TRITA-CSC-A 2009:14
ISSN 1653-5723
ISBN 978-91-7155-901-2

Department of Numerical Analysis
and Computer Science

(zﬁ“}o
WW%Q

1% T
Yn E s“*p
Stockholm
University

RS/,
&
A

N

sniua|j suew

ISPIQ [e207] [eIpayenaL, Yaim spinbry sjdus jo suonenuis winduwon

.
S Qs
5
me\,. 245
V4

QO
P\Q

’\’/77 HES
Stockholm
University

Computer Simulations of Simple
Liquids with Tetrahedral Local
Order

the Supercooled Liquid, Solids and Phase Transitions

Mans Elenius

Doctoral Thesis in Numerical Analysis at Stockholm University, Sweden 2009




TRITA-CSC-A 2009:14  KTH School of Computer Science and Communication
ISSN 1653-5723 SE-100 44 Stockholm
ISBN 978-91-7155-901-2 SWEDEN

Akademisk avhandling som med tillstdnd av Stockholms Universitet framligges till
offentlig granskning for avliggande av Teknologie doktorsexamen i numerisk analys
2009-09-11 i Biblioteket, Sydvastra galleriet, Kungl Tekniska hdgskolan, Osquars
backe 25, Stockholm.

(© Mans Elenius, augusti 2009

Tryck: Universitetsservice US AB



Abstract

The understanding of complex condensed matter systems is an area of in-
tense study both in physics and chemistry. In this thesis, some properties of
simple liquids with strong energetic preference for tetrahedral local ordering
has been explored. Tetrahedral order is incompatible with filling the space
and hence promotes complex, aperiodic, structures. Consequently, the liquids
studied are amenable to supercooling, and give complex crystalline structures
on eventual crystallisation. The supercooled liquid state is of interest in its
own, showing intriguing anomalies in comparison with the normal liquid state.
Understanding supercooled liquids is also a key to understanding glass forma-
tion. All liquids studied are simple and monatomic and they are all similar
to real metallic liquids. All simulations have been conducted using molecular
dynamics. The results presented in this thesis are shortly summarised below.

The complete vibrational density of states of a glass created in simula-
tion has been calculated. The glass was obtained by quenching a liquid. The
vibrational density of states for the glass and the corresponding crystalline
phase (the o-phase, a Frank-Kasper crystal) were compared. We show that
there is a clear correspondence between the vibrational properties of the crys-
tal and the glass, indicating that the vibrational spectra of crystals can be
used to understand the more complex vibrational spectra of the glass of the
same substance.

The dynamics of supercooled liquids has been investigated using a previ-
ously not implemented comprehensive measure of structural relaxation. We
show that this new measure decays more slowly than the commonly used
structural relaxation measure (the decay of the intermediate scattering func-
tion for the main peak of the structure factor) in the deeply supercooled
domain. This indicates that there are relaxation mechanisms in deeply super-
cooled liquids that are not possible to describe by using a pairwise approx-
imation. This result further strengthen the hypothesis that the structural
relaxation of deeply supercooled liquids is a highly collective process.

A new atomic model for octagonal quasicrystals is presented. This model
is based on findings from a molecular dynamics simulation of a liquid which
crystallised into 45° twinned (-manganese. This twinning of S-manganese
is experimentally known to coexist with octagonal quasicrystals. The model
quasicrystal is based on an atomic decoration of square and rhombus tiles.
The decoration is derived from the S-manganese unit cell and the unit cell
of the intermediate structure found at the twinning interface. The advantage
over previously proposed atomic models of octagonal quasicrystals is that the
side length of the tiles in this model are consistent with experimental results.

Extensive simulations have been used to explore the phase diagram of a
liquid at low densities. The resulting phase diagram shows a spinodal line
and a phase coexistence region between a liquid and a crystalline phase. The
region ends in a critical point, contradicting the old conclusion of the Landau
theory of phase transitions — that continuous transitions between liquids and
crystals cannot exist.

The phase diagram of the same liquid has also been explored at higher
densities. The liquid is known to be fragile at high and intermediate tem-
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peratures. Upon cooling the liquid performs a first order liquid-liquid phase
transition. The low temperature, high density, liquid is shown to be strong
and to have very good glass forming abilities. The structure of the high den-
sity liquid is also described in detail. This is the first observation of a first
order liquid-liquid transition from a fragile to a strong liquid observed under
thermodynamically stable conditions. This result also suggests the possibility
of a good metallic glass former.
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Chapter 1

Introduction

Glasses have been used by humans for several milennia. The material has been of
practical use for containers and windows as well as a material for artwork. Visiting
a glass works and seeing the glowing molten glass formed into beautiful objects
gives an almost magic feel to the material. The long use and general availability of
glasses manifests in a popular understanding of the material. As written by Angell

[3]:

“Glass, in the popular and basically correct conception, is a liquid that has lost
its ability to flow. Thus instead of ’taking the shape of its container,’ it can itself
serve as a container of liquids.”

However, science is not satisfied with descriptions that are “basically correct”’, and
the study of glass and glass formation is a lively field. A quote by Nobel laureate
P. W. Anderson [68]:

“The deepest and most interesting unsolved problem in solid state theory is probably
the theory of the nature of glass and the glass transition”

signifies the great interest and importance of increasing our understanding of these
phenomena.

The glass most commonly known today as well as historically is silica — the
material of windows and drinking glasses. The glasses and glass forming liquids
discussed in this thesis are most close to metallic glasses, a far more recent discovery.
The reason for the discrepancy in time of discovery is that, while silica forms a glass
when cooled at rates of about 1072 Kelvin per second, most metallic glasses must
be cooled at rates exceeding 10° Kelvin per second to avoid crystallisation. This
makes them hard to create in the first place and very hard to create in other forms
than very thin objects to allow such rapid cooling. Regardless of the differences
between metallic and classic glass formers it is generally believed that the glass
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transition is the same phenomenon in both cases. Hence, the study of metallic
glasses contributes to our general knowledge of glass formation in general.

Though not as ubiquitous as windows, metallic glasses have their place in our
everyday life. The uses of metallic glasses include read heads in magnetic storage
devices, coatings in tough and corrosive environments and golf clubs. In practise
metallic glasses are created in a cookbook fashion, trying to find a mix of atoms that
have no simple crystalline structure. In this way it has been possible to construct
metallic glasses that are almost as good glass formers as the classic ones, thus
making it possible to create bulk structures of metallic glasses. For the reader
interested in technological applications and industrial production of metallic glasses
Lindsay Greer has written an easily read introduction [39].

Quasicrystals represent another, more recent, discovery in the world of solid
state physics. Originally reported in 1984 they spurred a huge amount of activity
and also controversy. Although the controversy has died, the activity is still high.
Being a recent contribution to our catalogue of possible states of matter quasicrys-
tals, contrary to glasses, are more or less publicly unknown and so far have limited
use in everyday life (even though it is possible to buy cookware coated with qua-
sicrystals). Basic research is still needed to understand fundamental properties and
to determine possible uses of these materials.

The common feature for the work presented in this thesis is molecular dynamics
simulation of liquids with tetrahedral local order. Why it is interesting to specifi-
cally study tetrahedrally ordered liquids is discussed in Chapter 2. The molecular
dynamics simulations and some fundamental data analysis is presented in Chap-
ter 3. In the concluding chapter we will touch the subject of the epistemology of
physics simulations in general.

1.1 Results

In this thesis a collection of articles is presented in context. Glass and supercooled
liquids, together with results on the vibrational properties of glasses (Article 1), the
dynamics in supercooled liquids (Article 2) and a thermodynamically stable fragile
to strong polyamorphous transition in a simple monatomic liquid (Article 5) are
presented in Chapter 5. Quasicrystals in general and the structure of octagonal
quasicrystals (Article 3) are presented in Chapter 6. Chapter 4 contains a short
presentation of thermodynamics, phases of matter and results on phase coexistence
and a critical point between a liquid and a crystal in a simple system (Article 4).
In each of these chapters the introductory text gives an overview of the field with
focus on the facts necessary to put the result of the corresponding article(s) in
perspective. Considering the vastness of these subjects and the restricted size of
this thesis the overview will often be painfully short and also incomplete in parts.
In an effort to amend this — a large number of references for further reading is given.



Chapter 2

Liquids with tetrahedral local order

The local atomic configuration is a fundamental property of a material. The whole
field of crystallography is concerned with finding this property for crystalline solids.
The fact that our understanding of liquids and glasses is less developed than that of
crystals is related to their lack of a simple, space filling and repeated local atomic
configuration. At the same time they are so dense that local atomic structure
control their behaviour. In gases we arrive at the extreme where the local atomic
configuration can be assumed to be completely random, a situation more easily
understood than the intermediate case of liquids and glasses.

It turns out that tetrahedral and icosahedral packings are essential in many
interesting materials, e.g. complex crystals such as the Frank-Kasper phases [29]
and the §-Mn discussed in Article 3. They are also fundamental in quasicrystals
[48, 49], which we will discuss in more depth in Chapter 6. Icosahedra were hypoth-
esised to be fundamental in maintaining liquids in a supercooled state already in
the middle of the previous century [28]. A large number of icosahedra and polyte-
trahedral clusters has also been found in the inherent structures (see Section 5.4) of
simulated supercooled liquids, e.g. in Lennard-Jones [80] and in the liquids studied
in this thesis [93]. For the network forming liquids that have been intensely studied
by e.g. Angell [4] the formation of tetrahedral networks is fundamental. Figure 2.1
gives an example of a tetrahedral cluster created in a simulation of the Zs liquid
described in Section 2.1.3.

The reason for all this interesting behaviour is the inherent frustration in a
tetrahedrally close packed structure. In a dense system strict tetrahedral packing is
impossible, simply because there is no way to fill the space with regular tetrahedra
without holes. This is similar to the fact that it is impossible to fill the space
without holes using spheres, while it is simple using cubes. In figure 2.2 five regular
tetrahedra are placed next to each other and the resulting gap can be seen (the
gap corresponds to about a tenth of the tetrahedral edge). With minor distortion
regular tetrahedra can be packed into regular icosahedra, but regular icosahedra
are also impossible to pack in a way that fills the space without holes. A very



6 CHAPTER 2. LIQUIDS WITH TETRAHEDRAL LOCAL ORDER

Nooa

A .
55 5 T
LT - &
N % % 4 A

AV~ ‘éy ij& %k

‘{A V%\%}g % ’%3~€‘% 2

NS W U0

I M,

ek

Figure 2.1: An example of a polytetrahedral cluster formed in a simulation of
the Zs liquid at temperature 0.32 and number density 0.32. This cluster is the
largest cluster of face sharing tetrahedra in an inherent structure taken from that
simulation. Note that the atoms are plotted with a radius of 10% of the first
potential minima to make the structure transparent. Atom pairs with a distance
corresponding to the first potential minimum are bonded.

recent discussion of the frustration of icosahedrally ordered systems, particularly
Frank-Kasper phases, can be found in reference [67] and a thorough and recent
discussion of the matter can be found in reference [86].

It is the atomic interaction that decides the energetically preferred local struc-
ture of a material. In dense systems of atoms interacting via a potential that is
attractive at medium ranges, e.g. the Lennard-Jones (LJ) potential (see Section
2.1.1), the minimisation of energy boils down to finding the most dense packing,
preferably with as many inter atomic distances as possible being that of the minima
of the interaction. For four identical atoms it is clear that a regular tetrahedral
arrangement with one atom in each vertex is energetically preferred. In this arrange-
ment all atoms have all neighbours at the same distance. The densest competing
crystalline ways of packing are the face-centred cubic (fcc), and the hexagonal close
packing (hep) [54] packings. Calculation yields that, using the LJ potential and 13
atoms, the icosahedra has the lowest energy of all these structures, making it the
preferred local packing [48]. This result is also true for the potentials used in this
thesis.

