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Abstract

The historic relationship of species and genes are traditionally depicted
using trees. However, not all evolutionary histories are adequately captured
by bifurcating processes and an increasing amount of research is devoted
towards using networks or network-like structures to capture evolutionary
history. Lateral gene transfer (LGT) is a previously controversial mechanism
responsible for non tree-like evolutionary histories, and is today accepted as
a major force of evolution, particularly in the prokaryotic domain.

In this thesis, we present models of gene evolution incorporating both
LGTs and duplications, together with efficient computational methods for
various inference problems. Specifically, we define a biologically sound com-
binatorial model for reconciliation of species and gene trees that facilitates
simultaneous consideration of duplications and LGTs. We prove that finding
most parsimonious reconciliations is NP-hard, but that the problem can be
solved efficiently if reconciliations are not required to be acyclic—a condition
that is satisfied when analyzing most real-world datasets. We also provide a
polynomial-time algorithm for parametric tree reconciliation, a problem anal-
ogous to parametric sequence alignment, that enables us to study the entire
space of optimal reconciliations under all possible cost schemes.

Going beyond combinatorial models, we define the first probabilistic model
of gene evolution incorporating a birth-death process generating duplications,
LGTs, and losses, together with a relaxed molecular clock model of sequence
evolution. Algorithms based on Markov chain Monte Carlo (MCMC) tech-
niques, methods from numerical analysis, and dynamic programming are pre-
sented for various probability and parameter inference problems.

Finally, we develop methods for analysis of cancer progression, a biological
process with many similarities to the process of evolution. Cancer progresses
by accumulation of harmful genetic aberrations whose patterns of emergence
are graph-like. We develop a model of cancer progression based on trees, and
mixtures thereof, that admits an efficient structural EM algorithm for finding
Maximum Likelihood (ML) solutions from available cross-sectional data.
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There is grandeur in this view of life, with its several powers, having
been originally breathed into a few forms or into one; and that, whilst
this planet has gone cycling on according to the fixed law of gravity, from
so simple a beginning endless forms most beautiful and most wonderful
have been, and are being, evolved.

— Charles Darwin,
On the Origin of Species





Chapter 1

Introduction

Darwin’s observations during his five-year voyage on HMS Beagle laid the foun-
dation for the body of work that he would later produce, providing compelling
evidence for a process of descent with modification and natural selection. Although
evolutionary ideas had been formulated in various forms before Darwin, his work
popularized the idea among scientists as well as the general public. Of course,
Darwin could not have known that long strands of DNA molecules, and the genes
located on them, are the vehicles on which traits are inherited from generation to
generation, or that discrete events such as recombination, mutation, duplication,
and gene transfer are responsible for modification.

Much of Darwin’s observations were based on morphological similarities and
dissimilarities between species. In fact, not long ago, classification of species and
inference of their evolutionary histories were mainly based on morphological data.
With the emergence of modern molecular biology, we have at our disposal a detailed
model of the mechanisms of inheritance, and so the study of evolution has largely
shifted towards the study of DNA and genes. Methods for the construction of
gene trees showing the relationship among homologous genes have been particularly
useful. Trees or networks showing the evolutionary history of species are often
inferred from sets of gene trees. This problem would be trivial if the history of
genes simply followed that of species (or vice versa!), but genome content, and with
it, the history of genes, is constantly changing in ways that do not always reflect
the history of species. Prominent among these events is gene duplication, which
has been extensively studied both biologically and computationally. Another event,
one that has risen to prominence more recently, is lateral gene transfer (LGT), also
known as horizontal gene transfer (HGT). Many computational methods have been
developed that incorporate either duplications or LGTs, but few have attempted
to incorporate both. A major part of this thesis concerns the development of
computational models and methods for the simultaneous inference of duplications
and LGTs.

An evolutionary process on a much smaller scale is seen in cancer progression.
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8 CHAPTER 1. INTRODUCTION

Cancer progresses via accumulation of genetic changes, and evolutionary mecha-
nisms such as selection, competition, predation, and genetic drift characterize this
process. The order in which different genetic changes appear during progression of
the disease varies between distinct types of cancer. Although cancer progression is
best described using graphs or networks, construction of such networks from avail-
able data is quite difficult. The last part of this thesis is concerned with a model
of cancer progression based on trees, and mixtures thereof, for which we are able
to develop efficient algorithms.

The outline of the rest of this thesis is as follows. Chapter 2 provides biologi-
cal background on evolution and cancer progression. Also, a discussion on the use
of trees and methods for tree reconstruction is provided. In Chapter 3, we intro-
duce the major computational techniques that our methods are based on. Chapter 4
describes problems and methods for inference of duplications and lateral gene trans-
fers. Section 4.5 describes the combinatorial model of gene evolution presented in
Papers I and II, and Section 4.6 describes the probabilistic model of gene evolu-
tion presented in Paper III. Finally, Chapter 5 describes the methods previously
developed for construction of cancer progression pathways, and the model and al-
gorithms presented in Paper IV are discussed in Section 5.2. For a brief description
of the articles included in this thesis, see Chapter 6.
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A hole had just appeared in the Galaxy . . . Somewhere in the deeply re-
mote past it seriously traumatized a small random group of atoms drift-
ing through the empty sterility of space and made them cling together in
the most extraordinarily unlikely patterns. These patterns quickly learnt
to copy themselves (this was part of what was so extraordinary about
the patterns) and went on to cause massive trouble on every planet they
drifted on to. That was how life began in the Universe.

— Douglas Adams,
The Hitchhiker’s Guide to the Galaxy





Chapter 2

Evolution and Describing its

History

The underlying theme of the work presented in this thesis is molecular evolution
and computational methods for its study. In this chapter we will give a brief
background on and overview of molecular evolution in general, followed by a more
detailed discussion of the evolutionary events at the focus of this thesis.

The outline of this chapter is as follows. Sections 2.1 and 2.2 give a brief overview
of molecular evolution. In Section 2.5, we will discuss two important evolutionary
events that have made a substantial impact in the genetic composition of organisms
and which constitute a major focus of this thesis, namely, gene duplications and
lateral gene transfers. The process of speciation, i.e., the evolutionary process in
which new species emerge from existing ones, is discussed in Section 2.3. Trees have
long been used as tools to depict the evolutionary history of organisms. Today they
are also used to depict the history of genes that share a common ancestry, so-called
homologous genes. A brief discussion of the use of trees and methods for their
construction is given in Section 2.4.

A seemingly different, yet closely related, subject is that of cancer progression.
“Cancer” is a name that refers to a large class of diseases with uncontrolled cell
growth and proliferation as a common characteristic. The abnormal properties of
cancerous cells are due to accumulation of harmful genetic changes. This process,
called somatic evolution, is very similar to evolution of species and is discussed in
Section 2.6.

2.1 Introduction to Genetics and Genomics

The observation that offspring inherit traits from their parents has long been used
by humans, e.g., in breeding of animals and plants. Gregor Mendel performed the
first systematic study of the basis of inheritance for some simple discrete traits,
such as the color of the flower of the common pea plant [107, 108]. His discoveries
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12 CHAPTER 2. EVOLUTION AND DESCRIBING ITS HISTORY

concerning dominant and recessive traits became known as Mendelian inheritance.
Mendel’s work did not receive any significant attention until it was rediscovered

in the beginning of the 20th century. Research then led to the discovery that genes,
the basic functional units of heredity, reside on the chromosomes, a discovery that
was awarded with the Nobel prize in 1933. Although chromosomes were identified
as the carriers of genetic material, the composition of the genetic material was
yet unknown. The first experiments showing that the genetic information was
contained in the DNA of chromosomes were performed by Avery et al. [8] and was
later confirmed by Hershey and Chase [77].

James D. Watson and Francis Crick published the first accurate model of DNA
structure in 1953 [150], and the genetic code was cracked by Har Gobind Kho-
rana, Robert W. Holley, and Marshall Nirenberg, who shared the Nobel prize in
physiology in 1968.

The central dogma of molecular biology, that the flow of information in the cell
goes from DNA to mRNA, to protein, but never from protein to nucleic acid, was
formulated by Francis Crick [56, 31].

Today, technological advances have enabled us to sequence entire genomes. All
6 billion bases comprising the genome of James D. Watson were sequenced in two
months time in 2008 [152]. One of the challenges of the future lies in constructing
computational tools for extracting functional information from sequence data. In
the following, we give a brief overview of the molecular machinery of the cell respon-
sible for reading the genome and producing the proteins that are responsible for
most of a cell’s functions. For more in-depth information, we refer to the standard
text book by Bruce Alberts et al. [1].

The Central Dogma of Molecular Biology

The cell is the smallest structural and functional unit of an organism that is clas-
sified as living. There are two types of cells: eukaryotes comprising multicellular
animals, plants, fungi, as well as unicellular organisms, and prokaryotes such as
bacteria. “Karyose” comes from a Greek word meaning kernel, “pro” means before,
and “eu” means true. So prokaryotic means “before a nucleus”, and eukaryotic
means “possessing a true nucleus”. The name emphasizes the fact that eukary-
otes carry their genetic material inside a cell nucleus, while prokaryotes have no
such compartment and the genetic material is held within the cytosol. The genetic
material of both eukaryotes and prokaryotes consists of long molecules of deoxyri-
bonucleic acid (DNA). As the eukaryotic DNA molecules are very long and have to
fit in a small nucleus, they are folded up into chromosomes in a highly organized
manner. The prokaryotic DNA, on the other hand, is present as circular naked
DNA molecules. DNA acts like an instruction manual and its sequence provides all
the information needed for a cell to function. The information is first copied to ri-
bonucleic acid (RNA) before being transformed into proteins—this is the so-called
dogma of molecular biology, namely that information passes from nucleotides to
amino acids but never in the opposite direction. The functional units in the DNA
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Figure 2.1: The structure of nucleotides.

that code for RNA or proteins are called genes. Each gene encodes one or a set of
similar proteins, and each protein performs a specialized function in the cell. Cells
use the two-step process of transcription and translation to read genes and produce
the strings of amino acids that make up a protein. The production of the various
proteins is one of the most important processes occurring inside a cell as proteins
not only form structural components of the cell, but they also compose the enzymes
that catalyze the production of other organic biomolecules required for the cell to
function.

DNA and RNA Structure

DNA is the carrier of genetic information composed of four different nucleotides.
Each nucleotide is composed of three parts: (1) a nitrogenous base known as purine
(adenine (A) and guanine (G)) or pyrimidine (cytosine (C) and thymine (T)); (2)
a sugar, deoxyribose; and (3) a phosphate group. The nitrogenous base determines
the identity of the nucleotide, and individual nucleotides are often referred to by
their base (A, C, G, or T), see Figure 2.1. One DNA strand can consist of up
to several hundred million nucleotides. The nucleotide T can form a hydrogen
bond with A, and C with G, making a double-helix formed by two anti-parallel
complementary strands, see Figure 2.2.

RNA is very similar to DNA, the only difference being that the pyrimidine base
thymine is replaced by uracil (U) and the ribose comes in its fully hydroxylated
form. Together, the presence of uracil in place of thymine, and the 2′-OH in the
ribose constitute the two chemical differences between RNA and DNA. Also, RNA
does not form a double helical structure and is in general single-stranded. There are
many types of RNA present in the cell distinguished by their functional role. Three
of these, namely messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal
RNA (rRNA), will be discussed in further detail below.
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Figure 2.2: DNA double helix.

Transcription

Transcription refers to the transfer of the genetic code from DNA to a complemen-
tary RNA and occurs in the cell nucleus. The mRNA serves as an intermediate
between DNA and protein. The transcription starts with the enzyme RNA poly-
merase attaching and unzipping the DNA molecule into two separate strands after
which it binds to the promoter segment of DNA that indicates the beginning of
the single strand of DNA to be copied. It moves along the DNA and matches
each DNA nucleotide with a complementary RNA nucleotide to create a new RNA
molecule patterned after the DNA. The copying of the DNA continues until RNA
polymerase reaches a termination signal, i.e., a specific set of nucleotides that mark
the end of the gene to be copied. When the RNA polymerase has finished copying
a particular segment of DNA, the DNA reconfigures into the original double-helix
structure. In prokaryotes, this RNA needs no further processing and provides the
blueprint which directs protein synthesis. However, in eukaryotes, this RNA strand
(the transcript) is first processed into mature mRNA. The processing involves the
removal of intervening non-coding sequences, so-called introns. The newly created
mRNA is then exported out of the nucleus and into the cytoplasm where translation
can take place.

Translation

Translation refers to the process of converting the information contained in an
mRNA molecule into a sequence of amino acids that bind together to form a protein.
In the cytosol, mRNA molecules bind to protein-RNA complexes called ribosomes.
Each ribosome includes a large and a small subunit containing rRNA and more than
50 proteins. The small and large subunits of the ribosome surround the mRNA after
which tRNA molecules carrying amino acids attach to the ribosome and mRNA to
create the polypeptide chain, see Figure 2.3. There are several types of tRNA
molecules each, containing a unique three base region called the anticodon that can
base pair to the corresponding three base codon on the mRNA. Each type of tRNA
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Figure 2.3: A schematic view of translation.

molecule can only carry one unique amino acid, but may base pair to more than
one codon sequence on the mRNA. Hence, each three base codon signals for the
inclusion of a specific amino acid, but the same amino acid can be coded by several
different codons. The correspondence between codons and amino acids is called the
genetic code and is shown in Figure 2.4.

2.2 Genome Evolution

About 3.5 billion years ago, cells similar to modern day bacteria had appeared.
There is evidence for the existence of eukaryotic cells 1.4 billion years ago with
the first multicellular animals appearing around 640 million years ago [21]. In this
section, we provide a few examples of the diverse (molecular) evolutionary events
that have shaped present day genomes during millions of years of evolution.

Although cells have acquired highly complex and accurate mechanisms for DNA
replication and repair, a cell can still fail to create exact copies of its chromosomal
DNA during cell division. In fact, such failures are the predominant causes of
genetic changes during evolution, although transposable DNA elements also play a
major role.

In the context of this thesis we assume that there exists a reference genome that
is representative of the genome of all individuals belonging to a certain species. For
now, we also assume that the concept of species and the classification of individuals
as belonging to one species is unproblematic, though as we will see, this has been
contested in recent years mainly withing the prokaryotic domain.

We can imagine following the fate of a single gene as it is passed from one gen-
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Figure 2.4: The genetic code. A * indicates stop-codon.

eration to the next in one species. For various reasons, we would observe changes
to the DNA sequence of the gene. On a small scale, we would detect substitutions,
insertions, and deletions involving a few nucleotides. Translocations, exon duplica-
tions, exon shuffling, and gene conversion are examples of other small scale events
that alter the sequence of a gene.

Mathematical models of sequence evolution, so-called substitution models, have
been proposed and are routinely used, e.g., to reconstruct trees showing the rela-
tionship between genes from different organisms. These models together with tree
reconstruction methods are discussed in Section 2.4.

Taking genes to be atomic units, i.e., ignoring changes to the DNA sequence,
we would see larger scale events that affect entire genes. For example, portions of
chromosomes are sometimes duplicated or deleted and may affect a whole set of
genes that reside on those segments. We would see how genes are lost, for example
due to segmental deletions that remove the sequence or a part of the sequence from
the genome altogether, or deleterious mutations that cause the silencing of the gene.
The number of genes can also increase via events such as gene duplications (caused,
e.g., by segmental duplications or reverse transcription), lateral gene transfers (the
transfer of genetic material from one species or individual to another), or interstitial
deletions (segmental deletions that do not include chromosomal endpoints; these
may cause two genes to be fused together into one gene). On the largest scale,
we have whole genome duplications that doubles the number of chromosomes and
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hence also the number of genes in a species, but is usually followed by massive gene
losses.

The work presented in this thesis deals mainly with two of the evolutionary
events mentioned above, namely gene duplications and lateral gene transfers. These
are therefore discussed in more detail later in Section 2.5.

2.3 Speciations and Organismal Trees

Ever since Darwin’s work popularized the idea of evolution, trees have been widely
used to depict the historic relationship between species. When groups of individuals
belonging to the same species are isolated from each other, they are independently
affected by the evolutionary processes. Over time the groups will form distinct
species, an event that we call speciation. Trees are often the best representation of
the process of speciation in higher organism, although plants and fish are known
to hybridize to form new species. In these cases, the speciation process is best
represented by networks.

The classification of micro-organisms into species can sometimes be problematic.
For example, it has become increasingly apparent that lateral gene transfers have
played a major role in prokaryotic evolution, and some have argued that a species
tree representing prokaryotic evolution, at least the evolution of certain groups
of taxa, may not exist. Others argue that although lateral gene transfers have
played a major role, the notion of species and species trees are still meaningful
representations of the evolutionary history of prokaryotes.

2.4 Phylogeny and Tree Reconstruction

Before the emergence of the modern theory of molecular evolution, classification
of species and inference of phylogenies were based on morphological data. With
the modern understanding of the molecular mechanisms of inheritance, practice
has shifted to using DNA or amino acid sequence data as the basis for reconstruct-
ing evolutionary histories. The history of a set of homologous genes is usually
adequately represented by a tree, although there are some events such as gene con-
version and recombination that are responsible for creating non tree-like histories.
The history of species, whether represented by trees or networks, is often inferred
from a set of gene trees. In this section we will discuss some of the more popular
methods for gene tree reconstruction.

Computational methods for tree reconstruction attempt to find a tree or a set
of trees that are optimal according to some criteria. Several different criteria have
been used when devising computational methods for tree reconstruction. A number
of methods have been proposed based on parsimony where we seek the tree that re-
quires a minimum number of evolutionary events to explain the data (see Section 3.1
for a general discussion of parsimony). The first to suggest the use of parsimony as
a criterion for tree reconstruction were Edwards and Cavalli-Sforza [45].



18 CHAPTER 2. EVOLUTION AND DESCRIBING ITS HISTORY

S1 AATCC

S2 AAGCC

S3 CATCG

S4 CAACG
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(a)
AATCC AAGCC CATCG CAACG CCTCC

(b)

AATCC AAGCC CATCG CAACG CCTCC
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0
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AATCC AAGCC CATCG CAACG CCTCC
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1

1

0 1

(d)

Figure 2.5: Maximum parsimony example. (a) shows a set of five DNA sequences for which
we seek a parsimony tree. (b) shows an arbitrary tree whose leaves are associated with the se-
quences. (c) shows one way to assign hypothetical sequences to the internal vertices to the tree
in (b) such that the total number of substitutions is minimized. For this tree, at least 6 substitu-
tions are required. (d) shows a maximum parsimony tree with hypothetical sequences assigned to
internal vertices. This tree requires only 5 substitutions which is the least number of substitutions
required for any tree and any assignment of sequences to internal vertices.

Assume that we are given n sequences. For each rooted bifurcating tree with
n leaves corresponding to the n sequences and an assignment of hypothetical se-
quences to the internal vertices, we can compute the minimal sets of evolutionary
events that have taken place along each tree edge. Traditionally, an evolutionary
event is defined as a single substitution of one nucleotide or amino acid for another.
If we assign a cost to each possible substitution, we can compute a cost for each
tree and assignment. The cost of a tree is then defined as the minimum cost over
all possible assignments of sequences to its internal vertices. Out task is now to
find the tree with the least cost. See Figure 2.5 for a complete example. A general
algorithm for computing the minimal cost of a given tree was given by Sankoff [137]
and Sankoff and Rousseau [138]. Finding the best tree can be done by searching in
the space of trees using different heuristics and local search algorithms.
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The criteria given above is quite general and various special cases together with
specialized algorithms have been described in the literature. Other variants of
parsimony exist that are not easily solved using the Sankoff algorithm, for example
polymorphism parsimony [48, 51].

Distance matrix methods comprise another major class of phylogenetic methods.
These methods were introduced in [25] and [58]. We can associate with each edge of
a phylogenetic tree a branch length representing the total amount of evolution that
has occurred between the two vertices. By summing the branch lengths of all the
edges on the path between two leaves, we can compute pairwise distances between
each pair of sequences or species. Distance matrix methods take as input pairwise
distances between sequences and attempt to reconstruct a phylogenetic tree with
branch lengths such that the distances induced by the tree is as close as possible to
the given distances.

In order to develop algorithms for the problem, we need to define precisely how
to measure closeness between the given pairwise distances and those induced by a
tree. A popular, and statistically justifiable, criterion is least squares. Let Dij be
the given distance between sequence i and j and let DTij be the distance as induced
by a tree T . The best tree according to the least squares criterion is a tree T that
minimizes the following expression:∑

ij

(Dij −DTij)
2. (2.1)

There are efficient algorithms for determining branch lengths that minimize (2.1)
given a fixed tree [63]. Finding the optimal tree according to the least squares
criterion is, however, NP-hard [35]. Searching for a good tree is usually done by
heuristics and local search methods.

Another criterion used by distance matrix methods is that of minimum evolu-
tion. In the minimum evolution methods, the branch lengths of a tree are deter-
mined by the least squares criterion, but the optimality criterion used to choose
between trees is different. Instead of choosing the tree whose induced distances is
as close as possible to the given distances, the tree with the minimum total length
is preferred [87, 133].

There are also other heuristic distance matrix methods that do not have an
explicit optimality criterion. One of the most popular methods for tree reconstruc-
tion is called neighbor-joining (NJ) [134] and is based on the clustering algorithms
popularized by Sokal and Sneath [142]. Although NJ is defined by its algorithmic
description, it is related to both the minimum evolution and least squares crite-
ria. An interesting property of NJ is that it will reconstruct the correct tree if the
given distances are “sufficiently close” to the distances induced by the tree. More
formally, a distance matrix D is said to be nearly additive if there is a tree T with
induced distance matrix DT such that

|D −DTij |∞ <
μ(T )

2
,
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where μ(T ) is the minimum edge length in T . It can be shown that given a nearly
additive distance matrix, NJ will reconstruct the unique tree T [6]. There are several
other methods with this property that do not work as well in practice. However,
FastNJ [47] is an algorithm that is very similar to NJ, works well in practice, and
is much more efficient.

Distance matrix methods require calculations of pairwise distances of sequences.
Due to insertions and deletions, homologous sequences are almost always of differ-
ent lengths and the homologous positions are not immediately apparent. Hence,
sequences must be aligned before computing distances. Many different exact and
heuristic methods exist for sequence alignment and a proper discussion is beyond
the scope of this thesis. We refer instead to several recent reviews on the state
of modern alignment algorithms [91, 44, 123]. In general, alignment algorithms
attempt to produce rows of sequences with inserted gaps such that the nucleotides
or amino acids in each column are homologous. Often, columns that include gaps
are discarded and distances are based only on columns without gaps.

Given an alignment, the naive approach to computing a distance between a
pair of sequences is to count the number of mismatches. This leads, however, to
an underestimation of the amount of substitutions that have occurred since more
than one substitution may be responsible for a single mismatch or even a match
since substitutions can be reversed by subsequent mutations. A better approach is
instead to use a probabilistic model of sequence evolution to estimate the number
of substitutions. Several substitution models have been proposed for DNA and
amino acid sequences with varying amounts of complexity. Models of DNA evolu-
tion include Jukes-Cantor [84], Kimura’s two-parameter model [88], F84 [54, 89],
HKY [72], and the Tamura-Nei model [144].

Jukes-Cantor is the simplest model and assumes that substitutions occur ac-
cording to a Poisson process with rate α and that all substitutions are equally
likely. For this simple model, there are closed formulas for calculating the maxi-
mum likelihood estimate of the number of mutations. More complex models allow
different rates to be assigned to different types of substitutions, for example transi-
tions (substitution of one purine for another or of one pyrimidine for another) and
transversions (substitution of a purine for a pyrimidine or vice versa). Numerical
methods are used for the more complex models to obtain maximum likelihood es-
timates of distances or branch lengths. Substitution models exist also for protein
sequences though we will not discuss them here.

Instead of using the substitution models described above to compute distances
and then use distance methods to obtain a tree, it is possible to use the models and
sequences more directly. Sequences together with a substitution model induce a
probability distribution on trees with branch lengths. Hence, a natural problem is
to find the maximum likelihood tree, i.e., the tree which maximizes the probability
of observing the sequences given the substitution model. Phylogenetic likelihood
methods were popularized by Felsenstein, see for example [52]. See also Section 3.3
which discusses structural EM algorithms.

