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AbstratThe thesis onsiders numerial approximations to solutions of the ompressibleNavier-Stokes and Large-Eddy Simulation (LES) equations.An embedded boundary method for representing geometries within the om-putational domain is onsidered. Test examples indiate that the disretizationerrors from the embedded boundary manifest as numerial 'roughness' when the�ow is turbulent and numerially unresolved. For low-Reynolds number on�gura-tions however the errors made on the embedded boundary are of the same order ofmagnitude as the errors made by the internal disretization sheme.The omputational grid is Cartesian. This imposes a hard limit on the viableresolving power of boundary layers on the method for high-Reynolds number on-�gurations, even in the presene of loal grid re�nement. To mitigate this severelimitation wall-models an be used. They in e�et model the near-wall-behaviourinstead of resolving the thin boundary-layer assoiated with high-Reynolds number�ows. We have tested one wall-model for LES in this thesis and we onlude thatthe models do not yield perfet results.ISBN 978-91-7415-258-6 � TRITA-CSC-A 2009:05 � ISSN 1653-5723 � ISRN KTH/CSC/A�09/05-SE
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SammanfattningAvhandlingen betraktar numeriska approximationer till lösningar till kompressiblaNavier-Stokes oh Large Eddy Simulation (LES) ekvationerna. En inbäddad rand-metod för att representera geometrier inuti beräkningsområdet betraktas. Testex-empel indikerar att diskretiseringsfelen från den inbäddade randen visar sig somnumerisk 'grovhet' när �ödet är turbulent oh numeriskt underupplöst. För låg-Reynoldstals�öden är felen från den inbäddade randen av samma storleksordningsom för det interna diskretiseringsshemat.Beräkningsnätet är ekvidistant oh kartesiskt, vilket begränsar starkt metodensmöjligheter att lösa upp gränsskikt för �öden med höga Reynoldstal, även om mananvänder lokal nätför�ning. För att lindra detta tillkortakommande kan man an-vända väggmodeller. Dessa modellerar vad som händer i närheten av en fast vägg,istället för att lösa upp de tunna gränsskikt som uppkommer för �öden med högaReynoldstal. I denna avhandling har vi provat en väggmodel för LES oh slutsatsenär att resultaten inte är perfekta.ISBN 978-91-7415-258-6 � TRITA-CSC-A 2009:05 � ISSN 1653-5723 � ISRN KTH/CSC/A�09/05-SE
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Chapter 1Sope of work/SummaryThe predition of turbulent ompressible �ows is a major hallenge in terms ofmodeling, numerial algorithms, and omputer performane. The motivating ap-pliation for these investigations is the modeling of the solid fuel roket exhaustplume behind a laser guided missile, with an aim to predit the refration of a laserbeam used to ommuniate with the missile.Large Eddy simulations of a simpli�ed model with non-reating and reatingbase �ow using the FOAM software (Paper I, II, III) were set up and omparedto measurements [32℄ in an attempt to larify the e�ets and appliability of di�erentapproahes to onstruting the sub-grid sale �lter in Large Eddy Simulations.The sub-grid sale �lter an be analyzed more onlusively if a sheme withknown 'harateristis' is employed so disretization errors and �lter ation an beseparated. This proved to be non-trivial in the FOAM ode as it was at the time,and it was deided to look to another family of shemes, the reently introduedEmbedded Boundary methods [70, 13℄. By virtue of primarily using retangulargrids, even for omplex geometries, they o�er simpliity and e�ieny in termsof implementation and omputer resoures. The boundary onditions are harderto set, but suessful appliations of high-order Dirihlet and Neumann boundaryonditions for seond order wave equations [43, 45℄ indiated that these problemsan be overome. The embedded boundary tehnology is very well suited for sim-ulations with moving boundaries. The mesh an be �xed, alleviating the need forgrid speed ontributions, and the alulations of boundary onditions on a movingsolid boundary are not expensive.It is evident that a Cartesian grid annot, for obvious reasons of ell aspetratio, o�er the grid point eonomy in thin solid boundary layers that a boundary-�tted grid an. The Cartesian grid tehnique must therefore be ombined with asmart grid-hierarhy suh as the building-ube [57℄, and also with adaptive meshre�nement, like Berger et. al. [4, 5℄ to beome a fully funtional tool.The work presented here represents the �rst steps towards a large eddy simulatorfor ompressible turbulene in omplex geometries using Cartesian grid methods.1



2 Chapter 1. Sope of work/SummaryThe basi sheme is derived from high-resolution shemes [65, 30, 25℄, o�ering sharpdisontinuity resolution and seond order of auray for smooth solutions. Suhshemes on boundary �tted grids, referred to as Impliit LES [29, 27, 28, 21℄, havebeen suessful even without spei� sub-grid sale �lter beause of the dissipationprovided by the limiters and �entropy �xes�. It is believed that the embeddedboundary tehnology developed here an be used also together with more-than-seond-order shemes suh as the Sjögreen/Yee entral shemes [72℄ for ompressibleturbulent �ow simulations in omplex geometries.Boundary onditions with small-ell sti�ness mitigation, proposed in [43℄ are de-signed to give ontinuous dependene on details of grid position w.r.t. boundaries.The use of Kreiss/Peterson, Sjögreen/Peterson embedded boundaries for ompress-ible Navier-Stokes/LES is new. The implementation of the method was made forparallel superomputer utilizing MPI (Message Passing Interfae). The implemen-tation was tested on �ows around simple geometries for supersoni high-Re �owsand ompared to boundary-�tted grid results (Paper IV, V). Wall quantities suhas frition oe�ient and pressure oe�ient are of primary interest in appliationsto �uid-solid interation simulations.The 3D test ase - the Dutton base-�ow experiment [32, 53, 9, 8℄ - brings us bakto the type of appliation whih initiated the work (Paper VI). The aelerationof the ore �ow downstream is strongly in�uened by the wall boundary layer whihis shed as a turbulent free shear layer. A thik boundary layer will not aeleratethe ore �ow as muh as a thin boundary layer.The MUSCL-sheme with an entropy �x adds arti�ial dissipation in the bound-ary layer, and thikens it. The MUSCL e�ets of arti�ial visosity dominate, 2:ndorder Godunov physial/LES visosity is not resolved with urrent resolution.1.1 List of papersThe thesis is ondensed from the following artiles, whih the author has ontributedto. The papers are inluded in the end of the thesis.1.1.1 Paper IRoger Mattsson, Maro Kupiainen, Per Gren, Anders Wåhlin, Torgny E. Carls-son and Christer Fureby, Pulsed TV Holography and Shlieren Studies, and LargeEddy Simulations of a Turbulent Jet Di�usion Flame, Combustion and Flame 139(2004) 1-15. The author of this thesis ontributed to some of the ideas presented,performed the numerial simulations and wrote parts of the manusript.1.1.2 Paper IIChrister Fureby and Maro Kupiainen, Large Eddy Simulation of Supersoni Ax-isymmetri Base�ow. In Third International Symposium on Turbulene and Shear



1.1. List of papers 3Flow Phenomena (TSFP-3), Sendai, Japan 25-27 June 2003. The author of thisthesis ontributed to the ideas presented, performed the numerial simulations andwrote the manusript.1.1.3 Paper IIIMaro Kupiainen and Christer Fureby, Large Eddy Simulation of a Turbulent Non-premixed Flame. In Third International Symposium on Turbulene and Shear FlowPhenomena (TSFP-3), Sendai, Japan 25-27 June 2003. The author of this thesisontributed to some of the ideas presented, performed the numerial simulationsand wrote parts of the manusript. The author also presented the paper at TSFP-3.1.1.4 Paper IVMaro Kupiainen and Björn Sjögreen, A Cartesian Embedded Boundary Methodfor the Compressible Navier-Stokes Equations. Aepted for puliation in Journalof Sienti� Computing 2008. The author of this thesis implemented the methodsolving the Navier-Stokes equations and wrote parts of the paper. The authorpresented a part of this work at BIT Cirus Conferene 2006, Stokholm and EC-COMAS 2008, Venie.1.1.5 Paper VMaro Kupiainen, On the Auray of an Immersed/Embedded Boundary Methodfor Compressible Turbulent �ow The author wrote the omputer ode, wrote themanusript and did the analysis. The author presented a part of this work atECCOMAS 2008 onferene, Venie.1.1.6 Paper VIMaro Kupiainen, LES Base�ow simulations using a Cartesian Embedded BoundaryMethod. The author wrote the omputer ode, wrote the manusript and did theanalysis. The author presented a part of this work at ECCOMAS 2008 onferene,Venie.
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Chapter 2IntrodutionThere are three major ways to investigate and analyze omplex �ows, namely mak-ing physial experiments in laboratories using e.g. wind-tunnels, using mathemati-al analysis and doing numerial simulations of the �ow. These methods should beseen as omplements to one another, sine they are bene�ial in di�erent ways.An example of an appliation is the ontrol of a supersoni missile by laserguidane from the aft. The laser-beam must travel through the bas-�ow shoksand exhaust plume whih is very hot, turbulent, and partile-laden. A robust sys-tem to steer the missile needs to know what the �ow �eld in the plume looks like.Experiments in a wind-tunnel are very hallenging and ostly. Numerial simula-tion is the remaining option. The questions are how aurate suh omputationalpreditions are, whih methods to use and how large the omputational e�ort/timewill be.The thesis surveys ommonly used methods for these types of appliations andshows alulations performed with �nite volume shemes and di�erene methods.The development of a Cartesian grid embedded boundary method for Navier-Stokes/LES equations modeling for these types of �ows is the major ontributionof this thesis.
Figure 2.1. Control by laser guidane.5



6 Chapter 2. Introdution2.1 Computational Fluid DynamisThe Navier-Stokes equations whih desribe �uid �ow proesses are ompliatedand the existene of long-time solutions is (Nov. 2008) still an open mathemati-al problem. A proof would earn the prover the Clay Prize of a million dollars.Leaving suh fundamental questions aside, the engineering and sienti� ommu-nities sine von Neumann are developing the tehnology of Computational FluidDynamis (CFD) now used routinely both by researhers and engineers to studyand understand physial phenomena of �uid �ow. Also sine von Neumann theneed for better �ow simulations has been an important driving fore for develop-ment of high-performane omputers. CFD is an interdisiplinary �eld involving�uid mehanis, the theory of partial di�erential equations, omputational geome-try, numerial analysis, and the omputer siene of programming algorithms andproessing data strutures. The �eld has matured substantially as an engineer-ing disipline. There are many ommerial �ow solvers and the market for CFDsoftware was estimated in 2006 at more than 150 MUSD p.a. (COMSOL, privateomm.) Whereas turbulene models for equations of mean �ow, when tuned to theproblem at hand, provides answers for aeronautis engineers, aurate predition ofturbulent �ow from �rst priniples is yet to be demonstrated for all but the simplest�ow geometries.2.2 Turbulent FlowsThe notion of turbulene and its meaning is generally aepted. The literature isvast. Some overview work is presented in e.g. [64℄, [69℄, [75℄, [56℄, [77℄ and [33℄. In[33℄ the following de�nition is made:Turbulent �uid motion is an irregular ondition of �ow in whih the var-ious quantities show a random variation with time and spae oordinatesso that statistially distint average values an be diserned.Turbulene is a �ow phenomenon with a wide range of sales in both time andspae, haraterized by low momentum di�usion, high momentum onvetion, andpressure and veloity variation with time. Flows that are not turbulent are usuallyalled laminar. The (dimensionless) Reynolds number, Re = ρ∞U∞L

µ∞

is a measureof the ratio of inertia fores to the moleular visosity e�et, whih haraterizeswhether �ow onditions lead to laminar or turbulent �ow. It is further generallyassumed that turbulene is a ontinuum phenomenon, an assumption appliable toliquids and gases under atmospheri onditions. Some aution is ditated in thease of hypersoni �ows, whih an have regions of very low density, e.g. on thelee-side of a wing at high angle of attak, as happens on the Spae Shuttle. Theontinuum assumption is violated when the ratio of the moleular mean free pathlength to a representative physial length sale, the Knudsen number, is small.



