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Abstract

The thesis considers numerical approximations to solutions of the compressible
Navier-Stokes and Large-Eddy Simulation (LES) equations.

An embedded boundary method for representing geometries within the com-
putational domain is considered. Test examples indicate that the discretization
errors from the embedded boundary manifest as numerical 'roughness’ when the
flow is turbulent and numerically unresolved. For low-Reynolds number configura-
tions however the errors made on the embedded boundary are of the same order of
magnitude as the errors made by the internal discretization scheme.

The computational grid is Cartesian. This imposes a hard limit on the viable
resolving power of boundary layers on the method for high-Reynolds number con-
figurations, even in the presence of local grid refinement. To mitigate this severe
limitation wall-models can be used. They in effect model the near-wall-behaviour
instead of resolving the thin boundary-layer associated with high-Reynolds number
flows. We have tested one wall-model for LES in this thesis and we conclude that
the models do not yield perfect results.
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Sammanfattning

Avhandlingen betraktar numeriska approximationer till 16sningar till kompressibla
Navier-Stokes och Large Eddy Simulation (LES) ekvationerna. En inbdddad rand-
metod for att representera geometrier inuti berdkningsomradet betraktas. Testex-
empel indikerar att diskretiseringsfelen fran den inbdddade randen visar sig som
numerisk ’grovhet’ nir flédet &r turbulent och numeriskt underupplost. For lag-
Reynoldstalsfloden dr felen fran den inbédddade randen av samma storleksordning
som for det interna diskretiseringsschemat.

Berdkningsnitet dr ekvidistant och kartesiskt, vilket begrénsar starkt metodens
mojligheter att 16sa upp gransskikt for loden med héga Reynoldstal, &ven om man
anviander lokal ndtférfining. For att lindra detta tillkortakommande kan man an-
vinda viggmodeller. Dessa modellerar vad som hénder i nirheten av en fast vigg,
istéllet for att 16sa upp de tunna griansskikt som uppkommer for fléden med héga
Reynoldstal. I denna avhandling har vi provat en viggmodel for LES och slutsatsen
ar att resultaten inte dr perfekta.
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Chapter 1

Scope of work/Summary

The prediction of turbulent compressible flows is a major challenge in terms of
modeling, numerical algorithms, and computer performance. The motivating ap-
plication for these investigations is the modeling of the solid fuel rocket exhaust
plume behind a laser guided missile, with an aim to predict the refraction of a laser
beam used to communicate with the missile.

Large Eddy simulations of a simplified model with non-reacting and reacting
base flow using the FOAM software (Paper I, IT, III) were set up and compared
to measurements [32] in an attempt to clarify the effects and applicability of different
approaches to constructing the sub-grid scale filter in Large Eddy Simulations.

The sub-grid scale filter can be analyzed more conclusively if a scheme with
known ’characteristics’ is employed so discretization errors and filter action can be
separated. This proved to be non-trivial in the FOAM code as it was at the time,
and it was decided to look to another family of schemes, the recently introduced
Embedded Boundary methods [70, 13]. By virtue of primarily using rectangular
grids, even for complex geometries, they offer simplicity and efficiency in terms
of implementation and computer resources. The boundary conditions are harder
to set, but successful applications of high-order Dirichlet and Neumann boundary
conditions for second order wave equations [43, 45] indicated that these problems
can be overcome. The embedded boundary technology is very well suited for sim-
ulations with moving boundaries. The mesh can be fixed, alleviating the need for
grid speed contributions, and the calculations of boundary conditions on a moving
solid boundary are not expensive.

It is evident that a Cartesian grid cannot, for obvious reasons of cell aspect
ratio, offer the grid point economy in thin solid boundary layers that a boundary-
fitted grid can. The Cartesian grid technique must therefore be combined with a
smart grid-hierarchy such as the building-cube [57], and also with adaptive mesh
refinement, like Berger et. al. [4, 5] to become a fully functional tool.

The work presented here represents the first steps towards a large eddy simulator
for compressible turbulence in complex geometries using Cartesian grid methods.



2 Chapter 1. Scope of work/Summary

The basic scheme is derived from high-resolution schemes [65, 30, 25], offering sharp
discontinuity resolution and second order of accuracy for smooth solutions. Such
schemes on boundary fitted grids, referred to as Implicit LES [29, 27, 28, 21], have
been successful even without specific sub-grid scale filter because of the dissipation
provided by the limiters and “entropy fixes”. It is believed that the embedded
boundary technology developed here can be used also together with more-than-
second-order schemes such as the Sjogreen/Yee central schemes [72] for compressible
turbulent flow simulations in complex geometries.

Boundary conditions with small-cell stiffness mitigation, proposed in [43] are de-
signed to give continuous dependence on details of grid position w.r.t. boundaries.
The use of Kreiss/Peterson, Sjogreen /Peterson embedded boundaries for compress-
ible Navier-Stokes/LES is new. The implementation of the method was made for
parallel supercomputer utilizing MPI (Message Passing Interface). The implemen-
tation was tested on flows around simple geometries for supersonic high-Re flows
and compared to boundary-fitted grid results (Paper IV, V). Wall quantities such
as friction coefficient and pressure coefficient are of primary interest in applications
to fluid-solid interaction simulations.

The 3D test case - the Dutton base-flow experiment [32, 53, 9, 8] - brings us back
to the type of application which initiated the work (Paper VI). The acceleration
of the core flow downstream is strongly influenced by the wall boundary layer which
is shed as a turbulent free shear layer. A thick boundary layer will not accelerate
the core flow as much as a thin boundary layer.

The MUSCL-scheme with an entropy fix adds artificial dissipation in the bound-
ary layer, and thickens it. The MUSCL effects of artificial viscosity dominate, 2:nd
order Godunov physical/LES viscosity is not resolved with current resolution.

1.1 List of papers

The thesis is condensed from the following articles, which the author has contributed
to. The papers are included in the end of the thesis.

1.1.1 Paper |

Roger Mattsson, Marco Kupiainen, Per Gren, Anders Wahlin, Torgny E. Carls-
son and Christer Fureby, Pulsed TV Holography and Schlieren Studies, and Large
Eddy Simulations of a Turbulent Jet Diffusion Flame, Combustion and Flame 139
(2004) 1-15. The author of this thesis contributed to some of the ideas presented,

performed the numerical simulations and wrote parts of the manuscript.

1.1.2 Paper ll

Christer Fureby and Marco Kupiainen, Large Eddy Simulation of Supersonic Ax-
isymmetric Baseflow. In Third International Symposium on Turbulence and Shear



1.1. List of papers 3

Flow Phenomena (TSFP-3), Sendai, Japan 25-27 June 2003. The author of this

thesis contributed to the ideas presented, performed the numerical simulations and
wrote the manuscript.

1.1.3 Paper lll

Marco Kupiainen and Christer Fureby, Large Eddy Simulation of a Turbulent Non-
premized Flame. In Third International Symposium on Turbulence and Shear Flow
Phenomena (TSFP-3), Sendai, Japan 25-27 June 2003. The author of this thesis

contributed to some of the ideas presented, performed the numerical simulations
and wrote parts of the manuscript. The author also presented the paper at TSFP-3.

1.1.4 Paper IV

Marco Kupiainen and Bjorn Sjogreen, A Cartesian Embedded Boundary Method
for the Compressible Navier-Stokes Equations. Accepted for pulication in Journal
of Scientific Computing 2008. The author of this thesis implemented the method

solving the Navier-Stokes equations and wrote parts of the paper. The author
presented a part of this work at BIT Circus Conference 2006, Stockholm and EC-
COMAS 2008, Venice.

1.1.5 Paper V

Marco Kupiainen, On the Accuracy of an Immersed/Embedded Boundary Method
for Compressible Turbulent flow The author wrote the computer code, wrote the

manuscript and did the analysis. The author presented a part of this work at
ECCOMAS 2008 conference, Venice.

1.1.6 Paper VI

Marco Kupiainen, LES Baseflow simulations using a Cartesian Embedded Boundary
Method. The author wrote the computer code, wrote the manuscript and did the

analysis. The author presented a part of this work at ECCOMAS 2008 conference,
Venice.






Chapter 2

Introduction

There are three major ways to investigate and analyze complex flows, namely mak-
ing physical experiments in laboratories using e.g. wind-tunnels, using mathemati-
cal analysis and doing numerical simulations of the flow. These methods should be
seen as complements to one another, since they are beneficial in different ways.

An example of an application is the control of a supersonic missile by laser
guidance from the aft. The laser-beam must travel through the bas-flow shocks
and exhaust plume which is very hot, turbulent, and particle-laden. A robust sys-
tem to steer the missile needs to know what the flow field in the plume looks like.
Experiments in a wind-tunnel are very challenging and costly. Numerical simula-
tion is the remaining option. The questions are how accurate such computational
predictions are, which methods to use and how large the computational effort/time
will be.

The thesis surveys commonly used methods for these types of applications and
shows calculations performed with finite volume schemes and difference methods.
The development of a Cartesian grid embedded boundary method for Navier-
Stokes/LES equations modeling for these types of flows is the major contribution
of this thesis.

Laser Guidance R“\

\_\_L"LH

Figure 2.1. Control by laser guidance.



6 Chapter 2. Introduction

2.1 Computational Fluid Dynamics

The Navier-Stokes equations which describe fluid flow processes are complicated
and the existence of long-time solutions is (Nov. 2008) still an open mathemati-
cal problem. A proof would earn the prover the Clay Prize of a million dollars.
Leaving such fundamental questions aside, the engineering and scientific commu-
nities since von Neumann are developing the technology of Computational Fluid
Dynamics (CFD) now used routinely both by researchers and engineers to study
and understand physical phenomena of fluid flow. Also since von Neumann the
need for better flow simulations has been an important driving force for develop-
ment, of high-performance computers. CFD is an interdisciplinary field involving
fluid mechanics, the theory of partial differential equations, computational geome-
try, numerical analysis, and the computer science of programming algorithms and
processing data structures. The field has matured substantially as an engineer-
ing discipline. There are many commercial flow solvers and the market for CFD
software was estimated in 2006 at more than 150 MUSD p.a. (COMSOL, private
comm.) Whereas turbulence models for equations of mean flow, when tuned to the
problem at hand, provides answers for aeronautics engineers, accurate prediction of
turbulent flow from first principles is yet to be demonstrated for all but the simplest
flow geometries.

2.2 Turbulent Flows

The notion of turbulence and its meaning is generally accepted. The literature is
vast. Some overview work is presented in e.g. [64], [69], [75], [56], [77] and [33]. In
[33] the following definition is made:

Turbulent fluid motion is an irreqular condition of flow in which the var-
ious quantities show a random variation with time and space coordinates
so that statistically distinct average values can be discerned.

Turbulence is a flow phenomenon with a wide range of scales in both time and
space, characterized by low momentum diffusion, high momentum convection, and
pressure and velocity variation with time. Flows that are not turbulent are usually
called laminar. The (dimensionless) Reynolds number, Re = £=U=% i5 5 measure
of the ratio of inertia forces to the molecular viscosity effect, which characterizes
whether flow conditions lead to laminar or turbulent flow. It is further generally
assumed that turbulence is a continuum phenomenon, an assumption applicable to
liquids and gases under atmospheric conditions. Some caution is dictated in the
case of hypersonic flows, which can have regions of very low density, e.g. on the
lee-side of a wing at high angle of attack, as happens on the Space Shuttle. The
continuum assumption is violated when the ratio of the molecular mean free path
length to a representative physical length scale, the Knudsen number, is small.



2.83. Common Levels of Approximation 7

A characteristic feature of turbulent flows is the occurrence of eddies of different
size. Kolmogorov’s famous theory from 1941 [40], [41] (later refined in 1962 [42]), for
homogeneous turbulence makes two key assumptions. (i) There is a steady transfer
of kinetic energy from the large scales to the small scales and kinetic energy is
consumed at the small scales by viscous dissipation. (ii) There is an inertial sub-
range of scales where the turbulence generating processes are independent of the
details of the large scales. The eddies that carry most energy have a characteristic
length scale called the integral length scale . The Kolmogorov scale 7 is the smallest
length scale in turbulent flows. The range of scales in between is called the inertial
subrange, see Figure 2.2.

log E(k)
inertial viscous
subrange subrange

Large
scales

energy
containing
integral

scales

0 log(k)

Figure 2.2. Schematic representation of the turbulent kinetic energy spectrum as
a function of the wavenumber k.

