beams
are calculated from ordinary differential equations (ODEs) along the central ray of the
beams. The contributions of the beams concentrated close to their central rays are
determined by Taylor expansion. The wave field at a receiver is then obtained as a
weighted superposition of the Gaussian beams situated close to the receiver.

It is also possible to design an Eulerian Gaussian beam summation method. In [8],
the problem is formulated by Liouville-type equations in phase space giving uniformly
distributed Eulerian traveltimes and amplitudes for multiple sources.

In this paper, we consider the Lagrangian formulation and present a wave front
method for computing Gaussian beams. Wave front methods have been very successful
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for standard geometrical optics as they provide a simple mechanism for controlling
the resolution and accuracy of the numerical approximation [9]. Using them with
Gaussian beams is not as straightforward since the beam method strongly depends on
the distribution and width of the beams at the initial front. We show how one can use
two canonical beams in the wave front method and from these afterward recreate any
other beam. This is used to approximate the field with different, optimally chosen,
beams in different points on the front. We present numerical examples to verify the
efficiency and accuracy of the algorithm.

2 Gaussian beam equations

Gaussian beams are asymptotic solutions of linear wave equations. In the beam sum-
mation method, the initial/boundary data are decomposed into Gaussian beams. In-
dividual beams are computed from ordinary differential equations along their central
rays. The contribution of each beam close to its central ray is calculated by Taylor
expansion. The wave field is then obtained by summing over the beams.

In this section, we review the governing equations for computing Gaussian beams
and formulate the beam summation method. We consider the reduced wave equation
in the frequency domain (Helmholtz equation) in a two-dimensional space,

∆u(x) +
ω2

c(x)2
u(x) = 0, x = (x, y) ∈ R

2, (1)

where ω ≫ 1 is the angular frequency and c(x) is the speed of propagation. A Gaussian
beam as an approximate high frequency solution to (1) is written in the form,

uGB(x) = A(x) eiωφ(x), (2)

where the amplitude function A and phase function φ are independent of ω. Note that
(2) is in fact the first term of the WKBJ expansion, known as geometrical optics term

and is of order O(ω−1). However, unlike the geometrical optics, where these functions
are real-valued, in Gaussian beam method they are complex-valued.

The beam central ray Ω is given by the ray tracing system

dx

dt
= c(x) cos θ, x(0) = x0,

dy

dt
= c(x) sin θ, y(0) = y0,

dθ

dt
=
∂c

∂x
(x) sin θ − ∂c

∂y
(x) cos θ, θ(0) = θ0,

(3)

where t is the real-valued travel-time (or the arc-length) along the ray, and θ is the
angle between the tangent of the ray and the positive x-axis.

The complex-valued functions A and φ close to the central ray are approximated by
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Taylor expansions around the ray,

A(x) ≈ A(x∗), (4)

φ(x) ≈ φ(x∗) + (x − x
∗) · ∇φ(x∗) +

1

2
(x − x

∗)⊤D2φ(x∗) (x − x
∗), (5)

where x
∗ = x(t) for some t. The Taylor coefficients φ(x∗), ∇φ(x∗), D2φ(x∗) and A(x∗)

are computed only on the central ray,

φ(x∗) = φ(x(0)) + t, ∇φ(x∗) = (cos θ sin θ)⊤/c(x∗),

D2φ(x(t)) = HNH−1, A(x∗) = (c(x∗)/Q)1/2,

where

H =

(

sin θ cos θ
− cos θ sin θ

)

, N =

(

P/Q −c1/c2
−c1/c2 −c2/c2

)

,

(

c1
c2

)

= H−1∇c.

The complex-valued scalar functions P and Q satisfy the dynamic ray tracing system

dQ

dτ
= c2(x)P Q(0) = Q0

dP

dτ
= −cxx sin2 θ − 2cxy sin θ cos θ + cyy cos2 θ

c(x)
Q, P (0) = P0.

(6)

The quantities P and Q determine the wavefront curvature and the beam width.
A main difficulty in the Gaussian beam method is the choice of initial data P0 and

Q0. These parameters are arbitrary and therefore the Gaussian beam solution is non-
unique. However, despite this non-uniqueness, the summation of Gaussian beams is a
high frequency asymptotic expansion of the wave field for all admissible values of these
parameters. It can be shown that if we choose the admissible parameters satisfying

Q0 6= 0, ℑ(P0/Q0) > 0, (7)

then Q(t) 6= 0 and ℑ(P (t)/Q(t)) > 0 along the central ray, [1]. The former guarantees
the regularity of the Gaussian beam (with finite amplitudes at caustics), and the latter
guarantees the non-degeneracy of the beam (concentration of the solution close to the
ray).

It has been proposed that the optimal choice of the parameters produce Gaussian
beams of minimum width at a receiver point, see [4, 10] for instance. The half-width
of the Gaussian beam is given by

w(t) =

(

1

2
ω Im(P (t)/Q(t))

)−1/2

.

The main motivation for this choice is that for wide beams the Taylor expansion error
should be large. Moreover, from the computational point of view, it is more convenient
to work with beams which are as narrow as possible, because in the case of variable
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speed of propagation, where the central rays can bend, at some distance from the rays
the phase may become non-smooth and therefore the Gaussian beam approximation
may break down. However, it was shown in [11] that this choice will not necessarily
give the minimum error. The optimal choice of the parameters should minimize the
error and is still an open question.

Since the optimal parameters are different for different points along the beam central
ray, we may need to solve (6) for different initial conditions P0 and Q0. This can
computationally be very expensive. However, we take the advantage of linearity of (6)
and make the following observation. We specify two real-valued canonical solutions
(Q1, P1) and (Q2, P2) with two different sets of initial data

(Q1, P1) (0) = (1, 0), (Q2, P2) (0) = (0, 1). (8)

Then
Q = Q0Q1 + P0Q2, P = Q0 P1 + P0 P2, (9)

is a complex-valued solution of (6) with the initial data P0 and Q0, [4]. Hence from
two basis solutions, beams with all possible initial data can be computed by taking
linear combinations at no extra cost. In particular, the geometrical optics solution can
be obtained from (Q1, P1),

φGO(x(t)) = φ(x(0)) + t, AGO(x(t)) = A(x(0))

(

1

Q1(t)

c(x(t))

c(x(0))

)1/2

,

which corresponds to an infinitely wide beam.
Based on the two canonical solutions, a typical choice of initial parameters is

Q0 = Qopt
0 (t) =

∣

∣

∣

∣

Q2(t)

Q1(t)

∣

∣

∣

∣

, P0 = i, (10)

where the real-valued Q0 is optimally chosen to give the minimum half-width of the
Gaussian beam

Wmin(t) = 2

( |Q1(t)Q2(t)|
ω

)1/2

.

In addition, letting Q0 to be complex-valued with a positive real part will allow us to
make the width arbitrarily small and give more control over the beam parameters.

Now, let the wave source be a curve x0(s) in R
2 parameterized by s. We introduce

the notation A(x, s) and φ(x, s) for the amplitude and phase of a beam with initial
position x0(s). We first decompose the initial/boundary condition for the wave field on
x0(s) into initial conditions for several beams with different initial positions x0(sj), see
[12] for example. Individual Gaussian beams are computed by solving the above ODEs.
The contributions of the beams concentrated close to their central rays are determined
by the approximations (4,5) entered in (2). The wave field at a fixed receiver point xR

is then calculated by summing over the beams

u(xR) =
∑

j∈Z

ψ(sj)A(xR, sj) e
iωφ(xR,sj). (11)
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The weights ψ(sj) and the initial conditions for the ODEs (3) and (6) are chosen such
that u at x0 well approximates the exact initial/boundary data.

As an example, we show how to find the weights and the initial conditions when the
wave field is generated by a plane wave at x0(s) = (0, s) propagating into the domain
orthogonally, i.e. θ0(s) = 0. We first note that a plane wave can be approximated by
a sum of beams, [5],

u(0, s) = 1 =
∑

j

1√
π

h

w0

e−(s−sj)2/w2

0 + O(e−(w0/h)2), sj = jh, (12)

with h and w0 representing the initial spacing of the beams and the initial beam half-
widths, See Figure 1.

Figure 1: The sum of several Gaussian functions is almost constant. A plane wave can therefore be
decomposed approximately to a sum of parallel Gaussian beams.

To properly choose the initial data, one must therefore take the parameters w0 and
h such that w0 > h. Note that for computational efficiency, h should not be taken too
small. The wave field (11) at x0(s) = (0, s) is

u(0, s) =
∑

j∈Z

ψj

(

c(0, sj)

Q0

)1/2

e
i
2
ω(s−sj)2

P0

Q0 , ψj := ψ(sj). (13)

Now, we choose a real-valued, positive Q0 and P0 = i which satisfies the condition (7).
Comparing to (12), the Gaussian beam solution (13) produces a plane wave if

w0 =

(

2Q0

ω

)1/2

, ψj = h

(

ω

2πc(0, sj)

)1/2

.

3 Wavefront method

The usual way to compute high frequency wave fields by Gaussian beam summation
is based on standard ray tracing, where the central rays of the beams are traced indi-
vidually by solving the ODE systems (3) and (6). The main problem with ray tracing
is that it may produce diverging rays that fail to cover the computational domain.
In this case, one needs to increase the number of rays, which in turn increases the
computational cost.

In standard geometrical optics, the problem of diverging rays can be overcomed by
instead using so-called wave front methods, [13, 14]. They are related to ray tracing,
but instead of tracing a sequence of individual rays, a wave front is evolved in physical
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or phase space according to the ODE formulations. In physical space, a wave front at
a travel-time t ≥ 0 is a curve {x(t, s)|φ(x(t, s), s) − φ(x0(s), s) − t = 0}. Wave front
methods provide a simple mechanism for controlling the resolution and accuracy of the
numerical approximation. There are also Eulerian wave front methods based on PDE
formulations of the problem, see [9] for example.

Using wave front methods with Gaussian beams is not as straightforward, since the
beam method strongly depends on the distribution and width of the beams at the
initial front. We introduce a Lagarangian wave front-based Gaussian beam method,
in which a wave front is evolved in phase space (x, θ) by solving the ODE systems (3)
and (6). In order to overcome the problem of diverging rays in the ray tracing method,
we use an automatic refinement criterion to keep the fronts uniformly sampled.

In this section we will show how to construct the wave front Gaussian beam method.
Let the initial phase space wave front be (x0(s), θ0(s)) parameterized by s and assume
that the exact phase space wave front at travel-time t is described by (x(t, s), θ(t, s)).
Now let

x
n
j ≈ x(n∆t, j∆s), θn

j ≈ θ(n∆t, j∆s),

where (j, n) represents a marker (grid point) on a front at t = n∆t. We initialize the
markers on the initial front at t = 0 as (x0

j , θ
0
j ) = (x0(j∆s), θ0(j∆s)). Each marker is

then updated by a standard ODE-solver, applied to the ray tracing system (3). See
Figure 2 (left).

Figure 2: Wave front construction. Markers (⋄) on the wave front are propagated as ordinary rays
(left). When markers fail to acurately resolve the wave front, new markers are inserted via interpolation
from the old markers (middle). The information carried by markers on the wave fronts are interpolated
onto a regular grid (right).

When the resolution of the wave front deteriorates, new markers are inserted and
computed by interpolation from the old markers. We add a new marker (j + 1/2, n)
between markers (j, n) and (j + 1, n) if

|xn
j+1 − x

n
j | ≥ δx or |θn

j+1 − θn
j | ≥ δθ,

for some tolerances δx and δθ. See Figure 2 (middle).
Figure 3 shows the central rays and the computed function θ versus y along the

front t = 3 obtained by the wave front method without and with refinement. As it can
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be seen, in the case of no refinement, the solution is poorly resolved in places where
the rays diverge. It is well resolved if refinement is performed.
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Figure 3: Figure (a) shows the beam central rays generated by a plane wave which propagates into
the computational domain from the left boundary. Figure (b) shows the function θ versus y along
the front t = 3. In places where the rays diverge, the solution, computed by the wave front method
without refinement, is poorly resolved. Bottom figures show the rays and solution computed by the
wave front method with refinement. In this case, the solution is uniformly resolved.

Note that inserting new markers on the fronts in the wave front method is anal-
ogous to inserting new rays in the ray tracing method. However, here, the rays are
inserted only in places where the resolution deteriorates. These rays are then traced
afterward, and there is no need to compute them from the source, as is done in the
ray tracing method. Therefore, in Gaussian beam summation, the wave front method
is computationally faster than the ray tracing method, while keeping the same order
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of accuracy.
In parallel with computing (xn

j , θ
n
j ), we also compute the real-valued canonical

functions (Q1
n
j , P1

n
j ) and (Q2

n
j , P2

n
j ) by solving the dynamic ray tracing system (6)

with the initial conditions (8). We note that via (9) we can recreate beams with
any initial data P0 and Q0 from these two canonical solutions. We save V n

j :=

(xn
j , y

n
j , θ

n
j , Q1

n
j , P1

n
j , Q2

n
j , P2

n
j )⊤ for each grid point (j, n).

Now assume we want to compute the wave field at a marker (j∗, n∗), as a receiver
point, on the front at t∗ = n∗∆t. We first select the beam parameters P0, Q0 and
the initial spacing h such that the initial/boundary data is well approximated on the
initial front. We discretize the initial front into M equi-distant grid points sm = mh,
with m = 1, . . . ,M . Each grid point on the initial front represents the initial point
of a beam central ray Ωm. We then find V n∗

m by interpolating the already computed
values V n∗

j . The complex-valued functions P n∗

m , Qn∗

m on the front at t∗ are obtained by
(9). The total wave field at the marker (j∗, n∗) is then calculated by (11).

As an alternative way, if we need the wave field on a regular grid, we can first
interpolate V n

j values down on a regular Cartesian grid. See Figure 2 (right). We then
use the same precedure as above, but instead of a wavefront, we consider a line passing
the receiver point.

A main advantage of using the basis solutions (Q1, P1) and (Q2, P2) in the algorithm
is that at different wavefronts we can use different initial data Q0, P0 to evaluate the
solution at no extra cost. Therefore, optimization, based on the minimization of either
the beam width or the error, is possible, and we can approximate the field with dif-
ferent, optimally chosen, beams in different points on the fronts. Moreover, since the
geometrical optics solutions can be obtained by (Q1, P1), we can construct a hybrid
algorithm and use Gaussian beam solutions only around caustics.

