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Abstra
tThe thesis 
onsiders numeri
al approximations to solutions of the 
ompressibleNavier-Stokes and Large-Eddy Simulation (LES) equations.An embedded boundary method for representing geometries within the 
om-putational domain is 
onsidered. Test examples indi
ate that the dis
retizationerrors from the embedded boundary manifest as numeri
al 'roughness' when the�ow is turbulent and numeri
ally unresolved. For low-Reynolds number 
on�gura-tions however the errors made on the embedded boundary are of the same order ofmagnitude as the errors made by the internal dis
retization s
heme.The 
omputational grid is Cartesian. This imposes a hard limit on the viableresolving power of boundary layers on the method for high-Reynolds number 
on-�gurations, even in the presen
e of lo
al grid re�nement. To mitigate this severelimitation wall-models 
an be used. They in e�e
t model the near-wall-behaviourinstead of resolving the thin boundary-layer asso
iated with high-Reynolds number�ows. We have tested one wall-model for LES in this thesis and we 
on
lude thatthe models do not yield perfe
t results.ISBN 978-91-7415-258-6 � TRITA-CSC-A 2009:05 � ISSN 1653-5723 � ISRN KTH/CSC/A�09/05-SE
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SammanfattningAvhandlingen betraktar numeriska approximationer till lösningar till kompressiblaNavier-Stokes o
h Large Eddy Simulation (LES) ekvationerna. En inbäddad rand-metod för att representera geometrier inuti beräkningsområdet betraktas. Testex-empel indikerar att diskretiseringsfelen från den inbäddade randen visar sig somnumerisk 'grovhet' när �ödet är turbulent o
h numeriskt underupplöst. För låg-Reynoldstals�öden är felen från den inbäddade randen av samma storleksordningsom för det interna diskretiseringss
hemat.Beräkningsnätet är ekvidistant o
h kartesiskt, vilket begränsar starkt metodensmöjligheter att lösa upp gränsskikt för �öden med höga Reynoldstal, även om mananvänder lokal nätför�ning. För att lindra detta tillkortakommande kan man an-vända väggmodeller. Dessa modellerar vad som händer i närheten av en fast vägg,istället för att lösa upp de tunna gränsskikt som uppkommer för �öden med högaReynoldstal. I denna avhandling har vi provat en väggmodel för LES o
h slutsatsenär att resultaten inte är perfekta.ISBN 978-91-7415-258-6 � TRITA-CSC-A 2009:05 � ISSN 1653-5723 � ISRN KTH/CSC/A�09/05-SE

v



vi



A
knowledgmentsFirst of all I wish to thank my supervisor Professor Björn Sjögreen for giving methe opportunity to work in the �eld of 
omputations. Furthermore I am gratefulfor all the help and guidan
e he has provided, and espe
ially I am very grateful tohim for inviting me to 
ome to Lawren
e Livermore National Laboratories to visit.Without the two visits this work would probably never have be
ome anything.Professor Jesper Oppelstrup must be given a lot of 
redit, espe
ially during thelast phase of the thesis work for tying thing up. Professor Bjorn Engquist is alsogratefully a
knowledged for all giving and interesting dis
ussions we've had. I amalso grateful to PDC, for letting me use their super
omputers and espe
ially NilsSmeds, who helped me initially to port an early resear
h version of FOAMTMto their ma
hines. I would like to thank my former se
ondary advisor ProfessorChrister Fureby for his engagement and skill with LES/
ombustion modelling andgeneral FOAM usage. Without Christers, Papers I-III would never have beenmade. I 
ould not have managed without the support of Professor Gunilla Kreissand Professor Olof Runborg, whos advi
e and en
ouragement have helped me topull through the �nal part of this thesis. All present and former 
olleagues at bothUPMC and NADA are also gratefully a
knowledged.I would also like to thank Professor Pierre Sagaut for having me as a post-do
student during one year at Universite Pierre et Marie Curie in Paris. Without theassistan
e of Pierre this thesis would 
ertainly never have been �nished.Donna Mapes and Ros
oe are gratefully a
knowledged for being a great hostsand a good friend in Livermore. Os
ar, Simon and Morristown, Mom, Dad, Sussiand Annika & Castor you mean everything to me. This theses is dedi
ated to theloving memory of Wilma.The Foundations NorFa, Lars Hierta, Knut & Ali
e Wallenberg are also grate-fully a
knowledged for �nan
ial support during this thesis work.
vii



viii



Contents
1 S
ope of work/Summary 11.1 List of papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.5 Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.6 Paper VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Introdu
tion 52.1 Computational Fluid Dynami
s . . . . . . . . . . . . . . . . . . . . 62.2 Turbulent Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.3 Common Levels of Approximation . . . . . . . . . . . . . . . . . . 72.3.1 Dire
t Numeri
al Simulation (DNS) . . . . . . . . . . . . . 82.3.2 Large Eddy Simulation (LES) . . . . . . . . . . . . . . . . . 92.3.3 Reynolds Averaged Navier Stokes (RANS) . . . . . . . . . . 102.4 Compressible Turbulen
e . . . . . . . . . . . . . . . . . . . . . . . 112.5 Numeri
al Approa
hes for Compressible Flows . . . . . . . . . . . 112.6 Computational Grids for CFD . . . . . . . . . . . . . . . . . . . . . 122.6.1 Unstru
tured grids . . . . . . . . . . . . . . . . . . . . . . . 132.6.2 Body-�tted grids . . . . . . . . . . . . . . . . . . . . . . . . 132.7 Uniform Cartesian grids with embedded boundaries . . . . . . . . 172.7.1 Virtual 
ell embedding . . . . . . . . . . . . . . . . . . . . . 172.7.2 Colellas embedded boundary method . . . . . . . . . . . . . 192.7.3 KP and SP embedded boundary methods . . . . . . . . . . 193 Governing Equations and Models 213.1 Compressible Navier-Stokes/Euler Equations . . . . . . . . . . . . 213.1.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 234 LES and Sub-GridS
ale Models 254.0.2 The Smagorinsky subgrid model . . . . . . . . . . . . . . . 26ix



x Contents4.0.3 The impli
it subgrid model (ILES) . . . . . . . . . . . . . . 274.0.4 Convergen
e . . . . . . . . . . . . . . . . . . . . . . . . . . 274.0.5 Near-wall-boundary Conditions for LES . . . . . . . . . . . 285 A Cartesian Embedded Boundary Method for Compressible Flow 355.1 FOAMs 
ompressible solver suite . . . . . . . . . . . . . . . . . . . 355.2 Des
ription of the methods . . . . . . . . . . . . . . . . . . . . . . 365.2.1 Solving the Riemann problem . . . . . . . . . . . . . . . . . 365.2.2 Roe Approximate Riemann Solver For the Euler equations . 395.2.3 Arti�
ial vis
osity and entropy �x . . . . . . . . . . . . . . 405.2.4 MUSCL s
heme . . . . . . . . . . . . . . . . . . . . . . . . . 425.2.5 Approximating the strain rate tensor in Navier-Stokes equa-tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.2.6 Wavelet sensor for dete
ting singularities . . . . . . . . . . 435.3 KP and SP embedded boundary methods . . . . . . . . . . . . . . 445.3.1 KP Embedded boundary method . . . . . . . . . . . . . . . 465.3.2 SP Embedded boundary method . . . . . . . . . . . . . . . 495.3.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515.3.4 Treatment of 
orners and thin bodies . . . . . . . . . . . . . 515.3.5 Higher Order of A

ura
y . . . . . . . . . . . . . . . . . . . 536 Computational results 556.1 Large Eddy Simulations of a Turbulent Jet Di�usion Flame usingFOAM (Paper I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556.2 Large Eddy Simulation of Supersoni
 Axisymmetri
 Base�ow usingFOAM (Paper II) . . . . . . . . . . . . . . . . . . . . . . . . . . . 556.3 Large Eddy Simulation of a Turbulent Non-premixed Flame usingFOAM (Paper III) . . . . . . . . . . . . . . . . . . . . . . . . . . . 566.4 2D Supersoni
 �ow around a 
ylinder (Paper IV) . . . . . . . . . . 566.4.1 Des
ription of the body �tted solver . . . . . . . . . . . . . 576.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586.5 Embedded Boundaries and Roughness . . . . . . . . . . . . . . . . 616.6 EB applied to supersoni
 base�ow . . . . . . . . . . . . . . . . . . 696.7 Some Preliminary Results using EBM together with a Wall-model 70Referen
es 77



Contents xiI Pulsed TV Holography and S
hlieren Studies, and LargeEddy Simulations of a Turbulent Jet Di�usion Flame 83II Large Eddy Simulation of Supersoni
 Axisymmetri
Base�ow 113III Large Eddy Simulation of a Turbulent Non-premixedFlame 121IV A Cartesian Embedded Boundary Method for the Com-pressible Navier-Stokes Equations 129V On the A

ura
y of an Immersed/Embedded Bound-ary Method for Compressible Turbulent �ow 161VI LES Base�ow simulations using a Cartesian Embed-ded Boundary Method 199



xii



List of Figures2.1 Control by laser guidan
e. . . . . . . . . . . . . . . . . . . . . . . . 52.2 S
hemati
 representation of the turbulent kineti
 energy spe
trumas a fun
tion of the wavenumber k. . . . . . . . . . . . . . . . . . . 72.3 A s
hemati
, illustrating the 
on
eptual ideas of RANS, LES andDNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.4 Con
eptual overview of DNS of turbulent �ows: Maximum Reynoldsnumber versus geometri
 
omplexity, [38℄. . . . . . . . . . . . . . . 92.5 Example of an unstru
tured mesh around a 
ylinder. . . . . . . . . 142.6 Example of body-�tted stru
tured O-grid around a 
ylinder. . . . . 142.7 Example of a multi-blo
k mesh of a jet. The grid is stret
hed some-what towards the shear-layer lo
ated between the outer layer andthe intermediate layer of grids. Note the hanging nodes in pat
hes1,4 and 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.8 Overlapping a Cartesian mesh with a body-�tted stru
tured mesh. 162.9 Example of a Uniform Cartesian mesh around a 
ylinder with lo
almesh re�nement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.10 Example of Virtual Cell Embedding. . . . . . . . . . . . . . . . . . 194.1 No-slip type grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314.2 Wall-model type grid. . . . . . . . . . . . . . . . . . . . . . . . . . 324.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335.1 The grid-grid interfa
e is lo
ated at x = 1. The two left-most �negrid point values need to be interpolated from the 
oarse grid. Atlo
ations where τ = 1, the order of interpolation is lowered. Noti
ethe over- and undershoots of the high-order interpolant. . . . . . . 455.2 The boundary is allowed to 
ut the grid in an arbitrary manner inthe embedded boundary method. . . . . . . . . . . . . . . . . . . . 465.3 KP embedded boundary method. The indi
es denote the domain ofdependen
e for the embedded boundary pro
edure for ghost point(i,j). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47xiii



xiv List of Figures5.4 All di�erent interpolation sten
ils in 2D for the KP3 embedded bound-ary method. The ghost point is marked bla
k and the bounds of thenormal is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485.5 A quarter of all di�erent interpolation sten
ils in 2D for the SP em-bedded boundary method. The ghost point is marked bla
k and thebounds of the normal is shown. . . . . . . . . . . . . . . . . . . . . 495.6 SP embedded boundary method. The indi
es denote the domain ofdependen
e for the embedded boundary pro
edure for ghost point(i,j). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515.7 Corner points are averaged: l = 2. . . . . . . . . . . . . . . . . . . 525.8 The bla
k ghost point does not have a normal asso
iated with anysurfa
e, but its value is needed in the dis
retization. The bla
k ghostpoint is assigned the average value of the two white ghost points. . 536.1 Two dimensional 
omputations of Ma
h 3 �ow past a 
ylinder. Ve-lo
ity magnitude 
ontours. Results from the KP method. . . . . . 576.2 Overset grid domains used for 
omputations with body �tted grids. 586.3 Cf along the upper half of the 
ylinder 
omputed with the KP em-bedded boundary method for Ma
h number 3 and Reynolds number500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596.4 Cf along the upper half of the 
ylinder 
omputed with the SP em-bedded boundary method for Ma
h number 3 and Reynolds number500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596.5 Cf along the upper half of the 
ylinder 
omputed with the body�tted method for Ma
h number 3 and Reynolds number 500. . . . 596.6 Cf along the 
ylinder surfa
e with the KP embedded boundarymethod, the SP embedded boundary method, and the body �ttedmethod. Ma
h number 3, Reynolds number 500. The �nest grid sizeis h = 0.0017007. Using se
ond order extrapolation of the slopes inthe Godunov �uxes. . . . . . . . . . . . . . . . . . . . . . . . . . . 606.7 Cf along the 
ylinder surfa
e with the KP embedded boundarymethod, the SP embedded boundary method, and the body �ttedmethod. Ma
h number 3, Reynolds number 500. The �nest grid sizeis h = 0.0017007. First order extrapolation (6.2). . . . . . . . . . . 616.8 Temperature on the boundary using the KP embedded boundarymethod. Ma
h number 3, Reynolds number 500. . . . . . . . . . . 626.9 Temperature on the boundary using the SP embedded boundarymethod. Ma
h number 3, Reynolds number 500. . . . . . . . . . . 626.10 An illustration of the experiment with di�erent grid alignments. . . 626.11 The density for hmin = 1.50754 · 10−3Rea = 50. . . . . . . . . . . . 636.12 The protrusion height estimated using (6.4) together with the fri
tionvelo
ity uτ . The verti
al bar illustrates the grid size h. . . . . . . . 646.13 Correlation between fri
tion Reynolds number Rek and protrusions
k 
omputed from simulation data. . . . . . . . . . . . . . . . . . . 66



List of Figures xv6.14 Unsteady �ow, instantaneous velo
ity at t = 5 Rea = 50000 hmin =
7.5188 ·10−4. Noti
e that the 20o simulation has more wiggles, whi
hare due to the wagging wake. . . . . . . . . . . . . . . . . . . . . . 676.15 Unsteady �ow, instantaneous velo
ity at t = 5 Rea = 25000 hmin =
7.5188 · 10−4. Note that the 20o simulation has more unsteadinesswhi
h are 
aused by pressure waves from the unsteady wake. . . . 676.16 Instantaneous velo
ity at t = 5 Rea = 12500 hmin = 7.5188 · 10−4.Noti
e the leading edge separation. . . . . . . . . . . . . . . . . . . 686.17 Instantaneous velo
ity at t = 5, Rea = 6250 hmin = 7.5188 · 10−4.Noti
e the 0o the leading edge separation, but atta
hed �ow for 20o. 686.18 Instantaneous visualization of log (‖∇ρ‖ + ε). The 
hara
teristi
 fea-tures of supersoni
 base�ows 
an be seen su
h as the unsteady natureof su
h �ows with the presen
e of numerous(?) turbulent s
ales. Theseparation point is �xed by the geometry at the 
orner. A 
enteredexpansion fan turns the separated shear layer towards the axis. Fur-ther downstream, due to axisymmetri
 
onstraints, the mixing layeris bent to realign the �ow with the axis in the mean. This regionexhibits a strong adverse pressure gradient as evident by the pres-en
e of unsteady re
ompression sho
ks and Ma
h-lines 
oales
ing intosho
ks. In this region, the in
oming �uid that la
ks the momentumto over
ome the pressure gradient is pushed upstream into a re
ir
u-lation zone. Downstream of the stagnation region, a turbulent wakewith larger 
oherent stru
tures develops. . . . . . . . . . . . . . . 706.19 Grid 
onvergen
e study of velo
ity 〈u〉 along the base 
enterline andbase pressure 
oe�
ient 〈Cp〉. . . . . . . . . . . . . . . . . . . . . 716.20 Velo
ity along the base 
enterline 〈u〉 and 〈Cp〉 using Cs = 0.16 and0.24. The model parameter a�e
ts the solution only in very smalldetails, whi
h is a 
onsequen
e of the too dissipative Godunov s
heme. 726.21 〈h+〉, i.e. the e�e
tive dis
retization size along the rotated and non-rotated obje
t under grid re�nement. . . . . . . . . . . . . . . . . . 736.22 〈‖u‖〉 0o using the wall-model desribed in se
tion 4.0.5 and LES(standard Smagorinsky). . . . . . . . . . . . . . . . . . . . . . . . 746.23 〈‖u‖〉 20o using the wall-model desribed in se
tion 4.0.5 and LES(standard Smagorinsky). . . . . . . . . . . . . . . . . . . . . . . . 756.24 〈h+〉, i.e. the e�e
tive dis
retization size along the rotated and non-rotated obje
t under grid re�nement. . . . . . . . . . . . . . . . . . 76



xvi



Chapter 1S
ope of work/SummaryThe predi
tion of turbulent 
ompressible �ows is a major 
hallenge in terms ofmodeling, numeri
al algorithms, and 
omputer performan
e. The motivating ap-pli
ation for these investigations is the modeling of the solid fuel ro
ket exhaustplume behind a laser guided missile, with an aim to predi
t the refra
tion of a laserbeam used to 
ommuni
ate with the missile.Large Eddy simulations of a simpli�ed model with non-rea
ting and rea
tingbase �ow using the FOAM software (Paper I, II, III) were set up and 
omparedto measurements [32℄ in an attempt to 
larify the e�e
ts and appli
ability of di�erentapproa
hes to 
onstru
ting the sub-grid s
ale �lter in Large Eddy Simulations.The sub-grid s
ale �lter 
an be analyzed more 
on
lusively if a s
heme withknown '
hara
teristi
s' is employed so dis
retization errors and �lter a
tion 
an beseparated. This proved to be non-trivial in the FOAM 
ode as it was at the time,and it was de
ided to look to another family of s
hemes, the re
ently introdu
edEmbedded Boundary methods [70, 13℄. By virtue of primarily using re
tangulargrids, even for 
omplex geometries, they o�er simpli
ity and e�
ien
y in termsof implementation and 
omputer resour
es. The boundary 
onditions are harderto set, but su

essful appli
ations of high-order Diri
hlet and Neumann boundary
onditions for se
ond order wave equations [43, 45℄ indi
ated that these problems
an be over
ome. The embedded boundary te
hnology is very well suited for sim-ulations with moving boundaries. The mesh 
an be �xed, alleviating the need forgrid speed 
ontributions, and the 
al
ulations of boundary 
onditions on a movingsolid boundary are not expensive.It is evident that a Cartesian grid 
annot, for obvious reasons of 
ell aspe
tratio, o�er the grid point e
onomy in thin solid boundary layers that a boundary-�tted grid 
an. The Cartesian grid te
hnique must therefore be 
ombined with asmart grid-hierar
hy su
h as the building-
ube [57℄, and also with adaptive meshre�nement, like Berger et. al. [4, 5℄ to be
ome a fully fun
tional tool.The work presented here represents the �rst steps towards a large eddy simulatorfor 
ompressible turbulen
e in 
omplex geometries using Cartesian grid methods.1