2.3. Common Levels of Approximation 7A harateristi feature of turbulent �ows is the ourrene of eddies of di�erentsize. Kolmogorov's famous theory from 1941 [40℄, [41℄ (later re�ned in 1962 [42℄), forhomogeneous turbulene makes two key assumptions. (i) There is a steady transferof kineti energy from the large sales to the small sales and kineti energy isonsumed at the small sales by visous dissipation. (ii) There is an inertial sub-range of sales where the turbulene generating proesses are independent of thedetails of the large sales. The eddies that arry most energy have a harateristilength sale alled the integral length sale l. The Kolmogorov sale η is the smallestlength sale in turbulent �ows. The range of sales in between is alled the inertialsubrange, see Figure 2.2.
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0 Figure 2.2. Shemati representation of the turbulent kineti energy spetrum asa funtion of the wavenumber k.2.3 Common Levels of ApproximationNumerial predition methods of turbulene are often lassi�ed as Diret NumerialSimulation (DNS), Large Eddy Simulation (LES), or Reynolds Averaged NavierStokes (RANS) models. In DNS all time and spae sales are resolved, e.g. [64℄.LES, in whih only the larger sales are resolved and sub-grid models are used torepresent the e�ets of the small sales upon the large resolved sales, is desribedin e.g. [66℄. RANS models, in whih the mean veloity, density, temperature et.are solved for, are disussed e.g. [79℄ and referenes therein. DNS, LES and RANSan be onsidered as omplementary methods to eah other, providing di�erent



8 Chapter 2. Introdutionlevels of information and auray, with di�erent areas of appliation. A shematipiture of the di�erent approahes is presented in Figure (2.3).
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Figure 2.3. A shemati, illustrating the oneptual ideas of RANS, LES and DNS.
2.3.1 Diret Numerial Simulation (DNS)DNS solves the unsteady Navier-Stokes equations with all sales (time and spae)taken into aount. This is equivalent to saying that the spae-time resolution of thedisretization should be at least as �ne as the harateristi sales of the ontinuousproblem, i.e. the Kolmogorov sale η, whih means exorbitant omputational ost.Most interesting �ows have muh higher Reynolds numbers than an urrently besimulated with DNS. The urrent Peta�ops generation of superomputers are ordersof magnitude too small and slow for any but the simplest geometries. Appliationsin aeronautis and ship design deal with Reynolds numbers as high as 108 raisingthe need of 1024 spae-time grid points and 1027 �oating point operations.



2.3. Common Levels of Approximation 9
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2.3.2 Large Eddy Simulation (LES)In LES the number of resolved sales is redued by spatial low-pass �ltering andhene in the solution proess the dynamis of all the sales are not omputedexpliitly. A ut-o� sale is de�ned, below whih the sales are not solved forexpliitly, usually denoted sub-grid sales. The non-linearities in the Navier-Stokesequations ouple all the sales of the original problem, both above and below theut-o� sale, and in order for the resolved sales to take into aount the e�ets ofsub-grid sales, models need to be used. The models are to represent the interationbetween the grid sale (resolved sales) and the sub-grid sales. Furthermore, thesmall sales are assumed to be more universal in harater and are therefore believedto be more easily modeled. This assumption is however known to be invalid for near-wall �ows, and the development of LES-wall models is an ative �eld of researh.The models inrease the omputational ost, but by using simple and univer-sal models, a redution by several orders of magnitude in number of operations isobtained when omparing to resolving all physial sales. The urse of dimension-ality is also present in LES. In order to approah a feasible solution algorithm oneneeds to use some kind of turbulene modeling and use a well implemented e�ientmethod that is adaptive in both spae and time.LES has four oneptual steps:



10 Chapter 2. Introdution(i) A spatial �ltering operation to deompose the equations into �ltered (grid-sale) omponents and residual (sub-grid sale, SGS) omponents, i.e.
φ = φ + φ′,where φ(x) =

∫

Ω
G(x − ξ, ∆)φ(ξ)dΩ is the spae �ltering onvolution, seee.g. [66℄. The �ltered omponent φ represents the large sales, that are usedexpliitly in the alulations and φ′ represents the small sales whose e�etmust be modeled. We also introdue Favre �ltering de�ned by

φ̃ =
ρφ

ρ
,where ρ is the density, whih is often used in ompressible LES formulations.(ii) The equations for the evolution of the �ltered omponents are derived fromthe Navier-Stokes equations. These equations are of the same form as theoriginal equations, exept that they ontain new terms arising from the resid-ual motions.(iii) Closure is obtained by modeling the SGS terms.(iv) The �ltered equations are solved numerially for φ, whih is an approximationto the large-sale motions in one realization of the turbulent �ow.The time-averaged mean-�ow quantities

〈φ〉ti

t0 =
1

ti − t0

∫ ti

t0

φ(·, τ)dτan be ompared to experimental data. In the LES-ommunity there are mainlytwo views on the separation of modeling issues (i)-(iii) and numerial solution (iv).One shool sees �ltering and modeling as independent of numerial methods, inpartiular independent of the omputational grids used. The other viewpoint is thatmodeling and numerial issues annot pratially be separated and hene shoulddeliberately be ombined, e.g. [7℄, [28℄.2.3.3 Reynolds Averaged Navier Stokes (RANS)The RANS approah replaes the Navier-Stokes equations with a set of time-averaged �ow equations for the mean �ow quantities.
φ(x)T =

1

T

∫ t0+T

t0

φ(x, t)dt.The formal averaging proedure results in a hierarhy of equations that requireslosure by models for averages of produts of �utuations. Extensive e�orts have



2.5. Numerial Approahes for Compressible Flows 11gone into deriving losure models, simply alled turbulene models. Key elementsof these models are parameters obtained both from �tting solutions of the equationsto experimental data and from detailed omputations. Both experiments and DNShave played important parts in deriving and alibrating turbulene losure models,see e.g. [79℄ and [64℄2.4 Compressible TurbuleneSigni�ant e�ets of ompressibility appear when the Mah number M∞ = U∞

c ,the ratio between �ow speed U∞ and the speed of sound c, exeeds approximately0.3. Turbulent ompressible �ows have been signi�antly harder to ompute, dueto the inreased omplexity introdued by the energy equation and the need formodeling its losure terms. The turbulene phenomena where ompressibility playsan important role are for instane: in (1) transoni and higher speed aerodynamis,(2) high-speed ombustion, and (3) magneto hydrodynami (MHD) �ows related tonulear fusion physis. Here we fous on non-MHD ompressible turbulent �ows.While the lassial turbulene studies have been onduted on inompressible �ows,see e.g. [66℄ for a good review, LES for ompressible turbulene e.g [19℄, [52℄, [39℄,[58℄, [16℄ and [54℄, is beoming a �eld of its own. Methods and theory onerninginompressible �ows have been modi�ed to treat ompressible �ows. Compressiblehigh-speed �ow involves, apart from turbulene, also non-smooth features suhas shoks and shoklets, [62℄, making the requirements on the numerial methodharder than for inompressible �ow problems. The instabilities due to turbuleneour on many sales, although in some sense, averaged quantities may be stableand oherent large-sale features may evolve. The interplay between the large-sale and small-sale motions dominates the problem and ompressibility a�etsthis interplay, [17℄.2.5 Numerial Approahes for Compressible FlowsBelow a brief desription of general numerial approahes and the most ommonmethods for �ow omputations is presented.Finite Element MethodsThe �nite element method (FEM) is based on a variational priniple, where thesolution is sought in a �nite dimensional funtion spae. FEM an be used onbasially any kind of mesh. The solution will be a linear ombination of funtionsfrom this funtion spae. For large lasses of problems FEM is supported by rigorousmathematial theory and error-estimates. Adaptivity an easily be inluded intothe method. Appliation of FEM in the time domain gives rise to systems ofequations that have to be solved in eah time step. The most notable e�ort inFEM for ompressible �ows is the Disontinuous Galerkin method [12℄, where the



12 Chapter 2. Introdutionbasis funtions are disontinuous, either in time or spae. The e�ieny of FEMrelies heavily on e�ient linear solvers and e�etive preonditioners for these. Whenstrong shoks are present the omputational burden an beome signi�ant; for ananalysis of this fat for a salar non-linear onservation law see [10℄.Spetral MethodsSpetral methods are a speial kind of FEM method see e.g. [11℄. The basis fun-tions are typially based on Fourier approximations or Chebyshev polynomialsand have non-loal support. These methods are very aurate (exponential on-vergene rate for C
∞ solutions) and are mainly used for DNS. The di�ulties withdisontinuities in the solution , suh as shok waves, an be handled with so alledpseudo-spetral methods. Another limitation is that these methods admit onlyvery simple geometries, making them inappliable for �ow problems around or in-side omplex bodies. Spetral methods owe e�ieny to the FFT algorithm, andits implementation: For parallel proessor omputations often the whole solutionmust be ommuniated aross all proessors several times per time step, e.g. [2℄.Also, loal mesh re�nement is di�ult and adaption to loal features, suh as inletdisturbanes, may require expensive global mesh re�nement.Finite Volume methodsFinite volume methods are based upon the integral formulation (using ell-averagedquantities) of the PDE. The usage of methods dominate omputational aeronautissine 1970's. Unstrutured �nite volume methods do not easily generalize to higherorder methods, mainly beause there is no straightforward method to make the dif-ferene approximations more aurate when ells (ontrol volumes) are arbitrarilyshaped. Adaptivity is also in priniple easy, but there are no rigorous error esti-mates, suh as with FEM, and one estimates the error using some ad ho priniple.Finite volume methods an be used on all kinds of meshes.Finite Di�erene MethodsThe �nite di�erene method is based on the di�erential formulation of the PDEsee e.g. [74℄. If we interpret ell-averaged quantities in the �nite volume methodas point values we an interpret the method as a �nite di�erene method. Thesemethods are based on Taylor's formula to approximate the solution and do not workon disontinuous solutions, as �nite volume shemes and disontinuous Galerkinshemes do. Finite di�erene methods are always used on strutured meshes.2.6 Computational Grids for CFDThe methods above must operate on some data representation to solve the ompu-tational task at hand. With data representation we mean type of grid and how the



2.6. Computational Grids for CFD 13handling of geometries within the omputational domain is done.2.6.1 Unstrutured gridsUnstrutured grids over the omputational domain with �arbitrarily� shaped, oftentetrahedral or hexahedral, ontrol volumes and approximate the integral formula-tion in eah ontrol volume, see Figure 2.5. Due to the arbitrary shapes allowedin the method, omplex geometri objets are in easy to apture. Many softwarepakages an generate suh grids from a CAD-model e.g. ICEMCFD [35℄ and Gam-bit [36℄. Unstrutured grids are used in FEM and in Finite Volume methods. Dueto the irregularity of the mesh Taylor expansion methods are not easily appliable.With ordinary unstrutured �nite volume methods usually only seond order(formal) auray is ahieved. Of ourse the quality of the simulation dependson the mesh quality. A rule of thumb is that the ell-size should not inrease orderease with more that 20% from one ontrol volume to another (whih still is verymuh!), in order for the mesh to have aeptable quality. Mesh ell skewness alsoa�ets the grid quality. Another feature whih makes unstrutured grid methodsslightly ine�etive is that in order for a ell/point to know its neighbor, it has tolook it up in a list or some similar data struture, and it is somewhat di�ult toorder the data in suh a way that needed data for an operation is in the ahe. Wewill refer to this as data referene loality. Muh work has been put into orderingthe datasets to exploit data loality for unstrutured methods in order to limit theons of indiret addressing. Moving boundaries an be treated with ALE e.g. [14℄,whih admits movements of the boundary small enough to limit the deformation ofthe ells. Larger deformations need time onsuming regridding.2.6.2 Body-�tted gridsThe omputational domain is overed with a grid of indexed points (xi, yj, zk) whihan be mapped to a retangular box in (ξi, ηj , φk) omputational spae. Derivativesan either be evaluated in physial or in mapped spae. Single suh grids an onlyover simple geometries, e.g. C-grids and O-grids et., see e.g. [76℄ and Figure 2.6.There are regularity requirements on the grid-to-omputational domain mappings,to preserve auray. For high-order methods and omplex geometries this anbe an impossible requirement. With so alled multi-blok meshes see Figure 2.7omplex domains an be gridded, but onstruting good body-�tted grids is timeonsuming. The rewards for this are grids on whih omputations an representthe physis of the problem aurately, espeially boundary layers. This propertyis not easily dupliated in the unstrutured gridding or in the Cartesian embeddedboundary methods.The data strutures do not su�er from indiret addressing and adaptive meshre�nement (AMR), e.g. [5℄, [4℄ an be used to loally re�ne the solution.The simulation of moving boundaries requires regridding in eah time iterationor when the boundaries move.
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Figure 2.5. Example of an unstrutured mesh around a ylinder.

Figure 2.6. Example of body-�tted strutured O-grid around a ylinder.



2.6. Computational Grids for CFD 15
15

6

7

8

9

2

3

4

Figure 2.7. Example of a multi-blok mesh of a jet. The grid is strethed somewhattowards the shear-layer loated between the outer layer and the intermediate layerof grids. Note the hanging nodes in pathes 1,4 and 8.
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Figure 2.8. Overlapping a Cartesian mesh with a body-�tted strutured mesh.
Overlapping strutured gridsA very promising method to irumvent the limitations of strutured grids is to useoverlapping grids, also known as 'Chimera' grids e.g. [31℄. A 'base' grid, overs thewhole omputational domain, and around objets body-�tted grids are introdued.In the overlapping domain between the 'base' grid and the body-�tted grids inter-polation is used to onnet the solution in all grids. A signi�ant omplexity of thismethod is the omputation of intersetion points for the interpolations between thegrids.Moving the boundary is handled by moving the mesh surrounding the bound-aries only. The interpolation stenils between grids need to be updated and gridvalues previously unused must be assigned values in a onsistent and stable manner,whih is a general problem with moving meshes, for a solution see e.g. [31℄.