2.3 Common Levels of Approximation

Numerical prediction methods of turbulence are often classified as Direct Numerical
Simulation (DNS), Large Eddy Simulation (LES), or Reynolds Averaged Navier
Stokes (RANS) models. In DNS all time and space scales are resolved, e.g. [64].
LES, in which only the larger scales are resolved and sub-grid models are used to
represent the effects of the small scales upon the large resolved scales, is described
in e.g. [66]. RANS models, in which the mean velocity, density, temperature etc.
are solved for, are discussed e.g. [79] and references therein. DNS, LES and RANS
can be considered as complementary methods to each other, providing different



levels of information and accuracy, with different areas of application.

Chapter 2.

picture of the different approaches is presented in Figure (2.3).

25

Introduction

A schematic

LES

RANS

turbulent quantity

15F

1 ! ! ! ! ! ! !

DNS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
normalized time

0.8 0.9

Figure 2.3. A schematic, illustrating the conceptual ideas of RANS, LES and DNS.

2.3.1 Direct Numerical Simulation (DNS)

DNS solves the unsteady Navier-Stokes equations with all scales (time and space)
taken into account. This is equivalent to saying that the space-time resolution of the
discretization should be at least as fine as the characteristic scales of the continuous
problem, i.e. the Kolmogorov scale 7, which means exorbitant computational cost.
Most interesting flows have much higher Reynolds numbers than can currently be
simulated with DNS. The current Petaflops generation of supercomputers are orders
of magnitude too small and slow for any but the simplest geometries. Applications
in aeronautics and ship design deal with Reynolds numbers as high as 10® raising
the need of 10?4 space-time grid points and 1027 floating point operations.
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Figure 2.4. Conceptual overview of DNS of turbulent flows: Maximum Reynolds
number versus geometric complexity, [38].

2.3.2 Large Eddy Simulation (LES)

In LES the number of resolved scales is reduced by spatial low-pass filtering and
hence in the solution process the dynamics of all the scales are not computed
explicitly. A cut-off scale is defined, below which the scales are not solved for
explicitly, usually denoted sub-grid scales. The non-linearities in the Navier-Stokes
equations couple all the scales of the original problem, both above and below the
cut-off scale, and in order for the resolved scales to take into account the effects of
sub-grid scales, models need to be used. The models are to represent the interaction
between the grid scale (resolved scales) and the sub-grid scales. Furthermore, the
small scales are assumed to be more universal in character and are therefore believed
to be more easily modeled. This assumption is however known to be invalid for near-
wall flows, and the development of LES-wall models is an active field of research.

The models increase the computational cost, but by using simple and univer-
sal models, a reduction by several orders of magnitude in number of operations is
obtained when comparing to resolving all physical scales. The curse of dimension-
ality is also present in LES. In order to approach a feasible solution algorithm one
needs to use some kind of turbulence modeling and use a well implemented efficient
method that is adaptive in both space and time.

LES has four conceptual steps:
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(i) A spatial filtering operation to decompose the equations into filtered (grid-
scale) components and residual (sub-grid scale, SGS) components, i.e.

p=0+¢,

where ¢(z) = [, G(z — & A)p(£)dQY is the space filtering convolution, see
e.g. [66]. The filtered component ¢ represents the large scales, that are used
explicitly in the calculations and ¢’ represents the small scales whose effect
must be modeled. We also introduce Favre filtering defined by

where p is the density, which is often used in compressible LES formulations.

(if) The equations for the evolution of the filtered components are derived from
the Navier-Stokes equations. These equations are of the same form as the
original equations, except that they contain new terms arising from the resid-
ual motions.

(iii) Closure is obtained by modeling the SGS terms.

(iv) The filtered equations are solved numerically for ¢, which is an approximation
to the large-scale motions in one realization of the turbulent flow.

The time-averaged mean-flow quantities

1 ti
()i = o, T)dr

ti —to Jy,

can be compared to experimental data. In the LES-community there are mainly
two views on the separation of modeling issues (i)-(iii) and numerical solution (iv).
One school sees filtering and modeling as independent of numerical methods, in
particular independent of the computational grids used. The other viewpoint is that
modeling and numerical issues cannot practically be separated and hence should
deliberately be combined, e.g. [7], [28].

2.3.3 Reynolds Averaged Navier Stokes (RANS)

The RANS approach replaces the Navier-Stokes equations with a set of time-
averaged flow equations for the mean flow quantities.

to+T
=7 [ ot

The formal averaging procedure results in a hierarchy of equations that requires
closure by models for averages of products of fluctuations. Extensive efforts have
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gone into deriving closure models, simply called turbulence models. Key elements
of these models are parameters obtained both from fitting solutions of the equations
to experimental data and from detailed computations. Both experiments and DNS
have played important parts in deriving and calibrating turbulence closure models,
see e.g. [79] and [64]

2.4 Compressible Turbulence

Significant effects of compressibility appear when the Mach number M., = UT“,
the ratio between flow speed U, and the speed of sound ¢, exceeds approximately
0.3. Turbulent compressible flows have been significantly harder to compute, due
to the increased complexity introduced by the energy equation and the need for
modeling its closure terms. The turbulence phenomena where compressibility plays
an important role are for instance: in (1) transonic and higher speed aerodynamics,
(2) high-speed combustion, and (3) magneto hydrodynamic (MHD) flows related to
nuclear fusion physics. Here we focus on non-MHD compressible turbulent flows.
While the classical turbulence studies have been conducted on incompressible flows,
see e.g. [66] for a good review, LES for compressible turbulence e.g [19], [52], [39],
[58], [16] and [54], is becoming a field of its own. Methods and theory concerning
incompressible flows have been modified to treat compressible flows. Compressible
high-speed flow involves, apart from turbulence, also non-smooth features such
as shocks and shocklets, [62], making the requirements on the numerical method
harder than for incompressible flow problems. The instabilities due to turbulence
occur on many scales, although in some sense, averaged quantities may be stable
and coherent large-scale features may evolve. The interplay between the large-
scale and small-scale motions dominates the problem and compressibility affects
this interplay, [17].

2.5 Numerical Approaches for Compressible Flows

Below a brief description of general numerical approaches and the most common
methods for flow computations is presented.

Finite Element Methods

The finite element method (FEM) is based on a variational principle, where the
solution is sought in a finite dimensional function space. FEM can be used on
basically any kind of mesh. The solution will be a linear combination of functions
from this function space. For large classes of problems FEM is supported by rigorous
mathematical theory and error-estimates. Adaptivity can easily be included into
the method. Application of FEM in the time domain gives rise to systems of
equations that have to be solved in each time step. The most notable effort in
FEM for compressible flows is the Discontinuous Galerkin method [12], where the
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basis functions are discontinuous, either in time or space. The efficiency of FEM
relies heavily on efficient linear solvers and effective preconditioners for these. When
strong shocks are present the computational burden can become significant; for an
analysis of this fact for a scalar non-linear conservation law see [10].

Spectral Methods

Spectral methods are a special kind of FEM method see e.g. [11]. The basis func-
tions are typically based on Fourier approximations or Chebyschev polynomials
and have non-local support. These methods are very accurate (exponential con-
vergence rate for C* solutions) and are mainly used for DNS. The difficulties with
discontinuities in the solution , such as shock waves, can be handled with so called
pseudo-spectral methods. Another limitation is that these methods admit only
very simple geometries, making them inapplicable for flow problems around or in-
side complex bodies. Spectral methods owe efficiency to the FFT algorithm, and
its implementation: For parallel processor computations often the whole solution
must be communicated across all processors several times per time step, e.g. [2].
Also, local mesh refinement is difficult and adaption to local features, such as inlet
disturbances, may require expensive global mesh refinement.

Finite Volume methods

Finite volume methods are based upon the integral formulation (using cell-averaged
quantities) of the PDE. The usage of methods dominate computational aeronautics
since 1970’s. Unstructured finite volume methods do not easily generalize to higher
order methods, mainly because there is no straightforward method to make the dif-
ference approximations more accurate when cells (control volumes) are arbitrarily
shaped. Adaptivity is also in principle easy, but there are no rigorous error esti-
mates, such as with FEM, and one estimates the error using some ad hoc principle.
Finite volume methods can be used on all kinds of meshes.

Finite Difference Methods

The finite difference method is based on the differential formulation of the PDE
see e.g. [74]. If we interpret cell-averaged quantities in the finite volume method
as point values we can interpret the method as a finite difference method. These
methods are based on Taylor’s formula to approximate the solution and do not work
on discontinuous solutions, as finite volume schemes and discontinuous Galerkin
schemes do. Finite difference methods are always used on structured meshes.

2.6 Computational Grids for CFD

The methods above must operate on some data representation to solve the compu-
tational task at hand. With data representation we mean type of grid and how the
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handling of geometries within the computational domain is done.

2.6.1 Unstructured grids

Unstructured grids cover the computational domain with “arbitrarily” shaped, often
tetrahedral or hexahedral, control volumes and approximate the integral formula-
tion in each control volume, see Figure 2.5. Due to the arbitrary shapes allowed
in the method, complex geometric objects are in easy to capture. Many software
packages can generate such grids from a CAD-model e.g. ICEMCFD [35] and Gam-
bit [36]. Unstructured grids are used in FEM and in Finite Volume methods. Due
to the irregularity of the mesh Taylor expansion methods are not easily applicable.

With ordinary unstructured finite volume methods usually only second order
(formal) accuracy is achieved. Of course the quality of the simulation depends
on the mesh quality. A rule of thumb is that the cell-size should not increase or
decrease with more that 20% from one control volume to another (which still is very
much!), in order for the mesh to have acceptable quality. Mesh cell skewness also
affects the grid quality. Another feature which makes unstructured grid methods
slightly ineffective is that in order for a cell/point to know its neighbor, it has to
look it up in a list or some similar data structure, and it is somewhat difficult to
order the data in such a way that needed data for an operation is in the cache. We
will refer to this as data reference locality. Much work has been put into ordering
the datasets to exploit data locality for unstructured methods in order to limit the
cons of indirect addressing. Moving boundaries can be treated with ALE e.g. [14],
which admits movements of the boundary small enough to limit the deformation of
the cells. Larger deformations need time consuming regridding.

2.6.2 Body-fitted grids

The computational domain is covered with a grid of indexed points (x;, y;, z) which
can be mapped to a rectangular box in (&;, n;, ¢x) computational space. Derivatives
can either be evaluated in physical or in mapped space. Single such grids can only
cover simple geometries, e.g. C-grids and O-grids etc., see e.g. [76] and Figure 2.6.
There are regularity requirements on the grid-to-computational domain mappings,
to preserve accuracy. For high-order methods and complex geometries this can
be an impossible requirement. With so called multi-block meshes see Figure 2.7
complex domains can be gridded, but constructing good body-fitted grids is time
consuming. The rewards for this are grids on which computations can represent
the physics of the problem accurately, especially boundary layers. This property
is not easily duplicated in the unstructured gridding or in the Cartesian embedded
boundary methods.

The data structures do not suffer from indirect addressing and adaptive mesh
refinement (AMR), e.g. [5], [4] can be used to locally refine the solution.

The simulation of moving boundaries requires regridding in each time iteration
or when the boundaries move.
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Figure 2.5. Example of an unstructured mesh around a cylinder.
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Figure 2.6. Example of body-fitted structured O-grid around a cylinder.
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Figure 2.7. Example of a multi-block mesh of a jet. The grid is stretched somewhat
towards the shear-layer located between the outer layer and the intermediate layer
of grids. Note the hanging nodes in patches 1,4 and 8.
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I
A 1

Figure 2.8. Overlapping a Cartesian mesh with a body-fitted structured mesh.

Overlapping structured grids

A very promising method to circumvent the limitations of structured grids is to use
overlapping grids, also known as ’Chimera’ grids e.g. [31]. A ’base’ grid, covers the
whole computational domain, and around objects body-fitted grids are introduced.
In the overlapping domain between the ’base’ grid and the body-fitted grids inter-
polation is used to connect the solution in all grids. A significant complexity of this
method is the computation of intersection points for the interpolations between the
grids.

Moving the boundary is handled by moving the mesh surrounding the bound-
aries only. The interpolation stencils between grids need to be updated and grid
values previously unused must be assigned values in a consistent and stable manner,
which is a general problem with moving meshes, for a solution see e.g. [31].
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2.7 Uniform Cartesian grids with embedded bound-
aries

Uniform Cartesian grids have the highest quality with respect to computational
accuracy, since there is no need to make any mappings from physical space to
computational space. Most methods based upon Taylor-expansions are derived to
be used on uniform Cartesian grids, so there is no need to make modifications to
the numerical schemes due to deformed meshes. Classically, Cartesian grids could
be used only for box-like geometries, where the boundaries of the object are aligned
with the grid. The discretization methods do not need indirect addressing making
them effective.

With embedded boundary methods e.g. [50], [13] and [49] (Paper IV), the
use of Cartesian grids can be extended to solve problems in complex geometries,
yielding an efficient and accurate method.