Upon supercooling a liquid it locally approaches the energetically more favourable
local configurations, a fact nicely shown using molecular dynamics simulations and
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Figure 2.2: Five tetrahedra packed together around a common edge cannot be
packed without frustration. The visible gap corresponds to 7.36°.

the potential energy landscapes discussed in Section 5.4 [74]. If a simple crystalline
structure exists, then grains of the crystalline structure can form easily when the
liquid is supercooled. When a crystalline grain reaches critical size the liquid so-
lidifies into the crystalline structure. Not surprisingly, liquids which easily form
crystalline nuclei quickly crystallise on supercooling [3].

The LJ liquid, in which the icosahedral arrangement is preferred locally and
which is also known to show an abundance of icosahedral clusters at low temper-
atures [80], crystallises rather easily to FCC under cooling. The reason for this is
that, even though the icosahedral packing is locally preferred, the FCC packing is
not much less energetically effective. FCC also has the huge advantage of being
able to fill the space without frustration. This lack of simple liquid models able to
withstand supercooling without crystallisation, and the great interest in icosahedral
liquids [48, 49], spurred the development of the liquids studied in this thesis.

2.1 The studied inter atomic potentials

The potentials used in this thesis are all conjectured to yield interesting qualitative
results, not to model any specific real material. On the other hand they are created
with the knowledge of effective liquid metal potentials in mind, connecting them
to real systems. The reader interested in pair potentials based on real materials is
referred to work by Ashcroft [9] and Dzugutov [20, 23].

We have restricted our models to a single atomic species interacting with a pair-
wise interaction force. There are several advantages of using a single component
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liquid with only pair interactions in simulations. The simulation is computationally
fast since the force calculation loop is simplified. More importantly, the interpre-
tation of the results is more straightforward since there is no need to discriminate
between different atomic species. Hence it is arguable that performing simulations
on single component systems is preferable whenever possible.

Metallic liquids seem to be well described using this kind of simple model as can
be seen in the references above. In addition work by Moriarty can be mentioned
[66]. He has studied models of molybdenum and shown that, for this system, the
many body effects that result in an angular dependence of the interactions are very
important to correctly simulate the crystalline solid. In the same study he shows
that the same many body effects give negligible contribution to the simulation
results for liquid molybdenum.

Now we come to the description of the actual liquids simulated in this thesis.
They were all designed by Mikhail Dzugutov’s research group before the work with
this thesis started. For completeness we will also take a look at the Lennard-Jones
liquid and the binary mixture Lennard-Jones liquid. All the interaction potentials
discussed in this section are shown in figure 2.3.

2.1.1 The Lennard-Jones potential

One of the most commonly used inter atomic potentials is the Lennard-Jones po-
tential. It was proposed in 1931 by John Lennard-Jones to simulate attractive van
der Waals interactions at long ranges together with a strong short range repulsion,
mimicking the repulsion between atoms when their electron orbitals overlap. The
Lennard-Jones potential is defined as:

o ae[(5)7 ()] o

where a and b are usually chosen to be 12 and 6 respectively. o defines the size
of the atoms and ¢ defines the depth of the potential. The Lennard-Jones liquid
works reasonably well for simulating noble gases; which is not surprising since they
mainly interact via van der Waals forces and short range repulsion. In practical
simulation the potential is almost always truncated at a cut off distance to speed
up calculations.

2.1.2 The IC potential

The interest in supercooled liquids and polytetrahedral arrangements inspired the
creation of the potentials used in this thesis. They are all created to favour icosa-
hedral ordering and hence make crystallisation complicated due to geometric frus-
tration. The potentials are similar to the Lennard-Jones potential for short range
repulsion. For longer ranges, the inter atomic interaction is tailored to strongly
favour tetrahedral and consequently icosahedral packing by making square atomic
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Figure 2.3: The interaction potentials discussed. The vertical line indicates /2
times the distance of the first potential minima. For all three potentials used in
this work this distance is close to a local energy maximum — inhibiting square
packing of atoms.

arrangements energetically punished. This makes it hard for the resulting liquids
to find simple packings.

The first potential created with these considerations in mind is known as the
(icosahedral) IC-potential [21] having the form:

u(r) = A(r " — B)exp (ﬁ)e(a — 1) 4+ Bexp (%)9@ —7)

(2.2)
A=582, B=128 a=187,b=194, c=1.1, d=027, p=16,

where 6(x) is the Heaviside function being 0 if « is less than 0 and 1 otherwise. This
potential is similar to Lennard-Jones for short distances. On intermediate distances
the potential shows a maximum. This maximum is situated at approximately /2
times the position of the potential minima, corresponding to the diagonal distance
in a square. Hence the maximum discourages square arrangements of atoms. This
potential is sometimes referred to as the Dzugutov potential in the literature.

The IC-potential is most widely known for forming a dodecagonal quasicrystal
[22]. It generates a moderately fragile liquid with a pronounced tendency for for-
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mation of large icosahedrally ordered clusters [93]. In the supercooled state this
liquid demonstrates breaking of the Stokes-Einstein relation (see Section 5.1.1).
The supercooled liquid also shows dynamical heterogeneities [24].

2.1.3 The Z; and Z, potentials

Later, two other potentials, Z; and Z5, were designed. They are closely related and
share the same functional form with different parameter sets:

ar

u(r) = a— cos (2kpr) +b (g)n +W
r

3
Zi: a=158, a=—022, kp = 4.120, b = 4.2 x 10°, o = 0.331,

n =18, o = 2.64909, Vy = 0.04682632 (2.3)
Zy: a=1.04, a =0.33, kp =4.139, b=4.2 x 107, 0 = 0.348,

n=14.5, ro — 2.64488, Vi = 0.13391543

The functional form of these potentials is inspired by the fact that the theory
for effective inter atomic interaction in metals yields an oscillating part, an effect
that is also found in experiment. These oscillations are called Friedel oscillations
and have the functional form:

o(r) ~ 73 cos (2kpr) (2.4)

where kp is the Fermi wave vector [10, 31]. As can be seen the oscillations in
equation 2.3 are modelled after this form. kr is decided by the electronic valency
of the material, a property that can be changed by alloying different metals. The
parameters in equation 2.3 yield a valency between 2 and 3, values that should be
replicable in real alloys.

The oscillatory part and the longer cut of distance gives long range behaviour
that clearly distinguishes the Z; and Z, potentials from the IC potential. The
former two have two local maxima and a second local minima.

The Z; and Zs liquids have pronounced tendencies for tetrahedral and icosahe-
dral ordering [18]. Figure 2.1 shows a polytetrahedral cluster formed in a simulation
of the Z, liquid at low density. Both liquids also show dynamical heterogeneities
in the supercooled state. Z; has also been reported to crystallise into the ~-brass
structure [25].

2.1.4 Binary Lennard-Jones mixture

For completeness we should also mention a model usually called binary Lennard-
Jones (BLJ) [57]. This liquid has been used extensively in the last two decades
for simulating glass forming systems. Several results discussed in this thesis where
obtained by using it. As the name suggests BLJ is based on the Lennard-Jones
potential which is used for all interactions. It differs in that it has two atomic
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species A and B and hence two masses, that are chosen to be the same, and three
sets of o and e:

OAA = 1.007 €AA = 1.00
oap = 0.80, exp = 1.50 (2.5)
OBB — 0.887 €EBB — 0.50.

Usually a mixture of 80% A atoms and 20% B atoms is used. BLJ is an adaption of
a set of potentials originally created to mimic the behaviour of the metallic system
NigoP2p. As mentioned above the main disadvantage of a multiple atomic species
simulation is that it is harder to analyse the results than for a simulation with one
atomic species.






Chapter 3

Molecular dynamics simulations

In this chapter we will discuss molecular dynamics, the main tool used in this
thesis. Focus will be on a qualitative description of the main concepts of molecular
dynamics simulations, not going into specific algorithms. The main advantage
with simulation as compared to experiment is that in a simulation we always know
everything about our system. We can study the individual trajectories of atoms,
exact atomic positions and local configurations as well as arbitrarily short timescales
(large timescales being a problem, as we will see below). The extreme amount of
information is not only a treasure trove but also poses problems. It is genuinely
hard to extract knowledge from the movements, positions and energies of thousands
of atoms making intelligent data analysis fundamental.

The first data to retrieve from molecular dynamics simulations are the free
macroscopically measurable quantities like diffusion, pressure, volume, energy or
temperature depending on the thermodynamic ensemble simulated. Fortunately
all these are easily calculated in a simulation. We will also introduce the density
correlation functions that, together with thermodynamic variables, are fundamental
in the interpretation of the simulations and in coupling simulations and experimen-
tal results.

In the production of results for this thesis a large number of other data anal-
ysis tools have been used. These include tools for local structure determination,
calculation of vibrational eigenmodes for a disordered system [26], energy minimi-
sation to find the inherent structures fundamental to the analysis of the potential
energy landscapes described in Section 5.4 and many more. These tools will not be
discussed further.

3.1 Molecular dynamics simulation of simple liquids
The systems studied in this thesis are liquids. We are interested in the microscopic

behaviour of these systems and have chosen to do the simulations on the atomic
level. We have not used first principle calculations, but are content with simulating

13
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the system classically using only pair interactions and Newtons law:
mit; =F;, i=1,2,...,N, (3.1)

where N is the number of atoms, 1 is the second derivative of the atomic positions
with respect to time, m are the atomic masses and F is the force acting on the atoms.
There exists a vast literature on the topic of molecular dynamics simulations, see
e.g. the references [40, 43|, so the discussion here will be very brief. The particular
implementation used in this thesis has been described in detail in the doctoral thesis
of Sergei Simdyankin [77] which is available on the Internet. In the current work the
only changes in the code described there is the introduction of MPI-parallelisation.
The basic algorithm for any molecular dynamics simulation has the form:

o Calculate the force acting on all atoms due to the inter atomic potential.
e Update the atomic positions and velocities based on the forces.
e Repeat.

For time integration the code used here implement the leap-frog Verlet algorithm
[43], the explicit formula of which is:

v(t+ At/2) =v(t — At/2) + a(t)At (3.2)
r(t+ At) =r(t) + v(t + At/2)At . ’
This integration scheme yields an error of order At* for the positions of atoms and
At? for the velocities.

3.1.1 Periodic boundary conditions

A real macroscopic system contains on the level of 10?2 atoms, a simulation of

which is intractable for the foreseeable future. To circumvent this problem periodic
boundary conditions are used, as they enable simulation of bulk systems while
avoiding that the simulation gets unwieldy. This technique is universally accepted
and is used in almost all molecular dynamics simulations where bulk properties of
matter are studied. In simulations using periodic boundaries, bulk properties of
liquids has been reproduced using only some hundreds of atoms. Caution must be
taken with the size of the box related to the interaction distance and the distance
on which structural correlations exist in the liquid. If the side of the periodic box is
smaller than any of these lengths, the result will inevitably be tainted by artifacts,
although not necessarily useless.

Figure 3.1 gives a visualisation of how periodic boundaries work. The effect
of the periodic boundaries is that the simulation box is surrounded by identical
copies of itself in all directions. For the dynamics this means that when an atom
moves over the edge of the simulation box, the image atom in the copied box on
the opposite side will enter the simulation box, keeping the number of atoms and
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Figure 3.1: A two dimensional system with periodic boundaries. For the argument
we assume that the interaction distance is equal to half the box length. The central
box is the one where the simulation takes place and the surrounding boxes are
copies of the central box. The periodic boundaries gives that, when calculating
the interaction between atom 1 and the other atoms in the sample, the interaction
will be calculated between atom 1 and the atoms inside the circle. For the atoms
named 2 and 3 atom 1 will interact with atom 2 in the central box and with the
image of atom 3 in box B. (This plot has been reproduced from [77] with the kind
permission of Sergei Simdyankin)

the total momentum in the simulation constant. The interactions are calculated
between the atoms in the box and the closest image of all other atoms in the
simulation. This is described in more detail in the caption of Figure 3.1.