2.7. Uniform Cartesian grids with embedded boundaries 172.7 Uniform Cartesian grids with embedded bound-ariesUniform Cartesian grids have the highest quality with respet to omputationalauray, sine there is no need to make any mappings from physial spae toomputational spae. Most methods based upon Taylor-expansions are derived tobe used on uniform Cartesian grids, so there is no need to make modi�ations tothe numerial shemes due to deformed meshes. Classially, Cartesian grids ouldbe used only for box-like geometries, where the boundaries of the objet are alignedwith the grid. The disretization methods do not need indiret addressing makingthem e�etive.With embedded boundary methods e.g. [50℄, [13℄ and [49℄ (Paper IV), theuse of Cartesian grids an be extended to solve problems in omplex geometries,yielding an e�ient and aurate method.In a body-�tted grid, the grid spaing along the body surfae an be muh largerthan the resolution in the surfae normal diretion in order to resolve boundarylayers in visous omputations. This means that the ells near the body have highaspet ratios, typially 1:10 for time dependent alulations and 1:100 or even 1000in steady state omputations. While this is omputationally e�ient, auray ansu�er due to the sale separation that in pratie is enfored. For example, if ashok or �ame hits the body at an angle to the grid lines, the e�etive resolutionwill be the oarser of the two resolutions and not the �ner.One of the former di�ulties with embedded boundaries has been the so alled�small-ell sti�ness�, aused by boundary-gridline interseting very lose to grid-points.The boundary loation is de�ned by signed distane funtion (SDF). Very om-pliated geometries an be generated in seonds, straight from CAD-�les, see [59℄,by simple alls to the signed distane funtion. Movement of the boundary is alsomade simple, no regridding is required, only alls to the SDF, updating of the ghostpoint interpolation stenils and initialization of previously unused grid values.2.7.1 Virtual ell embeddingThe virtual ell embedding is a Cartesian gridding tehnique used for generatinggrids for very omplex boundaries [50℄. A omplex geometry is spei�ed as a unionof a number of simples shapes. Eah shape, whether given as an analyti funtion,a surfae-panel representation or some form of bit map, must be aompanied bya subroutine that determines if a point lies inside or outside the geometry. In thismethod there is a distintion of ells into three ategories; inner, outer and ells thatare ut. The ells that are ut are further subdivided into smaller ells typiallyinto 82 in 2D and 103 in 3D. Eah one of these �subells� is determined to be insideof the body, if the enter of the �subell� is inside the geometry. Thus this boundary
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Figure 2.9. Example of a Uniform Cartesian mesh around a ylinder with loalmesh re�nement.



2.7. Uniform Cartesian grids with embedded boundaries 19

Figure 2.10. Example of Virtual Cell Embedding.handling is in priniple �rst order aurate, although the mesh is made muh �nerin the parts where needed.2.7.2 Colellas embedded boundary methodIn [13℄ an embedded boundary method based upon ell sliing is desribed forhyperboli onservation laws. The same method to handle boundaries is used in[15℄ to solve the 2D ompressible Navier-Stokes equations. The error for this methodis O(h) in L∞-norm and O(h2) in L1-norm. The method uses a linear ombinationof expliit onservative and non-onservative updates to set boundary values. Thisis ombined with a �ux redistribution proedure to maintain loal onservation.2.7.3 KP and SP embedded boundary methodsThis work uses the Kreiss/Petersson (KP) [44, 45, 43℄ and Sj�¶green/Petersson(SP) [70, 60℄ embedded boundary methods. They are more than �rst order aurate,empirially stable and do not su�er from �small-ell sti�ness�. They assign the ghostpoint values (set the boundary ondition) through interpolation/extrapolation inthe surfae normal diretion.The KP methods are linear in the sense that the same interpolation stenil isused all the time during the alulation, whereas the SP method is slightly data-driven in the sense that it limits the slopes of the interpolants in a similar manneras is done in [70℄ for onservation laws. These methods are desribed in more detailin hapter 5.
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Chapter 3Governing Equations and ModelsHere we present the LES equations with turbulene models used to model om-pressible �ow. We disuss brie�y the in�uene of hemial reations on the ther-modynamis of the moleular internal degrees of freedom.WHY? there is no disussion of the reative �ow omputed by FOAM?3.1 Compressible Navier-Stokes/Euler EquationsWe onsider the ompressible Navier-Stokes equations for a perfet gas in two andthree spae dimensions, whih an be written as (using Einsteins' summation on-vention):
∂ρ
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(3.1)where ρ is the density, ui, i = 1, 2, 3 is the veloity in x, y and z diretion re-spetively, µ is the shear oe�ient of visosity and κ is the thermal ondutivityoe�ient. The Euler equations are obtained when µ = κ = 0. The visous strainrate tensor is given by
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22 Chapter 3. Governing Equations and Modelswhih, by using the ideal gas law onstitutes the relationship
e =

p

γ − 1
+

ρ

2
uiui.The temperature T is given by

T =
Mp

Rwρ
,where M is the molar mass of the substane onsidered and Rw is the universal gasonstant. The speed of sound c, is related to the pressure and density by

c2 = γ
p

ρ
,where γ =

Cp

Cv
is the ratio between spei� heats and Cp − Cv = Rw

M . Both γ and
Rw

M are onstants. The spei� total energy e/ρ =
1

2
ukuk

︸ ︷︷ ︸

ek

+eI = ek + eR + ev is thesum of the kineti and of the rotational and vibrational energies of the moleulesdenoted eR and ev respetively. The spei� internal energy is denoted eI . For aperfet gas the hypothesis are made:� ev = 0,� the veloities at a point (x, t) satisfy a Gaussian distribution law aexp(−b〈uk〉〈uk〉),where a and b and ui are funtions of (x, t). The distribution omes from thetheorem of Laplae that onsiders the moleular veloities as identially dis-tributed random variables when the number of partiles tends to in�nity.� the spei� internal energy is made up among its di�erent omponents inproportion with the degrees of freedom.The hypothesis of the equi-partition of energy is pretty well veri�ed when thereare a few degrees of freedom, for example for monoatomi moleules (He), diatomimoleules (H2, N2, O2) or rigid moleules (H20, CO2, C2H2, C2H4). The more om-plex moleules are less rigid; they thus have more degrees of freedom, whih arenot equivalent from the energeti point of view.Let β be the number of non-translational degrees of freedom. The hypothesisof equi-partition gives the following formula for eah type of internal energy:
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= . . . = ekd
=
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d
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β

d
ek,and thus eI = (d + β)ek1

.The adiabati exponent γ = d+β+2
d+β results in the law of perfet gases
p = (γ − 1)ρeI .The most ommon adiabati exponents are 5/3 and 7/5 for d = 3 and 5/3 and 2for d = 2 and 3 for d = 1. In appliations air is onsidered to be a perfet gas forwhih γ = 7/5.



3.1. Compressible Navier-Stokes/Euler Equations 23The Prandtl number Pr relates thermal ondutivity to visosity
Pr =

µRuγ

κ(γ − 1)M
.Many normalizations are possible. We let L be a typial length and let the ∞ sub-sript denote typial values of the independent variables, whih in our appliationsare the free stream values. The physial quantities are denoted by a '∗' supersript.In three spae dimensions we have
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,where Re is the Reynolds number. The dimensionless Navier-Stokes equations are
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= 0,(3.2)where T = p/ρ. The physial visosity µ∗ = α(T )µ∞ = α(T )ρ∞c∞L

Re and thephysial thermal ondutivity κ∗ = α(T )γRwρ∞c∞L

MRePr(γ−1) are either taken onstant (α ≡
1) or alulated using Sutherland's law
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.with S1 = 110.4K. In planar �ow all derivatives with respet to x3 are set to zeroand u3 ≡ 0.3.1.1 Boundary ConditionsWe use boundary onditions of the form:wall (no-slip):
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∂n = fT

p :extrapolated



24 Chapter 3. Governing Equations and Models(3.3)where ni denote the i:th omponent of the normal vetor. For an adiabati wall
α = 1, β = 0 and fT = 0 and for a thermal wall α = 0 and β = 1.At in�ow and out�ow boundaries at the edge of the omputational domain, weimpose harateristi boundary onditions e.g. [34℄.



Chapter 4LES and Sub-GridSale ModelsIn this work we onsider the Smagorinsky sub-grid model and an impliit sub-grid model. 'Impliit' subgrid models (ILES and MILES) are given by the leadingorder term of the trunation error of the numerial sheme. It is argued in theILES/MILES ommunity see e.g. [61℄ that there are four fortunate irumstanesthat make turbulene simulations and in partiular ILES/MILES work:� The shape of the Kolmogorov spetrum:The average kineti energy dereases fast enough for the sales ontainingmost of the energy to be resolvable urrent omputing hardware. This meansthat there is enough energy for the small sales to mix large-sale inhomo-geneities as fast as the large-sale �ows an produe them.� Energy transfer through loal interations:Turbulent energy is transferred by a turbulent asade that passes from largeeddies to the small sales where it is eventually dissipated. Simulations haveshown that the energy transfer in the inertial range is dominated by loal (inwavenumber spae) interations, and not deposited diretly from the large,energy-ontaining sales into the small sales.The relatively smooth transfer of sales implies that there is a portion ofthe inertial sub-range (see Figure 2.2) where the behavior of the �uid dy-namis is essentially sale invariant. This is the reason why the region with-5/3 spetrum slope is the aeptable plae to math a subgrid model tothe resolved-sale model. In the ILES/MILES ontext, this orresponds tohoosing the grid size in this region.� Dynamis on the large sales:There is an apparent lak of important dynamis ourring at sales evena fator of ten or more larger than the lassially de�ned Kolmogorov sale.The dissipation at sales larger than the Kolmogorov sale is su�iently strong25



26 Chapter 4. LES and Sub-GridSale Modelsthat little struture survives to reah the small sales. In pratie this reduesthe need for spatial resolution.� Behavior of monotone algorithms at the grid-sale ut-o�:Monotone shemes have a modi�ed equation whose leading order trunationerror resembles the loal nonlinear dissipation that onnets the large, re-solved, energy-ontaining sales to the unresolved subgrid sales and providea built-in measure of the dissipation required.One important di�erene between LES and ILES/MILES onerns the ompu-tational mesh. In LES, one emphasizes the independene of the equations, par-tiularity that of the expliit subgrid sale models from the mesh. However, inILES/MILES, the mesh is analogous to an experimental apparatus; there one ex-pets the simulation results to depend on the hoie of mesh. Although at �rstglane this may seem a philosophial point, it has important pratial impliations.In partiular, the impliit subgrid sale models of ILES depend both on the lengthsales and the geometry of the omputational mesh.4.0.2 The Smagorinsky subgrid modelThe Smagorinsky subgrid model dates bak to the 1960's, [73℄. If we solve theNavier-Stokes equations ut + f(u)x = 1/Reuxx, then the Smagorinsky model anbe seen as the method of expliitly added arti�ial visosity:
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, (4.1)where ε is the Smagorinsky model parameter. This simple example does not showthe physial reasoning behind the model, but as a orresponding one dimensionalexample illustrating the atual e�et of the model this is preisely what the modelis, whih is easily seen from the full LES-Smagorinsky equations in d dimensions:
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27where ∆ is the �lter width parameter and the parameters Cs = 0.16 and CI = 0.09aording to [52℄ and ‖S‖ is the Frobenius norm of the strain rate tensor, whih is
∼ |ux| in (4.1). Realizability onditions on the model parameters, e.g for positivesemi-de�niteness of the SGS stress tensor, are given in [78℄:

CI ≥
√

3

2
C2

s .