In a body-fitted grid, the grid spacing along the body surface can be much larger
than the resolution in the surface normal direction in order to resolve boundary
layers in viscous computations. This means that the cells near the body have high
aspect ratios, typically 1:10 for time dependent calculations and 1:100 or even 1000
in steady state computations. While this is computationally efficient, accuracy can
suffer due to the scale separation that in practice is enforced. For example, if a
shock or flame hits the body at an angle to the grid lines, the effective resolution
will be the coarser of the two resolutions and not the finer.

One of the former difficulties with embedded boundaries has been the so called
“small-cell stiffness”, caused by boundary-gridline intersecting very close to grid-
points.

The boundary location is defined by signed distance function (SDF). Very com-
plicated geometries can be generated in seconds, straight from CAD-files, see [59],
by simple calls to the signed distance function. Movement of the boundary is also
made simple, no regridding is required, only calls to the SDF, updating of the ghost
point interpolation stencils and initialization of previously unused grid values.

2.7.1 Virtual cell embedding

The virtual cell embedding is a Cartesian gridding technique used for generating
grids for very complex boundaries [50]. A complex geometry is specified as a union
of a number of simples shapes. Each shape, whether given as an analytic function,
a surface-panel representation or some form of bit map, must be accompanied by
a subroutine that determines if a point lies inside or outside the geometry. In this
method there is a distinction of cells into three categories; inner, outer and cells that
are cut. The cells that are cut are further subdivided into smaller cells typically
into 82 in 2D and 102 in 3D. Each one of these “subcells” is determined to be inside
of the body, if the center of the “subcell” is inside the geometry. Thus this boundary
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Figure 2.9. Example of a Uniform Cartesian mesh around a cylinder with local
mesh refinement.
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Figure 2.10. Example of Virtual Cell Embedding.

handling is in principle first order accurate, although the mesh is made much finer
in the parts where needed.

2.7.2 Colellas embedded boundary method

In [13] an embedded boundary method based upon cell slicing is described for
hyperbolic conservation laws. The same method to handle boundaries is used in
[15] to solve the 2D compressible Navier-Stokes equations. The error for this method
is O(h) in Lo-norm and O(h?) in Li-norm. The method uses a linear combination
of explicit conservative and non-conservative updates to set boundary values. This
is combined with a flux redistribution procedure to maintain local conservation.

2.7.3 KP and SP embedded boundary methods

This work uses the Kreiss/Petersson (KP) [44, 45, 43| and SjA9qgreen/Petersson
(SP) [70, 60] embedded boundary methods. They are more than first order accurate,
empirically stable and do not suffer from “small-cell stiffness”. They assign the ghost
point values (set the boundary condition) through interpolation/extrapolation in
the surface normal direction.

The KP methods are linear in the sense that the same interpolation stencil is
used all the time during the calculation, whereas the SP method is slightly data-
driven in the sense that it limits the slopes of the interpolants in a similar manner
as is done in [70] for conservation laws. These methods are described in more detail
in chapter 5.
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Chapter 3

Governing Equations and Models

Here we present the LES equations with turbulence models used to model com-
pressible flow. We discuss briefly the influence of chemical reactions on the ther-
modynamics of the molecular internal degrees of freedom.

WHY? there is no discussion of the reactive flow computed by FOAM?

3.1 Compressible Navier-Stokes/Euler Equations

We consider the compressible Navier-Stokes equations for a perfect gas in two and
three space dimensions, which can be written as (using Einsteins’ summation con-
vention):

ap 0

T oz, (puj) =0,

O(pu;) 0 2 ,

v + o, (puiuj + pdij — (QMSij - §M5ij5kk)) =0, =123, (3.1)
de 0 oT 2

-t  — ko— — | 2uSij — 5 10ijSkk | wi | =0,

o0+ oz, <(€+p)uy " o ( pwSij — g JSkk) u) 0

where p is the density, u;, ¢ = 1,2,3 is the velocity in z,y and z direction re-
spectively, o is the shear coefficient of viscosity and « is the thermal conductivity
coefficient. The Euler equations are obtained when p = x = 0. The viscous strain

rate tensor is given by
1 (0u; Ou,
Sij == ! 2,
J 2 <8$1 + 8:51)

and the total energy per unit volume

TP \Me - 2 )
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which, by using the ideal gas law constitutes the relationship
The temperature 7' is given by

where M is the molar mass of the substance considered and R, is the universal gas
constant. The speed of sound ¢, is related to the pressure and density by

=%,
p
where v = g—z is the ratio between specific heats and Cp, — C, = R—I\;[”. Both ~+ and
1
R—I\;I“ are constants. The specific total energy e/p = iukuk +er = e +er+ e, is the

——

er
sum of the kinetic and of the rotational and vibrational energies of the molecules
denoted er and e, respectively. The specific internal energy is denoted e;. For a
perfect gas the hypothesis are made:

e ¢, =0,

e the velocities at a point (z, t) satisfy a Gaussian distribution law aexp(—b{uy)(ug)),
where a and b and u; are functions of (z,t). The distribution comes from the
theorem of Laplace that considers the molecular velocities as identically dis-
tributed random variables when the number of particles tends to infinity.

e the specific internal energy is made up among its different components in
proportion with the degrees of freedom.

The hypothesis of the equi-partition of energy is pretty well verified when there
are a few degrees of freedom, for example for monoatomic molecules (He), diatomic
molecules (Ha, No, O2) or rigid molecules (H30, COy, CoHo, CoHy). The more com-
plex molecules are less rigid; they thus have more degrees of freedom, which are
not equivalent from the energetic point of view.

Let 8 be the number of non-translational degrees of freedom. The hypothesis
of equi-partition gives the following formula for each type of internal energy:

1

e;ﬁ:...:ekd:Eek, €ER = —€L,

and thus ey = (d + B)ey, .

The adiabatic exponent v = 42+2

d+ i
p=(y—1)per.

The most common adiabatic exponents are 5/3 and 7/5 for d = 3 and 5/3 and 2
for d = 2 and 3 for d = 1. In applications air is considered to be a perfect gas for
which v = 7/5.

results in the law of perfect gases
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The Prandtl number Pr relates thermal conductivity to viscosity

Ry

pr= M7
g K(y—=1)M

Many normalizations are possible. We let L be a typical length and let the oo sub-
script denote typical values of the independent variables, which in our applications
are the free stream values. The physical quantities are denoted by a '+’ superscript.
In three space dimensions we have

t*Coo xt *
t= , L= =5, u;=—, 1=1,2,3
L L Y e
p* p* 6*
pP= y P=—77%, €= —73,
Poo PooCoo PooCo0
‘LL* K.j*
n= y kK=
Hoo Koo
Re — PooCocl Pr— Cplico
Lo ’ Koo ’
where Re is the Reynolds number. The dimensionless Navier-Stokes equations are
ap 0
T ) =0
pui) 0

a(T) 2 .
~— | pwiuy + pdi; — —5—= | 255 — 50i5 =0, =1,2,3,
P +a$j <pu uj + pdsj Te ( Sij 3 jSkk)> 0, i 3

. ey 0, all) (o 200 N LY

(3.2)
where T = p/p. The physical viscosity p* = (T )i = a(T)’%"’I%—j;L and the

Ty Ry Pos oo ko
MRePr(y—1)

1) or calculated using Sutherland’s law

TN\ T+ S,
o(T) = (i) T+S5

with S; = 110.4K. In planar flow all derivatives with respect to x3 are set to zero
and uz = 0.

physical thermal conductivity x* = are either taken constant (o =

3.1.1 Boundary Conditions

We use boundary conditions of the form:

u; =0, (i=1,2,3) un; =0, (1=1,2,3)
wall (no-slip): ¢ BT + a‘g—g = fr wall (slip): ¢ 0BT + ag—z; = fr
p :extrapolated p :extrapolated
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(3.3)

where n; denote the i:th component of the normal vector. For an adiabatic wall
a=1,3=0and fr =0 and for a thermal wall « =0 and 5 = 1.

At inflow and outflow boundaries at the edge of the computational domain, we
impose characteristic boundary conditions e.g. [34].
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LES and Sub-GridScale Models

In this work we consider the Smagorinsky sub-grid model and an implicit sub-
grid model. 'Tmplicit’ subgrid models (ILES and MILES) are given by the leading
order term of the truncation error of the numerical scheme. It is argued in the
ILES/MILES community see e.g. [61] that there are four fortunate circumstances
that make turbulence simulations and in particular ILES/MILES work:

e The shape of the Kolmogorov spectrum:
The average kinetic energy decreases fast enough for the scales containing
most of the energy to be resolvable current computing hardware. This means
that there is enough energy for the small scales to mix large-scale inhomo-
geneities as fast as the large-scale flows can produce them.

e Energy transfer through local interactions:
Turbulent energy is transferred by a turbulent cascade that passes from large
eddies to the small scales where it is eventually dissipated. Simulations have
shown that the energy transfer in the inertial range is dominated by local (in
wavenumber space) interactions, and not deposited directly from the large,
energy-containing scales into the small scales.

The relatively smooth transfer of scales implies that there is a portion of
the inertial sub-range (see Figure 2.2) where the behavior of the fluid dy-
namics is essentially scale invariant. This is the reason why the region with
-5/3 spectrum slope is the acceptable place to match a subgrid model to
the resolved-scale model. In the ILES/MILES context, this corresponds to
choosing the grid size in this region.

e Dynamics on the large scales:
There is an apparent lack of important dynamics occurring at scales even
a factor of ten or more larger than the classically defined Kolmogorov scale.
The dissipation at scales larger than the Kolmogorov scale is sufficiently strong

25
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that little structure survives to reach the small scales. In practice this reduces
the need for spatial resolution.

e Behavior of monotone algorithms at the grid-scale cut-off:
Monotone schemes have a modified equation whose leading order truncation
error resembles the local nonlinear dissipation that connects the large, re-
solved, energy-containing scales to the unresolved subgrid scales and provide
a built-in measure of the dissipation required.

One important difference between LES and ILES/MILES concerns the compu-
tational mesh. In LES, one emphasizes the independence of the equations, par-
ticularity that of the explicit subgrid scale models from the mesh. However, in
ILES/MILES, the mesh is analogous to an experimental apparatus; there one ex-
pects the simulation results to depend on the choice of mesh. Although at first
glance this may seem a philosophical point, it has important practical implications.
In particular, the implicit subgrid scale models of ILES depend both on the length
scales and the geometry of the computational mesh.

4.0.2 The Smagorinsky subgrid model

The Smagorinsky subgrid model dates back to the 1960’s, [73]. If we solve the
Navier-Stokes equations u; + f(u), = 1/Reu,,, then the Smagorinsky model can
be seen as the method of explicitly added artificial viscosity:

Ju Of(u) 0 1 ou ou
ot + dr  Ox Re te ox ox |’ (4.1)
Artificial

where ¢ is the Smagorinsky model parameter. This simple example does not show
the physical reasoning behind the model, but as a corresponding one dimensional
example illustrating the actual effect of the model this is precisely what the model
is, which is easily seen from the full LES-Smagorinsky equations in d dimensions:

0 0
Lt (pu) =0

8t 81']'
Opu; 0 o(T) s 2,
EP i i — | —&— A 29, —
ot + 8:cj {Puzug +(5ng ( Re +Cip HSH SU 3 Sir | +
204 _
TJC’IPA2|S|2} =0, 1=1,...,d (4.2)
de a(T)y TR, A%S|) 2

0
ajL%j{(eij)uj(RePr(7—1)+7—1 * Prp >6—:1:J( )=

20,
(25@' — TjSkk) u]'} = 0,
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where A is the filter width parameter and the parameters Cs = 0.16 and C; = 0.09
according to [52] and ||.S]| is the Frobenius norm of the strain rate tensor, which is
~ |uy| in (4.1). Realizability conditions on the model parameters, e.g for positive
semi-definiteness of the SGS stress tensor, are given in [78]:

Cr > ?Cf.

Prp is the turbulent Prandtl number usually taken to be in the interval Prp €
[0.7, 0.9]. For wall-bounded flows the most used approach is to turn off the LES
contribution near the wall resulting is wall-resolved LES. A is given by

A(z,y, z)a = min(A, C(wallDist(z, y, 2))) (4.3)

where C'(wallDist(x,y, z)) turns off the subgrid model close to a solid wall and A
is a measure of the grid spacing and wallDist(x, y, z) is the closest distance to any
wall. A can be computed in many ways e.g.

(A:cAyAz)l/B, max(Az, Ay, Az), min(Az, Ay, Az), (cell volume)l/g.

For Cartesian grid methods A = h, where & is the (uniform) cell width, is usually
chosen.