2 Chapter 1. S
ope of work/SummaryThe basi
 s
heme is derived from high-resolution s
hemes [65, 30, 25℄, o�ering sharpdis
ontinuity resolution and se
ond order of a

ura
y for smooth solutions. Su
hs
hemes on boundary �tted grids, referred to as Impli
it LES [29, 27, 28, 21℄, havebeen su

essful even without spe
i�
 sub-grid s
ale �lter be
ause of the dissipationprovided by the limiters and �entropy �xes�. It is believed that the embeddedboundary te
hnology developed here 
an be used also together with more-than-se
ond-order s
hemes su
h as the Sjögreen/Yee 
entral s
hemes [72℄ for 
ompressibleturbulent �ow simulations in 
omplex geometries.Boundary 
onditions with small-
ell sti�ness mitigation, proposed in [43℄ are de-signed to give 
ontinuous dependen
e on details of grid position w.r.t. boundaries.The use of Kreiss/Peterson, Sjögreen/Peterson embedded boundaries for 
ompress-ible Navier-Stokes/LES is new. The implementation of the method was made forparallel super
omputer utilizing MPI (Message Passing Interfa
e). The implemen-tation was tested on �ows around simple geometries for supersoni
 high-Re �owsand 
ompared to boundary-�tted grid results (Paper IV, V). Wall quantities su
has fri
tion 
oe�
ient and pressure 
oe�
ient are of primary interest in appli
ationsto �uid-solid intera
tion simulations.The 3D test 
ase - the Dutton base-�ow experiment [32, 53, 9, 8℄ - brings us ba
kto the type of appli
ation whi
h initiated the work (Paper VI). The a

elerationof the 
ore �ow downstream is strongly in�uen
ed by the wall boundary layer whi
his shed as a turbulent free shear layer. A thi
k boundary layer will not a

eleratethe 
ore �ow as mu
h as a thin boundary layer.The MUSCL-s
heme with an entropy �x adds arti�
ial dissipation in the bound-ary layer, and thi
kens it. The MUSCL e�e
ts of arti�
ial vis
osity dominate, 2:ndorder Godunov physi
al/LES vis
osity is not resolved with 
urrent resolution.1.1 List of papersThe thesis is 
ondensed from the following arti
les, whi
h the author has 
ontributedto. The papers are in
luded in the end of the thesis.1.1.1 Paper IRoger Mattsson, Mar
o Kupiainen, Per Gren, Anders Wåhlin, Torgny E. Carls-son and Christer Fureby, Pulsed TV Holography and S
hlieren Studies, and LargeEddy Simulations of a Turbulent Jet Di�usion Flame, Combustion and Flame 139(2004) 1-15. The author of this thesis 
ontributed to some of the ideas presented,performed the numeri
al simulations and wrote parts of the manus
ript.1.1.2 Paper IIChrister Fureby and Mar
o Kupiainen, Large Eddy Simulation of Supersoni
 Ax-isymmetri
 Base�ow. In Third International Symposium on Turbulen
e and Shear



1.1. List of papers 3Flow Phenomena (TSFP-3), Sendai, Japan 25-27 June 2003. The author of thisthesis 
ontributed to the ideas presented, performed the numeri
al simulations andwrote the manus
ript.1.1.3 Paper IIIMar
o Kupiainen and Christer Fureby, Large Eddy Simulation of a Turbulent Non-premixed Flame. In Third International Symposium on Turbulen
e and Shear FlowPhenomena (TSFP-3), Sendai, Japan 25-27 June 2003. The author of this thesis
ontributed to some of the ideas presented, performed the numeri
al simulationsand wrote parts of the manus
ript. The author also presented the paper at TSFP-3.1.1.4 Paper IVMar
o Kupiainen and Björn Sjögreen, A Cartesian Embedded Boundary Methodfor the Compressible Navier-Stokes Equations. A

epted for puli
ation in Journalof S
ienti�
 Computing 2008. The author of this thesis implemented the methodsolving the Navier-Stokes equations and wrote parts of the paper. The authorpresented a part of this work at BIT Cir
us Conferen
e 2006, Sto
kholm and EC-COMAS 2008, Veni
e.1.1.5 Paper VMar
o Kupiainen, On the A

ura
y of an Immersed/Embedded Boundary Methodfor Compressible Turbulent �ow The author wrote the 
omputer 
ode, wrote themanus
ript and did the analysis. The author presented a part of this work atECCOMAS 2008 
onferen
e, Veni
e.1.1.6 Paper VIMar
o Kupiainen, LES Base�ow simulations using a Cartesian Embedded BoundaryMethod. The author wrote the 
omputer 
ode, wrote the manus
ript and did theanalysis. The author presented a part of this work at ECCOMAS 2008 
onferen
e,Veni
e.
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Chapter 2Introdu
tionThere are three major ways to investigate and analyze 
omplex �ows, namely mak-ing physi
al experiments in laboratories using e.g. wind-tunnels, using mathemati-
al analysis and doing numeri
al simulations of the �ow. These methods should beseen as 
omplements to one another, sin
e they are bene�
ial in di�erent ways.An example of an appli
ation is the 
ontrol of a supersoni
 missile by laserguidan
e from the aft. The laser-beam must travel through the bas-�ow sho
ksand exhaust plume whi
h is very hot, turbulent, and parti
le-laden. A robust sys-tem to steer the missile needs to know what the �ow �eld in the plume looks like.Experiments in a wind-tunnel are very 
hallenging and 
ostly. Numeri
al simula-tion is the remaining option. The questions are how a

urate su
h 
omputationalpredi
tions are, whi
h methods to use and how large the 
omputational e�ort/timewill be.The thesis surveys 
ommonly used methods for these types of appli
ations andshows 
al
ulations performed with �nite volume s
hemes and di�eren
e methods.The development of a Cartesian grid embedded boundary method for Navier-Stokes/LES equations modeling for these types of �ows is the major 
ontributionof this thesis.
Figure 2.1. Control by laser guidan
e.5
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tion2.1 Computational Fluid Dynami
sThe Navier-Stokes equations whi
h des
ribe �uid �ow pro
esses are 
ompli
atedand the existen
e of long-time solutions is (Nov. 2008) still an open mathemati-
al problem. A proof would earn the prover the Clay Prize of a million dollars.Leaving su
h fundamental questions aside, the engineering and s
ienti�
 
ommu-nities sin
e von Neumann are developing the te
hnology of Computational FluidDynami
s (CFD) now used routinely both by resear
hers and engineers to studyand understand physi
al phenomena of �uid �ow. Also sin
e von Neumann theneed for better �ow simulations has been an important driving for
e for develop-ment of high-performan
e 
omputers. CFD is an interdis
iplinary �eld involving�uid me
hani
s, the theory of partial di�erential equations, 
omputational geome-try, numeri
al analysis, and the 
omputer s
ien
e of programming algorithms andpro
essing data stru
tures. The �eld has matured substantially as an engineer-ing dis
ipline. There are many 
ommer
ial �ow solvers and the market for CFDsoftware was estimated in 2006 at more than 150 MUSD p.a. (COMSOL, private
omm.) Whereas turbulen
e models for equations of mean �ow, when tuned to theproblem at hand, provides answers for aeronauti
s engineers, a

urate predi
tion ofturbulent �ow from �rst prin
iples is yet to be demonstrated for all but the simplest�ow geometries.2.2 Turbulent FlowsThe notion of turbulen
e and its meaning is generally a

epted. The literature isvast. Some overview work is presented in e.g. [64℄, [69℄, [75℄, [56℄, [77℄ and [33℄. In[33℄ the following de�nition is made:Turbulent �uid motion is an irregular 
ondition of �ow in whi
h the var-ious quantities show a random variation with time and spa
e 
oordinatesso that statisti
ally distin
t average values 
an be dis
erned.Turbulen
e is a �ow phenomenon with a wide range of s
ales in both time andspa
e, 
hara
terized by low momentum di�usion, high momentum 
onve
tion, andpressure and velo
ity variation with time. Flows that are not turbulent are usually
alled laminar. The (dimensionless) Reynolds number, Re = ρ∞U∞L

µ∞

is a measureof the ratio of inertia for
es to the mole
ular vis
osity e�e
t, whi
h 
hara
terizeswhether �ow 
onditions lead to laminar or turbulent �ow. It is further generallyassumed that turbulen
e is a 
ontinuum phenomenon, an assumption appli
able toliquids and gases under atmospheri
 
onditions. Some 
aution is di
tated in the
ase of hypersoni
 �ows, whi
h 
an have regions of very low density, e.g. on thelee-side of a wing at high angle of atta
k, as happens on the Spa
e Shuttle. The
ontinuum assumption is violated when the ratio of the mole
ular mean free pathlength to a representative physi
al length s
ale, the Knudsen number, is small.



2.3. Common Levels of Approximation 7A 
hara
teristi
 feature of turbulent �ows is the o

urren
e of eddies of di�erentsize. Kolmogorov's famous theory from 1941 [40℄, [41℄ (later re�ned in 1962 [42℄), forhomogeneous turbulen
e makes two key assumptions. (i) There is a steady transferof kineti
 energy from the large s
ales to the small s
ales and kineti
 energy is
onsumed at the small s
ales by vis
ous dissipation. (ii) There is an inertial sub-range of s
ales where the turbulen
e generating pro
esses are independent of thedetails of the large s
ales. The eddies that 
arry most energy have a 
hara
teristi
length s
ale 
alled the integral length s
ale l. The Kolmogorov s
ale η is the smallestlength s
ale in turbulent �ows. The range of s
ales in between is 
alled the inertialsubrange, see Figure 2.2.
Large
scales 

energy
containing
integral
scales 

inertial 
subrange 

viscous
subrange 

l−1 η−1 

log(k) 

log E(k) 

0 Figure 2.2. S
hemati
 representation of the turbulent kineti
 energy spe
trum asa fun
tion of the wavenumber k.2.3 Common Levels of ApproximationNumeri
al predi
tion methods of turbulen
e are often 
lassi�ed as Dire
t Numeri
alSimulation (DNS), Large Eddy Simulation (LES), or Reynolds Averaged NavierStokes (RANS) models. In DNS all time and spa
e s
ales are resolved, e.g. [64℄.LES, in whi
h only the larger s
ales are resolved and sub-grid models are used torepresent the e�e
ts of the small s
ales upon the large resolved s
ales, is des
ribedin e.g. [66℄. RANS models, in whi
h the mean velo
ity, density, temperature et
.are solved for, are dis
ussed e.g. [79℄ and referen
es therein. DNS, LES and RANS
an be 
onsidered as 
omplementary methods to ea
h other, providing di�erent
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tionlevels of information and a

ura
y, with di�erent areas of appli
ation. A s
hemati
pi
ture of the di�erent approa
hes is presented in Figure (2.3).
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Figure 2.3. A s
hemati
, illustrating the 
on
eptual ideas of RANS, LES and DNS.
2.3.1 Dire
t Numeri
al Simulation (DNS)DNS solves the unsteady Navier-Stokes equations with all s
ales (time and spa
e)taken into a

ount. This is equivalent to saying that the spa
e-time resolution of thedis
retization should be at least as �ne as the 
hara
teristi
 s
ales of the 
ontinuousproblem, i.e. the Kolmogorov s
ale η, whi
h means exorbitant 
omputational 
ost.Most interesting �ows have mu
h higher Reynolds numbers than 
an 
urrently besimulated with DNS. The 
urrent Peta�ops generation of super
omputers are ordersof magnitude too small and slow for any but the simplest geometries. Appli
ationsin aeronauti
s and ship design deal with Reynolds numbers as high as 108 raisingthe need of 1024 spa
e-time grid points and 1027 �oating point operations.
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Geometric ComplexityFigure 2.4. Con
eptual overview of DNS of turbulent �ows: Maximum Reynoldsnumber versus geometri
 
omplexity, [38℄.
2.3.2 Large Eddy Simulation (LES)In LES the number of resolved s
ales is redu
ed by spatial low-pass �ltering andhen
e in the solution pro
ess the dynami
s of all the s
ales are not 
omputedexpli
itly. A 
ut-o� s
ale is de�ned, below whi
h the s
ales are not solved forexpli
itly, usually denoted sub-grid s
ales. The non-linearities in the Navier-Stokesequations 
ouple all the s
ales of the original problem, both above and below the
ut-o� s
ale, and in order for the resolved s
ales to take into a

ount the e�e
ts ofsub-grid s
ales, models need to be used. The models are to represent the intera
tionbetween the grid s
ale (resolved s
ales) and the sub-grid s
ales. Furthermore, thesmall s
ales are assumed to be more universal in 
hara
ter and are therefore believedto be more easily modeled. This assumption is however known to be invalid for near-wall �ows, and the development of LES-wall models is an a
tive �eld of resear
h.The models in
rease the 
omputational 
ost, but by using simple and univer-sal models, a redu
tion by several orders of magnitude in number of operations isobtained when 
omparing to resolving all physi
al s
ales. The 
urse of dimension-ality is also present in LES. In order to approa
h a feasible solution algorithm oneneeds to use some kind of turbulen
e modeling and use a well implemented e�
ientmethod that is adaptive in both spa
e and time.LES has four 
on
eptual steps:
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tion(i) A spatial �ltering operation to de
ompose the equations into �ltered (grid-s
ale) 
omponents and residual (sub-grid s
ale, SGS) 
omponents, i.e.
φ = φ + φ′,where φ(x) =

∫

Ω
G(x − ξ, ∆)φ(ξ)dΩ is the spa
e �ltering 
onvolution, seee.g. [66℄. The �ltered 
omponent φ represents the large s
ales, that are usedexpli
itly in the 
al
ulations and φ′ represents the small s
ales whose e�e
tmust be modeled. We also introdu
e Favre �ltering de�ned by

φ̃ =
ρφ

ρ
,where ρ is the density, whi
h is often used in 
ompressible LES formulations.(ii) The equations for the evolution of the �ltered 
omponents are derived fromthe Navier-Stokes equations. These equations are of the same form as theoriginal equations, ex
ept that they 
ontain new terms arising from the resid-ual motions.(iii) Closure is obtained by modeling the SGS terms.(iv) The �ltered equations are solved numeri
ally for φ, whi
h is an approximationto the large-s
ale motions in one realization of the turbulent �ow.The time-averaged mean-�ow quantities

〈φ〉ti

t0 =
1

ti − t0

∫ ti

t0

φ(·, τ)dτ
an be 
ompared to experimental data. In the LES-
ommunity there are mainlytwo views on the separation of modeling issues (i)-(iii) and numeri
al solution (iv).One s
hool sees �ltering and modeling as independent of numeri
al methods, inparti
ular independent of the 
omputational grids used. The other viewpoint is thatmodeling and numeri
al issues 
annot pra
ti
ally be separated and hen
e shoulddeliberately be 
ombined, e.g. [7℄, [28℄.2.3.3 Reynolds Averaged Navier Stokes (RANS)The RANS approa
h repla
es the Navier-Stokes equations with a set of time-averaged �ow equations for the mean �ow quantities.
φ(x)T =