P rT is the turbulent Prandtl number usually taken to be in the interval PrT ∈
[0.7, 0.9]. For wall-bounded �ows the most used approah is to turn o� the LESontribution near the wall resulting is wall-resolved LES. ∆ is given by

∆(x, y, z)a = min(∆, C(wallDist(x, y, z))) (4.3)where C(wallDist(x, y, z)) turns o� the subgrid model lose to a solid wall and ∆is a measure of the grid spaing and wallDist(x, y, z) is the losest distane to anywall. ∆ an be omputed in many ways e.g.
(∆x∆y∆z)1/3, max(∆x, ∆y, ∆z), min(∆x, ∆y, ∆z), (ell volume)1/3.For Cartesian grid methods ∆ = h, where h is the (uniform) ell width, is usuallyhosen.4.0.3 The impliit subgrid model (ILES)In impliit LES (ILES) and Monotone Integrated LES (MILES) methods the trun-ation error of the method ats as LES turbulene model. Monotoniity is a prop-erty of ertain shemes for onservation laws [51℄ using �ux limiting and arti�ialvisosity. The loal e�et of the non-linear �ux-limiting is interpreted as an e�etivesubgrid turbulene model. Sine the trunation error is not viewed separate fromthe modeling, these methods are at least seond order aurate for solving theirmodi�ed equation, i.e. the equation a ertain sheme solves to O(hp) inluding theleading order error term. There are empirial indiations that ILES/MILES workse.g. [29℄, [27℄ and [26℄. In many studies e.g. [48℄ ( Paper III), [22℄ (Paper II)ILES/MILES is one of many LES subgrid models tested. A ommon onlusion isthat the solution is not muh a�eted by the hoie of subgrid model, indiatingeither that the solution algorithm has poor auray, so modeling e�ets do notshow in the solution, or that the spatial resolution was insu�ient.4.0.4 ConvergeneA high-Reynolds number �ow is unstable, even when the full turbulent asade isbeing resolved down to the Kolmogorov sale. Two faithful simulations of the sameproblem with di�erent methods will deviate progressively with time as a result ofarbitrarily small di�erenes in initial and/or boundary onditions, round o� errors,methods, et.. Now, onvergene of a sequene of numerial simulations means that



28 Chapter 4. LES and Sub-GridSale Modelsthe solutions approah a limit, the grid-onverged solution, whih by the proedurebeomes de�ned point-wise. If the methods are onvergent under grid re�nement,as is ustomarily assumed, one ould ompare the limiting solutions.Turbulent �ows are haoti by nature and onvergene annot be point-wisein spae and time, but as in the de�nition of Hinze, see Ch x, only in averagedquantities. It follows that the numerial simulations will not onverge.How to assess the auray of LES using ∆ = C · h, i.e. how to de�ne the lim-iting solution, is perplexing; inrease in spatial resolution unovers more struturein the omputed �ow as unresolved sales beome resolved. One might de�ne on-vergene to the limit solution as onvergene of all relevant averages. and addressthe problem of seletion of these.An alternative is to use a �xed ∆, spei� for the problem under study, ditatedby the physis and the quantities of interest: fores, mixing properties, et.. Asan example, a physial length sale an be provided by the "equivalent grain size"in �ows over rough walls. [47℄ (Paper V) uses this interpretation to analyze theperformane of the EB boundary onditions.4.0.5 Near-wall-boundary Conditions for LESLike all numerial approximations to the �ow equations LES requires the settingof boundary onditions in order to fully determine the system and obtain a math-ematially well-posed problem. Here we disuss questions of determining suitableboundary onditions for LES espeially near solid walls.General problemThe LES equations an be of an order di�erent from that of the original Navier-Stokes equations. This is trivially veri�ed by onsidering the di�erential interpre-tations of the �lters: the resolved equations are obtained by applying a di�erentialoperator of arbitrarily high order to the basi equations.The hanged degree of the disretized equations raises the problem of determin-ing the assoiated boundary onditions, beause those assoiated with the equationsgoverning the evolution of the exat solution an no longer be used in theory forobtaining a well-posed problem [66℄. This problem is generally not onsidered, ar-guing the fat that the higher-order terms appear only in the form of O(∆p), p ≥ 1perturbations of the Navier-Stokes equations and the same boundary onditionsare used for the LES and DNS of the Navier-Stokes equations. Moreover, whenthe �lter is unknown, it is no longer to derive suitable boundary onditions stritly,whih also leads to the use of the boundary onditions of the basi problem.The boundary onditions, along with the similarity parameters of the equationsdetermine the solution. These onditions represent the whole �uid domain beyondthe omputational domain. To speify the solution ompletely, these onditionsmust apply to all of its sales, i.e. to all spae-time modes it omprises.



29In order to haraterize a partiular �ow, the amount of information in theboundary onditions ia a funtion of the number of degrees of freedom of the bound-ary ondition system. This poses the problem of representing a partiular solution,in order to represent it numerially. We have a new modeling problem; to modelthe physial test on�guration.This di�ulty is inreased for LES and DNS, due to the large number of degreesof freedom and require a preise spae-time deterministi representation of thesolution at the omputational domain boundaries.Solid wall problemWe desribe the problem in the ideal framework of a �at-plate, turbulent boundarylayer, without pressure gradient. The external �ow is in the x1 diretion and the x2diretion is normal to the wall. The external veloity is denoted Ue. The boundarylayer thikness δ is de�ned as the distane from the plate beyond whih the �uidbeomes irrotational, and thus where the �uid veloity is equal to the externalveloity. The frition veloity uτ is de�ned as
uτ =

√
τw

ρ
, (4.4)where τw =

∂utangential

∂n and we an de�ne a Reynolds number
Reτ =

δρuτ

µ
. (4.5)The redued veloity u+

i , expressed in wall units, is de�ned as u+
i = ui/uτ . Thewall oordinates x+

i are obtained by the transformation x+
i = xiρuτ

µ .The boundary layer is divided into two parts: the inner region (0 ≤ x2 ≤ 0.2δ)and the outer region (0.2δ ≤ x2). In the inner region the dynamis is dominatedby the visous e�ets. In the outer region, it is ontrolled by the turbulene.The struture of the (turbulent) boundary layer �ow has ertain harateristis:� Low-speed streaks in the region 0 < y+ ≤ 10. The �ow is highly agitatedlose to the wall, onsisting of pokets of fast and slow �uid that organize inribbons parallel to the outer veloity.� Ejetions of low-speed pokets �uid outward from the wall. These are subjetto an instability that make the explode near the outer edge of the inner region.� An ejetion is followed by sweeps of high-speed �uid toward the wall in thenear-wall region, almost parallel to it.� Vortial strutures of several proposed forms.� Strong internal shear layers in the wall zone (y+ ≤ 80).



30 Chapter 4. LES and Sub-GridSale Models� Near-wall pokets, observed as areas lear of marked �uid in ertain types of�ow visualizations.� Baks: surfaes (of sale δ, where δ is the boundary layer thikness) arosswhih the streamwise veloity hanges abruptly.� Large-sale motion in the outer layers (inluding bulges, superlayers and deepvalleys of free-stream �uid).These highly intermittent events indue a strong variation in the unsteady Reynoldsstresses and originate a very large part of the prodution and dissipation of the tur-bulent kineti energy. These variations produe �utuations in the subgrid dissipa-tion that an reah 300 % of the average value and an make it hange sign, [66℄.The above features all for a speial treatment in the framework of LES. Analyzesof DNS result [66℄ indiate that the maximum turbulent energy prodution is at
x+

2 ≈ 15, whih gives rise to a high bakward energy asade and assoiated withthe sweeping type events. The forward asade is assoiated with the ejetions.In the outer regions of the boundary layer where the visous e�ets no longerdominate the dynamis, the energy asade mehanism is predominant. Both as-ade mehanisms are assoiated preferentially with the ejetions.Modeling or resolving the near-wall behavior in LES?The problems of applying the LES framework to the �ow near walls are that themehanisms reating the turbulene, i.e. the driving mehanisms, are assoiatedwith �xed harateristi length sales on the average. Also, the turbulene pro-dution is is assoiated with a bakward asade mehanism in ertain regions ofthe boundary layer. These two fators make the present subgrid models inoperativebeause they annot represent these driving mehanisms. There are two approahesto this dilemma:� Resolving the near-wall dynamis diretly. The subgrid models do not aountfor the turbulene prodution mehanisms in the near-wall region. By turningo� the subgrid model in the near-wall region and using a su�iently �neresolution the near-wall dynamis are resolved. This is alled wall-resolvedLES, and is illustrated in Figure 4.1. The solid wall is represented by a no-slipondition. This impliitly implies that the mean free path of the moleulesis small ompared to the harateristi sales of the motion, and that thesesales are large ompared with the distane of the �rst grid point from thewall. In atual simulations, this is ahieved by plaing the �rst grid point at
x+

2 ∈ [0, 1]. In [24, 67℄ a typial required resolution for boundary layers usingDNS/LES is reported: Arguing that the non-isotropi modes must be resolvedit is argued in [3℄ that number of degrees of freedom in spae for the solutionsales as Re2
τ . This beomes prohibitively expensive from a omputationalperspetive for high-Reynolds number �ows. In [46℄ (Paper VI), we haveexperimentally made investigations how to the turn o� the LES SGS-model
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Figure 4.1. No-slip type grid.DNS Wall-resolving LES LES with wall-model
∆x+

1 (streamwise) 10-15 20-50 100-600
∆x+

2 (wall-normal) 1 1 30-150
∆x+

2 (spanwise) 5 10-20 100-300No. of points in 0 < x+
2 < 10 3 3 -Table 4.1. Typial mesh size (in wall units) for DNS and LES for boundary layer�ow, [67℄.ontribution lose to the wall. However these simulations were too unresolvedin the near-wall region, so that nothing onlusive an be said.� Modeling the near-wall dynamis. The inner region is a model representingthe dynamis of the zone between the wall and the �rst grid point outsidethe wall, see Figure 4.2. This is a speial subgrid model alled a wall-model.Sine, usually the �rst grid point is loated at a distane greater than theharateristi length sales of the modes existing in the modeled region, theno-slip ondition an no longer be used. The boundary ondition will applyto the values of the veloity omponents and/or their gradients, whih willbe provided by the wall-model. This approah makes it possible to plaethe �rst grid point in the logarithmi layer (in pratie x+

2 ∈ [20, 200]). Themain advantage is that the number of degrees of freedom in the simulationis greatly redued, but sine part of the dynamis is modeled, an additionalsoure of error is also introdued.
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Wall−modelFigure 4.2. Wall-model type grid.A wall-model for ompressible LESFor inompressible �ows there are numerous wall-models proposed for LES, see e.g.[66℄ for a omprehensive summary. In [55℄ a wall-model for the inompressible LESequations is presented. The method is based on a loal integration from the �rstomputational grid point near the wall to the surfae. This approah does notrequire the use of an internal disretization of the boundary layer or the use ofan auxiliary solver. Therefore it an be implemented into an existing �ow solver.Below we present this wall-model adapted to ompressible �ow and the embeddedboundary method used in this thesis.We assume (for simpliity of presentation) that the tangential veloity is u1 andthat the normal diretion from the wall is x2. The wall-model is given as a solutionto
d

dx2

(

(µ + µT )
du1
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)

= F, (4.6)where F an be the pressure gradient and/or onvetive terms in the NS/LESequations.
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33where κ = 0.42 is the von Karman onstant. The model is derived by integrating(4.6) in the wall-normal diretion to yield:
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(4.7)where the ·I -subsript denotes values at xI and ·w denotes values on the wall bound-ary and F+ = F µ
ρ2u3

τ
. The veloity pro�le is given by
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Figure 4.3.In order to solve for the unknown frition veloity uτ we have that x2 = ∆−ξΓ ⇒
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µκ
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− uI = 0, (4.8)



34 Chapter 4. LES and Sub-GridSale Modelswhere uI is the known veloity at xI . The relation (4.8) an be solved for numeri-ally with the Seant method:
un+1

τ = un
τ − un

τ − un−1
τ

G(un
τ ) − G(un−1

τ )
G(un

τ ).This of ourse needs two initial guesses to work.The de�nition of frition veloity is:
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ρwOne the frition veloity is known, we get a Neumann boundary ondition for thetangential veloity from
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ρwu2

τ

µw
(4.9)where the uτ is the known frition veloity. After this the system needs to betransformed bak to the original oordinates.In the embedded boundary tehnique the boundary an interset the grid inan arbitrary way. Speially there will be omputational points really lose to theboundary, whih are not onsidered boundary points. This means that we wish toinvestigate the e�et of the wall boundary ondition when x+

2 → 0. Taking thelimit shows that there is no uτ dependene on du+

dx+

2

, whih means that for smallenough x+
2 and arbitrary uI there is no parameter to be solved for, and hene theproedure breaks down. This means that we are in the visous sublayer in theboundary layer and we an swith into using the ondition

u+ = x+
2instead, whih is used to get uτ = µκuI

∆−ξΓ
.CommentOne should note that the above boundary ondition is not to be used for theonvetive part of the operator, but rather only to the visous operator. In e�etwe have performed a splitting of the operators. The original equations are splitfrom

∂tu + ∂xi
(f(u)) + ∂xi

(fv(u)) = 0 with no-slip ondition on veloity.into
∂tu + ∂xi

(f(u)) = 0 with slip ondition on veloity i.e. ~u · ~n = 0

∂xi
(fv(u)) = 0 with Neumann ondition (4.9)on tangential veloities.