Another issue solved by introducing periodic boundary conditions is that of
surface tension. Real liquids always have surface tension, keeping droplets of the
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liquid together. If the surface tension was not there the liquid would not be the
thermodynamically stable state and it would immediately evaporate. This effect is
not pairwise, but (in the case of liquid metals) depends on the interactions between
the positively charged ions of atoms and the negatively charged surrounding electron
cloud. When modelling a liquid by using pair forces the electrons, and their cohesive
effect, are neglected. The use of periodic boundary conditions restricts the volume
of our simulation, not allowing the atoms to change how densely they are packed
on the global scale. In this way the periodic boundary conditions keep the liquid
dense without the need to include a cohesive force mimicking the effect of surface
tension.

3.1.2 Simulation units

When performing computer simulations it is reasonable, both for numerical reasons
and convenience, to rescale all physical quantities to numbers of order one. All
simulation data presented in this thesis are in such reduced units. The reduced
units correspond to those of the Lennard-Jones potential described in Section 2.1.
In practise this means that the length unit is defined as the onset of hard repulsion!.
The mass unit is the mass of a single atom. The energy unit is equal to the depth
of the first minimum of the potential and the time unit is derived from the other
three. For the other potentials it is still the potential depth of the Lennard-Jones
potential that is used as energy unit. All densities are number densities, i.e. the
number of atoms per unit volume.

Values for a particular physical system can be retrieved by rescaling. If the
parameters of the Lennard-Jones potential are fitted to experimental data for argon
the resulting time unit is 2.15 x 10712 s. Molecular dynamics simulations are usually
performed with time steps of at most around 0.01 of the simulation time unit.
To simulate a full second then requires approximately 5 x 10'3 time steps. As a
comparison the longest simulations performed in the work presented here are just
short of 10'° time steps using 3456 atoms. Performing these simulations required
around ten thousand hours of computer (core) time.

3.1.3 When is a simulation result relevant?

It should be noted that the goal of molecular dynamics simulations is never to
exactly calculate the atom trajectories. Doing that would simply be impossible
while using finite precision (and using infinite precision is not an option). Instead
we are interested in getting a relevant sampling of the phase space of the system
corresponding to a certain statistical mechanical ensemble. In our case the system
is simulated with constant number of atoms and either constant energy and volume
(microcanonical ensemble) or constant temperature and volume (canonical ensem-
ble). Thermodynamic quantities are then calculated as averages over a long series
of time steps.

!The first crossing of the potential function and the x-axis.
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Calculating thermodynamic quantities is only relevant for a system that is in
ergodic equilibrium. Ergodicity implies that the complete phase space? of a system
is sampled according to the current ensemble. In statistical mechanics the funda-
mental assumption is that, in the ergodic state, time averages where time goes to
infinity and ensemble averages where the number atoms goes to infinity are equiv-
alent. Hence, if the system is ergodic we can chose whether to simulate a small
system for a long time or a large system for a short time to get the same accuracy
for our thermodynamic variables.

For supercooled liquids this simple definition breaks immediately since the com-
plete phase space also includes the crystal which is known to be thermodynamically
more stable. To avoid this we look at ergodicity for a limited region of phase space
(called a phase space component), e.g. the component corresponding to the super-
cooled liquid in metastable equilibrium. The idea of dividing the phase space into
components was discussed by Palmer in the beginning of the eighties [69].

To test ergodicity in a simulation of liquid phases we use the following two
criteria:

1. The averages of the free thermodynamic variables have converged.

2. The structure of the liquid measured using F(Q,,,t) relaxes as described in
Section 3.2.3.

The first criterion ensures that no phase transitions or other relaxation phenomena
are ongoing. The second criterion ensures that we really have a liquid and that our
simulation timescale is large enough to resolve the relaxational behaviour of the
liquid.

When simulating a crystallisation as in Article 4, criteria number 2 above will
not be fulfilled since the structure of a crystal does not relax over time. Still the
crystal itself can be seen as one of the phase space components of Palmer. In the
crystalline case averaging over a long run is not enough though, since a crystal
created by freezing from a liquid will contain a different set of defects for different
starting conditions. To achieve a sound statistical ground for the measured values
it may be necessary to perform several freezings from different initial liquid states
and average over these.

Further discussion of the epistemology of simulations in general can be found in
Chapter 7.

3.2 Measuring structure and structural relaxation

In this section we will introduce the pairwise correlation functions most commonly
used in the analysis of liquids. Some of them are directly accessible experimentally
and simulations allow direct calculation of all of them. They are interrelated by

2The phase space is the 6N dimensional space of all atomic positions and velocities. The
configurational part of the phase space is discussed in detail in Section 5.4.
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Fourier transforms. A complete discussion of these correlation quantities can be
found in reference [41].

It is possible to define and use higher order correlation functions. They describe
correlations between more than two atomic positions. Such correlation functions
are also used in the study of supercooled liquids, see e.g. reference [35]. However,
no such correlation functions have been used in the work presented here, and they
are not described in this thesis.

3.2.1 Spatial correlation functions

In simulations the most intuitive and easily calculated structural quantity for a
simple liquid is the radial distribution function g(r) defined as:

1 1 N N
9(1‘);<N > 25(r+rjri)> (33)

i=1,j=1, j#i

where 6(x) is the Dirac delta function, and p is the number density. The division by
p normalises the value of g(r) to 1 in the long distance limit. The product p - g(r)
corresponds to the probability distribution of, given a reference atom, finding a
neighbour at position r. In isotropic systems like liquids or glasses the direction of
r does not matter and the function is almost always written using r = |r| as g(r) —
the neighbour distribution related only to distance. This is true for all correlation
functions discussed here, but we will keep the vector notation for generality. An
example of ¢g(r) calculated from a simulation can be found in figure 3.2.

One central feature of liquids is the limited range of pair correlations. The
function usually attains its limit value of 1 well before r reaches 10 atomic diameters.
Also for more exotic cases, where the spatial correlation extends further, there is a
clear qualitative difference between the behaviour of liquids or glasses, and ordered
phases such as crystals where the spatial correlation, in principle, extends to infinity.

In experiments the radial distribution function is impossible to measure directly.
Fortunately the Fourier transform of ¢(r) gives a function called the static structure
factor:

S@ =1+ [ exp[-iQ-rlgtr)dr (3.4)

The leading 1 comes from the ¢ function that should be present in g(r = 0) but
which is removed in equation 3.3 by restricting the summation to distinct atoms.
This function is readily calculated in diffraction experiments, in fact it is the main
tool of crystallography, as is discussed in Section 6.1. An example of S(Q) calculated
from a simulation can be found in figure 3.3. From experimental results ¢g(r) can
be calculated as the inverse Fourier transform of S(Q).
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Figure 3.2: ¢(r) calculated for the Zs liquid at density 0.85 and temperature 0.80.
At this density and temperature the liquid is in a supercooled state. The Zs liquid
has a long correlation length since g(r) decays just before r = 10.

3.2.2 Time and frequency dependant correlation functions

It is possible to define a time dependent version of g(r) as:

ole,1) = %< F D a0 ri<t>]> (55

g(r,t) relates the density in position r at time ¢, given that there was an atom at
r = 0 at time 0. Obviously, for ¢ = 0 we have g(r,0) = g(r) 4+ 6(0), the ¢ function
coming from the fact that the summation in g(r,0) is not restricted to distinct
atoms.

Fourier transformation of r can be carried out for g(r,t) in the same way as for
g(r) to yield:

=]

r.n o[ " exp[-iQ -1l (r, t) dr (3.6)

a quantity called the intermediate scattering function®. The intermediate scattering

3The use of F(Q,t) instead of S(Q,t) for this quantity comes from historical reasons not
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Figure 3.3: S(Q) retrieved by Fourier transform of the g(r) shown in figure 3.2. To
the untrained eye this may not say much, but for an expert some conclusions are
possible to draw from this figure. These include that the liquid is uniform (since
the limit for small @ is 0) and that it seems to have icosahedral local order (the
split of the second peak of S(Q) is a signature of icosahedral ordering).

function measures the density correlations between the system at times 0 and ¢ for
the wavelength Q.

The intermediate scattering function is not immediately accessible by experi-
ments, but it is possible to measure the spectrum of F(Q,t):

S(Q,w) = L /OO exp [—iwt]F(Q, t) dt (3.7)

2 J_ o
the integral of which, over all w, returns us back to S(Q). Hence we have closed
the circle of relationships between the different pairwise correlation functions.

3.2.3 Structural relaxation in liquids

The fact that the radial distribution function g(r) decays to 1 beyond a finite
distance 7., is a fundamental property of the liquid state. It implies that atomic

known by the author of this thesis.
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positions in liquids separated by a distance larger than 7., are not correlated. This
in turn implies that structural relaxation in liquids is a purely local phenomenon.

Structural relaxation of liquids is measured by studying the decay of the in-
termediate scattering function F(Q,t) for the most slowly decaying Q. F(Q,t) is
described in Section 3.2.1 with @ as a vector, but for isotropic systems the di-
rection is irrelevant so here we use only the magnitude. Intuitively it is obvious
that heterogeneities takes longer to relax if the scale of the heterogeneity is larger,
corresponding to smaller (). This is quantified by the fact that the relaxation time
for a specific ) is proportional to S(Q)/Q? [41]. For ordinary liquids it turns out
that the main peak, which occurs for Q) ~ 7 in reduced units, is slowest and hence
dominates the relaxation. In more exotic cases like the low density liquid of Article
4 there can be other peaks that dominate the relaxation.






Chapter 4

Thermodynamics, phases and
phase transitions

Thermodynamics is concerned with the behaviour of matter in a physical environ-
ment. Both the environment and the matter itself are described by using thermody-
namic variables as pressure (P), volume (V'), temperature (T"), entropy (S), poten-
tial energy (U) and total energy (E). Other variables are possible, like the number
of atoms and the chemical potential or the electrical charge and the surrounding
electric field, but the ones above will suffice for our purposes. The variables can
be either extensive or intensive. Extensive variables are proportional to the system
size (V, S, U and E) and intensive variables are independent of the system size (T’
and P).

A full thermodynamic description of a material connects the thermodynamic
variables by equations of state. Analytically finding the equations of state is im-
possible for complicated systems and consequently we study the relations of the
thermodynamic variables in experiments and simulations.

4.1 Free energy

The thermodynamic state of a substance at specific conditions can be decided
by minimisation of the relevant thermodynamic potential. Which thermodynamic
potential to use depends on which variables are free and which are fixed for the
system. The word ensemble is used to define the environment of the substance, often
together with three letters specifying which thermodynamic variables are fixed. In
the NV E (or microcanonical) ensemble the Helmholtz free energy FF = U — T'S
is minimised, in the NVT (or canonical) ensemble the enthalpy H = U + PV is
minimised and in the NPT (or isobaric canonical) ensemble the Gibbs free energy
G =U+ PV — TS is minimised. In the following we will discuss the behaviour of
thermodynamic systems using the Gibbs free energy.

Minimisation of the Gibbs free energy G = U + PV —T'S in the NPT ensemble

23
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implies that the system strives to minimise its potential energy (U), minimise the
used volume (V') while trying to maximise its entropy (S). The entropy can crudely
be identified with the disorder of the system. Increasing the pressure makes min-
imising the volume more important and increasing the temperature makes maximis-
ing disorder more important. As we will see in the next section this has fundamental
implications for the behaviour of matter upon changes of its physical environment.