Recent years have seen a growing body of Bayesian methods being developed.
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Bayesian statistical inference is discussed in Section 3.4. A very popular com-
puter program for Bayesian inference of phylogenetic trees is MrBayes [78, 132].
For an excellent introduction to phylogeny inference in general, see [53]. Felsen-
stein maintains a comprehensive list of phylogeny software that can be found at
http://evolution.gs.washington.edu/phylip/software.html.

The discussion above has centered around construction of trees from sequence
data. We often find that trees constructed from sequences of different genes from
the same set of organisms are not identical. Species trees can be constructed based
on sets of core genes, such as those involved in the transcription or translation
machinery, whose evolution is believed to closely follow that of the corresponding
species. Other methods include tree consensus methods that are based on the
collective signal from a large set of gene trees, and the use of concatenated sequences
from many different genes. For some groups of organisms, such as humans, apes,
and rodents, we may have other kinds of information, such as archaeological data,
available that can also be used for estimation of organismal phylogenies.

Irrespective of our method of choice, we are bound to observe that gene trees and
species tree are different and that the evolutionary history of genes do not always
follow that of the corresponding species. This poses the problem of reconciling the
differences between trees by identifying the responsible evolutionary events. Tree
reconciliation is a major part of this thesis and will be discussed in coming sections
and chapters.

2.5 Gene Duplications and Lateral Gene Transfers

In this chapter, we will take a deeper look at the two evolutionary events with
which this thesis is mainly concerned. The importance of gene duplication and its
role as a major driving force of evolution has been established. This is in contrast
to the role of lateral gene transfer (LGT) which has been the subject of much
controversy. The next two subsections will deal with gene duplications and the
controversy surrounding LGTs.

Gene Duplications

The role of gene duplication as a major driving force of evolution has been recog-
nized for a long time. Ohno’s seminal book Evolution by Gene Duplication [127]
in 1970 popularized the idea among biologists, although it had been discussed and
debated much earlier. For example, already in 1918, Bridges speculated that du-
plicate genes can mutate separately thus diversifying their functions [18]. See also
later papers by Bridges [19] and Muller [117, 118]. For a review of the history of
these ideas, see [145].

Several mechanisms are responsible for creating copies of a gene. These include
unequal crossing-over, retrotransposition, segmental duplication, and whole genome
duplication.
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Unequal crossing-over occurs when homologous chromosomes are not precisely
paired during recombination and results in chromosomes of unequal length: one
chromosome acquires more genetic material than it passes over and thus contains
a duplicated segment. This segment may contain part of a gene, an entire gene, or
several genes. Genes duplicated via unequal crossing-over are located on the same
chromosome, at least initially, before other events change their relative locations.

Retrotransposition is the process during which a messenger RNA (mRNA) is
retrotranscribed to copy DNA (cDNA) and is then inserted into the genome, prob-
ably at a random location on some chromosome. The two versions of the gene
generally reside on different chromosomes, and the copy also lacks introns since the
introns have been spliced out before the mRNA is copied to cDNA.

Segmental duplications, i.e., duplications of large segments of a chromosome,
are also responsible for duplication of genes and have been shown to have occurred
frequently during primate evolution. The sizes of the duplicated segments tend to
be somewhere between 1 000 to 200 000 nucleotides [135, 106]. The exact mech-
anisms creating such duplications are not clear though several models have been
proposed [10].

Whole genome duplications, which may occur during abnormal cell division, is
most commonly found in plants, and also in fishes [112]. There is also evidence
indicating that one or two whole genome duplications have occurred very early in
vertebrate evolution [36]. Whole genome duplications are usually accompanied by
massive gene losses [29, 22].

The rate with which gene duplication occurs in eukaryotes has been estimated
to one duplication per gene per 100 million years, which is similar to the rate of
nucleotide substitutions [100]. Although the rate of duplication is high, most dupli-
cations are followed by gene loss. The fates of recently duplicated genes were termed
non-functionalization, sub-functionalization, and neo-functionalization in [101, 59].

Analysis of sequenced genomes have revealed that a substantial proportion of
genes are duplicated and that the distribution of gene family sizes across species
varies greatly [154]. For example, the biggest gene family in Drosophila melanogaster
has 111 members, while the biggest family in mammals is the olfactory receptor
family with more that a thousand members. The KRAB-zinc finger family is an-
other example of a gene family that has undergone many recent gene duplication
events and there are over 400 active members of the gene present in the human
genome [70].

Lateral Gene Transfers

Contrary to gene duplications, the importance and prevalence of lateral gene trans-
fers has been much more controversial. LGT refers to the transfer of genetic ma-
terial from one individual to another. The possibility of LGT in bacteria was
realized already in the 1940s [93, 94] and demonstrated to occur between different
species in 1959 [125]. We know today that LGT occurs frequently among prokary-
otes [126, 20], and that it also occurs from prokaryotes to eukaryotes and among
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eukaryotes [85], though probably not as frequently as in the prokaryotic domain.
The abundance of LGTs in prokaryotes has led to some researchers challenging

the idea that phylogenetic trees are able to represent prokaryotic evolution, see for
example [64, 41, 153], and also [42] and references therein. There is an emerging
view today that although LGTs have occurred among prokaryotes, perhaps it has
not occurred so much that we must abandon trees altogether [11].

The mechanisms of LGTs among prokaryotes include transformation, trans-
duction, and conjugation. Transformation refers to the uptake of DNA which is
then incorporated into the genome. Certain bacteria have a natural ability to take
up DNA from their environments. Transduction refers to the process of genetic
exchange between bacteria mediated by a bacterial virus, a bacteriophage. Con-
jugation is a process in which bacterial cells transfer genetic material via direct
contact.

Lateral gene transfer has also become an important medical issue [143] as it plays
a major role in the spread of antibiotic resistance genes among pathogenic bacteria.
Recently, the role of LGT in pathogen evolution has received much attention [92].

2.6 Progression in Cancer—an Evolutionary Phenomenon

Cancer is the name given to a whole host of genetic diseases in which cells undergo
uncontrolled growth. Genetic alterations to three types of genes are responsible
for tumorigenesis—the process in which normal cells are transformed into cancer
cells. These are the gatekeepers, caretakers, and landscapers [113]. Gatekeepers
are genes that directly affect growth and differentiation of cells and include the
oncogenes and tumor suppressor genes, i.e., genes whose abnormal activation and
suppression, respectively, can turn normal cells into cancer cells. Caretakers are
responsible for maintaining the genomic integrity of cells and promote tumorigene-
sis indirectly. Alterations to caretaker genes can lead to genetic instability causing
rapid accumulation of changes to the genome. Such changes can affect oncogenes
or tumor suppressor genes which in turn leads to abnormal proliferation. As the
name suggests, landscapers affect the micro-environment of cells. Landscaper genes
cause tumorigenesis indirectly by generating an abnormal stromal environment [15].
When the normal intercellular signals are disrupted, for example during sustained
inflammation, cells possessing tumorigenic potential can start to proliferate uncon-
trollably. Such abnormal conditions can also cause genetic instability which then
could lead to development of cancer. For example, it has been known for more than
a century that inflammation associated with tissue wounding can produce tumors,
see [40, 140] and references therein.

Although cancer is a generic name for different diseases, six “hallmarks of can-
cer” common to all cancer types have been identified [71]. These are self-sufficiency
in growth signals, insensitivity to anti-growth signals, apoptosis-evasion (evasion of
programmed cell death), limitless replicative potential, sustained angiogenesis (the
growth of new blood vessels), and tissue invasion and metastasis. Acquiring all
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these traits requires major genetic alterations that are accumulated as cancer pro-
gresses towards further malignancy. Although the rate of nucleotide mutation does
not appear to be higher in cancer cells [148], chromosomal instability (CIN) seems
to be present in all types of human cancer [96]. Mutations in CIN genes increase
the rate with which whole chromosomes or large parts of chromosomes are lost or
gained during cell division. Aneuploidy, i.e., imbalances in the number of chromo-
somes, and increased rates of loss of heterozygocity are caused by CIN. In [71], CIN
was not identified as a hallmark of cancer but was taken to be a prerequisite for
acquiring the entire set of hallmarks.

The progression of cancer and the acquisition of the previously mentioned traits
is an evolutionary process involving selection among genetically variable cells [124,
30]. The evolution of cells within the body is called somatic evolution. Somatic
evolution shares many similarities with evolution of organisms and many methods
and models from population genetics [113] and ecology [30] can be applied to cancer
progression, although some differences do exist and models may have to be altered
to take these into consideration. Important factors that play major roles in somatic
evolution include mutation, genetic drift, natural selection, competition, predation,
and dispersal or colonization. A neoplasm, or tumor, consists of a large population
of genetically heterogeneous individuals [103, 24] that undergo selective sweeps
followed by clonal expansions, see for example [105] and [104]. Clones, i.e., a group
of cells derived from a single mother cell, can expand or contract based on their
fitness in the population. In general, evolution within a tumor population selects
for increased growth and survival and mutations can become fixed in the population
during selective sweeps.

The rates of mutation in cancer cells remain undetermined in vivo, but there
are indications that they are not higher than in normal cells. In cell culture, the
rates have been determined to be somewhere between 106 and 107 per locus per
generation [2]. In [148], the number of non-synonymous mutations in colorectal
tumor cells was determined to approximately 1 mutation per megabase of DNA,
which is similar to the expected number of mutations in normal cells that have
undergone as many generations and population size bottlenecks. The number of
mutations required to cause cancer is not precisely known, but is probably some-
where between 3 and 12 depending on the type of cancer [131]. Given the incidence
rate of cancer in the human population, it seems unlikely that so many mutations
could be accumulated in a single cell based solely on normal somatic mutation
rates [99, 71]. One explanation could be that the expansion of clones provides large
enough populations to produce subsequent necessary mutations [115].

In some cases mutation in a gene gives its host a selective advantage only after
another gene has undergone mutation. For example, in Barrett’s Esophagus, the in-
activation of TP53 almost always occurs after CDKN2A has been inactivated [105].
It could be the case that inactivation of CDKN2A initiates a clonal expansion that
provides opportunities for mutations to occur to TP53 after which a second clonal
expansion would occur. Such dependencies provide opportunities for modeling of
cancer progression which is discussed in Chapter 5.
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Competition and predation are other evolutionary forces that can act on or-
ganisms and have analogs in somatic evolution. For example, cells in a tumor are
constantly competing for resources. More complex modes of competition have also
been shown. For example, clones on different locations in the same mouse or rat
can inhibit each other’s growth [114, 23]. Aspects similar to predation in ecology
is also present in cancer progression, most naturally from the immune system. One
difference compared to ecology is that the extinction of prey does not lead to the
extinction of the predator.





Chapter 3

Computational Techniques

This chapter provides some background on a selection of computational techniques
that have been used in the work presented in this thesis. Parsimony can be ex-
plained as a general principle of “less is more”. Papers I and II deal with methods
for finding the “simplest” reconciliations of trees and Section 3.1 provides a brief
overview of the subject of parsimony. In Paper I, we also develop a fixed-parameter
tractable algorithm for the tree reconciliation problem. Some general comments
about parametrized complexity is given in Section 3.2. Expectation Maximiza-
tion (EM) is an iterative meta algorithm for finding maximum likelihood estimates
in probabilistic models. Paper IV of this thesis provides an EM algorithm for a
model of cancer progression. A general description of EM algorithms is given in
Section 3.3. Bayesian methods have been applied quite successfully on a large
set of problems in bioinformatics, though their use is sometimes controversial. In
Paper III of this thesis, we develop algorithms and methods for Bayesian infer-
ence of duplications and lateral gene transfers in which Markov Chain Monte Carlo
(MCMC) techniques play a major role. A brief overview of Bayesian methods and
the degree-of-belief interpretation of probability is given in Section 3.4 along with
a discussion of Markov Chain Monte Carlo (MCMC) Techniques.

3.1 Ockham’s Razor and Parsimony

Numquam ponenda est pluralitas

sine necessitate

William of Ockham

In bioinformatics, maximum parsimony is probably the most well-known example of
the use of the principle of Ockham’s razor—that “plurality should never be posited
without necessity”. In [45], Edwards and Cavalli-Sforza first mentioned the general
idea of maximum parsimony when they declared that the preferred evolutionary
tree is the one that involves the minimum net amount of evolution, and for a long

27
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time, parsimony methods were the most widely used tree reconstruction methods
for character data.

The general principle of parsimony is, of course, not restricted to evolutionary
trees. In fact, the principle has been advocated many times in the past, even long
before Ockham applied it to such an extent as to give it its current name. A famous
example in scientific literature is Newton’s first rule of reasoning in philosophy as
stated in “Mathematical Principles of Natural Philosophy”:

Rule I We are to admit no more causes of natural things than such
as are both true and sufficient to explain their appearances.

To this purpose the philosophers say that Nature does nothing in
vain, and more is in vain when less will serve; for Nature is pleased
with simplicity, and affects not the pomp of superfluous causes.

RULE II Therefore to the same natural effects we must, as far as
possible, assign the same causes.

In general, parsimony can be applied in two different ways. On the one hand, we
can take parsimony as an optimality criterion, as in the case of maximum parsimony
in phylogenetics: trees are scored based on the level of complexity with which they
can explain the data and the trees which require fewer assumptions of evolutionary
events are preferred over trees that require more. On the other hand, parsimony
can be applied when designing models in the sense of defining models with no more
parameters than necessary to sufficiently model the data. A simple example of
this is fitting a curve to points in the plane. In finance, models for prediction of
yield curves are another example where parsimony has been explicitly applied when
devising models [121, 39]. Many more examples can be found where parsimony is
used implicitly, and there is a vast amount of literature in statistics concerning the
choice of model and the number of parameters.

In this thesis, parsimony is applied to the problem of tree reconciliation which
is explained in Chapter 4. Analogous to tree reconstruction, parsimony is here used
as an optimality criterion where the simplest reconciliation is sought in the sense
of minimizing the number of evolutionary events needed to explain the differences
between an organismal tree and a corresponding gene tree. Early work on tree
reconciliation problems sought to reconcile trees using duplications and losses. In
this case, defining the underlying combinatorial model is quite straightforward. A
level of complexity is added when we also have to consider lateral gene transfers, and
care must be taken when defining the combinatorial problem to ensure biological
feasibility. The combinatorial model developed in this thesis is biologically feasible
and an extensive discussion of this issue can be found in Paper II.

A common objection to the use of parsimony is that nature and evolution are not
constrained to being parsimonious. The usual answer is that we are not making an
assumption about nature or evolution, and that parsimony methods can yield quite
complex solutions. We merely strive to find a minimal set of assumptions needed
to explain the data. In any case, the strength of any method lies in its predictive
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strength, or in the case of tree reconstruction, the ability to correctly infer the past.
Even when the true process that generates the data is highly complex, it may be a
good idea to use simple models, at least when the sample size is small.

3.2 Parameterized Complexity

Computational complexity theory is a branch of theoretical computer science con-
cerned with analyzing the amount of resources needed to solve computational prob-
lems. The most important computational resources are time and memory. In
complexity theory, problems are categorized into complexity classes based on the
amount of resources needed to solve them. The classes P and NP are the most
studied due to their practical implications, and the question P

?
= NP is one of the

most important unsolved problems in theoretical computer science and mathemat-
ics. For an introduction to this topic, we refer the reader to the classic book of
Garey and Johnson [62].

The time complexity of an algorithm is measured as a function, say f , of the
input size. If n is the size of the input, then f(n) is the maximum number of steps
that the algorithm needs to produce its output. Under the unit cost model, a step
is any basic operation such as addition, multiplication, or comparison. Although
there are cases when it is preferable to keep separate counts of different operations,
e.g., by analyzing the number of multiplications and additions separately, we will
only consider the unit cost model in this text. When comparing the time complexity
of different algorithms, we are mainly interested in their asymptotic behavior. We
say that a function f(n) is O(g(n)), if there is a constant C such that |f(n)| ≤
C · |g(n)| for all sufficiently large n. A polynomial time algorithm is one whose time
complexity is O(p(n)) where p is some polynomial. Algorithms with polynomial
time complexity are considered efficient and problems for which polynomial time
algorithms are known are considered tractable. This definition of computational
efficiency has proved extremely successful when dealing with natural or real-world
problems; in the vast majority of real-world cases, polynomial time algorithms are
sufficiently efficient.

When confronted with a problem that does not seem to admit a polynomial
time solution, the traditional way to deal with it is to try to show that the problem
is NP-hard. The theory of P and NP deals only with decision problems. As an
example, take the traveling salesman problem in which we are given a set of cities
together with distances between each pair. We want to find a minimal length tour
that visits all cities. This optimization problem can be recast as a decision problem:
given the cities and the distances between them, is there a tour that visits all cities
and whose total length is at most K? Clearly, the optimization problem is at least
as hard as the decision problem, and so, if the decision problem can be shown to
be hard, then the optimization problem must also be hard. The complexity class
P consists of all decision problems that admit a polynomial time algorithm. The
class NP consists of all decision problems whose “yes”-instances can be verified in
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polynomial time. By verifying the “yes”-instances, we mean that for each “yes”-
instance, there is a certificate with the help of which we can check that the instance
really is a “yes”-instance. For example, in the case of the traveling salesman, a
certificate consists of a minimal length tour, and checking that a tour visits all
cities and has length no more than K can be done in polynomial time. Hence,
traveling salesman is in NP. In fact, it is one of the most well-known examples of
NP-complete problems. From the definition of P and NP, it is clear that P is a
subset of NP. Most researchers believe that the converse is not true, although no
proof of this fact has been found.

One benefit of studying decision problems is that we can describe them in terms
of the formal notion of languages. For any finite non-empty set of symbols Σ, let
Σ∗ denote the set of all strings of symbols from Σ. A set L is a language over
the alphabet Σ if it is a subset of Σ∗. The instances of a decision problem can
always be encoded by strings of symbols from Σ, e.g., when Σ = {0, 1}. The
language corresponding to a decision problem P is simply the subset LP ⊆ Σ∗

whose members are the encoded “yes”-instances of P . We say that an algorithm
decides a language L, if it returns “yes” when presented with an element of L
and “no” otherwise. A problem P is in the class P if there is a polynomial time
algorithm that decides LP .

A problem is NP-complete if every problem in NP can be reduced to it via a
polynomial time algorithm. We say that a problem P1 can be reduced to problem
P2 if there is a polynomial time algorithm that transforms each instance x1 of P1

into an instance x2 of P2 such that x1 is a “yes”-instance of P1 if and only if x2 is
a “yes”-instance of P2. Clearly, if P2 can be solved in polynomial time, then so can
P1.

All hope is not lost when a problem is shown to be NP-complete. The set
of NP-complete problems consist of many crucial real-world problems that need
to be solved despite being hard. For example, many heuristics exist for various
optimization problems that work well in practice, at least for certain subsets of
the problem instances. Sometimes optimization problems admit approximation
algorithms with guaranteed performance. See for example [7] for general discussions
on approximation algorithms and complexity classes. In the majority of cases,
however, the naive brute force algorithms do not work well in practice. Consider
for example another famous NP-complete problem, namely vertex cover:

Vertex Cover

Instance: A graph G and a non-negative integer K ≤ |V (G)|
Question: Is there a set of vertices V ⊆ V (G) of size K such that V covers G?

A set V of vertices is said to cover G if each edge of G is incident to at least one
vertex in V . The brute-force algorithm for this problem simply consists of checking
every vertex subset of size K. There are O(nK) such subsets and as n becomes
large, checking them all, even for small k is infeasible.

In 1986, Fellows and Langston [50], observed that vertex cover could be solved
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in time O(f(K)n3). Later a very simple and elegant algorithm was discovered that
runs in time O(2Kn) [49]. Note how this time complexity separates the size of the
input from the parameter K. The implication is that the algorithm is polynomial
in the size of the input, and exponential only in the parameter. Hence, the problem
is tractable even for large instances, as long as the minimal cover set is small.
Improvements have since been made for vertex cover, and algorithms being able to
handle K up to about 400 have been implemented and used in multiple sequence
alignment problems [27]. This is an example of parameterization of time complexity
and the algorithm mentioned above for vertex cover is called a fixed-parameter
tractable algorithm.

More formally, a paramterized problem is a subset of Σ∗ × N. An instance of
a paramterized problem is a pair (I,K), where K is the so-called parameter. The
run-time of an algorithm for a parameterized problem is a function of |I| and K. A
parameterized problem is said to be fixed-parameter tractable (FPT) if there exists
an algorithm for the problem with time complexity O(f(K) · |I|c), where c is a fixed
constant and f is a function of K that does not depend on I. The parameterized
version of vertex cover can be stated as follows:

k-Vertex Cover

Instance: A graph G and a non-negative integer K ≤ |V (G)|
Parameter: K
Question: Is there a set of vertices V ⊆ V (G) of size K such that V covers G?

We note, in conclusion, that a problem may have many possible parameterizations.
A problem can be fixed-parameter tractable for some parameterizations and not
so for others. There is also a hierarchy of complexity classes in the theory of
parameterized complexity. For a thorough treatment of this subject, we refer the
interested reader to [43].

3.3 Maximum Likelihood Estimation with Expectation

Maximization

Classic statistical inference can be divided into parametric and non-parametric.
In non-parametric inference, no specific type of probability distribution or model
is assumed. Instead, other kinds of hypotheses are made, for example, a com-
mon assumption is that the data are observations of independent and identically
distributed (iid) random variables. It is, in general, quite difficult to incorporate
previous knowledge or beliefs about the underlying real-world structure that has
generated the data in non-parametric inference methods. In parametric inference,
the observed data are assumed to be observations from some family of probabil-
ity distributions. Examples of such distributions include the normal or Gaussian
distribution, the multinomial distribution, and the Dirichlet distribution. Distri-
butions may also be specified using probabilistic (generative) models containing
structural elements attempting to capture the most important features of the real-
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world situation that has generated the data. An example of such a distribution
family is phylogenetic trees that we can think of as generating sequences. In any
case, a distribution belonging to a family is determined by a set of parameters.
For the normal distribution the parameters are the mean and variance, whereas for
phylogenetic trees, parameters include the tree topology and the parameters of our
chosen sequence evolution model (see Section 2.4). The classical inference problem
is then to find, or estimate, the set of parameters that best fit the data according
to some criteria.

The most widely used criteria for estimating the parameters is probably maxi-
mum likelihood (ML). The likelihood of a parameter set θ is simply the probability
of the observed data X given the parameters:

L(θ|X) = p[X |θ].

The maximum likelihood estimate of θ is defined as the θ∗ maximizing the likeli-
hood, or more generally, any function that is proportional to the likelihood. Note
that the likelihood function is really a function of θ alone since we regard the data
as fixed, and is not a probability distribution, i.e., in general

∫
θ
L(θ|x) �= 1.

It is sometimes possible to determine the ML estimate by deriving closed formu-
las, but in many cases such a method is infeasible. A popular computational tech-
nique for parameter estimation is Expectation Maximization (EM). The method
has been in use in different forms for a long time, but was generalized and popular-
ized with the publication of a paper by Dempster, Laird, and Rubin in 1977 [37].
For some notes on the history of the EM algorithm, see [109].

EM has been successfully applied to a wide variety of problems in diverse scien-
tific fields and many modifications and improvements have been suggested, see for
example [109, 79, 110, 55]. In the next subsection, we will give the standard deriva-
tion of the EM algorithm together with a proof of its convergence. Subsequently,
we will discuss the structural EM algorithm of Friedman et al. [60, 61] which is
directly related to the work presented in Paper IV of this thesis.

Standard EM

Let X = {x1, . . . , xN} be the set of observed data, and let θ denote the set of
parameters. In many applications, we also have a set of missing data or hidden
variables. These are sometimes introduced in the model in order to simplify com-
putations of certain probabilities. As a concrete example, assume thatX consists of
a set of points on the real line and that we wish to model the data using a mixture
Y of two normal distributions:

Y1 ∼ N(μ1, σ
2
1),

Y2 ∼ N(μ2, σ
2
2),

Y =

{
Y1 with probability π,

Y2 with probability 1− π.
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Thinking of the model as generative, the above notation has the following interpre-
tation: each data point is generated from distribution Y1 with probability π or Y2

with probability 1− π. In this case, θ consists of five parameters:

θ = (π, μ1, μ2, σ
2
1 , σ

2
2).