Chapter 5A Cartesian Embedded BoundaryMethod for Compressible FlowThis hapter presents the numerial methods used in this thesis and desribes twoCartesian Embedded boundary methods for the ompressible Navier-Stokes/LESequations; the Kreiss/Petersson (KP) [44, 45, 43℄ method and the Sj�¶green/Petersson(SP) [70, 60℄ method. The presentation will be done for the two dimensional ase,to simplify notation. The methods have been generalized to three spae dimensionsand are desribed in [49℄ (Paper IV). We also limit this desription to the KP3method, but we have investigated KP4 and KP5, whih are higher order boundaryproedures, but these are not desribed here.5.1 FOAMs ompressible solver suiteThe following setion is inluded for ompleteness of desription of the methodsused during this dotoral thesis work. The methods in FOAM for ompressible�ows are impliit up to seond order aurate methods with a Courant-numberrestrition of ≈ 0.3 (determined experimentally).Lately the time-integrator in FOAM has been re-implemented to using Runge-Kutta. Results using this solver is presented in [6℄ for the forward faing stepproblem [80℄ and simple Burgers equation.Reently there has been work done in the diretion of well-known methods thatwork [23℄ for hyperboli onservation laws, showing remarkable improvement inboth auray and e�etivity ompared to previously existing FOAM implementa-tions for ompressible �ow.The solvers used in this theses have produed good results for axisymmetribase�ow [22℄ (Paper II), when ompared to experimental data [32℄, but nothingonlusive ould be said regarding hoie of subgrid model or numerial sheme,sine results are nearly indistinguishable in [22℄ (Paper II) and [48℄ ( Paper III).35



36 Chapter 5. A Cartesian Embedded Boundary Method for Compressible FlowThe onlusion drawn was that FOAM, at least in its former status, was a too dullinstrument to assess the question of how good LES really is and/or what subgridmodel strategy to use.5.2 Desription of the methodsBelow we desribe the internal disretization sheme used to approximate solutionsto the Navier-Stokes/LES equations.5.2.1 Solving the Riemann problemIn the one-dimensional ase, the partiular problem when initial data u0 is pieewiseonstant with a single jump disontinuity at some point x0,
u0(x) =

{
uL, if x < x0

uR, if x > x0
(5.1)is alled the Riemann problem. The solution of this problem has a entral role in theonstrution of numerial methods for hyperboli onservation laws. For hyperboliproblems the solution to the Riemann problem is typially a similarity solution, afuntion of x/t alone, and onsists of a �nite set of waves that propagate away from

x0 with onstant wave speeds. For linear hyperboli systems, ut + Aux = 0, theRiemann problem is easily solved in terms of the eigenvalues and eigenvetors ofthe matrix A, see e.g. [51℄. This simple struture also holds for nonlinear systemsof equations and the exat solution (or arbitrarily good approximations) to theRiemann problem an be onstruted, desribed below.Numerial methods are usually derived using Taylor series to establish appro-priate expressions for the values of the dependent variables at the next time level.Di�erenes in the spatial diretion are also based upon the requirement of hav-ing ertain auray using a series expansion. Taylor-series work very well whenonditions for onvergene of the series are met. In fat, the series will onvergeeverywhere, provided the funtion that is approximated is su�iently smooth. Inthe ase of a �nite-di�erene method, we assume that a series expansion is anappropriate means of obtaining a di�erene approximation and the funtions areontinuous and have ontinuous derivatives at least through the order of the dif-ferene approximation. This is ertainly not the ase when shok waves (in theinvisid ase or unresolved sharp gradients in the visous ase) or other disontinu-ities are present. Godunov [25℄ proposed a solution to this problem by avoiding thedi�erentiability requirement by using a �nite-volume approximation in solving theonservation equations and evaluating the �ux terms at the ell interfaes by thesolution of a Riemann problem. The state variables are assumed to be onstant inontrol volumes, whih is su�ient for �rst order shemes.



5.2. Desription of the methods 37The Euler equations in 1D are:
ρt + (ρu)x = 0 (5.2)

(ρu)t + (ρu2 + p(ρ, eI)) = 0 (5.3)
(

ρ

(

eI +
1

2
u2

))

t

+

(

ρ

(

eI +
1

2
u2

)

u + pu

)

x

= 0. (5.4)The veloity u an take any real values, but ρ and eI must be positive. The followingdesription is made easier in the non-onservative form:
ρt + uρx + ρux = 0 (5.5)

ut + uux + ρ−1px = 0 (5.6)
(eI)t + u(eI)x + ρ−1pux = 0. (5.7)The matrix of this system is

A = uI3×3 +





0 ρ 0
ρ−1pρ 0 ρ−1peI

0 ρ−1p 0



 .The eigenvalues are solutions to (λ−u)3 = (λ−u)(pρ +ρ−2ppeI
). In the form (5.5)we see that the system has a singularity all over the plane ρ = 0. This orresponds tothe fat that, when ρ = 0, the onservative variables (ρ, ρu, e) are not independentof eah other, sine they are all zero together, resulting in a singular point (0, 0, 0).The density being zero on an interval expresses the fat that this interval is free ofgas. We annot exlude this state in the solution of the Riemann problem, whihintrodues an indeterminay in the variables whih desribe the �ow. It is learthat vauum has zero density, energy and pressure, but on the other hand veloityis not de�ned (′0/0′), whih prevents giving sense to the energy �ux. This issue isnot pursued further here and we shall assume that ρ > 0.The system is hyperboli if and only if pρ + ρ−2ppeI

> 0, whih we in thefollowing will assume.The eigenvetors and eigenvalues of A are expressed as funtions of the speedof sound c =
√

pρ + ρ−2ppeI
:

λ1 = u − c, λ2 = u, λ3 = u + c,

r1 =





−ρ
c

−ρ−1p



 , r2 =





peI

0
−pρ



 , r3 =





ρ
c

ρ−1p



 .We have that dλj · rj = c + ρ−2p(ρc)eI
= 1

2 (γ + 1)c > 0, j = 1, 3, i.e. the �rst andthird �elds are of the same nature and genuinely non-linear. The speed of sound
c = γ(γ − 1)eI = γp

ρ . The seond �eld is always linearily degenerate dλ2 · r2 = 0.The Riemann-invariants for the 1-waves are (S, u− 2c
γ−1), for the 2-waves (u, p) andfor the 3-waves (S, u + 2c

γ−1).



38 Chapter 5. A Cartesian Embedded Boundary Method for Compressible FlowSolution to the Riemann problemGiven a state to the left (pL, uL, ρL) and a state to the right (PR, uR, ρR) thesolution to the Riemann problem is to seek two intermediate states, indiated bysubsripts 1 and 2, and three waves linking these four states. The entral wave beinga ontat disontinuity (sine 2-wave is linearily degenerate), we have p∗ = p1 = p2and u∗ = u1 = u2. There is a 1-wave from (pL, uL, ρL) to (p∗, u∗, ρ1) and a 3-wavefrom (p∗, u∗, ρ2) to (pR, uR, ρR). This results in
ρ1 = σ(p∗; pL, ρL), (5.8)
u∗ = uL − τ(p∗; pL, ρL), (5.9)
ρ2 = σ(p∗; pR, ρR), (5.10)
u∗ = uR + τ(p∗; pR, ρR), (5.11)where

τ(p∗; p−, ρ−) =







(p∗ − p−)
√

ρ−

2 ((γ + 1)p∗ − (γ − 1)p−) if p∗ > p−,

2c−
γ−1

((
p∗

p−

) γ−1

2γ − 1

) if p∗ ≤ p−.We anel u∗ from the alulations by observing
uL − uR = τ(p∗; pL, ρL) + τ(p∗; pR, ρR),whih is a salar non-linear equation for the unknown p∗. One this is solved, (5.8)and (5.10) yield values of ρ1 and ρ2. Finally u∗ is given by either of (5.9) or (5.11).The σ funtion is not presented due to ease of notation.The Godunov methodThe solution to the Riemann is used in the �ux omputation in the Godunovmethod. In the method the Riemann problem is formulated at all ell interfaes

(xi+1/2) and integrated in spae and time [xi, xi+1]× [tn, tn + ∆tn], over whih the�ux is omputed.CommentSolving the Riemann problem is omputationally expensive, espeially in manydimensions (stritly speaking it is di�ult to generalize the onept of Riemannproblems from one dimension; we mean dimension-by-dimension splitted Riemannproblems). Also the exat solution of the Riemann problem is seldom needed (oneexample is when omputing very strong shok waves). Therefore approximate Rie-mann solvers were developed.



5.2. Desription of the methods 395.2.2 Roe Approximate Riemann Solver For the Euler equationsThe Roe method [65℄ an be seen as a generalization of the upwind sheme tosystems of equations. For a salar onservation law (ut + f(u)x = 0) the numerial�ux would be
hn

j+1/2 =
1

2
(fj+1 + fj) −

1

2
|aj+1/2|

(
un

j+1 − un
j

)
.For systems (ut + F(u)x = 0) the loal wave speed(s)

aj+1/2 =

{
f(uj+1)−f(uj)

uj+1−uj
, uj 6= uj+1,

f ′(uj), uj = uj+1,
(5.12)is generalized using the eigenvalues of a Jaobian matrix. A matrix

Aj+1/2 = A(uj ,uj+1),with A(u,u) = A(u) = ∂F/∂u is de�ned, and the sheme beomes
hn

j+1 =
1

2
(Fj+1 + Fj) −

1

2
|Aj+1/2|

(
un

j+1 − un
j

)
,where the absolute value of the matrix is de�ned as

|A| = R|Λ|R−1, |Λ| = DAG(|λ1|, |λ2|, . . . , |λd|),for a system with d equations. Here λj are the eigenvalues and R is the ma-trix with the eigenvetors as olumns. This an be viewed upon as a loal di-agonalization of the system. The matrix an be omputed in many ways e.g.
Aj+1/2 = A

(
1
2 (uj + uj+1)

) or Aj+1/2 = 1
2 (A(uj) + A(uj+1)), but Roe [65℄ re-quired that it should satisfy the following ondition

F(uj+1) − F(uj) = Aj+1/2(uj+1 − uj),whih is a generalization of (5.12) in the salar ase. This means that the Rankine-Hugoniot onditions will be orret i.e. shoks are treated orretly, but rarefationwaves are not seen. This issue will be addressed later in the setion onsideringentropy �xes. The Euler equations are obtained by letting Re → ∞ in (3.2), i.e.
µ = κ = 0 in (3.1). For the Euler equations in one dimension (d = 3) with theequation of state

e =
p

γ − 1
+

ρ

2
(uiui) ,the Roe matrix is obtained by evaluation of the Jaobian at a weighted averagestate û:

Aj+1/2 = A(û) = A(θũj + (1 − θ)ũj+1), θ =

√
ρj√

ρj +
√

ρj+1
,



40 Chapter 5. A Cartesian Embedded Boundary Method for Compressible Flowwhere ũ = [ρ, u, h]T , where h = e+p
ρ is the enthalpy. The numerial �ux for theRoe method for the Euler equations may be written as

hj+1/2 =
1

2

(

(Fj+1 − Fj −
3∑

k=1

αk,j+1/2|λk,j+1/2|rk,j+1/2),

)where αk,j+1/2 are the wave strengths obtained by solving Rα = uj+1 − uj . Thewave speeds, i.e., the eigenvalues of A are
λ̂1 = û − ĉ, λ̂2 = û, λ̂3 = û + ĉ,where û is the normal veloity and ĉ is the speed of sound.CommentThe di�erene sheme given by Roe is found by solving the linearized equations.For some hoies of initial data the sheme beomes unstable, even though asolution exists, i.e. ertain Riemann problems are not linearizable [18℄. Given

uL = (ρ,−rhou, eI) and uR = (ρ, rhou, eI) three ases an be distinguished:� 4γρeI

3γ−1 − ρ2u2 ≤ 0 vauum ours in the solution.� 4γρeI

3γ−1 − ρ2u2 > 0 and (γ − 1)ρeI − ρ2u2 ≤ 0, the problem has a solution withpositive density and internal energy, but is not linearizable.� 4γρeI

3γ−1 −ρ2u2 > 0, the problem has a solution with positive density and internalenergy and is linearizable.The above shows that for ertain speial ases the approximate Riemann solversmight fail.5.2.3 Arti�ial visosity and entropy �xIn pratie, one annot use the wave speeds as given above; lose to regions where
û = 0, e.g. stagnation points, the linear eigenvalues λ̂2 approahes zero, andnear soni lines the non-linear eigenvalues λ̂1, λ̂3 approah zero. In these asesthe numerial �ux annot break up entropy violating shok waves into rarefationwaves and an entropy �x is needed to produe physially relevant solutions.Viewing this from another point of view and realling the similarity betweenthe upwind method and the Roe method, one says that a sheme is Total Variation



5.2. Desription of the methods 41Diminishing or TVD (stritly a property governed by salar onservation laws),when
∞∑

i=−∞

|un+1
i+1 − un+1

i | ≤
∞∑

i=−∞

|un
i+1 − un

i | (5.13)is ful�lled. A sheme with the numerial �ux funtion given in the visosity form
hj+1/2 = h(uj , uj+1) =

1

2

(
fi + fi+1 − λ−1Qj+1/2(uj+1 − uj),

)where λ = ∆x
∆t , is TVD if and only if

λ|aj+1/2| ≤ Qj+1/2 ≤ 1. (5.14)The Lax-Wendro� sheme has Qj+1/2 = λ2aj+1/2 and is not TVD, the Lax-Friedrihs sheme has Qj+1/2 = 1, whih is the upper TVD-limit, and hene verydi�usive. The upwind sheme has
Qj+1/2 = λ|aj+1/2|,whih is the lower-TVD in (5.14). The upwind sheme does not satisfy the entropyondition, sine it does not ontain enough arti�ial visosity to break expansionshoks into expansion waves. The sensitive points are the u-values for whih f ′(u) =

0, i.e., for points where the numerial visosity vanishes. It is possible to eliminatethis kind of entropy violation by simply modifying the visosity oe�ient Qj+1/2 =
Q(λaj+1/2) near aj+1/2 = 0 so that it is positive. There are many possibilities ofhoosing the entropy �x, some are shown below in (5.15)

Q(x) =







(i)

{
x2

2ε + ε, for |x| < 2ε
|x|, else

(ii)
√

x2 + ε2, 0 < ε < 1
(iii) |x| + ε
(iv) max(|x|, ε)

(5.15)where ε is a parameter given by the user. The hoie of ε is problem dependent andexperiene has shown that for a spei� problem when really �ne grids are used εneeds to be inreased slightly ompared to the value used on a oarser grid. Forsteady state omputations when iterative solvers that make use of the Jaobianof the solution are used (i) is preferably used (Harten entropy �x [30℄), sine itmakes the visosity oe�ient a C1 funtion of its arguments. Disadvantages of themethods are (i) does not vetorize, i.e. an if-then-else statement must be done inthe innermost loop, taking the square-root in (ii) is omputationally expensive, in
(iii) visosity is added everywhere (even where not needed) and (iv) is not C1. Inthe omputations made we have used (iv) beause it vetorizes and we do not useany iterative solvers.