4.2 Phases: crystals, gases and liquids

Everyone is familiar with the fact that matter exists in different phases. Which
phase a material takes depends on the physical environment. When reducing the
temperature T water freezes to ice while an increase of the temperature leads to
vaporisation (boiling). The pressure P determines at which temperatures these
transitions occur, e.g. water boils well before reaching 100°C at high altitudes
where the pressure is lower. These phase transformations occur between solid,
liquid and gas phases of the same material, whereas in chemical transformations
the molecular composition of the material itself is changing.

The value of the thermodynamic potential G in the space spanned by the fixed
thermodynamic variables P and T defines a surface (for a fixed value of N). The
value of G is different for different phases and the phase transitions correspond to
places in the P-T-plane where there is a crossover between the Gibbs free energy
of e.g. the liquid and the gas. As discussed above the system strives to minimise
its free energy. From this point of view we can understand the boiling of water
at 7' = 100°C at ambient pressure as this being a point in the P-T-plane where
Gyater becomes larger than Gyapour-

We can use this understanding to get a crude idea of how the three common
states of matter — crystal, liquid and gas — are related. In a crystal the local
configuration is well defined and repeats indefinitely, minimising the energy U and
the entropy S. Obviously this state is favoured by low temperature. The gas is at
the other extreme where the material is completely disordered, maximising S. A
situation clearly favoured by high temperature.

In this description a liquid is the intermediate where there is an interplay be-
tween all three terms of G, giving a dense but disordered structure. In a liquid
there still is a local environment that is on average common to all atoms in the
liquid and specific to the particular liquid. This local environment is measured by
the radial distribution function g(r) described in Section 3.2.1. This intermediate
state is more complicated to describe than the crystal and gas states because there
is no simple extrapolation to an ideal model (the perfect crystal and the ideal gas
for crystals and gases respectively).

A liquid is defined by the fact that it is thermodynamically isotropic (i.e.
isotropic on long enough timescales) and that it does not retain any of its structure
over time. Simple liquids are isotropic everywhere always, i.e. on all timescales
and lenghtscales. There exists comprehensive literature on the properties of simple
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liquids in the normal state, the reader is referred to the book by Hansen and Mc-
Donald [41] or the old review by Barker and Henderson [11]. In supercooled liquids
some of the relations true for normal liquids are broken as discussed in Section 5.1.
The solidified amorphous state, the glass, is treated in Section 5.3.

4.3 Phase transitions

Phase transitions can be divided into different categories. In first order phase
transitions the substance stepwise transforms from one structure to another, as
in the transitions discussed in Section 4.2. This process includes consuming or
releasing energy, the amount of which is called the latent heat of the transition.
These transitions are accompanied by a discontinuity in the thermodynamical state
variables. Examples from everyday life include melting of ice and boiling of water.
There is no mistaking the fact that there is a definite difference between vapourised
and liquid water, neither that the transformation is discontinuous in parameters
such as volume.

The other kind of transitions are continuous, sometimes called second order
transitions which is a special case of all continuous transitions. In these transitions
the change in structure is not stepwise but occurs continuously. There are no
discontinuities in the thermodynamic state variables for continuous transitions, but
there are discontinuities in their derivatives of some order!. Second order transitions
are associated with fluctuations whose length scale diverges close to the transition
point. It can at times be hard to discern the order of a continuous transition and
it is reasonable to disregard this distinction and categorise them all as continuous
[63].

Common to all phase transitions is that it is reasonable and intuitive to describe
them by using an order parameter. The order parameter has a step at the tran-
sition point for first order transitions while it changes continuously for continuous
transitions. Usually the order parameter is defined so that it is zero in one of the
phases and non-zero in the other. Landau has constructed a theory of phase tran-
sitions based on order parameters [60]. For liquid-crystal transitions the change in
global symmetry is usually used as order parameter, while liquid-gas transitions are
described using the density as order parameter.

The study of phase transitions is a vast field. In this section we will try to
set the context for the results presented in Article 4. For further reading on this
subject the books by Landau and Lifshitz [60], Ma [62] and Anisimov [7] can all be
recommended.

LTf the first derivative has a discontinuity the transition is second order, discontinuities in the
second derivative corresponds to third order transitions and so on.
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4.3.1 Spinodal decomposition

For some first order phase transitions there exists a region in the V-T-plane? where
no single phase is stable. Such a region is called a spinodal and a system in a
spinodal domain inevitably decomposes into two separate coexisting phases. This
is most commonly seen for transitions between liquids and gases but has also been
seen for liquid-liquid transitions [30].

The thermodynamic relation defining the spinodal region is dP/0V < 0, i.e.
the pressure of the system decreases if the volume increases, a clearly unstable
situation. A simple model showing this behaviour has been created by van der
Waals and can be found in any textbook on thermodynamics. The van der Waals
equation is a modification of the ideal gas equation:

PV = NkgT (4.1)

where kg is Boltzmann’s constant 3. The modification consists of increasing the
pressure and decreasing the available volume. This corresponds to introducing a
spatial extent of the atoms, which in the ideal gas model are assumed to be point
like. The resulting equation has two parameters a and b and the following form:

(P ta (g) 2) (V — Nb) = NkpT . (4.2)

This equation of state catches many fundamental properties of systems with two
fluid* phases. The phase diagram of the van der Waals equation is shown in figure
4.1.

For two phases to coexist it is necessary that their pressure, temperature and
free energy are equal. This leaves entropy, potential energy and density (the inverse
volume) as the quantities that may differ. The coexistence region is created by the
fact that the two phases have states of the same G for a set of 7" and P with different
densities. For a coexistence to be possible in a limited system it is also necessary
that the interface between the two phases is not too energetically costly.

In first order transitions between a simple liquid and its corresponding crystal
there have been no observations of spinodal decomposition. The general under-
standing of this fact rests on two observations. First, the density difference between
liquid and solid is generally small, leaving a small region where coexistence would
be beneficial. Second, the difference in symmetry between the two phases implies a
large interfacial energy, hindering coexistence. The result is the behaviour usually
observed for crystallisations. The supercooled liquid shows formation and destruc-
tion of small crystalline grains. Their destruction is due to the large interfacial

2We use V instead of P since the pressure is constant in these regions and hence it is not a
region but a line in the P-T-plane.

3When calculating using reduced units Boltzmann’s constant is set to 1. We keep it here since
the equations are well known in this form

4Here fluid denotes both liquids and gases. As we will shortly see defining them as two different
phases is not fundamental.
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Figure 4.1: The phase diagram of the van der Waals equation (equation 4.2) in the
V-P-plane. The thin lines correspond to isotherms. The thick line demarcates the
coexistence region and the dashed thick line is the spinodal line within which the
isotherms correspond to unstable states. The star marks the critical point. The
top isotherm show no irregularities and correspond to 7' = 1.17, the region where
there is only one phase. The lowest isotherm correspond to 7" = 0.97, where there
are two phases and the isotherm passes the spinodal and coexistence regions. The
dashed thin line is the stable thermodynamic value of P for the lowest isotherm in
the two phase region. The middle isotherm correspond to 7" = T, and shows the
flat region expected around the critical point. The variables 7', V and P in this
figure have all been scaled so that they have the value 1 at the critical point.
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energy. Eventually a grain of critical size is formed and then the complete sample
crystallises quickly.

4.3.2 Critical point

The coexistence region can end in different ways. In the scenario of interest to us
the coexistence and spinodal regions end in a critical point as in figure 4.1. Passing
through the critical point the thermodynamic variables of the system have discon-
tinuities similar to the ones seen for second order transitions [7]. The critical point
is special since it is the only point on the spinodal line that is thermodynamically
stable. At the critical point:

2
(3_13) - <8_P) 0. (4.3)
ov ), vz ),
The flatness of the pressure with respect to the volume leads to a situation where the
fluctuations between the two phases diverge, implying divergence of thermodynamic
susceptibilities like the heat capacity.

For temperatures above T, there is no discernible phase transition. Hence it is
possible to move the system between the two phases without any phase transition.
In the phase diagram of figure 4.1 any movement from a state to the left of the dia-
gram below T, to a state to the right of the diagram below T, not crossing the thick
solid line, corresponds to such a transition. The possibility to continuously trans-
form between the liquid and gas phases of a material is what makes the distinction
between the two phases questionable.

This has important implications for the existence of a spinodal domain in a first
order transition between a simple liquid and its corresponding crystal. If such a
spinodal ends in a critical point it would be possible to continuously transform the
disordered isotropic liquid into the highly ordered crystal. In fact this scenario is
directly discussed and forbidden by Landau in his theory of phase transitions [60].
Later there has been several other authors discussing ways of circumventing the
premises of Landau’s conclusion, see e.g. reference [13]. In simple systems spinodal
decomposition has not been seen between liquid and crystalline phases. However,
for some more complex molecules like polymers such spinodals have been observed
[33]. In simulations of nano-scale clusters coexistence is seen in time. The cluster
may flip between a crystalline and a liquid phase even though they do not physically
coexist. The cluster coexistence region in phase space is related to spinodal lines
and the first order phase transitions in the respective bulk materials [12, 87].

4.4 Summary of article 4

In Article 4 we report our observations of the phase diagram of the Z, liquid at low
densities (0.32 < p < 0.50). We find that at the higher densities of this interval the
system crystallises to a complex crystalline structure on cooling. For intermediate
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densities the transition is not directly to the perfect crystal but instead to a spinodal
region. The latent heat of the transition is decreasing upon lowering the density
until it vanishes for a density of approximately 0.33, a clear indication of a critical
point.

Upon cooling the liquid for densities below the critical density we see a contin-
uous transition to a mesophase. The mesophase is still liquid but has an ordering
locally similar to that of the crystal. The existence of this mesophase seem impor-
tant for the existence of the spinodal by reducing the interfacial energy between the
liquid and the crystalline phases. The mesophase also offers a way of continuously
introducing crystalline order to the originally disordered liquid.






Chapter 5

Supercooled liquids and the glassy
state: anomalies, theories and
landscapes

When cooling a liquid to a temperature lower than the melting temperature (7,,)
of the corresponding solid the liquid is, by definition, in a supercooled state. A
large family of liquids crystallise quickly in this state. The liquids we are interested
in do not, instead they maintain their liquid status in the metastable, supercooled,
state for a range of temperatures below 7;,. In this chapter we will look at how
relationships and effects in the normal, not supercooled, liquid state break down
upon supercooling.

We will also look at the glassy state. A glass is the solid material formed from
a liquid under continuous cooling without crystallisation. The temperature where
the liquid solidifies is denoted T. We will mainly discuss dynamical anomalies
in glasses, which is the subject of Article 1. After introducing the anomalies we
will make a quick overview of current theories trying to capture the behaviour of
supercooled liquids. We will end with a discussion on potential energy landscapes,
which have proven to be a very useful for understanding supercooled liquids.

The following discussion of supercooled liquids, glasses and potential energy
landscapes is not complete, the interested reader is referred to the short and easily
read reviews [3, 17] for an overview or the more recent review [42] for a more thor-
ough discussion. The recent book [86] is recommended, especially for a discussion
of liquids and glasses from the perspective of potential energy landscapes. For the
ordinary liquid state the reader is referred to the references [11, 41].

5.1 Anomalies in supercooled liquids

This section will give an overview of the differences between normal and supercooled
liquids, each subsection discussing a particular effect.

31
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5.1.1 Breaking of the Stokes-Einstein relation

A result for normal liquids, long believed to be generally true for the liquid state, is
the Stokes-Einstein relation. It relates the diffusion D and the viscosity 1 through
the temperature 7' and the (effective) particle diameter r of a liquid:

D
T—Z = const . (5.1)

The fact that this relation is broken in deeply supercooled liquids was first noted
around the beginning of 1990 [72].