The cost of the wave front tracking is independent of ω and is typically O(1) per
grid point.

4 Numerical example

In this section we consider two numerical examples and use the wave front method
described in Section 3 to compute the wave field.

4.1 Example 1

We consider a rectangular domain D = [0, 4] × [−2, 2] and the speed of propagation

c(x, y) =
1

1 + e−y2
, (x, y) ∈ D.

The boundary data is given on the y-axis, x0(s) = (0, s), by a plane wave propagating
into the computational domain orthogonally, i.e. θ0(s) = 0. The plane wave is refracted
as it propagates through the domain, and a cusp caustic is formed. Figure 4 shows the
central rays of the Gaussian beams and the corresponding wave fronts.
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Figure 4: The central rays and the corresponding wave fronts generated by a plane wave propagating
into the domain from the left boundary x = 0. The wave field is refracted inside the domain and
forms a cusp caustic.

The total wave field along the line x = 1 is shown in Figure 5a for different frequen-
cies. As it can be seen the solution obtained by the Gaussian beam method converges
to the solution obtained by geometrical optics. Figure 5b shows the maximum point-
wise error between the Gaussian beam solution and the geometrical optics solution.
The error is proportional to ω−1 and agrees with the convergence rate obtained in [11].
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Figure 5: Figure (a) shows the magnitude of the solution obtained by wave front Gaussian beam
method with different frequencies and geometrical optics at x = 1. Figure (b) shows the logarithmic
scale of the maximum pointwise error between the Gaussian beam solutions and the geometrical optics
solution. The error is of order O(ω−1).
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Figure 6 shows the total wave field along the line x = 1.572 where there is a
cusp caustic at y = 0. A zoomed view at the caustic is shown in Figure 7a. Unlike
the amplitude of the geometrical optics solution which is unbounded at the caustic,
the amplitude of Gaussian beam solution is bounded and increases as the frequency
increases. The rate of increase is shown in Figure 7b and agrees with the Maslov theory
saying that at a cusp caustic, |u| = O(ω1/4). See, for example, [15].
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Figure 6: Absolute value of the wave field |u| along the line x = 1.572. A cusp caustic is formed at
y = 0 along this line. The amplitude of the geometrical optics solution is unbounded at the caustic,
but Gaussian beam method gives a bounded amplitude.

Figure 8 shows the total wave field after the caustic along the line x = 2.5 for
two different frequencies. Note that in between the caustics, there are multiple arrival
times, and the amplitude of the wave field is very oscillatory.

As it was mentioned in Section 3, a main advantage of this algorithm is that by
using the basis solutions (Q1, P1) and (Q2, P2) we can use different initial data Q0, P0

for different points of the domain at no extra cost. It provides a simple and fast way of
optimizing the solution. In order to verify this, we plot the magnitude of the solution
along two different lines x = 1 and x = 1.572. First, we use a fixed value for the initial
data, Q0 = 1, P0 = i for both cases, see Figure 9 (top). Next, we use different values
for the initial data, Q0 = 1− 0.2i, P0 = i along x = 1 and Q0 = 1.2− 0.2i, P0 = i along
x = 1.572, see Figure 9 (bottom). As the figures show, by choosing different initial
data at different points, it is possible to improve the solution.

4.2 Example 2

As the second example, we consider the speed of propagation

c(x, y) = 1 + 0.5 e−2 ((x−0.5)2+y2), (x, y) ∈ D.
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Figure 7: Figure (a) shows a zoomed view of the solution magnitude close to the cusp caustic at
(x, y) = (1.572, 0). While the amplitude of the geometrical optics solution is unbounded at the
caustic, the Gaussian beam solutions are bounded and increase as the frequency increases. Figure (b)
shows that the rate of increase is O(ω1/4) as the Maslov theory predicts.
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Figure 8: Amplitude of the wave field along the line x = 2.5 for two frequencies ω = 100 and ω = 400.
In the region inside the caustic, there are three arrival times.

Similar to the first example, the wave field is generated by a plane wave propagat-
ing from the left boundary into the computational domain orthogonally. Two cusp
caustics are formed. Figure 10 shows the central rays of the Gaussian beams and the
corresponding wave fronts.

The total wave field for different frequencies along the line x = 1 and the maximum
pointwise error between the Gaussian beam solution and the geometrical optics solution
are shown in Figure 11. The error is proportional to ω−1, as expected.
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(a) x = 1, Q0 = 1
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(b) x = 1.572, Q0 = 1
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(c) x = 1, Q0 = 1 − 0.2i
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(d) x = 1.572, Q0 = 1.2 − 0.2i

Figure 9: Figures (a) and (b) show the magnitude of the solution with a fixed Q0 = 1 along the lines
x = 1 and x = 1.572, respectively. Figures (c) and (c) show the magnitude of the solution along the
same lines, but with different initial data Q0 = 1 − 0.2i and Q0 = 1.2 − 0.2i, respectively.

Figure 12 shows the total wave field along the line x = 2.125 where there are two
cusp caustic at y = ±1.352. A zoomed view at the caustic is shown in Figure 13a, and
the rate of the increase of Gaussian beam solutions as the frequency increases is shown
in Figure 13b. As it can be seen, |u| = O(ω1/4) in agreement with the Maslov theory.
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two cusp caustics.
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In the harmonic description of general relativity, the principal part of Einstein’s equations reduces to 10

curved space wave equations for the components of the space-time metric. We present theorems regarding

the stability of several evolution-boundary algorithms for such equations when treated in second order

differential form. The theorems apply to a model black hole space-time consisting of a spacelike inner

boundary excising the singularity, a timelike outer boundary and a horizon in between. These algorithms

are implemented as stable, convergent numerical codes and their performance is compared in a 2-

dimensional excision problem.
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I. INTRODUCTION

A primary goal of numerical relativity is the computa-

tion of gravitational radiation waveforms from binary

black holes. Radiation produced in the inspiral and merger

of binary black holes is expected to provide a strong signal

for gravitational wave observatories. However, the simula-

tion of black holes has proved to be a difficult computa-

tional problem. The importance of this challenging

problem has recently spurred a fertile interaction between

numerical relativity and computational mathematics. The

classic computational treatment of hyperbolic systems has

been directed at fluid dynamics and has been based upon

first differential order systems. Certain formulations of

Einstein’s equations take a more natural second order

form, notably the harmonic formulation [1,2] for which

well-posedness of the Cauchy problem was first estab-

lished [3]. Here we present theorems regarding the stability

of several evolution-boundary algorithms for such second

order systems which have direct application to the black

hole problem.

Harmonic coordinates x� � �t; xi� � �t; x; y; z� have

only recently been used in designing numerical codes

[4–12]. They satisfy the curved space wave equation

�gx
� :� 1

��������g
p @��

��������g
p

g��@�x
�� � 0: (1.1)

In harmonic coordinates, Einstein’s equations reduce to 10

quasilinear wave equations for the components of the

metric,

�gg
�� � S��; (1.2)

where S�� are nonlinear terms which do not enter the

principal part. Thus the scalar wave equation

g��@�@�u � 0; (1.3)

which has the same principal part, provides a fundamental

testing ground for designing algorithms to treat the non-

linear gravitational problem (1.2). In a previous study [13],

we used this scalar equation to develop evolution and

boundary algorithms for a model one dimensional black

hole excision problem. Here we extend these results to two

dimensions. While the extension to 2D involves substantial

new features, the generalization from 2D to 3D is quite

straightforward. Thus our results are immediately appli-

cable to algorithms for the harmonic gravitational

Eqs. (1.2), as well as their generalization to include har-

monic gauge forcing terms [14] and other related general-

izations such as the Z4 formulation [15].

We treat (1.3) in the second order differential form,

which has advantages for both computational efficiency

and accuracy over first order formulations [16,17].

Although the system can be reduced to first order symmet-

ric hyperbolic form [18], this has the disadvantage of

introducing auxiliary variables with their associated con-

straints and boundary conditions. The second order form is

also best suited to the analogous wave equations governing

elasticity and acoustics. Elasticity theory is governed by a

coupled system of wave equations which for simple cases

is similar to (1.3), in which the spatial components gij are

determined by the elastic moduli. In fact, some of the

techniques utilized here have been developed in a recent

computational study of the wave equations governing an

elastic body [19]. The new ingredient introduced in the

wave Eq. (1.3) arises from the nonvanishing mixed space-

time derivatives arising from the components git. Such

terms do not ordinarily appear in the wave equations

governing elasticity theory because they are treated in the

rest frame of the body but they would necessarily arise in

treating acoustic waves propagating in a medium with

nonuniform macroscopic motion. In general relativity,

these mixed space-time components of the metric corre-

spond to a nonvanishing ‘‘shift,’’ which is an essential

feature of the black hole problem. In the standard 3� 1
description of space-time [20], the Cauchy hypersurfaces

t � constant are required to be spacelike so that they have

a length element with Euclidean signature

d‘2 � hijdx
idxj: (1.4)
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The inverse spatial metric hij, satisfying hijhjk � �i
k, is

related to the spatial components of the 4-metric determin-

ing the wave operator by

hij � gij � 1

gtt
�i�j; (1.5)

where �i are the components of the shift. Here, the space-

like character of the Cauchy hypersurfaces requires that

gtt < 0.

The wave equation with shift has not received a great

deal of attention outside of recent work in general relativity

[6,10,13,21–23], although the important causal effect of

the shift in the black hole excision problem has been

recognized. This causal effect has been incorporated in a

first order computational treatment of Einstein’s equations

by using upwind differencing for the shift terms, see e.g.

[24]. Even before the computational problem is attempted,

new mathematical features introduced by the shift must be

dealt with in formulating a well-posed initial-boundary

value problem. The operator hij@i@j is by construction an

elliptic operator defined by the spatial metric of the Cauchy

hypersurfaces. However, the operator gij@i@j is elliptic

only when the shift is sufficiently small. The elliptic case

arises when the operator @t is timelike, i.e. when the

evolution proceeds in a timelike (subluminal) space-time

direction.

Without loss of generality, we set gtt � �1 and write the

2D version of (1.3) as

�@2t � 2��x@x � �y@y�@t � �a1 � �x�x�@2x
� �c1 � �y�y�@2y � 2�b1 � �x�y�@x@y�u � 0; (1.6)

where hxx � a1, hxy � b1 and hyy � c1. The Euclidean

property of hij requires

a1 > 0; c1 > 0; a1c1 � b21 > 0: (1.7)

The components of gij are gxx � a � a1 � �x�x, gyy �
c � c1 � �y�y and gxy � b � b1 � �x�y. In the sublu-

minal case when gij@i@j is an elliptic operator, the simplest

second order accurate difference approximation to (1.6) is

W :� �@2t � 2��xD0x � �yD0y�@t � aD�xD�x

� cD�yD�y � 2bD0xD0y�u � 0: (1.8)

(Here D0i, D�i and D�i are, respectively, the centered,

forward and backward difference operators in the

xi-direction defined in Sec. III). This leads to stable

evolution-boundary algorithms for Dirichlet, Neumann,

Sommerfeld or other dissipative boundary conditions.

Stability was established for the 1D case using a semi-

discrete energy norm in [13], and this was generalized

using the discrete energy method to the full 3D case in

[10,12].

The W-algorithm (1.8) is unstable when the shift is

sufficiently large so that gii � 0 (for any diagonal compo-

nent). This occurs in one of the strategies for avoiding

problems with the singularity which ultimately forms in-

side a black hole. In this strategy, the singularity is ‘‘ex-

cised’’ by surrounding it with a spacelike inner boundary.

The evolution direction which is adopted to this spacelike

boundary is superluminal, so that gij no longer has

Euclidean signature. In Sec. III, we establish the stability

of several different second order, evolution-boundary algo-

rithms for this superluminal case. For the Cauchy problem,

we establish stability for a general system of wave equa-

tions in s spatial dimensions so that the results may be

immediately applied to other second order systems such as

elasticity theory or acoustics. For the boundary, we special-

ize our treatment to scalar equations in 2D in order to

simplify the notation, but the extension to general systems

in sD is straightforward. In particular, our results apply

directly to the 3D harmonic evolution of black holes.

The analysis of the initial-boundary problem for (1.6) in

Sec. III makes evident that the above geometric properties

of the wave equation have a mathematical analogue which

results independently from a consideration of the well-

posedness of the problem. The geometrical and analytical

approaches are complementary and provide a good meet-

ing ground for the ideas of numerical relativity and com-

putational mathematics. While the main concern of

numerical relativity is the black hole problem, the stability

theorems for the finite difference algorithms developed for

the model problems considered here provide a firm basis

for attacking this problem with the harmonic Einstein

system (1.2).

In Sec. IV, we compare the performance of the algo-

rithms for the superluminal case in a problem without

boundaries. In Sec. V, we simulate a simple 2D model of

the excision problem in which the inner boundary S is

spacelike and the outer boundary T is timelike. Between

the boundaries the operator gij@i@j goes from nonelliptic to

elliptic along a curve H where det�gij� � 0. The metric is

chosen so that no characteristics can leave the inner region

between S and H , so that H mimics the role of a horizon.

The global simulation of (1.6) in the region bounded by T

and S is achieved with a blended evolution algorithm. A

stable superluminal algorithm is used in an inner region

between S and H . In the exterior region, this superluminal

algorithm is blended to the W-algorithm (1.8), so that the

W-algorithm is used to treat the outer boundary T . This

model excision problem involves many of the mathemati-

cal difficulties in the full gravitational case. We begin in

Sec. II with some simple examples which illustrate the

problem, its potential pitfalls and how to avoid them.

II. SOME SUBTLETIES ASSOCIATED WITH THE

WAVE EQUATION WITH SHIFT

In an inertial coordinate system x̂� � �t̂; x̂i� (in units

where the velocity of light c � 1), the wave equation

which governs special relativistic physics,
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�@2
t̂
� �ij@î@ĵ�u � 0; (2.1)

does not contain a shift. The invariance of the velocity of

light results from the property that this wave equation

retains the same form (2.1) under a Lorentz transformation,

t0 � 1
���������������

1� �2
p �t̂� �ij�

ix̂j� x0i � 1
���������������

1� �2
p �x̂i � �it̂�

�2 � �kl�
k�l; (2.2)

to another inertial coordinate system with relative motion.

In this way special relativity resolves the dilemma with

experiment that under a Galilean transformation,

t � t̂ xi � �x̂i � �it̂�; (2.3)

(2.1) gives rise to the shifted wave equation

�@2t � 2�i@i � ��ij � �i�j�@i@j�u � 0 (2.4)

whose solutions propagate with coordinate speeds in the

range j1� �j (where �2 � �ij�
i�j). This raises the ques-

tion: why does the wave equation with shift arise in general

relativity?