4.0.3 The implicit subgrid model (ILES)

In implicit LES (ILES) and Monotone Integrated LES (MILES) methods the trun-
cation error of the method acts as LES turbulence model. Monotonicity is a prop-
erty of certain schemes for conservation laws [51] using flux limiting and artificial
viscosity. The local effect of the non-linear flux-limiting is interpreted as an effective
subgrid turbulence model. Since the truncation error is not viewed separate from
the modeling, these methods are at least second order accurate for solving their
modified equation, i.e. the equation a certain scheme solves to O(h?) including the
leading order error term. There are empirical indications that ILES/MILES works
e.g. [29], [27] and [26]. In many studies e.g. [48] ( Paper III), [22] (Paper II)
ILES/MILES is one of many LES subgrid models tested. A common conclusion is
that the solution is not much affected by the choice of subgrid model, indicating
either that the solution algorithm has poor accuracy, so modeling effects do not
show in the solution, or that the spatial resolution was insufficient.

4.0.4 Convergence

A high-Reynolds number flow is unstable, even when the full turbulent cascade is
being resolved down to the Kolmogorov scale. Two faithful simulations of the same
problem with different methods will deviate progressively with time as a result of
arbitrarily small differences in initial and/or boundary conditions, round off errors,
methods, etc.. Now, convergence of a sequence of numerical simulations means that
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the solutions approach a limit, the grid-converged solution, which by the procedure
becomes defined point-wise. If the methods are convergent under grid refinement,
as is customarily assumed, one could compare the limiting solutions.

Turbulent flows are chaotic by nature and convergence cannot be point-wise
in space and time, but as in the definition of Hinze, see Ch x, only in averaged
quantities. It follows that the numerical simulations will not converge.

How to assess the accuracy of LES using A = C - h, i.e. how to define the lim-
iting solution, is perplexing; increase in spatial resolution uncovers more structure
in the computed flow as unresolved scales become resolved. One might define con-
vergence to the limit solution as convergence of all relevant averages. and address
the problem of selection of these.

An alternative is to use a fized A, specific for the problem under study, dictated
by the physics and the quantities of interest: forces, mixing properties, etc.. As
an example, a physical length scale can be provided by the "equivalent grain size"
in flows over rough walls. [47] (Paper V) uses this interpretation to analyze the
performance of the EB boundary conditions.

4.0.5 Near-wall-boundary Conditions for LES

Like all numerical approximations to the flow equations LES requires the setting
of boundary conditions in order to fully determine the system and obtain a math-
ematically well-posed problem. Here we discuss questions of determining suitable
boundary conditions for LES especially near solid walls.

General problem

The LES equations can be of an order different from that of the original Navier-
Stokes equations. This is trivially verified by considering the differential interpre-
tations of the filters: the resolved equations are obtained by applying a differential
operator of arbitrarily high order to the basic equations.

The changed degree of the discretized equations raises the problem of determin-
ing the associated boundary conditions, because those associated with the equations
governing the evolution of the exact solution can no longer be used in theory for
obtaining a well-posed problem [66]. This problem is generally not considered, ar-
guing the fact that the higher-order terms appear only in the form of O(AP), p > 1
perturbations of the Navier-Stokes equations and the same boundary conditions
are used for the LES and DNS of the Navier-Stokes equations. Moreover, when
the filter is unknown, it is no longer to derive suitable boundary conditions strictly,
which also leads to the use of the boundary conditions of the basic problem.

The boundary conditions, along with the similarity parameters of the equations
determine the solution. These conditions represent the whole fluid domain beyond
the computational domain. To specify the solution completely, these conditions
must apply to all of its scales, i.e. to all space-time modes it comprises.



29

In order to characterize a particular flow, the amount of information in the
boundary conditions ia a function of the number of degrees of freedom of the bound-
ary condition system. This poses the problem of representing a particular solution,
in order to represent it numerically. We have a new modeling problem; to model
the physical test configuration.

This difficulty is increased for LES and DNS, due to the large number of degrees
of freedom and require a precise space-time deterministic representation of the
solution at the computational domain boundaries.

Solid wall problem

We describe the problem in the ideal framework of a flat-plate, turbulent boundary
layer, without pressure gradient. The external flow is in the x; direction and the x4
direction is normal to the wall. The external velocity is denoted U.. The boundary
layer thickness ¢ is defined as the distance from the plate beyond which the fluid
becomes irrotational, and thus where the fluid velocity is equal to the external
velocity. The friction velocity u, is defined as

Tw
Ur = 4 —, (4.4)
p

where 7, = 6“#“:"377%’“ and we can define a Reynolds number
Re, = —. (4.5)

The reduced velocity u , expressed in wall units, is defined as u7L = u;/u,;. The
wall coordinates ;" are obtained by the transformatlon zf = %

The boundary layer is divided into two parts: the inner region (0 < zo < 0.20)
and the outer region (0.20 < z3). In the inner region the dynamics is dominated
by the viscous effects. In the outer region, it is controlled by the turbulence.

The structure of the (turbulent) boundary layer flow has certain characteristics:

e Low-speed streaks in the region 0 < y* < 10. The flow is highly agitated
close to the wall, consisting of pockets of fast and slow fluid that organize in
ribbons parallel to the outer velocity.

e Ejections of low-speed pockets fluid outward from the wall. These are subject
to an instability that make the explode near the outer edge of the inner region.

e An ejection is followed by sweeps of high-speed fluid toward the wall in the
near-wall region, almost parallel to it.

e Vortical structures of several proposed forms.

e Strong internal shear layers in the wall zone (y* < 80).
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e Near-wall pockets, observed as areas clear of marked fluid in certain types of
flow visualizations.

e Backs: surfaces (of scale ¢, where ¢ is the boundary layer thickness) across
which the streamwise velocity changes abruptly.

e Large-scale motion in the outer layers (including bulges, superlayers and deep
valleys of free-stream fluid).

These highly intermittent events induce a strong variation in the unsteady Reynolds
stresses and originate a very large part of the production and dissipation of the tur-
bulent kinetic energy. These variations produce fluctuations in the subgrid dissipa-
tion that can reach 300 % of the average value and can make it change sign, [66].
The above features call for a special treatment in the framework of LES. Analyzes
of DNS result [66] indicate that the maximum turbulent energy production is at
x§ ~ 15, which gives rise to a high backward energy cascade and associated with
the sweeping type events. The forward cascade is associated with the ejections.

In the outer regions of the boundary layer where the viscous effects no longer
dominate the dynamics, the energy cascade mechanism is predominant. Both cas-
cade mechanisms are associated preferentially with the ejections.

Modeling or resolving the near-wall behavior in LES?

The problems of applying the LES framework to the flow near walls are that the
mechanisms creating the turbulence, i.e. the driving mechanisms, are associated
with fixed characteristic length scales on the average. Also, the turbulence pro-
duction is is associated with a backward cascade mechanism in certain regions of
the boundary layer. These two factors make the present subgrid models inoperative
because they cannot represent these driving mechanisms. There are two approaches
to this dilemma:

e Resolving the near-wall dynamics directly. The subgrid models do not account
for the turbulence production mechanisms in the near-wall region. By turning
off the subgrid model in the near-wall region and using a sufficiently fine
resolution the near-wall dynamics are resolved. This is called wall-resolved
LES, and is illustrated in Figure 4.1. The solid wall is represented by a no-slip
condition. This implicitly implies that the mean free path of the molecules
is small compared to the characteristic scales of the motion, and that these
scales are large compared with the distance of the first grid point from the
wall. In actual simulations, this is achieved by placing the first grid point at
x3 € [0,1]. In [24, 67] a typical required resolution for boundary layers using
DNS/LES is reported: Arguing that the non-isotropic modes must be resolved
it is argued in [3] that number of degrees of freedom in space for the solution
scales as Re2. This becomes prohibitively expensive from a computational
perspective for high-Reynolds number flows. In [46] (Paper VI), we have
experimentally made investigations how to the turn off the LES SGS-model
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Figure 4.1. No-slip type grid.
| DNS | Wall-resolving LES | LES with wall-model |

Az (streamwise) 10-15 | 20-50 100-600
Azy (wall-normal) 1 1 30-150
Ax] (spanwise) 5 10-20 100-300
No. of points in 0 < x5 < 10 | 3 3 -

Table 4.1. Typical mesh size (in wall units) for DNS and LES for boundary layer
flow, [67].

contribution close to the wall. However these simulations were too unresolved
in the near-wall region, so that nothing conclusive can be said.

e Modeling the near-wall dynamics. The inner region is a model representing
the dynamics of the zone between the wall and the first grid point outside
the wall, see Figure 4.2. This is a special subgrid model called a wall-model.
Since, usually the first grid point is located at a distance greater than the
characteristic length scales of the modes existing in the modeled region, the
no-slip condition can no longer be used. The boundary condition will apply
to the values of the velocity components and/or their gradients, which will
be provided by the wall-model. This approach makes it possible to place
the first grid point in the logarithmic layer (in practice z3 € [20,200]). The
main advantage is that the number of degrees of freedom in the simulation
is greatly reduced, but since part of the dynamics is modeled, an additional
source of error is also introduced.
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Figure 4.2. Wall-model type grid.

A wall-model for compressible LES

For incompressible flows there are numerous wall-models proposed for LES, see e.g.
[66] for a comprehensive summary. In [55] a wall-model for the incompressible LES
equations is presented. The method is based on a local integration from the first
computational grid point near the wall to the surface. This approach does not
require the use of an internal discretization of the boundary layer or the use of
an auxiliary solver. Therefore it can be implemented into an existing flow solver.
Below we present this wall-model adapted to compressible flow and the embedded
boundary method used in this thesis.

We assume (for simplicity of presentation) that the tangential velocity is u; and
that the normal direction from the wall is 5. The wall-model is given as a solution
to

L (enn ) -r, (4.6

d$2

where F' can be the pressure gradient and/or convective terms in the NS/LES
equations.

pr (x2) = p(aa) Ly, (x2)

The mixing length L,, is given by
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where x = 0.42 is the von Karman constant. The model is derived by integrating
(4.6) in the wall-normal direction to yield:

.t
20+ F ;) if 14+ Ftaf >0
dut | e[t e o
—¥ = v ot -
dx] 20 E rp) if 1+ Fta) <0,
%Jr\/:—éfﬁl;%L?n(x;)(lJrF*x;)

where the -7-subscript denotes values at x; and -,, denotes values on the wall bound-
ary and F* = F—£+. The velocity profile is given by

2,3
pPui

23 dut

ut (23 (ur), Ft(uy)) /0 d—fdg

n=(a,B.y)
i

(i,j+2) (i+1,j+2) (i+1,j+3)

(i,j+1) | YU, (i+1,j+1) (i,j+3)
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Figure 4.3.

In order to solve for the unknown friction velocity uw, we have that xo = A—¢&r =

A—tr)u,
x;— _ (A=&pu
pK

G(ur) = usut (23 (ur), F*(ur)) —ur =0, (4.8)
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where uy is the known velocity at ;. The relation (4.8) can be solved for numeri-
cally with the Secant method:

unJrl S U:rrl — u¢71 ( n)

G .
T T G — G )

This of course needs two initial guesses to work.
The definition of friction velocity is:

Once the friction velocity is known, we get a Neumann boundary condition for the
tangential velocity from

2
(), =5 (49)
81'2 IQZO /’L’LU

where the u, is the known friction velocity. After this the system needs to be
transformed back to the original coordinates.

In the embedded boundary technique the boundary can intersect the grid in
an arbitrary way. Specially there will be computational points really close to the
boundary, which are not considered boundary points. This means that we wish to

investigate the effect of the wall boundary condition when xJ — 0. Taking the

dut

T which means that for small
2

limit shows that there is no u, dependence on

enough :c§r and arbitrary u; there is no parameter to be solved for, and hence the
procedure breaks down. This means that we are in the viscous sublayer in the
boundary layer and we can switch into using the condition

+_ 7t
ut =z

instead, which is used to get u, = J%.

Comment

One should note that the above boundary condition is not to be used for the
convective part of the operator, but rather only to the viscous operator. In effect
we have performed a splitting of the operators. The original equations are split
from

O+ Oy, (f (1)) + Oy, (fu(w)) = 0 with no-slip condition on velocity.
into
Oru+ 0z, (f(w)) = 0 with slip condition on velocity i.e. -7 =0
O, (fo(u)) = 0 with Neumann condition (4.9)
on tangential velocities.



Chapter 5

A Cartesian Embedded Boundary
Method for Compressible Flow

This chapter presents the numerical methods used in this thesis and describes two
Cartesian Embedded boundary methods for the compressible Navier-Stokes/LES
equations; the Kreiss /Petersson (KP) [44, 45, 43] method and the SjA{green /Petersson
(SP) [70, 60] method. The presentation will be done for the two dimensional case,

to simplify notation. The methods have been generalized to three space dimensions
and are described in [49] (Paper IV). We also limit this description to the KP3
method, but we have investigated KP4 and KP5, which are higher order boundary
procedures, but these are not described here.