Viscosity is intuitively related to the structural relaxation of a liquid, in fact
the two are often used as equivalent, even though this is not really correct. The
diffusion (D) is directly coupled to the mean square displacement (msd) of atoms
via Fick’s law:

D =msd/(6t), t— oo. (5.2)

Where t is the time. Hence the Stokes-Einstein relation gives a coupling between
the average distance moved by atoms and the structural relaxation for a liquid. The
breaking of this relation implies that the atoms on average need to travel farther to
achieve structural relaxation. The breaking of the Stokes-Einstein relation seems
to occur only for fragile liquids, defined in the next section [17].

5.1.2 Super Arrhenius behaviour

Normal liquids show Arrhenius, exponential, behaviour of the diffusion D with
respect to the inverse temperature 7~

D = Dgexp (—AT™1) (5.3)

where Dy and A are constants. Svante Arrhenius originally justified this relation for
rates in chemical reactions in the end of the nineteenth century. It has later proven
to be a good empirical fit for the diffusion in normal liquids and a large number
of other physical properties. This is not surprising since Arrhenius behaviour is
expected whenever a property is dependent on an energy barrier.

Upon supercooling the Arrhenius behaviour of diffusion breaks for some liquids.
In this region the dependence of the diffusion on temperature is stronger than
equation 5.3 suggests. This kind of behaviour is called super Arrhenius. The
relationship between D and T after this breaking is often fitted to the equation:

— BT,

D:DOeXpT T
— 1o

(5.4)

known as the Vogel-Fultcher-Tamman (VFT) equation. Based on a fit of the viscos-
ity to the VFT equation approaching T Angell has proposed a division into strong
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and fragile liquids! [2]. The larger the deviation from Arrhenius behaviour (corre-
sponding to a smaller value of B) the more fragile is the liquid. Fragility is now
accepted as an important characteristic of liquids. The fragility can be calculated
for properties such as diffusion, viscosity or any relaxation time. The main plot in
figure 5.1 shows how liquids with different fragility behave in an Arrhenius plot of
the inverse temperature versus viscosity. There are also other common measures of
fragility than B, e.g. the slope of the fitted line in the rightmost part of figure 5.1.
For several liquids a transition between fragile and strong behaviour has been
observed. As an example strong liquids tend to become fragile on compression [3]
and for a model of silica a fragile to strong transition has been observed on cooling
at experimentally inaccessible temperatures [73]. In recent years Angell has argued
that all liquids, or at least the family of network forming liquids, have a transition
from fragile to strong behaviour upon cooling [4]. In liquids usually described as
strong the transition is supposed to have occurred for very high temperatures. For
fragile liquids this transition is either hidden by the glass transition or — in the
more bold version of this idea — the glass transition is seen as a weak first order
transition? between the two liquid states [5]. In Article 5 we demonstrate that the
Z5 liquid performs a first order fragile to strong transition where both liquids are
thermodynamically stable, a behaviour not previously observed.

5.1.3 Structural and dynamical heterogeneity

In the normal liquid state all behaviour is isotropic in both space and time. This
can be seen e.g. in the distribution of the squared atom displacements which is
Gaussian, as expected for a random walk. For a supercooled liquid this behaviour
breaks and the atomic displacements show a split peak for short timescales, indi-
cating that the liquid is dynamically heterogeneous.

Several investigations, using both molecular dynamics and colloidal suspensions,
show that the supercooled liquid is divided into domains for short timescales [24, 58].
Some domains contain fast moving atoms and some contain more slowly moving
atoms. Averaged over longer times the individual atomic displacements retain a
Gaussian distribution, indicating that on this longer timescale atoms have diffused
between the fast and slow domains so that the initial domain of the atom is irrele-
vant and ergodicity is restored. Note that dynamical ergodicity does not necessarily
imply that the sample has structurally relaxed. Diffusion can occur by hopping in
and out of the slow domains, making it possible for the atoms to diffuse between
different dynamical domains without relaxing the structure of the domains them-
selves.

11t should be noted that the VFT equation does not capture the behaviour over the complete
interval where experimental data is accessible [3].

2 A weak first order transition behaves similarly to second order transitions when the transition
point is approached. There is a growth in fluctuations and correlation lengths as well as an increase
in e.g. the heat capacity. In difference to a second order transition the complete process is not
continuous. Before reaching what would be the criticality in a second order transition there is a
discontinuity in the thermodynamic quantities as in a first order transition [27].
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Figure 5.1: The main plot shows a collection of experimental data for different
liquid substances. The x-axis is in units of inverse temperature normalised by the
glass transition temperature T (defined as when the viscosity reaches 1012 Pa s).
The more curved the approach to the glass transition is, the more fragile is the
liquid. The larger insert shows the behaviour of the heat capacity for a supercooled
liquid when passing through the glass transition. Here the x-axis is temperature
scaled by Tz. As can be seen there is a very sharp drop of the heat capacity at the
glass transition. In general more fragile liquids have a larger drop in heat capacity
at the glass transition than strong liquids. The small insert shows the behaviour
of the Vogel-Fultcher-Tamman equation (equation 5.4) for different values of B,
plotted for the same axes as the main plot. (This plot has been adapted from
reference [6])
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The nature of these domains, and their possible interpretation, often as the co-
operatively rearranging regions (CRRs) of Adam and Gibbs (see Section 5.2.1), has
attracted a lot of attention. Glotzer et al. are promoting a view where the coherent
movement of one dimensional, string like, clusters is the fundamental mechanism
responsible for all relaxation [32]. On the other hand Wolynes et al. argue, using
the RFOT theory mentioned in Section 5.2.4, that there should be a crossover tem-
perature on cooling where the CRRs change from being one dimensional strings to
compact extended regions [82]. Recently Appignanesi et al., using a binary mixture
Lennard-Jones liquid (BLJ), showed that the slowest relaxation mechanism takes
place as a collective motion in large, compact, clusters involving around 40 atoms
[8]. Even more recently de Souza and Wales, also working with BLJ, showed that
the super-Arrhenius behaviour of fragile liquids discussed above occurs inside the
regions themselves, and not as a result of averaging over the different relaxation
times of different exponentially decaying regions [16].

5.1.4 Non exponential relaxation behaviour

In normal liquids relaxation processes are exponential. When supercooling, non
exponential relaxation behaviour is noted for both fragile and strong simple lig-
uids [17]. The relaxational behaviour is empirically known to match the following
equation called stretch exponential or Kohlrausch-Williams-Watts (KWW):

A= Apexp[-(t/7)%], (B<1), (5.5)

where 7 is the relaxation time and (§ determines the stretching of the relaxation. If 5
is 1 the relaxation is exponential, if 3 is smaller than 1 the relaxation is stretched.
For the same substance 8 may vary both between different properties and with
temperature. In the mode coupling theory discussed in Section 5.2.2 (3 is defined
by the relaxation process [38].

The relaxation experimentally observed is often stepwise. For short timescales
there is a fast relaxation that relaxes the system to a plateau value for the measured
quantity. This is followed by a second, often orders of magnitude slower, relaxation
process that continues until the measured quantity is completely uncorrelated. The
fast relaxation is called (-relaxation and slow relaxation is called a-relaxation. The
naming comes from Johari and Goldstein who named the high and low frequency
peaks in dielectric loss measurements on liquids § and « respectively [51]. It is
the slow a-relaxation that is fitted with the KWW function while the S-relaxation
is modelled by Arrhenius behaviour. For temperatures below the glass transition
temperature no a-relaxation occurs, i.e. the a-relaxation time is infinite. On the
other hand the (-relaxation still persists after the glass transition, still following
Arrhenius behaviour [17].

For some liquids there seem to be a correlation between fragility and non-
exponential relaxation and there are several publications making this connection
[83]. For simple liquids the correlation seem nonexistent, or at least much weaker.
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For example strongly non-exponential relaxation behaviour of a model of the generic
strong glass former silica has been observed [75, 73].

5.2 A short overview of the current theories of the
supercooled liquid state

The effects discussed in Section 5.1 has inspired the development of several different
theories all searching to enable an understanding of supercooled liquids and the
glass transition. In this section we will very briefly introduce the theories currently
active and commonly referred to in the community. The fact that there exist such a
diversity of theories indicates both the large interest in, and the limited knowledge
of, supercooled liquids.

5.2.1 Cooperatively rearranging regions

One old theoretical model still in wide use is that of Adam and Gibbs [1]. They
argue that the liquid can be seen as consisting of regions, called cooperatively rear-
ranging regions (CRR) governing the structural relaxation of the liquid. A CRR is
a minimum size region with the possibility to structurally relax without changing
its surroundings. They then argue that such a region must have a minimum config-
urational entropy (s¢,crr = Bag) to allow internal movement, and that almost all
relaxation will take place in regions with entropy no larger than B . The result
of the argument is a coupling between the configurational entropy per atom and
the structural relaxation. It is often stated as (interchanging relaxation time and
diffusion):

D = Doexp(—Bac/(Ts.(T)) . (5.6)

This theory has sustained criticism for several reasons. Among them that it is
purely phenomenological, and that it assumes that the configurational entropy is
spread evenly over the atoms; giving a specific size common to all CRRs — implying
a homogeneous liquid. It also turns out that the CRRs seem very small at 7, and
that it is possible to construct model potentials with similar s, but different kinetics
[42]. Regardless the criticism the idea of CRRs is still widely used and referred to,
especially in relation to heterogeneity in supercooled liquids, see Section 5.1.3. One
reason for this is probably that there are numerous examples where equation 5.6
holds [42].

One should be cautioned that different authors use the concept of CRR in
slightly different ways. This seems to originate from the theory assuming a homo-
geneous liquid. Actual supercooled liquids are heterogeneous on short timescales,
containing both fast and slow regions. Different researchers seem to map the con-
cept of CRR on different such regions.
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5.2.2 Mode coupling theory

Mode coupling theory (MCT) is based on a coupling of the viscosity and the struc-
tural relaxation of liquids [37, 34] using functionals acting on the S(Q,w) described
in Section 3.2.2. The theory originally did not take any heterogeneities of the liquid
into account. This original theory is successful in describing the liquid state until
the liquid is moderately supercooled. The coupling between structural relaxation
and viscosity introduces a singularity upon cooling where the structure freezes. This
temperature is denoted T, and was assumed to correspond to the glass transition
temperature T} in the original MCT.

Now it is known that T is significantly larger than T,. Even so, T is still used
as a characteristic temperature of a liquid and it might have physical importance
as the onset for a new dynamic regime [35, 15]. A probable reason for the failure
of the original MCT is the assumption that the supercooled liquid is homogeneous.
As discussed above we now know that heterogeneities are important in the descrip-
tion of deeply supercooled liquids. Significant work has been done to remove the
singularity at T, and accommodate experimental results [38, 15], but this is outside
the scope of this thesis.

5.2.3 Avoided critical point scenario

Another line of reasoning is the avoided critical point scenario put forward by
Kievelson and Tarjus [55, 56]. This scenario assumes that the supercooled liquid
has a preferred local structure to which it would like to transform at a temperature
significantly above T;. The transition is inhibited since this preferred local struc-
ture is such that it cannot fill the space without frustration. The liquid is left in a
“half-transformed” state with fluctuations similar to those around a critical point,
see Section 4.3.2.

5.2.4 Ideal glass transition and random first order theory

Kirkpatrick, Thirumalai and Wolynes have put forward another theory, inspired by
phase transitions in generalised spin glasses. It divides the supercooled liquid into
transient volumes of ideal glass separated by higher energy “membranes” of mobile
atoms. The theory has been used to quantitatively calculate stretch exponential
relaxation and fragile behaviour. It has a thorough theoretical framework which is
outside the scope of this thesis. The interested reader is referred to the references
[53, 42| for more information about this theory.