In fact, although there are no preferred inertial coordi-

nates in general relativity, in any sufficiently small space-

time region it is always possible to introduce Gaussian

coordinates in which the wave Eq. (1.3) reduces to the

shift-free form

�@2t � hij@i@j�u � 0: (2.5)

The problem here is that in Gaussian coordinates the

worldlines xi � const are geodesics, i.e. the worldlines of

freely falling observers, which can be focused by the

attractive nature of gravity to produce coordinate singular-

ities. This can occur on a short time scale in a strong

gravitational field.

Another reason for introducing a shift is the simplicity of

harmonic coordinates in reducing Einstein’s equations into

the hyperbolic form (1.2). Since the shift components git

satisfy a coupled system of nonlinear wave equations, even

if they were initialized with vanishing Cauchy data they

would in general evolve to be nonzero. This cannot be

avoided by introducing a harmonic gauge forcing term, of

the form �x� � F�, without choosing the forcing term F�

to depend upon the derivatives of the metric @�g
��. This in

turn jeopardizes the hyperbolic form of the reduced

Einstein equations and the well-posedness of the Cauchy

problem [14].

Yet another reason for introducing a shift arises in the

simulation of black holes. Once a black hole of mass M has

formed there is at most a proper time of order M (in

gravitational units) until a physical singularity is encoun-

tered. On the other hand, a simulation which provides

gravitational waveforms of physical interest typically re-

quires an evolution for a proper time of more than 100M in

the exterior region. One strategy for accomplishing this is

to excise the singularity by surrounding it with a spacelike

inner boundary for the simulation domain, i.e. an inner

boundary which moves at superluminal speed. If the evo-

lution tracks the inner boundary then a superluminal shift

must be used.

This can be illustrated by a spherically symmetric

Schwarzschild black hole for which the wave Eq. (1.3)

becomes
��

1� 2M

r

�

@2t �
4M

r
@t@r �

�

1� 2M

r

�

@2r

� 1

r2

�

@2� �
1

sin2�
@2�

��

u � 0; (2.6)

in ingoing Eddington-Finkelstein coordinates. Here the

evolution takes place on the spacelike Cauchy hypersurfa-

ces t � const which are nonsingular for r > 0. The black

hole is located at r � 2M, which is a characteristic hyper-

surface with the horizon property that no characteristics

leave the region r � 2M. The singularity is excised by

evolving in a domain R1 � r � R2, where 0<R1 < 2M
and R2 � 2M. The shift has the radial component

�r � 1

1� r
2M

> 0: (2.7)

The change in sign of the coefficient of @2r in passing inside

the horizon does not change the hyperbolicity of the wave

equation but it changes its mathematical properties.

Outside the horizon, the curves of constant �r; �; �� are

timelike, as well as the outer boundary r � R2. In the outer

region 2M< r � R2, the W-algorithm (1.8) provides a

stable second order evolution-boundary algorithm for the

wave equation [10,12,13].

Inside the horizon, the t-direction, as well as the inner

boundary r � R1 is spacelike, i.e. evolution on a grid with

constant �r; �; �� proceeds outside the light cone. This

effects the mathematical properties of the wave equation.

As a result, in this domain, the W-algorithm is unstable.

The alternative algorithms presented in Sec. III are stable

inside the horizon. But the W-algorithm has better accu-

racy than these algorithms in the exterior region [10]. In the

simulation of the model excision problem in Sec. V, a

stable algorithm for the superluminal regime is blended

to the W-algorithm in the exterior.

The Schwarzschild horizon has the property that char-

acteristics can not exit from inside, but can enter from the

outside. Near the horizon, the radial part of Schwarzschild

wave Eq. (2.6) has the same qualitative features as the wave

equation

�@t � @x��@t � x@x�u � 0; (2.8)

which has a horizon x � 0. One set of characteristics of

(2.8) cross the horizon at x � 0 in the negative x-direction.

The other set of characteristics are tangent to the horizon

and diverge away on either side. An observer at x > 0
cannot see beyond the horizon at x � 0. This is the situ-
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ation which we dealt with in a model 1D excision problem

[13] whose treatment we generalize to 2D in Sec. V.

However, it should be emphasized that the related equation

�@t � @x��@t � x@x�u � 0 (2.9)

has a different mathematical character. Although (2.9) is

also hyperbolic and has a well-posed Cauchy problem, one

set of characteristics converge toward the horizon at x � 0.

These characteristics approach each other exponentially

fast and, in general, the gradients become exponentially

large near x � 0. This would lead to the focusing of a wave

into formation of a shock. Although we do not treat this

case in this paper, it is important to bear in mind that it

would require different methods.

Boundaries introduce additional subtleties. First con-

sider a timelike boundary, similar to the outer boundary

r � R2 > 2M for the Schwarzschild wave Eq. (2.6). Since

the evolution is timelike in the neighborhood of the bound-

ary, the W-algorithm can be used. The stability of dissipa-

tive boundary conditions for the W-algorithm was

established for 1D in [13] and extended to 3D in [12] by

means of a semidiscrete energy method. However, such an

energy estimate does not preclude exponential growth of a

wave traveling between two boundaries. A simple example

[7] arises from the repetitive blue shifting of a wave packet

in special relativity reflecting back and forth between two

plane boundaries, whose velocities �v are controlled to be

always toward the packet during reflection. After many

reflections the wave packet shrinks in size and its energy

grows by a factor e4�T , where T is measured in units of the

crossing time between reflections and v � tanh�.

Dissipation must be used to control such growth of short

wavelength error.

It is instructive to interpret the boundary conditions on a

wave in special relativity in the shifted coordinate system

(2.3) where the boundary has fixed location but moves

relative to the t � const Cauchy hypersurfaces. In the 1D

case, this gives rise to the half-plane problem

�@2t � 2�@x@t � �1� �2�@2x�u � 0; (2.10)

in the region x � 0 (where we now write �x � �). There

are two different frames in which the energy of the wave

can be considered - the rest frame of the boundary and the

rest frame intrinsic to the Cauchy hypersurfaces. In the rest

frame of the boundary, the energy is

E � 1

2

Z 0

�1
dx��@tu�2 � �1� �2��@xu�2� (2.11)

and satisfies

@tE � @tu��1� �2�@x � �@t�ujx�0: (2.12)

In the case �2 < 1, this energy provides a norm and the

semidiscrete version of the flux-conservation law (2.12)

provides the basis for establishing stable evolution-

boundary algorithms for the W-algorithm (1.8). Note the

sign of � is important here in formulating a stable

Neumann boundary condition. A homogeneous Neumann

boundary condition takes the dissipative form

��1� �2�@x � �@t�u � 0: (2.13)

The familiar form @xu � 0 implies @tE � 0 and thus

guarantees a well-posed problem only when �> 0, i.e.

only when the motion of the boundary is outward relative

to the Cauchy hypersurfaces.

The energy intrinsic to the Cauchy hypersurfaces,

E0 �
1

2

Z 0

�1
dx��@tu� �@xu�2 � �@xu�2�; (2.14)

provides a norm even in the superluminal case when �2 >
1. It satisfies

@tE0 �
�
�

2
�@tu� �@xu�2 �

�

2
�@xu�2

� �@tu� �@xu�@xu
���������x�0

: (2.15)

Thus, in the absence of a boundary, (2.15) would reduce to

@tE0 � 0 so that the Cauchy problem is well-posed for any

�. The energy analogous to E0 is used in Sec. III to

establish well-posedness of the Cauchy problem and the

stability of superluminal algorithms in the general multi-

dimensional case.

When �<�1, i.e. when the motion of the boundary is

superluminal and directed toward the Cauchy hypersurfa-

ces, it is easy to verify that (2.15) implies @tE0 < 0 so that

there is always a loss of energy through the boundary. This

is the case of a spacelike boundary through which all the

characteristics leave, i.e. a pure ‘‘outflow’’ boundary.

Stable algorithms for such a boundary are also given in

Sec. III for the higher dimensional case. Note that for �>
1 the boundary is also spacelike but now (2.15) implies

@tE0 > 0. This is the pure ‘‘inflow’’ case, in which all the

characteristics enter the boundary. This should not be

considered in the context of an initial-boundary value

problem, but as a pure Cauchy problem where the bound-

ary represents a nonsmooth extension of the Cauchy

hypersurface.

Further subtleties arise in treating co-orbiting, binary

black holes. One strategy for the binary problem is to use

a rotating coordinate system which co-orbits with the black

holes. In the Schwarzschild case, the use of a coordinate

� � ��!t rotating with angular velocity ! transforms

the wave Eq. (2.6) into

��

1� 2M

r

�

�@t �!@��2 �
4M

r
@t@r �

�

1� 2M

r

�

@2r

� 1

r2

�

@2� �
1

sin2�
@2�

��

u � 0: (2.16)

Now the t-direction becomes spacelike in the region
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�

1� 2M

r

�

r2!2sin2� > 1; (2.17)

which intersects the outer boundary r � R2 if R2 is suffi-

ciently large. In that case, although the boundary remains

timelike the evolution is superluminal so that the

W-algorithm is no longer stable. A stable algorithm for

such a boundary problem has been established in the 1D

case [23]. We will not consider the 2D version of this

problem here.

A common strategy for treating the binary black hole

problem is to use a grid based upon Cartesian coordinates.

This poses a problem in dealing with inner and outer

boundaries with the spherical shapes natural to the prob-

lem. In other second order wave problems, such curved

boundaries have been successfully treated by the em-

bedded boundary method [19,25]. Another approach being

explored in general relativity is to use multiblock grids

[26–29]. This is another problem which we defer to future

work and do not consider here.

III. ALGORITHMS FOR THE 2D SUPERLUMINAL

PROBLEM

In this section, we study a class of second order hyper-

bolic systems with shift which we will use in Sec. V to

construct stable algorithms for a model 2D black hole

excision problem. The excision problem is a strip problem

with spacelike and timelike boundaries and a horizon in

between. In the region where the shift is superluminal, the

boundary is spacelike and where the shift is subluminal,

the boundary is timelike. We replace this problem by

Cauchy and half-space problems. The strip problem is

well-posed if the corresponding Cauchy and half-space

problems are well-posed [30].

For the Cauchy problem, we consider general systems of

equations in s space dimensions to demonstrate that the

results have applicability beyond numerical relativity. For

the half-space problems, we only consider scalar equations

in 2D to simplify the notation. The generalization from

scalar equations in 2D to systems in sD is quite

straightforward.

Here, we consider systems with constant coefficients.

Systems with variable coefficients can be reduced to sys-

tems with constant coefficients by freezing the coefficients

at all points. The problem with variable coefficients is

strongly well-posed if the Kreiss condition holds uniformly

for all problems with constant coefficients [31].

In order to analyze and establish stable approximations

we use the method of lines and reduce the system of partial

differential equations to a system of ordinary differential

equations in time on a spatial grid. We then apply two

standard techniques: the energy method and mode analysis.

The stability of the semidiscrete approximation implies the

stability of the totally discretized method for most standard

methods of lines [32], e.g. with the use of a Runge-Kutta

time integrator.

A. The Cauchy problem

We consider the Cauchy problem for a second order

system with constant (possibly complex) coefficients in s
space dimensions,

u tt �
Xs

j;k�1

Ajk

@

@~xj

@

@~xk
u :� P0�@=@~x�u;

~x � �~x1; . . . ; ~xs� 2 Rs; t 	 0;

(3.1)

with the initial conditions

u �~x; t� 0�� f�~x�; ut�~x; t� 0��g�~x�; u;f;g2Cn:

(3.2)

(We abbreviate @�u � u� where confusion does not arise.)

Here, for each �j; k�, Ajk are constant Hermitian matrices

2 Cn;n, and the data f � f�~x� and g � g�~x� are smooth

and 1-periodic in each ~xj, j � 1; . . . ; s. The solution u �
u�~x; t� is then smooth and 1-periodic in each ~xj. Moreover,

we consider solutions with
R

Rs ud~x � 0.

We assume that the Hermitian operator P0 in (3.1) is

elliptic, i. e. there exists a positive constant � such that

Xs

j;k�1

Ajk�j�k 	 �j�j2I (3.3)

for all vectors � 2 Rs. Here I is the n
 n identity matrix.

We introduce a shift by

~x � x� ��t; x � �x1; . . . ; xs� 2 Rs;

�� � ��1; . . . ; �s� 2 Rs; �j > 0;

and obtain the shifted system

u tt � 2P1�@=@x�ut � P2
1�@=@x�u� P0�@=@x�u: (3.4)

Here P1 is a scalar operator,

P1�@=@x� �
Xs

j�1

�j @

@xj
:

Theorem 1.—The Cauchy problem for (3.4) is well-posed.

Proof.—If we set v � ut � P1�@=@x�u, we get the first

order system

u

v

 !

t � P1�@=@x�
u

v

� �

� 0 I
P0�@=@x� 0

� �
u

v

� �

: (3.5)

We Fourier transform (3.5) and get

û

v̂

 !

t � P̂1�i!� û

v̂

� �

� 0 I
�P̂0�!� 0

� �
û

v̂

� �

; ! � 0;

(3.6)

where ! � �!1; . . . ; !s� 2 Rs and P̂1�i!� � i
P

s
j�1 �

j!j
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and P̂0�!� � P
s
j;k�1 Ajk!j!k. Since P0 is elliptic, we have

P̂0 � P̂0
� 	�0j!j2I, for some
�
0 > 0. We can then in-

troduce new variables

ŵ � T
û

v̂
; T � I 0

0 P̂0
�1=2 (3.7)

and, since T and P̂1 commute, we obtain from (3.6)

ŵ t � P̂1�i!�ŵ� 0 P̂0
1=2�!�

�P̂0
1=2�!� 0

 !

ŵ :� Sŵ:

(3.8)

Since the matrix S is skew Hermitian, S� � �S, we

obtain

@

@t
jjŵjj2 � �Sŵ; ŵ� � �ŵ; Sŵ� � �ŵ; �S� � S�ŵ� � 0:

Therefore, by Parseval’s relation, there is an energy

estimate and the Cauchy problem is well-posed [30].

Now we show how to construct stable finite difference

approximations to (3.4). We leave time continuous and use

the method of lines. For brevity, we treat the case�j > 0.