42 Chapter 5. A Cartesian Embedded Boundary Method for Compressible FlowArti�ial visosity for systemsWe enfore entropy by having non-zero arti�ial visosity. In the following ahoie between using loal eigenvalues or using the maximum eigenvalue over allpoints/ells an be made. In our omputations we have hosen to use loal eigen-values. The spetral radius of A is denoted ρ(A) = |u| + c. In our omputationswe use the entropy �x (iv) in (5.15), whih for the three-dimensional problem is
(λ̂d

1 = ûd − ĉ, ˆλd
2,3,4 = ûd, λ̂d

5 = ûd + ĉ) using loal eigenvalues
|λ̃d

1 | = max
{

|λ̂d
1|, εd

nΦd
n

}

,

|λ̃d
2,3,4| = max

{

|λ̂d
2,3,4|, εd

l Φ
d
l

}

, d = 1, 2, 3,

|λ̃d
5 | = max

{

|λ̂d
5|, εd

nΦd
n

}

,

(5.16)where εl and εn are parameters to be hosen by the user. The subsripts 'l' and 'n'denote linear and non-linear eigenvalues respetively. The Φl and Φn are funtionsof the absolute values of the eigenvalues of the �ux Jaobians used to sale the
λ̃:s in (5.16) so that the CFL ondition is not violated. In our omputations thefollowing hoie was used:

Φd
l = Φd

n = |ud| + c. (5.17)Choie of εl and εn depend mainly on the grid (if grid is deformed, strethedet.), the geometry (orners, singularities, blu�-body et.) and the type of �ow(supersoni, hypersoni et.).5.2.4 MUSCL shemeThe numerial �ux for the �rst order Roe method is
hn

j+1 = h(ui,ui+1) =
1

2
(Fj+1 + Fj) −

1

2
|Aj+1/2|

(
un

j+1 − un
j

)
.The �rst order sheme is generalized to seond order by using limited pieewiselinear reonstrution in the �ux:

hn
j+1 = h(ui +

1

2
si,ui+1 −

1

2
si+1), (5.18)where si are the slopes of the pieewise linear reonstrution. The slopes willintrodue new extrema in the solution, violating the TVD property (5.13) andsome sort of limiting must be done using e.g. the minmod limiter:

si = minmod(∆+ui, ∆−ui) =

{
0 if ∆+ui∆−ui < 0
sign(∆+ui)min(∆+ui, ∆−ui) else, .The width of the numerial stenil inreases from three to �ve points.



5.2. Desription of the methods 435.2.5 Approximating the strain rate tensor in Navier-Stokes equa-tionsA �nite di�erene approximation of the spae derivatives in Navier-Stokes equationsan be written as
d

dt
ui1,i2,i3 +

d∑

s=1

his+1/2 − his−1/2

∆xs
=

d∑

s=1

(gxs
v )is+1/2 − (gxs

v )is−1/2

∆xsThe visous �uxes (gx
v )i1−1/2,i2,i3 , (g

y
v)i1,i2−1/2,i3 , and (gz

v)i1,i2,i3−1/2 ontain �rstderivatives. For example, the x-diretion visous �uxes are, with the temporarynotation of half-integer subsripts, fim = fi+fi−1

2 ,
(gx

v )i1m,i2,i3 =









0
4µ
3 Dx

−ui1,i2,i3 −
2µi1m,i2,i3

3 (Dy
0vi1m,i2,i3 − Dz

0wi1m,i2,i3)
µi1m,i2,i3(D

y
0ui1m,i2,i3 + Dx

−vi1,i2,i3)
µi1m,i2,i3(D

z
0ui1m,i2,i3 + Dx

−wi1,i2,i3)
f5 + ki1m,i2,i3D

x
−Ti1,i2,i3









.where
f5 = ui1m,i2,i3(g

x
v,2)i1−1/2,i2,i3+vi1m,i2,i3(g

x
v,3)i1−1/2,i2,i3+wi1m,i2,i3(g

x
v,4)i1−1/2,i2,i3 ,This means that seond derivatives are approximated by standard �nite di�er-ene formulas e.g.

uxx(xi1 , yi2 , zi3) = Dx
+Dx

−ui1,i2,i3+O(h2) =
ui1+1,i2,i3 − 2ui1,i2,i3 + ui1−1,i2,i3

h2
+O(h2)(5.19)and

uxy(xi1 , yi2 , zi3) = Dx
0Dy

0ui1,i2,i3 +O(h2) = Dx
+

Dy
0ui1,i2,i3 + Dy

0ui1−1,i2,i3

2
+O(h2).(5.20)5.2.6 Wavelet sensor for deteting singularities[72, 81℄ desribes an adaptive low-dissipation sheme based on high-order entraldi�erenes. It uses multi-resolution wavelet analysis to post-proess the solutionafter eah time step to pinpoint where numerial dissipation needs to be added.Below we desribe the wavelet analysis tehnique, sine it is useful in general todetet disontinuities/singularities in the solution and it is used in [49℄ (PaperIV) to ontrol the order of an interpolant in grid to grid interpolation, sine it is



44 Chapter 5. A Cartesian Embedded Boundary Method for Compressible Flowwell-known that high-order polynomial interpolation of non-smooth data gives riseto unwanted over- and undershoots.The tehnique is based upon estimating the Hölder exponent α

|f(x) − P (x − x0)| ≤ C|x − x0|α. (5.21)of the disrete solution f(x). P (x) is a polynomial. For preise mathematialdetails see e.g. [20℄.The estimated α is fed into a swith τ(α), whih deides if any ation needs tobe taken. In [72℄ several swithes are investigated and the following swith yieldssatisfatory results:
τ(α) =

{
1, if α ≤ α0 (take ation)
0, else, (5.22)where α0 is hosen to be 0.5.A DemonstrationBelow we demonstrate the need to detet where the solution is non-smooth in ap-pliation to grid-to-grid interpolation. In our example a jump disontinuity is beingtransported from left to right, the two outermost grid point values on the embed-ded grid need interpolation from the underlying grid. When applying the higherorder interpolation routine with the disontinuity is inside interpolation stenil weobserve the well known over- and undershoots, see Figure 5.1. When using thewavelet-indiator, the order of the interpolant is lowered point-wise when τ = 1.This approah gives no over- or undershoots as shown in Figure 5.15.3 KP and SP embedded boundary methodsAmong the greatest hallenges of omputational �uid dynamis is arguably theaurate predition of �ows in the viinity of omplex geometries. Traditionally,this problem is takled by disretizing the governing equations on unstrutured orstrutured body-�tted urvilinear grids, ausing the geometri boundaries to oin-ide with those of the omputational domain. The main advantage of these methodsis the relatively straight-forward implementation of boundary onditions. However,the di�ulty of representing omplex geometries in the omputational domain isnow being transferred to generating adequate grids and keeping trak of neighbor-ing grid points (logistis problem) and merging simpler grid-bloks (onnetivityproblem). Furthermore, if moving boundaries are present, frequent regenerationand merging of grids will be neessary, weighing heavily on omputational ost andmaintenane of grid quality. In addition, highly distorted grids redue the aurayof a numerial method. In fat, onstruting a high-order method for suh gridsis extraordinarily di�ult. These problems hamper the development of solutionalgorithms for �ows in omplex geometries.
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τ−wavelet indicator (d)Figure 5.1. The grid-grid interfae is loated at x = 1. The two left-most �negrid point values need to be interpolated from the oarse grid. At loations where
τ = 1, the order of interpolation is lowered. Notie the over- and undershoots of thehigh-order interpolant.



46 Chapter 5. A Cartesian Embedded Boundary Method for Compressible FlowThe approah presented here is a �xed Cartesian grid method. As a onse-quene, geometri boundaries an not always onform to omputational domainboundaries, thus forming embedded boundaries, whose presene has to be aountedfor in another way. Furthermore, boundary onditions at the embedded boundaryare not neessarily enfored at grid points. The domain Ω is overed by a Carte-sian grid with step size h, where the grid points are loated at (xi, yj) = (ih, jh),and the boundary Γ is allowed to ut through the grid in an arbitrary manner,see Figure 5.2. The use of Cartesian grids greatly simpli�es grid generation andimplementation of high-order methods1 The separation of the embedded bound-ary and the omputational grid removes the need for re-meshing strategies whendealing with moving boundaries. An appropriate Cartesian grid method also en-ables e�ient ode parallelization by taking advantage of the strutured nature andtime-independene of the underlying grid.The obvious ompliation assoiated with Cartesian grid methods is the imple-mentation of appropriate boundary onditions at embedded boundaries and theirsubsequent representation on the omputational grid. Below we desribe the ap-proah we have hosen. This is the main ontribution of this thesis.

Figure 5.2. The boundary is allowed to ut the grid in an arbitrary manner in theembedded boundary method.5.3.1 KP Embedded boundary methodThe KP embedded boundary method was originally developed for the seond orderwave equation [45, 43, 44℄. In the following we present how the method was extendedfor solving the ompressible Navier Stokes equations [49, 47, 46℄ ( Paper IV,V,VI).1High-order refers to the formal order of auray of the numerial sheme without the preseneof embedded boundaries.
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Figure 5.3. KP embedded boundary method. The indies denote the domain ofdependene for the embedded boundary proedure for ghost point (i,j).
To evaluate the di�erening operator assoiated with Navier Stokes equations at allgrid points inside the omputational domain, we use ghost points �just� outside thedomain, see Figure 5.3. We onstrut a Lagrange interpolation between three pointsalong the normal: (0, φi,j), (ξI , φI) and (ξII , φII) to aid in the approximation ofthe Dirihlet boundary ondition. The φI and φII are approximated by Lagrangianinterpolation along grid lines yj+1 and yj+2. For the ase illustrated ξII = 2ξI =
∣
∣
∣

β
α

∣
∣
∣, where α and β are the x and y omponents of the normalized normal. Theseformulas hold when the angle θ between the x-axis and the normal satis�es θ ∈

[π/4, π/2]. In the KPmethod, [43℄, the expressions in the remaining three quadrantsare simply obtained by re�etions in index spae, leading to a total of 8 di�erentases to treat all possible diretions of the boundary in two spae dimensions.In three dimensions there are 24 di�erent ases. The author of this thesis hasinluded four additional (in 2D) interpolation stenils to make the interpolationmore ontinuous when hanging stenil, all stenils are shown in Figure 5.4. In 3Dthe number of interpolation stenils are inreased to 38. For higher order aurateboundary approximations more points have to be inluded in the approximation.