5.3 The glassy state and the glass transition

Amorphous structures or glasses can be formed in a large number of different ways
[3, 39]. Here, since the starting point is the simulation of liquids, we focus on glass
formation via supercooling a liquid.
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When cooling a liquid it eventually solidifies (disregarding helium at low pres-
sures). If it does not crystallise it undergoes what is called a glass transition. The
elusiveness of the glass transition is related to the fact that all definitions of it
presented so far are subjective. Used definitions include [17]:

e setting a threshold value for the viscosity, usually about 10'3 Poise

e setting a time limitation on a characteristic molecular relaxation time to e.g.
100 s

e The point where the heat capacity has reached that of the corresponding
crystal, as is shown in figure 5.1.

There are clear differences between the glass transition and the thermodynamic
first order or continuous transitions (see Chapter 4). In the glass transition the ther-
modynamic variables changes very rapidly when the system is cooled towards and
past T, but there are no discontinuities either in the variables or their derivatives.
In addition the temperature T at which the transition occurs is history depen-
dant. The slower a glass forming liquid is cooled the lower the glass transition
temperature using the definitions above. How to understand the glass transition,
the similarities and differences when compared to thermodynamic phase transitions,
still remains an open question. Currently most researchers in the field seem to agree
that the glass transition as observed is a purely kinetic phenomenon [86, 3], though
underlying thermodynamic transitions are not ruled out.

5.3.1 Dynamical properties of glasses

The vibrational properties of crystals are well explored and are discussed in funda-
mental textbooks on solid state physics [10, 54]. The periodicity makes the analysis
of the vibrational spectra of perfect crystals relatively simple. It is possible to find
a set of orthogonal normal modes in which all possible vibrations can be expressed.
Perturbation methods can be used to analyse the phonon spectra for, chemically
and or positionally, moderately disordered crystals. In neutron scattering exper-
iments the vibrational properties can be measured through S(Q,w) described in
Section 3.2.2.

For a disordered solid the vibrational spectra is more complicated. Complete
characteristics of the vibrational spectra of a disordered solid consisting of IV atoms
requires the calculation of 3N — 3 vibrational eigenvectors and eigenvalues. The
vibrational spectra of a disordered solid differs significantly from that of a perfect
crystal — both in the high and low frequency domain. In crystals all vibrational
modes are extended in space while for glasses the high frequency modes are strongly
localised. This manifests in a cross over frequency for glasses called the the Ioffe-
Regel crossover where the mean free path of a vibrational excitation becomes of
the order of the inter atomic separation, effectively stopping transmission of high
frequencies.
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In the low frequency domain there are two observations that stand out when
compared to crystalline behaviour. One is seen in the low temperature heat ca-
pacity, which is determined by the vibrations of the material around local minima.
For crystals the low temperature heat is proportional to the cube of the tempera-
ture T3, while for disordered solids the heat capacity is proportional to T. There
is also an excess number of low frequency vibrational modes in amorphous solids,
usually referred to as the boson peak. Our understanding of these two effects is
not complete, but both have been connected to the existence of two level systems
(TLSs). A TLS is a feature of the potential energy landscape discussed in Section
5.4. It correspond to a local transformation between two local potential minima.
The transition barrier in a TLS is low and the state before and after transition
are (almost) energetically degenerate. A recent and thorough discussion of the dy-
namic effects of disorder can be found in the recent report by Price, Saboungi and
Bermejo [71].

5.4 Energy landscapes: a paradigm for understanding the
behaviour of the supercooled liquid state

A viewpoint that has become increasingly popular when studying supercooled lig-
uids, glasses and the glass transition is that of the potential energy landscape (PEL).
The idea is that the position of N atoms moving in three dimensions can also be
described as a point moving in 3N dimensions (assuming the atoms are spherical,
more dimensions can be added to describe other degrees of freedom if necessary).
For each point in the high dimensional space the potential energy of the system can
be calculated and, given that the interaction potential is continuous, will form a
continuous surface in 3N + 1 dimensional space. The recent book by David Wales
can be recommended for anyone seeking more knowledge in the area of PELs [86].
The book, in addition to discussing supercooled liquids, handles biomolecules and
clusters where the PEL viewpoint is also widely used.

To get some intuition of a PEL and what it implies for the dynamics of su-
percooled liquids one can start with imagining flying over a real, mountainous,
landscape in an airplane. Figure 5.2 gives a very simplified visualisation of a PEL
that could also be a topographic map of a mountain range. As long as you fly high
enough you are not affected by the mountains and can move freely. This correspond
to the normal liquid state in our analogy. Lowering the temperature of the liquid
is analogous to reducing the altitude of the airplane. Let us see how the flight of
the plane would be affected if it flies randomly and with continuously decreasing
altitude (obviously without crashing into the mountains).

First there are some peaks that must be avoided, but essentially the plane is
still unaffected by the landscape it flies over. When descending further the effects
increase drastically. The number of accessible valleys (analogous to metabasins or
inherent structures which are described below) will decrease. Some valleys will sim-
ply lie above the current altitude, and reaching other valleys, still lower than the
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Figure 5.2: A schematic view of an energy landscape in two dimensions. It should
be read like a map with contour lines showing the potential energy. The dots are
the local minima; commonly denoted inherent structures. The dashed lines are
ridges defining the attraction basins of the inherent structures with crosses repre-
senting the saddle points (i.e. the lowest possible energy needed to pass between
the inherent structures divided by that ridge). This figure has been reproduced
from [84] and reprinted with kind permission from AAAS.
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current flying altitude, will require passing high passes making them inaccessible.
Moving between different valleys would also be much harder, sometimes requiring
very long detours compared to the straight line. This situation would correspond
to the deeply supercooled, landscape dominated, liquid. Eventually, while contin-
uously decreasing altitude, the plane would get stuck in some valley without any
possibility to get out, which would correspond to the liquid-glass transition. The
reader should be warned that the geometry of high dimensional spaces defies most,
if not all, of our geometric intuition, so this analogy should be used with that in
mind.

The PEL approach was first suggested in the end of the sixties in an article by
Goldstein where he discusses the concept of the PEL as a surface in 3N + 1 dimen-
sional space [36]. He also qualitatively describes how lowering the temperature of
the liquid will lead to a shift from landscape independent to landscape dominated
dynamics. In the middle of the eighties, Stillinger and Weber [84], carried the field
further with a structured and quantitative analysis of the PEL by molecular dy-
namics simulations. They used the idea of mapping the configurational trajectory
of the system onto the local minima (commonly called inherent structures) of the
PEL, which they found by systematically performing energy minimisation on the
configurations passed in the simulation. In this way they could divide the liquid
properties into a dynamic and a configurational contribution. In the article they
made several observations still in common use today, like the fact that the energy of
inherent structures in the normal liquid is almost temperature independent. They
restricted their study to the normal liquid domain, noting that their conclusions
did not seem to hold in the supercooled domain.

The next major step in using energy landscapes to understand supercooled
liquids was made by Sastry, Debenedetti and Stillinger [74]. They systematically
used the same method as Stillinger and Weber for the BLJ liquid in the supercooled
domain for different temperatures and cooling rates. This revealed the pattern
shown in figure 5.3.

There are several interesting conclusions to be drawn from figure 5.3. The
temperature dependence of the energies of the inherent structures visited by the
liquid is markedly different for three different regions. At high temperatures the
inherent structure energies are independent of the temperature. Coinciding with
the onset of super Arrhenius behaviour (see Section 5.1.2), the inherent structure
energies then decrease rapidly with the temperature. Eventually the temperature
dependence vanishes again, and the energy saturates on a level dependant on the
cooling rate. Slower cooling yields lower saturation energy, apparently since the
slower cooling enables the system to explore lower energy minima before it gets
stuck. The crossing into the third region is the simulation scale glass transition.
The idea that the glass transition corresponds to the trapping of the system in a
metastable region of the PEL is strongly corroborated by these observations; so
is the notion that supercooled liquids and the glass transition are fundamentally
connected to the PEL of the corresponding liquid.

Another example connecting the behaviour of supercooled liquids and their PEL
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Figure 5.3: This plot shows the inherent structure energies for different temper-
atures and cooling rates for the binary mixture Lennard-Jones liquid described
in Section 2.1. See text for an interpretation of the figure. (This plot has been
reproduced from [74] with the kind permission from Nature Publishing Group)

is the transition from fragile to strong behaviour as discussed above. Saika-Voivod et
al. has recently made a thorough investigation of liquid silica at different densities
[73]. For some densities they see a fragile to strong transition coinciding with
an inflection of the inherent structure energy dependence on temperature. For
low densities we have seen the same behaviour for our Zs liquid, a result not yet
published.

5.4.1 TUnderstanding the anomalies of supercooled liquids in
terms of the PEL

Heterogeneity and Stokes-Einstein breaking

The short time heterogeneity that seems fundamental to supercooled liquids comes
about naturally in the PEL. It has been shown that supercooled liquids show a
large spread in barrier heights for transitions between different inherent structures.
It is known that such a spread is enough to introduce time limited heterogeneity of
the system [86].
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The breaking of the Stokes-Einstein relation can be explained by heterogeneous
dynamics. The structure will not relax until the slow moving atoms have moved
enough to relax. At the same time the fast moving atoms will have diffused a lot
farther, decoupling the structural relaxation from the diffusion [86].

Relaxation behaviour

A viewpoint that now seems generally accepted is to understand the existence of
two different relaxation scales, the o and [ relaxation discussed in Section 5.1.4,
directly in the terminology of the PEL. The idea is to assume the existence of
metabasins, collections of interconnected inherent structures between which the
system can easily move, but which has few, and hard to access, connections to other
metabasins. The inter metabasin movements are seen as highly collective, involving
concerted movements of several tens of atoms. The (3 relaxation is identified with
intra metabasin movement and the « relaxation is identified with inter metabasin
movement. This view is strongly supported by the recent result of Appignanesi et.
al. [8]. They show that a small system of a binary Lennard-Jones liquid remains
structurally correlated on short time scales, and loose this correlation via rare and
highly collective events, .

Fragility

The discrepancy between strong and fragile liquids has also been discussed in terms
of the PEL and there are PEL parameters that can be coupled to the fragility of
a liquid [42]. There are also qualitative pictures of what a fragile or strong PEL
should look like [83, 17]. No real consensus on this matter has been reached and
there seem to remain a lot of interesting research. There is especially little work
on how to incorporate fragile to strong transitions of liquids into the framework of
PEL. An attempt in this direction can be found in reference [65]. The fragile to
strong transition between thermodynamically stable liquids reported in Article 5
offer a new possibility for further studies of these questions.

5.5 Summary of article 1

Since the vibrational properties of crystals is so well understood it is very tempting
to try to understand the corresponding properties of glasses based on this knowl-
edge. In Article 1 we calculate the complete vibrational spectra for a glass of the
IC liquid of 16000 atoms. We then compare the vibrational characteristics of the
glass to that of the stable crystalline phase of the IC-potential, the o phase.

Our comparisons show that there is significant correspondence between the vi-
brational properties of the two solids. This shows that, at least for the o phase and
the IC-glass, it is possible to use the crystal as a model of the dynamical behaviour
also for the disordered solid. One direct connection to the anomalies mentioned in
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Section 5.3 is that we are able to make a tentative connection between the boson
peak in the glass and the vibrational density of states of the o-phase®.