Let hj � 1=Nj, j � 1; . . . ; s, denote spatial gridlengths,

where Nj are natural numbers. For any multi-index��
��1; . . .;�s� 2 Zs, let x�� �h1�1; . . . ; hs�s� denote the

corresponding gridpoint. We consider gridfunctions u�:�
u��x�; t� approximating u�x�; t� and introduce a transla-

tion operator Ej in the j-th coordinate by

E
p
j u�� u��x�� phjej; t�; p 2 Z;

where ej � �0; . . . ; 0; 1; 0; . . . ; 0� is the vector containing a

1 in the j-th position and zeros elsewhere. We then define

the forward, backward, and the central difference operators

in the j-th coordinate direction by

hjD�j � E1
j � E0

j ; hjD�j � E0
j � E�1

j ;

2D0j � D�j �D�j:

We approximate (3.4) by

u�tt� 2p1�D�u�t� p2
1�D�u�� p0�D�u�; (3.9)

where p0�D� is the centered approximation

p0�D� �
Xs

j�1

AjjD�jD�j �
Xs

j�k�1

AjkD0jD0k; (3.10)

and p1�D� is any one of the following approximations:

(1) Centered approximation,

p1�D� �
Xs

j�1

�jD0j; (3.11)

(2) First order accurate one-sided approximation,

p1�D� �
Xs

j�1

�jD�j; (3.12)

(3) Second order accurate one-sided approximation,

p1�D� �
Xs

j�1

�jDpj; (3.13)

where

Dpj � D�j �
hj

2
D2

�j: (3.14)

Remark.—It is not necessary to assume that�j > 0 in

(3.11), (3.12), and (3.13). In general, we can use�j�j�jj
2

D�j �
�j�j�jj

2
D�j in (3.12). For the second order

one-sided approximation (3.13), we replace D�j and D�j

by Dpj and Dmj � D�j � hj
2
D2

�j, respectively.

Theorem 2.—The approximation (3.9) is stable.

Proof.—As in the continuum case, we write (3.9) as a

first order system and Fourier transform to get

û

v̂

 !

t � p̂1
û

v̂
� 0 I

�p̂0 0

û

v̂
; (3.15)

where

p̂0 �
Xs

j�1

Ajj

4

h2j
sin2�j

2
�

Xs

j�k�1

Ajk

1

hjhk
sin�j sin�k;�j � !jhj; j�jj � 	; (3.16)

and p̂1 is one of the following:

p̂ 1 �
Xs

j�1

�j 1
hj

i sin�j; (3.17)

p̂ 1 �
Xs

j�1

�j 1
hj

i sin�j � 2sin2�j
2

; (3.18)

p̂ 1 �
Xs

j�1

�j 1
hj

i sin�j 1� 2sin2�j
2

� 4sin4�j
2

;

(3.19)

corresponding to (3.11), (3.12), and (3.13).

Since

sin 2�� 4sin2�
2
cos2�

2
� 4sin2�

2
� 4sin4�

2
; (3.20)

we have
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p̂ 0 �
Xs

j;k�1

Ajk

1

hjhk
sin�j sin�k �Xs

j�1

Ajj

4

h2j
sin4
�j
2
:

(3.21)

From the ellipticity condition (3.3) it follows that p̂0 is

positive. As�j ! 0 we have sin�j=hj ! !j. Therefore,

the first sum in (3.21) is strictly positive. When j�jj � 	,

the first sum in (3.21) is zero but the second sum is not

because sin	j
2

� 0. Therefore p̂0 is positive definite, and we

can use the same transformation as in (3.7) and write (3.15)

as

ŵ t � p̂1ŵ� 0 p̂1=2
0 �!�

�p̂1=2
0 �!� 0

 !

ŵ: (3.22)

The second term on the right hand side of (3.22) is again

skew Hermitian and has no influence on the stability. Thus,

we need only consider

ŵ t � p̂1ŵ;

which consists of difference approximations of scalar

equations of the above type. To show that the approxima-

tions (3.11), (3.12), and (3.13) are stable, we set û � e
tû0
and get 
 � p̂1. By (3.17), (3.18), and (3.19), we have

<
 � 0 and there are no exponentially growing modes.

The approximation (3.9) involves a wide stencil.

Therefore extra boundary conditions (ghost points) are

required and the resulting accuracy is less than with a

more compact stencil. In order to investigate other approx-

imations with a more compact stencil, we write (3.4) as

u tt � 2P1�@=@x�ut � P�@=@x�u;
P�@=@x� � P0�@=@x� � P2

1�@=@x�
(3.23)

and approximate it by

u
tt� 2p1�D�u
t� p�D�u
; (3.24)

where p1�D� is given by (3.11) and p�D� is the centered

approximation

p�D� �
Xs

j�1

�Ajj ��j2�D�jD�j

�
Xs

j�k�1

�Ajk ��j�k�D0jD0k: (3.25)

Theorem 3.—The approximation (3.24) is stable if Ajj ��j2 > 0.

Proof.—We write (3.24) as

u
tt� 2p1�D�u
t� p2
1�D�u
� q�D�u
;

q�D� � p�D� � p2
1�D�:

(3.26)

We use the relation D�jD�j � D2
0j �

h2j
4
D2

�jD
2
�j and write

q�D� �
Xs

j;k�1

AjkD0jD0k �
1

4

Xs

j�1

�Ajj ��j2�h2jD2
�jD

2
�j:

In the same way as in the continuum case, we write (3.26)

as a first order system and Fourier transform to get

û

v̂

 !

t � p̂1
û

v̂
� 0 I

�q̂ 0

û

v̂
; (3.27)

where

q̂ �
Xs

j;k�1

Ajk

1

hjhk
sin�j sin�k

�
Xs

j�1

�Ajj ��j2� 4
h2j

sin4
�j
2
;�j � !jhj; j�jj � 	 (3.28)

and p̂1 is given by (3.17). By the ellipticity condition (3.3),

it is clear that q̂ is a positive definite matrix if Ajj ��j2 >
0. Therefore, we can use the same transformation as in

(3.7) and write (3.27) as

ŵ t � p̂1ŵ� 0 q̂1=2�!�
�q̂1=2�!� 0

ŵ: (3.29)

The second term on the right hand side of (3.29) is again

skew Hermitian and has no influence on the stability. Thus,

we need only to consider

ŵ t � p̂1ŵ;

and the stability follows in the same way as in Theorem 2.

Remark.—If the operator P is elliptic, we have Ajj ��j2 > 0, and by Theorem 3 the approximation (3.24) is

stable. However, it is possible to have Ajj ��j2 > 0 while

P is nonelliptic. In this case, the approximation (3.24)

remains stable when P is nonelliptic. In other words, the

stability of (3.24) does not depend upon the coefficients of

mixed derivatives Ajk, j � k.

Remark.—In the scalar case, (3.24) reduces to the

W-algorithm (1.8).

In the excision problem, we use the subluminal algo-

rithm (3.24) in the subluminal region where Ajj ��j2 > 0.

In the superluminal region where the shift�j is large so

that Ajj ��j2 � 0, we use the superluminal algorithm

(3.9) instead. We need then a prescription for switching

from one algorithm to the other. There are two distinct

ways to do this. One is to make a sharp switch between the

algorithms where the transition from superluminal to sub-

luminal region takes place. The other, used in [13], is to

introduce a smooth, monotonic blending function and use a

blended algorithm, which turns into the superluminal al-

gorithm inside the superluminal region and reduces mono-

tonically to the subluminal algorithm in the outside. For

this purpose, note that the superluminal algorithm remains

stable in the subluminal region.
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As a further alternative to the above approximations, we

can approximate (3.23) by adding a fourth differential

order term

u �tt � 2p1�D�u�t � p�D�u� �Q�D�u�; (3.30)

where p1�D� is given by (3.11) and

Q�D� � 1

4

Xs

j�1

�jh
2
jD

2
�jD

2
�j; �j 	 0: (3.31)

The motivation for adding such a fourth order term is to

modify the matrix q̂ in (3.28) so that it becomes positive

definite even if Ajj � �j2 � 0. When Ajj � �j2 > 0, the

matrix q̂ is positive definite and this added term is unnec-

essary. We can take advantage of this by embedding the

switch or blending function in the choice of �j, with �j �
0 in the outer region.

Theorem 4.—The approximation (3.30) is stable if Ajj �
�jI 	 �j2I.

Proof.—We use the relation D2
0j � D�jD�j �

h2
j

4
D2

�jD
2
�j and write

p�D� �
Xs

j;k�1

�Ajk � �j�k�D0jD0k

� 1

4

Xs

j�1

�Ajj � �j2�h2jD2
�jD

2
�j

� �p2
1�D� �

Xs

j;k�1

AjkD0jD0k

� 1

4

Xs

j�1

�Ajj � �j2�h2jD2
�jD

2
�j:

We can then write (3.30) as

u �tt � 2p1�D�u�t � p2
1�D�u� � q�D�u�; (3.32)

where

q�D� �
Xs

j;k�1

AjkD0jD0k

� 1

4

Xs

j�1

�Ajj � �j2 � �j�h2jD2
�jD

2
�j: (3.33)

In the same way as before, we write (3.33) as a first order

system and Fourier transform to get

û

v̂

 !

t � p̂1
û

v̂
� 0 I

�q̂ 0

û

v̂
; (3.34)

where

q̂ �
Xs

j;k�1

Ajk

1

hjhk
sin�j sin�k

�
Xs

j�1

�Ajj � �j2 � �j�
4

h2j
sin4

�j

2
:

If Ajj � �jI 	 �j2I then, because of ellipticity, q̂ is posi-

tive definite and stability follows in the same way as

before.

B. Half-plane problems

We consider the scalar wave equation with constant

coefficients in two space dimensions,

u~t~t � a1u~x ~x � 2b1u~x ~y � c1u~y ~y :� P0u: (3.35)

In the moving coordinate system, t � ~t, x � ~x� �x~t, y �
~y� �y~t, with �x; �y > 0, we get the shifted wave equa-

tion,

utt � 2��xuxt � �yuyt� � auxx � 2buxy � cuyy

:� 2P1ut � Pu: (3.36)

Here the coefficients a � a1 � �x2, b � b1 � �x�y, and

c � c1 � �x2 are assumed to be constant. Moreover, we

assume that the space operator P0 in (3.36) is elliptic,

namely a1 > 0 and c1 > 0 and b21 < a1c1. Therefore, by

Theorem 1, the Cauchy problem for (3.36) is well-posed.

We consider (3.36) in the half-space

0 � x <1; �1< y<1; t 	 0

and we assume that u is 1-periodic in y. The number of

boundary conditions needed at x � 0 is equal to the num-

ber of outgoing characteristics of the equation utt �
2�xuxt � auxx. We consider two distinct half-plane prob-

lems determined by the coefficients of the operator P.

Half-plane problem I: If a > 0 and b2 < ac, then the

operator P is elliptic and one boundary condition is needed

at x � 0. In the excision problem, this is the case of

subluminal shift with a timelike boundary.

Half-plane problem II: If a < 0, then the operator P is

nonelliptic. In the excision problem, this is the case of a

superluminal shift with a spacelike boundary.

1. Half-plane problem I (subluminal case)

This is the problem treated in [12] by the energy method.

In the present context of (3.36), the energy is given by

E � kutk2 � akuxk2 � 2b�ux; uy� � ckuyk2 (3.37)

in terms of the L2 scalar product and the corresponding

norm

�v;w� �
Z 1

0

Z 1

0
vwdxdy; kvk2 � �v; v�: (3.38)

If u solves (3.36), then integration by parts gives
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@tE � �2ut�
xut � aux � buy�jx�0: (3.39)

Any boundary condition satisfying the dissipative condi-

tion @tE � 0 gives an energy estimate sufficient to estab-

lish the well-posedness of the Cauchy problem, including

the Dirichlet condition

ut�0; y; t� � 0 (3.40)

and the Neumann conditionxut�0; y; t� � aux�0; y; t� � buy�0; y; t� � 0 (3.41)

for which energy is conserved.

As difference approximation for the half-plane problem,

we use (3.24), which in the present case reduces to the

W-algorithm (1.8). By introducing a discrete energy norm

and using summation by parts, a discrete version of (3.39)

has been used to establish stability of the finite difference

problem. For details we refer to [12].

2. Half-plane problem II (superluminal case)

To investigate the well-posedness of the continuum

problem, we use mode analysis. We apply a Laplace trans-

formation in t and Fourier transformation in y.

Theorem 5.—The half-plane problem (3.36) with a < 0
is well-posed.

Proof.—By substituting u � û�x�est�i!y, s 2 C, ! 2
R, into (3.36) we obtain

aûxx � �2ib!� 2
xs�ûx � �2iy!s� s2 � c!2�û � 0:

(3.42)

The general solution to the ordinary differential Eq. (3.42)

is of the form û�x� � �1e
�1x � �2e

�2x, where �1 and �2

are the solutions of the characteristic equation

a�2 � �2bi!� 2
xs��� 2iy!s� s2 � c!2 � 0:

(3.43)

Without restriction we can assume a � �1. Moreover,

since the sign of <� does not depend on !, we set ! � 0.

We then obtain

�1;2 �
xs� ������������������������

�x2 � 1�s2
q

:

For <s > 0, we have <�1;2 > 0 and there is no bounded

solution û. Therefore no boundary condition is needed and

the problem is well-posed.

As difference approximation for the half-plane problem,

we can use either (3.9) or (3.30). We study the stability of

the approximations by mode analysis. Below we show that

(3.9) is stable with p1�D� in (3.12). The stability of the

other approximations with p1�D� in (3.11) and (3.13) can

be shown in the same way.