The computation of certain probabilities are made easier by introducing a set Z of
hidden variables indicating the distribution from which each data point in X was
generated:

zi =

{
0 if xi was generated from distribution Yi,

1 otherwise.

The idea of the EM algorithm is as follows. At the start of the nth iteration we have
a set of parameters θn. Together with the observed dataX , θn induces a probability
distribution on the hidden variables, Pr[Z|X, θn]. The set of parameters θn+1 for
the next iteration is obtained by finding the θ that maximizes the expectation of
the so-called complete-data log-likelihood

EZ|X,θn
[

log p[X,Z|θ]
]
,

where the expectation is taken over the distribution Pr[Z|X, θn]. The procedure is
guaranteed not to decrease the likelihood, in other words L(θn+1|X) ≥ L(θn|X).
We next show why this actually works.

First, we show that the likelihood can be written as the sum of two expectations:

logL(θ|X) = log p[X |θ]

= log p[X |θ] · 1

= log p[X |θ]

(∑
Z

Pr[Z|X, θ]

)

=
∑
Z

Pr[Z|X, θ] log p[X |θ]

=
∑
Z

Pr[Z|X, θ] log
p[X,Z|θ]

Pr[Z|X, θ]

=
∑
Z

Pr[Z|X, θ] log p[X,Z|θ]−
∑
Z

Pr[Z|X, θ] log Pr[Z|X, θ]

= EZ|X,θ
[

log p[X,Z|θ]
]
− EZ|X,θ

[
log Pr[X |Z, θ]

]
. (3.1)
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For the next result, we use Jensen’s inequality to obtain

logL(θ|X) = log p[X |θ]

= log
∑
Z

p[X,Z|θ]

= log
∑
Z

Pr[Z|X, θ′]
p[X,Z|θ]

Pr[Z|X, θ′]

= logEZ|X,θ′
[
p[X,Z|θ]

Pr[Z|X, θ′]

]

≥ EZ|X,θ′ log
[
p[X,Z|θ]

Pr[Z|X, θ′]

]
(By Jensen’s inequality)

= EZ|X,θ′
[

log p[X,Z|θ]
]
− EZ|X,θ′

[
log Pr[X |Z, θ′]

]
. (3.2)

Noting the similarity between (3.1) and (3.2), we define the famous Q- and R-terms
as

Q(θ, θ′) = EZ|X,θ′
[

log p[X,Z|θ]
]

R(θ) = −EZ|X,θ
[

log Pr[X |Z, θ]
]

Assume that we have a set of parameters θn at the start of the nth iteration and
let

θ∗ = argmax
θ

Q(θ, θn). (3.3)

We now have that

logL(X |θ∗) ≥ Q(θ∗, θn) +R(θn) (By (3.2))

≥ Q(θn, θn) +R(θn) (By definition of θ∗)

= L(X |θn). (By (3.1))

Hence, by choosing θn+1 = θ∗, we are guaranteed not to decrease the likelihood.
All we need to do to implement an EM algorithm is to perform the maximization of
the Q-term in (3.3). The maximization of the Q-term is generally done in two steps:
In the E-step, certain quantities are computed that only depend on the current set
of parameters and the observed data. This is in preparation for the M-step where
the computed quantities are used to find the set of parameters that maximizes the
Q-term.

We note here that maximization of the Q-term is not necessary for convergence.
Convergence to a local optimum is guaranteed as long as we are able to find a set
of parameters θn+1 such that Q(θn+1, θn) ≥ Q(θn, θn). This procedure is called
Generalized EM (GEM) and can be used when maximization of the Q-term is
infeasible. One drawback of GEM compared to standard EM is a potentially slower
rate of convergence.
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In conclusion, both standard EM and generalized EM may suffer from the same
drawbacks as local search methods, and finding a globally optimal solution may
require different heuristics such as using a set of random start values or simulated
annealing strategies.

Structural EM

In 1997, Friedman devised a structural EM algorithm for Bayesian networks, that
beside improving the numeric parameters in each step, also improves the struc-
ture [60]. In 2002, the same approach was used for tree reconstruction [61].

Likelihood-based methods for tree reconstruction have been very successful and
are quite popular. Prior to Friedman’s contribution, methods for ML estimation of
phylogenies used the EM algorithm only for optimization of the parameters on a
fixed tree. When searching for the best topology, each tree considered would have to
be passed to the EM algorithm for parameter optimization. This is computationally
very expensive, and in practice, only a few selected topologies could be considered.
Friedman et al. observed that it is possible to simultaneously improve the topology
and parameters.

In this setting, the input consists of aligned sequences X , and the set of pa-
rameters of the model consist of both the tree topology T and the lengths l of
the tree edges, i.e., θ = (T, l). Just as in standard EM, the parameters θn of the
previous iteration induce a distribution on the space of topologies and lengths. The
crucial observation made by Friedman et al. is that the contribution to the Q-term
from each possible edge is the same for all trees and can be computed once and
for all. These contributions are then used as weights on the set of all pairs of ver-
tices and the problem of finding the best topology given θn is reduced to finding
the bifurcating tree with greatest total weight. Unfortunately, this problem turns
out to be NP-complete. To overcome this difficulty, Friedman et al. use the max-
imum spanning tree algorithm to obtain a tree that is not necessarily bifurcating,
but which is then transformed into a bifurcating tree via modifying steps that are
guaranteed not to decrease the likelihood. Hence, in each iteration of the EM algo-
rithm, both the topology and the parameters are changed, leading to great savings
in computational time.

We note here that an important distinction can be made among structural
EM algorithms. Just as for standard EM and generalized EM, we can distinguish
between structural EM algorithms that respectively, maximize and merely improve
on the Q-term. When possible, an EM algorithm that maximizes the Q-term in
each iteration is preferred due to faster convergence rates. In Paper IV of this
thesis, we provide a structural EM algorithm that maximizes the Q-term in each
step. In order to emphasize the distinction between maximizing and improving the
Q-term, we call our algorithm a global structural EM algorithm.
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3.4 Bayesian Inference with Markov Chain Monte Carlo

Bayesian statistical inference has become increasingly popular in the field of bioin-
formatics. In this section, we will give a brief background on Bayesian statistics
and touch on some of the controversial issues. Finally, we will provide a discussion
on MCMC techniques that is relevant to the work presented in Paper III of this
thesis.

A Philosophical Question

Discussions of Bayesian versus classical statistics usually start with a philosophi-
cal question: what is a probability? The so-called frequentist answer is that the
probability of an event A is the long run proportion of times that event A occurs
during a large number of replications of an experiment. Hence, the probability of
heads in a coin tossing experiment with a fair coin is 0.5 and the probability of
obtaining a six on a roll of a single fair die is 1

6
. In contrast, the Bayesian answer

is that probability is a measure of an individual’s uncertainty about the outcome
of an experiment, with the added constraint that the individual’s opinion must be
consistent, in other words, assignment of probabilities to events must be in accor-
dance with the Kolmogorov axioms of probability theory. In the case of a toss of a
coin and a roll of a die above, most Bayesians too would assign probabilities 0.5 and
1

6
to the events of heads and six, respectively. However, to a Bayesian, any event

can be assigned a probability as a measure of uncertainty, even if the experiment
could never be replicated. More importantly, a Bayesian may assign a probability
to a hypothesis, while to a frequentist, a hypothesis should either be rejected or
retained. A highly cited and enjoyable classic paper on the subject of Bayesian
subjective probability was written by Edwards, Lindman, and Savage [46].

Taking an example from [46], imagine a great prize being offered to predict the
outcome of a coin toss. With no other previous knowledge, both the frequentist and
the Bayesian statistician would assign a probability of 0.5 to the event of heads.
Assume now that once a prediction has been made, you are informed that the
coin has either two heads or two tails. This is a point of departure between the
frequentist and the Bayesian. While the Bayesian, having no other knowledge, is
likely to assign a probability of 0.5 to the hypothesis that the coin has two heads,
to the frequentist it would seem that no such probability can be assigned. In any
case, it would be hard to see why either the Bayesian or the frequentist would have
any reason to change their predictions.

Bayes’s Theorem, Priors, and Posteriors

The name “Bayesian” comes from the frequent application of Bayes’s theorem in
Bayesian inference. Bayes’s theorem simply relates the marginal and conditional
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probabilities of two events:

Pr[A|B] =
Pr[B|A] Pr[A]

Pr[B]
,

when Pr[A] > 0 and Pr[B] > 0. The theorem itself is in no way controversial and
is valid under both the frequentist and Bayesian interpretation of probability. The
controversy arises with the use of priors and computation of posterior probabilities.
Assume that we have a data set D which we believe to be generated by one of n
different fully specified models M1, . . . ,Mn, and that the conditional probabilities
Pr[D|Mi] are well-defined and easily computable. To choose among the models, we
could for example use maximum likelihood and pick the model for which Pr[D|Mi]
is greatest. The Bayesian approach is instead to compute posterior probabilities on
the set of models using Bayes’s theorem:

Pr[Mi|D] =
Pr[D|Mi] Pr[Mi]

Pr[D]
.

Using the law of total probability, the denominator of the right hand side of the
above equation can be written as

Pr[D] =
n∑
i=1

Pr[D,Mi] =
n∑
i=1

Pr[D|Mi] Pr[Mi].

The probability Pr[Mi] is called a prior and represents our belief that model Mi
is the correct model before observing the data. The probability Pr[Mi|D] is called
the posterior and represents our updated belief that Mi is the correct model after
having observed the data.

An example of a continuous case is when we want to estimate a parameter of a
model. Assume that we know that a distributionM has generated the data, but the
parameter θ of M is unknown. The distribution p[θ] represents how likely different
values of θ are prior to having seen the data. After data has been gathered, the
posterior distribution of θ is given by Bayes’s theorem:

p[θ|D] =
Pr[D|θ]p[θ]∫

Pr[D|θ] Pr[θ]dθ
.

We can then estimate θ using the posterior mean E[θ|D] =
∫
θp[θ|D]dθ, or we can

find an interval (a, b) such that, for given α, Pr[a < θ < b|D] =
∫ b
a
p[θ|D]dθ = 1−α.

The use of priors continues to be controversial, and a thorough discussion lies
outside the scope of this thesis. One objection to the use of priors is that they are
not objective, but see [14] for a perspective on objectivity in Bayesian and classic
statistics. Another is that it may be difficult to express one’s beliefs in terms of a
probability distribution and instead one might choose a certain prior for practical
reasons rather than to express one’s true opinions. And besides, humans often
harbor inconsistent opinions that contradict the axioms of probability theory.
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The good news is however that priors do not always have a strong influence on
the results. It can be shown that under certain conditions, an increasing amount
of data will lead to more and more similar posterior distributions [16]. Others have
argued for the use of non-informative priors as being an objective choice when there
is a lack of prior opinion, see for example [81].

There are often other benefits to Bayesian analysis compared to classical statis-
tics that compensate for the use of priors. For example, in phylogenetics, MCMC
techniques have enabled the use of arbitrary prior distributions, and a more efficient
investigation of the state space. Bayesian methods allow us to efficiently deal with
high dimensional models, and to obtain marginal distributions on the parameters of
interest. Also, Bayesian methods allow us to explore posterior distributions rather
than just summary statistics such as mean and variance. For an introduction to
Bayesian statistics, see the excellent book by Peter Lee [95].

MCMC

In Bayesian inference, we are often confronted with various integration and opti-
mization problems. We frequently need to find a marginal distribution or compute
expectations. When dealing with large dimensional spaces, analytic solutions are
usually not readily available. Instead, we can obtain Monte Carlo estimates by
drawing iid samples from a target distribution. These samples can then be used
to approximate the density or expectation of interest. Assume for example that
we draw a set of iid samples x1, . . . , xN from a density p[x] defined on a high-
dimensional space X . The integral∫

X

f(x)p[x]dx

can then be approximated by the sum

1
N

N∑
i=1

f(xi).

Markov Chain Monte Carlo is a method based on Markov chains that allows us
to obtain samples from non-standard distributions from which we cannot draw
samples directly. To use MCMC techniques we need to be able to evaluate at least
ratios of the target distribution.

First, we describe MCMC on finite state spaces. Assume that the state space is
S = {s1, . . . , sn}. A Markov chain on S is a sequence of random variablesX1, X2, . . .
taking values in the state space S such that

Pr[Xn|Xn−1, . . . , X1] = Pr[Xn|Xn−1].

The chain is called homogeneous if

Pr[Xn = s|Xn−1 = s′] = Pr[Xj = s|Xj−1 = s′],
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for all j, n > 1. In other words, a homogeneous Markov chain lacks memory and
the distribution on the states for the next step is fully determined by the current
state. A Markov chain on a finite state space can be represented by a transition
matrix T , where Tij = Pr[Xn = sj |Xn−1 = si] and

∑
j Tij = 1. Now, assume

that we pick a start state randomly from a distribution represented by a row vector
π = (Pr[s1], . . . ,Pr[sn]). The distribution on the states after one transition is given
by πT . In general, the probability distribution on the states after n transitions
is given by πT n. If the transition matrix is both irreducible and aperiodic, then
the distribution on the states will converge to a unique invariant distribution μ
irrespective of the start distribution π, i.e.,

πT n → μ as n→∞,

for any distribution π. A transition matrix is irreducible if any state is reachable
from any other in a finite number of steps. A state i has period k if the length of
any path returning to i is always a multiple of k. A transition matrix with a state
of period k > 1 is called periodic. Otherwise, it is called aperiodic.

A sufficient condition to ensure that μ is the desired distribution p from which
we want to sample is the so-called detailed balance criterion:

piTij = pjTji.

When the state space is infinite, we can instead use the Metropolis-Hastings
algorithm [111, 73]. Assume that we want to sample from a distribution on a
multi-dimensional state space Θ = (Θ1, . . . ,Θm). The components of Θ can be
either discrete, continuous, or a mix of discrete and continuous variables. More
generally, each component can be a multi-dimensional random variable in itself. As
an example, consider phylogeny where Θ could be a phylogenetic tree together with
lengths associated with the edges.

Instead of a transition matrix, the Markov chain is now specified as a set of
proposal distributions, Rk(Θ′k|Θ), k = 1, . . . ,m, that given the current state Θ
propose a change in one of the components Θk according to some distribution. In
other words, the proposed state Θ′ obtained from Rk differs from Θ only in the
kth component: Θi = Θ′i, i �= k. The proposed new state is then accepted with
probability A(Θ,Θ′), in which case Θ′ becomes the new current state, or is rejected
and the current state remains Θ. The component to change in each step is often
picked randomly in each step. In the original Metropolis algorithm, the acceptance
probability is

A(Θ,Θ′) = min
(

1,
Pr[Θ′]
Pr[Θ]

)
,

so that if the probability of the proposed state is greater than the current state,
it is always accepted, and otherwise, it is accepted with probability Pr[Θ′]/Pr[Θ].
One way to achieve detailed balance under this acceptance strategy is to ensure
that

Rk(Θ′k|Θ) = Rk(Θk|Θ′).
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Hastings generalized the Metropolis algorithm to allow non-symmetric proposal
distributions. The acceptance probability is then

A(Θ,Θ′) = min
(

1,
Pr[Θ′]Rk(Θk|Θ′)
Pr[Θ]Rk(Θ′k|Θ)

)
.

This again ensures detailed balance.
For more on Metropolis algorithms and MCMC, and discussions on convergence

rates, tests of convergence, and more, see for example [120, 98].



Chapter 4

Computational Methods and

Models for Duplications and LGTs

This chapter gives an overview of the different phylogenetic methods concerned
with gene duplications and LGTs. Algorithms have been developed for a variety
of problems, such as tree reconciliation, species tree reconstruction, and orthology
analysis. Tree reconciliation is the problem of explaining the differences between a
species tree and a corresponding gene tree by giving a plausible evolutionary history
of the latter inside the former. Species tree reconstruction refers to problems in
which an optimal species tree is sought when given a set of incongruent gene trees.
Alternatively, the input can consist of sequences from different gene families, in
which case substitution models are also taken into account when seeking optimal
species trees. In orthology analysis, the problem is determining whether or not
pairs of sequences are orthologous. Data in this case can consist of either trees,
sequences, or a mix of trees and sequences.

The first section of this chapter deals with the observation that certain problems
in parasitology and biogeography are analogous to those of molecular evolution.
The subsequent three sections give a background on previous work on the prob-
lems mentioned in the previous paragraph. A common feature of all the methods
discussed is their focus on duplications and LGTs. Sections 4.5 and 4.6 discuss the
work presented in Papers I, II, and III of this thesis.

4.1 Trees Within Trees

The notion of a tree structure evolving inside another tree structure has been used in
at least three separate disciplines: molecular evolution, parasitology, and biogeog-
raphy. In each case, questions arise about how a host is tracked by an associate. In
molecular evolution, genes track organisms; in parasitology, parasites track hosts;
and in biogeography, organisms track areas. The structure most widely used to
depict histories of hosts and associates is that of a tree. Different historic events
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cause the trees of hosts and their associates to be incongruent, thus creating the
need to specify exactly what those events are and where they have occurred. As
it turns out, each event considered in one discipline has an analogue in the others
and results in the same type of incongruity between host and associate trees. The
fundamental similarity between the problems in the different disciplines was not
recognized until the 1990s, although similar work in the different disciplines had
been done independently. A clear exposition on this subject can be found in [129].

In molecular evolution, the events under consideration are speciations, duplica-
tions, LGTs, and losses. The corresponding events in parasitology are co-speciation,
independent parasite speciation, host switching, and lineage sorting, respectively.
In biogeography we have vicariance, sympatry, dispersal, and extinction. The fun-
damental observation here is that a single model in which an associate tree evolves
inside a corresponding host tree is adequate to capture all three cases. In fact,
we can find more examples where such a model can be applied; for example, the
evolution of protein domains inside gene trees.

In the following sections, we will formulate problems and discuss methods using
terms from molecular evolution.

4.2 The Duplication-Loss Model

In the duplication-loss model, we assume that any incongruities between an organ-
ismal tree and a corresponding gene tree are due to duplications and losses. In
other words, we assume that the mode of genetic transfer is strictly vertical from
parent to child, although genes can be duplicated or lost and this change in genetic
make-up is sometimes spread to the entire population and is fixed. Clearly, the
history of a set of homologous genes represented by a gene tree is then restricted
to having occurred inside the edges of a corresponding species tree. Each internal
gene tree vertex corresponds to either a duplication event or a speciation event.
See Figure 4.1 where a gene tree is drawn inside a species tree showing the evolu-
tionary history of a set of genes; this is an example of tree reconciliation in which a
biologically feasible explanation is provided for the disparity between the host and
associate trees.

In 1970, Fitch [57] made a distinction between paralogous and orthologous genes,
i.e., genes whose least common ancestor in the gene tree is a duplication or specia-
tion, respectively. Similar concepts had been developed much earlier in parasitology,
see for example [28]. The development of methods for detecting pairs or groups of
orthologous genes is an important step in the prediction of gene function. Tradi-
tionally, trees are taken as the data to be analyzed. A species tree is assumed given,
together with a gene tree that has been constructed from sequences using methods
analogous to those discussed in Section 2.4. Given a species tree and a correspond-
ing gene tree, an important problem is determining the evolutionary history of the
gene tree within the species tree and to answer questions such as which pairs of
genes are orthologous and which paralogous?.
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Figure 4.1: Example of genes evolving inside a species tree according to the duplication-

loss model.

We will use the following notation in the discussions below. We take all trees
to be rooted binary trees. The edges of a rooted tree are assumed to be directed
away from the root. The subtree of a tree T rooted at the vertex u is denoted
Tu. The correspondence between a species tree S and a gene tree G is given via a
leaf-mapping function σ : L(G)→ L(S) that maps each gene to the extant species
to which it belongs. For convenience, we assume that σ is extended to map sets
of gene tree leaves to the corresponding sets of species tree leaves. The function
mapping a set of tree vertices to their least common ancestor is denoted lca .

In 1979, Goodman et al. gave a parsimony method for tree reconciliation that
maps the gene tree inside the species tree such that the number of inferred dupli-
cations and losses is minimized. This mapping is called the least common ancestor
mapping, λ : V (G)→ V (S), and is defined by

λ(u) = lca (σ(L(Gu))).

Note that λ maps vertices of G to vertices of S. When describing a possible evo-
lutionary history G inside S, the gene tree vertices representing speciation events
are associated with the species tree vertex that corresponds to the same specia-
tion event. A duplication vertex in G is associated with the edge of S in which
the duplication occurred. The interpretation of the mapping given by λ is that if
u ∈ V (G) represents a speciation, then λ(u) represents that same speciation event,
and if u is a duplication, then the duplication occurred along the incoming edge of
λ(u).

Building on the framework provided by Goodman et al., Guigó et al. attempted
to find the species tree whose reconciliation with a set of gene trees requires a min-
imum number of duplications [65]. Their method can be described as a heuristic
local search method or hill-climbing where the neighborhood of a tree is defined
by nearest neighbor interchange (NNI) operations [116]. Ma et al. proved hardness
results for several species tree reconstruction methods [102], and several heuris-
tic methods for species tree reconstruction have been developed [136, 128, 151].
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Assuming that at least one gene tree has had a constant number of lineages in
each species tree lineage, there is an FPT algorithm for reconstructing the optimal
species tree [68].

Going beyond parsimony methods, probabilistic models of gene evolution for the
duplication-loss model have recently been proposed. In [4, 5, 139, 155], a complete
framework for computational analysis in a probabilistic setting has been developed.
The model is most conveniently described as a generative model that generates a
gene tree and sequences on a give species tree with times associated with the species
tree edges. The model of evolution is based on the standard birth-death process [86]
which generates duplications and losses along the edges of a species tree resulting
in a gene tree. Sequences are then generated according to an arbitrary choice of
standard substitution models. Adopting a Bayesian approach and using MCMC
techniques, it is possible to compute various posterior probabilities of interest such
as the probability of a gene tree given sequences, or the probability of two sequences
being orthologous or paralogous. Posterior probability distributions of duplication
and loss rates can also be studied. The latest development in this direction extends
the model with an iid model of sequence evolution rate variation across gene tree
edges [155]. Methods that simultaneously consider sequence evolution and gene
tree and species tree reconciliation when identifying duplications have been termed
duplication analysis. An ad hoc method for duplication analysis that also takes
gene order information into account was presented in [149].

4.3 The Transfer-Loss Model

Early attempts at defining evolutionary models taking LGTs into account include
the network model [147, 74, 75]. A related approach considers the subtree trans-
fer operation on a tree in which a subtree is moved to a different location. The
corresponding optimization problem is to find a minimal set of subtree transfer
operations that transform one given tree to another [34, 33, 76]. Nakhleh et al.
developed a heuristic for phylogenetic network reconstruction given a species tree
and a set of gene trees [119].

Analogous to the case of duplications, tree reconciliation problems have been
considered in settings where only transfers and losses are take into account. Vari-
ations on parsimony problems were defined and considered in [69].

Probabilistic models have also been suggested. In [82], a model was described in
which sequences evolve along a network. Huelsenbeck et al. developed a Bayesian
framework in the context of hosts and parasites for detecting host switches in which
the data to be analyzed consists of host and parasite sequences. The model considers
only the case where each host is tracked by a single parasite species so that when a
host acquires a new parasite, the parasite formerly associated with the host becomes
extinct. In [97], a generative model for LGT, without duplications and losses, based
on a Poisson process rather than a birth-death process, was presented and used to
generate synthetic data. Biological data was also compared with synthetic data
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in order to infer LGT rates. In [17], Boc and Makarenkov develop a method for
detecting LGTs based on distances between the sequences used to infer the species
tree and gene tree. A heuristic algorithm for inferring a network using a minimum
number of LGTs from a species tree and a corresponding set of gene trees was
developed by Nakhleh et al. in [119].

Other, non-phylogenetic, methods for detection of LGTs include the use of atyp-
ical sequence composition, which can be used to detect recent LGTs, see for exam-
ple [9].