1

T

∫ t0+T

t0

φ(x, t)dt.The formal averaging pro
edure results in a hierar
hy of equations that requires
losure by models for averages of produ
ts of �u
tuations. Extensive e�orts have



2.5. Numeri
al Approa
hes for Compressible Flows 11gone into deriving 
losure models, simply 
alled turbulen
e models. Key elementsof these models are parameters obtained both from �tting solutions of the equationsto experimental data and from detailed 
omputations. Both experiments and DNShave played important parts in deriving and 
alibrating turbulen
e 
losure models,see e.g. [79℄ and [64℄2.4 Compressible Turbulen
eSigni�
ant e�e
ts of 
ompressibility appear when the Ma
h number M∞ = U∞

c ,the ratio between �ow speed U∞ and the speed of sound c, ex
eeds approximately0.3. Turbulent 
ompressible �ows have been signi�
antly harder to 
ompute, dueto the in
reased 
omplexity introdu
ed by the energy equation and the need formodeling its 
losure terms. The turbulen
e phenomena where 
ompressibility playsan important role are for instan
e: in (1) transoni
 and higher speed aerodynami
s,(2) high-speed 
ombustion, and (3) magneto hydrodynami
 (MHD) �ows related tonu
lear fusion physi
s. Here we fo
us on non-MHD 
ompressible turbulent �ows.While the 
lassi
al turbulen
e studies have been 
ondu
ted on in
ompressible �ows,see e.g. [66℄ for a good review, LES for 
ompressible turbulen
e e.g [19℄, [52℄, [39℄,[58℄, [16℄ and [54℄, is be
oming a �eld of its own. Methods and theory 
on
erningin
ompressible �ows have been modi�ed to treat 
ompressible �ows. Compressiblehigh-speed �ow involves, apart from turbulen
e, also non-smooth features su
has sho
ks and sho
klets, [62℄, making the requirements on the numeri
al methodharder than for in
ompressible �ow problems. The instabilities due to turbulen
eo

ur on many s
ales, although in some sense, averaged quantities may be stableand 
oherent large-s
ale features may evolve. The interplay between the large-s
ale and small-s
ale motions dominates the problem and 
ompressibility a�e
tsthis interplay, [17℄.2.5 Numeri
al Approa
hes for Compressible FlowsBelow a brief des
ription of general numeri
al approa
hes and the most 
ommonmethods for �ow 
omputations is presented.Finite Element MethodsThe �nite element method (FEM) is based on a variational prin
iple, where thesolution is sought in a �nite dimensional fun
tion spa
e. FEM 
an be used onbasi
ally any kind of mesh. The solution will be a linear 
ombination of fun
tionsfrom this fun
tion spa
e. For large 
lasses of problems FEM is supported by rigorousmathemati
al theory and error-estimates. Adaptivity 
an easily be in
luded intothe method. Appli
ation of FEM in the time domain gives rise to systems ofequations that have to be solved in ea
h time step. The most notable e�ort inFEM for 
ompressible �ows is the Dis
ontinuous Galerkin method [12℄, where the
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tionbasis fun
tions are dis
ontinuous, either in time or spa
e. The e�
ien
y of FEMrelies heavily on e�
ient linear solvers and e�e
tive pre
onditioners for these. Whenstrong sho
ks are present the 
omputational burden 
an be
ome signi�
ant; for ananalysis of this fa
t for a s
alar non-linear 
onservation law see [10℄.Spe
tral MethodsSpe
tral methods are a spe
ial kind of FEM method see e.g. [11℄. The basis fun
-tions are typi
ally based on Fourier approximations or Chebys
hev polynomialsand have non-lo
al support. These methods are very a

urate (exponential 
on-vergen
e rate for C
∞ solutions) and are mainly used for DNS. The di�
ulties withdis
ontinuities in the solution , su
h as sho
k waves, 
an be handled with so 
alledpseudo-spe
tral methods. Another limitation is that these methods admit onlyvery simple geometries, making them inappli
able for �ow problems around or in-side 
omplex bodies. Spe
tral methods owe e�
ien
y to the FFT algorithm, andits implementation: For parallel pro
essor 
omputations often the whole solutionmust be 
ommuni
ated a
ross all pro
essors several times per time step, e.g. [2℄.Also, lo
al mesh re�nement is di�
ult and adaption to lo
al features, su
h as inletdisturban
es, may require expensive global mesh re�nement.Finite Volume methodsFinite volume methods are based upon the integral formulation (using 
ell-averagedquantities) of the PDE. The usage of methods dominate 
omputational aeronauti
ssin
e 1970's. Unstru
tured �nite volume methods do not easily generalize to higherorder methods, mainly be
ause there is no straightforward method to make the dif-feren
e approximations more a

urate when 
ells (
ontrol volumes) are arbitrarilyshaped. Adaptivity is also in prin
iple easy, but there are no rigorous error esti-mates, su
h as with FEM, and one estimates the error using some ad ho
 prin
iple.Finite volume methods 
an be used on all kinds of meshes.Finite Di�eren
e MethodsThe �nite di�eren
e method is based on the di�erential formulation of the PDEsee e.g. [74℄. If we interpret 
ell-averaged quantities in the �nite volume methodas point values we 
an interpret the method as a �nite di�eren
e method. Thesemethods are based on Taylor's formula to approximate the solution and do not workon dis
ontinuous solutions, as �nite volume s
hemes and dis
ontinuous Galerkins
hemes do. Finite di�eren
e methods are always used on stru
tured meshes.2.6 Computational Grids for CFDThe methods above must operate on some data representation to solve the 
ompu-tational task at hand. With data representation we mean type of grid and how the



2.6. Computational Grids for CFD 13handling of geometries within the 
omputational domain is done.2.6.1 Unstru
tured gridsUnstru
tured grids 
over the 
omputational domain with �arbitrarily� shaped, oftentetrahedral or hexahedral, 
ontrol volumes and approximate the integral formula-tion in ea
h 
ontrol volume, see Figure 2.5. Due to the arbitrary shapes allowedin the method, 
omplex geometri
 obje
ts are in easy to 
apture. Many softwarepa
kages 
an generate su
h grids from a CAD-model e.g. ICEMCFD [35℄ and Gam-bit [36℄. Unstru
tured grids are used in FEM and in Finite Volume methods. Dueto the irregularity of the mesh Taylor expansion methods are not easily appli
able.With ordinary unstru
tured �nite volume methods usually only se
ond order(formal) a

ura
y is a
hieved. Of 
ourse the quality of the simulation dependson the mesh quality. A rule of thumb is that the 
ell-size should not in
rease orde
rease with more that 20% from one 
ontrol volume to another (whi
h still is verymu
h!), in order for the mesh to have a

eptable quality. Mesh 
ell skewness alsoa�e
ts the grid quality. Another feature whi
h makes unstru
tured grid methodsslightly ine�e
tive is that in order for a 
ell/point to know its neighbor, it has tolook it up in a list or some similar data stru
ture, and it is somewhat di�
ult toorder the data in su
h a way that needed data for an operation is in the 
a
he. Wewill refer to this as data referen
e lo
ality. Mu
h work has been put into orderingthe datasets to exploit data lo
ality for unstru
tured methods in order to limit the
ons of indire
t addressing. Moving boundaries 
an be treated with ALE e.g. [14℄,whi
h admits movements of the boundary small enough to limit the deformation ofthe 
ells. Larger deformations need time 
onsuming regridding.2.6.2 Body-�tted gridsThe 
omputational domain is 
overed with a grid of indexed points (xi, yj, zk) whi
h
an be mapped to a re
tangular box in (ξi, ηj , φk) 
omputational spa
e. Derivatives
an either be evaluated in physi
al or in mapped spa
e. Single su
h grids 
an only
over simple geometries, e.g. C-grids and O-grids et
., see e.g. [76℄ and Figure 2.6.There are regularity requirements on the grid-to-
omputational domain mappings,to preserve a

ura
y. For high-order methods and 
omplex geometries this 
anbe an impossible requirement. With so 
alled multi-blo
k meshes see Figure 2.7
omplex domains 
an be gridded, but 
onstru
ting good body-�tted grids is time
onsuming. The rewards for this are grids on whi
h 
omputations 
an representthe physi
s of the problem a

urately, espe
ially boundary layers. This propertyis not easily dupli
ated in the unstru
tured gridding or in the Cartesian embeddedboundary methods.The data stru
tures do not su�er from indire
t addressing and adaptive meshre�nement (AMR), e.g. [5℄, [4℄ 
an be used to lo
ally re�ne the solution.The simulation of moving boundaries requires regridding in ea
h time iterationor when the boundaries move.
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Figure 2.5. Example of an unstru
tured mesh around a 
ylinder.

Figure 2.6. Example of body-�tted stru
tured O-grid around a 
ylinder.
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Figure 2.7. Example of a multi-blo
k mesh of a jet. The grid is stret
hed somewhattowards the shear-layer lo
ated between the outer layer and the intermediate layerof grids. Note the hanging nodes in pat
hes 1,4 and 8.
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Figure 2.8. Overlapping a Cartesian mesh with a body-�tted stru
tured mesh.
Overlapping stru
tured gridsA very promising method to 
ir
umvent the limitations of stru
tured grids is to useoverlapping grids, also known as 'Chimera' grids e.g. [31℄. A 'base' grid, 
overs thewhole 
omputational domain, and around obje
ts body-�tted grids are introdu
ed.In the overlapping domain between the 'base' grid and the body-�tted grids inter-polation is used to 
onne
t the solution in all grids. A signi�
ant 
omplexity of thismethod is the 
omputation of interse
tion points for the interpolations between thegrids.Moving the boundary is handled by moving the mesh surrounding the bound-aries only. The interpolation sten
ils between grids need to be updated and gridvalues previously unused must be assigned values in a 
onsistent and stable manner,whi
h is a general problem with moving meshes, for a solution see e.g. [31℄.



2.7. Uniform Cartesian grids with embedded boundaries 172.7 Uniform Cartesian grids with embedded bound-ariesUniform Cartesian grids have the highest quality with respe
t to 
omputationala

ura
y, sin
e there is no need to make any mappings from physi
al spa
e to
omputational spa
e. Most methods based upon Taylor-expansions are derived tobe used on uniform Cartesian grids, so there is no need to make modi�
ations tothe numeri
al s
hemes due to deformed meshes. Classi
ally, Cartesian grids 
ouldbe used only for box-like geometries, where the boundaries of the obje
t are alignedwith the grid. The dis
retization methods do not need indire
t addressing makingthem e�e
tive.With embedded boundary methods e.g. [50℄, [13℄ and [49℄ (Paper IV), theuse of Cartesian grids 
an be extended to solve problems in 
omplex geometries,yielding an e�
ient and a

urate method.In a body-�tted grid, the grid spa
ing along the body surfa
e 
an be mu
h largerthan the resolution in the surfa
e normal dire
tion in order to resolve boundarylayers in vis
ous 
omputations. This means that the 
ells near the body have highaspe
t ratios, typi
ally 1:10 for time dependent 
al
ulations and 1:100 or even 1000in steady state 
omputations. While this is 
omputationally e�
ient, a

ura
y 
ansu�er due to the s
ale separation that in pra
ti
e is enfor
ed. For example, if asho
k or �ame hits the body at an angle to the grid lines, the e�e
tive resolutionwill be the 
oarser of the two resolutions and not the �ner.One of the former di�
ulties with embedded boundaries has been the so 
alled�small-
ell sti�ness�, 
aused by boundary-gridline interse
ting very 
lose to grid-points.The boundary lo
ation is de�ned by signed distan
e fun
tion (SDF). Very 
om-pli
ated geometries 
an be generated in se
onds, straight from CAD-�les, see [59℄,by simple 
alls to the signed distan
e fun
tion. Movement of the boundary is alsomade simple, no regridding is required, only 
alls to the SDF, updating of the ghostpoint interpolation sten
ils and initialization of previously unused grid values.2.7.1 Virtual 
ell embeddingThe virtual 
ell embedding is a Cartesian gridding te
hnique used for generatinggrids for very 
omplex boundaries [50℄. A 
omplex geometry is spe
i�ed as a unionof a number of simples shapes. Ea
h shape, whether given as an analyti
 fun
tion,a surfa
e-panel representation or some form of bit map, must be a

ompanied bya subroutine that determines if a point lies inside or outside the geometry. In thismethod there is a distin
tion of 
ells into three 
ategories; inner, outer and 
ells thatare 
ut. The 
ells that are 
ut are further subdivided into smaller 
ells typi
allyinto 82 in 2D and 103 in 3D. Ea
h one of these �sub
ells� is determined to be insideof the body, if the 
enter of the �sub
ell� is inside the geometry. Thus this boundary
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Figure 2.9. Example of a Uniform Cartesian mesh around a 
ylinder with lo
almesh re�nement.
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Figure 2.10. Example of Virtual Cell Embedding.handling is in prin
iple �rst order a

urate, although the mesh is made mu
h �nerin the parts where needed.2.7.2 Colellas embedded boundary methodIn [13℄ an embedded boundary method based upon 
ell sli
ing is des
ribed forhyperboli
 
onservation laws. The same method to handle boundaries is used in[15℄ to solve the 2D 
ompressible Navier-Stokes equations. The error for this methodis O(h) in L∞-norm and O(h2) in L1-norm. The method uses a linear 
ombinationof expli
it 
onservative and non-
onservative updates to set boundary values. Thisis 
ombined with a �ux redistribution pro
edure to maintain lo
al 
onservation.2.7.3 KP and SP embedded boundary methodsThis work uses the Kreiss/Petersson (KP) [44, 45, 43℄ and Sj�¶green/Petersson(SP) [70, 60℄ embedded boundary methods. They are more than �rst order a

urate,empiri
ally stable and do not su�er from �small-
ell sti�ness�. They assign the ghostpoint values (set the boundary 
ondition) through interpolation/extrapolation inthe surfa
e normal dire
tion.The KP methods are linear in the sense that the same interpolation sten
il isused all the time during the 
al
ulation, whereas the SP method is slightly data-driven in the sense that it limits the slopes of the interpolants in a similar manneras is done in [70℄ for 
onservation laws. These methods are des
ribed in more detailin 
hapter 5.
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Chapter 3Governing Equations and ModelsHere we present the LES equations with turbulen
e models used to model 
om-pressible �ow. We dis
uss brie�y the in�uen
e of 
hemi
al rea
tions on the ther-modynami
s of the mole
ular internal degrees of freedom.WHY? there is no dis
ussion of the rea
tive �ow 
omputed by FOAM?3.1 Compressible Navier-Stokes/Euler EquationsWe 
onsider the 
ompressible Navier-Stokes equations for a perfe
t gas in two andthree spa
e dimensions, whi
h 
an be written as (using Einsteins' summation 
on-vention):
∂ρ

∂t
+

∂

∂xj
(ρuj) = 0,

∂(ρui)

∂t
+

∂

∂xj

(

ρuiuj + pδij −
(

2µSij −
2

3
µδijSkk

))

= 0, i = 1, 2, 3,

∂e

∂t
+

∂

∂xj

(

(e + p)uj − κ
∂T

∂xj
−
(

2µSij −
2

3
µδijSkk

)

ui

)

= 0,

(3.1)where ρ is the density, ui, i = 1, 2, 3 is the velo
ity in x, y and z dire
tion re-spe
tively, µ is the shear 
oe�
ient of vis
osity and κ is the thermal 
ondu
tivity
oe�
ient. The Euler equations are obtained when µ = κ = 0. The vis
ous strainrate tensor is given by
Sij =

1

2

(
∂ui

∂xi
+

∂uj

∂xi

)

,and the total energy per unit volume
e = ρ

(
Rw

M(γ − 1)
T +

uiui

2

)

,21
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h, by using the ideal gas law 
onstitutes the relationship
e =

p

γ − 1
+

ρ

2
uiui.The temperature T is given by

T =
Mp

Rwρ
,where M is the molar mass of the substan
e 
onsidered and Rw is the universal gas
onstant. The speed of sound c, is related to the pressure and density by

c2 = γ
p

ρ
,where γ =

Cp

Cv
is the ratio between spe
i�
 heats and Cp − Cv = Rw

M . Both γ and
Rw

M are 
onstants. The spe
i�
 total energy e/ρ =
1

2
ukuk

︸ ︷︷ ︸

ek

+eI = ek + eR + ev is thesum of the kineti
 and of the rotational and vibrational energies of the mole
ulesdenoted eR and ev respe
tively. The spe
i�
 internal energy is denoted eI . For aperfe
t gas the hypothesis are made:� ev = 0,� the velo
ities at a point (x, t) satisfy a Gaussian distribution law aexp(−b〈uk〉〈uk〉),where a and b and ui are fun
tions of (x, t). The distribution 
omes from thetheorem of Lapla
e that 
onsiders the mole
ular velo
ities as identi
ally dis-tributed random variables when the number of parti
les tends to in�nity.� the spe
i�
 internal energy is made up among its di�erent 
omponents inproportion with the degrees of freedom.The hypothesis of the equi-partition of energy is pretty well veri�ed when thereare a few degrees of freedom, for example for monoatomi
 mole
ules (He), diatomi
mole
ules (H2, N2, O2) or rigid mole
ules (H20, CO2, C2H2, C2H4). The more 
om-plex mole
ules are less rigid; they thus have more degrees of freedom, whi
h arenot equivalent from the energeti
 point of view.Let β be the number of non-translational degrees of freedom. The hypothesisof equi-partition gives the following formula for ea
h type of internal energy:
ek1

= . . . = ekd
=

1

d
ek, eR =

β

d
ek,and thus eI = (d + β)ek1

.The adiabati
 exponent γ = d+β+2
d+β results in the law of perfe
t gases
p = (γ − 1)ρeI .The most 
ommon adiabati
 exponents are 5/3 and 7/5 for d = 3 and 5/3 and 2for d = 2 and 3 for d = 1. In appli
ations air is 
onsidered to be a perfe
t gas forwhi
h γ = 7/5.