On a uniform spatial grid �h � ��h;�h�;��
0; 1; 2; . . .;�� 1; 2; . . . ; N, with spacing h, let v�t� :�
u���t� be the gridfunction approximating u�x�; y�; t�. We

consider the shifted wave Eq. (3.36) and approximate it by

vtt � 2�xD�x �
yD�y�vt � �xD�x �
yD�y�2v

� �a1D�xD�x � 2b1D0xD0y � c1D�yD�y�v;
(3.44)

for�� 1; 2; . . . . For every fixed�, we need one extra

boundary condition to determine u0�. We use a third order

extrapolation

h3D3
�xu0�� 0: (3.45)

We consider bounded solutions of type

u���t� � est�i!�h��; k�kh <1: (3.46)

Putting (3.46) into (3.44), we get the eigenvalue problem��s2 � 2

x
h
����1 ����s� 2

y
h

�

i sin�� 2sin2
�
2

���s
�
x2
h2

����2 � 2���1 ���� � 2

xy
h2

����1 ����



�

i sin�� 2sin2
�
2

�

�
y2
h2

�

isin2�� 2sin2
�
2

�

2��
� a1

h2
����1 � 2������1� �

b1
h2

i sin�����1 ����1�

� 4
c1
h2

sin2
�
2
��� 0;�� !h: (3.47)

The approximation (3.44) and (3.45) is stable if and only

if the Kreiss condition is satisfied, or equivalently if (3.47)

has no eigenvalue s with <s 	 0 [31]. The constant-

coefficient ordinary difference Eq. (3.47) has solution of

the form ��� X

3

j�1

�j�
�
j ;

where �j are the three solutions of the characteristic equa-

tion

s2 � 2

�
x
h
��� 1� �
y
h

�

i sin�� 2sin2
�
2

��

s

�
�
x
h
��� 1� �
y
h

�

i sin�� 2sin2
�
2

��

2

� a1
h2

��� 1�2
�

� b1
h2

�

�� 1

�

�

i sin�� 4
c1
h2

sin2
�
2
� 0:

(3.48)

By Lemma 12.1.6 of [31], for <s > 0 the characteristic

Eq. (3.48) has no solutions with j�j � 1 and there is

exactly one solution with j�j< 1. Roughly speaking, the

number of left points in the difference stencil determines

the number of solutions to the characteristic equation with

j�j< 1. We call this solution �1 and write the bounded

solution as

u��t� � est�i!�h�1�
�
1 : (3.49)
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By substituting (3.49) into the boundary condition (3.46),

we get

�1��1 � 1�3est�i!�h� 0: (3.50)

Since �1 � 1 for <s > 0, (3.50) has only the trivial solu-

tion �1 � 0. Now, we let � ! 1 and investigate if there is

any sequence fsg such that <s ! 0 with <s > 0. We then

get from (3.48)

~s2 � 2
�y�i sin�� 2sin2
�
2

�

~s��y2�i sin�� 2sin2
�
2

�

2

� 4c1sin
2�
2
� 0; ~s � sh; (3.51)

and therefore

~s ��y�i sin�� 2sin2
�
2

�

�
�����������������������

�4c1sin
2�
2

s

: (3.52)

Since
�y > 0 and c1 > 0, we have <s < 0 if�=! 0. In the

case where�! 0, we get from (3.48)

s2 � 2

�x
h
s��� 1� �
�x2
h2

��� 1�2 � a1
h2

��� 1�2
�

� 0:

(3.53)

Letting s ! 0, we then get from (3.53) that �1;2 � 1 and

�3 � a1
=�x2 < 1. Since for <s > 0 there is no solution

with j�j � 1, the only solution is �3 which is strictly less

than 1 and does not converge to 1. Therefore there is no

positive sequence fsg such that <s ! 0 for j�j � 	. Now,

we can prove the following theorem:

Theorem 6.—The approximation (3.44) and (3.45) is

stable.

Proof.—Since there is no eigenvalue s with <s 	 0 to

the eigenvalue problem (3.47) giving bounded solutions

(3.46), the Kreiss condition is satisfied and stability

follows.

IV. TESTS OF THE SUPERLUMINAL

ALGORITHMS

In the subluminal case where the evolution proceeds in a

timelike direction, the W-algorithm (1.8) provides an ac-

curate, flux-conservative, second order treatment of the

IBVP. This was proved for a 1D quasilinear wave equation

in [13] using the discrete energy method. In [10,12], the

results were extended to the 3D case and applied to the

harmonic Einstein system (1.2). The semidiscrete conser-

vation laws extend to the principal part of the harmonic

Einstein system and contribute to excellent long term

performance in test problems. We use this W-algorithm

to treat the outer region of the model excision problem

considered in Sec. V.

In this model problem, the inner boundary is chosen to

be spacelike, corresponding to the strategy for excising an

interior singularity. The evolution near the inner boundary

proceeds in a spacelike direction (superluminal shift) so

that the spatial grid tracks the boundary. For this super-

luminal case, the W-algorithm is unstable and one of the

algorithms considered in Sec. III must be used. These

algorithms are either given by (3.9), with p1�D� given by

one of the approximations (3.11), (3.12), and (3.13), or by

(3.30).

In the case of the 2D shifted wave Eq. (1.6), the choice

(3.11) reduces to the centered algorithm

V :� ��@t �
�xD0x �
�yD0y�2 � a1D�xD�x

� c1D�yD�y � 2b1D0xD0y�u � 0; (4.1)

the choice (3.12) reduces to

V� :� ��@t �
�xD�x �
�yD�y�2 � a1D�xD�x

� c1D�yD�y � 2b1D0xD0y�u � 0; (4.2)

in which the shift terms are treated by first order accurate

one-sided difference operators; the choice (3.13) reduces to

Vp :� ��@t �
�xDpx �
�yDpy�2 � a1D�xD�x

� c1D�yD�y � 2b1D0xD0y�u � 0; (4.3)

in which the shift terms are treated by second order accu-

rate one-sided difference operators (3.14); and (3.30) is

related to the subluminal W-algorithm (1.8) by

V!:� W � h2

4
�"1�D�xD�x�2 �"2�D�yD�y�2�u � 0;

(4.4)

where Theorem 4 guarantees stability provided the in-

equalities"1 	�x2 � a1 � �a; "1 	 0; (4.5)"2 	�y2 � c1 � �c; "2 	 0; (4.6)

are satisfied.

The V-algorithm is related to the W-algorithm by the

second order accurate modification

V � W � h2

4
��x2�D�xD�x�2 �
�y2�D�yD�y�2�u � 0:

(4.7)

In the subluminal case where the W and V algorithms can

be compared, tests show that the W-algorithm has consid-

erably better accuracy due to its more compact stencil [10].

Here we carry out a set of 2D superluminal tests to com-

pare the performance of the superluminal algorithms in a

periodic test problem (smooth toroidal boundary condi-

tions) where the effect of the boundary is eliminated. The

first order accurate V�-algorithm (4.2) is highly dissipative

and much less accurate than the second order accurate Vp

version (4.3). For these reasons, we restrict our test com-

parisons to the V, Vp and V!algorithms.

The V-algorithm is a special case of the V!-algorithm

(4.4) where"1 ��x2 and"2 ��y2 . The accuracy of the

V!-algorithm might be expected to depend on the relative
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weight of the higher order terms responsible for the

stretched stencil in (4.4). For example, the V#-algorithm

might be expected to be most accurate for the minimum

values,$1 � �jaj � a�=2 and$2 � �jcj � c�=2, which are

allowed by (4.5) and (4.6). This is true for the case when a
and c are positive, for which$1 �$2 � 0 and the

V#-algorithm reduces to the W-algorithm.

When a < 0 is negative and c > 0, the optimal value for$2 remains 0 but the optimal value for$1 is not necessarily

the minimum allowed value$1 � �a. This value would

result in approximating the a@2x term in the wave operator

by aD2
0x, which decouples the even and odd grid points.

Although the optimal choice of$1 in this case is not

obvious, the combination$1 �%x2 and$2 � 0 would

give better accuracy than the V-algorithm. No general

guidelines are suggested by examining the truncation error

in the V#-algorithm, which to order h2 is given by

 � h2

12
��a� 3$1�@4x � �c� 3$2�@4y � 4b�@3x@y � @x@

3
y�

� 4%x@3x@t � 4%x@3y@t�u: (4.8)

Note that the values$1 � a=3 and$2 � c=3 correspond to

the fourth order accurate approximations to the terms a@2x
and c@2y in the wave operator. However, these choices are

not allowed in the superluminal regime, where stability

requires$i 	 0.

As a test problem for comparing the accuracy of these

evolution algorithms in the superluminal regime we pick a

case where both a and c are negative. We consider the wave

equation

��@2t �4�@x�@y�@t�3@2x�3@2y�8@x@y�u� 0: (4.9)

which arises from a 2D version of (2.4) with shift%x �%y � 2. With this superluminal choice of shift, there are no

characteristics in the �x > 0; y > 0� directions. Waves

propagating along the diagonal have the form

u � F�x� y� �4�
���

2
p

�t �G�x� y� �4�
���

2
p

�t:
(4.10)

In our test, we simulate the solution

u � sin�2	�x� y� �4�
���

2
p

�t� (4.11)

in the domain �:5 � �x; y� � :5, on a grid with N � 200
points, with periodic boundary conditions. For this particu-

lar solution, the symmetries @xu � @yu � @tu=�4�
���

2
p

�
imply that the truncation error (4.8) has a minimum at$1 �$2 �$m, where$m � 13� 8

���

2
p

3
� 8:104 569 5: (4.12)

Figure 1 plots the ‘1 norm of the numerical error in the

scalar field obtained in the simulation of (4.11) by evolving

the wave Eq. (4.9) with the V#-algorithm, for various

values of$1 �$2 �$. The error for$� 8:104 569 5 is

extremely small and the plots confirm that$m is indeed the

optimal value. The value$� 4 corresponds to the

V-algorithm, which gives significantly larger error. The

value$� 3, which is the smallest value allowed by stabil-

ity, gives even larger error.

The error in Fig. 1 is predominantly phase error. Figure 2

shows snapshots of u�t � 100; x� (100 crossing times) for

the simulation of (4.11) using the V, Vp and V#algorithms,

with$� 8. The simulations are compared with the ana-

lytical solution at t � 100. The solution with the Vp-

algorithm leads in phase while that with the V-algorithm

lags in phase and it has slightly better accuracy. As ex-

0 0.2 0.4 0.6 0.8 1
0

0.001

0.002

0.003

0.004

0.005

0.006

α = 3
α = 4
α = 8.1045
α = 9
α = 11

FIG. 1 (color online). The ‘1 norm of the error of the scalar

field obtained with V&algorithm on a grid of 200 points is

plotted vs time, in the interval 0 � t � 1. For the value'm �
8:104 569 5, the error is barely discernible and the plots clearly

indicate that'm is the optimal value. The value'� 4 corre-

sponds to the V-algorithm, which has significantly larger error.

-0.4 -0.2 0 0.2 0.4
-1

0

1

Analytic solution

V algorithm

V
p  

algorithm

V
α 

 algorithm, α=8

FIG. 2 (color online). Snapshots of the scalar field u�t �
100; x� obtained with the V, Vp and V&algorithms, compared

with the analytic solution. The phase error with the Vp-algorithm

is larger than with the V-algorithm. The V&-algorithm, for'�
8, is extremely accurate and barely distinguishable from the

analytic solution.
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pected from the above error analysis, the V(-algorithm,

with)� 8, is extremely accurate.

V. SIMULATION OF A MODEL 2D EXCISION

PROBLEM

In this section, we simulate a simple 2D model of the

excision problem in which the inner boundary S is space-

like and the outer boundary T is timelike, with a horizon

H in between. In the inner region between S and H ,

since the shift is superluminal, the operator P in (3.23) is

nonelliptic and both characteristics leave the inner bound-

ary. In the outer region between H and T , since the shift

is subluminal, the operator P is elliptic and one character-

istic leaves T and the other enters T .

To model a wave pulse propagating into a horizon, we

consider the shifted wave equation with a source term F,

utt � 2�*xuxt �*yuyt� � auxx � 2buxy � cuyy

� F�x; y; t�; (5.1)

on the spatial domain �x; y� 2 � � ��2; 2 
 ��2; 2, and

t 	 0. We set the coefficients
*x �*y � 2, a � 0:5�x�

sin	y
2
�, b � 0:5 and c � 5, for which the problem is well-

posed. The spacelike boundary S at x � �2, the timelike

boundary T at x � 2 and the horizon H are shown in

Fig. 3. The horizon satisfies ac� b2 � 0, which deter-

mines the curve

x � 0:1� sin
	y

2
: (5.2)

For the smooth function

F�x; y; t� � 2

�2
���1� 2
*x � a���� 2�t� x� x0�2�

� 4�*y � b��t� x� x0�y
� c��� 2y2��e���t�x�x0�2�y2�=�; (5.3)

the Eq. (5.1) has the solution

u�x; y; t� � e���t�x�x0�2�y2�=�; (5.4)

which is a left-traveling wave packet, initially centered

about x0 � 0:5 outside the horizon and propagating to-

wards the spacelike boundary. Here we set � � 0:05. We

uniformly discretize the spatial domain as x+�,hand

y.�/hwith,;/� 0;�1; . . . ;�N with the grid size

h � 2
N

.

The global simulation of the model problem in the

region between S and T is carried out by combining the

superluminal V-algorithms established in Sec. III with the

subluminal W-algorithm. The spacelike boundary and the

superluminal region are treated with one of the

V-algorithms. A region containing the timelike boundary

is treated by the W-algorithm.

We consider the following three global algorithms:

(i) Algorithm 1.—The superluminal region is treated

by the V-algorithm (4.3). In the subluminal region

we use the W-algorithm. We introduce a cutoff

function1which is 0 when a > 0 and c > 0 and

is 1 when a � 0 or c � 0. Then we use the follow-

ing approximation1V� �1�1�W � 0:

(ii) Algorithm 2.—This is similar to 1, except the

superluminal region is treated by the

Vp-algorithm (4.3), which is then blended to the

W-algorithm in the same way as in 1.

(iii) Algorithm 3.—We use the V(-algorithm (4.4) with)1 � �jaj � a�=2 and)2 � �jcj � c�=2.

The initial data and boundary condition at x � 2 are

chosen according to the exact solution (5.4). In the first and

third algorithms, we need two extra boundary conditions at,� �N, �N � 1. In the second algorithm, we need only

one boundary condition at,� �N. We use third order

extrapolations as the extra boundary conditions. In the

y-direction we use periodic boundary conditions. For the

integration in time, we use the standard 4th order Runge-

Kutta method.

ac−b
2
>0

ac−b
2
<0 

FIG. 3. Computational domain with the spacelike boundary S

on the left, the timelike boundary T on the right and the

sinusoidal shaped horizon H in between. The solution is

periodic in the vertical y-direction.

FIG. 4. A pulse propagating across the horizon. The left figure

shows the initial pulse in the region outside the horizon. The

right figure shows the pulse at a later time, after it has crossed the

horizon and is incident on the inner spacelike boundary.
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Figure 4 shows the initial wave pulse and the pulse at a

later time t � 2 computed by the third algorithm.