5.1 FOAMs compressible solver suite

The following section is included for completeness of description of the methods
used during this doctoral thesis work. The methods in FOAM for compressible
flows are implicit up to second order accurate methods with a Courant-number
restriction of ~ 0.3 (determined experimentally).

Lately the time-integrator in FOAM has been re-implemented to using Runge-
Kutta. Results using this solver is presented in [6] for the forward facing step
problem [80] and simple Burgers equation.

Recently there has been work done in the direction of well-known methods that
work [23] for hyperbolic conservation laws, showing remarkable improvement in
both accuracy and effectivity compared to previously existing FOAM implementa-
tions for compressible flow.

The solvers used in this theses have produced good results for axisymmetric
baseflow [22] (Paper II), when compared to experimental data [32], but nothing
conclusive could be said regarding choice of subgrid model or numerical scheme,
since results are nearly indistinguishable in [22] (Paper II) and [48] ( Paper III).

35
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The conclusion drawn was that FOAM, at least in its former status, was a too dull
instrument to assess the question of how good LES really is and/or what subgrid
model strategy to use.

5.2 Description of the methods

Below we describe the internal discretization scheme used to approximate solutions
to the Navier-Stokes/LES equations.

5.2.1 Solving the Riemann problem

In the one-dimensional case, the particular problem when initial data ug is piecewise
constant with a single jump discontinuity at some point x,

ur, if z <xg

uo () = { ug, if x> xg (5.1)
is called the Riemann problem. The solution of this problem has a central role in the
construction of numerical methods for hyperbolic conservation laws. For hyperbolic
problems the solution to the Riemann problem is typically a similarity solution, a
function of x:/t alone, and consists of a finite set of waves that propagate away from
xo with constant wave speeds. For linear hyperbolic systems, u; + Au, = 0, the
Riemann problem is easily solved in terms of the eigenvalues and eigenvectors of
the matrix A, see e.g. [51]. This simple structure also holds for nonlinear systems
of equations and the exact solution (or arbitrarily good approximations) to the
Riemann problem can be constructed, described below.

Numerical methods are usually derived using Taylor series to establish appro-
priate expressions for the values of the dependent variables at the next time level.
Differences in the spatial direction are also based upon the requirement of hav-
ing certain accuracy using a series expansion. Taylor-series work very well when
conditions for convergence of the series are met. In fact, the series will converge
everywhere, provided the function that is approximated is sufficiently smooth. In
the case of a finite-difference method, we assume that a series expansion is an
appropriate means of obtaining a difference approximation and the functions are
continuous and have continuous derivatives at least through the order of the dif-
ference approximation. This is certainly not the case when shock waves (in the
inviscid case or unresolved sharp gradients in the viscous case) or other discontinu-
ities are present. Godunov [25] proposed a solution to this problem by avoiding the
differentiability requirement by using a finite-volume approximation in solving the
conservation equations and evaluating the flux terms at the cell interfaces by the
solution of a Riemann problem. The state variables are assumed to be constant in
control volumes, which is sufficient for first order schemes.
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The Euler equations in 1D are:

pe+(pu)s = 0 (5.2)
(pu)t + (pu® + p(p,er)) = 0
(p (e; + %u2>)t + (p (e; + %u2> u —l—pu)z = 0. (5.4)

The velocity u can take any real values, but p and e; must be positive. The following
description is made easier in the non-conservative form:

pttupy +pur, = 0 (5.5)

U + vy + p_lpm = 0 .

(eI)t +U(6[)z +p71puz 0. (57)

The matrix of this system is

0 p 0
A=ulsx3+ Pilpp 0 pilpel
0 p~p 0

The eigenvalues are solutions to (A—u)® = (A\—u)(p, + p~?ppe,). In the form (5.5)
we see that the system has a singularity all over the plane p = 0. This corresponds to
the fact that, when p = 0, the conservative variables (p, pu, €) are not independent
of each other, since they are all zero together, resulting in a singular point (0,0, 0).
The density being zero on an interval expresses the fact that this interval is free of
gas. We cannot exclude this state in the solution of the Riemann problem, which
introduces an indeterminacy in the variables which describe the flow. It is clear
that vacuum has zero density, energy and pressure, but on the other hand velocity
is not defined ('0/0"), which prevents giving sense to the energy flux. This issue is
not pursued further here and we shall assume that p > 0.

The system is hyperbolic if and only if p, + p~?pp., > 0, which we in the
following will assume.

The eigenvectors and eigenvalues of A are expressed as functions of the speed

of sound ¢ = /p, + p~2ppe,:

AM=u—c¢, X=u, A3=u+c,

—p Der P
ry = c , To = 0 , T3 = c
—p'p ~Dp p~'p

We have that dX; - r; = c+ p~2p(pc)e;, = 3(v+1)c >0, j =1,3, i.e. the first and
third fields are of the same nature and genuinely non-linear. The speed of sound

c=~(y—1er = %. The second field is always linearily degenerate dAg - ro = 0.
2c
v—1

The Riemann-invariants for the 1-waves are (S, u —
for the 3-waves (S,u + %)

), for the 2-waves (u, p) and
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Solution to the Riemann problem

Given a state to the left (pr,ur,pr) and a state to the right (Pg,ug,pr) the
solution to the Riemann problem is to seek two intermediate states, indicated by
subscripts 1 and 2, and three waves linking these four states. The central wave being
a contact discontinuity (since 2-wave is linearily degenerate), we have p* = p1 = po
and u* = u; = uy. There is a 1-wave from (pr,ur, pr) to (p*,u*, p1) and a 3-wave
from (p*,u*, p2) to (pr,ur,pr). This results in

p1 = o(p*pL,pL), (5.8)

u* = ur—7(p";pL,PL), (5.9)

p2 = o(p"iPr;PR); (5.10)

v = ur+7(";PR,PR); (5.11)
where

) (p*—p-)\/%((wl)p*—(v—l)p—) if p* >p_,
T(p*p—,p-) = 2 ((F_)B _1) i < p

pP—
We cancel v* from the calculations by observing

urp —ur =7(p*;pL,pr) + 7(P*; PR, PR):

which is a scalar non-linear equation for the unknown p*. Once this is solved, (5.8)
and (5.10) yield values of p; and po. Finally u* is given by either of (5.9) or (5.11).
The o function is not presented due to ease of notation.

The Godunov method

The solution to the Riemann is used in the flux computation in the Godunov
method. In the method the Riemann problem is formulated at all cell interfaces
(7i41/2) and integrated in space and time [z;, x;11] X [tn, t, + Aty ], over which the
flux is computed.

Comment

Solving the Riemann problem is computationally expensive, especially in many
dimensions (strictly speaking it is difficult to generalize the concept of Riemann
problems from one dimension; we mean dimension-by-dimension splitted Riemann
problems). Also the exact solution of the Riemann problem is seldom needed (one
example is when computing very strong shock waves). Therefore approximate Rie-
mann solvers were developed.
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5.2.2 Roe Approximate Riemann Solver For the Euler equations

The Roe method [65] can be seen as a generalization of the upwind scheme to
systems of equations. For a scalar conservation law (u; + f(u), = 0) the numerical
flux would be

n

1 1
sz = 5 (Fre+ 1) = lagpapel (wiey —uf).

For systems (u; + F(u), = 0) the local wave speed(s)

flujyn)—f(uy) ) .
Ujy1/2 = e A A (5.12)
fiug),  uj = ujy,

is generalized using the eigenvalues of a Jacobian matrix. A matrix
Ajir/z = Aluj,u541),

with A(u,u) = A(u) = OF/0u is defined, and the scheme becomes

jr1 = 5 (Fivr +Fj) = 54 41| (ufyy —uj),
where the absolute value of the matrix is defined as
Al = RIAIR™Y,  |A] = DAG(Ad Pals- - [Adl),

for a system with d equations. Here ); are the eigenvalues and R is the ma-
trix with the eigenvectors as columns. This can be viewed upon as a local di-
agonalization of the system. The matrix can be computed in many ways e.g.
AjJrl/Q = A(%(uj +Uj+1)) or AjJrl/Q = %(A(U.J) +A(U.j+1)), but Roe [65] re-
quired that it should satisfy the following condition

F(uj1) — F(uy) = Ajp10(ujin — ),

which is a generalization of (5.12) in the scalar case. This means that the Rankine-
Hugoniot conditions will be correct i.e. shocks are treated correctly, but rarefaction
waves are not seen. This issue will be addressed later in the section considering
entropy fixes. The Euler equations are obtained by letting Re — oo in (3.2), i.e.
w =k = 0in (3.1). For the Euler equations in one dimension (d = 3) with the

equation of state
- P Pl
e= po— + 2(u1u1),
the Roe matrix is obtained by evaluation of the Jacobian at a weighted average
state u:

- ~ ~ VPj
A =A(n)=A4A6u;,+(1-0)u;.q), = —>——,
Jj+1/2 (a) ( J ( )]+1> \/E“‘\/m
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where @1 = [p,u, h]T, where h = eJer is the enthalpy. The numerical flux for the
Roe method for the Euler equations may be written as

3
1
hj 10 = 3 ((Fj—i-l -F; - ZOék,j+1/2|)\k,j+1/2|rk,j+1/2)a)
k=1

where ay, j11/2 are the wave strengths obtained by solving Ra = u;1 —u;. The
wave speeds, i.e., the eigenvalues of A are

M=0-0¢ Xo=4a, M3=a+¢,

where 4 is the normal velocity and ¢ is the speed of sound.

Comment

The difference scheme given by Roe is found by solving the linearized equations.
For some choices of initial data the scheme becomes unstable, even though a
solution exists, i.e. certain Riemann problems are not linearizable [18]. Given
ur, = (p, —rhou,er) and ug = (p, rhou, er) three cases can be distinguished:

° 41526] o

1 p*u? < 0 vacuum occurs in the solution.

. %‘% —p*u? >0 and (v — 1)pe; — p?u? < 0, the problem has a solution with
positive density and internal energy, but is not linearizable.

° %‘% —p?u? > 0, the problem has a solution with positive density and internal

energy and is linearizable.

The above shows that for certain special cases the approximate Riemann solvers
might fail.

5.2.3 Artificial viscosity and entropy fix

In practice, one cannot use the wave speeds as given above; close to regions where
u = 0, e.g. stagnation points, the linear eigenvalues X2 approaches zero, and
near sonic lines the non-linear eigenvalues Xl, X3 approach zero. In these cases
the numerical flux cannot break up entropy violating shock waves into rarefaction
waves and an entropy fix is needed to produce physically relevant solutions.
Viewing this from another point of view and recalling the similarity between
the upwind method and the Roe method, one says that a scheme is Total Variation



5.2.  Description of the methods 41

Diminishing or TVD (strictly a property governed by scalar conservation laws),
when

oo oo
Sofuptt —u < Y fupyy — (5.13)

1=—00 1=—00

is fulfilled. A scheme with the numerical flux function given in the viscosity form
1 _
hjyiy2 = h(uj,ujp1) = 3 (fi + firr = X' Q g1 /2(ujgr — uj),)

where \ = ﬁ—j, is TVD if and only if

Alajyiye] < Qjrij2 < 1. (5.14)

The Lax-Wendroff scheme has Q;1/2 = )\Qaj_H/Q and is not TVD, the Lax-
Friedrichs scheme has @Q;1/o = 1, which is the upper TVD-limit, and hence very
diffusive. The upwind scheme has

Qj+1/2 = )‘|aj+1/2|a

which is the lower-TVD in (5.14). The upwind scheme does not satisfy the entropy
condition, since it does not contain enough artificial viscosity to break expansion
shocks into expansion waves. The sensitive points are the u-values for which f/(u) =
0, i.e., for points where the numerical viscosity vanishes. It is possible to eliminate
this kind of entropy violation by simply modifying the viscosity coefficient Q; /o =
Q(Aaj41/2) near ajyq/2 = 0 so that it is positive. There are many possibilities of
choosing the entropy fix, some are shown below in (5.15)

i) { %—1—5, for |z| < 2e
|z|, else

1) Vat4e?, 0<e<l1 (5.15)
iii) ||+ ¢

iv) max(|x|, )

(i
Qr)=1q (i
(
(

where € is a parameter given by the user. The choice of ¢ is problem dependent and
experience has shown that for a specific problem when really fine grids are used &
needs to be increased slightly compared to the value used on a coarser grid. For
steady state computations when iterative solvers that make use of the Jacobian
of the solution are used (i) is preferably used (Harten entropy fix [30]), since it
makes the viscosity coefficient a C! function of its arguments. Disadvantages of the
methods are (i) does not vectorize, i.e. an if-then-else statement must be done in
the innermost loop, taking the square-root in (i7) is computationally expensive, in
(ii7) viscosity is added everywhere (even where not needed) and (iv) is not C*. In
the computations made we have used (iv) because it vectorizes and we do not use
any iterative solvers.
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Artificial viscosity for systems

We enforce entropy by having non-zero artificial viscosity. In the following a
choice between using local eigenvalues or using the maximum eigenvalue over all
points/cells can be made. In our computations we have chosen to use local eigen-
values. The spectral radius of A is denoted p(A) = |u| + ¢. In our computations
we use the entropy fix (iv) in (5.15), which for the three-dimensional problem is

(M =g —¢ N g4=10a, M =g+ ¢) using local eigenvalues

Ad] = max {A{], =4},

|5\g73,4| = max{|5\g73,4|, E;i(l);i} , d=1,2,3, (5.16)
] = max {|A], =0 }

where ¢; and ¢,, are parameters to be chosen by the user. The subscripts 1’ and 'n’
denote linear and non-linear eigenvalues respectively. The ®; and ®,, are functions
of the absolute values of the eigenvalues of the flux Jacobians used to scale the
Ass in (5.16) so that the CFL condition is not violated. In our computations the
following choice was used:

o = % = |ug| +c. (5.17)

Choice of ¢; and ¢, depend mainly on the grid (if grid is deformed, stretched
etc.), the geometry (corners, singularities, bluff-body etc.) and the type of flow
(supersonic, hypersonic etc.).