4.4 The Duplication-Transfer-Loss Model

Based on the idea of reconciled trees, Charleston developed a computer program,
Jungles [26], attempting to solve a parsimony variant of tree reconciliation that
considers both duplications and transfers. Unfortunately, the presentation lacks
mathematical rigor and is plagued by errors in proofs. The time complexity of the
method was not analyzed, and in fact, is probably exponential. Further evidence
to support this conjecture is found in Paper I of this thesis where it is shown that
finding most parsimonious reconciliations that are temporally feasible is NP-hard.

Although probabilistic models of gene evolution for the duplication-transfer-
loss model (DTL-model) have been defined, see for example [32], these have not
previously been used to infer transfers or to reconcile trees. A probabilistic model
based on the birth-death process, as described in Paper III of this thesis, was in
fact used to produce synthetic data for analysis in [67]. In [32], a similar model
was suggested, but was applied only to gene family sizes. The two models differ in
that the model in [32] assumes that the transfer rate is constant and independent
of the number of gene lineages currently present.

4.5 DTL-scenarios

In this section, we discuss the combinatorial model and methods for tree reconcil-
iation presented in Papers I and II. The work is a contribution along the lines of
the work of Goodman et al. but for the much more complicated case when both
duplications, transfers, and losses are considered.

We consider as input a species tree S and a gene tree G, both rooted binary
trees. The association of genes with species is given by a leaf-mapping function
σ : L(G)→ L(S). For convenience, we extend σ to map sets of gene tree leaves to
the corresponding sets of species.

Given S, G, and σ, our aim in Paper I is to find the most parsimonious rec-
onciliation explaining the evolution of G with respect to S. Adding LGT as an
evolutionary event yields a complexity that requires strict formal definitions. In
order to achieve both biological and mathematical soundness in our definitions, we
introduce the concept of DTL-scenarios whose associated costs are defined as the
number of duplications and LGTs. We do not need to consider every biologically



46
CHAPTER 4. COMPUTATIONAL METHODS AND

MODELS FOR DUPLICATIONS AND LGTS

A B C D E
· ·

Figure 4.2: Example of a non-parsimonious reconciliation in the DTL-model.

possible reconciliation between S and G in a parsimony setting, and therefore, the
definition of DTL-scenarios have been carefully crafted to ensure both biological
feasibility as well as non-redundancy. Consider, for example, the evolutionary his-
tory shown in Figure 4.2. Although the example is biologically possible, there is no
need to consider such histories in a parsimony setting. A thorough justification for
our definition is given in Paper II.

A DTL-scenario for S, G, and σ consists of a partition {Σ,Δ,Θ} of the internal
vertices of G, a subset Ξ ⊂ E(G), and a function γ : V (G)→ V (S). The subset Ξ
consists of all the transfer edges of G. The parts Σ, Δ, and Θ correspond to the
speciation, duplication, and transfer vertices of G, respectively. Finally, γ maps the
gene tree into the species tree indicating where the speciations, duplications, and
lateral gene transfers have occurred. Formally, A DTL-scenario for a species tree
S, a gene tree G, and a leaf-mapping function σ : L(G)→ L(S) is an octuple

(S,G, σ, γ,Σ,Δ,Θ,Ξ),

where S and G are rooted binary trees, σ : L(G)→ L(S) is a leaf-mapping function,
γ : V (G)→ V (S) is an extension of σ, Σ, Δ, and Θ form a partition of the internal
vertices of G, and Ξ ⊂ E(G) is a subset of the gene tree edges such that:

(I) If u is an internal gene tree vertex with children v and w, then

a) γ(u) is not a proper descendant of γ(v) or γ(w)

b) At least one of γ(v) and γ(w) is a descendant of γ(u)

(II) (u, v) ∈ Ξ if and only if γ(u) is incomparable to γ(v)

(III) If u is an internal gene tree vertex with children v and w, then

a) u ∈ Θ if and only if (u, v) ∈ Ξ or (u,w) ∈ Ξ

b) u ∈ Σ only if γ(u) = lca {γ(v), γ(w)} and γ(v) and γ(w) are incompara-
ble
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Figure 4.3: An example of a cyclic DTL-scenario.

c) u ∈ Δ only if γ(u) is an ancestor of lca {γ(v), γ(w)}

We also need to consider the fact that some sets of LGTs can lead to temporally
infeasible reconciliations, an example of which is shown in Figure 4.3. We say that
a DTL-scenario is acyclic if and only if

(V) There is a total order < on V (S) such that

a) if (x, y) ∈ E(S), then x < y

b) if (u, v), (u′, v′) ∈ Ξ and v is an ancestor of v′, then p(γ(u)) < γ(v′)

In Paper II, we prove that the condition of acyclicity given above is both sufficient
and necessary to ensure temporal feasibility.

A major result in Paper I is that finding most parsimonious acyclic DTL-
scenarios is NP-hard. However, earlier results suggest that in most data-sets cyclic-
ity is usually not a problem. Therefore, dropping the requirement of acyclicity
we develop a polynomial-time dynamic programming (DP) algorithm as well as an
FPT-algorithm for finding most parsimonious DTL-scenarios. Our algorithms are
applied to biological data that have been previously analyzed in the literature with
respect to LGTs.

In Paper II, we extend our model by allowing arbitrary costs to be associated
with duplications and LGTs and give a DP algorithm for finding minimal-cost DTL-
scenarios. The algorithm in Paper II constitutes a considerable improvement on
the time complexity of the DP algorithm in Paper I.

For any species tree and gene tree pair, there are only a finite number of DTL-
scenarios. The algorithms mentioned so far are able to find optimal DTL-scenarios
for any given cost scheme. Due to the combinatorial nature of the problem, there
are sets of cost schemes with the same set of optimal DTL-scenarios. An interesting
computational problem is to partition the space of cost schemes based on the sets
of optimal DTL-scenarios. This is analogous to the problem of parametric sequence
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alignment [66]. In Paper II, we give a polynomial-time algorithm for parametric
tree reconciliation. With this algorithm at our disposal, we are able to obtain the
set of all DTL-scenarios that are optimal under any cost scheme. We then use this
method to perform tests on synthetic data, yielding very encouraging results, that
show the trade-off between sensitivity and specificity for different cost schemes.

4.6 A Comprehensive Probabilistic Model of Gene

Evolution

In Paper III, we develop a probabilistic model of gene evolution with duplications,
LGTs, and losses. To our knowledge, this is the first such probabilistic model that
has been used for inference of duplications and LGTs.

We assume that a fixed species tree is given with divergence times associated
with its vertices. The model is best described as first generating a gene tree with
branch lengths after which some standard substitution model can be used to gen-
erate sequences. The model uses a standard birth-death process to generate a gene
tree with respect to the species tree given rates for duplications, LGTs, and losses.
The resulting gene tree has times associated with its edges. We achieve a relaxed
molecular clock by assuming that substitution rates on gene tree edges are iid Γ-
distributed variables. The rates obtained from the Γ-distribution, together with
edge times, induce branch lengths on the edges of the gene tree. Finally, a substi-
tution model is used to generate sequences. In Paper III, we use the JTT model,
but any standard substitution model can be used.

Many interesting computational problems can be defined based on the model
described above. We provide a Bayesian framework for the analysis of sequence
data using MCMC techniques. We use priors on the parameters of the model,
namely the rates of duplication, LGT, and gene loss and the mean and variance
of the Γ distribution. A state in our Markov chain is a triple (G, l, θ), where G
is a gene tree, l is a function assigning branch lengths to the edges of G, and θ
is the set of birth-death rates and the mean and variance of the Γ distribution.
By using standard MCMC techniques, interesting posterior distributions can be
studied. Examples include the posterior distribution on the gene tree topologies,
the LGT or duplication rate, and the number of LGTs.

In order to use MCMC, we need to be able to compute ratios of posterior
probabilities of the form Pr[G, l,D|θ], where D is the data to be analyzed in the
form of sequences (since the species tree is fixed, we omit it from our notation). We
can rewrite the probability of a state in our Markov chain as

Pr[G, l, θ|D] =
Pr[D|G, l] Pr[G, l|θ] Pr[θ]

Pr[D]
.

When computing ratios of posterior probabilities, the denominator in the above
expression will cancel, and therefore, we do not need to compute Pr[D]. Pr[θ] is
simply our prior distribution on the parameters, and Pr[D|G, l] can be computed
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according to our chosen substitution model. A major contribution of Paper III is an
algorithm for computing the probability Pr[G, l|θ]. More specifically, we approxi-
mate Pr[G, l|θ] by introducing discretization points on the species tree and applying
a mix of dynamic programming algorithms and techniques from numerical analysis.





Chapter 5

Modeling Cancer Progression

This chapter provides a short background on cancer progression models, and Sec-
tion 5.2 contains a description of the work presented in Paper IV.

5.1 Overview of Current Methods

Mathematical modeling of cancer progression started more than fifty years ago with
simple, yet groundbreaking, models of tumorigenesis [122, 3, 90]. The early models
all assumed that cancer is a stochastic multistep process with small transition
rates. A more recent example in that direction is [83]. As noted in Section 2.6,
cancer progression is an evolutionary process, and therefore, it is not surprising that
methods and models from population genetics have been used extensively, see [113]
for a review.

In this thesis, we will follow a different line of research, which started with the
introduction of Oncogenetic Trees (OTs) by Desper et al. [38]. Since Vogelstein’s
path model of colon cancer, numerous narrative models for progression of diverse
cancer types have been suggested, for example [80, 141, 146]. Such models are often
the result of ad hoc handmade reconstructions. The introduction of OTs was an
attempt at a more stringent mathematical modeling of cancer progression. An OT
is a rooted tree where each vertex represents a specific genetic aberration and there
is a probability associated with each edge. An OT generates a set of aberrations
by first choosing a set of edges, each independently and according to its associated
probability. The set of vertices reachable from the root, using only the chosen edges,
is then the set of generated aberrations. In this way, an OT induces a probability
distribution on the power set of all aberrations.

Given cross-sectional data, i.e., sets of aberrations where each set is from a
unique tumor or patient, the computational task is to find the correct OT. Des-
per et al. showed that computing a specific weight function on the set of all pairs
of vertices and then using Edmonds’s maximum branching algorithm to obtain the
topology, the correct tree will be recovered with high probability.
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One problem in OTs is that once progression stops at some vertex u, i.e., when
none of the outgoing edges of u are chosen in the first step, then progression cannot
reach any of the descendants of u. Biological data is almost always noisy, and
in any case, real cancer progression is not tree like. The result is that usually
every OT, except the OTs with a star topology, assign zero probability to some of
the data, and therefore, using likelihood methods is not straightforward. Another
problem is that cancer progression is best described using acyclic graphs that allow
an aberration to be obtained via different pathways.

In an attempt to capture more of the graph-like progression of cancers, Beeren-
winkel et al. used mixtures of oncogenetic trees [12, 13, 130]. In order to assign
positive probabilities to all data points in the input, the topology of the first OT was
kept a star tree. For inference of mixtures, they developed an EM-like algorithm,
which has not been proven to deliver locally optimal ML solutions.

5.2 Hidden-variable Oncogenetic Trees

In Paper IV, we introduce Hidden-variable Oncogenetic Trees (HOTs) and mix-
tures thereof (HOT-mixtures) in an attempt to remedy some of the problems with
traditional OTs, while taking advantage of the simplicity of tree structures.

A HOT is a tree where each vertex is associated with a pair of hidden and visible
variables. The hidden variable indicates true progression while the visible variable
indicates the outcome of a specific experiment, e.g., the absence or presence of a
genetic aberration. The hidden and visible variables associated with a vertex u are
denoted Z(u) and X(u), respectively. The values of all variables are assumed to be
zero (absence) or one (presence). The distribution on the values of each variable
is determined by two conditional probability distributions so that a total of four
conditional distributions are associated with each vertex:

Pr[X(u)|Z(u) = 0],

Pr[X(u)|Z(u) = 1],

Pr[Z(u)|Z(p(u)) = 0],

Pr[Z(u)|Z(p(u)) = 1],

where p(u) denotes the parent of u. Note that the visible variable at a vertex
depends only on the hidden variable at the same vertex, and that the hidden variable
only depends on the hidden variable of the parent.

When generating a set of aberrations, the values of the hidden variables are de-
termined first. This is similar to oncogenetic trees, except that the hidden variable
of a vertex can receive the value one even if its parent has not. The probabil-
ity Pr[Z(u) = 1|Z(p(u)) = 0], which is normally small, can be interpreted as the
probability that an event associated with a later stage of progression occurs spon-
taneously although the stages that directly precede it have not been reached. Once
the values of the hidden variables are determined, the visible variables receive their
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values. The probability Pr[X(u) = 1|Z(u) = 0] is interpreted as the probability of
a false positive and the probability Pr[X(u) = 0|Z(u) = 1] as a false negative. The
latter can also include the probability that the progression has reached u but via a
different set of events than the aberration associated with u. The set of aberrations
generated are the aberrations associated with the vertices whose visible variables
have value one.

Paper IV also includes a description of HOT-mixtures. A HOT-mixture consists
of a set of HOTs, T1, . . . , Tn, together with a probability distribution on the same.
To generate data from a mixture, we first chose a HOT according to the given
probability distribution and then generate a set of aberrations from the chosen
HOT.

Global structural EM algorithms for inferring HOTs and HOT-mixtures consti-
tute the major computational contributions of Paper IV.





Chapter 6

Overview of Included Articles

and Manuscripts

Paper I: We define a combinatorial model for the reconciliation of gene and species
trees using gene duplication, lateral gene transfer, and gene loss. A recon-
ciliation is said to be cyclic if its set of transfers are temporally infeasible.
We prove that finding most parsimonious acyclic reconciliations is NP-hard.
However, simulations have previously shown that in most cases the most par-
simonious reconciliations are acyclic. Dropping the requirement of acyclicity,
we provide efficient algorithms for construction of most parsimonious recon-
ciliations. We also analyze a biological dataset with our tools and show that
our methods work well in practice.

Paper II: We continue to build on the framework provided by our model in Pa-
per I. A thorough discussion on the soundness of our model presented in
Paper I is provided. Next, we extend our model to allow arbitrary costs to be
associated with duplications and lateral gene transfers and develop efficient
methods for finding minimal-cost reconciliations. Analogous to parametric se-
quence alignment, we derive polynomial-time algorithms for parametric tree
reconciliation. Tests are performed on synthetic data that show the perfor-
mance of our methods.

Paper III: Going beyond combinatorial methods, we define a comprehensive prob-
abilistic model of gene evolution that incorporates a birth-death process gen-
erating duplications, lateral gene transfers, and losses, together with a sub-
stitution model with a relaxed molecular clock. To our knowledge, this is the
first probabilistic model used to simultaneously infer duplications and lateral
gene transfers, and is more advanced than any probabilistic model that in-
cludes LGT as an evolutionary event. We present methods based on MCMC,
numerical analysis, and dynamic programming for computing various poste-
rior distributions and probabilities, including the distribution of rates, gene
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tree topologies, and counts of lateral gene transfer events.

Paper IV: We define Hidden-variable Oncogenetic Trees (HOTs) and mixtures
thereof (HOT mixtures) to capture cancer progression pathways. Vertices of
a HOT represent specific genetic aberrations and a pair of hidden and visible
variables are associated with each vertex. The hidden variables indicate true
progression, while the visible variables indicate outcome of experiments for
detection of specific aberrations. Global structural EM algorithms are pre-
sented for maximum likelihood estimation of HOTs and HOT mixtures from
cross sectional data. Analysis of the performance of our methods on synthetic
as well as biological data are presented.



Bibliography

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molec-
ular Biology of the Cell. Garland Science, 2007.

[2] D.J. Araten, D.W. Golde, R.H. Zhang, H.T. Thaler, L. Gargiulo, R. Notaro,
and L. Luzzatto. A quantitative measurement of the human somatic mutation
rate. Canc res, 65(18):8111, 2005.

[3] P. Armitage and R. Doll. The age distribution of cancer and a multi-stage
theory of carcinogenesis. Br J Cancer, 8(1):1–12, Mar 1954.

[4] L. Arvestad, A.C. Berglund, J. Lagergren, and B. Sennblad. Gene tree recon-
struction and orthology analysis based on an integrated model for duplica-
tions and sequence evolution. Proceedings of the eighth annual international
conference on research in computational molecular biology, pages 326–335,
2004.

[5] L. Arvestad, J. Lagergren, and B. Sennblad. The gene evolution model and
computing its associated probabilities. J ACM, 56(2):1–44, 2009.

[6] K. Atteson. The performance of neighbor-joining methods of phylogenetic
reconstruction. Algorithmica, 25(2):251–278, 1999.

[7] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complexity and approximation. Springer New York, 1999.

[8] O.T. Avery, C.M. MacLeod, and M. McCarty. Chemical nature of the sub-
stance inducing transformation of pneumococcal types. induction of transfor-
mation by a desoxyribonucleic acid fraction isolated from pneumococcus type
III. J Exp Med, 79:137–58, 1944.

[9] R.K. Azad and J.G. Lawrence. Detecting laterally transferred genes: use of
entropic clustering methods and genome position. Nucleic Acids Res, 35(14):
4629–39, 2007.

[10] J.A. Bailey and E.E. Eichler. Primate segmental duplications: crucibles of
evolution, diversity and disease. Nat Rev Genet, 7(7):552–564, 2006.

57



58 BIBLIOGRAPHY

[11] E. Bapteste, E. Susko, J. Leigh, D. MacLeod, R.L. Charlebois, and W.F.
Doolittle. Do orthologous gene phylogenies really support tree-thinking?
BMC Evol Biol, 5(1):33, 2005.

[12] N. Beerenwinkel, J. Rahnenfuhrer, M. Daumer, D. Hoffmann, R. Kaiser,
J. Selbig, and T. Lengauer. Learning multiple evolutionary pathways from
cross-sectional data. J Comput Biol, 12(6):584–598, Jul 2005.

[13] N. Beerenwinkel, J. Rahnenfuhrer, R. Kaiser, D. Hoffmann, J. Selbig, and
T. Lengauer. Mtreemix: a software package for learning and using mixture
models of mutagenetic trees. Bioinformatics, 21(9):2106–2107, May 2005.

[14] J.O. Berger and D.A. Berry. Statistical analysis and the illusion of objectivity.
Am Sci, 76(2):159–165, 1988.

[15] M.J. Bissell and D. Radisky. Putting tumours in context. Nat Rev Genet, 1
(1):46–54, 2001.

[16] D. Blackwell and L. Dubins. Merging of opinions with increasing information.
Ann Math Stat, pages 882–886, 1962.

[17] A. Boc and V. Makarenkov. New efficient algorithm for detection of hori-
zontal gene transfer events. In Algorithms in Bioinformatics: Third Interna-
tional Workshop, WABI 2003, Budapest, Hungary, September 15-20, 2003:
Proceedings, page 190. Springer, 2003.

[18] C.B. Bridges. Duplication. Anat Rec, 15:357–358, 1918.

[19] C.B. Bridges. Salivary chromosome maps. J Hered, 26:60–64, 1935.

[20] J.R. Brown. Ancient horizontal gene transfer. Nat Rev Genet, 4(2):121–132,
2003.

[21] T.A. Brown. Genomes. John Wiley and Sons, Inc., 2002.

[22] F.G. Brunet, H.R. Crollius, M. Paris, J.M. Aury, P. Gibert, O. Jaillon,
V. Laudet, and M. Robinson-Rechavi. Gene loss and evolutionary rates fol-
lowing whole-genome duplication in teleost fishes. Mol Biol Evol, 23(9):1808–
1816, 2006.

[23] A. Caignard, M.S. Martin, M.F. Michel, and F. Martin. Interaction between
two cellular subpopulations of a rat colonic carcinoma when inoculated to the
syngeneic host. Int J Canc, 36(2), 1985.

[24] M.A.A. Castro, T.T.G. Onsten, R.M.C. de Almeida, and J.C.F. Moreira. Pro-
filing cytogenetic diversity with entropy-based karyotypic analysis. J Theor
Biol, 234(4):487–495, 2005.



59

[25] L.L. Cavalli-Sforza and A.W. Edwards. Phylogenetic analysis. models and
estimation procedures. Am J Hum Genet, 19(3 Pt 1):233–257, May 1967.

[26] M.A. Charleston. Jungles: a new solution to the host/parasite phylogeny
reconciliation problem. Math Biosci, 149(2):191, 1998.

[27] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P.J. Taillon. Solving
large FPT problems on coarse-grained parallel machines. J Comput Syst Sci,
67(4):691–706, 2003.

[28] T. Clay. Some problems in the evolution of a group of ectoparasites. Evolution,
pages 279–299, 1949.

[29] P.F. Cliften, R.S. Fulton, R.K. Wilson, and M. Johnston. After the duplica-
tion: gene loss and adaptation in Saccharomyces genomes. Genetics, 172(2):
863–872, 2006.

[30] B. Crespi and K. Summers. Evolutionary biology of cancer. Trends Ecol Evol,
20(10):545–552, 2005.

[31] F.H. Crick. Central dogma of molecular biology. Nature, 227(5258):561–563,
1970.

[32] M. Csűrös and I. Miklós. A probabilistic model for gene content evolution with
duplication, loss and horizontal transfer. In In Tenth Annual International
Conference on Research in Computational Molecular Biology (RECOMB),
pages 206–220. Springer, 2006.

[33] B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp. On the linear-cost
subtree-transfer distance between phylogenetic trees. Algorithmica, 25(2):
176–195, 1999.

[34] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang. On distances
between phylogenetic trees. In Proceedings of the eighth annual ACM-SIAM
symposium on Discrete algorithms, pages 427–436. Society for Industrial and
Applied Mathematics Philadelphia, PA, USA, 1997.

[35] W.H. Day. Computational complexity of inferring phylogenies from dissimi-
larity matrices. Bull Math Biol, 49(4):461–467, 1987.

[36] P. Dehal and JL Boore. Two rounds of whole genome duplication in the
ancestral vertebrate. PLoS Biol, 3(10):e314, 2005.

[37] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. J Roy Stat Soc Ser B, pages 1–38,
1977.



60 BIBLIOGRAPHY

[38] R. Desper, F. Jiang, O.P. Kallioniemi, H. Moch, C.H. Papadimitriou, and
A.A. Schaffer. Inferring tree models for oncogenesis from comparative genome
hybridization data. J Comput Biol, 6(1):37–51, Spr 1999.

[39] F.X. Diebold and C. Li. Forecasting the term structure of government bond
yields. J Econometrics, 130(2):337–364, 2006.

[40] D.S. Dolberg, R. Hollingsworth, M. Hertle, and M.J. Bissell. Wounding and
its role in RSV-mediated tumor formation. Science, 230(4726):676, 1985.

[41] W.F. Doolittle. Phylogenetic classification and the universal tree. Science,
284(5423):2124–9, 1999.

[42] W.F. Doolittle and E. Bapteste. Pattern pluralism and the tree of life hy-
pothesis. Proc Natl Acad Sci U S A, 104(7):2043, 2007.

[43] R.G. Downey and M.R. Fellows. Parameterized complexity. Springer Verlag,
1999.

[44] R.C. Edgar and S. Batzoglou. Multiple sequence alignment. Curr Opin Struct
Biol, 16(3):368–373, Jun 2006.

[45] A.W.E. Edwards and L.L. Cavalli-Sforza. The reconstruction of evolution.
Ann Hum Genet, 27:105–106, 1963.

[46] W. Edwards, H. Lindman, and L.J. Savage. Bayesian statistical inference for
psychological research. Psychol Rev, 70(3):193–242, 1963.

[47] I. Elias and J. Lagergren. Fast neighbor joining. Theor Comput Sci, 410
(21–23):1993–2000, 2009.

[48] J.S. Farris. Inferring phylogenetic trees from chromosome inversion data. Syst
Zool, 27:275–284, 1978.

[49] M.R. Fellows. On the complexity of vertex set problems. Technical report,
Technical report, Computer Science Department, University of New Mexico,
1988.

[50] M.R. Fellows and M.A. Langston. Nonconstructive advances in polynomial-
time complexity. Inf Process Lett, 26(3):155–162, 1987.