3.1. Compressible Navier-Stokes/Euler Equations 23The Prandtl number Pr relates thermal 
ondu
tivity to vis
osity
Pr =

µRuγ

κ(γ − 1)M
.Many normalizations are possible. We let L be a typi
al length and let the ∞ sub-s
ript denote typi
al values of the independent variables, whi
h in our appli
ationsare the free stream values. The physi
al quantities are denoted by a '∗' supers
ript.In three spa
e dimensions we have

t =
t∗c∞

L
, xi =

x∗
i

L
, ui =

u∗
i

c∞
, i = 1, 2, 3

ρ =
ρ∗

ρ∞
, p =

p∗

ρ∞c2
∞

, e =
e∗

ρ∞c2
∞

,

µ =
µ∗

µ∞

, κ =
κ∗

κ∞

Re =
ρ∞c∞L

µ∞

, P r =
Cpµ∞

κ∞

,where Re is the Reynolds number. The dimensionless Navier-Stokes equations are
∂ρ

∂t
+

∂

∂xj
(ρuj) = 0,

∂(ρui)

∂t
+

∂

∂xj

(

ρuiuj + pδij −
α(T )

Re

(

2Sij −
2

3
δijSkk

))

= 0, i = 1, 2, 3,

∂e

∂t
+

∂

∂xj

(

(e + p)uj −
α(T )γ

RePr(γ − 1)

∂

∂xj
T − α(T )

Re

(

2Sij −
2

3
δijSkk

)

ui

)

= 0,(3.2)where T = p/ρ. The physi
al vis
osity µ∗ = α(T )µ∞ = α(T )ρ∞c∞L

Re and thephysi
al thermal 
ondu
tivity κ∗ = α(T )γRwρ∞c∞L

MRePr(γ−1) are either taken 
onstant (α ≡
1) or 
al
ulated using Sutherland's law

α(T ) =

(
T

T∞

)1.5
T∞ + S1

T + S1
.with S1 = 110.4K. In planar �ow all derivatives with respe
t to x3 are set to zeroand u3 ≡ 0.3.1.1 Boundary ConditionsWe use boundary 
onditions of the form:wall (no-slip):



ui = 0, (i = 1, 2, 3)
βT + α∂T

∂n = fT

p :extrapolated wall (slip):


uini = 0, (i = 1, 2, 3)
βT + α∂T

∂n = fT

p :extrapolated



24 Chapter 3. Governing Equations and Models(3.3)where ni denote the i:th 
omponent of the normal ve
tor. For an adiabati
 wall
α = 1, β = 0 and fT = 0 and for a thermal wall α = 0 and β = 1.At in�ow and out�ow boundaries at the edge of the 
omputational domain, weimpose 
hara
teristi
 boundary 
onditions e.g. [34℄.



Chapter 4LES and Sub-GridS
ale ModelsIn this work we 
onsider the Smagorinsky sub-grid model and an impli
it sub-grid model. 'Impli
it' subgrid models (ILES and MILES) are given by the leadingorder term of the trun
ation error of the numeri
al s
heme. It is argued in theILES/MILES 
ommunity see e.g. [61℄ that there are four fortunate 
ir
umstan
esthat make turbulen
e simulations and in parti
ular ILES/MILES work:� The shape of the Kolmogorov spe
trum:The average kineti
 energy de
reases fast enough for the s
ales 
ontainingmost of the energy to be resolvable 
urrent 
omputing hardware. This meansthat there is enough energy for the small s
ales to mix large-s
ale inhomo-geneities as fast as the large-s
ale �ows 
an produ
e them.� Energy transfer through lo
al intera
tions:Turbulent energy is transferred by a turbulent 
as
ade that passes from largeeddies to the small s
ales where it is eventually dissipated. Simulations haveshown that the energy transfer in the inertial range is dominated by lo
al (inwavenumber spa
e) intera
tions, and not deposited dire
tly from the large,energy-
ontaining s
ales into the small s
ales.The relatively smooth transfer of s
ales implies that there is a portion ofthe inertial sub-range (see Figure 2.2) where the behavior of the �uid dy-nami
s is essentially s
ale invariant. This is the reason why the region with-5/3 spe
trum slope is the a

eptable pla
e to mat
h a subgrid model tothe resolved-s
ale model. In the ILES/MILES 
ontext, this 
orresponds to
hoosing the grid size in this region.� Dynami
s on the large s
ales:There is an apparent la
k of important dynami
s o

urring at s
ales evena fa
tor of ten or more larger than the 
lassi
ally de�ned Kolmogorov s
ale.The dissipation at s
ales larger than the Kolmogorov s
ale is su�
iently strong25
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ale Modelsthat little stru
ture survives to rea
h the small s
ales. In pra
ti
e this redu
esthe need for spatial resolution.� Behavior of monotone algorithms at the grid-s
ale 
ut-o�:Monotone s
hemes have a modi�ed equation whose leading order trun
ationerror resembles the lo
al nonlinear dissipation that 
onne
ts the large, re-solved, energy-
ontaining s
ales to the unresolved subgrid s
ales and providea built-in measure of the dissipation required.One important di�eren
e between LES and ILES/MILES 
on
erns the 
ompu-tational mesh. In LES, one emphasizes the independen
e of the equations, par-ti
ularity that of the expli
it subgrid s
ale models from the mesh. However, inILES/MILES, the mesh is analogous to an experimental apparatus; there one ex-pe
ts the simulation results to depend on the 
hoi
e of mesh. Although at �rstglan
e this may seem a philosophi
al point, it has important pra
ti
al impli
ations.In parti
ular, the impli
it subgrid s
ale models of ILES depend both on the lengths
ales and the geometry of the 
omputational mesh.4.0.2 The Smagorinsky subgrid modelThe Smagorinsky subgrid model dates ba
k to the 1960's, [73℄. If we solve theNavier-Stokes equations ut + f(u)x = 1/Reuxx, then the Smagorinsky model 
anbe seen as the method of expli
itly added arti�
ial vis
osity:
∂u

∂t
+

∂f(u)

∂x
=

∂

∂x















1

Re
+ ε

∣
∣
∣
∣

∂u

∂x

∣
∣
∣
∣

︸ ︷︷ ︸

Artificial








∂u

∂x








, (4.1)where ε is the Smagorinsky model parameter. This simple example does not showthe physi
al reasoning behind the model, but as a 
orresponding one dimensionalexample illustrating the a
tual e�e
t of the model this is pre
isely what the modelis, whi
h is easily seen from the full LES-Smagorinsky equations in d dimensions:
∂ρ

∂t
+

∂

∂xj
(ρuj) = 0

∂ρui

∂t
+

∂

∂xj

{

ρuiuj + δijp −
(

α(T )

Re
+ C2

sρ∆2‖S‖
)(

2Sij −
2δij

3
Skk

)

+

2δij

3
CIρ∆2‖S‖2

}

= 0, i = 1, . . . , d

∂e

∂t
+

∂

∂xj

{

(e + p)uj −
(

α(T )γ

RePr(γ − 1)
+

γR

γ − 1
Cs

∆2ρ‖S‖
PrT

)
∂

∂xj
(T )−

(

2Sij −
2δij

3
Skk

)

uj

}

= 0,

(4.2)



27where ∆ is the �lter width parameter and the parameters Cs = 0.16 and CI = 0.09a

ording to [52℄ and ‖S‖ is the Frobenius norm of the strain rate tensor, whi
h is
∼ |ux| in (4.1). Realizability 
onditions on the model parameters, e.g for positivesemi-de�niteness of the SGS stress tensor, are given in [78℄:

CI ≥
√

3

2
C2

s .

P rT is the turbulent Prandtl number usually taken to be in the interval PrT ∈
[0.7, 0.9]. For wall-bounded �ows the most used approa
h is to turn o� the LES
ontribution near the wall resulting is wall-resolved LES. ∆ is given by

∆(x, y, z)a = min(∆, C(wallDist(x, y, z))) (4.3)where C(wallDist(x, y, z)) turns o� the subgrid model 
lose to a solid wall and ∆is a measure of the grid spa
ing and wallDist(x, y, z) is the 
losest distan
e to anywall. ∆ 
an be 
omputed in many ways e.g.
(∆x∆y∆z)1/3, max(∆x, ∆y, ∆z), min(∆x, ∆y, ∆z), (
ell volume)1/3.For Cartesian grid methods ∆ = h, where h is the (uniform) 
ell width, is usually
hosen.4.0.3 The impli
it subgrid model (ILES)In impli
it LES (ILES) and Monotone Integrated LES (MILES) methods the trun-
ation error of the method a
ts as LES turbulen
e model. Monotoni
ity is a prop-erty of 
ertain s
hemes for 
onservation laws [51℄ using �ux limiting and arti�
ialvis
osity. The lo
al e�e
t of the non-linear �ux-limiting is interpreted as an e�e
tivesubgrid turbulen
e model. Sin
e the trun
ation error is not viewed separate fromthe modeling, these methods are at least se
ond order a

urate for solving theirmodi�ed equation, i.e. the equation a 
ertain s
heme solves to O(hp) in
luding theleading order error term. There are empiri
al indi
ations that ILES/MILES workse.g. [29℄, [27℄ and [26℄. In many studies e.g. [48℄ ( Paper III), [22℄ (Paper II)ILES/MILES is one of many LES subgrid models tested. A 
ommon 
on
lusion isthat the solution is not mu
h a�e
ted by the 
hoi
e of subgrid model, indi
atingeither that the solution algorithm has poor a

ura
y, so modeling e�e
ts do notshow in the solution, or that the spatial resolution was insu�
ient.4.0.4 Convergen
eA high-Reynolds number �ow is unstable, even when the full turbulent 
as
ade isbeing resolved down to the Kolmogorov s
ale. Two faithful simulations of the sameproblem with di�erent methods will deviate progressively with time as a result ofarbitrarily small di�eren
es in initial and/or boundary 
onditions, round o� errors,methods, et
.. Now, 
onvergen
e of a sequen
e of numeri
al simulations means that
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ale Modelsthe solutions approa
h a limit, the grid-
onverged solution, whi
h by the pro
edurebe
omes de�ned point-wise. If the methods are 
onvergent under grid re�nement,as is 
ustomarily assumed, one 
ould 
ompare the limiting solutions.Turbulent �ows are 
haoti
 by nature and 
onvergen
e 
annot be point-wisein spa
e and time, but as in the de�nition of Hinze, see Ch x, only in averagedquantities. It follows that the numeri
al simulations will not 
onverge.How to assess the a

ura
y of LES using ∆ = C · h, i.e. how to de�ne the lim-iting solution, is perplexing; in
rease in spatial resolution un
overs more stru
turein the 
omputed �ow as unresolved s
ales be
ome resolved. One might de�ne 
on-vergen
e to the limit solution as 
onvergen
e of all relevant averages. and addressthe problem of sele
tion of these.An alternative is to use a �xed ∆, spe
i�
 for the problem under study, di
tatedby the physi
s and the quantities of interest: for
es, mixing properties, et
.. Asan example, a physi
al length s
ale 
an be provided by the "equivalent grain size"in �ows over rough walls. [47℄ (Paper V) uses this interpretation to analyze theperforman
e of the EB boundary 
onditions.4.0.5 Near-wall-boundary Conditions for LESLike all numeri
al approximations to the �ow equations LES requires the settingof boundary 
onditions in order to fully determine the system and obtain a math-emati
ally well-posed problem. Here we dis
uss questions of determining suitableboundary 
onditions for LES espe
ially near solid walls.General problemThe LES equations 
an be of an order di�erent from that of the original Navier-Stokes equations. This is trivially veri�ed by 
onsidering the di�erential interpre-tations of the �lters: the resolved equations are obtained by applying a di�erentialoperator of arbitrarily high order to the basi
 equations.The 
hanged degree of the dis
retized equations raises the problem of determin-ing the asso
iated boundary 
onditions, be
ause those asso
iated with the equationsgoverning the evolution of the exa
t solution 
an no longer be used in theory forobtaining a well-posed problem [66℄. This problem is generally not 
onsidered, ar-guing the fa
t that the higher-order terms appear only in the form of O(∆p), p ≥ 1perturbations of the Navier-Stokes equations and the same boundary 
onditionsare used for the LES and DNS of the Navier-Stokes equations. Moreover, whenthe �lter is unknown, it is no longer to derive suitable boundary 
onditions stri
tly,whi
h also leads to the use of the boundary 
onditions of the basi
 problem.The boundary 
onditions, along with the similarity parameters of the equationsdetermine the solution. These 
onditions represent the whole �uid domain beyondthe 
omputational domain. To spe
ify the solution 
ompletely, these 
onditionsmust apply to all of its s
ales, i.e. to all spa
e-time modes it 
omprises.



29In order to 
hara
terize a parti
ular �ow, the amount of information in theboundary 
onditions ia a fun
tion of the number of degrees of freedom of the bound-ary 
ondition system. This poses the problem of representing a parti
ular solution,in order to represent it numeri
ally. We have a new modeling problem; to modelthe physi
al test 
on�guration.This di�
ulty is in
reased for LES and DNS, due to the large number of degreesof freedom and require a pre
ise spa
e-time deterministi
 representation of thesolution at the 
omputational domain boundaries.Solid wall problemWe des
ribe the problem in the ideal framework of a �at-plate, turbulent boundarylayer, without pressure gradient. The external �ow is in the x1 dire
tion and the x2dire
tion is normal to the wall. The external velo
ity is denoted Ue. The boundarylayer thi
kness δ is de�ned as the distan
e from the plate beyond whi
h the �uidbe
omes irrotational, and thus where the �uid velo
ity is equal to the externalvelo
ity. The fri
tion velo
ity uτ is de�ned as
uτ =

√
τw

ρ
, (4.4)where τw =

∂utangential

∂n and we 
an de�ne a Reynolds number
Reτ =

δρuτ

µ
. (4.5)The redu
ed velo
ity u+

i , expressed in wall units, is de�ned as u+
i = ui/uτ . Thewall 
oordinates x+

i are obtained by the transformation x+
i = xiρuτ

µ .The boundary layer is divided into two parts: the inner region (0 ≤ x2 ≤ 0.2δ)and the outer region (0.2δ ≤ x2). In the inner region the dynami
s is dominatedby the vis
ous e�e
ts. In the outer region, it is 
ontrolled by the turbulen
e.The stru
ture of the (turbulent) boundary layer �ow has 
ertain 
hara
teristi
s:� Low-speed streaks in the region 0 < y+ ≤ 10. The �ow is highly agitated
lose to the wall, 
onsisting of po
kets of fast and slow �uid that organize inribbons parallel to the outer velo
ity.� Eje
tions of low-speed po
kets �uid outward from the wall. These are subje
tto an instability that make the explode near the outer edge of the inner region.� An eje
tion is followed by sweeps of high-speed �uid toward the wall in thenear-wall region, almost parallel to it.� Vorti
al stru
tures of several proposed forms.� Strong internal shear layers in the wall zone (y+ ≤ 80).
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ale Models� Near-wall po
kets, observed as areas 
lear of marked �uid in 
ertain types of�ow visualizations.� Ba
ks: surfa
es (of s
ale δ, where δ is the boundary layer thi
kness) a
rosswhi
h the streamwise velo
ity 
hanges abruptly.� Large-s
ale motion in the outer layers (in
luding bulges, superlayers and deepvalleys of free-stream �uid).These highly intermittent events indu
e a strong variation in the unsteady Reynoldsstresses and originate a very large part of the produ
tion and dissipation of the tur-bulent kineti
 energy. These variations produ
e �u
tuations in the subgrid dissipa-tion that 
an rea
h 300 % of the average value and 
an make it 
hange sign, [66℄.The above features 
all for a spe
ial treatment in the framework of LES. Analyzesof DNS result [66℄ indi
ate that the maximum turbulent energy produ
tion is at
x+