5.2.4 MUSCL scheme

The numerical flux for the first order Roe method is

§ | 1 -
j+1 = h(u, wigy) = 5 (Fjen + Fy) = 54400 (ufy —uj).

The first order scheme is generalized to second order by using limited piecewise
linear reconstruction in the flux:

. 1 1
hi , =h(u; + 5 Sir Wit1 = §Sz‘+1), (5.18)

where s; are the slopes of the piecewise linear reconstruction. The slopes will
introduce new extrema in the solution, violating the TVD property (5.13) and
some sort of limiting must be done using e.g. the minmod limiter:

0 if AL wA_u; <0

si = minmod(Au;, A-u;) = { sign(Aiu;) min(Ayu;, A_u;) else,

The width of the numerical stencil increases from three to five points.
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5.2.5 Approximating the strain rate tensor in Navier-Stokes equa-
tions

A finite difference approximation of the space derivatives in Navier-Stokes equations
can be written as

d d
d h; 12—h; 1/ (85 )is+1/2 — (80°)i —1/2

s=1 s=1

The viscous fluxes (7 )i, —1/2,is.i55 (8%)i1,ia—1/2,i5> a0d ()i, i,i5—1/2 contain first
derivatives. For example, the z-direction viscous fluxes are, with the temporary

notation of half-integer subscripts, fi;, = %,
0
dppw, o Ziymigig (. Dz,
3 Dfun,Zz,Zs 3 (Dovllmﬂzﬂz DOwnm,lz,Zs)
R Y
(80)ivmiin,is = Wiz, iz, is (DgWiym,iz.is + D00 iy i5)

Hiym,ia,is (DOullm,st + walhlzﬂs)
xT
f5 + ki1m7i2,i3 D—Ti17i27i3

where
f5 = UWUiym,ia,is (gv,2)11*1/27’b2113 +U11m,l2713 (gv,B)n —1/2,i2,i3 +w11m,l2,13 (gv,4)11*1/2112713 ’

This means that second derivatives are approximated by standard finite differ-
ence formulas e.g.

Uiy +1,i0,i5 — 2Wiy inis + Wiy —1.i.i;
2 i1+1,i2,i3 i1,12,13 i1—1,i2,i3 2
umw(xiuyizazis) = Din’u’il,iz,is—’—o(h‘ ) = +O(h‘ )

h2
(5.19)
and
T Y 2 zDguil i2,13 +Dgui1—1 i2,13 2
uﬂﬂy(‘riuyizazis) = DODOui1,i2,i3+o(h ): D+ — 2 — +O(h )
(5.20)

5.2.6 Wavelet sensor for detecting singularities

[72, 81] describes an adaptive low-dissipation scheme based on high-order central
differences. It uses multi-resolution wavelet analysis to post-process the solution
after each time step to pinpoint where numerical dissipation needs to be added.
Below we describe the wavelet analysis technique, since it is useful in general to
detect discontinuities/singularities in the solution and it is used in [49] (Paper
IV) to control the order of an interpolant in grid to grid interpolation, since it is



44 Chapter 5. A Cartesian Embedded Boundary Method for Compressible Flow

well-known that high-order polynomial interpolation of non-smooth data gives rise
to unwanted over- and undershoots.
The technique is based upon estimating the Holder exponent «

|[f(z) = P(x — x0)| < Clz — zo|“. (5.21)

of the discrete solution f(z). P(x) is a polynomial. For precise mathematical
details see e.g. [20].

The estimated « is fed into a switch 7(«), which decides if any action needs to
be taken. In [72] several switches are investigated and the following switch yields
satisfactory results:

Ha) = { 1, if a < g (take action) (5.22)

0, else,

where «q is chosen to be 0.5.

A Demonstration

Below we demonstrate the need to detect where the solution is non-smooth in ap-
plication to grid-to-grid interpolation. In our example a jump discontinuity is being
transported from left to right, the two outermost grid point values on the embed-
ded grid need interpolation from the underlying grid. When applying the higher
order interpolation routine with the discontinuity is inside interpolation stencil we
observe the well known over- and undershoots, see Figure 5.1. When using the
wavelet-indicator, the order of the interpolant is lowered point-wise when 7 = 1.
This approach gives no over- or undershoots as shown in Figure 5.1

5.3 KP and SP embedded boundary methods

Among the greatest challenges of computational fluid dynamics is arguably the
accurate prediction of flows in the vicinity of complex geometries. Traditionally,
this problem is tackled by discretizing the governing equations on unstructured or
structured body-fitted curvilinear grids, causing the geometric boundaries to coin-
cide with those of the computational domain. The main advantage of these methods
is the relatively straight-forward implementation of boundary conditions. However,
the difficulty of representing complex geometries in the computational domain is
now being transferred to generating adequate grids and keeping track of neighbor-
ing grid points (logistics problem) and merging simpler grid-blocks (connectivity
problem). Furthermore, if moving boundaries are present, frequent regeneration
and merging of grids will be necessary, weighing heavily on computational cost and
maintenance of grid quality. In addition, highly distorted grids reduce the accuracy
of a numerical method. In fact, constructing a high-order method for such grids
is extraordinarily difficult. These problems hamper the development of solution
algorithms for flows in complex geometries.
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2 Solution 1 2——e—e—6o—o—=% Solution
—&— Coarse grid solution —&— Coarse grid solution
—#— Fine grid solution using wav —#— Fine grid solution using wav
< Fine grid solution not using wav — Fine grid solution not using wav
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Figure 5.1. The grid-grid interface is located at + = 1. The two left-most fine
grid point values need to be interpolated from the coarse grid. At locations where
7 =1, the order of interpolation is lowered. Notice the over- and undershoots of the
high-order interpolant.
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The approach presented here is a fixed Cartesian grid method. As a conse-
quence, geometric boundaries can not always conform to computational domain
boundaries, thus forming embedded boundaries, whose presence has to be accounted
for in another way. Furthermore, boundary conditions at the embedded boundary
are not necessarily enforced at grid points. The domain (2 is covered by a Carte-
sian grid with step size h, where the grid points are located at (z;,y;) = (ih, jh),
and the boundary I' is allowed to cut through the grid in an arbitrary manner,
see Figure 5.2. The use of Cartesian grids greatly simplifies grid generation and
implementation of high-order methods' The separation of the embedded bound-
ary and the computational grid removes the need for re-meshing strategies when
dealing with moving boundaries. An appropriate Cartesian grid method also en-
ables efficient code parallelization by taking advantage of the structured nature and
time-independence of the underlying grid.

The obvious complication associated with Cartesian grid methods is the imple-
mentation of appropriate boundary conditions at embedded boundaries and their
subsequent representation on the computational grid. Below we describe the ap-
proach we have chosen. This is the main contribution of this thesis.

Figure 5.2. The boundary is allowed to cut the grid in an arbitrary manner in the
embedded boundary method.

5.3.1 KP Embedded boundary method

The KP embedded boundary method was originally developed for the second order
wave equation [45, 43, 44]. In the following we present how the method was extended
for solving the compressible Navier Stokes equations [49, 47, 46] ( Paper IV,V,VI).

IHigh-order refers to the formal order of accuracy of the numerical scheme without the presence
of embedded boundaries.
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Figure 5.3. KP embedded boundary method. The indices denote the domain of
dependence for the embedded boundary procedure for ghost point (i,j).

To evaluate the differencing operator associated with Navier Stokes equations at all
grid points inside the computational domain, we use ghost points “just” outside the
domain, see Figure 5.3. We construct a Lagrange interpolation between three points
along the normal: (0, ;), (&1, ¢r) and (&7, ¢r7) to aid in the approximation of
the Dirichlet boundary condition. The ¢; and ¢;; are approximated by Lagrangian
interpolation along grid lines y;+1 and y;4+2. For the case illustrated §;; = 26, =

}g’, where o and 3 are the 2 and y components of the normalized normal. These

formulas hold when the angle 6 between the z-axis and the normal satisfies 6 €
[7/4,7/2]. In the KP method, [43], the expressions in the remaining three quadrants
are simply obtained by reflections in index space, leading to a total of 8 different
cases to treat all possible directions of the boundary in two space dimensions.
In three dimensions there are 24 different cases. The author of this thesis has
included four additional (in 2D) interpolation stencils to make the interpolation
more continuous when changing stencil, all stencils are shown in Figure 5.4. In 3D
the number of interpolation stencils are increased to 38. For higher order accurate
boundary approximations more points have to be included in the approximation.



48  Chapter 5. A Cartesian Embedded Boundary Method for Compressible Flow

7 A4 NI gz RSy
@ )  (© @ (¢ ® M® 6O 6O & O

()

Figure 5.4. All different interpolation stencils in 2D for the KP3 embedded bound-
ary method. The ghost point is marked black and the bounds of the normal is
shown.

We define

Lyu = go(&)uo + gr(&)ur + grr(§urr (5.23)

The boundary may intersect the grid so that &r is arbitrarily close to &, i.e.,
go(ér) = w can be arbitrarily close to zero. This is referred to as
the small-cell stifgfness problem, due to the finite volume analogy of cutting cells
to arbitrarily small sizes, yielding an arbitrarily small cell affecting the (At ~
CAz) CFL condition see. Hence, if naive Lagrange interpolation would be used to
approximate the boundary condition, the time-stepping would become very stiff.

An artificial term is added to the Lagrange interpolant to mitigate the stiffness

Bno(t) = Lno(t) +n(¢i; — 261 + ¢11) = gp(zr,yr, t), (5.24)

where the constant > 0 and gp is the Dirichlet value on the boundary. The
artificial term is an undivided second difference in the normal direction, so it inflicts
an O(h?) error in the boundary condition approximation.
[43] shows that the truncation error in the boundary condition can oscillate wildly
between consecutive grid points along the boundary and can degrade the rate of
convergence.

The artificial term 7 in the boundary condition bounds the coefficient in front
of ¢; ; away from zero, since

n<golér)+n<1+mn,

and hence the small cell stiffness problem is removed. The spectrum of the one-
dimensional convection-diffusion equation has been estimated, to yield that the
eigenvalue with the largest magnitude is independent of small cells near the bound-
ary when n > 0.25. For all our numerical computations (using KP3) we have used
n = 0.25, which works well in practice. It is big enough to allow time steps in-
dependent of the small cells near the boundary, and small enough to prevent the
artificial term from dominating the error in the numerical solution.

The Neumann Problem

For Neumann conditions, e.g. when there is an adiabatic wall, the formulas of
the previous section change somewhat. In [45] this procedure is described for the
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second order wave equation and we present the major ideas from that paper here,
since they are identical to what we use. The Neumann condition is

9¢

o, = In@yt), (zy) el t>0. (5.25)
The Lagrange interpolant (without added artificial error) is differentiated to yield a
second order approximation of the (outward) normal derivative. It is shown in [45]
that the Neumann problem does not suffer from the small cell stiffness problem,

since ¢(,(§) = % is bounded away from zero in £ € [0,&; + &17).