[51] J. Felsenstein. Alternative methods of phylogenetic inference and their inter-
relationship. Syst Zool, 28:49–62, 1979.

[52] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likeli-
hood approach. J Mol Evol, 17(6):368–376, 1981.

[53] J. Felsenstein. Inferring phylogenies. Sinauer Associates Sunderland, 2003.



61

[54] J. Felsenstein and G.A. Churchill. A hidden Markov model approach to
variation among sites in rate of evolution. Mol Biol Evol, 13(1):93–104, Jan
1996.

[55] J.A. Fessler and A.O. Hero. Space-alternating generalized expectation-
maximization algorithm. IEEE Trans Signal Process, 42(10):2664–2677, 1994.

[56] Crick F.H. On protein synthesis. In Symposia of the Society for Experimental
Biology, volume 12, page 138. Symp Soc Exp Biol, 1958.

[57] W.M. Fitch. Distinguishing homologous from analogous proteins. Syst Zool,
pages 99–113, 1970.

[58] W.M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science,
155(760):279–284, Jan 1967.

[59] A. Force, M. Lynch, F.B. Pickett, A. Amores, Y. Yan, and J. Postlethwait.
Preservation of duplicate genes by complementary, degenerative mutations.
Genetics, 151(4):1531–1545, 1999.

[60] N. Friedman. Learning belief networks in the presence of missing values and
hidden variables. In proc 14th Int Conf on Machine Learning, page 125.
Morgan Kaufmann Pub, 1997.

[61] N. Friedman, M. Ninio, I. Pe’er, and T. Pupko. A structural em algorithm
for phylogenetic inference. J Comp Biol, 9(2):331–353, 2002.

[62] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman San Francisco, 1979.

[63] O. Gascuel. Concerning the NJ algorithm and its unweighted version, UNJ.
In B. Mirkin, F. McMorris, F. Roberts, and A. Rhetsky, editors, Mathematical
Hierarchies and Biology, pages 149–170. AMS, Providence, 1997.

[64] J.P. Gogarten, W.F. Doolittle, and J.G. Lawrence. Prokaryotic evolution in
light of gene transfer. Mol Biol Evol, 19(12):2226–2238, 2002.

[65] R. Guigó, I. Muchnik, and T.F. Smith. Reconstruction of ancient molecular
phylogeny. Mol Phylogenet Evol, 6(2):189–213, 1996.

[66] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

[67] M. Hallett, J. Lagergren, and A. Tofigh. Simultaneous identification of dupli-
cations and lateral transfers. In Proceedings of the eighth annual international
conference on Resaerch in computational molecular biology, pages 347–356.
ACM New York, NY, USA, 2004.



62 BIBLIOGRAPHY

[68] M.T. Hallett and J. Lagergren. New algorithms for the duplication-loss model.
Proceedings of the fourth annual international conference on computational
molecular biology, pages 138–146, 2000.

[69] M.T. Hallett and J. Lagergren. Efficient algorithms for lateral gene transfer
problems. Proceedings of the fifth annual international conference on compu-
tational biology, 2001.

[70] A.T. Hamilton, S. Huntley, M. Tran-Gyamfi, D.M. Baggott, L. Gordon, and
L. Stubbs. Evolutionary expansion and divergence in the ZNF91 subfamily
of primate-specific zinc finger genes. Genome Res, 16(5):584–594, 2006.

[71] D. Hanahan and R.A. Weinberg. The hallmarks of cancer. Cell, 100(1):57–70,
Feb 2000.

[72] M. Hasegawa, H. Kishino, and T. Yano. Dating of the human-ape splitting
by a molecular clock of mitochondrial DNA. J Mol Evol, 22(2):160–174, 1985.

[73] W.K. Hastings. Monte carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

[74] J. Hein. Reconstructing evolution of sequences subject to recombination using
parsimony. Math Biosci, 98(2):185–200, 1990.

[75] J. Hein. A heuristic method to reconstruct the history of sequences subject
to recombination. J Mol Evol, 36(4):396–405, 1993.

[76] J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing
evolutionary trees. Discrete Appl Math, 71(1-3):153–169, 1996.

[77] A.D. Hershey and M. Chase. Independent functions of viral protein and
nucleic acid in growth of bacteriophage. J Gen Physiol, 36(1):39–56, 1952.

[78] J.P. Huelsenbeck, F. Ronquist, R. Nielsen, and J.P. Bollback. Bayesian infer-
ence of phylogeny and its impact on evolutionary biology. Science, 294(5550):
2310–2314, Dec 2001.

[79] M. Jamshidian and R.I. Jennrich. Acceleration of the EM algorithm by using
quasi-Newton methods. J Roy Stat Soc B, pages 569–587, 1997.

[80] J.A. Jankowski, N.A. Wright, S.J. Meltzer, G. Triadafilopoulos, K. Geboes,
A.G. Casson, D. Kerr, and L.S. Young. Molecular evolution of the metaplasia-
dysplasia-adenocarcinoma sequence in the esophagus. Am J Pathol, 154(4):
965–973, Apr 1999.

[81] E.T. Jaynes. Prior probabilities. IEEE Trans Syst Sci Cybern, 227, 1968.

[82] G. Jin, L. Nakhleh, S. Snir, and T. Tuller. Maximum likelihood of phyloge-
netic networks. Bioinformatics, 22(21):2604, 2006.



63

[83] S. Jones, W.D. Chen, G. Parmigiani, F. Diehl, N. Beerenwinkel, T. Antal,
A. Traulsen, M.A. Nowak, C. Siegel, V.E. Velculescu, K.W. Kinzler, B. Vogel-
stein, J. Willis, and S.D. Markowitz. Comparative lesion sequencing provides
insights into tumor evolution. Proc Natl Acad Sci U S A, 105(11):4283–4288,
Mar 2008.

[84] T.H. Jukes and C.R. Cantor. Evolution of protein molecules. In M.N. Munro,
editor, Mammalian protein metabolism, volume 3, pages 21–132. New York,
1969.

[85] P.J. Keeling and J.D. Palmer. Horizontal gene transfer in eukaryotic evolu-
tion. Nat Rev Genet, 9(8):605–618, 2008.

[86] David G. Kendall. On the generalized “birth-and-death” process. Ann Math
Stat, 19:1–15, 1948.

[87] K.K. Kidd and L.A. Sgaramella-Zonta. Phylogenetic analysis: concepts and
methods. Am J Hum Genet, 23(3):235–252, May 1971.

[88] M. Kimura. A simple method for estimating evolutionary rates of base sub-
stitutions through comparative studies of nucleotide sequences. J Mol Evol,
16(2):111–120, Dec 1980.

[89] H. Kishino and M. Hasegawa. Evaluation of the maximum likelihood esti-
mate of the evolutionary tree topologies from DNA sequence data, and the
branching order in hominoidea. J Mol Evol, 29(2):170–179, Aug 1989.

[90] A.G. Knudson, Jr. Mutation and cancer: statistical study of retinoblastoma.
Proc Natl Acad Sci U S A, 68(4):820–823, Apr 1971.

[91] S. Kumar and A. Filipski. Multiple sequence alignment: in pursuit of homol-
ogous DNA positions. Genome Res, 17(2):127–135, Feb 2007.

[92] J.G. Lawrence. Horizontal and vertical gene transfer: The life history of
pathogens. Contrib Microbiol, 12:255–271, 2005.

[93] J. Lederberg and E. Tatum. Gene recombination in Escherichia coli. Nature,
158:558, October 1946.

[94] J. Lederberg and E.L. Tatum. Novel genotypes in mixed cultures of biochemi-
cal mutants of bacteria. In Cold Spring Harbor Symp. Quant. Biol, volume 11,
pages 113–114, 1946.

[95] P.M. Lee. Bayesian Statistics: An Introduction. John Wiley, 2004.

[96] C. Lengauer, K.W. Kinzler, and B. Vogelstein. Genetic instabilities in human
cancers. Nature, 396(6712):643–649, 1998.



64 BIBLIOGRAPHY

[97] S. Linz, A. Radtke, and A. von Haeseler. A likelihood framework to measure
horizontal gene transfer. Mol Biol Evol, 24(6):1312–1319, Jun 2007.

[98] J.S. Liu. Monte Carlo strategies in scientific computing. Springer, 2001.

[99] L.A. Loeb. Mutator phenotype may be required for multistage carcinogenesis.
Canc Res, 51(12):3075–3079, 1991.

[100] M. Lynch and J.S. Conery. The evolutionary fate and consequences of dupli-
cate genes. Science, 290(5494):1151–1155, 2000.

[101] M. Lynch and A. Force. The probability of duplicate gene preservation by
subfunctionalization. Genetics, 154(1):459–473, 2000.

[102] B. Ma, M. Li, and L. Zhang. From gene trees to species trees. SIAM J
Comput, 30(3):729–752, 2000.

[103] C.C. Maley, P.C. Galipeau, J.C. Finley, V.J. Wongsurawat, X. Li, C.A.
Sanchez, T.G. Paulson, P.L. Blount, R.A. Risques, P.S. Rabinovitch, et al.
Genetic clonal diversity predicts progression to esophageal adenocarcinoma.
Nat Genet, 38(4):468–473, 2006.

[104] C.C. Maley, P.C. Galipeau, X. Li, C.A. Sanchez, T.G. Paulson, P.L. Blount,
and B.J. Reid. The combination of genetic instability and clonal expansion
predicts progression to esophageal adenocarcinoma. Canc Res, 64(20):7629–
33, 2004.

[105] C.C. Maley, P.C. Galipeau, X. Li, C.A. Sanchez, T.G. Paulson, and B.J. Reid.
Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions
are selected in Barrett’s esophagus. Canc Res, 64(10):3414, 2004.

[106] T. Marques-Bonet, J.M. Kidd, M. Ventura, T.A. Graves, Z. Cheng, L.D.W.
Hillier, Z. Jiang, C. Baker, R. Malfavon-Borja, L.A. Fulton, et al. A burst
of segmental duplications in the genome of the african great ape ancestor.
Nature, 457(7231):877–881, 2009.

[107] G. Mendel. Versuche über Pflanzen-Hybriden. Verb. Naturforsch. Ver.
Brunn, 4:3–47, 1866.

[108] G. Mendel. Experiments in plant hybridisation. Cosimo Classics, 2008.

[109] Xiao-Li Meng and David van Dyk. The EM algorithm–an old folk-song sung
to a fast new tune. J Roy Stat Soc Ser B, 59(3):511–567, 1997.

[110] X.L. Meng and D.B. Rubin. Maximum likelihood estimation via the ECM
algorithm: A general framework. Biometrika, 80(2):267–278, 1993.



65

[111] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. J Chem Phys, 21
(6):1087–1091, 1953.

[112] A. Meyer and Y. Van de Peer. From 2R to 3R: evidence for a fish-specific
genome duplication (FSGD). Bioessays, 27(9):937–945, 2005.

[113] F. Michor, Y. Iwasa, and M.A. Nowak. Dynamics of cancer progression. Nat
Rev Genet, 4(3):197–205, 2004.

[114] B.E. Miller, F.R. Miller, J. Leith, and G.H. Heppner. Growth interaction in
vivo between tumor subpopulations derived from a single mouse mammary
tumor. Canc res, 40(11):3977, 1980.

[115] S.H. Moolgavkar and E.G. Luebeck. Multistage carcinogenesis and the inci-
dence of human cancer. Gene Chromosome Canc, 38(4), 2003.

[116] G.W. Moore, M. Goodman, and J. Barnabas. An iterative approach from the
standpoint of the additive hypothesis to the dendrogram problem posed by
molecular data sets. J Theor Biol, 38(3):423, 1973.

[117] H.J. Muller. The origination of chromatin deficiencies as minute deletions
subject to insertion elsewhere. Genetica, 17(3):237–252, 1935.

[118] H.J. Muller. A viable two-gene deficiency: phenotypically resembling the
corresponding hypomorphic mutations. J Hered, 26(11):469, 1935.

[119] L. Nakhleh, D. Ruths, and L.S. Want. RIATA-HGT: A fast and accurate
heuristic for reconstructing horizontal gene transfer. Lecture notes in com-
puter science, pages 84–93, 2005.

[120] R.M. Neal. Probabilistic inference using markov chain monte carlo methods.
Technical Report CRG-TR-93-1, Department of Computer Science, Univer-
sity of Toronto, 1993.

[121] C.R. Nelson and A.F. Siegel. Parsimonious modeling of yield curves. J Bus,
pages 473–489, 1987.

[122] C.O. Nordling. A new theory on cancer-inducing mechanism. Br J Cancer,
7(1):68–72, Mar 1953.

[123] C. Notredame. Recent evolutions of multiple sequence alignment algorithms.
PLoS Comput Biol, 3(8):e123, Aug 2007.

[124] P.C. Nowell. The clonal evolution of tumor cell populations. Science, 194
(4260):23–28, 1976.



66 BIBLIOGRAPHY

[125] K. Ochiai, T. Yamanaka, K. Kimura, and O. Sawada. Inheritance of drug
resistance (and its transfer) between Shigella strains and between Shigella
and E. coli strains. Nihon Iji Shimpo, 1861:34, 1959.

[126] H. Ochman, J.G. Lawrence, and E.A. Groisman. Lateral gene transfer and
the nature of bacterial innovation. Nature, 405(6784):299–304, 2000.

[127] S. Ohno. Evolution by gene duplication. Allen and Unwin, 1970.

[128] R.D. Page. Genetree: comparing gene and species phylogenies using recon-
ciled trees. Bioinformatics, 14(9):819–820, 1998.

[129] R.D.M. Page and M.A. Charleston. Trees within trees: phylogeny and his-
torical associations. Trends Ecol Evol, 13(9):356–359, 1998.

[130] J. Rahnenfuhrer, N. Beerenwinkel, W.A. Schulz, C. Hartmann, A. von Deim-
ling, B. Wullich, and T. Lengauer. Estimating cancer survival and clinical
outcome based on genetic tumor progression scores. Bioinformatics, 21(10):
2438–2446, May 2005.

[131] MJ Renan. How many mutations are required for tumorigenesis? implications
from human cancer data. Mol Carcinog, 7(3):139, 1993.

[132] F. Ronquist and J.P. Huelsenbeck. Mrbayes 3: Bayesian phylogenetic infer-
ence under mixed models. Bioinformatics, 19(12):1572–1574, Aug 2003.

[133] A. Rzhetsky and M. Nei. Theoretical foundation of the minimum-evolution
method of phylogenetic inference. Mol Biol Evol, 10(5):1073–1095, Sep 1993.

[134] N. Saitou and M. Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol, 4(4):406–425, Jul 1987.

[135] R.V. Samonte and E.E. Eichler. Segmental duplications and the evolution of
the primate genome. Nat Rev Genet, 3(1):65–72, 2002.

[136] M. Sanderson and M. McMahon. Inferring angiosperm phylogeny from EST
data with widespread gene duplication. BMC Evol Biol, 7(Suppl 1):S3, 2007.

[137] D. Sankoff. Minimal mutation trees of sequences. SIAM J Appl Math, 28:
35–42, 1975.

[138] D. Sankoff and P. Rousseau. Locating the vertices of a steiner tree in an
arbitrary metric space. Math Program, 9:240–246, 1975.

[139] B. Sennblad and J. Lagergren. Probabilistic orthology analysis. submitted,
2008.

[140] M.H. Sieweke and M.J. Bissell. The tumor-promoting effect of wounding: a
possible role for TGF-beta-induced stromal alterations. Crit Rev Oncog, 5
(2-3):297, 1994.



67

[141] P.T. Simpson, J.S. Reis-Filho, T. Gale, and S.R. Lakhani. Molecular evolution
of breast cancer. J Pathol, 205(2):248–254, Jan 2005.

[142] P.H.A. Sneath and R.R. Sokal. Numerical taxonomy: The principles and
practice of numerical classification. W.H. Freeman, San Fransisco, 1973.

[143] M.N. Swartz. Use of antimicrobial agents and drug resistance, 1997.

[144] K. Tamura and M. Nei. Estimation of the number of nucleotide substitutions
in the control region of mitochondrial DNA in humans and chimpanzees. Mol
Biol Evol, 10(3):512–526, May 1993.

[145] J.S. Taylor and J. Raes. Duplication and divergence: the evolution of new
genes and old ideas. Annu Rev Genet, 38:615–43, 2004.

[146] A.A. van Tilborg, A. de Vries, M. de Bont, L.E. Groenfeld, T.H. van der
Kwast, and E.C. Zwarthoff. Molecular evolution of multiple recurrent cancers
of the bladder. Hum Mol Genet, 9(20):2973–2980, Dec 2000.

[147] A. von Haeseler and G.A. Churchill. Network models for sequence evolution.
J Mol Evol, 37(1):77–85, 1993.

[148] T.L. Wang, C. Rago, N. Silliman, J. Ptak, S. Markowitz, J.K.V. Willson,
G. Parmigiani, K.W. Kinzler, B. Vogelstein, and V.E. Velculescu. Prevalence
of somatic alterations in the colorectal cancer cell genome. Proc Natl Acad
Sci U S A, 99(5):3076, 2002.

[149] I. Wapinski, A. Pfeffer, N. Friedman, and A. Regev. Natural history and
evolutionary principles of gene duplication in fungi. Nature, 449:54–61, 2007.

[150] J.D. Watson and F.H. Crick. Molecular structure of nucleic acids; a structure
for deoxyribose nucleic acid. Nature, 171(4356):737–8, 1953.

[151] A. Wehe, M.S. Bansal, J.G. Burleigh, and O. Eulenstein. Duptree: a program
for large-scale phylogenetic analyses using gene tree parsimony. Bioinformat-
ics, 24(13):1540–1541, 2008.

[152] D.A. Wheeler, M. Srinivasan, M. Egholm, Y. Shen, L. Chen, A. McGuire,
W. He, Y.J. Chen, V. Makhĳani, G.T. Roth, et al. The complete genome
of an individual by massively parallel DNA sequencing. Nature, 452(7189):
872–876, 2008.

[153] C.R. Woese. On the evolution of cells. Proc Natl Acad Sci U S A, 99(13):
8742–7, 2002.

[154] J. Zhang. Evolution by gene duplication: an update. Trends Ecol Evol, 18
(6):292–298, 2003.



68 BIBLIOGRAPHY

[155] Ö. Åkerborg, B. Sennblad, L. Arvestad, and J. Lagergren. Simultaneous
Bayesian gene tree reconstruction and reconciliation analysis. Proc Natl Acad
Sci U S A, 106(14):5714–5719, 2009.







Simultaneous Identification of Duplications

and Lateral Gene Transfers
Ali Tofigh, Michael Hallett, and Jens Lagergren

Abstract

The incongruency between a gene tree and a corresponding species tree can be attributed to

evolutionary events such as gene duplication and gene loss. This paper describes a combinatorial

model where a so-called DTL-scenario is used to explain the differences between a gene tree and

a corresponding species tree taking into account gene duplications, gene losses, and lateral gene

transfers (also known as horizontal gene transfers). The reasonable biological constraint that a lateral

gene transfer may only occur between contemporary species leads to the notion of acyclic DTL-

scenarios. Parsimony methods are introduced by defining appropriate optimization problems. We

show that finding most parsimonious acyclic DTL-scenarios is NP-complete. However, by dropping

the condition of acyclicity, the problem becomes tractable, and we provide a dynamic programming

algorithm as well as a fixed-parameter-tractable algorithm for finding most parsimonious DTL-

scenarios.

Index Terms

Trees, Biology and genetics, Combinatorial algorithms, Graph algorithms.
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Simultaneous Identification of Duplications

and Lateral Gene Transfers

I. INTRODUCTION

Gene duplication and lateral gene transfer (LGT) are important evolutionary events that,

in interplay with each other as well as with other evolutionary events, shape the genomes

of species and thereby also their phenotypes. The role of duplications in creating new

functionality has been studied rather extensively. In [1] and [2], the possible fates of a

duplicated gene was described by a biological model where the archetypical fates are coined

non-functionalization (loss of function due to a disruptive mutation), sub-functionalization (in

which the two copies each take on a subset of the original function), and neo-functionalization

(where one of the copies, due to point mutations, assumes a new function). Duplications are

common in many parts of the tree of life [3], [4], [5], [6], [7]. LGT has also been implicated

in how species acquire new functionality and phenotypes. Particular attention has been given

to how pathogens have developed through LGT by receiving so called pathogenicity islands,

and to the relative importance of LGT and gene loss in pathogen evolution [8]. In contrast to

an apparent consensus on the importance of gene duplications, the importance and prevalence

of LGT is well known to be unusually controversial (see [9] and references therein).

As always when developing methods for evolutionary studies, there is an interdependence

between the underlying models and our knowledge or opinions of the evolutionary processes.

When considering LGT, three main views can be identified together with their ramifications

for method development. First, one extreme view with few remaining proponents, is that LGT

hardly exists, so discrepancies between gene and species trees are due to random effects or

insufficiently sophisticated tree reconstruction methods, or possibly due to other events such

as duplications. At the other extreme is the view that, at least in some parts of the tree of

life, LGT is so rampant that trees are in general not a valid representation of organismal

evolution. This latter view is, of course, in conflict with any form of reliance on a species

tree when constructing a network or some alternative representation of reticulate evolution

caused by LGT. The latter view is, however, fully consistent with the use of gene trees.

Finally, there is an intermediate view according to which LGT is common, although not

so common among the genes of a species that organismal evolution cannot be meaningfully
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described by a tree. When accepting this intermediate view, it becomes desirable to reconstruct

species trees, as well as the locations where LGT has occurred, for specific gene families. The

parsimony variation of this problem was formalized and treated in [10]. More recently, this

approach was applied in an ad hoc manner by Bapteste et al. [11]. There are also several

earlier studies of heuristics for the problem, e.g., [12] and [13], as well as later studies

using distance methods [14]. Subsequently, evidence has been provided for the correctness

of the intermediate view when considering γ-proteobacteria [15]. So, a species tree can aid

in the identification of LGT and, moreover, species trees requiring fewer LGTs to explain

the laterally transferred gene can be viewed as more likely than others.

We may, in general, divide methods attempting to reconstruct evolution into explicit, where

a direct interpretation in terms of evolutionary events is possible, and implicit, where no such

interpretation is available [16]. We may further distinguish between methods for LGT identifi-

cation and methods for deriving descriptions of reticulate evolution. Two main methodologies

have been applied in order to develop methods for identifying laterally transferred genes. First,

atypical sequence characteristics of newly transferred genes have been taken advantage of

in order to identify LGTs, see e.g., [17]. Second, incongruencies between gene and species

trees have been used in so called phylogenetic LGT identification methods. These methods

basically consist of comparing a gene tree with an established species tree and identifying

gene tree clades with a significantly different placement in the gene tree compared to the

corresponding clade in the species tree. Naive phylogenetic methods are still commonly used.

There has been considerable consensus on the importance and prevalence of duplications,

for which the biological model has been significantly clearer. Already in 1979, Goodman

et al. [18] gave a parsimony method for identification of gene duplications as well as for

embedding a gene tree into a corresponding species tree in a way that illustrates a possible

evolution of the former inside the latter. Building on this framework, Guigo et al. [19] gave an

explicit supertree method attempting to find the species tree that explains a number of given

gene trees using a minimum number of duplications. Ma et al. [20] proved hardness results for

several variations of species tree reconstruction problems. Hallett et al. [21] gave an efficient

algorithm that is guaranteed to find the optimum species tree under the assumption that one

of the gene trees have had a constant number of lineages in each species tree lineage. More

recently, methods have emerged for duplication analysis, i.e., identification of duplications

and simultaneous construction of a gene tree, as well as embedding the gene tree inside the

species tree. Duplication analysis takes advantage of sequence information directly rather
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than merely mediated by a gene tree. In [22], an ad hoc method for duplication analysis

was presented which also takes gene order information into account. In [23], [24], [25],

an integrated model for gene duplication, gene loss, and sequence evolution, together with

computational tools for duplication analysis based on the same model, has been developed.

In the latest contribution to that line of research, the model was extended with an iid model

of sequence evolution rate variation across gene tree edges [26].