5.6 Summary of article 2

In Article 2 we introduce the interaction energy autocorrelation as a comprehen-
sive relaxation measure. The idea to use an autocorrelation function as a relaxation
measure was originally proposed by Palmer [69]. We show that, in the deep su-
percooled domain, the structural relaxation as measured by F(Q,,t) (see Section
3.2.3) relaxes before our new measure in the Zs liquid. This implies that full relax-
ation of the pair density correlation is not enough to restore full ergodicity of the
liquid.

This effect can be explained by structurally correlated regions translating and
rotating on timescales shorter than the timescale for dissolving the correlated region
itself. The slowest part of the structural relaxation of the liquid is then the relax-
ation of these correlated regions. This supports the idea that the slow « relaxation
in the deep supercooled domain occurs in compact regions.

5.7 Summary of article 5

The Z; liquid is known to be fragile at high and intermediate temperatures [18].
In Article 5 we show that under careful further cooling the liquid performs a first
order liquid-liquid phase transition. The low temperature, high density, liquid is
shown to be strong, very viscous, and to have very good glass forming abilities.
The structure of the high density liquid is also described in detail. This is the
first observation of a first order liquid-liquid transition from a fragile to a strong
liquid observed under thermodynamically stable conditions. This result offers the
possibility to further explore the mechanisms of fragile to strong transitions. It also
suggests the possibility of a good metallic glass former.

3The boson peak can be related to the lowest van Hove singularity [54, 10] in the o phase.
A van Hove singularity corresponds to a frequency where the phonon density of states shows
diverging slope.



Chapter 6

Quasicrystals and their structure

Quasicrystals were first observed in the beginning of the eighties [76]. After years
of controversy on what they really are [79] the scientific community now agree on
their existence as one of the forms taken by solid matter.

As has been pointed out it is a bit surprising that the discovery of quasiperiodic
materials so startled the crystallography world [47]. The concept of quasiperiodicity
had been known for a long time by mathematicians. Incommensurate crystals
(crystals having length scales with irrational quotient in their description) were a
known concept [46]. Penrose had proposed a specific way of tiling the plane without
holes and overlaps using two kinds of tiles and a specific set of tiling rules (restricting
how the tiles may be put with respect to each other) [70]. The resulting tiling is
not periodic but still gave rise to a diffraction pattern showing sharp diffraction
peaks with a tenfold axis [64].

Even though there has now been a quarter of a century since the first publication
describing a quasicrystalline material, quasicrystals still form the basis for a large
number of open questions. The mechanisms governing the formation and stability
are unknown. There are examples of quasicrystals that are thermodynamically
stable, but it is unknown whether quasicrystals form the energetic ground state
or if the stability comes from entropic contributions. Neither is it known in what
sense (from a strict mathematical perspective) real world quasicrystals really are
quasiperiodic. For most quasicrystals the description of the local atomic structure
remains elusive [81].

6.1 Crystalline symmetry

What was then so controversial about quasicrystals? This question has to be an-
swered in the context of crystallography as it stood at the time of the discovery.
Thus we start with a description of the structure and symmetries of ordinary crys-
tals. Each ordinary crystal can be described by a primitive cell that by periodic
translation fills the space without holes or overlaps. All instances of the primitive
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cell are identical. This yields a situation where the material is invariant under
translations related to the primitive cell edges. This description also elucidates
other symmetries, e.g. mirror planes and axes with rotational symmetry. Such
symmetries depend on the form of the primitive cell and the atomic positions in
it. The primitive cell can be chosen in a large variety of ways, here we will assume
that it is a parallelepiped, which is always a possible choice. It has since long been
known that primitive cells satisfying the requirements of filling the space without
holes or overlaps can only have certain types of rotational symmetry, namely 2, 3,
4 or 6-fold [54, 10].

To visualise the restriction on possible rotational symmetries it is easiest to start
with restricting ourselves to two dimensions. After all, rotational axes of three di-
mensional crystals correspond to normals of planes. Le. a fourfold rotational axis
is the normal to a plane on which the projected three dimensional crystal primitive
cell corresponds to a square, so the restriction to two dimensions can be done with-
out any loss of generality. That the plane filled by squares has fourfold symmetry
is obvious. If you rotate the square filled plane around an axis perpendicular to the
plane, and going through the middle of any square, there are four rotations that
yield an identical view (namely, rotations by 0°, 90°, 180° and 270°). The fact
that the plane can only be filled without overlaps or holes using parallelograms,
triangles, squares or hexagons then yields the restriction on possible symmetries.

To follow the arguments it is necessary to know that structural information
in general and symmetries in particular are observed in crystallography through
diffraction patterns. A diffraction pattern is created by exposing a material to
radiation: X-rays, electrons or neutrons. The resulting reflected or transmitted
radiation is recorded. The picture thus created is a measurement of the reciprocal
lattice, i.e. the Fourier transform of the actual atomic positions. The resulting
picture makes it possible to determine the primitive cell of the crystal.

For our purposes it will suffice to note some fundamental facts about diffraction
experiments. First, we define the primitive vectors of a crystal as a;, as and ag,
these vectors correspond to the edges of our primitive cell. The primitive vectors
defines all translations T that leave the crystal invariant via the relation:

T =ny-a; +no-as + ng-ag (61)

where n; are all integers. Second, we note that the quantity S(Q), also discussed in
Section 3.2.1, measured in diffraction experiments is the Fourier transform of some
density distribution (electron or atomic kernel density depending on the incoming
radiation) of the crystal in real space, which we denote by d(r):

S(Q) =V / dVerp(~iQ-d(r) (6.2)

where V. is the volume of the primitive cell of the crystal. It turns out that this
expression is different from 0 only for specific choices of Q [54]:

Q:m1~b1+m2~b2+m3~b3 (63)
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where m; are integers and the primitive reciprocal lattice vectors b; are defined as:

az X a,

b, =2 2VC3
az X ap

by =271 ———

2 Ve (6.4)
a; X a

by = 2 1V62

The dimensionality of the reciprocal lattice vectors is, from inspection of the formula
above, inverse length.

For more information on diffraction patterns and how they are calculated the
reader is referred to introductory solid state or crystallography textbooks, e.g. Kit-
tel [54] or Ashcroft and Mermin [10].

6.2 Quasiperiodicity

What was reported in the seminal paper by Shechtman et al. [76] was a material
having a rotational symmetry axis defying these rules. It had six fivefold rotational
axis (plus ten threefold and fifteen twofold axis), giving icosahedral symmetry. As
discussed in Chapter 2 icosahedra cannot fill the space, so something different from
classical crystallography must be used to understand the structure of this material.
Since fivefold (72°) rotation give irrational coordinates it is also clear that such
a diffraction pattern cannot not be described by equation 6.3 using only three
reciprocal vectors and integer indices. Resolving the diffraction pattern of the best
experimental accuracy in 1988 with an approximant (approximants are defined in
Section 6.3) would require a unitcell of at least 10000 atoms [48]. Note that equation
6.4 means that a larger primitive cell implies smaller reciprocal vectors.

Crystalline systems showing this particular feature were known at the time as
incommensurate crystals [46]. These do not show the crystallographically disal-
lowed rotational symmetries of quasicrystals but require more than three primitive
reciprocal lattice vectors to index all points in their corresponding reciprocal space
by integers. This comes from a periodic modulation of two different lengths with
an irrational quotient in real space. Each of these periods will then show up in
Q-space at positions that have an irrational quotient. For such a system we need
to use more than three primitive reciprocal vectors to be able to fulfil the crite-
rion that equation 6.3 should index all nonzero points in the reciprocal space with
integer values of m;.

The same approach can be taken for quasicrystals. We index all points in the
reciprocal space using as many primitive reciprocal vectors as is needed to maintain
integer indexing in equation 6.3. Simulated and experimental diffraction patterns
of octagonal quasicrystals can be seen in figures 8 and 9 of Article 3. These require
four reciprocal lattice vectors in the plane to achieve integer indexing of all nonzero
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points. To get the full reciprocal lattice of an octagonal quasicrystal five primitive
reciprocal vectors are needed, since we need one more for the axis perpendicular to
the plane of the figures.

This way of indexing the reciprocal lattice points with more than three prim-
itive vectors clearly suggests that a higher dimensional view of incommensurate
and quasicrystalline structures should be fruitful. This is a common approach to
quasiperiodic structures and is discussed e.g. in references [79, 48]. In short the idea
is that if n vectors are needed to index the reciprocal lattice with integers then the
corresponding structure can be described as a periodic structure in n-dimensional
space. The real space (incommensurate) crystal can be constructed by a projection
from this periodic n-dimensional structure onto three dimensional space using a
projection that yields the incommensurability.

For structural determination the high dimensional approach is often cumber-
some and not very intuitive. From now on we will follow another route based on
tilings of two or more kinds of tiles with a specific set of tiling rules that lead to
quasiperiodicity in the way proposed by Penrose [70] and originally Ammann.

The quasicrystalline materials observed so far can be divided into axial and three
dimensional quasicrystals. The axial quasicrystals are quasiperiodic in a specific
plane but periodic along the normal of that plane. The axial quasicrystals observed
so far have diffraction patterns with a five, eight, ten or twelve-fold symmetry
axis breaking the crystallographic rules, while all the other symmetry axes of the
diffraction pattern adhere to the crystallographic rules. The three dimensional class
so far only contains the icosahedral sample described above. As mentioned there
are also crystals that show only crystallographically allowed symmetries but include
incommensurate distances and should arguably also be denoted as quasicrystals [61].

6.3 A quasiperiodic octagonal tiling and approximants

The theory of quasiperiodic octagonal tilings has been discussed thoroughly by So-
colar [78] and Ingalls [45]. A set of tiles yielding a quasiperiodic octagonal covering
of the plane is shown in figure 6.1. The three kinds of tiles are a square and two
rhombi with an acute corner of 45°, the rhombi are mirror images with respect to
the tiling rules. The edge lengths are identical for all three kinds of tiles. Given
only these three tiles the plane can obviously be tiled in infinitely many ways, pe-
riodic, aperiodic or quasiperiodic. To ensure quasiperiodicity, specific tiling rules
must be used when creating the tiling. In figure 6.1 there are some extra features
on the edges and vertexes that are used by the tiling rules. The tiling rules state
that when joining two tiles the symbols on the common edge must form a triangle
and the symbols in each vertex must form an arrow.

The quasiperiodic pattern resulting from this set of tiles and tiling can be used
to create a new pattern with more tiles from an original pattern [78]. This procedure
is called inflating the pattern and figure 6.1 also shows the result of inflating the
three fundamental tiles. Inflating is not generally possible for tiles and tiling rules
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Figure 6.1: At the top are the three kinds of tiles that produce a quasiperiodic
octagonal tiling when used according to the tiling rules (see text). The two rhombi
are mirrors of each other, only differing in the acute corners. At the bottom are
the corresponding inflated tiles (see text). As can be seen the tile borders are not
kept during inflation. The inflation still gives a correct tiling since the overlapping
square tiles are always identical (on the condition that the tiling rules were not
broken before the inflation). The colours of the tiles are a guide to the eye.
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creating eightfold quasiperiodic patterns, but makes this set easier to work with.
Given the kinds of tiles for a quasiperiodic structure it is also possible to create
tilings that adhere to the tiling rules almost everywhere, but which breaks them
occasionally. Such a tiling can be periodic but with a large primitive cell; an
example of such a tiling is given in figure 6.2. Such crystalline approximants of
quasicrystals are of special interest in simulations since they make it possible to
imitate quasiperiodicity closely while maintaining the periodic boundary conditions
(see Section 3.1.1) often necessary to avoid surface effects. They are also important
experimentally for understanding quasicrystalline structures, see reference [14] for
an example. It has been shown that, given an approximant, the inflation of the
approximant is an even better approximation of the ideal quasicrystal [19]. In
Article 3 we used the inflation rules described in figure 6.1 to create the tiling
shown in figure 8 of the article from the tiling shown in figure 6.2 of this thesis.