5.3.2 SP Embedded boundary method

When discontinuities are present in the solution, special care has to be taken to
make the boundary interpolation robust. The SP method is of lower accuracy,
but more suited for dealing with shock waves, and is outlined in Figure 5.6. It uses
more values along the normal than the KP method, but the tangential interpolation
is linear. When the normal has positive y-component and the angle between the
normal and the z-axis is between 7 and 7, the normal will always intersect the grid
line y = y;j4+1 between z; and x;41. There are two different cases when the normal
intersects the y = y;42 grid line (between x; and x;;1 or between z; 1 and x;;2)
and similarly three different cases where the normal intersects the y = y; + 3 grid
line. A quarter of all interpolation stencils for the SP method are shown in Figure

5.5
@ () (9 (d) () () (8) (h)

Figure 5.5. A quarter of all different interpolation stencils in 2D for the SP em-
bedded boundary method. The ghost point is marked black and the bounds of the
normal is shown.

Denote the distance between the boundary and the ghost point by b and let the
distance between the ghost point and grid line y = y;41 along the normal be A
(see Fig 5.6). Define new points up, and wup, placed equidistantly along the normal
by linear interpolation along the normal at distances b + A and b 4+ 2A from the
ghost point respectively,

b b b b
Upy = RUIT +({1- N ) U Uk = UL +({1- N

A limited boundary slope is defined,

Sp ‘= Sminmod (uln — gD, Upy, — ubl) 5
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where

x, if |z| <|y| and zy > 0,
Sminmod(xay) = Y, if |y| < |1'| and Ty > 07 (526)
0, otherwise

is the well-known min-mod limiter. The Dirichlet boundary condition is approxi-
mated by extrapolation using the limited boundary slope,

Uij = gD — 5ZFSD. (5.27)

The above construction is always well-defined, since h < A < v/dh, where d is the
number of space dimensions. The Neumann boundary condition is imposed by:

Numerical boundary conditions are imposed using extrapolation
Ui j = U — Sminmod (WIIT — Urr,Urs — Ur) . (5.29)

The above numerical boundary condition is equivalent to setting % = 0, if the
solution is smooth enough not to trigger the limiter. Otherwise it is equivalent to
the first order approximation of 9% = 0.
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Figure 5.6. SP embedded boundary method. The indices denote the domain of
dependence for the embedded boundary procedure for ghost point (i,j).

5.3.3 Comments

For parallel execution special care needs to be taken for the ghost points whose
interpolation stencils extend outside the local processor’s domain. For objects that
extend outside the grid, then alternatively the interpolation stencil is made smaller,
so that it will fit inside the grid, or values from an underlying coarser grid are
used. If the object extends outside the computational domain and values cannot
be retrieved from any grid, then the assignment of ghost point values can use the
exterior boundary condition. This has however not been implemented or tested.

5.3.4 Treatment of corners and thin bodies

Sharp corners demand special treatment. This approach generalizes to thin bodies,
i.e. embedded objects that are only one grid point wide in some direction.

For ghost-points with more than one normal to the surface, we overload [ so-
lution values u,,, m = 1,...,[, each associated with a unique surface normal
n,, # n,, m # n. Each u,, is updated using the KP method as described in
e.g. [49] ( Paper IV).
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The difference stencil uses a value associated with the correct surface normal
with the direction of the using point.

There are interior points where associated surface normals are not well-defined.
For example, the difference stencil for point xr uses x; ;. see Figure 5.7. We can
associate two boundary values to x; ; ;: u; and us, and use a weighted average of
u; and us.

A difference stencil at xr, which uses x; ;; which, in here, does not have a
unique normal, performs averaging:

uj,, = & ug + > uzt...+ il u
Wk Y dy .. 4d Y ditdet ... +d 2 T di+dy+... +d "V
(5.30)

where d,, = max ((Xr — X; k) m,0), m = 1,2,...,l. The averaging is only

performed if two or more d,, > 0, i.e. the point is in the averaging zone, see Figure
5.7.

AVERAGING ZONE

e
LA Xijik

/6ECT \
Xij-1k \

Figure 5.7. Corner points are averaged: [ = 2.

The average (5.30) is a convex combination of the ghost-point values uy,. Note
that the above procedure can be used for thin bodies, since the x; ; ,:s associated
with the ’backside’ surface will have d,, < 0. The values from point x; ;1 in
Figure 5.7 are never averaged. In the case of a ’concave’ corner we average the
values of the nearby ghost points, see Figure 5.8
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Figure 5.8. The black ghost point does not have a normal associated with any
surface, but its value is needed in the discretization. The black ghost point is assigned
the average value of the two white ghost points.

5.3.5 Higher Order of Accuracy

In general, higher-order methods are better than lower order methods. The higher
order methods can only yield better answers for scale lengths that are longer than
a few cells. Interpolation, no matter how high the order, also cannot reproduce
unresolved variations occurring within a computational cell. This is a fundamental
limitation set by the resolution of the representation. It is independent of the order
of accuracy, type of expansion, and algorithms used.

The most obvious way to increase the order of accuracy for setting boundary
conditions is to involve more points in the interpolation formulas. High-order poly-
nomial interpolation assumes that the solution is smooth and if it is not smooth
enough, unwanted oscillations may be introduced. The above interpolation methods
except possibly the SP method are not data driven, in the sense that the interpola-
tion stencil is fixed. The SP method chooses a limited slope to the linear interpola-
tion, which is data-driven. Future research should investigate whether data driven
higher-order interpolation such as Essentially Non-Oscillatory / Weighted Essentially
Non-Oscillatory (ENO/WENO) type interpolation e.g. [1] could be used to set the
boundary conditions. Alternatively, regions of non-smoothness can be detected us-
ing wavelets to compute the Holder exponent, and the interpolating polynomial can
be adjusted according to the (non-)smoothness of the solution. In [49] (Paper IV)
wavelets are used to control the degree of an interpolating polynomial in grid/grid
interpolation, but it can be used for the selection of interpolation stencil for the
embedded boundary also. The only difference is that one-sided approximations
must be used when computing the Holder exponent near the boundary.
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Chapter 6

Computational results

This chapter summarizes the computational results from Papers I-V1.

6.1 Large Eddy Simulations of a Turbulent Jet Dif-
fusion Flame using FOAM (Paper |)

In this paper a comparison between LES and new type of experimental measurement
technique is made. The experiment/simulation is of a non-premixed propane jet
with Reynolds number 10000 into ambient air. The LES calculations are performed
with a presumed [-PDF for a mixture fraction. As a SGS-model for the flow we
have used the Smagorinsky and the One Equation Eddy Viscosity Model.

The comparison is made at intermediate stage by examining schlieren images,
interferograms and phase maps consrtucted from the LES and experimental data
respectively. This provides a novel approach for comparing simulations and ex-
periments. Reasonable good agreement between measured and predicted flame
characteristics and properties were found, although the details near the nozzle are
not sufficiently accurate. The burning occurs primarily at the outer edges of the
jet shear layer in the convoluted interface between reactants and products where
most of the diffusive mixing takes place.

6.2 Large Eddy Simulation of Supersonic Axisym-
metric Baseflow using FOAM (Paper I1)

The paper describes LES of a rockets afterbody with and without mass injection.
Several sub-grid models and grids are used to conclude that LES/MILES can be
used with success for this type of problem, since the agreement, with experimental
data is good. It is shown that the results are independent of subgrid model making
it impossible to distinguish numerical errors from model errors.

95
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Simulations with different bleed rates are performed and comparison of C, at the
base are made with experimental data. C), is however systematically overpredicted
by 5%. A potential source of error may be underresolution and/or the difference in
approach boundary-layer thickness between the experiments and the simulations;
a thick boundary-layer is thought to have a base pressure enhancing effect, similar
to that of base-bleed.

6.3 Large Eddy Simulation of a Turbulent Non-premixed
Flame using FOAM (Paper Ill)

This paper considers a reactive and a non-reactive jet. For the reactive jet, we
compare two different approaches to combustion modeling: the conserved scalar
(mixture fraction) approach together with a presumed PDF and a single step finite
rate chemistry model also known as Arrhenius type model. For the non-reacting
case very good qualitative and quantitative agreement between predictions and
measure ment data are obtained. For the LES calculations we find virtually no
differences in results obtained using the different subgrid models. Grid refinement
does not affect any of the investigated first and second order statistical profiles, but
provides a more detailed picture of the fluid dynamics. For the reacting case the
flow field is reasonably well predicted, independent of subgrid models. Refining the
grid increases the resolution of the flow variables, but does not affect the statistical
moments investigated here. The simulation of combustion, however, is sensitive
to which model is used. The simple one-step irreversible one-step global reaction
meachnism used in this study is too simple to describe all the couplings between
the fluid dynamics and the chemistry.

6.4 2D Supersonic flow around a cylinder (Paper
V)

In [49] ( Paper IV), the ability of the embedded boundary technique to resolve
boundary layers is investigated by computing skin-friction profiles along the surfaces
of the embedded objects. The accuracy is assesed by comparing the computed skin-
friction profiles with those obtained by a body fitted discretization with the solver
developed in [81] for the compressible MHD equations with magnetic fields set to
Z€ro.

For low Reynolds numbers one can resolve the flow. We measure convergence
by C¢, Cp, and temperature distributions on the embedded surface (which may be
used to solve for the temperature distribution inside the embedded body). The Cp
and C distributions are important, since they dictate what aerodynamic forces F
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Mach number

Figure 6.1. Two dimensional computations of Mach 3 flow past a cylinder. Velocity
magnitude contours. Results from the KP method.

act upon the body by:

P [[ar—— [[mas+ [[ o tas (6.1)
~— ~~
~Cp ~Cy

where n and t are the normal and tangential vectors respectively.

We here compute supersonic flow around a cylinder with radius 0.5 with Mach
number 3 and Reynolds numbers 500 in the two dimensional domain (x,y) €
[—10,10] x [=5,5]. The center of the cylinder is located at (—1,0). These sim-
ulations are time accurate, and resolved in time and space. As initial data, we
impose free stream conditions in the entire domain. The discretization on the
Cartesian grid is efficient because it has a simpler memory access pattern than an
unstructured method and requires less metric information (and thereby less mem-
ory accesses and less arithmetic operations) than an approximation on a curvilinear
grid. In fact the grid is never used in the computation.

The computations was run until steady-state. In the computations the timestep
had to be restricted by the stability requirement of the viscous operator. We take
this as an indication that the flow is resolved.

6.4.1 Description of the body fitted solver

The domain is discretized by the overset grid configuration displayed in Fig. 6.2 for
the cylindrical flow problem. There are four grids, a base grid that covers the entire
domain, a curved grid around the bow shock, a fine polar grid near the cylinder
surface, and a fine grid that covers the wake region. We used the overset grid
generator Xcog [63] to generate the grids and the interpolation information.

We discretized the Navier-Stokes equations by a sixth order accurate finite dif-
ference scheme with summation-by-parts boundary modification of the difference
operators on all component grids except the bow shock grid, where we used a TVD
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Four overset grids

é
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Figure 6.2. Overset grid domains used for computations with body fitted grids.

type difference scheme. These are standard finite difference methods, for details
about the scheme and the code see [81, 71]. The solution was time marched to
steady state, first with a TVD scheme on all grids, and later when the solution is
fully developed, with the sixth order method on three of the grids, as described
above.

Interesting questions about overall accuracy and error propagation from the bow
shock are outside the scope of this work. However, it was observed in [81] that the
actual grid convergence rate at the body boundary is close to 2nd order.

6.4.2 Results

In Fig. 6.6 we have collected the Cy curves from the finest grids in Figs. 6.3—
6.5. The body fitted method and the KP embedded method give results that
are indistinguishable in the plot. We conclude that the KP embedded boundary
approach gives more accurate results than the SP embedded boundary method, and
furthermore that the accuracy of the KP embedded boundary method is comparable
to the accuracy of the body fitted method on the medium and fine resolution grids.
On the coarsest grid, Figs. 6.3 and 6.5 show that the body fitted method is more
accurate.

It is not unexpected that the KP method is more accurate than the SP method,
because the SP method switches between a first and second order accurate bound-
ary condition, whereas the KP method is always of high formal accuracy. The
SP method uses limiters to handle shock waves, but the KP method uses cen-
tered interpolation stencils. Nevertheless, the KP method gave solutions that were
free from unphysical oscillations, since a resolved boundary layer does not contain
discontinuities.

The formal order of accuracy is very important as shown in Figure 6.7, which
shows results from the computation using the first order extrapolation of the slopes
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Second order KPGODU

Figure 6.3. C along the upper half of the cylinder computed with the KP embed-
ded boundary method for Mach number 3 and Reynolds number 500.