48 Chapter 5. A Cartesian Embedded Boundary Method for Compressible Flow
(a) (b) () (d) (e) (f) (g) (h) (i) (j) (k) (l)Figure 5.4. All di�erent interpolation stenils in 2D for the KP3 embedded bound-ary method. The ghost point is marked blak and the bounds of the normal isshown.We de�ne

Lhu ≡ g0(ξ)u0 + gI(ξ)uI + gII(ξ)uII (5.23)The boundary may interset the grid so that ξΓ is arbitrarily lose to ξI , i.e.,
g0(ξΓ) = (ξΓ−ξI)(ξΓ−ξII)

ξIξII
an be arbitrarily lose to zero. This is referred to asthe small-ell sti�ness problem, due to the �nite volume analogy of utting ellsto arbitrarily small sizes, yielding an arbitrarily small ell a�eting the (∆t ∼

C∆x) CFL ondition see. Hene, if naive Lagrange interpolation would be used toapproximate the boundary ondition, the time-stepping would beome very sti�.An arti�ial term is added to the Lagrange interpolant to mitigate the sti�ness
Bhφ(t) ≡ Lhφ(t) + η(φi,j − 2φI + φII) = gD(xΓ, yΓ, t), (5.24)where the onstant η > 0 and gD is the Dirihlet value on the boundary. Thearti�ial term is an undivided seond di�erene in the normal diretion, so it in�itsan O(h2) error in the boundary ondition approximation.[43℄ shows that the trunation error in the boundary ondition an osillate wildlybetween onseutive grid points along the boundary and an degrade the rate ofonvergene.The arti�ial term η in the boundary ondition bounds the oe�ient in frontof φi,j away from zero, sine

η ≤ g0(ξΓ) + η < 1 + η,and hene the small ell sti�ness problem is removed. The spetrum of the one-dimensional onvetion-di�usion equation has been estimated, to yield that theeigenvalue with the largest magnitude is independent of small ells near the bound-ary when η ≥ 0.25. For all our numerial omputations (using KP3) we have used
η = 0.25, whih works well in pratie. It is big enough to allow time steps in-dependent of the small ells near the boundary, and small enough to prevent thearti�ial term from dominating the error in the numerial solution.The Neumann ProblemFor Neumann onditions, e.g. when there is an adiabati wall, the formulas ofthe previous setion hange somewhat. In [45℄ this proedure is desribed for the



5.3. KP and SP embedded boundary methods 49seond order wave equation and we present the major ideas from that paper here,sine they are idential to what we use. The Neumann ondition is
∂φ

∂n
= gN(x, y, t), (x, y) ∈ Γ, t > 0. (5.25)The Lagrange interpolant (without added arti�ial error) is di�erentiated to yield aseond order approximation of the (outward) normal derivative. It is shown in [45℄that the Neumann problem does not su�er from the small ell sti�ness problem,sine g′0(ξ) = 2ξ−ξI−ξII

ξIξII
is bounded away from zero in ξ ∈ [0, ξI + ξII).5.3.2 SP Embedded boundary methodWhen disontinuities are present in the solution, speial are has to be taken tomake the boundary interpolation robust. The SP method is of lower auray,but more suited for dealing with shok waves, and is outlined in Figure 5.6. It usesmore values along the normal than the KP method, but the tangential interpolationis linear. When the normal has positive y-omponent and the angle between thenormal and the x-axis is between π

4 and π
2 , the normal will always interset the gridline y = yj+1 between xi and xi+1. There are two di�erent ases when the normalintersets the y = yj+2 grid line (between xi and xi+1 or between xi+1 and xi+2)and similarly three di�erent ases where the normal intersets the y = yj + 3 gridline. A quarter of all interpolation stenils for the SP method are shown in Figure5.5

(a) (b) () (d) (e) (f) (g) (h)Figure 5.5. A quarter of all di�erent interpolation stenils in 2D for the SP em-bedded boundary method. The ghost point is marked blak and the bounds of thenormal is shown.Denote the distane between the boundary and the ghost point by b and let thedistane between the ghost point and grid line y = yj+1 along the normal be ∆(see Fig 5.6). De�ne new points ub1 and ub2 plaed equidistantly along the normalby linear interpolation along the normal at distanes b + ∆ and b + 2∆ from theghost point respetively,
ub1 =

b

∆
uII +

(

1 − b

∆

)

uI , ub2 =
b

∆
uIII +

(

1 − b

∆

)

uII .A limited boundary slope is de�ned,
sD := Sminmod (ub1 − gD, ub2 − ub1) ,
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Sminmod(x, y) =







x, if |x| < |y| and xy > 0,
y, if |y| < |x| and xy > 0,
0, otherwise (5.26)

is the well-known min-mod limiter. The Dirihlet boundary ondition is approxi-mated by extrapolation using the limited boundary slope,
ui,j = gD − ξΓ

∆
sD. (5.27)The above onstrution is always well-de�ned, sine h ≤ ∆ ≤

√
dh, where d is thenumber of spae dimensions. The Neumann boundary ondition is imposed by:

ui,j =

(
4

3
− ξΓ

3∆

)

ub1 −
(

1

3
− ξΓ

3∆

)

ub2 −
2∆(2ξΓ + 1)

3
gN (5.28)Numerial boundary onditions are imposed using extrapolation

ui,j = uI − Sminmod (uIII − uII , uII − uI) . (5.29)The above numerial boundary ondition is equivalent to setting ∂2u
∂n2 = 0, if thesolution is smooth enough not to trigger the limiter. Otherwise it is equivalent tothe �rst order approximation of ∂u

∂n = 0.
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Figure 5.6. SP embedded boundary method. The indies denote the domain ofdependene for the embedded boundary proedure for ghost point (i,j).5.3.3 CommentsFor parallel exeution speial are needs to be taken for the ghost points whoseinterpolation stenils extend outside the loal proessor's domain. For objets thatextend outside the grid, then alternatively the interpolation stenil is made smaller,so that it will �t inside the grid, or values from an underlying oarser grid areused. If the objet extends outside the omputational domain and values annotbe retrieved from any grid, then the assignment of ghost point values an use theexterior boundary ondition. This has however not been implemented or tested.5.3.4 Treatment of orners and thin bodiesSharp orners demand speial treatment. This approah generalizes to thin bodies,i.e. embedded objets that are only one grid point wide in some diretion.For ghost-points with more than one normal to the surfae, we overload l so-lution values um, m = 1, . . . , l, eah assoiated with a unique surfae normal
nm 6= nn, m 6= n. Eah um is updated using the KP method as desribed ine.g. [49℄ ( Paper IV).



52 Chapter 5. A Cartesian Embedded Boundary Method for Compressible FlowThe di�erene stenil uses a value assoiated with the orret surfae normalwith the diretion of the using point.There are interior points where assoiated surfae normals are not well-de�ned.For example, the di�erene stenil for point xΓ uses xi,j,k see Figure 5.7. We anassoiate two boundary values to xi,j,k: u1 and u2, and use a weighted average of
u1 and u2.A di�erene stenil at xΓ, whih uses xi,j,k whih, in here, does not have aunique normal, performs averaging:

uΓ
i,j,k =

d1

d1 + d2 + . . . + dl
u1 +

d2

d1 + d2 + . . . + dl
u2 + . . .+

dl

d1 + d2 + . . . + dl
ul,(5.30)where dm = max ((xΓ − xi,j,k) · nm, 0), m = 1, 2, . . . , l. The averaging is onlyperformed if two or more dm > 0, i.e. the point is in the averaging zone, see Figure5.7.
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X i,j−1,kFigure 5.7. Corner points are averaged: l = 2.The average (5.30) is a onvex ombination of the ghost-point values um. Notethat the above proedure an be used for thin bodies, sine the xi,j,k:s assoiatedwith the 'bakside' surfae will have dm < 0. The values from point xi,j−1,k inFigure 5.7 are never averaged. In the ase of a 'onave' orner we average thevalues of the nearby ghost points, see Figure 5.8
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Figure 5.8. The blak ghost point does not have a normal assoiated with anysurfae, but its value is needed in the disretization. The blak ghost point is assignedthe average value of the two white ghost points.5.3.5 Higher Order of AurayIn general, higher-order methods are better than lower order methods. The higherorder methods an only yield better answers for sale lengths that are longer thana few ells. Interpolation, no matter how high the order, also annot reprodueunresolved variations ourring within a omputational ell. This is a fundamentallimitation set by the resolution of the representation. It is independent of the orderof auray, type of expansion, and algorithms used.The most obvious way to inrease the order of auray for setting boundaryonditions is to involve more points in the interpolation formulas. High-order poly-nomial interpolation assumes that the solution is smooth and if it is not smoothenough, unwanted osillations may be introdued. The above interpolation methodsexept possibly the SP method are not data driven, in the sense that the interpola-tion stenil is �xed. The SP method hooses a limited slope to the linear interpola-tion, whih is data-driven. Future researh should investigate whether data drivenhigher-order interpolation suh as Essentially Non-Osillatory/Weighted EssentiallyNon-Osillatory (ENO/WENO) type interpolation e.g. [1℄ ould be used to set theboundary onditions. Alternatively, regions of non-smoothness an be deteted us-ing wavelets to ompute the Hölder exponent, and the interpolating polynomial anbe adjusted aording to the (non-)smoothness of the solution. In [49℄ (Paper IV)wavelets are used to ontrol the degree of an interpolating polynomial in grid/gridinterpolation, but it an be used for the seletion of interpolation stenil for theembedded boundary also. The only di�erene is that one-sided approximationsmust be used when omputing the Hölder exponent near the boundary.
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Chapter 6Computational resultsThis hapter summarizes the omputational results from Papers I-VI.6.1 Large Eddy Simulations of a Turbulent Jet Dif-fusion Flame using FOAM (Paper I)In this paper a omparison between LES and new type of experimental measurementtehnique is made. The experiment/simulation is of a non-premixed propane jetwith Reynolds number 10000 into ambient air. The LES alulations are performedwith a presumed β-PDF for a mixture fration. As a SGS-model for the �ow wehave used the Smagorinsky and the One Equation Eddy Visosity Model.The omparison is made at intermediate stage by examining shlieren images,interferograms and phase maps onsrtuted from the LES and experimental datarespetively. This provides a novel approah for omparing simulations and ex-periments. Reasonable good agreement between measured and predited �ameharateristis and properties were found, although the details near the nozzle arenot su�iently aurate. The burning ours primarily at the outer edges of thejet shear layer in the onvoluted interfae between reatants and produts wheremost of the di�usive mixing takes plae.6.2 Large Eddy Simulation of Supersoni Axisym-metri Base�ow using FOAM (Paper II)The paper desribes LES of a rokets afterbody with and without mass injetion.Several sub-grid models and grids are used to onlude that LES/MILES an beused with suess for this type of problem, sine the agreement with experimentaldata is good. It is shown that the results are independent of subgrid model makingit impossible to distinguish numerial errors from model errors.55



56 Chapter 6. Computational resultsSimulations with di�erent bleed rates are performed and omparison of Cp at thebase are made with experimental data. Cp is however systematially overpreditedby 5%. A potential soure of error may be underresolution and/or the di�erene inapproah boundary-layer thikness between the experiments and the simulations;a thik boundary-layer is thought to have a base pressure enhaning e�et, similarto that of base-bleed.6.3 Large Eddy Simulation of a Turbulent Non-premixedFlame using FOAM (Paper III)This paper onsiders a reative and a non-reative jet. For the reative jet, weompare two di�erent approahes to ombustion modeling: the onserved salar(mixture fration) approah together with a presumed PDF and a single step �niterate hemistry model also known as Arrhenius type model. For the non-reatingase very good qualitative and quantitative agreement between preditions andmeasure ment data are obtained. For the LES alulations we �nd virtually nodi�erenes in results obtained using the di�erent subgrid models. Grid re�nementdoes not a�et any of the investigated �rst and seond order statistial pro�les, butprovides a more detailed piture of the �uid dynamis. For the reating ase the�ow �eld is reasonably well predited, independent of subgrid models. Re�ning thegrid inreases the resolution of the �ow variables, but does not a�et the statistialmoments investigated here. The simulation of ombustion, however, is sensitiveto whih model is used. The simple one-step irreversible one-step global reationmeahnism used in this study is too simple to desribe all the ouplings betweenthe �uid dynamis and the hemistry.6.4 2D Supersoni �ow around a ylinder (PaperIV)In [49℄ ( Paper IV), the ability of the embedded boundary tehnique to resolveboundary layers is investigated by omputing skin-frition pro�les along the surfaesof the embedded objets. The auray is assesed by omparing the omputed skin-frition pro�les with those obtained by a body �tted disretization with the solverdeveloped in [81℄ for the ompressible MHD equations with magneti �elds set tozero.For low Reynolds numbers one an resolve the �ow. We measure onvergeneby Cf , Cp and temperature distributions on the embedded surfae (whih may beused to solve for the temperature distribution inside the embedded body). The CPand Cf distributions are important, sine they ditate what aerodynami fores F
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Figure 6.1. Two dimensional omputations of Mah 3 �ow past a ylinder. Veloitymagnitude ontours. Results from the KP method.at upon the body by:
F =