For the gridfunction u34�t� approximating u�x3; y4; t�,
we define the discrete norm as

ku34k2h � XN3;4��N

u34h2; (5.5)

where h � �x � �y is the gridlength. We then define the

convergence factor by

C �t� � log2
kE�t�kh
kE�t�kh=2

; E�t� � u�x3; y4; t� � u34�t�;
(5.6)

where E�t� is the error at time t, and u�x3; y4; t� is the exact

solution computed by (5.4).

Figure 5 shows the norm of the error versus time for the

three algorithms with h � 0:02 and �t � 0:001.

Figure 6 shows the convergence factor as a function of

time for the three algorithms with h � 0:04 and �t �
0:001. It confirms the second order accuracy of the algo-

rithms in space. The jumps in the convergence factor at

about t � 2 is a result of using third order extrapolations at

the spacelike inner boundary, while we use second order

evolution algorithms. At this time the pulse reaches the

spacelike boundary and an increase in the order of accu-

racy, from 2 to 3, is expected.

The third algorithm gives a better accuracy than the

other two. The second algorithm, in which we use the

second order one-sided stencil with extrapolation in one

ghost point, gives a slightly smaller error than the first

algorithm, in which the second order centered stencil

with extrapolation in two ghost points is used.
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[5] B. Szilágyi, B. Schmidt, and J. Winicour, Phys. Rev. D 65,

064015 (2002).
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Abstract. The Kreiss symmetrizer technique gives sharp estimates of the solution of hyperbolic

initial boundary value problems including estimates at the boundaries resulting in strongly well-

posedness in the generalized sense. In this case, the problem is called boundary stable. There

are, however, problems which are not boundary stable but are well-posed in a weaker sense, i.e.,

we can obtain energy estimates in the interior of the domain. We call these problems well-posed

in the generalized sense. These types of problems are important in many applications, including

seismic, optical and gravitational waves. Examples include surface waves and glancing waves in

electromagnetic and elastic wave propagation problems. Unfortunately, there is no general theory

for such problems.

In this paper, we consider a model problem which may not be boundary stable depending on

the choice of boundary conditions. We show that the general theory of hyperbolic systems can be

extended to this case, and the symmetrizer technique can be used to derive estimates of the solution

off the boundary and verify well-posedness in the generalized sense.

Keywords. Partial differential equations; Hyperbolic systems; Boundary stable problems; Kreiss

symmetrizers; Pseudo-differential operators.

1 Introduction

The theory of linear hyperbolic initial-boundary value problems is well developed for
two classes of problems; the Friedrichs theory for symmetric systems with maximally
dissipative boundary conditions and the Kreiss theory for hyperbolic systems with
boundary conditions satisfying the uniform Kreiss eigenvalue condition.

For first-order symmetric hyperbolic systems with maximally dissipative boundary
conditions, an energy estimate can be derived using integration by parts, [3, 4, 14, 5].
However, if the system is not symmetric or the boundary conditions are not maximally
dissipative, other techniques are needed.

A rather comprehensive theory has been developed based on the principle of frozen
coefficients, Fourier and Laplace transformation, construction of Kreiss-type sym-
metrizers and the theory of pseudo-differential operators, [9, 18, 2, 20, 19, 15, 11, 10,
13, 16]. This theory gives a necessary and sufficient algebraic condition , known as
Kreiss eigenvalue condition, for strongly well-posedness in the generalized sense. The
theory can also be applied to second-order hyperbolic systems, [12]. For problems
with constant coefficients, one can directly derive an estimate for the solution of the
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problem which does not rely on the construction of Kreiss symmetrizers and the the-
ory of pseudo-differential operators. However, the importance of symmetrizers is that
we can use the theory of pseudo-differential operators and treat systems with variable
coefficients.

The Kreiss symmetrizer technique was first introduced by Kreiss for Strictly hy-
perbolic systems, [9], and was extended to systems with constant multiplicity, [2],
and to a special class of systems with variable multiplicity, [16]. It gives sharp es-
timates including the estimate of the solution at boundaries which result in strong
well-posedness in the generalized sense. In this case, the problem is called boundary
stable, see [13]. There are, however, problems which are not boundary stable but
are well-posed in a weaker sense. We call these problems well-posed in the general-
ized sense. The main purpose of this paper is to extend the theory and construction
of symmetrizers for such problems by relaxing the strong eigenvalue condition and
deriving estimates of the solution at the interior.

In Section 2, we shortly review the Kreiss theory for boundary stable hyperbolic
systems. We introduce another concepts of well-posedness in Section 3, which is
desirable for systems which are not boundary stable. We then consider a model
problem which may not be boundary stable and discuss different choices of boundary
conditions resulting in different types of well-posedness. We show that it is possible
to extend the general theory of Hyperbolic systems to the problems which are not
boundary stable. A number of auxiliary lemmas are collected in the appendix.

2 Boundary Stable Hyperbolic systems

In this section we give a short review of the Kreiss theory for first order systems
which are boundary stable. We note that since the theory is based on the theory of
pseudo-differential operators, it can also be applied to second order systems. In fact
we can always write a second order system of differential equations as a first order
system of pseudo-differential operators, [12].

Consider a first order system of partial differential equations

∂u

∂t
= P (

∂

∂x
)u + F (x, t), P (

∂

∂x
) = A

∂

∂x1
+

m
∑

j=2

Bj
∂

∂xj
, (1)

where u(x, t) =
(

u1(x, t), . . . , un(x, t)
)⊤

is a vector-valued function of the real vari-
ables (x, t) = (x1, . . . , xm, t), and the coefficient matrices A, Bj ∈ Cn×n are constant.

2.1 The Cauchy Problem

We first consider the Cauchy problem for (1) with initial conditions,

u(x, 0) = f(x), x ∈ R, (2)
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in the space R : −∞ < xj < ∞, j = 1, . . . , m. We denote the L2 scalar product and
the corresponding norm in this space by

(u, v)R =

∫

R

u∗vdx, ||u||2R = (u, u)R,

where u∗ is the adjoint of u.
For numerical analysis and computations, there is a satisfactory way to define

well-posedness as follows.

Definition 1. The Cauchy problem is called well-posed in the semigroup sense, if

1. for a dense set of smooth data, there is a smooth solution,

2. the solutions of homogeneous equations (F ≡ 0) satisfy the energy estimate

||u(., t)||R ≤ Keα(t−t0)||u(., t0)||R, (3)

where K and α are constants.

The solutions of inhomogeneous systems can be determined and estimated using
Duhamel’s principle.

Theorem 1. The Cauchy problem is well-posed in the semigroup sense, if and only
if for every real ω = (ω1, ω−), ω− = (ω2, . . . , ωm) with |ω| = 1, the symbol

P (iω) = iAω1 + iB(ω−), B(ω−) =

m
∑

j=2

Bjωj, (4)

has purely imaginary eigenvalues and can be transformed to diagonal form by a trans-
formation S(ω) with |S| |S−1| ≤ K, where K is a constant independ of ω.

Note that the theorem is true only for problems with constant coefficients. For
variable coefficients problems, the symbol should in addition be smoothly symmetriz-
able in order for the Cauchy problem to be well-posed, [7].

Definition 1 does not only require properties of the eigenvalues of the symbol, but
also properties of the eigenvectors. There is a weaker definition used by Hadamard
[6] and Petrovskii [17] as follows.

Definition 2. The Cauchy problem is well-posed in the sense of Hadamard if the
estimate (3) is replaced by

||u(., t)||R ≤ Keα(t−t0)H2
p (t0), H2

p (t) =
∑

|j|≤p

|| ∂|j|u(., t)

∂xj1
1 · · ·∂xjm

m

||2R, p ≤ n. (5)
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One can show that the Cauchy problem is well-posed in the sense of Hadamard
if and only if the eigenvalues of the symbol are purely imaginary. However, if the
solution of the homogeneous system do not satisfy (3) but only the weaker estimate
(5), the well-posedness can be destroyed by lower order terms, [21]. The weaker
definition 2, therefore, is not stable against lower order perturbations.

Henceforth, we assume that the system (1) is strictly hyperbolic, i.e., for all real
ω with |ω| = 1, the eigenvalues of the symbol (4) are purely imaginary and distinct.
By Theorem 1, therefore, the Cauchy problem for (1) is well-posed in the semigroup
sense.

We further assume, for simplicity, that A is nonsingular and without restriction
assume it has the form

A =

(

−ΛI

ΛII

)

, (6)

where ΛI and ΛII are real positive definite diagonal matrices of order r and n − r,
respectively. For the singular case see [15].

2.2 The Initial Boundary Value Problem

We now consider the initial boundary value problem (IBVP) for (1) with initial con-
ditions,

u(x, 0) = f(x), x ∈ R0, (7)

in the half-space R0 : x1 ≥ 0, −∞ < xj < ∞, j = 2, . . . , m, and boundary conditions
at x1 = 0,

uI(0, x−, t) = S uII(0, x−, t) + g(x−, t). (8)

Here x− = (x2, . . . , xm) denotes a point in the (m−1)-dimensional space R− : −∞ <
xj < ∞, j = 2, . . . , m, and uI = (u1, . . . , ur)

⊤ and uII = (ur+1, . . . , un)
⊤ correspond

to the partitions ΛI and ΛII , respectively, and S ∈ Cr×(n−r) is a rectangular matrix.
All data are smooth, compatible and have compact support.

By a suitable change of variables we can make the boundary conditions homoge-
neous. We can therefore use Definition 1 also in this case (F ≡ g ≡ 0), with ||.||R
replaced by ||.||R0

.
This definition is satisfactory if the system is symmetric hyperbolic and the bound-

ary conditions are of Friedrichs’ type. In this case, integration by parts give the energy
estimate. But if the system is not symmetric hyperbolic or the boundary conditions
are not of Friedrichs’ type, another approach needs to be devised.

We consider the IBVP (1), (7), (8) with homogeneous initial data (f ≡ 0) and
discuss a concept of well-posedness for which we obtain necessary and sufficient con-
ditions.

Definition 3. Let f(x) ≡ 0. We call the IBVP (1), (7), (8) strongly well-posed in
the generalized sense if for all smooth compatible data, F and g, there is a unique
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solution u, and in each time interval 0 ≤ t ≤ T , there is a constant KT independent
of the data such that

∫ t

0

||u(x, τ)||2R0
dτ+

∫ t

0

||u(0, x−, τ)||2R−
dτ ≤ KT

(

∫ t

0

||F (x, τ)||2R0
dτ+

∫ t

0

||g(0, x−, τ)||2R−
dτ

)

.

(9)
Here ||.||R0

and ||.||R−
denote the L2-norm over the half-space R0 and the boundary

space R−, respectively.

2.2.1 A Necessary Condition for Strongly Well-posedness in the Generalized Sense

We start with a simple test to derive a necessary condition for the problem to be
well-posed. For the IBVP (1), (7), (8) with F ≡ f ≡ g ≡ 0, we construct simple wave
solutions

u(x, t) = est+i〈ω−,x−〉 φ(x1), 〈ω−, x−〉 =

m
∑

j=2

ωjxj , (10)

satisfying the boundary conditions

φI(0) = S φII(0), |φ|∞ < ∞. (11)

We have

Lemma 1. (Lopatinsky condition) The half-space problem with F ≡ f ≡ g ≡ 0 is not
well-posed if for some ω0 ∈ Rm−1 and s0 ∈ C with ℜs0 > 0 there is a solution (10)
which satisfies (11).

We can also express the condition as an eigenvalue condition, as follows. We
Fourier transform the problem with respect to the tangential variables x− and get

∂û

∂t
= A

∂û

∂x1
+ iB(ω−)û + F̂ for x1 ≥ 0, (12)

ûI = S ûII + ĝ for x1 = 0, (13)

where û = û(x1, ω−, t) = Fu(x, t) =
∫

R−

e−i〈ω−,x−〉 u dx−, F̂ = F̂ (x1, ω−, t) = FF (x, t)

and ĝ = ĝ(ω−, t) = Fg(x−, t) are the Fourier transforms of u, F and g with respect
to x−, respectively. We then Laplace transform it with respect to t and obtain the
resolvent equation

sũ = A
dũ

dx1
+ iB(ω−)ũ + F̃ for x1 ≥ 0, (14)

ũI = S ũII + g̃ for x1 = 0, (15)
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with ũ = ũ(x1, ω−, s) = Lû(x1, ω−, t) =
∫ ∞

0
ûe−st dt, F̃ = F̃ (x1, ω−, s) = LF̂ (x1, ω−, t)

and g̃ = g̃(ω−, s) = Lĝ(ω−, t) being the Laplace transforms of û, F̂ and ĝ with respect
to t, respectively. Here ω ∈ R and s ∈ C.

Let L2(0 ≤ x1 < ∞) be the space of all functions which are quadratically integrable
for 0 ≤ x1 < ∞ and denote by

(u, v)0 =

∫ ∞

0

u∗vdx1, ||u||20 = (u, u)0,

the usual scaler product and the corresponding norm in this space. Then φ ∈ L2(0 ≤
x1 < ∞) is an eigenfunction of (14), (15) corresponding to an eigenvalue s, if φ is the
solution of the eigenvalue problem

sφ = A
dφ

dx1
+ iB(ω−)φ for x1 ≥ 0, (16)

φI = S φII , ||φ||20 < ∞ for x1 = 0. (17)

We can now formulate the eigenvalue condition equivalent to the Lopatinsky condi-
tion,

Lemma 2. (Eigenvalue condition, Agmon [1]) There are no solution of type (10)
which satisfies (11) if and only if the eigenvalue problem (16), (17) has no nontrivial
solution with ℜs > 0.

By Lemma 2, the eigenvalue condition is a necessary condition for well-posedness
of the IVBP. Hersch [8] has shown that this condition is also sufficient for the problem
to be weakly well-posed in the sense of Hadamard. In fact, if there is no solution of
type (10) which satisfies (11), the IBVP can be solved by Laplace-Fourier transform.
Let f(x) ≡ 0. if u is the solution of the IBPV, then ũ = LFu satisfies the resolvent
equation (14-15). Conversely, if the eigenvalue condition is satisfied, then one can
solve the resolvent equation for ℜs > 0. Inverting the Laplace-Fourier transform
gives us the solution of the IBVP. However, in general, the eigenvalue condition is
not stable against lower order perturbations, and therefore other stable conditions
are needed.

We now derive algebraic conditions which determine whether s with ℜs > 0 is an
eigenvalue.