2 ≈ 15, whi
h gives rise to a high ba
kward energy 
as
ade and asso
iated withthe sweeping type events. The forward 
as
ade is asso
iated with the eje
tions.In the outer regions of the boundary layer where the vis
ous e�e
ts no longerdominate the dynami
s, the energy 
as
ade me
hanism is predominant. Both 
as-
ade me
hanisms are asso
iated preferentially with the eje
tions.Modeling or resolving the near-wall behavior in LES?The problems of applying the LES framework to the �ow near walls are that theme
hanisms 
reating the turbulen
e, i.e. the driving me
hanisms, are asso
iatedwith �xed 
hara
teristi
 length s
ales on the average. Also, the turbulen
e pro-du
tion is is asso
iated with a ba
kward 
as
ade me
hanism in 
ertain regions ofthe boundary layer. These two fa
tors make the present subgrid models inoperativebe
ause they 
annot represent these driving me
hanisms. There are two approa
hesto this dilemma:� Resolving the near-wall dynami
s dire
tly. The subgrid models do not a

ountfor the turbulen
e produ
tion me
hanisms in the near-wall region. By turningo� the subgrid model in the near-wall region and using a su�
iently �neresolution the near-wall dynami
s are resolved. This is 
alled wall-resolvedLES, and is illustrated in Figure 4.1. The solid wall is represented by a no-slip
ondition. This impli
itly implies that the mean free path of the mole
ulesis small 
ompared to the 
hara
teristi
 s
ales of the motion, and that theses
ales are large 
ompared with the distan
e of the �rst grid point from thewall. In a
tual simulations, this is a
hieved by pla
ing the �rst grid point at
x+

2 ∈ [0, 1]. In [24, 67℄ a typi
al required resolution for boundary layers usingDNS/LES is reported: Arguing that the non-isotropi
 modes must be resolvedit is argued in [3℄ that number of degrees of freedom in spa
e for the solutions
ales as Re2
τ . This be
omes prohibitively expensive from a 
omputationalperspe
tive for high-Reynolds number �ows. In [46℄ (Paper VI), we haveexperimentally made investigations how to the turn o� the LES SGS-model
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Figure 4.1. No-slip type grid.DNS Wall-resolving LES LES with wall-model
∆x+

1 (streamwise) 10-15 20-50 100-600
∆x+

2 (wall-normal) 1 1 30-150
∆x+

2 (spanwise) 5 10-20 100-300No. of points in 0 < x+
2 < 10 3 3 -Table 4.1. Typi
al mesh size (in wall units) for DNS and LES for boundary layer�ow, [67℄.
ontribution 
lose to the wall. However these simulations were too unresolvedin the near-wall region, so that nothing 
on
lusive 
an be said.� Modeling the near-wall dynami
s. The inner region is a model representingthe dynami
s of the zone between the wall and the �rst grid point outsidethe wall, see Figure 4.2. This is a spe
ial subgrid model 
alled a wall-model.Sin
e, usually the �rst grid point is lo
ated at a distan
e greater than the
hara
teristi
 length s
ales of the modes existing in the modeled region, theno-slip 
ondition 
an no longer be used. The boundary 
ondition will applyto the values of the velo
ity 
omponents and/or their gradients, whi
h willbe provided by the wall-model. This approa
h makes it possible to pla
ethe �rst grid point in the logarithmi
 layer (in pra
ti
e x+

2 ∈ [20, 200]). Themain advantage is that the number of degrees of freedom in the simulationis greatly redu
ed, but sin
e part of the dynami
s is modeled, an additionalsour
e of error is also introdu
ed.
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Wall−modelFigure 4.2. Wall-model type grid.A wall-model for 
ompressible LESFor in
ompressible �ows there are numerous wall-models proposed for LES, see e.g.[66℄ for a 
omprehensive summary. In [55℄ a wall-model for the in
ompressible LESequations is presented. The method is based on a lo
al integration from the �rst
omputational grid point near the wall to the surfa
e. This approa
h does notrequire the use of an internal dis
retization of the boundary layer or the use ofan auxiliary solver. Therefore it 
an be implemented into an existing �ow solver.Below we present this wall-model adapted to 
ompressible �ow and the embeddedboundary method used in this thesis.We assume (for simpli
ity of presentation) that the tangential velo
ity is u1 andthat the normal dire
tion from the wall is x2. The wall-model is given as a solutionto
d

dx2

(

(µ + µT )
du1

dx2

)

= F, (4.6)where F 
an be the pressure gradient and/or 
onve
tive terms in the NS/LESequations.
µT (x2) = ρ(x2)L

2
m(x2)

∣
∣
∣
∣

∂u1

∂x2
(x2)

∣
∣
∣
∣
.The mixing length Lm is given by

Lm(x2) = κx2

(

1 − exp

(

−x+
2

26

)

,

)



33where κ = 0.42 is the von Karman 
onstant. The model is derived by integrating(4.6) in the wall-normal dire
tion to yield:
du+

dx+
2

=







2(1+F+x+

2
)

µI
µw

+

r

µ2
I

µ2
w

+4
ρI
ρw

L2
m(x+

2
)(1+F+x+

2
)

if 1 + F+x+
2 ≥ 0

2(1+F+x+

2
)

µI
µw

+

r

µ2
I

µ2
w
−4

ρI
ρw

L2
m(x+

2
)(1+F+x+

2
)

if 1 + F+x+
2 < 0,

(4.7)where the ·I -subs
ript denotes values at xI and ·w denotes values on the wall bound-ary and F+ = F µ
ρ2u3

τ
. The velo
ity pro�le is given by

u+
(
x+

2 (uτ ), F+(uτ )
)

=

∫ x+

2

0

du+

dξ
dξ.

ξ Γ

u II

u I

(α,β,γ)n=

(i,j)

(i+1,j+2)

(i+1,j+1)

∆

(i,j+3)

(i+1,j+3)(i,j+2)

(i,j+1)

Figure 4.3.In order to solve for the unknown fri
tion velo
ity uτ we have that x2 = ∆−ξΓ ⇒
x+

2 = (∆−ξΓ)uτ

µκ

G(uτ ) = uτu+
(
x+

2 (uτ ), F+(uτ )
)
− uI = 0, (4.8)



34 Chapter 4. LES and Sub-GridS
ale Modelswhere uI is the known velo
ity at xI . The relation (4.8) 
an be solved for numeri-
ally with the Se
ant method:
un+1

τ = un
τ − un

τ − un−1
τ

G(un
τ ) − G(un−1

τ )
G(un

τ ).This of 
ourse needs two initial guesses to work.The de�nition of fri
tion velo
ity is:
uτ =

√
√
√
√

µw

∣
∣
∣

∂u
∂x2

∣
∣
∣
x2=0

ρwOn
e the fri
tion velo
ity is known, we get a Neumann boundary 
ondition for thetangential velo
ity from
(

∂u

∂x2

)

x2=0

=
ρwu2

τ

µw
(4.9)where the uτ is the known fri
tion velo
ity. After this the system needs to betransformed ba
k to the original 
oordinates.In the embedded boundary te
hnique the boundary 
an interse
t the grid inan arbitrary way. Spe
ially there will be 
omputational points really 
lose to theboundary, whi
h are not 
onsidered boundary points. This means that we wish toinvestigate the e�e
t of the wall boundary 
ondition when x+

2 → 0. Taking thelimit shows that there is no uτ dependen
e on du+

dx+

2

, whi
h means that for smallenough x+
2 and arbitrary uI there is no parameter to be solved for, and hen
e thepro
edure breaks down. This means that we are in the vis
ous sublayer in theboundary layer and we 
an swit
h into using the 
ondition

u+ = x+
2instead, whi
h is used to get uτ = µκuI

∆−ξΓ
.CommentOne should note that the above boundary 
ondition is not to be used for the
onve
tive part of the operator, but rather only to the vis
ous operator. In e�e
twe have performed a splitting of the operators. The original equations are splitfrom

∂tu + ∂xi
(f(u)) + ∂xi

(fv(u)) = 0 with no-slip 
ondition on velo
ity.into
∂tu + ∂xi

(f(u)) = 0 with slip 
ondition on velo
ity i.e. ~u · ~n = 0

∂xi
(fv(u)) = 0 with Neumann 
ondition (4.9)on tangential velo
ities.



Chapter 5A Cartesian Embedded BoundaryMethod for Compressible FlowThis 
hapter presents the numeri
al methods used in this thesis and des
ribes twoCartesian Embedded boundary methods for the 
ompressible Navier-Stokes/LESequations; the Kreiss/Petersson (KP) [44, 45, 43℄ method and the Sj�¶green/Petersson(SP) [70, 60℄ method. The presentation will be done for the two dimensional 
ase,to simplify notation. The methods have been generalized to three spa
e dimensionsand are des
ribed in [49℄ (Paper IV). We also limit this des
ription to the KP3method, but we have investigated KP4 and KP5, whi
h are higher order boundarypro
edures, but these are not des
ribed here.5.1 FOAMs 
ompressible solver suiteThe following se
tion is in
luded for 
ompleteness of des
ription of the methodsused during this do
toral thesis work. The methods in FOAM for 
ompressible�ows are impli
it up to se
ond order a

urate methods with a Courant-numberrestri
tion of ≈ 0.3 (determined experimentally).Lately the time-integrator in FOAM has been re-implemented to using Runge-Kutta. Results using this solver is presented in [6℄ for the forward fa
ing stepproblem [80℄ and simple Burgers equation.Re
ently there has been work done in the dire
tion of well-known methods thatwork [23℄ for hyperboli
 
onservation laws, showing remarkable improvement inboth a

ura
y and e�e
tivity 
ompared to previously existing FOAM implementa-tions for 
ompressible �ow.The solvers used in this theses have produ
ed good results for axisymmetri
base�ow [22℄ (Paper II), when 
ompared to experimental data [32℄, but nothing
on
lusive 
ould be said regarding 
hoi
e of subgrid model or numeri
al s
heme,sin
e results are nearly indistinguishable in [22℄ (Paper II) and [48℄ ( Paper III).35



36 Chapter 5. A Cartesian Embedded Boundary Method for Compressible FlowThe 
on
lusion drawn was that FOAM, at least in its former status, was a too dullinstrument to assess the question of how good LES really is and/or what subgridmodel strategy to use.5.2 Des
ription of the methodsBelow we des
ribe the internal dis
retization s
heme used to approximate solutionsto the Navier-Stokes/LES equations.5.2.1 Solving the Riemann problemIn the one-dimensional 
ase, the parti
ular problem when initial data u0 is pie
ewise
onstant with a single jump dis
ontinuity at some point x0,
u0(x) =

{
uL, if x < x0

uR, if x > x0
(5.1)is 
alled the Riemann problem. The solution of this problem has a 
entral role in the
onstru
tion of numeri
al methods for hyperboli
 
onservation laws. For hyperboli
problems the solution to the Riemann problem is typi
ally a similarity solution, afun
tion of x/t alone, and 
onsists of a �nite set of waves that propagate away from

x0 with 
onstant wave speeds. For linear hyperboli
 systems, ut + Aux = 0, theRiemann problem is easily solved in terms of the eigenvalues and eigenve
tors ofthe matrix A, see e.g. [51℄. This simple stru
ture also holds for nonlinear systemsof equations and the exa
t solution (or arbitrarily good approximations) to theRiemann problem 
an be 
onstru
ted, des
ribed below.Numeri
al methods are usually derived using Taylor series to establish appro-priate expressions for the values of the dependent variables at the next time level.Di�eren
es in the spatial dire
tion are also based upon the requirement of hav-ing 
ertain a

ura
y using a series expansion. Taylor-series work very well when
onditions for 
onvergen
e of the series are met. In fa
t, the series will 
onvergeeverywhere, provided the fun
tion that is approximated is su�
iently smooth. Inthe 
ase of a �nite-di�eren
e method, we assume that a series expansion is anappropriate means of obtaining a di�eren
e approximation and the fun
tions are
ontinuous and have 
ontinuous derivatives at least through the order of the dif-feren
e approximation. This is 
ertainly not the 
ase when sho
k waves (in theinvis
id 
ase or unresolved sharp gradients in the vis
ous 
ase) or other dis
ontinu-ities are present. Godunov [25℄ proposed a solution to this problem by avoiding thedi�erentiability requirement by using a �nite-volume approximation in solving the
onservation equations and evaluating the �ux terms at the 
ell interfa
es by thesolution of a Riemann problem. The state variables are assumed to be 
onstant in
ontrol volumes, whi
h is su�
ient for �rst order s
hemes.



5.2. Des
ription of the methods 37The Euler equations in 1D are:
ρt + (ρu)x = 0 (5.2)

(ρu)t + (ρu2 + p(ρ, eI)) = 0 (5.3)
(

ρ

(

eI +
1

2
u2

))

t

+

(

ρ

(

eI +
1

2
u2

)

u + pu

)

x

= 0. (5.4)The velo
ity u 
an take any real values, but ρ and eI must be positive. The followingdes
ription is made easier in the non-
onservative form:
ρt + uρx + ρux = 0 (5.5)

ut + uux + ρ−1px = 0 (5.6)
(eI)t + u(eI)x + ρ−1pux = 0. (5.7)The matrix of this system is

A = uI3×3 +





0 ρ 0
ρ−1pρ 0 ρ−1peI

0 ρ−1p 0



 .The eigenvalues are solutions to (λ−u)3 = (λ−u)(pρ +ρ−2ppeI
). In the form (5.5)we see that the system has a singularity all over the plane ρ = 0. This 
orresponds tothe fa
t that, when ρ = 0, the 
onservative variables (ρ, ρu, e) are not independentof ea
h other, sin
e they are all zero together, resulting in a singular point (0, 0, 0).The density being zero on an interval expresses the fa
t that this interval is free ofgas. We 
annot ex
lude this state in the solution of the Riemann problem, whi
hintrodu
es an indetermina
y in the variables whi
h des
ribe the �ow. It is 
learthat va
uum has zero density, energy and pressure, but on the other hand velo
ityis not de�ned (′0/0′), whi
h prevents giving sense to the energy �ux. This issue isnot pursued further here and we shall assume that ρ > 0.The system is hyperboli
 if and only if pρ + ρ−2ppeI

> 0, whi
h we in thefollowing will assume.The eigenve
tors and eigenvalues of A are expressed as fun
tions of the speedof sound c =
√

pρ + ρ−2ppeI
:

λ1 = u − c, λ2 = u, λ3 = u + c,

r1 =





−ρ
c

−ρ−1p



 , r2 =





peI

0
−pρ



 , r3 =





ρ
c

ρ−1p



 .We have that dλj · rj = c + ρ−2p(ρc)eI
= 1

2 (γ + 1)c > 0, j = 1, 3, i.e. the �rst andthird �elds are of the same nature and genuinely non-linear. The speed of sound
c = γ(γ − 1)eI = γp

ρ . The se
ond �eld is always linearily degenerate dλ2 · r2 = 0.The Riemann-invariants for the 1-waves are (S, u− 2c
γ−1), for the 2-waves (u, p) andfor the 3-waves (S, u + 2c

γ−1).



38 Chapter 5. A Cartesian Embedded Boundary Method for Compressible FlowSolution to the Riemann problemGiven a state to the left (pL, uL, ρL) and a state to the right (PR, uR, ρR) thesolution to the Riemann problem is to seek two intermediate states, indi
ated bysubs
ripts 1 and 2, and three waves linking these four states. The 
entral wave beinga 
onta
t dis
ontinuity (sin
e 2-wave is linearily degenerate), we have p∗ = p1 = p2and u∗ = u1 = u2. There is a 1-wave from (pL, uL, ρL) to (p∗, u∗, ρ1) and a 3-wavefrom (p∗, u∗, ρ2) to (pR, uR, ρR). This results in
ρ1 = σ(p∗; pL, ρL), (5.8)
u∗ = uL − τ(p∗; pL, ρL), (5.9)
ρ2 = σ(p∗; pR, ρR), (5.10)
u∗ = uR + τ(p∗; pR, ρR), (5.11)where

τ(p∗; p−, ρ−) =







(p∗ − p−)
√

ρ−

2 ((γ + 1)p∗ − (γ − 1)p−) if p∗ > p−,

2c−
γ−1

((
p∗

p−

) γ−1

2γ − 1

) if p∗ ≤ p−.We 
an
el u∗ from the 
al
ulations by observing
uL − uR = τ(p∗; pL, ρL) + τ(p∗; pR, ρR),whi
h is a s
alar non-linear equation for the unknown p∗. On
e this is solved, (5.8)and (5.10) yield values of ρ1 and ρ2. Finally u∗ is given by either of (5.9) or (5.11).The σ fun
tion is not presented due to ease of notation.The Godunov methodThe solution to the Riemann is used in the �ux 
omputation in the Godunovmethod. In the method the Riemann problem is formulated at all 
ell interfa
es

(xi+1/2) and integrated in spa
e and time [xi, xi+1]× [tn, tn + ∆tn], over whi
h the�ux is 
omputed.CommentSolving the Riemann problem is 
omputationally expensive, espe
ially in manydimensions (stri
tly speaking it is di�
ult to generalize the 
on
ept of Riemannproblems from one dimension; we mean dimension-by-dimension splitted Riemannproblems). Also the exa
t solution of the Riemann problem is seldom needed (oneexample is when 
omputing very strong sho
k waves). Therefore approximate Rie-mann solvers were developed.