∫∫

dF = −
∫∫

pn
︸︷︷︸

≈Cp

dS +

∫∫

τ
︸︷︷︸

≈Cf

tdS, (6.1)where n and t are the normal and tangential vetors respetively.We here ompute supersoni �ow around a ylinder with radius 0.5 with Mahnumber 3 and Reynolds numbers 500 in the two dimensional domain (x, y) ∈
[−10, 10] × [−5, 5]. The enter of the ylinder is loated at (−1, 0). These sim-ulations are time aurate, and resolved in time and spae. As initial data, weimpose free stream onditions in the entire domain. The disretization on theCartesian grid is e�ient beause it has a simpler memory aess pattern than anunstrutured method and requires less metri information (and thereby less mem-ory aesses and less arithmeti operations) than an approximation on a urvilineargrid. In fat the grid is never used in the omputation.The omputations was run until steady-state. In the omputations the timestephad to be restrited by the stability requirement of the visous operator. We takethis as an indiation that the �ow is resolved.6.4.1 Desription of the body �tted solverThe domain is disretized by the overset grid on�guration displayed in Fig. 6.2 forthe ylindrial �ow problem. There are four grids, a base grid that overs the entiredomain, a urved grid around the bow shok, a �ne polar grid near the ylindersurfae, and a �ne grid that overs the wake region. We used the overset gridgenerator Xog [63℄ to generate the grids and the interpolation information.We disretized the Navier-Stokes equations by a sixth order aurate �nite dif-ferene sheme with summation-by-parts boundary modi�ation of the di�ereneoperators on all omponent grids exept the bow shok grid, where we used a TVD
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Figure 6.2. Overset grid domains used for omputations with body �tted grids.type di�erene sheme. These are standard �nite di�erene methods, for detailsabout the sheme and the ode see [81, 71℄. The solution was time marhed tosteady state, �rst with a TVD sheme on all grids, and later when the solution isfully developed, with the sixth order method on three of the grids, as desribedabove.Interesting questions about overall auray and error propagation from the bowshok are outside the sope of this work. However, it was observed in [81℄ that theatual grid onvergene rate at the body boundary is lose to 2nd order.6.4.2 ResultsIn Fig. 6.6 we have olleted the Cf urves from the �nest grids in Figs. 6.3�6.5. The body �tted method and the KP embedded method give results thatare indistinguishable in the plot. We onlude that the KP embedded boundaryapproah gives more aurate results than the SP embedded boundary method, andfurthermore that the auray of the KP embedded boundary method is omparableto the auray of the body �tted method on the medium and �ne resolution grids.On the oarsest grid, Figs. 6.3 and 6.5 show that the body �tted method is moreaurate.It is not unexpeted that the KP method is more aurate than the SP method,beause the SP method swithes between a �rst and seond order aurate bound-ary ondition, whereas the KP method is always of high formal auray. TheSP method uses limiters to handle shok waves, but the KP method uses en-tered interpolation stenils. Nevertheless, the KP method gave solutions that werefree from unphysial osillations, sine a resolved boundary layer does not ontaindisontinuities.The formal order of auray is very important as shown in Figure 6.7, whihshows results from the omputation using the �rst order extrapolation of the slopes
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Figure 6.3. Cf along the upper half of the ylinder omputed with the KP embed-ded boundary method for Mah number 3 and Reynolds number 500.
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Figure 6.4. Cf along the upper half of the ylinder omputed with the SP embeddedboundary method for Mah number 3 and Reynolds number 500.
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Figure 6.5. Cf along the upper half of the ylinder omputed with the body �ttedmethod for Mah number 3 and Reynolds number 500.
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Figure 6.6. Cf along the ylinder surfae with the KP embedded boundary method,the SP embedded boundary method, and the body �tted method. Mah number 3,Reynolds number 500. The �nest grid size is h = 0.0017007. Using seond orderextrapolation of the slopes in the Godunov �uxes.in (5.18)
sibp,j,k = sibp±1,j,k (6.2)instead of the seond order extrapolation (results shown in Figure 6.6)
sibp,j,k = 2sibp±1,j,k − sigp±2,j,k. (6.3)We onlude that when the physial visosity is not resolved, whih is the asefor simulations using the oarse mesh then the skin frition annot be expeted tobe aurate raising the need for loal grid re�nement.It is well-known that for attahed boundary layers, one obtains good resolutionby strething the grid towards the body. The oarser resolution in the tangentialdiretion saves omputational work. The ability to oarsen the grid in the diretiontangential to the body is learly absent in the embedded boundary method. Weonlude that for attahed laminar boundary layers, this feature makes the body�tted approximation onsiderably more e�ient. However, when resolution is equalin both diretions, Fig. 6.6 shows that the embedded boundary method gives re-sults of similar quality as with the body �tted method. Equal resolution in alldiretion is needed in diret simulation of turbulent separating �ows. Furthermore,with ompliated geometries it might not be known a priori at whih loations theboundary layer is attahed and therefore it would not be possible take advantageof body �tted strethed grids.The temperature on the boundaryThe adiabati wall ondition imposes ∂T

∂n = 0. We evaluate the auray of theNeumann boundary ondition by plotting the temperature on the surfae. Fig. 6.8
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Figure 6.7. Cf along the ylinder surfae with the KP embedded boundary method,the SP embedded boundary method, and the body �tted method. Mah number 3,Reynolds number 500. The �nest grid size is h = 0.0017007. First order extrapola-tion (6.2).shows the wall temperature obtained with the KP method and Fig. 6.9 displays thewall temperature obtained with the SP method. Similarly to the Cf plots, the KPmethod appears to be more aurate than the SP method.6.5 Embedded Boundaries and RoughnessThe spei� errors of the embedded boundary method are assessed by omparingtwo almost idential simulations: one grid aligned and one 'tilted' simulation, seeFigure 6.10.When the �ow is unresolved, typially for high Reynolds numbers, the truna-tion errors from the EB method an be seen as ating e�etively as a rough wall.This an be seen by a 'reonstrution' resembling a �nite di�erene operator of theboundary from the solution based on the tangential veloity. We �nd θ suh that
θughostPoint + (1 − θ)uFirstInteriorPoint = 0, (6.4)and use the θ to evaluate the loation of the 'zero'-ontour

~xΓEff
= θ~xghostPoint + (1 − θ)~xFirstInteriorPoint,The deviation from the true boundary is alled protrusion and its height is measuredas k = min~x∈Γ |~xΓEff

− ~xΓ|.From Figure 6.12 the following observations are made:� The protrusion height k = C · h,� the frition veloity uτ ∼ constant inreases with �ner mesh,
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Figure 6.8. Temperature on the boundary using the KP embedded boundarymethod. Mah number 3, Reynolds number 500.
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Figure 6.9. Temperature on the boundary using the SP embedded boundarymethod. Mah number 3, Reynolds number 500.
(a) 0o (b) 20oFigure 6.10. An illustration of the experiment with di�erent grid alignments.
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6.5. Embedded Boundaries and Roughness 65� there exists orrelation between uτ and k.In ases where protrusions are of size δlaminar they are all ontained in thelaminar sublayer, i.e. if k < δlaminar, the wall may be onsidered hydrauliallysmooth [69℄. We have δlaminar ∼ C · ν/uτ . The dimensionless roughness fator
k/δlaminar ∼ kuτ/ν, a roughness Reynolds number Rek based on the protrusionsize and frition veloity, is a good measure for the relative roughness.Cirular pipes overed with sand of a de�nite grain size, ks, glued on the wallhave been used in experiments to determine three regimes of Reks

[69℄:1. Hydraulially smooth: The size of the roughness is so small that all protru-sions are ontained within the laminar sub-layer, Reks
∈ [0, 5],2. Transition regime: Protrusions extend partly outside the laminar sub-layerand additionally when omparing to smooth pipes there are mainly e�ets onthe resistane from the protrusions in the boundary layer, Reks

∈ [5, 70].3. Completely rough regime: All protrusions reah outside the laminar sub-layerand the largest part of the resistane to �ow is due to form drag whih atson them, Reks
∈ [70,∞).The ondition for hydraulial smoothness is also valid for �at plates at zero inidene[69℄. Assuming that k ≈ equivalent grainsize ks, we believe that our estimate anbe used e.g. as an indiator in a grid adaptation algorithm. Below, see Figure6.13, we have omputed Rek based upon atual simulation data. It shows thatwhen the grid is oarse the geometry is ompletely numerially rough and aftergrid re�nement the bulk of the points shift towards the transition regime. Muhsmaller k (i.e. mesh sizes) are required to reah the hydraulially smooth regime.Varying Reynolds NumberThis test is performed using a �xed disretization and varying the aousti Reynoldsnumber. In this way we an assess how far from resolved the simulation an be usingthis embedded boundary method and still obtain similar solutions after rotation ofthe geometry, see Figure 6.10.The Cf distributions are very similar for Rea = 3125, 12500 and somewhatsimilar for Rea = 25000 where the 20o ase has some osillations superimposedon the 0o Cf distribution. It is somewhat surprising that for Rea = 6250 the

Cf distribution di�ers so muh, due to the fat that 0o disretization preditsseparation on the leading edge, while the 20o does not. For all Rea > 6250 there isleading edge separation. With Rea = 50000 both 0o and 20o Cf distributions showgreat osillations showing no similarity, exept perhaps in the mean amount. The
Rea = 50000 �ow is 'turbulent' and we annot expet to get point-wise onvergene,but should rather expet onvergene in mean. The onvergene of means is notinvestigated for the above ases.
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(b) Comparison of Cp distribution.Figure 6.14. Unsteady �ow, instantaneous veloity at t = 5 Rea = 50000 hmin =
7.5188 ·10−4. Notie that the 20o simulation has more wiggles, whih are due to thewagging wake.
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20 deg(b) Comparison of Cp distribution.Figure 6.15. Unsteady �ow, instantaneous veloity at t = 5 Rea = 25000 hmin =
7.5188 · 10−4. Note that the 20o simulation has more unsteadiness whih are ausedby pressure waves from the unsteady wake.
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20 deg(b) Comparison of Cp distribution.Figure 6.16. Instantaneous veloity at t = 5 Rea = 12500 hmin = 7.5188 · 10−4.Notie the leading edge separation.
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20 deg(b) Comparison of Cp distribution.Figure 6.17. Instantaneous veloity at t = 5, Rea = 6250 hmin = 7.5188 · 10−4.Notie the 0o the leading edge separation, but attahed �ow for 20o.



6.6. EB applied to supersoni base�ow 69The Cp distributions seem to be the same independent of the Rea number, andfor all Rea, exept Rea = 50000 whih would require higher resolution, the Cpdistributions are very similar for 0o and 20o.High Reynolds number �ow (Rea = 106)We onsider this a high Reynolds number ase, where we suessively re�ne thegrid size by a fator of two in three omputations. This is an illustration of ahighly unresolved omputation using IB/EB. The solution ontains a lot of eddiesemanating from the boundary. This illustrates the resolution needed to resolve the�ow and highlights the need for wall-models.For Rea = 106 the �ow is 'turbulent' and we annot expet to get point-wiseonvergene. Both the Cf and Cp distributions are very osillatory/unsteady for allresolutions. Therefore we examine the time averages 〈Cf 〉 and 〈Cp〉 and examinethe impat the embedded boundary has on the solution. It is disovered thatthe trunation error from the EB is manifested as roughness, estimated by linearreonstrution of the boundary. The size of the roughness is estimated by thefrition veloity Reynolds number Reτ . We ompare the obtained Reτ with Reτfor rough pipes, [69℄.6.6 EB applied to supersoni base�owPhysial experiments of supersoni axisymmetri base�ow are ompared to LESusing embedded boundaries in [46℄ ( Paper VI). The results are summarized here.In the experiments [32, 53, 9, 8, 37℄ the enterline veloity downstream of aylinder and the pressure oe�ient on the ylinder base were measured. Numerialsimulations of supersoni base�ow were performed in [22℄ (Paper II)using FOAMand we wanted to ompare those results with results from the embedded boundaryode. We used the simple Smagorinsky model and tried to do wall-resolved LES,whih is too ostly for Re ≈ 106. The experiment however shows that the embeddedboundary method works e�iently in 3D. The omputational ost is signi�antlylower for the EB, even when using the very expensive Riemann solver, than for theunstrutured solver FOAM. Below we show some obtained results; from Figures6.19 and 6.20 we see that grid re�nement has the greatest impat on the solution.The tuning of model parameters suh as Cs does not hange muh. This is muhdue to the low order (and dissipative) 2:nd order Godunov sheme. This test aseshows the EBM extended to three dimensional problems with the Smagorinsky subgrid sale model. The geometry ontains sharp orners, for whih our proposedstrategy (see setion 5.3.4) seems to work well.
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Figure 6.18. Instantaneous visualization of log (‖∇ρ‖ + ε). The harateristifeatures of supersoni base�ows an be seen suh as the unsteady nature of suh�ows with the presene of numerous(?) turbulent sales. The separation point is�xed by the geometry at the orner. A entered expansion fan turns the separatedshear layer towards the axis. Further downstream, due to axisymmetri onstraints,the mixing layer is bent to realign the �ow with the axis in the mean. This regionexhibits a strong adverse pressure gradient as evident by the presene of unsteadyreompression shoks and Mah-lines oalesing into shoks. In this region, theinoming �uid that laks the momentum to overome the pressure gradient is pushedupstream into a reirulation zone. Downstream of the stagnation region, a turbulentwake with larger oherent strutures develops.6.7 Some Preliminary Results using EBM togetherwith a Wall-modelAs we have postulated multiple times, wall-models are needed for high Reynoldsnumber �ows. Here we brie�y summarize some preliminary �ndings using the wall-model desribed in setion 4.0.5. We make a similar omparison as in setion 6.5 ofan embedded retangle in Rea = 106, Ma = 0.3 �ow using the same disretizationas above.Results are shown in �gures (6.22-6.23), where the oarsest grids do not resolvethe �ow at all, whih is seen by the too smooth solutions. As the resolution isinreased more 'turbulent' strutures beome resolved.We observe that the frition veloity uτ omputation in the wall-model dependson y+ and hene h+ = uτ h
ν is more non-smooth using this wall-model, than justimposing the standard no-slip boundary ondition, ompare Figures 6.21 and 6.24.
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