Let κ be the solutions of the characteristic equation

Det|Aκ − (sI − iB(ω−))| = 0. (18)

One can then prove the following lemma, see [9],

Lemma 3. For solutions , κ, of the characteristic equation (18), we have:

1. for ℜs > 0, there are no κ with ℜκ = 0,
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2. there are precisely r solutions with ℜκ < 0 and n − r solutions with ℜκ > 0,

3. there exists a constant δ > 0 such that |ℜκ| > δη for all s = iξ + η, η > 0 and
all ω−.

Assuming all eigenvalues κj are distinct, we can write the solution of (16), (17) as

φ =
∑

ℜκj<0

σje
κjx1ϕj +

∑

ℜκj>0

σje
κjx1ϕj, (19)

where ϕj are the corresponding eigenvectors. Note that if the eigenvalues κj are
not distinct, the usual modifications apply. Since we are only interested in bounded
solutions, we set σj in the second term of (19) equal to zero. Introducing φ into
the boundary conditions (17), we get a linear system of r equations for r unknowns
σ = (σ1, . . . , σr),

S̃(s, ω−) σ = 0.

Therefore s with ℜs > 0 is an eigenvalue if and only if

Det|S̃(s, ω−)| = 0. (20)

Assuming Det|S̃| 6= 0 for ℜs > 0, we know that (14),(15) has a unique solution.
Inverting the Fourier and Laplace transforms we obtain the solution to the IBVP.

2.2.2 A Sufficient Condition for Strongly Well-posedness in the Generalized Sense

We now introduce the concept of generalized eigenvalues and derive a sufficient con-
dition such that the problem is strongly well-posed in the generalized sense.

We first introduce normalized variables

s′ =
s

√

|s|2 + |ω−|2
= iξ′ + η′, ω′

− =
ω−

√

|s|2 + |ω−|2
, (21)

and write the eigenvalue problem (16), (17) in terms of these variables.

Definition 4. Let (iξ′0, ω
′
0−) be a fixed point, and consider the eigenvalue problem

(16), (17) for s′ = iξ′0 + η′, ω′
− = ω′

0−, η′ > 0. Then, (iξ′0, ω
′
0−) is a generalized

eigenvalue for a boundary condition if in the limit η′ → 0 the boundary condition is
satisfied, or equivalently

lim
η′→0

Det|S̃(iξ′0 + η′, ω′
0−)| = 0.

Definition 5. Let F ≡ f ≡ 0. We call the IBVP (1), (7), (8) boundary stable if for
all smooth boundary data, g, there is a unique solution u, and in each time interval
0 ≤ t ≤ T , there is a constant KT independent of the data such that

∫ t

0

||u(0, x−, τ)||2R−
dτ ≤ KT

∫ t

0

||g(0, x−, τ)||2R−
dτ. (22)
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One can also phrase the boundary stability condition as an eigenvalue condition,
[13].

Definition 6. (Kreiss eigenvalue condition) The eigenvalue problem (16), (17) has
no eigenvalue or generalized eigenvalue for ℜs ≥ 0.

The boundary estimate (22) is crucial in the theory. It allows us to construct a
symmetrizer to obtain an energy estimate in the generalized sense for the full problem.

Using the normalized variables (21), we write (14),(15) as

−A
dũ

dx1
+

√

|s|2 + |ω−|2
(

s′I − iB(ω′
−)

)

ũ = F̃ for x1 ≥ 0, (23)

ũI − S ũII = g̃ for x1 = 0. (24)

We now formulate the main result.

Theorem 2. Assume that the half-space problem is boundary stable. Then there
exists a symmetrizer R̂ = R̂(s′, ω′

−) with the following properties:

1. R̂ is uniformly bounded and a smooth function of s′ and ω′
− and of the coefficients

A, Bj and S.

2. R̂A is Hermitian.

3. For all vectors y satisfying the boundary conditions,

y∗ R̂A y ≥ δ1|y|2 − C|g̃|2.

4.
√

|s|2 + |ω−|2ℜ{R̂
(

s′I − iB(ω′
−)

)

} ≥ δ2ηI.

We can now prove

Theorem 3. Assume that the half-space problem is boundary stable (or equivalently
the Kreiss eigenvalue condition holds). Then it is strongly well-posed in the generalized
sense.

Proof. Multiplying (23),(24) by R̂, we obtain

ℜ(ũ, R̂F̃ )0 = ℜ{−(ũ, R̂A
dũ

dx1
)0 +

(

ũ,
√

|s|2 + |ω−|2R̂
(

s′I − iB(ω′
−)

)

ũ
)

0
}

= ℜ{−1

2
ũ∗R̂Aũ|∞0 +

(

ũ, R̂
(

sI − iB(ω−)
)

ũ
)

0
}

≥ 1

2
δ1|ũ(0, ω−, s)|2 + δ2η||ũ(x1, ω−, s)||20 − C|g̃|2.

Thus we obtain

η||ũ(x1, ω−, s)||20 + |ũ(0, ω−, s)|2 ≤ const.
(1

η
||F̃ ||20 + C|g̃|2

)

.

Inverting the Fourier and Laplace transforms proves the theorem.
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Definition 3 has many good properties. It is stable against lower order terms.
Moreover, one can construct symmetrizers, and using the theory of pseudo-differential
operators, one can treat variable coefficients in a general smooth domain. Rauch [20]
has also shown

Theorem 4. If the problem is strongly well-posed in the generalized sense, then it is
well-posed in the semigroup sense.

3 Well-posed Problems in the Generalized Sense

In the last section, we reviewed the general theory of hyperbolic systems for boundary
stable problems. The theory gives necessary and sufficient conditions for the problems
to be strongly well-posed in the generalized sense. There are, however, problems which
are not boundary stable but are well-posed in a weaker sense. Examples include
surface waves and glancing waves in electromagnetic and elastic wave propagation
problems described by Maxwell’s equations and elastic wave equations with certain
types of boundary conditions. It is therefore necessary to develop a theory for such
types of problems.

In this section, We first introduce another concept of well-posedness which is again
stable against lower order perturbations and is desirable for problems which are not
boundary stable. We then consider a model problem which may not be boundary
stable and show that it is possible to extend the general theory to this case. We
derive necessary and sufficient conditions for the model problem to be well-posed.

We consider the IBVP (1), (7), (8) in the half-space R0 with homogeneous initial
data and boundary conditions (f ≡ g ≡ 0). If the problem is well-posed in any of the
above senses, then we can solve it by Laplace-Fourier transform. The transformed
solution satisfies the resolvent equation (14-15) with ĥ ≡ 0. If the problem is well-
posed in the semigroup sense, then the solution of the resolvent equation satisfy the
estimate

||ũ||0 ≤
K

η − α
||F̃ ||0, η = ℜs > α, (25)

i.e.,

||(sI − P )−1||0 ≤
K

η − α
, P = A

∂

∂x1
+ iB(ω−) (26)

We call (26) the resolvent condition. By Parseval’s relation, (26) is equivalent with
∫ ∞

0

e−2ηt||u(., t)||2R0
dt ≤ K2

(η − α)2

∫ ∞

0

e−2ηt||F (., t)||2R0
dt. (27)

We now use estimate (27) to define a new definition for well-posedness.

Definition 7. Let f(x) ≡ g(x−, t) ≡ 0. We call the IBVP (1), (7), (8) well-posed in
the generalized sense if estimate (27) holds.
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We shall now consider the following hyperbolic system as a model problem,

∂u

∂t
= A

∂u

∂x
+ B

∂u

∂y
+ F (x, y, t), A =

(

−1 0
0 1

)

, B =

(

0 1
1 0

)

, (28)

in the half-space

(x, y) ∈ R0 = {(x, y) | x ≥ 0, −∞ < y < ∞}, t ≥ 0.

We augment (28) with the initial condition

u(x, y, 0) = f(x, y), (29)

and the boundary condition at x = 0,

u1(0, y, t) = a u2(0, y, t) + g(y, t), a ∈ C. (30)

Here u(x, y, t) = (u1, u2)
⊤ is a vector-valued function. The data F, f, g are assumed

to be compatible smooth functions with compact support. Moreover, we are only
interested in solutions with bounded L2-norm, and, therefore, we assume ||u||R0

< ∞
for every fixed t.

Fourier transformation in y and Laplace transformation in t gives us

dũ

dx
= M ũ + H, M =

(

−s iω
−iω s

)

, H = −A−1 F̃ , (31)

with the boundary condition

ũ1(0, ω, s) = a ũ2(0, ω, s) + g̃(ω, s). (32)

We consider bounded solutions ||ũ||20 =
∫ ∞

0
|ũ(x)|2dx < ∞. It can be considered as

the boundary condition at infinity.
In order to investigate well-posedness of the IBVP (28)-(30), we first let F ≡ g ≡ 0,

and construct simple wave solutions of type

u(x, y, t) = est+iωy φ(x), ℜs > 0. (33)

We then arrive at the following eigenvalue problem

sφ = A
dφ

dx
+ iωBφ, φ = (φ1, φ2)

⊤, x ≥ 0, (34)

φ1(0) = a φ2(0), ||φ||20 < ∞. (35)

Lemma 4. There is no eigenvalue of (34)-(35) with ℜs > 0 only for a ∈ R or |a| ≤ 1.

Proof. For the proof see Lemma 8.4.2 in [11].
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As a result of the above lemma, if |a| > 1 and a /∈ R, there exisit eigenvalues of
(34)-(35) with ℜs > 0 and therefore by the general theory, the problem is ill-posed.
Moreover, if a ∈ R or |a| ≤ 1, we can solve (31)-(32) with F, g 6= 0 for ℜs > 0.
Inverting the Laplace-Fourier transform gives us the solution of the IBVP (28)-(30).
However, the problem is well-posed only if we can derive proper estimates of the
solution in terms of the data. In order to investigate the well-posedness, we first
investigate if there is any generalized eigenvalue.

Lemma 5. There is no eigenvalue and generalized eigenvalue of (34)-(35) with ℜs ≥
0 only in the case |a| < 1.

Proof. For the proof see Section 8.4.3 in [11].

This lemma shows that the condition |a| < 1 is necessary and sufficient for the
problem to be boundary stable and therefore strongly well-posed in the generalized
sense. There are however two cases for which there exist generalized eigenvalues and
therefore by the general theory the problem is not boundary stable:

1. |a| > 1, a ∈ R,

2. |a| = 1.

These two cases are fundamentally different, and the corresponding boundary condi-
tions have different types of generalized eigenvalues. As we will show in the following,
in the first case the problem is not well-posed, while in the second case the problem
is well-posed in the generalized sense.

We first note that the matrix M in (31) has two eigenvalues

κ1 = −κ, κ2 = κ, κ =
√

s2 + ω2, (36)

and the corresponding eigenvectors are

v1 =

(

s + κ
iω

)

, v2 =

(

s − κ
iω

)

. (37)

For a complex number z ∈ C, we define the argument of
√

z by

arg
√

z =
1

2
arg z, −π < arg z ≤ π. (38)

If the two eigenvalues (36) are distinct (κ 6= 0), we can diagonalize the matrix M ,

Λ = V −1MV =

(

κ1 0
0 κ2

)

, V =
(

v1 v2

)

, (39)

and write (31) and (32) as

dṽ

dx
= Λ ṽ + G, ṽ = V −1ũ, G = V −1H, (40)
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L1 ṽ1(0, ω, s) + L2 ṽ2(0, ω, s) = g̃(ω, s), Lj = s − κj − i a ω, j = 1, 2. (41)

If the two eigenvalues (36) are multiple (κ = 0), we use Schur decomposition, and
by a unitary transformation matrix

Q =
(

(s + κ) (s̄ + κ̄) + ω2
)−1/2

(

s + κ i ω
i ω s̄ + κ̄

)

, (42)

we transform the matrix M to an upper triangular matrix

T = Q∗MQ =

(

κ1 p
0 κ2

)

, p = −i ω
(2s − s̄ − κ̄) (s̄ + κ̄) + ω2

(s + κ) (s̄ + κ̄) + ω2
. (43)

The equations (31) and (32) are then written as

dṽ

dx
= T ṽ + G, ṽ = Q∗ũ, G = Q∗H, (44)

L1 ṽ1(0, ω, s) + L2 ṽ2(0, ω, s) = g̃(ω, s), L1 = s + κ − i a ω, L2 = −a(s̄ + κ̄) + i ω.
(45)

We now consider the two cases |a| > 1, a ∈ R and |a| = 1, separately.

3.1 The case |a| > 1, a ∈ R

As was discussed above, the problem is not boundary stable in this case. Here, we
will show that the problem is also not well-posed by employing Fourier and Laplace
transformations and directly solving the resulting family of ordinary boundary value
problems.

We only consider the case when a ∈ R and a > 1. The other case when a < −1
is similar. We will first find the generalized eigenvalue. Let s = i 1+a2

2a
ω + η, where

0 < η ≪ |ω|. Then

κ =
√

s2 + ω2 ≈
√

−(a2 − 1)2

4 a2
ω2 + 2i η

1 + a2

2 a
ω

= i
a2 − 1

2 a
|ω|

√

1 − 2i η
2a(1 + a2)

(a2 − 1)2

1

ω

≈ i
a2 − 1

2 a
|ω|

(

1 − i η
2a(1 + a2)

(a2 − 1)2

1

ω

)

.

Since, by Lemma A3 of the Appendix, ℜκ > 0 for ℜs > 0, we only consider ω > 0
and therefore

κ ≈ i
a2 − 1

2 a
ω +

1 + a2

a2 − 1
η, ω > 0. (46)
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Moreover, since κ 6= 0, we can diagonalize the system and use (40) and (41) with

L1 = s + κ − i a ω ≈ η(1 +
1 + a2

a2 − 1
) + i ω(

1 + a2

2 a
+

a2 − 1

2 a
− a) =

2a2

a2 − 1
η,

L2 = s − κ − i a ω ≈ −2

a2 − 1
η − i

a2 − 1

a
ω.

We therefore have

|L1| ≈
2a2

a2 − 1
η, |L2| ≈

a2 − 1

a
ω. (47)

By Definition 4, for a generalized eigenvalue, we have L1 = 0 in the limit η → 0. We
have thus proved,

Theorem 5. The generalized eigenvalue of (40), (41) with a ∈ R and a > 1 is

s0 = i ξ0, ξ0 =
1 + a2

2 a
ω0. (48)

The corresponding eigenfunction is

u = eiω0( 1+a2

2a
t− a2

−1

2a
x+y). (49)

We only need to discuss the estimates of the solution close to the generalized
eigenvalue, since by the general theory, away from this eigenvalue the solution is
benign. We therefore consider a neighborhood of the generalized eigenvalue (48),

s = iξ0 + η, ω = ω0, 0 < η ≪ 1. (50)

Let f ≡ 0 in (29). In order to construct estimates for (40)-(41) with a ∈ R and
a > 1, we split the solution into two parts; one solving the equation (40) with G = 0
and obeying inhomogeneous boundary condition (41), and the other satisfying the
full equation but with homogeneous boundary condition g̃ = 0.