5.2. Des
ription of the methods 395.2.2 Roe Approximate Riemann Solver For the Euler equationsThe Roe method [65℄ 
an be seen as a generalization of the upwind s
heme tosystems of equations. For a s
alar 
onservation law (ut + f(u)x = 0) the numeri
al�ux would be
hn

j+1/2 =
1

2
(fj+1 + fj) −

1

2
|aj+1/2|

(
un

j+1 − un
j

)
.For systems (ut + F(u)x = 0) the lo
al wave speed(s)

aj+1/2 =

{
f(uj+1)−f(uj)

uj+1−uj
, uj 6= uj+1,

f ′(uj), uj = uj+1,
(5.12)is generalized using the eigenvalues of a Ja
obian matrix. A matrix

Aj+1/2 = A(uj ,uj+1),with A(u,u) = A(u) = ∂F/∂u is de�ned, and the s
heme be
omes
hn

j+1 =
1

2
(Fj+1 + Fj) −

1

2
|Aj+1/2|

(
un

j+1 − un
j

)
,where the absolute value of the matrix is de�ned as

|A| = R|Λ|R−1, |Λ| = DAG(|λ1|, |λ2|, . . . , |λd|),for a system with d equations. Here λj are the eigenvalues and R is the ma-trix with the eigenve
tors as 
olumns. This 
an be viewed upon as a lo
al di-agonalization of the system. The matrix 
an be 
omputed in many ways e.g.
Aj+1/2 = A

(
1
2 (uj + uj+1)

) or Aj+1/2 = 1
2 (A(uj) + A(uj+1)), but Roe [65℄ re-quired that it should satisfy the following 
ondition

F(uj+1) − F(uj) = Aj+1/2(uj+1 − uj),whi
h is a generalization of (5.12) in the s
alar 
ase. This means that the Rankine-Hugoniot 
onditions will be 
orre
t i.e. sho
ks are treated 
orre
tly, but rarefa
tionwaves are not seen. This issue will be addressed later in the se
tion 
onsideringentropy �xes. The Euler equations are obtained by letting Re → ∞ in (3.2), i.e.
µ = κ = 0 in (3.1). For the Euler equations in one dimension (d = 3) with theequation of state

e =
p

γ − 1
+

ρ

2
(uiui) ,the Roe matrix is obtained by evaluation of the Ja
obian at a weighted averagestate û:

Aj+1/2 = A(û) = A(θũj + (1 − θ)ũj+1), θ =

√
ρj√

ρj +
√

ρj+1
,



40 Chapter 5. A Cartesian Embedded Boundary Method for Compressible Flowwhere ũ = [ρ, u, h]T , where h = e+p
ρ is the enthalpy. The numeri
al �ux for theRoe method for the Euler equations may be written as

hj+1/2 =
1

2

(

(Fj+1 − Fj −
3∑

k=1

αk,j+1/2|λk,j+1/2|rk,j+1/2),

)where αk,j+1/2 are the wave strengths obtained by solving Rα = uj+1 − uj . Thewave speeds, i.e., the eigenvalues of A are
λ̂1 = û − ĉ, λ̂2 = û, λ̂3 = û + ĉ,where û is the normal velo
ity and ĉ is the speed of sound.CommentThe di�eren
e s
heme given by Roe is found by solving the linearized equations.For some 
hoi
es of initial data the s
heme be
omes unstable, even though asolution exists, i.e. 
ertain Riemann problems are not linearizable [18℄. Given

uL = (ρ,−rhou, eI) and uR = (ρ, rhou, eI) three 
ases 
an be distinguished:� 4γρeI

3γ−1 − ρ2u2 ≤ 0 va
uum o

urs in the solution.� 4γρeI

3γ−1 − ρ2u2 > 0 and (γ − 1)ρeI − ρ2u2 ≤ 0, the problem has a solution withpositive density and internal energy, but is not linearizable.� 4γρeI

3γ−1 −ρ2u2 > 0, the problem has a solution with positive density and internalenergy and is linearizable.The above shows that for 
ertain spe
ial 
ases the approximate Riemann solversmight fail.5.2.3 Arti�
ial vis
osity and entropy �xIn pra
ti
e, one 
annot use the wave speeds as given above; 
lose to regions where
û = 0, e.g. stagnation points, the linear eigenvalues λ̂2 approa
hes zero, andnear soni
 lines the non-linear eigenvalues λ̂1, λ̂3 approa
h zero. In these 
asesthe numeri
al �ux 
annot break up entropy violating sho
k waves into rarefa
tionwaves and an entropy �x is needed to produ
e physi
ally relevant solutions.Viewing this from another point of view and re
alling the similarity betweenthe upwind method and the Roe method, one says that a s
heme is Total Variation



5.2. Des
ription of the methods 41Diminishing or TVD (stri
tly a property governed by s
alar 
onservation laws),when
∞∑

i=−∞

|un+1
i+1 − un+1

i | ≤
∞∑

i=−∞

|un
i+1 − un

i | (5.13)is ful�lled. A s
heme with the numeri
al �ux fun
tion given in the vis
osity form
hj+1/2 = h(uj , uj+1) =

1

2

(
fi + fi+1 − λ−1Qj+1/2(uj+1 − uj),

)where λ = ∆x
∆t , is TVD if and only if

λ|aj+1/2| ≤ Qj+1/2 ≤ 1. (5.14)The Lax-Wendro� s
heme has Qj+1/2 = λ2aj+1/2 and is not TVD, the Lax-Friedri
hs s
heme has Qj+1/2 = 1, whi
h is the upper TVD-limit, and hen
e verydi�usive. The upwind s
heme has
Qj+1/2 = λ|aj+1/2|,whi
h is the lower-TVD in (5.14). The upwind s
heme does not satisfy the entropy
ondition, sin
e it does not 
ontain enough arti�
ial vis
osity to break expansionsho
ks into expansion waves. The sensitive points are the u-values for whi
h f ′(u) =

0, i.e., for points where the numeri
al vis
osity vanishes. It is possible to eliminatethis kind of entropy violation by simply modifying the vis
osity 
oe�
ient Qj+1/2 =
Q(λaj+1/2) near aj+1/2 = 0 so that it is positive. There are many possibilities of
hoosing the entropy �x, some are shown below in (5.15)

Q(x) =







(i)

{
x2

2ε + ε, for |x| < 2ε
|x|, else

(ii)
√

x2 + ε2, 0 < ε < 1
(iii) |x| + ε
(iv) max(|x|, ε)

(5.15)where ε is a parameter given by the user. The 
hoi
e of ε is problem dependent andexperien
e has shown that for a spe
i�
 problem when really �ne grids are used εneeds to be in
reased slightly 
ompared to the value used on a 
oarser grid. Forsteady state 
omputations when iterative solvers that make use of the Ja
obianof the solution are used (i) is preferably used (Harten entropy �x [30℄), sin
e itmakes the vis
osity 
oe�
ient a C1 fun
tion of its arguments. Disadvantages of themethods are (i) does not ve
torize, i.e. an if-then-else statement must be done inthe innermost loop, taking the square-root in (ii) is 
omputationally expensive, in
(iii) vis
osity is added everywhere (even where not needed) and (iv) is not C1. Inthe 
omputations made we have used (iv) be
ause it ve
torizes and we do not useany iterative solvers.



42 Chapter 5. A Cartesian Embedded Boundary Method for Compressible FlowArti�
ial vis
osity for systemsWe enfor
e entropy by having non-zero arti�
ial vis
osity. In the following a
hoi
e between using lo
al eigenvalues or using the maximum eigenvalue over allpoints/
ells 
an be made. In our 
omputations we have 
hosen to use lo
al eigen-values. The spe
tral radius of A is denoted ρ(A) = |u| + c. In our 
omputationswe use the entropy �x (iv) in (5.15), whi
h for the three-dimensional problem is
(λ̂d

1 = ûd − ĉ, ˆλd
2,3,4 = ûd, λ̂d

5 = ûd + ĉ) using lo
al eigenvalues
|λ̃d

1 | = max
{

|λ̂d
1|, εd

nΦd
n

}

,

|λ̃d
2,3,4| = max

{

|λ̂d
2,3,4|, εd

l Φ
d
l

}

, d = 1, 2, 3,

|λ̃d
5 | = max

{

|λ̂d
5|, εd

nΦd
n

}

,

(5.16)where εl and εn are parameters to be 
hosen by the user. The subs
ripts 'l' and 'n'denote linear and non-linear eigenvalues respe
tively. The Φl and Φn are fun
tionsof the absolute values of the eigenvalues of the �ux Ja
obians used to s
ale the
λ̃:s in (5.16) so that the CFL 
ondition is not violated. In our 
omputations thefollowing 
hoi
e was used:

Φd
l = Φd

n = |ud| + c. (5.17)Choi
e of εl and εn depend mainly on the grid (if grid is deformed, stret
hedet
.), the geometry (
orners, singularities, blu�-body et
.) and the type of �ow(supersoni
, hypersoni
 et
.).5.2.4 MUSCL s
hemeThe numeri
al �ux for the �rst order Roe method is
hn

j+1 = h(ui,ui+1) =
1

2
(Fj+1 + Fj) −

1

2
|Aj+1/2|

(
un

j+1 − un
j

)
.The �rst order s
heme is generalized to se
ond order by using limited pie
ewiselinear re
onstru
tion in the �ux:

hn
j+1 = h(ui +

1

2
si,ui+1 −

1

2
si+1), (5.18)where si are the slopes of the pie
ewise linear re
onstru
tion. The slopes willintrodu
e new extrema in the solution, violating the TVD property (5.13) andsome sort of limiting must be done using e.g. the minmod limiter:

si = minmod(∆+ui, ∆−ui) =

{
0 if ∆+ui∆−ui < 0
sign(∆+ui)min(∆+ui, ∆−ui) else, .The width of the numeri
al sten
il in
reases from three to �ve points.



5.2. Des
ription of the methods 435.2.5 Approximating the strain rate tensor in Navier-Stokes equa-tionsA �nite di�eren
e approximation of the spa
e derivatives in Navier-Stokes equations
an be written as
d

dt
ui1,i2,i3 +

d∑

s=1

his+1/2 − his−1/2

∆xs
=

d∑

s=1

(gxs
v )is+1/2 − (gxs

v )is−1/2

∆xsThe vis
ous �uxes (gx
v )i1−1/2,i2,i3 , (g

y
v)i1,i2−1/2,i3 , and (gz

v)i1,i2,i3−1/2 
ontain �rstderivatives. For example, the x-dire
tion vis
ous �uxes are, with the temporarynotation of half-integer subs
ripts, fim = fi+fi−1

2 ,
(gx

v )i1m,i2,i3 =









0
4µ
3 Dx

−ui1,i2,i3 −
2µi1m,i2,i3

3 (Dy
0vi1m,i2,i3 − Dz

0wi1m,i2,i3)
µi1m,i2,i3(D

y
0ui1m,i2,i3 + Dx

−vi1,i2,i3)
µi1m,i2,i3(D

z
0ui1m,i2,i3 + Dx

−wi1,i2,i3)
f5 + ki1m,i2,i3D

x
−Ti1,i2,i3









.where
f5 = ui1m,i2,i3(g

x
v,2)i1−1/2,i2,i3+vi1m,i2,i3(g

x
v,3)i1−1/2,i2,i3+wi1m,i2,i3(g

x
v,4)i1−1/2,i2,i3 ,This means that se
ond derivatives are approximated by standard �nite di�er-en
e formulas e.g.

uxx(xi1 , yi2 , zi3) = Dx
+Dx

−ui1,i2,i3+O(h2) =
ui1+1,i2,i3 − 2ui1,i2,i3 + ui1−1,i2,i3

h2
+O(h2)(5.19)and

uxy(xi1 , yi2 , zi3) = Dx
0Dy

0ui1,i2,i3 +O(h2) = Dx
+

Dy
0ui1,i2,i3 + Dy

0ui1−1,i2,i3

2
+O(h2).(5.20)5.2.6 Wavelet sensor for dete
ting singularities[72, 81℄ des
ribes an adaptive low-dissipation s
heme based on high-order 
entraldi�eren
es. It uses multi-resolution wavelet analysis to post-pro
ess the solutionafter ea
h time step to pinpoint where numeri
al dissipation needs to be added.Below we des
ribe the wavelet analysis te
hnique, sin
e it is useful in general todete
t dis
ontinuities/singularities in the solution and it is used in [49℄ (PaperIV) to 
ontrol the order of an interpolant in grid to grid interpolation, sin
e it is



44 Chapter 5. A Cartesian Embedded Boundary Method for Compressible Flowwell-known that high-order polynomial interpolation of non-smooth data gives riseto unwanted over- and undershoots.The te
hnique is based upon estimating the Hölder exponent α

|f(x) − P (x − x0)| ≤ C|x − x0|α. (5.21)of the dis
rete solution f(x). P (x) is a polynomial. For pre
ise mathemati
aldetails see e.g. [20℄.The estimated α is fed into a swit
h τ(α), whi
h de
ides if any a
tion needs tobe taken. In [72℄ several swit
hes are investigated and the following swit
h yieldssatisfa
tory results:
τ(α) =

{
1, if α ≤ α0 (take a
tion)
0, else, (5.22)where α0 is 
hosen to be 0.5.A DemonstrationBelow we demonstrate the need to dete
t where the solution is non-smooth in ap-pli
ation to grid-to-grid interpolation. In our example a jump dis
ontinuity is beingtransported from left to right, the two outermost grid point values on the embed-ded grid need interpolation from the underlying grid. When applying the higherorder interpolation routine with the dis
ontinuity is inside interpolation sten
il weobserve the well known over- and undershoots, see Figure 5.1. When using thewavelet-indi
ator, the order of the interpolant is lowered point-wise when τ = 1.This approa
h gives no over- or undershoots as shown in Figure 5.15.3 KP and SP embedded boundary methodsAmong the greatest 
hallenges of 
omputational �uid dynami
s is arguably thea

urate predi
tion of �ows in the vi
inity of 
omplex geometries. Traditionally,this problem is ta
kled by dis
retizing the governing equations on unstru
tured orstru
tured body-�tted 
urvilinear grids, 
ausing the geometri
 boundaries to 
oin-
ide with those of the 
omputational domain. The main advantage of these methodsis the relatively straight-forward implementation of boundary 
onditions. However,the di�
ulty of representing 
omplex geometries in the 
omputational domain isnow being transferred to generating adequate grids and keeping tra
k of neighbor-ing grid points (logisti
s problem) and merging simpler grid-blo
ks (
onne
tivityproblem). Furthermore, if moving boundaries are present, frequent regenerationand merging of grids will be ne
essary, weighing heavily on 
omputational 
ost andmaintenan
e of grid quality. In addition, highly distorted grids redu
e the a

ura
yof a numeri
al method. In fa
t, 
onstru
ting a high-order method for su
h gridsis extraordinarily di�
ult. These problems hamper the development of solutionalgorithms for �ows in 
omplex geometries.
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τ−wavelet indicator (d)Figure 5.1. The grid-grid interfa
e is lo
ated at x = 1. The two left-most �negrid point values need to be interpolated from the 
oarse grid. At lo
ations where
τ = 1, the order of interpolation is lowered. Noti
e the over- and undershoots of thehigh-order interpolant.