6.4 Atomic structure of quasicrystals

The understanding of the atomic structure of quasicrystals requires an understand-
ing of how atoms in a material can organise themselves quasiperiodically in space.
It is possible to do this using several methods. The presumably most general
method is to create the atoms as objects in a higher dimensional space and then
use some form of projection down to three dimensional space as discussed above
and as described by e.g. Bak and Goldman [48].

Here, and in most atomic descriptions of quasicrystals known to the author, the
structural understanding is based on filling the tiles of a quasiperiodic tiling with
atoms in such a way that they may be connected according to the tiling rules; this
is called a decoration of the tiles. In some sense this is akin to having a crystal
with two or more primitive cells that can be fitted together in ways adhering to
the tiling rules. It should be noted that there is a major difference between the
crystalline and quasicrystalline tilings of the space. Atoms in the same position
of the primitive cell of a crystalline structure all have identical environment. In a
quasicrystal this is not true since the material is not translationally invariant. It
is reasonable to assume that this makes the approach of just finding a decoration
for each tile a considerable simplification. This simplification is still useful as a
starting point. For the more easily synthesised quasicrystals, detailed, though not
complete, structural information is known from X-ray diffraction data [85, 52]. A
recent review on the structure of axial quasicrystals was written by Steurer in 2004
[81].

6.5 Structure of octagonal quasicrystals
One of the less well known atomic structures is that of the octagonal quasicrys-

tals. The reasons for this include that there are rather few known examples of
alloys forming octagonal quasicrystals (6 in all) and that they are all metastable,
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Figure 6.2: An example of an approximant octagonal tiling containing 41 tiles. It
shows how triangles are formed on each edge and that an arrow is created in each
vertex. This tiling is periodic and hence the tiling rules are broken somewhere,
in this case the star of rhombi split by the vertical edge breaks the tiling rules in
its centre). The colours of the tiles are a guide to the eye, corresponding to the
colouring in figure 6.1. This tiling was originally published by Ziljstra [94]
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requiring rapid cooling to form. The rapid cooling makes it impossible to grow
large monocrystal samples which are necessary for the most effective experimental
structure determination technique: X-ray diffraction. Despite this there are sev-
eral results known from experiments. Possibly the most striking fact is that all
octagonal quasicrystals seem to be of the same structure type (i.e. their atomic
configurations seem geometrically similar, though with different elements at the
atomic sites) and that their structure seems very closely related to that of 5-Mn.
Already in the first published observation of octagonal quasicrystals [88] it was
noted that the quasicrystal occurred together with regions of twinned' $-Mn and
that the square tile of the quasicrystal tiling has exactly the same dimension as the
primitive cell of 3-Mn.

Most models preceding our work are based on the apparent possibility to divide
the G-Mn primitive cell into squares and rhombi in different ways [59, 44]. There is
also a very thorough study performed in which electron microscopy is used to create
an atomic model for the octagonal quasicrystal [50]. All these models create simu-
lated electron diffraction patterns having reasonable agreement with experiments.
The main issue with the models mentioned above is that they do not reproduce
the experimental fact that the primitive cell of 5-Mn and the square tile in the
octagonal tiling have the same dimension. Hence it seems there is still room for
significant improvement of our understanding of the atomic structure of octagonal
quasicrystals.

6.6 Summary of article 3

In Article 3 we propose an atomic decoration for octagonal quasicrystals based
on results from simulations of the Z; liquid, see Section 2.1.3. When cooling the
71 liquid at normal liquid density we observed crystallisation. The crystalline
structure was determined to be that of 5-Mn with a 45° twinning [92]. The fact
that experiments also show examples of 45° twinned (5-Mn spurred us to try to
analyse the origin of the twinning. It turned out that, in one of our simulations,
we could identify two large regions of nearly perfect 8-Mn structure, see figure 2 in
Article 3, separated by an intermediate structure. We turned our attention to the
intermediate structure and found that it was crystalline and had a 45° rhombus as
primitive cell (¢ = b = c = ag_pmn, @ = § = 90° and v = 45°). The rhombus and
the square of the 5-Mn primitive cell interfaces naturally, as can be seen in figures
4 and 5 in Article 3.

Having the two building blocks necessary to create an octagonal tiling we did
exactly that. We compared the resulting diffraction pattern with the best known
experimental diffraction pattern of octagonal quasicrystals. After some changes in

In some cases it is possible for a crystalline structure to inter-grow with itself in another
orientation. Such a crystal is called twinned [10]. This can happen randomly or, as in the case for
twinned (B-Mn coexisting with octagonal quasicrystals, always in a specific relative orientation.
The reasons for this can e.g. be that there exists a good epitaxial match between different cuts
through the crystal.
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the details of the atomic decoration of the tiles we achieved good correspondence
between the simulated and the experimental diffraction pattern, see figure 9 in
Article 3. The main advantage with our model compared to existing models is the
correct relationship between the tiles and the primitive cell of 5-Mn. The model
is also strengthened by the fact that it has formed spontaneously in a simulated
system.






Chapter 7

Epistemology of computer
simulations in natural science

Epistemology is usually not considered an important issue among scientists working
in natural sciences. Probably because properties like repeatability and the possi-
bility to create very controlled environments for experiments in natural sciences
makes the questions of epistemology less pressing than in e.g. social sciences. Still,
the understanding of why it is reasonable to believe in the results created in an
area of science should be an integral part of science itself. Hence this chapter on
the epistemology of simulations is included in this theses.

7.1 Background

Traditional epistemology of natural science has a very strong focus on theory and
the testing of hypotheses. The main avenue of thinking has been that theories
are the fundamental concepts and experiments are performed to test the theories.
Simulations are tacitly assumed to be logically derived from theory. Their role
is simply to extract the knowledge already existing in the theory. The result of
this line of reasoning is that there is no need for an epistemology specifically for
simulations. If simulations are deduced from theory using only logic, the validity
of the simulations hinges only on the validity of the theory.

For a scientist working with simulations this view seems flawed. The models
and simulations described in Chapters 2 and 3 clearly show that we are not do-
ing simulations to deduce truth from a specific theory. Instead we are trying to
perform simulations that yield results reliable and relevant to the understanding
of supercooled liquids by using as simple models as possible. It is arguable that
if complex phenomena are replicated using simple models, there may be a funda-
mental truth to the models, but that is truth derived very differently from truth
logically deduced from theory.

Fortunately there is some ongoing work regarding the epistemology of simula-
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tions. The discussion in this section is based on publications by Eric Winsberg
[91, 89, 90] associate professor of philosophy at the university of south Florida. All
publications can be found on his homepage. Winsberg’s publications also include
texts discussing the relationship between simulations and experiments and the ran-
domness at the basis of statistical mechanics. All these subjects are relevant to this
thesis; however, since this endeavour into philosophy is not central to the thesis we
will restrict the discussion to the epistemology of simulations. By simulations we
will, in this chapter, denote any computer simulation of a physical system, ranging
from first principles simulations of quantum systems to simulations of storms.

7.2 How is a simulation created?

First the simulation scientist has to decide what phenomenon to study. The choice
of phenomenon will be crucial throughout the construction of the simulation, when
deciding on relevant theories and appropriate approximations. As Winsberg points
out, the goal of a simulation is usually to make an as good model as possible of a
phenomenon, and not to make an as good model as possible of a specific theory. In
some cases simulations are created to test a theory, but in this chapter and in this
thesis in general, we are interested in simulations of phenomena.

The creation of a simulation is a complicated process with several steps. We
present a short overview here to stress the difference between the actual process
and the idea that simulations are logically deduced from theory.

Constructing a simulation involves decisions on the following interrelated topics:

1. Theory
Theory usually consists of partial differential equations describing the system.

2. Mechanical model, parameters
The system is transfered to an idealised mechanical system consisting of ob-
jects like stiff rods, harmonic oscillators, compressible fluids or whatever is
most appropriate.

3. Boundary and initial conditions
Restrictions are set on the initial state and boundaries of our system.

4. Calculational model, discretisation and programming
Specifics of the calculation model like grids, time stepping and integration
method are chosen and implemented in a computer program.

5. Data analysis, visualisation techniques and interpretations
Simulations often produce excessive amounts of data. How this data is han-
dled, analysed and interpreted is essential for the result of the simulation.

These steps can all include approximations and ad hoc models, introduced to
simplify the problem. Either to make it tractable by reducing the number of free
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variables or simply to make them numerically stable [90]. It is obviously unreason-
able to assume that, after all these steps, a simulation is derived from theory using
only logic.

7.3 An alternative epistemology of simulations

One central observation is the difference between epistemologies focusing on rela-
tionships “up” or “down”. The ordinary epistemology of science is directed “up”. It
looks at how observations and experiment strengthens or falsifies an existing theory.
The epistemology of simulations should be directed “down”; describing how we, by
using existing theories, create new knowledge and understanding.

The question to be answered by our epistemology of simulations is “What is it
that gives credibility to simulation results?”” We have argued above that there is
no logic derivation that yields the simulation based on the theory. The goal of the
epistemology of simulations will then be to find other rational grounds to believe
in the results.

In each of the steps described in the previous section, knowledge on how models
and techniques have worked in previous simulations is used. Knowledge that is not
connected to the theory that is the basis of the simulation, but fundamental to the
simulation itself. In some cases approximations can be validated mathematically,
but often they are motivated by previous success, by physical intuition for a specific
mechanism or some other argument.

To make a simulation credible it is calibrated in as many ways as possible. This
includes comparisons with other simulations and experimental data as far as they
are available. Unfortunately experimental data is often scarce since one of the main
reasons for carrying out simulations is to access phenomena that cannot be accessed
by experiments (e.g. the convection inside stars). Judging what to compare can
also be hard. Most or all of the data produced in a simulation is not correct in
detail, so the focus for comparisons should be averages or larger structures in the
result.

The result is an epistemology of simulations, that in addition to theory, is based
on experience, physical intuition and as much testing as possible. This construction
is not as definitive as a pure logical derivation but it has the advantage of describing
the reality of how simulation data is actually created and used.

The role of the observer is very important in this epistemology. After choosing
which phenomena to study, the observer chooses both the techniques used to per-
form the simulation, the way calibration and tests of the simulation is performed
and, eventually, the techniques for data analysis. It is the responsibility of the
simulation scientist to not deceive by tacitly making choices partial to a particular
view of the phenomenon studied.
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7.3.1 Relevance for this thesis

Computer simulations of liquids are a well accepted branch of the science of liquids,
its standing based on a history of successful simulations in the past. The importance
of simulations for understanding liquids was obvious already in the beginning of
the seventies [11]. Testing simulations of liquids is reasonably easy since a number
of the quantities calculated in simulations are also measurable in experiments as
described in Chapter 3. Today some computer simulation results can also be tested
in colloidal suspensions which add yet another way of testing them.

Looking at the development of computer simulations it is clear that the epis-
temology outlined above fits well to the actual development of the field. Models
like the binary mixture Lennard-Jones liquid was originally motivated by physical
arguments and the strive to simulate a real metallic liquid, then simplified to ease
calculation. Eventually, after decades of providing reliable and relevant results, the
choice of this idealised liquid in a simulation requires hardly any motivation.

The potentials used in this thesis, discussed in detail in Section 2.1, are created
via a mixture of theory, physical intuition and an interest in specific effects. All this
has been done in the spirit that the goal of simulation is to simulate a phenomena,
not a specific theory. The results of simulations using these liquids and correspond-
ing solids has been the basis of at least two doctoral theses before this one [77, 92].
It seems safe to conclude that this approach to simulations and models is a fruitful
path.
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