There appears to be relatively few studies attempting to tease apart the influences of LGT

and gene duplications in regions of the tree of life, where LGT are believed to be common.

In [27], it was estimated that 16% of the 1425 intra-genome homologs of E. coli K12 have

been acquired by LGT, implying that the other homologs have been acquired through gene

duplication. An analysis of paralog content in 106 bacterial genomes can be found in [28]. A

study by Retchless and Lawrence [29] concluded that the complete separation of E. coli and S.

enterica from their common ancestor took tens of millions of years and that gene conversion

events due to bacterial recombination occurred between the incipient species during a period

of ˜70 million years.
Few attempts have been made at devising methods to explicitly detect duplications and

LGTs simultaneously. Csűrös et al. [30] gave a probabilistic model of gene evolution that

considered LGTs, duplications, and losses, but applied it only to gene family sizes. A rather

restricted parsimony method was given in [31] where the input is a gene tree and a species

tree augmented with additional edges showing where transfers have taken place. The output

is then the minimum cost of mapping the gene tree into the augmented species tree/network.

Here, we present a parsimony method that given a species tree and an incongruent gene tree

finds reconciliations that explain the incongruences with a minimum number of duplications

and lateral gene transfers. A preliminary version, of which this paper is a complete and

thorough revision, first appeared in [32]. In section III, we give the definition of a DTL-

scenario (Duplication-Transfer-Loss scenario) which is our formal equivalent of a reconcili-

ation: a description of how a gene tree has evolved within a species tree using, in our case,

duplications, LGTs, and losses. Care has been taken in defining DTL-scenarios to include

all the interesting viable cases of gene evolution, and at the same time to exclude the cases

that seem inappropriate or degenerate in a parsimony setting. Our aim is thus to find DTL-

scenarios with a minimum number of duplications and LGTs. As we will demonstrate, the

(implicitly inferred) number of losses can be used to choose between several existing most

parsimonious DTL-scenarios.
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Biologically, LGTs only occur between a pair of contemporary species. It may therefore

be desirable to enforce this restriction and demand the existence of a temporal order on the

species tree vertices such that all LGTs in the reconciliation occur between contemporary

species. We term such DTL-scenarios acyclic. In section V, we show that the problem of

finding most parsimonious acyclic DTL-scenarios is NP-complete. However, as was shown

in [33], cycles are not a major concern in practice, and in sections VI and VII we provide

efficient algorithms for finding most parsimonious DTL-scenarios disregarding the notion of

cyclicity. More specifically, in section VI, we provide a dynamic programming algorithm

for computing the minimum cost of any DTL-scenario reconciling a gene tree and a species

tree, and in section VII, we describe a fixed-parameter-tractable algorithm for enumerating

all most parsimonious DTL-scenarios. Finally, in section IX, we demonstrate the benefits of

our methods by applying them on real biological data.

But first, we start with a description of the notation that we will use in the remainder of

this article.

II. DEFINITIONS

For a directed graph H , we let V (H) and A(H) be the sets of vertices and arcs of H ,

respectively. For a tree T , we let V (T ), V̊ (T ), L(T ), and E(T ) denote the sets of vertices,

internal vertices, leaves, and edges of T , respectively. For a rooted tree T , root(T ) denotes

the root vertex. We consider edges of rooted trees to be directed away from the root. An

edge of a rooted tree is denoted by an ordered pair of vertices (u1, u2) where u1 is closer to

the root than u2.

Let T be a rooted tree. If (u, v) is an edge of T , then v is called a child of u, and u is

called the parent of v denoted by pT (v). When the tree is clear from context, we will drop

the subscript and write p(v). Two distinct vertices u and v are siblings iff pT (u) = pT (v); in

that case, the two edges (pT (u), u) and (pT (v), v) are called sibling edges. A vertex v is a

descendant of a vertex u, denoted by v ≤T u, iff there is a directed path from u to v. In that

case, we also say that u is an ancestor of v (u ≥T v). We say that v is a proper descendant

(proper ancestor) of u iff v ≤T u (v ≥T u) and v �= u and denote this by v <T u (v >T u).

An edge whose vertices are ancestors of v is called an ancestral edge of v. Two vertices u

and v are incomparable iff u �T v and v �T u. An edge (u, v) is called the incoming edge

of v and an outgoing edge of u. The least common ancestor of a set X of vertices of T ,

denoted lca X , is the ≤T -minimal vertex of T that is an ancestor of every vertex in X . By
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Tu we denote the subtree of T rooted at u ∈ V (T ).

A binary rooted tree is a rooted tree in which every vertex has at most two children. A

full binary tree is a rooted tree in which every vertex has zero or two children. A (full rooted

binary) forest is a graph in which every connected component is a (full rooted binary) tree.

If T is a tree and F ⊆ E(T ) is a set of edges of T , then T \ F is the forest obtained from

T by removing the edges in F , i.e., E(T \ F ) = E(T ) \ F .

It will be convenient to describe rooted trees using the Newick format. In this notation,

a tree is described using parentheses. If T1, . . . , Tn are rooted trees, then (T1, . . . , Tn) is the

rooted tree obtained from T1, . . . , Tn by adding a new root ρ and the edges (ρ, root(Ti)), for

i = 1, . . . , n.

Finally, if f : X → Y is a function from X into Y , and if R ⊆ X , then the restriction of

f to R is denoted by f |R.

III. DTL-SCENARIOS

A reconciliation may be thought of as a mapping of a gene tree into a corresponding

species tree demonstrating a biologically viable history of the evolution of genes within

species. If duplications and losses are the sole culprits in creating incongruencies between

the species tree and the gene tree, then there is a unique reconciliation that minimizes both

the number of duplications and losses [18] (see also [19], [34], [35]). However, adding LGTs

as a possible evolutionary event complicates the notion of a reconciliation; without LGTs, the

evolution of the gene tree is conveniently restricted to staying within the edges of the species

tree, something that is not true when dealing with LGTs. In fact, when also considering

LGTs, there is no simple reconciliation that minimizes the number of evolutionary events.

Our approach instead is to define exactly what constitutes a valid reconciliation and devise

algorithms that find the most parsimonious ones.

In this section, we define DTL-scenarios (Duplication-Transfer-Loss scenarios) which serve

as the formalization of the notion of valid reconciliations. When doing so, we must be careful

as to what mappings and combinations of events we wish to allow. We can benefit greatly

by carefully defining a reconciliation so as not to allow cases that seem degenerate within a

parsimony framework. One example of such a clearly degenerate case is a sequence of LGTs

in which the same gene is transferred over and over, and where each transfer is followed by

a loss in the species from which the transfer originated. Such a sequence would leave no

trace in the intermediate species to which genes have been transferred and would in fact be
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represented by a single edge in the gene tree. Such a reconciliation is certainly not interesting

in a parsimony setting. Our definition of DTL-scenarios has been carefully crafted to allow

biologically viable reconciliations while excluding clearly degenerate cases.

The purpose of a DTL-scenario is to

• assign to each gene tree vertex exactly one event: a speciation, a duplication, or a lateral

transfer,

• determine for each transfer vertex exactly one of the outgoing edges as a transfer edge,

• map every vertex of the gene tree into the species tree in a way that is consistent with

the previous points and with the temporal order implicitly represented by the trees.

Below, we will formally define a DTL-scenario as an octuple (S,G, σ, γ, Σ, Δ, Θ, Ξ).

Informally, S and G represent biological data in the form of a species tree and a corresponding

gene tree. The correspondence between genes and species is established via a leaf mapping

function σ. Every bifurcation of G is the result of one of three events: speciation, duplication,

and lateral transfer; the sets Σ, Δ, and Θ contain internal vertices of G representing these

events, respectively. The set Ξ contains the edges of G corresponding to lateral transfers.

Finally, γ maps the entire gene tree into the species tree showing where the evolutionary

events have taken place.

Note that γ will be defined as a function mapping the gene tree vertices to species tree

vertices. For a gene tree vertex u, the interpretation of γ(u) depends on the type of event

represented by u in the DTL-scenario. If u represents a speciation, i.e., u ∈ Σ, γ(u) is the

species tree vertex at which the speciation took place. Otherwise, if u represents a duplication

or a lateral transfer, the event represented by u is considered to have occurred somewhere

along the incoming edge of γ(u) (if γ(u) is the root of the species tree, then the event is

taken to have occurred before the root). Fig. 1 contains a complete example of a scenario.

Formally, we define a DTL-scenario as an octuple (S,G, σ, γ, Σ, Δ, Θ, Ξ) where S and

G are rooted full binary trees, σ : L(G) → L(S) maps every gene tree leaf to the species in

which it is found, γ : V (G) → V (S) maps the gene tree into the species tree, Σ, Δ, and Θ

form a partition of V̊ (G), and Ξ ⊂ E(G) is a subset of the gene tree edges such that:

(I) For each leaf u in the gene tree, γ(u) = σ(u)

(II) If u ∈ V̊ (G) is a gene tree vertex with children v and w, then

a) γ(u) is not a proper descendant of γ(v) or γ(w)

b) At least one of γ(v) and γ(w) is a descendant of γ(u)
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(III) (u, v) ∈ Ξ if and only if γ(u) is incomparable to γ(v)

(IV) If u ∈ V̊ (G) is a gene tree vertex with children v and w, then

a) u ∈ Θ if and only if (u, v) ∈ Ξ or (u,w) ∈ Ξ

b) u ∈ Σ only if γ(u) = lca {γ(v), γ(w)} and γ(v) and γ(w) are incomparable

c) u ∈ Δ only if γ(u) ≥ lca {γ(v), γ(w)}

The cost of a DTL-scenario α is denoted |α|, and is defined as |Δ|+ |Θ| (which is equal

to |Δ| + |Ξ|). For convenience, we will allow ourselves to use σ as a function mapping a

set of gene tree leaves to the corresponding set of species tree leaves. In this text, the words

DTL-scenario and scenario will be used interchangeably.

Condition (I) states that γ is an extension of σ. Condition (IIa) ensures that genes evolve in

the direction implied by the trees. Condition (IIb) restricts each bifurcation of G to represent

exactly one evolutionary event. Condition (III) determines which edges of the gene tree

are to be considered as lateral transfer edges, and condition (IV) states when a gene tree

vertex may represent a lateral transfer, speciation, or duplication. Note the overlap between

conditions (IVb) and (IVc): given a mapping γ, the set of gene tree vertices that may be

labeled as speciations according to condition (IVb) is a subset of those that may be labeled

as duplications according to (IVc). Of course, no most parsimonious DTL-scenario will label

a gene tree vertex as a duplication if the vertex may just as well be labeled a speciation. But

for now, we will allow this slight over-expressiveness of DTL-scenarios.

For convenience, we will adopt the following notational conventions throughout the paper.

The symbols S, G, σ, γ, Σ, Δ, Θ, Ξ, and their subscripted versions, will be used exclusively

as the elements of DTL-scenarios. If α� is a DTL-scenario, where � is some subscript, then

the elements of α� are S�, G�, σ�, γ�, Σ�, Δ�, Θ�, and Ξ�, respectively. If a symbol

referring to a scenario lacks subscript, then so will its elements. In that case, it will always

be clear from context to which scenario the element symbols belong. The expression “α� is

a scenario for S, G, and σ” is understood to mean that S� = S, G� = G, and σ� = σ.

In our scenarios, the interpretation of a transfer edge (u, v) ∈ Ξ is that a lateral transfer

has occurred from the incoming edge of γ(u) to some ancestral edge of γ(v). For a scenario

to be biologically meaningful, we must be able to order the species tree vertices in time in

such a way that the incoming edge of γ(u) overlaps some ancestral edge of γ(v). In fact, if

(u′, v′) is also a transfer edge and v ≥G v′, then we must also ensure that the incoming edge

of γ(u) overlaps some ancestral edge of γ(v′). Extending this to include all transfer edges,
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we will call a scenario acyclic iff

(V) There is a total order < on V (S) such that:

a) if (x, y) ∈ E(S), then x < y

b) if (u, v), (u′, v′) ∈ Ξ and v ≥G v′, then p(γ(u)) < γ(v′)

See Fig. 1 for an example of a cyclic scenario.

We now present a lemma showing when duplications are forced when considering a

mapping of the gene tree into the species tree.

Lemma 1: Let α be a scenario for S, G, and σ, and let u ∈ V̊ (G) be a gene tree vertex

with children v and w.

(a) If γ(v) and γ(w) are comparable, then u ∈ Δ.

(b) If γ(u) >S lca {γ(v), γ(w)}, then u ∈ Δ.

Proof:

(a) Assume, without loss of generality, that γ(v) ≤S γ(w). By (IVb), u /∈ Σ. From (II),

we see that γ(u) must be an ancestor of both γ(v) and γ(w). Therefore, by (III) and

(IVa), u /∈ Θ. By the definition of a scenario, the sets Σ, Δ, and Ξ partition the internal

vertices of G. Hence, having shown that u /∈ Σ and u /∈ Θ, we deduce that u ∈ Δ.

(b) Assume that γ(u) >S lca {γ(v), γ(w)}. Since γ(u) is comparable to both γ(v) and γ(w),

u /∈ Θ. Since γ(u) �= lca {γ(v), γ(w)}, u /∈ Σ. Hence, u ∈ Δ.

The minimum number of losses inferred from a scenario can be computed by considering

each non-transfer edge (u, v) of the gene tree and the mapping of its vertices into the species

tree. This is similar to how losses are computed in the duplication-loss model. One loss

is inferred for each intermediate species tree vertex between γ(u) and γ(v). A loss is also

inferred when u ∈ Δ and γ(v) �= γ(u). We can make this argument formal as follows. Let α

be a scenario for S, G, and σ and define Iα(e), where e = (u, v) ∈ E(G), to be the number

of intermediate species tree vertices between γ(u) and γ(v):

Iα(e) = |{x ∈ V (S) : γ(v) <S x <S γ(u)}|.

Note that Iα(e) = 0 when e ∈ Ξ. The number of losses inferred by e is

lossα(e) =

⎧⎪⎪⎨⎪⎪⎩
Iα(e) + 1 if u ∈ Δ and γ(u) �= γ(v)

Iα(e) otherwise.
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Fig. 1. An example of a scenario. A species tree S and a gene tree G are shown on the right side of the figure. The

names of the extant species are given below the leaves of S. The extant genes of G are labeled with the name of the species

to which they belong. The mapping σ is then derived from these labels:σ(u2) = x2, σ(u4) = x4, σ(u8) = x7, σ(u10) =

x4, σ(u11) = x5, σ(u12) = x8, σ(u13) = x5, and σ(u14) = x8. A DTL-scenario for S, G, and σ is shown on the top

left of the figure. The leaves of G are mapped by γ according to σ. For internal vertices of G, we have that γ(u0) = x0,

γ(u1) = x1, γ(u3) = x3, γ(u5) = x3, γ(u6) = x6, γ(u7) = x7, and γ(u9) = x3. Two of the edges of the gene tree are

transfer edges in this scenario: Ξ = {(u5, u6), (u7, u9)}. The sets of speciations, duplications, and transfer vertices are:

Σ = {u0, u1, u6, u9}, Δ = {u3}, Θ = {u5, u7}. It is easy to check that this scenario is acyclic. On the other hand, the

scenario depicted in the lower left of the figure is cyclic; we cannot order the species tree vertices in time so that x6 comes

before x3 and x3 comes before x6. Note that in this last scenario the least-common-ancestor mapping was used to map G

into S, which is not the case in the scenario on the top left.

The total number of losses of the scenario is then

loss(α) =
∑

e∈E(G)

lossα(e).
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IV. TRANSFER SETS

In this section we will examine the possible mappings of a gene tree into a corresponding

species tree. We will characterize the subsets of E(G) that can serve as a set of transfer edges

in a DTL-scenario and show how this characterization leads to a complete understanding of

all possible mappings. Closely linked to this characterization is a least-common-ancestor

mapping that we will define shortly.

As stated earlier, there is a unique mapping of the gene tree into the species tree under the

duplication-loss model that simultaneously minimizes the number of duplications and losses.

This mapping is defined as

M(u) = lca (σ(L(Gu))), (1)

for all u ∈ V (G). We now define a similar mapping that will depend, not only on G, S, and

σ, but also on the set of gene tree edges that we have chosen as transfer edges. Intuitively,

given a set F ⊂ E(G) as the set of transfer edges, we first remove from G all the edges of

F to obtain a forest of rooted trees. Each tree in the forest is then mapped into S using (1).

Formally, if F ⊂ E(G) is a set of gene tree edges such that no two edges of F are siblings,

we define the function λG\F : V (G) → V (S), called the least-common-ancestor mapping of

G into S, by

λG\F (u) = lca (σ(Lu)),

where Lu is the set of leaves of Gu reachable from u using only edges not in F , i.e., only

using edges in G\F . Note that if F = ∅, then λG\F = M . The next lemma shows that λG\F

can be computed recursively in postorder.

Lemma 2: Let S, G, and σ be given, and let F ⊂ E(G) be a set of gene tree edges such

that no two edges are siblings. Then, for u ∈ V (G),

λG\F (u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ(u) if u ∈ L(G),

lca {λG\F (v), λG\F (w)} if (u, v) /∈ F and (u,w) /∈ F , where v, w are the children of u,

λG\F (w) if (u, v) ∈ F and (u,w) /∈ F , where v, w are the children of u,

Proof: For a vertex u ∈ V (G), let Lu denote the set of leaves of Gu reachable from u

using only edges in G \ F . The first case follows immediately from the definition of λG\F .

For the third case, just note that (u, v) ∈ F implies that Lu = Lw. To verify the second case,
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note that for vertex sets A and B, lca A ∪ B = lca {lca A, lca B}, so that

λG\F (u) = lca (σ(Lu))

= lca (σ(Lv) ∪ σ(Lw))

= lca {lca (σ(Lv)), lca (σ(Lw))}

= lca {λG\F (v), λG\F (w)}.

The importance of the least-common-ancestor mapping just defined is highlighted by the

next result, which shows that given a DTL-scenario α, the lowest possible placement for any

gene tree vertex u in the species tree is λG\Ξ(u)

Lemma 3: If α is a scenario for S, G, and σ, then

γ(u) ≥S λG\Ξ(u), (2)

for any vertex u ∈ V (G).

Proof: Assume α is a scenario for S, G, and σ. For u ∈ L(G), (2) follows immediately

from (I) and the definition of λG\Ξ.

Let u ∈ V̊ (G) be a gene tree vertex with children v and w such that γ(u′) ≥S λG\Ξ(u′)

for each proper descendant u′ of u. If u ∈ Σ or u ∈ Δ, then

γ(u) ≥S lca {γ(v), γ(w)} ≥S lca {λG\Ξ(v), λG\Ξ(w)} = λG\Ξ(u),

where the first inequality follows from (IVb) and (IVc), the second inequality follows from

our inductive hypothesis, and the third equality follows from Lemma 2. Hence, γ(u) ≥S

λG\Ξ(u). Assume that u ∈ Θ and, without loss of generality, let (u, v) ∈ Ξ. By Lemma 2,

λG\Ξ(u) = λG\Ξ(w). Moreover, γ(u) must be an ancestor of γ(w), and hence,

γ(u) ≥S γ(w) ≥S λG\Ξ(w) = λG\Ξ(u).

Next, we show that it is possible to characterize all subsets F ⊂ E(G) for which there is

a DTL-scenario such that Ξ = F , and that for each such F , there is a DTL-scenario such

that Ξ = F and γ = λG\F .

A set F ⊂ E(G) of gene tree edges is called a transfer set if no pair of edges in F are

siblings and λG\F (u) is incomparable to λG\F (v) for each edge (u, v) ∈ F . We will show

that for each transfer set F there is a DTL-scenario such that Ξ = F , and that the edges Ξ of
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any DTL-scenario is a transfer set. For convenience, we define the concept of anchors, which

will also be frequently used later when we discuss our algorithms. We say that u ∈ V̊ (G) is

an anchor with respect to a transfer set F iff λG\F (u) �= λG\F (v) for any child v of u. Note

that this is equivalent to λG\F (v) being incomparable to λG\F (w) where v, w are the children

of u. Also note that if (u, v) ∈ F , then u is not an anchor with respect to F . See the example

on the lower left of Fig. 1 where, in fact, the gene tree is mapped into the species tree using

λG\Ξ. In the example, the anchors with respect to Ξ are exactly the set of speciations of the

gene tree.

Lemma 4: Let S, G and σ be given, and let F be a transfer set. If

Θ = {u ∈ V̊ (G) : (u, v) ∈ F for some child v of u},

Σ ⊆ {u ∈ V̊ (G) : u is an anchor w.r.t. F}, and

Δ = V̊ (G) \ (Θ ∪ Σ),

then the octuple (S,G, σ, λG\F , Σ, Δ, Θ, F ) is a DTL-scenario.

Proof: We only need to verify that each requirement of a DTL-scenario is fulfilled.

Using Lemma 2, this verification becomes straightforward and is omitted.

Lemma 5: Let α be a DTL-scenario for S, G, and σ. Then Ξ is a transfer set.

Proof: assume that (u, v) ∈ Ξ and λG\Ξ(u) is comparable to λG\Ξ(v). Then, by Lemma

3, γ(u) and γ(v) must also be comparable, contradicting (III). Hence, Ξ is a transfer set.

We now see that the transfer sets induce a natural partition on the space of all DTL-

scenarios. Moreover, given a transfer set Ξ we can obtain all possible mappings of G into S

by starting with λG\Ξ and placing gene tree vertices closer to the root of S while ensuring

that the conditions of a DTL-scenario, especially (II) and (III), are not violated.

In sections VI and VII we will give algorithms for finding scenarios with the least number of

duplications and transfers. As we have seen, the transfer sets determine the possible mappings

of a gene tree into the species tree, and by using the least-common-ancestor mapping defined

above, we can find a mapping that minimizes the number of duplications and losses, just as

in the duplication-loss model. Therefore, our intention will not be to find the exact locations

within the species tree where events have taken place, but rather to pinpoint what events have

taken place in the gene tree.

V. FINDING MOST PARSIMONIOUS ACYCLIC SCENARIOS IS NP-HARD

In this section, we will prove that the following decision problem is NP-complete:
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DTL-RECONCILIATION

Instance: A species tree/gene tree pair S,G with corresponding leaf mapping σ : L(G) →

L(S), and a non-negative integer J ≤ |V̊ (G)|.

Question: Is there an acyclic DTL-scenario for S, G, and σ with cost at most J?

The NP-completeness will be shown by a reduction from the following NP-complete problem

[36]:

MINIMUM FEEDBACK ARC SET

Instance: Directed graph H and positive integer K ≤ |A(H)|.

Question: Is there a subset A′ ⊆ A(H) with |A′| ≤ K such that A′ contains at least one arc

from every directed cycle in H?

Let H and K be given, and let m = |A(H)|. We will construct S, G, and σ such that

there exists an acyclic DTL-scenario for S, G, and σ with cost at most J = 2m + K if and

only if H and K form a yes-instance of MINIMUM FEEDBACK ARC SET.

Let V = {r1, r2, . . . , rn} and A = {a1, a2, . . . , am} be the sets of vertices and arcs of H ,

respectively. We now give the species tree and gene tree in Newick format. See also Fig. 2

and 3. For each rj , let Srj be the subtree defined as

Srj = (xj,K+6, (xj,K+5, (. . . , (xj,2, xj,1) . . .))).

Our species tree is then

S = (a1, (a2, (. . . , (am+1, (S
r1 , (Sr2 , (. . . , (Srn , xn+1) . . .)))) . . .))).

For each ai = 〈rj, rk〉, let Gai be the subtree

Gai = (vi
j,K+4, (v

i
j,K+3, (. . . , (v

i
j,1, (v

i
k,K+6, v

i
k,K+5)) . . .))).

Our gene tree is then

G =
(
(b1, G

a1),
(
(b2, G

a2),
(

. . . ,
(
(bm, Gam), bm+1

)
. . .

)))
.

The function σ will map the leaves of G to leaves of S according to the subscripts of the

leaf labels: σ(vi
j,l) = xj,l and σ(bi) = ai.

Lemma 6: If H and K form a yes-instance of MINIMUM FEEDBACK ARC SET, then there

is a DTL-scenario for S, G, and σ with cost J = 2m + K.