46 Chapter 5. A Cartesian Embedded Boundary Method for Compressible FlowThe approa
h presented here is a �xed Cartesian grid method. As a 
onse-quen
e, geometri
 boundaries 
an not always 
onform to 
omputational domainboundaries, thus forming embedded boundaries, whose presen
e has to be a

ountedfor in another way. Furthermore, boundary 
onditions at the embedded boundaryare not ne
essarily enfor
ed at grid points. The domain Ω is 
overed by a Carte-sian grid with step size h, where the grid points are lo
ated at (xi, yj) = (ih, jh),and the boundary Γ is allowed to 
ut through the grid in an arbitrary manner,see Figure 5.2. The use of Cartesian grids greatly simpli�es grid generation andimplementation of high-order methods1 The separation of the embedded bound-ary and the 
omputational grid removes the need for re-meshing strategies whendealing with moving boundaries. An appropriate Cartesian grid method also en-ables e�
ient 
ode parallelization by taking advantage of the stru
tured nature andtime-independen
e of the underlying grid.The obvious 
ompli
ation asso
iated with Cartesian grid methods is the imple-mentation of appropriate boundary 
onditions at embedded boundaries and theirsubsequent representation on the 
omputational grid. Below we des
ribe the ap-proa
h we have 
hosen. This is the main 
ontribution of this thesis.

Figure 5.2. The boundary is allowed to 
ut the grid in an arbitrary manner in theembedded boundary method.5.3.1 KP Embedded boundary methodThe KP embedded boundary method was originally developed for the se
ond orderwave equation [45, 43, 44℄. In the following we present how the method was extendedfor solving the 
ompressible Navier Stokes equations [49, 47, 46℄ ( Paper IV,V,VI).1High-order refers to the formal order of a

ura
y of the numeri
al s
heme without the presen
eof embedded boundaries.
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(i+1,j+3)(i,j+2)

(i,j+1)

Figure 5.3. KP embedded boundary method. The indi
es denote the domain ofdependen
e for the embedded boundary pro
edure for ghost point (i,j).
To evaluate the di�eren
ing operator asso
iated with Navier Stokes equations at allgrid points inside the 
omputational domain, we use ghost points �just� outside thedomain, see Figure 5.3. We 
onstru
t a Lagrange interpolation between three pointsalong the normal: (0, φi,j), (ξI , φI) and (ξII , φII) to aid in the approximation ofthe Diri
hlet boundary 
ondition. The φI and φII are approximated by Lagrangianinterpolation along grid lines yj+1 and yj+2. For the 
ase illustrated ξII = 2ξI =
∣
∣
∣

β
α

∣
∣
∣, where α and β are the x and y 
omponents of the normalized normal. Theseformulas hold when the angle θ between the x-axis and the normal satis�es θ ∈

[π/4, π/2]. In the KPmethod, [43℄, the expressions in the remaining three quadrantsare simply obtained by re�e
tions in index spa
e, leading to a total of 8 di�erent
ases to treat all possible dire
tions of the boundary in two spa
e dimensions.In three dimensions there are 24 di�erent 
ases. The author of this thesis hasin
luded four additional (in 2D) interpolation sten
ils to make the interpolationmore 
ontinuous when 
hanging sten
il, all sten
ils are shown in Figure 5.4. In 3Dthe number of interpolation sten
ils are in
reased to 38. For higher order a

urateboundary approximations more points have to be in
luded in the approximation.
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(a) (b) (
) (d) (e) (f) (g) (h) (i) (j) (k) (l)Figure 5.4. All di�erent interpolation sten
ils in 2D for the KP3 embedded bound-ary method. The ghost point is marked bla
k and the bounds of the normal isshown.We de�ne

Lhu ≡ g0(ξ)u0 + gI(ξ)uI + gII(ξ)uII (5.23)The boundary may interse
t the grid so that ξΓ is arbitrarily 
lose to ξI , i.e.,
g0(ξΓ) = (ξΓ−ξI)(ξΓ−ξII)

ξIξII

an be arbitrarily 
lose to zero. This is referred to asthe small-
ell sti�ness problem, due to the �nite volume analogy of 
utting 
ellsto arbitrarily small sizes, yielding an arbitrarily small 
ell a�e
ting the (∆t ∼

C∆x) CFL 
ondition see. Hen
e, if naive Lagrange interpolation would be used toapproximate the boundary 
ondition, the time-stepping would be
ome very sti�.An arti�
ial term is added to the Lagrange interpolant to mitigate the sti�ness
Bhφ(t) ≡ Lhφ(t) + η(φi,j − 2φI + φII) = gD(xΓ, yΓ, t), (5.24)where the 
onstant η > 0 and gD is the Diri
hlet value on the boundary. Thearti�
ial term is an undivided se
ond di�eren
e in the normal dire
tion, so it in�i
tsan O(h2) error in the boundary 
ondition approximation.[43℄ shows that the trun
ation error in the boundary 
ondition 
an os
illate wildlybetween 
onse
utive grid points along the boundary and 
an degrade the rate of
onvergen
e.The arti�
ial term η in the boundary 
ondition bounds the 
oe�
ient in frontof φi,j away from zero, sin
e

η ≤ g0(ξΓ) + η < 1 + η,and hen
e the small 
ell sti�ness problem is removed. The spe
trum of the one-dimensional 
onve
tion-di�usion equation has been estimated, to yield that theeigenvalue with the largest magnitude is independent of small 
ells near the bound-ary when η ≥ 0.25. For all our numeri
al 
omputations (using KP3) we have used
η = 0.25, whi
h works well in pra
ti
e. It is big enough to allow time steps in-dependent of the small 
ells near the boundary, and small enough to prevent thearti�
ial term from dominating the error in the numeri
al solution.The Neumann ProblemFor Neumann 
onditions, e.g. when there is an adiabati
 wall, the formulas ofthe previous se
tion 
hange somewhat. In [45℄ this pro
edure is des
ribed for the
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ond order wave equation and we present the major ideas from that paper here,sin
e they are identi
al to what we use. The Neumann 
ondition is
∂φ

∂n
= gN(x, y, t), (x, y) ∈ Γ, t > 0. (5.25)The Lagrange interpolant (without added arti�
ial error) is di�erentiated to yield ase
ond order approximation of the (outward) normal derivative. It is shown in [45℄that the Neumann problem does not su�er from the small 
ell sti�ness problem,sin
e g′0(ξ) = 2ξ−ξI−ξII

ξIξII
is bounded away from zero in ξ ∈ [0, ξI + ξII).5.3.2 SP Embedded boundary methodWhen dis
ontinuities are present in the solution, spe
ial 
are has to be taken tomake the boundary interpolation robust. The SP method is of lower a

ura
y,but more suited for dealing with sho
k waves, and is outlined in Figure 5.6. It usesmore values along the normal than the KP method, but the tangential interpolationis linear. When the normal has positive y-
omponent and the angle between thenormal and the x-axis is between π

4 and π
2 , the normal will always interse
t the gridline y = yj+1 between xi and xi+1. There are two di�erent 
ases when the normalinterse
ts the y = yj+2 grid line (between xi and xi+1 or between xi+1 and xi+2)and similarly three di�erent 
ases where the normal interse
ts the y = yj + 3 gridline. A quarter of all interpolation sten
ils for the SP method are shown in Figure5.5

(a) (b) (
) (d) (e) (f) (g) (h)Figure 5.5. A quarter of all di�erent interpolation sten
ils in 2D for the SP em-bedded boundary method. The ghost point is marked bla
k and the bounds of thenormal is shown.Denote the distan
e between the boundary and the ghost point by b and let thedistan
e between the ghost point and grid line y = yj+1 along the normal be ∆(see Fig 5.6). De�ne new points ub1 and ub2 pla
ed equidistantly along the normalby linear interpolation along the normal at distan
es b + ∆ and b + 2∆ from theghost point respe
tively,
ub1 =

b

∆
uII +

(

1 − b

∆

)

uI , ub2 =
b

∆
uIII +

(

1 − b

∆

)

uII .A limited boundary slope is de�ned,
sD := Sminmod (ub1 − gD, ub2 − ub1) ,
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Sminmod(x, y) =







x, if |x| < |y| and xy > 0,
y, if |y| < |x| and xy > 0,
0, otherwise (5.26)

is the well-known min-mod limiter. The Diri
hlet boundary 
ondition is approxi-mated by extrapolation using the limited boundary slope,
ui,j = gD − ξΓ

∆
sD. (5.27)The above 
onstru
tion is always well-de�ned, sin
e h ≤ ∆ ≤

√
dh, where d is thenumber of spa
e dimensions. The Neumann boundary 
ondition is imposed by:

ui,j =

(
4

3
− ξΓ

3∆

)

ub1 −
(

1

3
− ξΓ

3∆

)

ub2 −
2∆(2ξΓ + 1)

3
gN (5.28)Numeri
al boundary 
onditions are imposed using extrapolation

ui,j = uI − Sminmod (uIII − uII , uII − uI) . (5.29)The above numeri
al boundary 
ondition is equivalent to setting ∂2u
∂n2 = 0, if thesolution is smooth enough not to trigger the limiter. Otherwise it is equivalent tothe �rst order approximation of ∂u

∂n = 0.
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Figure 5.6. SP embedded boundary method. The indi
es denote the domain ofdependen
e for the embedded boundary pro
edure for ghost point (i,j).5.3.3 CommentsFor parallel exe
ution spe
ial 
are needs to be taken for the ghost points whoseinterpolation sten
ils extend outside the lo
al pro
essor's domain. For obje
ts thatextend outside the grid, then alternatively the interpolation sten
il is made smaller,so that it will �t inside the grid, or values from an underlying 
oarser grid areused. If the obje
t extends outside the 
omputational domain and values 
annotbe retrieved from any grid, then the assignment of ghost point values 
an use theexterior boundary 
ondition. This has however not been implemented or tested.5.3.4 Treatment of 
orners and thin bodiesSharp 
orners demand spe
ial treatment. This approa
h generalizes to thin bodies,i.e. embedded obje
ts that are only one grid point wide in some dire
tion.For ghost-points with more than one normal to the surfa
e, we overload l so-lution values um, m = 1, . . . , l, ea
h asso
iated with a unique surfa
e normal
nm 6= nn, m 6= n. Ea
h um is updated using the KP method as des
ribed ine.g. [49℄ ( Paper IV).



52 Chapter 5. A Cartesian Embedded Boundary Method for Compressible FlowThe di�eren
e sten
il uses a value asso
iated with the 
orre
t surfa
e normalwith the dire
tion of the using point.There are interior points where asso
iated surfa
e normals are not well-de�ned.For example, the di�eren
e sten
il for point xΓ uses xi,j,k see Figure 5.7. We 
anasso
iate two boundary values to xi,j,k: u1 and u2, and use a weighted average of
u1 and u2.A di�eren
e sten
il at xΓ, whi
h uses xi,j,k whi
h, in here, does not have aunique normal, performs averaging:

uΓ
i,j,k =

d1

d1 + d2 + . . . + dl
u1 +

d2

d1 + d2 + . . . + dl
u2 + . . .+

dl

d1 + d2 + . . . + dl
ul,(5.30)where dm = max ((xΓ − xi,j,k) · nm, 0), m = 1, 2, . . . , l. The averaging is onlyperformed if two or more dm > 0, i.e. the point is in the averaging zone, see Figure5.7.
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X i,j−1,kFigure 5.7. Corner points are averaged: l = 2.The average (5.30) is a 
onvex 
ombination of the ghost-point values um. Notethat the above pro
edure 
an be used for thin bodies, sin
e the xi,j,k:s asso
iatedwith the 'ba
kside' surfa
e will have dm < 0. The values from point xi,j−1,k inFigure 5.7 are never averaged. In the 
ase of a '
on
ave' 
orner we average thevalues of the nearby ghost points, see Figure 5.8
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Figure 5.8. The bla
k ghost point does not have a normal asso
iated with anysurfa
e, but its value is needed in the dis
retization. The bla
k ghost point is assignedthe average value of the two white ghost points.5.3.5 Higher Order of A

ura
yIn general, higher-order methods are better than lower order methods. The higherorder methods 
an only yield better answers for s
ale lengths that are longer thana few 
ells. Interpolation, no matter how high the order, also 
annot reprodu
eunresolved variations o

urring within a 
omputational 
ell. This is a fundamentallimitation set by the resolution of the representation. It is independent of the orderof a

ura
y, type of expansion, and algorithms used.The most obvious way to in
rease the order of a

ura
y for setting boundary
onditions is to involve more points in the interpolation formulas. High-order poly-nomial interpolation assumes that the solution is smooth and if it is not smoothenough, unwanted os
illations may be introdu
ed. The above interpolation methodsex
ept possibly the SP method are not data driven, in the sense that the interpola-tion sten
il is �xed. The SP method 
hooses a limited slope to the linear interpola-tion, whi
h is data-driven. Future resear
h should investigate whether data drivenhigher-order interpolation su
h as Essentially Non-Os
illatory/Weighted EssentiallyNon-Os
illatory (ENO/WENO) type interpolation e.g. [1℄ 
ould be used to set theboundary 
onditions. Alternatively, regions of non-smoothness 
an be dete
ted us-ing wavelets to 
ompute the Hölder exponent, and the interpolating polynomial 
anbe adjusted a

ording to the (non-)smoothness of the solution. In [49℄ (Paper IV)wavelets are used to 
ontrol the degree of an interpolating polynomial in grid/gridinterpolation, but it 
an be used for the sele
tion of interpolation sten
il for theembedded boundary also. The only di�eren
e is that one-sided approximationsmust be used when 
omputing the Hölder exponent near the boundary.
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Chapter 6Computational resultsThis 
hapter summarizes the 
omputational results from Papers I-VI.6.1 Large Eddy Simulations of a Turbulent Jet Dif-fusion Flame using FOAM (Paper I)In this paper a 
omparison between LES and new type of experimental measurementte
hnique is made. The experiment/simulation is of a non-premixed propane jetwith Reynolds number 10000 into ambient air. The LES 
al
ulations are performedwith a presumed β-PDF for a mixture fra
tion. As a SGS-model for the �ow wehave used the Smagorinsky and the One Equation Eddy Vis
osity Model.The 
omparison is made at intermediate stage by examining s
hlieren images,interferograms and phase maps 
onsrtu
ted from the LES and experimental datarespe
tively. This provides a novel approa
h for 
omparing simulations and ex-periments. Reasonable good agreement between measured and predi
ted �ame
hara
teristi
s and properties were found, although the details near the nozzle arenot su�
iently a

urate. The burning o

urs primarily at the outer edges of thejet shear layer in the 
onvoluted interfa
e between rea
tants and produ
ts wheremost of the di�usive mixing takes pla
e.6.2 Large Eddy Simulation of Supersoni
 Axisym-metri
 Base�ow using FOAM (Paper II)The paper des
ribes LES of a ro
kets afterbody with and without mass inje
tion.Several sub-grid models and grids are used to 
on
lude that LES/MILES 
an beused with su

ess for this type of problem, sin
e the agreement with experimentaldata is good. It is shown that the results are independent of subgrid model makingit impossible to distinguish numeri
al errors from model errors.55



56 Chapter 6. Computational resultsSimulations with di�erent bleed rates are performed and 
omparison of Cp at thebase are made with experimental data. Cp is however systemati
ally overpredi
tedby 5%. A potential sour
e of error may be underresolution and/or the di�eren
e inapproa
h boundary-layer thi
kness between the experiments and the simulations;a thi
k boundary-layer is thought to have a base pressure enhan
ing e�e
t, similarto that of base-bleed.6.3 Large Eddy Simulation of a Turbulent Non-premixedFlame using FOAM (Paper III)This paper 
onsiders a rea
tive and a non-rea
tive jet. For the rea
tive jet, we
ompare two di�erent approa
hes to 
ombustion modeling: the 
onserved s
alar(mixture fra
tion) approa
h together with a presumed PDF and a single step �niterate 
hemistry model also known as Arrhenius type model. For the non-rea
ting
ase very good qualitative and quantitative agreement between predi
tions andmeasure ment data are obtained. For the LES 
al
ulations we �nd virtually nodi�eren
es in results obtained using the di�erent subgrid models. Grid re�nementdoes not a�e
t any of the investigated �rst and se
ond order statisti
al pro�les, butprovides a more detailed pi
ture of the �uid dynami
s. For the rea
ting 
ase the�ow �eld is reasonably well predi
ted, independent of subgrid models. Re�ning thegrid in
reases the resolution of the �ow variables, but does not a�e
t the statisti
almoments investigated here. The simulation of 
ombustion, however, is sensitiveto whi
h model is used. The simple one-step irreversible one-step global rea
tionmea
hnism used in this study is too simple to des
ribe all the 
ouplings betweenthe �uid dynami
s and the 
hemistry.6.4 2D Supersoni
 �ow around a 
ylinder (PaperIV)In [49℄ ( Paper IV), the ability of the embedded boundary te
hnique to resolveboundary layers is investigated by 
omputing skin-fri
tion pro�les along the surfa
esof the embedded obje
ts. The a

ura
y is assesed by 
omparing the 
omputed skin-fri
tion pro�les with those obtained by a body �tted dis
retization with the solverdeveloped in [81℄ for the 
ompressible MHD equations with magneti
 �elds set tozero.For low Reynolds numbers one 
an resolve the �ow. We measure 
onvergen
eby Cf , Cp and temperature distributions on the embedded surfa
e (whi
h may beused to solve for the temperature distribution inside the embedded body). The CPand Cf distributions are important, sin
e they di
tate what aerodynami
 for
es F
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Figure 6.1. Two dimensional 
omputations of Ma
h 3 �ow past a 
ylinder. Velo
itymagnitude 
ontours. Results from the KP method.a
t upon the body by:
F =