Second order SPGODU

Figure 6.4. Cy along the upper half of the cylinder computed with the SP embedded
boundary method for Mach number 3 and Reynolds number 500.
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Figure 6.5. C; along the upper half of the cylinder computed with the body fitted
method for Mach number 3 and Reynolds number 500.
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Comparison of methods. Second order extrapolation
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Figure 6.6. Cy along the cylinder surface with the KP embedded boundary method,
the SP embedded boundary method, and the body fitted method. Mach number 3,
Reynolds number 500. The finest grid size is h = 0.0017007. Using second order
extrapolation of the slopes in the Godunov fluxes.

in (5.18)

Sipp.gik = Sipyt1,5,k (6.2)
instead of the second order extrapolation (results shown in Figure 6.6)

Sipp.dik = 2Siy, 1,5,k — Sigp+2,5,k- (6.3)

We conclude that when the physical viscosity is not resolved, which is the case
for simulations using the coarse mesh then the skin friction cannot be expected to
be accurate raising the need for local grid refinement.

It is well-known that for attached boundary layers, one obtains good resolution
by stretching the grid towards the body. The coarser resolution in the tangential
direction saves computational work. The ability to coarsen the grid in the direction
tangential to the body is clearly absent in the embedded boundary method. We
conclude that for attached laminar boundary layers, this feature makes the body
fitted approximation considerably more efficient. However, when resolution is equal
in both directions, Fig. 6.6 shows that the embedded boundary method gives re-
sults of similar quality as with the body fitted method. Equal resolution in all
direction is needed in direct simulation of turbulent separating flows. Furthermore,
with complicated geometries it might not be known a priori at which locations the
boundary layer is attached and therefore it would not be possible take advantage
of body fitted stretched grids.

The temperature on the boundary

The adiabatic wall condition imposes ‘g—z; = 0. We evaluate the accuracy of the

Neumann boundary condition by plotting the temperature on the surface. Fig. 6.8
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Comparison of methods First order extrapolation
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Figure 6.7. Cy along the cylinder surface with the KP embedded boundary method,
the SP embedded boundary method, and the body fitted method. Mach number 3,
Reynolds number 500. The finest grid size is h = 0.0017007. First order extrapola-
tion (6.2).

shows the wall temperature obtained with the KP method and Fig. 6.9 displays the
wall temperature obtained with the SP method. Similarly to the C plots, the KP
method appears to be more accurate than the SP method.

6.5 Embedded Boundaries and Roughness

The specific errors of the embedded boundary method are assessed by comparing
two almost identical simulations: one grid aligned and one ’tilted’ simulation, see
Figure 6.10.

When the flow is unresolved, typically for high Reynolds numbers, the trunca-
tion errors from the EB method can be seen as acting effectively as a rough wall.
This can be seen by a 'reconstruction’ resembling a finite difference operator of the
boundary from the solution based on the tangential velocity. We find 6 such that

GughostPoint + (1 - e)uFiTstInteTiorPoint = 0; (64)
and use the 0 to evaluate the location of the ’zero’-contour
fFEff = efghostPoint + (1 - e)fFirstInteriorPointa
The deviation from the true boundary is called protrusion and its height is measured
as k = minfep |fFEff — fr‘|
From Figure 6.12 the following observations are made:

e The protrusion height k = C' - h,

e the friction velocity u, ~ constant increases with finer mesh,
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Second order KPGODU

2 —— h=0.0068306
= = =h=0.003406

—— h=0.0017007

Figure 6.8. Temperature on the boundary using the KP embedded boundary
method. Mach number 3, Reynolds number 500.

Second order SPGODU

—— h=0.0068306
= = =h=0.003406
h=0.0017007

Figure 6.9. Temperature on the boundary using the SP embedded boundary
method. Mach number 3, Reynolds number 500.

(a) 0° (b) 20°

Figure 6.10. An illustration of the experiment with different grid alignments.
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Density at ime= 5 after 348240 timesteps

Comparison of C, under rotation of geomety.

(b) 20°

Comparison of C, under otation of geometry.

(c) Cy distribution.
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n

(d) Cp distribution.

015 02

Figure 6.11. The density for h,,;, = 1.50754 - 1073 Re, = 50.
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Figure 6.12. The protrusion height estimated using (6.4) together with the friction

(¢) h=0.050505

(d) h=0.025253

velocity ur. The vertical bar illustrates the grid size h.
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e there exists correlation between u, and k.

In cases where protrusions are of size djuminar they are all contained in the
laminar sublayer, i.e. if & < &;aminar, the wall may be considered hydraulically
smooth [69]. We have djgminar ~ C - v/u,. The dimensionless roughness factor
k/Siaminar ~ kur/v, a roughness Reynolds number Rej based on the protrusion
size and friction velocity, is a good measure for the relative roughness.

Circular pipes covered with sand of a definite grain size, ks, glued on the wall
have been used in experiments to determine three regimes of Rey, [69]:

1. Hydraulically smooth: The size of the roughness is so small that all protru-
sions are contained within the laminar sub-layer, Rey_ € [0, 5],

2. Transition regime: Protrusions extend partly outside the laminar sub-layer
and additionally when comparing to smooth pipes there are mainly effects on
the resistance from the protrusions in the boundary layer, Rey, € [5,70].

3. Completely rough regime: All protrusions reach outside the laminar sub-layer
and the largest part of the resistance to flow is due to form drag which acts
on them, Rey_ € [70,00).

The condition for hydraulical smoothness is also valid for flat plates at zero incidence
[69]. Assuming that k ~ equivalent grainsize ks, we believe that our estimate can
be used e.g. as an indicator in a grid adaptation algorithm. Below, see Figure
6.13, we have computed Rej based upon actual simulation data. It shows that
when the grid is coarse the geometry is completely numerically rough and after
grid refinement, the bulk of the points shift towards the transition regime. Much
smaller k (i.e. mesh sizes) are required to reach the hydraulically smooth regime.

Varying Reynolds Number

This test is performed using a fixed discretization and varying the acoustic Reynolds
number. In this way we can assess how far from resolved the simulation can be using
this embedded boundary method and still obtain similar solutions after rotation of
the geometry, see Figure 6.10.

The C; distributions are very similar for Re, = 3125, 12500 and somewhat
similar for Re, = 25000 where the 20° case has some oscillations superimposed
on the 0° Cy distribution. It is somewhat surprising that for Re, = 6250 the
C; distribution differs so much, due to the fact that 0° discretization predicts
separation on the leading edge, while the 20° does not. For all Re, > 6250 there is
leading edge separation. With Re, = 50000 both 0° and 20° C'¢ distributions show
great, oscillations showing no similarity, except perhaps in the mean amount. The
Re, = 50000 flow is "turbulent’” and we cannot expect to get point-wise convergence,
but should rather expect convergence in mean. The convergence of means is not
investigated for the above cases.
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Comparison of C under rotation of geometry.
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Comparison of C,, under rotation of geometry.
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(a) Comparison of Cy distribution.
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(b) Comparison of C), distribution.

Figure 6.14. Unsteady flow, instantaneous velocity at t = 5 Req = 50000 hynin =
7.5188-10~4. Notice that the 20° simulation has more wiggles, which are due to the

wagging wake.

Comparison of C, under rotation of geometry.
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(b) Comparison of C), distribution.

Figure 6.15. Unsteady flow, instantaneous velocity at t = 5 Req = 25000 hpin =
7.5188-10~%. Note that the 20° simulation has more unsteadiness which are caused

by pressure waves from the unsteady wake.
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Comparison of C, under rotation of geometry.
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Comparison of C,, under rotation of geomery.
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Figure 6.16. Instantaneous velocity at t = 5 Req = 12500 Aypin = 7.5188 - 104,

Notice the leading edge separation.

Comparison of C, under rotation of geometry.

01

Comparison of C,, under rotation of geometry.

RN
op A
PR
I < |
! AR ——— B
-0.05 o Y
\
-01
-15
. I . . . . . . . , . . . . .
-025 02 -015 -01 005 0 005 01 015 02 025 -025 -02 -015 -01 -005 [ 005 01
n n

(a) Comparison of Cy distribution.

(b) Comparison of C), distribution.

Figure 6.17. Instantaneous velocity at ¢t = 5, Req = 6250 hpin = 7.5188 - 104,
Notice the 0° the leading edge separation, but attached flow for 20°.
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The C), distributions seem to be the same independent of the Re, number, and
for all Re,, except Re, = 50000 which would require higher resolution, the C,
distributions are very similar for 0° and 20°.

High Reynolds number flow (Re, = 10°)

We consider this a high Reynolds number case, where we successively refine the
grid size by a factor of two in three computations. This is an illustration of a
highly unresolved computation using IB/EB. The solution contains a lot of eddies
emanating from the boundary. This illustrates the resolution needed to resolve the
flow and highlights the need for wall-models.

For Re, = 10° the flow is turbulent’ and we cannot expect to get point-wise
convergence. Both the Cy and C), distributions are very oscillatory /unsteady for all
resolutions. Therefore we examine the time averages (Cf) and (C}) and examine
the impact the embedded boundary has on the solution. It is discovered that
the truncation error from the EB is manifested as roughness, estimated by linear
reconstruction of the boundary. The size of the roughness is estimated by the
friction velocity Reynolds number Re,. We compare the obtained Re, with Re.
for rough pipes, [69].

6.6 EB applied to supersonic baseflow

Physical experiments of supersonic axisymmetric baseflow are compared to LES
using embedded boundaries in [46] ( Paper VI). The results are summarized here.

In the experiments [32, 53, 9, 8, 37] the centerline velocity downstream of a
cylinder and the pressure coefficient on the cylinder base were measured. Numerical
simulations of supersonic baseflow were performed in [22] (Paper IT)using FOAM
and we wanted to compare those results with results from the embedded boundary
code. We used the simple Smagorinsky model and tried to do wall-resolved LES,
which is too costly for Re ~ 10°. The experiment, however shows that the embedded
boundary method works efficiently in 3D. The computational cost is significantly
lower for the EB, even when using the very expensive Riemann solver, than for the
unstructured solver FOAM. Below we show some obtained results; from Figures
6.19 and 6.20 we see that grid refinement has the greatest impact on the solution.
The tuning of model parameters such as Cs does not change much. This is much
due to the low order (and dissipative) 2:nd order Godunov scheme. This test case
shows the EBM extended to three dimensional problems with the Smagorinsky sub
grid scale model. The geometry contains sharp corners, for which our proposed
strategy (see section 5.3.4) seems to work well.
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Figure 6.18. Instantaneous visualization of log (||[Vp|| +€). The characteristic
features of supersonic baseflows can be seen such as the unsteady nature of such
flows with the presence of numerous(?) turbulent scales. The separation point is
fixed by the geometry at the corner. A centered expansion fan turns the separated
shear layer towards the axis. Further downstream, due to axisymmetric constraints,
the mixing layer is bent to realign the flow with the axis in the mean. This region
exhibits a strong adverse pressure gradient as evident by the presence of unsteady
recompression shocks and Mach-lines coalescing into shocks. In this region, the
incoming fluid that lacks the momentum to overcome the pressure gradient is pushed
upstream into a recirculation zone. Downstream of the stagnation region, a turbulent
wake with larger coherent structures develops.

6.7 Some Preliminary Results using EBM together
with a Wall-model

As we have postulated multiple times, wall-models are needed for high Reynolds
number flows. Here we briefly summarize some preliminary findings using the wall-
model described in section 4.0.5. We make a similar comparison as in section 6.5 of
an embedded rectangle in Re, = 10°, Ma = 0.3 flow using the same discretization
as above.

Results are shown in figures (6.22-6.23), where the coarsest grids do not resolve
the flow at all, which is seen by the too smooth solutions. As the resolution is
increased more 'turbulent’ structures become resolved.

We observe that the friction velocity v, computation in the wall-model depends
on y* and hence h* = “z! is more non-smooth using this wall-model, than just
imposing the standard no-slip boundary condition, compare Figures 6.21 and 6.24.
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(a) Fine mesh. (b) Fine mesh.

Figure 6.20. Velocity along the base centerline (u) and (Cp) using Cs = 0.16 and
0.24. The model parameter affects the solution only in very small details, which is
a consequence of the too dissipative Godunov scheme.
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Comparison of h* under rotation of geometry. h=1.50754e-03 Comparison of h* under rotation of geometry. h=7.51880e-04
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Figure 6.21. (hT), i.e. the effective discretization size along the rotated and non-
rotated object under grid refinement.
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Figure 6.22. (||ul|) 0° using the wall-model desribed in section 4.0.5 and LES
(standard Smagorinsky).
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(€) hmin = 1.50754 - 10~3 (d) honin = 7.5188 - 104

Figure 6.23. (||ul|) 20° using the wall-model desribed in section 4.0.5 and LES
(standard Smagorinsky).



76 Chapter 6. Computational results

Comparison of h* under rotation of geometry. h=6.12245e-03

Comparison of h” under rotation of geometry. h=3.03030e-03
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Figure 6.24. (hT), i.e. the effective discretization size along the rotated and non-
rotated object under grid refinement.
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