Proof: Assume that H and K form a yes-instance of MINIMUM FEEDBACK ARC SET,

so that there is a subset A′ ⊆ A, |A′| = K, containing at least one arc from every directed
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a1
a2

am
am+1

Sr1

Srj

Srk

Srn

xj,K+6

xj,K+5

xj,K+4

xj,2 xj,1

xj,3

xk,K+6

xk,K+5

xk,K+4

xk,2 xk,1

xk,3

xn+1

Fig. 2. The species tree in the NP-completeness proof. Two subtrees, Srj and Srk are shown in full.

b1

b2

bi

bmbm+1

uK+6

uK+5

uK+4

uK+3

u2

u1

u0

vi
j,K+4

vi
j,K+3

vi
j,2

vi
j,1

vi
k,K+6 vi

k,K+5

Ga1

Ga2

Gai

Gam

Fig. 3. The gene tree in the NP-completeness proof. One subtree Gai is shown in full, where ai = 〈rj , rk〉. In Lemma 6,

the thick edges are always transfer edges, whereas the dashed edge is a transfer edge iff ai ∈ A′.

cycle in H . We will now prove that there exists an octuple α = (S,G, σ, γ, Σ, Δ, Θ, Ξ) that

is an acyclic DTL-scenario with cost J = 2m + K.

Let Ξ contain the following J edges of G:

• For each ai = 〈rj, rk〉 in A, the incoming edge of the root of Gai .

• For each ai = 〈rj, rk〉 in A, the incoming edge of p(vi
k,K+5).

• For each ai = 〈rj, rk〉 in A′, the incoming edge of vi
k,K+5.

See Fig. 3 where the edges of Ξ are highlighted. Let the sets Θ, Σ, and Δ be defined as

Θ = {u ∈ V̊ (G) : (u, v) ∈ Ξ for some child v of u},
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If ai /∈ A′ If ai ∈ A′

a1

ai

xj,K+6

xj,K+5

xj,K+4

xj,3

xj,2 xj,1

xk,K+6 xk,K+6

xk,K+5 xk,K+5

xk,K+4 xk,K+4

Srj

Srk

Fig. 4. Depiction of the mapping of (bi, G
ai) into S where ai = 〈rj , rk〉. Note that the mapping differs depending on

whether or not ai ∈ A′.

Σ = V̊ (G) \ Θ, and

Δ = ∅,

and let γ = λG\Ξ. Note that Θ, Σ, and Δ partition the elements of V̊ (G), and that we are

using the least common ancestor mapping, λG\Ξ, to map the gene tree into the species tree.

Clearly, no two edges of Ξ are sibling edges, so that λG\Ξ is well defined. See Fig. 4 for an

illustration of this mapping.

Intuitively, the part of the species tree containing the leaves xj,K+6 and xj,K+5 should be

thought of as the in-section of Srj , and the part containing xj,K+4, . . . , xj,1 as the out-section

of Srj . The reason, as can be seen in Fig. 4, is that we will recreate arcs of H in our scenario

by lateral transfers. An arc 〈rj, rk〉 will result in a lateral transfer from the out-section of Srj

to the in-section of Srk .

If we can show that (i) Ξ is a transfer set, and that (ii) for each vertex u ∈ Σ, u is an

anchor w.r.t. Ξ, then we can deduce by Lemma 4 that α is a DTL-scenario.

Consider the subtree (bi, G
ai) for some ai = 〈rj, rk〉 ∈ A. For ease of notation, let

u0, u1, . . . , uK+6 denote the internal vertices of the subtree (bi, G
ai) and its parent from

bottom up, i.e., let u0 denote p(vi
k,K+5) and let ul denote p(ul−1), for l = 1, . . . , K + 6. See
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Fig. 3.

Claim 6.1:

γ(u0) =

⎧⎪⎪⎨⎪⎪⎩
xk,K+6 if ai ∈ A′,

p(xk,K+6) otherwise,

γ(u1) = xj,1,

γ(ul) = p(xj,l), for l = 2, . . . , K + 4,

γ(uK+5) = ai,

γ(uK+6) = p(ai).

In proving the above claim we will make frequent use of the result presented in Lemma 2

without repeatedly referring to it.

If ai ∈ A′, then the edge (u0, v
i
k,K+5) is in Ξ, and by Lemma 2, γ(u0) = γ(vi

k,K+6) =

xk,K+6. If ai /∈ A′, then γ(u0) = lca {γ(vi
k,K+5), γ(vi

k,K+6)} = p(xk,K+6). By our con-

struction, (u1, u0) ∈ Ξ, so that γ(u1) = γ(vi
j,1) = xj,1. Since ul is not a transfer vertex for

l = 2, . . . , K +4, we can show by induction on l that γ(ul) = lca {γ(vi
j,l), γ(ul−1)} = p(xj,l).

For uK+5, we have that (uK+5, uK+4) ∈ Ξ. Therefore, γ(uK+5) = γ(bi) = ai. As a final step

consider uK+6. Clearly, uK+6 ∈ Σ and γ(uK+6) = p(ai). To see this last point, note that if

i = m, then γ(uK+6) = lca {γ(bm+1), γ(uK+5)} = lca {am+1, am} = p(am). We can then

show by induction on i that γ(uK+6) = p(ai) for i = m − 1, . . . , 1. This ends the proof of

the above claim, from which the validity of (i) and (ii) follows (see also Fig. 4). Hence, α

is DTL-scenario.

Having shown that α is a DTL-scenario, we now move on to showing that α is acyclic.

To do this, we will order the vertices of the species tree such that (V) is fulfilled. Let H ′

be the DAG that is obtained from H by removing the arcs in A′, i.e., V (H ′) = V and

A(H ′) = A \ A′. Since H ′ is a DAG, there is a topological sort of the vertices of H ′. Let

us fix a topological sort. We now order the vertices of the species tree as follows. The first

vertex is p(a1), followed by p(a2), and so on until p(am+1). Next, we have p(root(Sr1)),

p(root(Sr2)), and so on until p(root(Srn)). For the rest of the vertices of S, if ri comes

before rj in the topological sort, then let all internal vertices of Sri come before the internal

vertices of Srj while respecting the partial order given by the edges of S. Last of all come

the leaves of S (in any order). We refer to this ordering as <.

Condition (Va) is clearly fulfilled. To show that (Vb) holds, we must consider for each
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edge (u, v) ∈ Ξ, all edges (u′, v′) ∈ Ξ such that v ≥G v′ and show that p(γ(u)) < γ(v′).

Note that, in particular, we need to show that p(γ(u)) < γ(v). By our choice of transfer

edges, we only need to consider three edges for each subtree Gai .

So, let ai = 〈vj, vk〉 ∈ A and, as before, let u0 denote p(vi
k,K+5) and let ul denote p(ul−1),

for l = 1, . . . , K + 6. The three edges of Gai that we must consider are (uK+5, uK+4),

(u1, u0), and (u0, v
i
k,K+5). By Claim 6.1, p(γ(uK+t)) = p(ai) which is an ancestor of γ(uK+4),

γ(u0), and γ(vi
k,K+5). By our construction of <, it follows that (Vb) is satisfied for the

edge (uK+5, uK+4). Now consider the edge (u1, u0). By Claim 6.1, γ(u1) ∈ V (Srj) and

γ(u0) ∈ V (Srk). In fact, we also have that p(γ(u1)) ∈ V (Srj). If ai /∈ A′, then by our

construction, all the internal vertices of Srj come before the internal vertices of Srk , and

therefore, p(γ(u1)) < γ(u0). If, on the other hand, ai ∈ A′, then γ(u0) = xk,K+6 which is a

leaf of S and all the leaves come after the internal vertices of S in <. Hence, in all cases,

p(γ(u1)) < γ(u0). Since vi
k,K+5 is mapped by γ to a species tree leaf, and all species tree

leaves come after the internal vertices in <, (Vb) holds for (u1, u0), and (u0, v
i
k,K+5). Hence,

we have shown that α is an acyclic DTL-scenario.

This concludes one direction of our NP-completeness proof. It remains for us to show the

opposite direction.

Lemma 7: If there is an acyclic DTL-scenario for S, G, and σ with cost at most J , then

H and K form a yes-instance of MINIMUM FEEDBACK ARC SET.

Proof: Let α be an acyclic DTL-scenario for S, G, and σ, with cost ≤ J . For most

of the remainder of the proof we will consider the subtree (bi, G
ai) for an arbitrary arc

ai = 〈rj, rk〉 ∈ A. As before, let u0 denote the internal vertex p(vi
k,K+5) and let ul denote

p(ul−1), for l = 1 . . . K+6. As a first step, we show that there is a cost of at least 2 associated

with the gene tree vertices u1, . . . , uK+6.

Claim 7.1: At most one of u1 and u2 is in Σ.

Assume u1 ∈ Σ and u2 ∈ Σ. Then, by (IVb), γ(u1) must be incomparable to γ(vi
j,2) = xj,2

and it must be an ancestor of γ(vi
j,1) = xj,1. There is only one such species tree vertex, namely

xj,1, which is a leaf. Clearly, by (IVb), u1 cannot be mapped to a species tree leaf if it is a

member of Σ, and we have proved the above claim.

Claim 7.2: At most one of uK+5 and uK+6 is in Σ.

Assume that uK+5 ∈ Σ. The children of uK+5, bi and uK+4, must be mapped by γ to

incomparable species tree vertices. Since bi is a leaf, we know that γ(bi) = σ(bi) = ai. So,

γ(uK+4) must be incomparable to ai. By Lemma 3, γ(uK+4) ≥S λG\Ξ(uK+4). But since

May 18, 2009 DRAFT



18

al /∈ σ(L(GuK+4
)) for l = 1, . . . , i, we conclude that γ(uK+4) �= al for l = 1, . . . , i. This,

together with the fact that γ(uK+4) is incomparable to ai, implies that

γ(uK+4) ≤S p(ai+1),

so that

γ(uK+5) = lca {γ(bi), γ(uK+4)}

= lca {ai, γ(uK+4)}

= p(ai).

Now, if uK+6 is also in Σ, then γ(uK+6) must be incomparable to γ(uK+5). But the only

vertices incomparable to p(ai) are a1, . . . , ai−1, which are leaves of S. Clearly, uK+6 cannot

be mapped to a leaf if it is a speciation. Hence, if uK+5 ∈ Σ, then uK+6 /∈ Σ.

Our next claim puts a limit on the number of transfers and duplications among the vertices

u0, . . . , uK+6.

Claim 7.3: At most 2+K of the vertices u0, . . . , uK+6 are duplications or transfer vertices.

It follows from the two previous claims that every scenario for S, G and σ has a minimum

cost of 2m. The result then follows by our assumption that our scenario has cost at most

J = 2m + K.

Next, we will show that there is a transfer event from Srj to Srk corresponding to our arc

ai = 〈rj, rk〉 ∈ A.

Let uq be the <G-minimal vertex in {u1, . . . , uK+3} such that (uq, v
i
j,q) /∈ Ξ. Note that

such a vertex exists, otherwise ul ∈ Θ for l = 1, . . . , K + 3 contradicting claim 7.3.

Claim 7.4: (uq, uq−1) ∈ Ξ.

Let x be the least common ancestor of the roots Srj and Srk . We first show that if uq /∈ Θ,

then γ(uq) ≥S x, from which it follows that ul ∈ Δ for l = q + 1, . . . , K + 4 contradicting

Claim 7.3.

Assume that uq /∈ Θ. Now, u0 has as children two leaves that are mapped by γ to xk,K+5

and xk,K+6. By (IIb), γ(u0) is an ancestor of at least one of xk,K+5 and xk,K+6. By the

definition of uq, (up, v
i
j,p) ∈ Ξ for p = 1, . . . , q − 1. By (IIb) and (III), we have that

γ(uq−1) ≥S γ(uq−2) ≥S · · · ≥S γ(u0).

Hence, γ(uq−1) is an ancestor of at least one of xk,K+5 and xk,K+6. From (IVb) and (IVc),

we see that irrespective of whether uq ∈ Δ or uq ∈ Σ,

γ(uq) ≥S lca {γ(uq−1), γ(vi
j,q)} = lca {γ(uq−1), xj,q)}.
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Since γ(uq−1) is an ancestor of one of xk,K+5 and xk,K+6, we see that lca {γ(uq−1), xj,q)} ≥S

x, i.e.,

γ(uq) ≥S x.

The sibling of uq, i.e., vi
j,q+1, is a leaf and is mapped by γ to xj,q+1 which is comparable to

x. We then get from Lemma 1a that uq+1 ∈ Δ. From (IVc) we get that γ(uq+1) ≥ x. We can

now show inductively that ul ∈ Δ for l = q + 1, . . . , K + 4. This together with the fact that

ul ∈ Θ for l = 1, . . . , q − 1, contradicts Claim 7.3. Therefore, uq ∈ Θ, and by the definition

of q, we must have that (uq, uq−1) ∈ Ξ. This ends the proof of the above claim.

Claim 7.5: p(γ(uq)) ∈ V̊ (Srj).

Since ul ∈ Θ for l = 1, . . . , q, we deduce from claim 7.3 that q ≤ K + 2 and that at least

one vertex among uq+1, . . . , uK+3 is a speciation. Let up be the <G-minimal such vertex. We

will now show that γ(up) = p(xj,p).

Since up ∈ Σ, its children, vj,p and up−1, are mapped by γ to incomparable species tree

vertices. Since vi
j,p is a leaf, we know that γ(vi

j,p) = xj,p. So, γ(up−1) is incomparable to

xj,p. By Lemma 3, γ(up−1) ≥S λG\Ξ(up−1). The leaves reachable from up−1 in G \ Ξ is a

subset of {vi
j,q, v

i
j,q+1, . . . , v

i
j,p−1}, so that

λG\Ξ(up−1) ≤S lca {xj,q, xj,q+1, . . . , xj,p−1} = p(xj,p−1).

Hence, we have that

γ(up) = lca {xj,p, γ(up−1)} = p(xj,p).

Now, γ(uq) ≥S xj,q, and by (IIa), γ(uq) is not a proper ancestor of γ(up) = p(xj,p). Hence,

xj,q ≤S γ(uq) ≤S p(xj,p).

Clearly, p(γ(uq)) ∈ V̊ (Srj), and we have proved the claim.

Claim 7.6: if u0 /∈ Θ, then γ(uq−1) ≥S root(Srk).

Assume that u0 /∈ Θ. By (IVb) and (IVc), we have that

γ(u0) ≥ lca {xk,K+5, xk,K+6} = root(Srk).

By the definition of uq, we have that (ul, v
i
j,l) ∈ Ξ for l = 1, . . . , q − 1, so that

γ(uq−1) ≥S γ(uq−2) ≥S · · · ≥S γ(u0).

Hence, γ(uq−1) ≥S root(Srk).
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Since our scenario α is acyclic, there exists a total order on the vertices of S satisfying

condition (V). Let < be such an order. By (V), p(γ(uq)) < γ(uq−1). Since γ(uq−1) is an

ancestor of the root of Srk , we have by (Va), that p(γ(uq−1)) < z for any vertex z ∈ V (Srk).

To sum things up, we have shown that for any arc ai = 〈rj, rk〉 of A, if p(vi
k,K+5) is not a

transfer vertex, then there is a vertex y ∈ V̊ (Srj) such that y < z for each vertex z ∈ V (Srk).

All that remains is to construct a subset A′ of A such that |A′| ≤ K, and the graph H ′,

with V (H ′) = V and A(H ′) = A \ A′, is a DAG. We will do this by

A′ = {ai = 〈rj, rk〉 : p(vi
k,K+5) ∈ Θ}.

From claims 7.1 and 7.2 it follows that |A′| ≤ K. Assume that H ′ contains a directed cycle

c. For an arc ai = 〈rj, rk〉 in c, we know that there is a vertex y of V̊ (Srj) for which y < z

for all z ∈ V̊ (Srk). But this implies that < is a cyclic order on the vertices of S which is

absurd. Hence H ′ is a DAG.

Theorem 1: DTL-RECONCILIATION is NP-complete.

Proof: This follows immediately from Lemma 6 and 7.

The reader may have noticed that the construction of S, G, and σ may leave some of

the leaves of S without corresponding leaves in G. (i.e., σ(L(G)) �= L(S)). This does not

contradict any of the conditions of a DTL-scenario. However, one may ask whether the

hardness result still holds for the special case when σ(L(G)) = L(S). The answer is yes,

since we can easily reduce the problem of solving the general case to the special case. In

fact, it is easy to verify that if S ′ is obtained from S by removing all subtrees whose leaves

have no corresponding leaves in G, then any scenario for S ′, G, and σ can easily be extended

to a scenario for S, G, and σ.

VI. A DYNAMIC PROGRAMMING ALGORITHM

As we saw in the previous section, finding most parsimonious acyclic scenarios is difficult.

However, we also saw that the acyclicity requirement was essential in the NP-completeness

proof. We will show in the coming sections, that dropping this requirement makes the problem

tractable; we are able to find most parsimonious scenarios in polynomial time if we do not

require them to be acyclic. We will return to the problem posed by cycles in section VIII.

Unless stated otherwise, we will ignore cycles for the time being.

In this section we will present a dynamic programming algorithm that given S, G and σ,

computes the cost of a most parsimonious scenario.
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We define a counter c(u, x) as the minimum cost of any scenario for Gu and S such that

u is mapped to x ∈ V (S). This, in turn, is the minimum of the minimum costs of having u

mapped to x and u ∈ Σ, u ∈ Δ, and u ∈ Θ. The counters c1, c2, and c3 given below will

represent these three mutually exclusive cases. The recursion is as follows:

If u ∈ L(G), then

c(u, x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x = σ(u),

∞ otherwise.

If u ∈ V̊ (G) with children v and w, then

c(u, x) = min{c1(u, x), c2(u, x), c3(u, x)},

where

c1(u, x) =

⎧⎪⎪⎨⎪⎪⎩
min{c(v, y) + c(w, z) : y incomparable to z, and lca {y, z} = x } if x ∈ V̊ (S),

∞ otherwise,

c2(u, x) = min{1 + c(v, y) + c(w, z) : y ≤S x, z ≤S x},

c3(u, x) = min{1 + c(v, y) + c(w, z) : y ≤S x and z incomparable to x}.

The minimum cost of a scenario reconciling S and G is then given by

min
x∈V (S)

c(root(G), x).

An algorithm for computing the above recursion can easily be implemented to run in time

O(|V (G)| · |V (S)|2). Note that although each minimum in the expressions above is taken

over a quadratic number of terms, they can easily be computed in linear time. For example,

c2(u, x) = min{1 + c(v, y) + c(w, z) : y ≤S x, z ≤S x}

= min{c(v, y) : y ≤S x} + min{c(w, z) : y ≤S x} + 1,

and similarly for the other cases. Algorithm 1 shows explicitly how the recursions may

be implemented to achieve the above mentioned time complexity. We will now prove the

correctness of our recursion.

For a DTL-scenario α and a gene tree vertex v ∈ V (G), define the restriction of α to Gv

as

α|Gv
= (S,Gv, σ|L(Gv), γ|V (Gv), Σ ∩ V (Gv), Δ ∩ V (Gv), Θ ∩ V (Gv), Ξ ∩ E(Gv)).
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Algorithm 1: Dynamic programming algorithm.
Input: S, G, and σ.

Output: Minimum cost of any DTL-scenario for S, G, and σ.

c ← Array
[
1..|V (G)|, 1..|V (S)|

]
initialized to ∞1

for u ∈ L(G) do2

c(u, σ(u)) ← 03

end4

for u ∈ V̊ (G) in postorder do5

for x ∈ V (S) in postorder do6

Let v, w be the children of u7

if x ∈ V̊ (S) then8

Let y, z be the children of x9

c1 ← min
(

min
y′≤y

c(v, y′) + min
z′≤z

c(w, z′), min
y′≤y

c(w, y′) + min
z′≤z

c(v, z′)
)

10

else11

c1 ← ∞12

end13

c2 ← min
x′≤x

c(v, x′) + min
x′≤x

c(w, x′) + 114

c3 ← min
(

min
x′≤x

c(v, x′) + min
x′�x

x′�x

c(w, x′), min
x′≤x

c(w, x′) + min
x′�x

x′�x

c(v, x′)
)

15

c(u, x) ← min{c1, c2, c3}16

end17

end18

return min
x∈V (S)

c(root(G), x)19

It is easy to verify that any restriction of a DTL-scenario is itself a DTL-scenario. The next

two lemmas show that we can decompose DTL-scenarios into smaller ones and, given certain

natural conditions, we are able to combine smaller DTL-scenarios into larger ones.

Lemma 8: Let S, G, and σ be given, and let v and w be the children of u = root(G). Fix

a species tree vertex x.

Assume that α0 is a scenario for S, G, and σ such that γ0(u) = x, and let α1 = α0|Gv

and α2 = α0|Gw
.

(a) If u ∈ Σ0, then γ1(v) is incomparable to γ2(w), and lca {γ1(v), γ2(w)} = x.
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(b) If u ∈ Δ0, then γ1(v) ≤S x and γ2(w) ≤S x.

(c) If u ∈ Θ0, then γ1(v) ≤S x and γ2(w) is incomparable to x, or γ2(w) ≤S x and γ1(v)

is incomparable to x.

Proof: If we note that γ0(v) = γ1(v) and γ0(w) = γ2(w), then a, b, and c follow

immediately from the definition of DTL-scenarios.

Lemma 9: Let S, G, and σ be given and let v and w be the children of u = root(G). Fix

a species tree vertex x.

Assume that α1 is a DTL-scenario for S, Gv, and σ|L(Gv), and α2 is a DTL-scenario for

S, Gw, and σ|L(Gw).

(a) If γ1(v) is incomparable to γ2(w), and lca {γ1(v), γ2(w)} = x, then there is a DTL-

scenario α0 for S, G, and σ such that α1 = α0|Gv
, α2 = α0|Gw

, γ0(u) = x, and u ∈ Σ0,

(b) If γ1(v) ≤S x, and γ2(w) ≤S x, then there is a DTL-scenario α0 for S, G and σ such

that α1 = α0|Gv
, α2 = α0|Gw

, γ0(u) = x, and u ∈ Δ0.

(c) If γ1(v) ≤S x, and γ2(w) is incomparable to x, then there is a DTL-scenario α0 for S,

G and σ such that α1 = α0|Gv
, α2 = α0|Gw

, γ0(u) = x, and u ∈ Θ0.

Proof: For (a), let α1 and α2 be given. Assume that γ1(v) is incomparable to γ2(w),

and that lca {γ1(v), γ2(w)} = x. Let α0 be the octuple

α0 = (S,G, σ, γ0, Σ1 ∪ Σ2 ∪ {u}, Δ1 ∪ Δ2, Θ1 ∪ Θ2, Ξ1 ∪ Ξ2),

where γ0 : V (G) → V (S) is an extension of both γ1 and γ2 with γ0(u) = x. It is then

straightforward to verify that conditions (I)-(IV) (in particular (IVb)) are fulfilled for u. That

the conditions are fulfilled for the rest of the gene tree vertices and edges follows from the

fact that α1 and α2 are DTL-scenarios.

In the same way (b) and (c) can be proved by instead considering the octuples

α0 = (S,G, σ, γ0, Σ1 ∪ Σ2, Δ1 ∪ Δ2 ∪ {u}, Θ1 ∪ Θ2, Ξ1 ∪ Ξ2), and

α0 = (S,G, σ, γ0, Σ1 ∪ Σ2, Δ1 ∪ Δ2, Θ1 ∪ Θ2 ∪ {u}, Ξ1 ∪ Ξ2 ∪ {(u,w)}),

respectively.

Finally, the theorem below proves that the recursions above correctly compute the minimum

cost of reconciling a gene tree and species tree.

Theorem 2: Let S, G, and σ be given. For u ∈ V (G) and x ∈ V (S) define the set

A = {α a DTL-scenario for S, Gu, and σ|L(Gu) : γ(u) = x}.
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Then,

c(u, x) =

⎧⎪⎪⎨⎪⎪⎩
∞ if A = ∅,

min
α∈A

|α| otherwise.

Proof: The theorem is clearly true if u is a leaf.