We first assume G = 0 and g̃ 6= 0. From the second equation of (40), we get

ṽ2(x, ω, s) = 0. (51)

Because, otherwise, the solution is not bounded (since ℜκ > 0). The boundary
condition (41) and the relation (47) give us

|ṽ1(0, ω, s)|2 ≈
(

a2 − 1

2a2

)2
1

η2
|g̃|2. (52)

From the first equation of (40),

||ṽ1(x, ω, s)||20 =

∫ ∞

0

|ṽ1(0, ω, s) e−ℜκ|2 dx =
1

2ℜκ
|ṽ1(0, ω, s)|2,

13



and therefore

||ṽ1(x, ω, s)||20 ≈
(a2 − 1)3

8a4 (1 + a2)

1

η3
|g̃|2. (53)

We now assume G = (G1, G2)
⊤ 6= 0 and g̃ = 0. By Lemma A1 of the Appendix

for the second equation of (40), we obtain

|ṽ2(0, ω, s)|2 ≤ 2

ℜκ
||G2||20, ||ṽ2(x, ω, s)||20 ≤

1

(ℜκ)2
||G2||20. (54)

For the first equation of (40) we use Lemma A2 and write

||ṽ1(x, ω, s)||20 ≤
1

(ℜκ)2
||G1||20 +

1

2ℜκ
|ṽ1(0, ω, s)|2.

Moreover, from the boundary condition (41) and the relation (47) we have

|ṽ1(0, ω, s)| ≈ (a2 − 1)2

2 a3

ω

η
|ṽ2(0, ω, s)|.

We therefore obtain

|ṽ1(0, ω, s)|2 ≤ (a2 − 1)5

2a6 (1 + a2)

ω2

η3
||G2||20, (55)

||ṽ1(x, ω, s)||20 ≤
(

a2 − 1

1 + a2

)2
1

η2
||G1||20 +

(a2 − 1)6

4a6 (1 + a2)2

ω2

η4
||G2||20. (56)

By the estimates (51)-(56), we conclude

Theorem 6. For the solution of (40), (41) with a ∈ R and a > 1 we have the
following estimates near the generalized eigenvalue

|ṽ1(0, ω, s)|2 ≤ C1

(

ω2

η3
||G2||20 +

1

η2
|g̃|2

)

,

|ṽ2(0, ω, s)|2 ≤ C2
1

η
||G2||20,

||ṽ1(x, ω, s)||20 ≤ C3

(

1

η2
||G1||20 +

ω2

η4
||G2||20 +

1

η3
|g̃|2

)

,

||ṽ2(x, ω, s)||20 ≤ C4
1

η2
||G2||20,

where the coefficients C1, . . . , C4 are constant. The same estimates follow for ũ.

After inverse Fourier-Laplace transformation, we obtain estimates for the solution
to the IBVP (28)-(30). The solution looses one derivative at each reflection from the

14



boundary. Therefore, if we consider the problem in the strip 0 ≤ x ≤ 1, −∞ < y < ∞
and add another boundary condition

u1(1, y, t) = b u2(1, y, t), |b| > 1, b ∈ R,

the solution looses many derivatives as the time goes by. We call the problem illposed
in the asymptotic sense.

3.2 The case |a| = 1

In this case, the hyperbolic IBVP is not boundary stable and no theory exists for
investigating the well-posedness. We will show that the Kreiss theory can be applied
for this problem. We will prove that the problem is well-posed in the generalized
sense by constructing the Kreiss symmetrizers and deriving estimates of type (27) for
the solution inside the domain.

There are two different cases as depicted in Figure 1:

i) |a| = 1 with ℑa 6= 0,

ii) a = ∓1.

ℜa

ℑa

1

(a) |a| = 1 and ℑa 6= 0

ℜa

ℑa

1

(b) a = ∓1

Figure 1: Two different cases of |a| = 1

As we will show, these two different cases correspond to two different types of waves:
surface waves and glancing waves which are important phenomena in Elastic wave
equations and Maxwell’s equations.

3.2.1 Surface Waves, |a| = 1 with ℑa 6= 0

Let a = eiθ with θ 6= nπ, n = 0,±1,±2, . . . . We first find the generalized eigenvalue.
By Lemma A4, for s0 = i cos θ ω0 and sin θ ω0 < 0, we have L1(s0, ω0) = 0.
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Now let s = η + i cos θ ω and sin θ ω < 0, where 0 < η ≪ |ω|. Then

κ =
√

s2 + ω2 =

√

sin2 θ ω2 + 2i cos θ η ω + η2

≈ | sin θ ω|
(

1 + i η
cos θ

sin2 θ

1

ω

)

.

Since sin θ ω < 0, we have

κ ≈ − sin θ ω − i
cos θ

sin θ
η, sin θ ω < 0. (57)

We can therefore use (40) and (41) with

L1 = s + κ − i a ω ≈ (1 − i
cos θ

sin θ
) η,

L2 = s − κ − i a ω ≈ (1 + i
cos θ

sin θ
) η + 2 sin θ ω,

and therefore

|L1| ≈
1

| sin θ|η, |L2| ≈ 2| sin θ| |ω|. (58)

We thus have

Theorem 7. The generalized eigenvalue of (40), (41) with |a| = 1 and ℑa 6= 0 is

s0 = i ξ0, ξ0 = cos θ ω0, sin θ ω0 < 0. (59)

The corresponding eigenfunction is

u = eiω0(cos θ t+y)−| sin θ ω0|x. (60)

These eigenfunctions represent surface waves which decay exponentially normal
to the boundary at x = 0. These type of waves are important in many applications
(Elastic wave equations).

We will now construct the symmetrizer in a neighborhood of the generalized eigen-
value (59). By the general theory, away from these eigenvalues, there exist smooth
symmetrizers and the solution is benign.

We use the normalized variables (21) and write the system (31) in the form

dũ

dx
=

√

|s|2 + |ω|2 M ′ ũ + H, M ′ =

(

−s′ iω′

−iω′ s′

)

. (61)

Augmented with this system of ODEs, we consider the homogeneous boundary con-
dition (32),

ũ1(0, ω, s) = a ũ2(0, ω, s). (62)
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We consider a neighborhood of the generalized eigenvalue,

s′ = i cos θ ω′
0 + η′, sin θ ω′

0 < 0, 0 < η′ ≪ 1.

We use the transformation matrix (39) at the generalized eigenvalue

V0 = ω0

(

i cos θ − sin θ i cos θ + sin θ
i i

)

,

and transform the system (61) to

dṽ

dx
=

√

|s|2 + |ω|2 Λ′ ṽ + G, ṽ = V −1
0 ũ, G = V −1

0 H, (63)

where

Λ′ = V −1
0 M ′V0 =

(

i cot θ η′ + ω′
0 sin θ (1 + i cot θ) η′

(1 − i cot θ) η′ −i cot θ η′ − ω′
0 sin θ

)

. (64)

From the boundary condition (62) we obtain

ṽ2(0, ω, s) = 0. (65)

Following [9], we consider a symmetrizer of the form

R̃ =

(

b d1

d1 d2

)

− iη′

(

0 −c
c 0

)

. (66)

Clearly, R̃ is Hermitian. Moreover, we have

2ℜ(R̃ Λ′) =

(

2d1η
′ + 2b sin θ ω′

0 −i cot θ η′(2d1 − d2 − b) + (b + d2)η
′

i cot θ η′(2d1 − d2 − b) + (b + d2)η
′ 2d1η

′ − 2d2 sin θ ω′
0

)

+O(η′2).

We therefore need to have 2d1 − d2 − b = 0. If we set b = 0, d2 = 2d1 > 0 and c = 0,
we obtain

ℜ(R̃ Λ′) = d1

(

η′ η′

η′ η′ − 2 sin θ ω′
0

)

≥ d1 η′ I. (67)

For the boundary term, we have by (65)

〈ṽ, R̃ ṽ〉x=0 = d1 (ṽ1
¯̃v2 + ¯̃v1 ṽ2) + 2d1 |ṽ2|2 = 0. (68)

We can therefore write

ℜ(ṽ,−R̃G)0 = ℜ{−(ṽ, R̃
dṽ

dx
)0 +

(

ṽ,
√

|s|2 + |ω|2R̃Λ′ṽ
)

0
}

= ℜ{1

2
〈ṽ, R̃ṽ〉x=0 +

(

ṽ,
√

|s|2 + |ω|2R̃Λ′ṽ
)

0
}

≥ d1η
′
√

|s|2 + |ω|2 ||ṽ(x, ω, s)||20,
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i.e.,

η′
√

|s|2 + |ω|2 ||ṽ||20 ≤ C||ṽ||0 ||G||0.
We then obtain the estimate in a neighborhood of the generalized eigenvalue

||ṽ||0 ≤ C
1

η
||G||0. (69)

The problem is therefore well-posed in the generalized sense.

3.2.2 Glancing Waves, a = ±1

We now consider the case when a = 1. In order to find the generalized eigenvalue, we
let L1 = s + κ − i ω = 0 and get s = i ω, κ = 0. Since there are multiple eigenvalues
(κ1 = κ2 = 0), we consider the system (44) with the boundary condition (45).

Now let s = iω + η where 0 < η ≪ |ω|. Then

κ ≈ (2i η ω)1/2 = (1 + i)|η ω|1/2, ω > 0. (70)

Note that since ℜκ > 0, we only consider ω > 0. Moreover, we have

L1 = s + κ − i ω = η + κ,

L2 = −s̄ − κ̄ + i ω = −η + 2i ω − κ̄,

and therefore
|L1|2 ≈ 2η ω, |L2|2 ≈ 4ω2. (71)

We thus have

Theorem 8. The generalized eigenvalue of (44), (45) with a = 1 is

s0 = i ξ0, ξ0 = ω0, ω0 > 0. (72)

The corresponding eigenfunction is

u = eiω0(t+y). (73)

These eigenfunctions represent glancing waves which are constant normal to the
boundary. These type of waves are important in many applications (Maxwell’s wave
equations).

We now derive estimates of the solution in a neighborhood of the generalized
eigenvalue (72) by constructing symmetrizers in this neighborhood. Let

s′ = iω′
0 + η′, ω′

0 > 0, 0 < η′ ≪ 1.

We use the transformation matrix (42) at the eigenvalue s0 = iω0

Q0 =
i√
2

(

1 1
1 −1

)

,
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and transform the system (61) to

dṽ

dx
=

√

|s|2 + |ω|2 T ′ ṽ + G, ṽ = Q∗
0ũ, G = Q∗

0H, (74)

where

T ′ = Q∗
0M

′Q0 =

(

0 −2i ω′
0 − η′

−η′ 0

)

. (75)

The boundary condition (62) gives us

ṽ2(0, ω, s) = 0. (76)

Considering a symmetrizer of the form (66), we obtain

2ℜ(R̃ T ′) =

(

−2d1η
′ −2ibω′

0 − (b + d2)η
′

2ibω′
0 − (b + d2)η

′ −2d1η
′ − 4cω′

0 η′

)

+ O(η′2).

We therefore choose b = 0. Moreover, choosing c = 0, we obtain for the boundary
terms,

〈ṽ, R̃ ṽ〉x=0 = 0.

Choosing d2 = 0, we therefore obtain

ℜ(R̃ T ′) = −d1η
′I. (77)

We then obtain the same estimate as (69) if we choose d1 < 0.
We summarize the results for the IBVP (28)-(30):

1) if |a| < 1, then the problem is strongly well-posed in the generalized sense.

2) if |a| = 1, then the problem is well-posed in the generalized sense.

3) if |a| > 1, a ∈ R, then the problem is ill-posed in the asymptotic sense.

4) if |a| > 1, a /∈ R, then the problem is ill-posed in the sense that there are solutions
which grow exponentially, arbitrarily fast.

We now formulate the main result.

Theorem 9. (Main Theorem) Consider the hyperbolic initial boundary value problem
(28)-(30), and assume that there is no eigenvalue with ℜs > 0 to the correponding
eigenvalue problem. Then

i) if there is no generalized eigenvalue, the problem is strongly well-posed in the
generalized sense.

ii) if there exist generalized eigenvalues of either surface-wave modes or glancing-
wave modes, the problem is well-posed in the generalized sense.

We conjecture that the theory holds also for general hyperbolic initial boundary
value problems (1), (7), (8), which is the topic of future work.
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Appendix

In this appendix we collect a number of auxiliary lemmas.

Lemma A1. Consider the ordinary differential equation ux = λ u + F with ℜλ > 0,
0 ≤ x < ∞. Then if the solution u(x) vanishes at infinity, it satisfies the estimate

|u(0)|2 ≤ 2

ℜλ
||F ||20, ||u||20 ≤

1

(ℜλ)2
||F ||20.

Proof. Integration by parts gives us

(u, ux) = −|u(0)|2 − (ux, u),

i.e.,
2ℜ(u, ux) = −|u(0)|2.

Therefore
1

2
|u(0)|2 + ℜλ ||u||2 ≤ ||u|| ||F ||,

and the lemma follows.

Lemma A2. Consider ux = −λ u+F with ℜλ > 0, 0 ≤ x < ∞. Then if the solution
u(x) vanishes at infinity, it satisfies the estimate

||u||20 ≤
1

(ℜλ)2
||F ||20 +

1

2ℜλ
|u(0)|2.

Proof. For u(0) = 0, we use integration by parts, and for F = 0, we can explicitly
calculate the solution. The lemma follows after simple manupulations.

Lemma A3. There is a constant δ > 0 such that for all ω ∈ R,

ℜκ = ℜ
√

s2 + ω2 ≥ δ η, η = ℜs > 0.

Proof. For the proof see Lemma 2 of [13].

Lemma A4. Let a = eiθ. For s0 = i cos θ ω0 and sin θ ω0 < 0, we have

L1(s0, ω0) = s0 +
√

s2
0 + ω2

0 − ia ω0 = 0.

Proof. The lemma follows after simple algebraic manupulations.
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