∫∫

dF = −
∫∫

pn
︸︷︷︸

≈Cp

dS +

∫∫

τ
︸︷︷︸

≈Cf

tdS, (6.1)where n and t are the normal and tangential ve
tors respe
tively.We here 
ompute supersoni
 �ow around a 
ylinder with radius 0.5 with Ma
hnumber 3 and Reynolds numbers 500 in the two dimensional domain (x, y) ∈
[−10, 10] × [−5, 5]. The 
enter of the 
ylinder is lo
ated at (−1, 0). These sim-ulations are time a

urate, and resolved in time and spa
e. As initial data, weimpose free stream 
onditions in the entire domain. The dis
retization on theCartesian grid is e�
ient be
ause it has a simpler memory a

ess pattern than anunstru
tured method and requires less metri
 information (and thereby less mem-ory a

esses and less arithmeti
 operations) than an approximation on a 
urvilineargrid. In fa
t the grid is never used in the 
omputation.The 
omputations was run until steady-state. In the 
omputations the timestephad to be restri
ted by the stability requirement of the vis
ous operator. We takethis as an indi
ation that the �ow is resolved.6.4.1 Des
ription of the body �tted solverThe domain is dis
retized by the overset grid 
on�guration displayed in Fig. 6.2 forthe 
ylindri
al �ow problem. There are four grids, a base grid that 
overs the entiredomain, a 
urved grid around the bow sho
k, a �ne polar grid near the 
ylindersurfa
e, and a �ne grid that 
overs the wake region. We used the overset gridgenerator X
og [63℄ to generate the grids and the interpolation information.We dis
retized the Navier-Stokes equations by a sixth order a

urate �nite dif-feren
e s
heme with summation-by-parts boundary modi�
ation of the di�eren
eoperators on all 
omponent grids ex
ept the bow sho
k grid, where we used a TVD
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Figure 6.2. Overset grid domains used for 
omputations with body �tted grids.type di�eren
e s
heme. These are standard �nite di�eren
e methods, for detailsabout the s
heme and the 
ode see [81, 71℄. The solution was time mar
hed tosteady state, �rst with a TVD s
heme on all grids, and later when the solution isfully developed, with the sixth order method on three of the grids, as des
ribedabove.Interesting questions about overall a

ura
y and error propagation from the bowsho
k are outside the s
ope of this work. However, it was observed in [81℄ that thea
tual grid 
onvergen
e rate at the body boundary is 
lose to 2nd order.6.4.2 ResultsIn Fig. 6.6 we have 
olle
ted the Cf 
urves from the �nest grids in Figs. 6.3�6.5. The body �tted method and the KP embedded method give results thatare indistinguishable in the plot. We 
on
lude that the KP embedded boundaryapproa
h gives more a

urate results than the SP embedded boundary method, andfurthermore that the a

ura
y of the KP embedded boundary method is 
omparableto the a

ura
y of the body �tted method on the medium and �ne resolution grids.On the 
oarsest grid, Figs. 6.3 and 6.5 show that the body �tted method is morea

urate.It is not unexpe
ted that the KP method is more a

urate than the SP method,be
ause the SP method swit
hes between a �rst and se
ond order a

urate bound-ary 
ondition, whereas the KP method is always of high formal a

ura
y. TheSP method uses limiters to handle sho
k waves, but the KP method uses 
en-tered interpolation sten
ils. Nevertheless, the KP method gave solutions that werefree from unphysi
al os
illations, sin
e a resolved boundary layer does not 
ontaindis
ontinuities.The formal order of a

ura
y is very important as shown in Figure 6.7, whi
hshows results from the 
omputation using the �rst order extrapolation of the slopes
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Figure 6.3. Cf along the upper half of the 
ylinder 
omputed with the KP embed-ded boundary method for Ma
h number 3 and Reynolds number 500.
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Figure 6.4. Cf along the upper half of the 
ylinder 
omputed with the SP embeddedboundary method for Ma
h number 3 and Reynolds number 500.
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Figure 6.5. Cf along the upper half of the 
ylinder 
omputed with the body �ttedmethod for Ma
h number 3 and Reynolds number 500.



60 Chapter 6. Computational results

−1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07  
 Comparison of methods. Second order extrapolation

 

KPGODU
SPGODU
D06 BODY FITTED

Figure 6.6. Cf along the 
ylinder surfa
e with the KP embedded boundary method,the SP embedded boundary method, and the body �tted method. Ma
h number 3,Reynolds number 500. The �nest grid size is h = 0.0017007. Using se
ond orderextrapolation of the slopes in the Godunov �uxes.in (5.18)
sibp,j,k = sibp±1,j,k (6.2)instead of the se
ond order extrapolation (results shown in Figure 6.6)
sibp,j,k = 2sibp±1,j,k − sigp±2,j,k. (6.3)We 
on
lude that when the physi
al vis
osity is not resolved, whi
h is the 
asefor simulations using the 
oarse mesh then the skin fri
tion 
annot be expe
ted tobe a

urate raising the need for lo
al grid re�nement.It is well-known that for atta
hed boundary layers, one obtains good resolutionby stret
hing the grid towards the body. The 
oarser resolution in the tangentialdire
tion saves 
omputational work. The ability to 
oarsen the grid in the dire
tiontangential to the body is 
learly absent in the embedded boundary method. We
on
lude that for atta
hed laminar boundary layers, this feature makes the body�tted approximation 
onsiderably more e�
ient. However, when resolution is equalin both dire
tions, Fig. 6.6 shows that the embedded boundary method gives re-sults of similar quality as with the body �tted method. Equal resolution in alldire
tion is needed in dire
t simulation of turbulent separating �ows. Furthermore,with 
ompli
ated geometries it might not be known a priori at whi
h lo
ations theboundary layer is atta
hed and therefore it would not be possible take advantageof body �tted stret
hed grids.The temperature on the boundaryThe adiabati
 wall 
ondition imposes ∂T

∂n = 0. We evaluate the a

ura
y of theNeumann boundary 
ondition by plotting the temperature on the surfa
e. Fig. 6.8
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Figure 6.7. Cf along the 
ylinder surfa
e with the KP embedded boundary method,the SP embedded boundary method, and the body �tted method. Ma
h number 3,Reynolds number 500. The �nest grid size is h = 0.0017007. First order extrapola-tion (6.2).shows the wall temperature obtained with the KP method and Fig. 6.9 displays thewall temperature obtained with the SP method. Similarly to the Cf plots, the KPmethod appears to be more a

urate than the SP method.6.5 Embedded Boundaries and RoughnessThe spe
i�
 errors of the embedded boundary method are assessed by 
omparingtwo almost identi
al simulations: one grid aligned and one 'tilted' simulation, seeFigure 6.10.When the �ow is unresolved, typi
ally for high Reynolds numbers, the trun
a-tion errors from the EB method 
an be seen as a
ting e�e
tively as a rough wall.This 
an be seen by a 're
onstru
tion' resembling a �nite di�eren
e operator of theboundary from the solution based on the tangential velo
ity. We �nd θ su
h that
θughostPoint + (1 − θ)uFirstInteriorPoint = 0, (6.4)and use the θ to evaluate the lo
ation of the 'zero'-
ontour

~xΓEff
= θ~xghostPoint + (1 − θ)~xFirstInteriorPoint,The deviation from the true boundary is 
alled protrusion and its height is measuredas k = min~x∈Γ |~xΓEff

− ~xΓ|.From Figure 6.12 the following observations are made:� The protrusion height k = C · h,� the fri
tion velo
ity uτ ∼ constant in
reases with �ner mesh,
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Figure 6.8. Temperature on the boundary using the KP embedded boundarymethod. Ma
h number 3, Reynolds number 500.
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Figure 6.9. Temperature on the boundary using the SP embedded boundarymethod. Ma
h number 3, Reynolds number 500.
(a) 0o (b) 20oFigure 6.10. An illustration of the experiment with di�erent grid alignments.
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(d) Cp distribution.Figure 6.11. The density for hmin = 1.50754 · 10−3Rea = 50.
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(d) h=0.025253Figure 6.12. The protrusion height estimated using (6.4) together with the fri
tionvelo
ity uτ . The verti
al bar illustrates the grid size h.



6.5. Embedded Boundaries and Roughness 65� there exists 
orrelation between uτ and k.In 
ases where protrusions are of size δlaminar they are all 
ontained in thelaminar sublayer, i.e. if k < δlaminar, the wall may be 
onsidered hydrauli
allysmooth [69℄. We have δlaminar ∼ C · ν/uτ . The dimensionless roughness fa
tor
k/δlaminar ∼ kuτ/ν, a roughness Reynolds number Rek based on the protrusionsize and fri
tion velo
ity, is a good measure for the relative roughness.Cir
ular pipes 
overed with sand of a de�nite grain size, ks, glued on the wallhave been used in experiments to determine three regimes of Reks

[69℄:1. Hydrauli
ally smooth: The size of the roughness is so small that all protru-sions are 
ontained within the laminar sub-layer, Reks
∈ [0, 5],2. Transition regime: Protrusions extend partly outside the laminar sub-layerand additionally when 
omparing to smooth pipes there are mainly e�e
ts onthe resistan
e from the protrusions in the boundary layer, Reks

∈ [5, 70].3. Completely rough regime: All protrusions rea
h outside the laminar sub-layerand the largest part of the resistan
e to �ow is due to form drag whi
h a
tson them, Reks
∈ [70,∞).The 
ondition for hydrauli
al smoothness is also valid for �at plates at zero in
iden
e[69℄. Assuming that k ≈ equivalent grainsize ks, we believe that our estimate 
anbe used e.g. as an indi
ator in a grid adaptation algorithm. Below, see Figure6.13, we have 
omputed Rek based upon a
tual simulation data. It shows thatwhen the grid is 
oarse the geometry is 
ompletely numeri
ally rough and aftergrid re�nement the bulk of the points shift towards the transition regime. Mu
hsmaller k (i.e. mesh sizes) are required to rea
h the hydrauli
ally smooth regime.Varying Reynolds NumberThis test is performed using a �xed dis
retization and varying the a
ousti
 Reynoldsnumber. In this way we 
an assess how far from resolved the simulation 
an be usingthis embedded boundary method and still obtain similar solutions after rotation ofthe geometry, see Figure 6.10.The Cf distributions are very similar for Rea = 3125, 12500 and somewhatsimilar for Rea = 25000 where the 20o 
ase has some os
illations superimposedon the 0o Cf distribution. It is somewhat surprising that for Rea = 6250 the

Cf distribution di�ers so mu
h, due to the fa
t that 0o dis
retization predi
tsseparation on the leading edge, while the 20o does not. For all Rea > 6250 there isleading edge separation. With Rea = 50000 both 0o and 20o Cf distributions showgreat os
illations showing no similarity, ex
ept perhaps in the mean amount. The
Rea = 50000 �ow is 'turbulent' and we 
annot expe
t to get point-wise 
onvergen
e,but should rather expe
t 
onvergen
e in mean. The 
onvergen
e of means is notinvestigated for the above 
ases.
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(b) Comparison of Cp distribution.Figure 6.14. Unsteady �ow, instantaneous velo
ity at t = 5 Rea = 50000 hmin =
7.5188 ·10−4. Noti
e that the 20o simulation has more wiggles, whi
h are due to thewagging wake.
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0 deg

20 deg(b) Comparison of Cp distribution.Figure 6.15. Unsteady �ow, instantaneous velo
ity at t = 5 Rea = 25000 hmin =
7.5188 · 10−4. Note that the 20o simulation has more unsteadiness whi
h are 
ausedby pressure waves from the unsteady wake.
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20 deg(b) Comparison of Cp distribution.Figure 6.16. Instantaneous velo
ity at t = 5 Rea = 12500 hmin = 7.5188 · 10−4.Noti
e the leading edge separation.
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20 deg(b) Comparison of Cp distribution.Figure 6.17. Instantaneous velo
ity at t = 5, Rea = 6250 hmin = 7.5188 · 10−4.Noti
e the 0o the leading edge separation, but atta
hed �ow for 20o.



6.6. EB applied to supersoni
 base�ow 69The Cp distributions seem to be the same independent of the Rea number, andfor all Rea, ex
ept Rea = 50000 whi
h would require higher resolution, the Cpdistributions are very similar for 0o and 20o.High Reynolds number �ow (Rea = 106)We 
onsider this a high Reynolds number 
ase, where we su

essively re�ne thegrid size by a fa
tor of two in three 
omputations. This is an illustration of ahighly unresolved 
omputation using IB/EB. The solution 
ontains a lot of eddiesemanating from the boundary. This illustrates the resolution needed to resolve the�ow and highlights the need for wall-models.For Rea = 106 the �ow is 'turbulent' and we 
annot expe
t to get point-wise
onvergen
e. Both the Cf and Cp distributions are very os
illatory/unsteady for allresolutions. Therefore we examine the time averages 〈Cf 〉 and 〈Cp〉 and examinethe impa
t the embedded boundary has on the solution. It is dis
overed thatthe trun
ation error from the EB is manifested as roughness, estimated by linearre
onstru
tion of the boundary. The size of the roughness is estimated by thefri
tion velo
ity Reynolds number Reτ . We 
ompare the obtained Reτ with Reτfor rough pipes, [69℄.6.6 EB applied to supersoni
 base�owPhysi
al experiments of supersoni
 axisymmetri
 base�ow are 
ompared to LESusing embedded boundaries in [46℄ ( Paper VI). The results are summarized here.In the experiments [32, 53, 9, 8, 37℄ the 
enterline velo
ity downstream of a
ylinder and the pressure 
oe�
ient on the 
ylinder base were measured. Numeri
alsimulations of supersoni
 base�ow were performed in [22℄ (Paper II)using FOAMand we wanted to 
ompare those results with results from the embedded boundary
ode. We used the simple Smagorinsky model and tried to do wall-resolved LES,whi
h is too 
ostly for Re ≈ 106. The experiment however shows that the embeddedboundary method works e�
iently in 3D. The 
omputational 
ost is signi�
antlylower for the EB, even when using the very expensive Riemann solver, than for theunstru
tured solver FOAM. Below we show some obtained results; from Figures6.19 and 6.20 we see that grid re�nement has the greatest impa
t on the solution.The tuning of model parameters su
h as Cs does not 
hange mu
h. This is mu
hdue to the low order (and dissipative) 2:nd order Godunov s
heme. This test 
aseshows the EBM extended to three dimensional problems with the Smagorinsky subgrid s
ale model. The geometry 
ontains sharp 
orners, for whi
h our proposedstrategy (see se
tion 5.3.4) seems to work well.
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Figure 6.18. Instantaneous visualization of log (‖∇ρ‖ + ε). The 
hara
teristi
features of supersoni
 base�ows 
an be seen su
h as the unsteady nature of su
h�ows with the presen
e of numerous(?) turbulent s
ales. The separation point is�xed by the geometry at the 
orner. A 
entered expansion fan turns the separatedshear layer towards the axis. Further downstream, due to axisymmetri
 
onstraints,the mixing layer is bent to realign the �ow with the axis in the mean. This regionexhibits a strong adverse pressure gradient as evident by the presen
e of unsteadyre
ompression sho
ks and Ma
h-lines 
oales
ing into sho
ks. In this region, thein
oming �uid that la
ks the momentum to over
ome the pressure gradient is pushedupstream into a re
ir
ulation zone. Downstream of the stagnation region, a turbulentwake with larger 
oherent stru
tures develops.6.7 Some Preliminary Results using EBM togetherwith a Wall-modelAs we have postulated multiple times, wall-models are needed for high Reynoldsnumber �ows. Here we brie�y summarize some preliminary �ndings using the wall-model des
ribed in se
tion 4.0.5. We make a similar 
omparison as in se
tion 6.5 ofan embedded re
tangle in Rea = 106, Ma = 0.3 �ow using the same dis
retizationas above.Results are shown in �gures (6.22-6.23), where the 
oarsest grids do not resolvethe �ow at all, whi
h is seen by the too smooth solutions. As the resolution isin
reased more 'turbulent' stru
tures be
ome resolved.We observe that the fri
tion velo
ity uτ 
omputation in the wall-model dependson y+ and hen
e h+ = uτ h
ν is more non-smooth using this wall-model, than justimposing the standard no-slip boundary 
ondition, 
ompare Figures 6.21 and 6.24.
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