Assume that u ∈ V̊ (G) and that the theorem is true for all proper descendants of u for all

species tree vertices. Let v and w be the children of u and define the following three sets:

A1 = {α ∈ A : u ∈ Σ},

A2 = {α ∈ A : u ∈ Δ},

A3 = {α ∈ A : u ∈ Θ}.

Claim 9.1:

c1(u, x) =

⎧⎪⎪⎨⎪⎪⎩
∞ if A1 = ∅,

min
α∈A1

|α| otherwise.

Assume c1(u, x) �= ∞. Then, by the definition of c1(u, x), there is a pair y, z of incompa-

rable vertices in S such that lca {y, z} = x, c(v, y) �= ∞, and c(w, z) �= ∞. By our inductive

hypothesis, this implies that there are scenarios α1 for S, Gv, σ|L(Gv), and α2 for S, Gw,

σ|L(Gw), such that γ1(v) = y and γ2(w) = z. From Lemma 9a, we then see that A1 �= ∅.

Therefore, if A1 = ∅, then c1(u, x) = ∞.

Assume A1 �= ∅. Let α ∈ A1 be a scenario with minimum cost and consider the restrictions

α1 = α|Gv
and α2 = α|Gw

of α. Clearly, by our inductive hypothesis, c(v, γ1(v)) ≤ |α1|.

In fact, since α is a minimum-cost scenario in A, c(v, γ1(v)) = |α1|. Similarly, |α2| =

c(w, γ2(w)). From Lemma 8a, we deduce that

c1(u, x) ≤ c(v, γ1(v)) + c(v, γ2(w)) = |α|.

Assume that the above inequality is strict, i.e., c1(u, x) < |α|. Then there is a pair of

incomparable vertices y, z in S such that c(v, y) + c(w, z) < |α| and lca {y, z} = x. By

our inductive hypothesis, this implies that there are scenarios α3 for S, Gv, σ|L(Gv), and α4

for S, Gw, σ|L(Gw), such that γ3(v) = y, γ4(w) = z, and |α3|+ |α4| < |α|. From Lemma 9a,

we see that there is a scenario α0 with α3 = α0|Gv
, α4 = α0|Gw

, and u ∈ Σ0. Clearly,

α0 ∈ A1. The fact that α0 ∈ A1 and

|α0| = |α3| + |α4| < |α|,

produces a contradiction. Therefore, c1(u, x) = |α|, and we have proved the above claim.
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The next two claims are stated without proofs as the structure of their proofs are very

similar to that of the above claim.

Claim 9.2:

c2(u, x) =

⎧⎪⎪⎨⎪⎪⎩
∞ if A2 = ∅,

min
α∈A2

|α| otherwise.

Claim 9.3:

c3(u, x) =

⎧⎪⎪⎨⎪⎪⎩
∞ if A3 = ∅,

min
α∈A3

|α| otherwise.

The theorem follows immediately from the above claims.

A. A Dynamic Programming Algorithm for the DT-cost set problem

In the previous section we saw how to compute the minimum cost of reconciling S, G,

and σ. It can, however, be desirable to know the number of duplications and transfers that

are involved in an optimal scenario separately. We can use the same recursive idea as in

the previous section to find all pairs (d, t) such that d is the number of duplications and

t is the number of transfers in some optimal scenario. Instead of using a counter to keep

track of the minimal cost, we will use sets containing pairs of numbers. The recursion is

given below without proof. Note that we define argminx∈X f(x) to be the set of arguments

where f(x) attains its minimum value. Also, similar to the counters c1, c2, and c3 above,

the sets A1, A2, and A3 defined below correspond to costs of the gene tree vertex under

consideration being a speciation, duplication, and transfer vertex respectively. An algorithm

for computing the recursion below can easily be implemented to run in time O(mn(m+n2)),

where m = |V (S)| and n = |V (G)|.

If u ∈ L(G)

c(u, x) =

⎧⎪⎪⎨⎪⎪⎩
{(0, 0)} if x = σ(u)

∅ otherwise.

If u ∈ V̊ (G)

c(u, x) = argmin
(d,t)∈A1∪A2∪A3

d + t,
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where the sets A1, A2, and A3 are defined as:

A1 = {(d1 + d2, t1 + t2) : (d1, t1) ∈ c(v, y), (d2, t2) ∈ c(w, z),

where y is incomparable to z, and lca {y, z} = x},

A2 = {(d1 + d2 + 1, t1 + t2) : (d1, t1) ∈ c(v, y), (d2, t2) ∈ c(w, z),

where y ≤S x, and z ≤S x},

A3 = {(d1 + d2, t1 + t2 + 1) : (d1, t1) ∈ c(v, y), (d2, t2) ∈ c(w, z),

where y ≤S x and z incomparable to x}.

VII. A FIXED-PARAMETER-TRACTABLE ALGORITHM

In this section we present a fixed-parameter-tractable algorithm for reconciling S, G, and σ,

which is able to enumerate all optimal reconciliations. The time complexity of the algorithm

will be shown to be polynomial in the size of the input when considering the minimum cost

of reconciling S and G as a fixed parameter.

As we saw in section IV, the transfer sets induce a natural partition of the space of DTL-

scenarios, and the main idea behind the FPT-algorithm is to use transfer sets as a basis for

searching in this space. We know that there is a DTL-scenario for each transfer set, but every

transfer set also entails certain restrictions as to the placement of gene tree vertices within

the species tree as seen in Lemma 3. This, in turn, forces the introduction of duplications

by Lemma 1. Hence, choosing to include or not to include an edge in a transfer set has

consequences in terms of forced duplications. Below, we will define the notion of candidates

which will be central to our search strategy. The purpose of a candidate is to keep track

of forced duplications with respect to transfer sets and anchors. We remind the reader that

a gene tree vertex is called an anchor w.r.t. a transfer set F if its children are mapped to

incomparable species tree vertices by λG\F . It can then be seen from (IVb) and Lemma 4 that

for each transfer set F , there is a DTL-scenario in which all anchors w.r.t. F are speciations.

A tuple (D,F ) is called a candidate for S, G, and σ iff D ⊆ V̊ (G), F is a transfer set,

and for each u ∈ D, (u, v) /∈ F for any child v of u. An internal gene tree vertex u is

unmarked with respect to a candidate (D,F ) iff u /∈ D and (u, v) /∈ F for any child v of

u. A candidate (D,F ) is final iff each unmarked vertex u is an anchor w.r.t. F . We will say

that u is an anchor w.r.t. a candidate (D,F ), when and only when u is an anchor w.r.t. F .

The cost of a candidate (D,F ) is defined as |(D,F )| = |D| + |F |. A final candidate with
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minimal cost is called optimal. Finally, we write (D1, F1) � (D2, F2) when D1 ⊆ D2 and

F1 ⊆ F2.

We now show that (D,F ) is a final candidate if and only if there is a DTL-scenario such

that D = Δ and F = Ξ. It then follows that given any final candidate (D,F ), there is a set

of corresponding scenarios {α : Δ = D, Ξ = F} in which the only difference between two

distinct scenarios is the mapping of the gene tree into the species tree. There is, in general,

an exponential number of ways to map a gene tree into a species tree even when keeping

Δ, Ξ, and Σ fixed.

Lemma 10: If (D,F ) is a final candidate for S, G, and σ, then there is a DTL-scenario

α for S, G, and σ such that Δ = D and Ξ = F .

Proof: Assume that (D,F ) is a final candidate for S, G, and σ. Let

Θ = {u ∈ V̊ (G) : (u, v) ∈ F for some child v of u},

Δ = D, and

Σ = {u ∈ V̊ (G) : u /∈ Θ, u /∈ Δ}.

For each u ∈ Σ, u is unmarked w.r.t. (D,F ), and since (D,F ) is final, u is an anchor w.r.t.

F . By Lemma 4, we see that the octuple (S,G, σ, λG\F , Σ, Δ, Θ, F ) is a DTL-scenario.

Lemma 11: If α is a scenario for S, G, and σ, then (Δ, Ξ) is a final candidate for S, G,

and σ.

Proof: Assume that α is a scenario for S, G, and σ. Since Δ ∩ Θ = ∅ and Ξ is a

transfer set, we have that (Δ, Ξ) is a candidate. Clearly, Σ is the set of unmarked vertices

of (Δ, Ξ). Let u ∈ Σ with children v and w. We need to show that u is an anchor w.r.t. Ξ.

From Lemma 3, we have that λG\Ξ(v) ≤S γ(v) and λG\Ξ(w) ≤S γ(w). Therefore, since γ(v)

is incomparable to γ(w) by (IVb), λG\Ξ(v) is incomparable to λG\Ξ(w) and u is an anchor

w.r.t. Ξ. Hence, (Δ, Ξ) is a final candidate.

As stated earlier, our main interest is not determining the exact location within the species

tree where events have taken place, but rather to identify the set of duplications and transfers

in the gene tree by finding parsimonious scenarios. Therefore, we define an equivalence

relation on the set of scenarios such that two scenarios α1 and α2 for S, G, and σ are

equivalent iff Σ1 = Σ2, Δ1 = Δ2, and Ξ1 = Ξ2. It is then clear that every final candidate

can be taken as the representative of an equivalence class of scenarios.

In the remainder of this section we will give an algorithm that, given S, G, and σ,

enumerates all optimal candidates. We can think of this computation as search for optimal
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candidates in the space of candidates for S, G, and σ. Consider a search tree in the space

of all candidates where the root is the empty candidate, (∅, ∅), and each candidate C has as

its children exactly the candidates C ′ such that C � C ′ and |C ′| = |C| + 1 (so each child

of C is obtained by adding exactly one duplication or one transfer to C). We will show that

we can prune this search tree in such a way that no candidate has more than three children

and that all optimal candidates are reachable from the root. The algorithm we present below

performs an implicit breadth-first search in this “pruned” search tree.

Let C = (D,F ) be a candidate for S, G, and σ and let f be the set of transfer vertices

of C, i.e., f = {u ∈ V (G) : (u, v) ∈ F for some child v of u}. Consider the forest G \ F .

The vertices with only one outgoing edge in G \F are exactly the set of transfer vertices of

C. We will often need to speak of pairs of gene tree vertices u /∈ f, v /∈ f , such that u is a

proper ancestor of v in G \F and for each vertex w such that u >G w >G v, w is a transfer

vertex. For ease of notation, we will now introduce the rooted forest G \◦ F that is obtained

from G \ F by contracting any paths that contain only transfer vertices into a single edge.

Note that (u, v) is an edge of G \◦F iff u is a proper ancestor of v in G \F and every vertex

on the path from u to v that is distinct from u and v is a transfer vertex. This implies that

if (u, v) is an edge of G \◦ F and u >G w >G v, then λG\F (w) = λG\F (v). Also, note that

G \◦ F is a full rooted binary forest, i.e., every vertex of G \◦ F has two outgoing edges in

G \◦ F .

Let C = (D,F ) be a candidate for S, G, and σ. An unmarked anchor u w.r.t. C is called

an s-move iff (p, u) ∈ E(G \◦ F ) for some unmarked vertex p and λG\F (p) = λG\F (u). An

unmarked vertex u of C is called a d-move iff (u, v) ∈ E(G \◦ F ) for some vertex v ∈ D

and λG\F (u) = λG\F (v). As we will see, we must decide for each s-move of a candidate C

whether it is to become a speciation, in which case its parent in G\◦F is a forced duplication,

or to have it be a transfer vertex. A d-move is simply a vertex that must be a duplication

due to the choices made so far. Given these definitions, we will now show that Algorithm 2

enumerates all optimal candidates and can be implemented to run in time O(m + n · 3c),

where n = |V (G)|, m = |V (S)|, and c is the minimum cost of any final candidate for S, G,

and σ. Therefore, keeping the cost c fixed, the algorithm runs in polynomial time in m and

n.

First, we give two technical lemmas that will be needed later. Then we will show that

a candidate is final iff it contains no d-moves or s-moves. This is the main idea behind

Algorithm 2; we identify d-moves and s-moves and eliminate them by introducing duplica-
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Fig. 5. Illustration of the d- and s-moves of a candidate C = (D, F ). The left figure shows a portion of the gene

tree mapped inside the species tree using λG\F . The vertex u is an anchor, and both u and p are unmarked and mapped

to the same species tree vertex. The vertices in the path between p and u are all transfer vertices of C. As proved in the

text, every optimal final candidate C′ � C either has one of the outgoing edges of u as a transfer edge, or u is unmarked

and p ∈ D′. The right figure illustrates a d-move. Both u and v are mapped to the same vertex by λG\F , v ∈ D, and u is

unmarked. Every optimal final candidate C′ � C will have u ∈ D′.

tions and transfers. Note that when eliminating a move, at most three candidates need to be

considered. As we will show further below, the order in which we consider the moves is

irrelevant.

Lemma 12: A gene tree vertex u is an anchor w.r.t. a candidate (D,F ) iff λG\F (u) �=

λG\F (v) for each edge (u, v) of G \◦ F .

Proof: Let C = (D,F ) be a candidate. Assume u is an anchor w.r.t. C and let (u, v)

be an edge of G \◦ F . Consider the child v′ of u that is an ancestor of v. By the definition

of G \◦F , we have that λG\F (v′) = λG\F (v). Since u is an anchor, λG\F (v′) �= λG\F (u), and

hence, λG\F (v) �= λG\F (u).

Assume that λG\F (u) �= λG\F (v) for an edge (u, v) of G \◦ F . Consider the child v′ of u

that is an ancestor of v. By the definition of G \◦ F , λG\F (v′) = λG\F (v) �= λG\F (u). Hence,

if u is a vertex of G \◦ F such that λG\F (u) �= λG\F (v) for each edge (u, v) of G \◦ F , then

λG\F (v′) �= λG\F (u) for each child v′ of u, and u is an anchor.

Lemma 13: Let C = (D,F ) and C ′ = (D′, F ′) be candidates for S, G, and σ such that

C � C ′. We then have that

(a) λG\F ′(u) ≤S λG\F (u) for any gene tree vertex u.

(b) If u is unmarked in C, but is a transfer vertex in C ′, then λG\F ′(u) <S λG\F (u).

(c) If λG\F (pG(u)) = λG\F (u) and λG\F ′(u) = λG\F (u), then λG\F ′(pG(u)) = λG\F (pG(u)).

(d) If λG\F ′(u) �= λG\F (u), then there is an anchor v w.r.t. C such that λG\F (v) = λG\F (u)
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Algorithm 2: Fixed-parameter-tractable algorithm.
Input: S, G, and σ.

Output: All optimal final candidates for S, G, and σ.

opt ← ∞1

Q ← {(∅, ∅)} ; // Initialize queue2

while Q �= ∅ do3

(D,F ) ← dequeue(Q)4

if |(D,F )| ≤ opt then5

if there is an s-move u in (D,F ) then6

let v, w be the children of u7

C1 ← (D,F ∪ {(u, v)})8

C2 ← (D,F ∪ {(u,w)})9

C3 ← (D ∪ {pG\◦F (u)}, F )10

Q ← Q ∪ {C1, C2, C3}11

else if there is a d-move u in (D,F ) then12

C1 ← (D ∪ {u}, F )13

Q ← Q ∪ {C1}14

else15

solutions ← solutions ∪ {(D,F )}16

opt ← |(D,F )|17

end18

end19

end20

return solutions21

and v is a transfer vertex in C ′.

Proof:

(a) Since C � C ′, we have that F ⊆ F ′ and the result follows from Lemma 2.

(b) Assume that u is unmarked in C but is a transfer vertex in C ′. Let (u, v) ∈ F for some

child v of u. From (a), we already know that λG\F ′(u) ≤S λG\F (u). Since u is unmarked

in C, λG\F (u) is comparable to λG\F (v). From (a), we have that λG\F (v) ≤S λG\F ′(v).

Therefore, if λG\F ′(u) = λG\F (u), then λG\F ′(u) is comparable to λG\F ′(v) so that F ′
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is not a transfer set. Hence, λG\F ′(u) �= λG\F (u).

(c) Assume that λG\F (pG(u)) = λG\F (u) and λG\F ′(u) = λG\F (u). We see from (a) that

λG\F ′(pG(u)) ≤S λG\F (pG(u)) = λG\F (u). Since F ′ is a transfer set, it follows from

Lemma 2 that λG\F ′(pG(u)) is not a proper descendant of λG\F ′(u) = λG\F (u). Hence

λG\F ′(pG(u)) = λG\F (u) = λG\F (pG(u)).

(d) Assume that λG\F ′(u) �= λG\F (u). Let u = u1, u2, . . . , un be a path in G such that

λG\F (ui) = λG\F (u) and un is an anchor w.r.t. C. If un is not a transfer vertex in C ′,

then λG\F ′(un) = λG\F (un). From (c), we see that λG\F ′(ui) = λG\F (ui) for i = 1, . . . , n

which is a contradiction. Hence, un is a transfer vertex in C ′.

Using the rather technical lemmas above, we can now show that final candidates correspond

exactly to candidates with no moves.

Lemma 14: C is a final candidate iff C is a candidate with no d-moves or s-moves.

Proof: Assume that C is final. Each unmarked vertex of C is an anchor w.r.t. C. If u is

a d-move in C, then there is a vertex v such that (u, v) ∈ E(G\◦F ) and λG\F (v) = λG\F (u),

and by Lemma 12, u is not an anchor. Hence, there are no d-moves in C. If u is an s-move

in C, there is an edge (p, u) ∈ E(G \◦ F ) such that p is unmarked and λG\F (p) = λG\F (u),

and by Lemma 12, p is not an anchor. Hence, there are no s-moves in C.

For the other direction, assume that C = (D,F ) is a candidate with no d-moves or s-moves.

Assume that there is an unmarked vertex in C that is not an anchor and let u be a <G-minimal

such vertex. By Lemma 12, there is an edge (u, v) in G \◦ F such that λG\F (u) = λG\F (v).

Clearly, v is not a transfer vertex of C. If v is unmarked in C, then by the <G-minimality

of u, v is an anchor, implying that v is an s-move, producing a contradiction. If v ∈ D, then

u is a d-move which is also a contradiction. Since we get a contradiction in all cases, we

must have that each unmarked vertex of C is an anchor, i.e., C is final.

The next two lemmas show that there are three mutually exclusive ways to resolve an

s-move. Either the s-move is kept as a speciation, in which case its parent in G \◦F must be

labeled a duplication, or one of its outgoing edges is added as a transfer edge.

Lemma 15: Let C = (D,F ) be a candidate for S, G, and σ. If u is an s-move in C with

children v and w, then for any optimal final candidate C∗ = (D∗, F ∗) such that C � C∗

(a) u /∈ D∗, and

(b) if u is not a transfer vertex in C∗, then pG\◦F (u) ∈ D∗.
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Proof: Assume that u is an s-move in C with children v, w and let C∗ = (D∗, F ∗) be

an optimal candidate such that C � C∗. Let p = pG\◦F (u).

By the definition of an s-move, u is an anchor w.r.t. C implying that λG\F (v) is incom-

parable to λG\F (w). By Lemma 13a, λG\F ∗(v) ≤S λG\F (v) and λG\F ∗(w) ≤S λG\F (w).

Therefore, λG\F ∗(v) is incomparable to λG\F ∗(w). It follows that if u is not a transfer vertex

in C∗, then λG\F ∗(u) = λG\F (u), and by repeated application of Lemma 13c to the ancestors

of u, we have that λG\F ∗(p) = λG\F (p), so that p is not a transfer vertex in C∗ by Lemma 13b.

(a) Assume u ∈ D∗. By the discussion above, p is not a transfer vertex in C∗. If p is unmarked

in C∗, then p is a d-move in C∗, which is a contradiction. So p ∈ D∗. But then, since

C∗ has no moves, (D∗ \ {u}, F ∗) has no moves and is therefore final contradicting the

optimality of C∗. Hence, u /∈ D∗.

(b) Assume u is not a transfer vertex in C∗. Then p is not a transfer vertex in C∗. If p is

unmarked in C∗, then p is a d-move in C∗ which is a contradiction. Hence, p ∈ D∗.

Lemma 16: Only candidates are inserted into Q in Algorithm 2.

Proof: Clearly, at the start of the first iteration of the while-loop on line 3, Q contains

only candidates.

Assume that Q only contains candidates at the start of some iteration of the loop. Then,

(D,F ) dequeued on line 4 is a candidate. Clearly, for any unmarked vertex u, (D ∪{u}, F )

is a candidate. Now, let u be an s-move with children v, w. Let F ′ = F ∪ {(u,w)}. We will

now show that F ′ is a transfer set. Let (u′, u′′) be an edge in F ′ distinct from (u,w). Since

F is a transfer set, λG\F (u′) is incomparable to λG\F (u′′), and by Lemma 13a, we have

that λG\F ′(u′) ≤ λG\F (u′) and λG\F ′(u′′) ≤ λG\F (u′′). Therefore, λG\F ′(u′) is incomparable

to λG\F ′(u′′). Now consider the edge (u,w). By the definition of an s-move, λG\F (w) is

incomparable to λG\F (v), so that λG\F ′(w) is incomparable to λG\F ′(v). Since λG\F ′(u) =

λG\F ′(v), we see that λG\F ′(u) is incomparable to λG\F ′(w). Hence, F ′ is a transfer set and

(D,F ′) is a candidate.

We can now see that, in all cases, only candidates are inserted into Q during the while-loop.

All that remains is for us to show that the search we are performing really will find all

optimal candidates. The proof of the next Lemma contains a detailed argument that shows

that the order in which we consider the moves is not important.
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Lemma 17: Each optimal final candidate for S, G, and σ will be inserted into Q at some

point during the execution of Algorithm 2.

Proof: Let C∗ be an optimal candidate for S, G, and σ. If |C∗| = 0, then C∗ is inserted

into Q on line 2. Assume that |C∗| > 0. Consider one execution of Algorithm 2 and define

a sequence of candidates C0, C1, . . . , Cm, with Ci = (Di, Fi), as follows:

C0 = (∅, ∅).

If Ci contains an s-move, then let u with children v, w be the s-move chosen on line 6 and

define Ci+1 as:

Ci+1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Di, Fi ∪ {(u, v)} if (u, v) ∈ F ∗,

(Di, Fi ∪ {(u,w)} if (u,w) ∈ F ∗,

(Di ∪ {pG\F (u)} otherwise.

From Lemma 15, it is clear that C0, . . . , Cm are all well defined, C0 � C1 � · · · � Cm �

C∗, and that Ci contains an s-move for i = 0, 1, . . . , m− 1. Also, it is clear that C0, . . . , Cm

will all be inserted into Q at some point during the execution of Algorithm 2.

We will now show that Fm = F ∗. We already know that Fm ⊆ F ∗. It remains for us to

show that F ∗ ⊆ Fm. Consider the set β of transfer vertices in C∗ that are not transfer vertices

in C, i.e., β = {u : (u, v) ∈ F ∗ \ Fm}. Assume β �= ∅. By Lemma 13b and d, β contains

an anchor w.r.t. Cm. Now, let u ∈ β be an anchor w.r.t. Cm that is <S-maximally placed in

Cm, by which we mean that if u′ ∈ β is an anchor w.r.t. Cm, then λG\Fm
(u′) is not a proper

ancestor of λG\Fm
(u). Let v, w be the children of u and assume, without loss of generality,

that (u, v) ∈ F ∗.

Case 1. u is a root in the forest G \◦Fm. C∗ contains no moves, and clearly, neither will

the candidate (D∗, F ∗ \ {(u, v)}) contradicting the optimality of C∗.

Case 2. u is not a root in G \◦Fm and λG\Fm
(pG\◦Fm

(u)) = λG\Fm
(u). Since Cm contains

no s-moves, pG\◦Fm
(u) ∈ Dm. By the definition of C0, . . . , Cm, there is a Ci, i < m, such

that u is an s-move in Ci and pG\◦Fi
(u) = pG\◦Fm

(u). Again, by definition, (u, v) /∈ F ∗, which

is a contradiction.

Case 3. u is not a root in G \◦Fm and λG\Fm
(pG\◦Fm

(u)) �= λG\Fm
(u). Let p = pG\◦Fm

(u).

Clearly, λG\Fm
(p) is a proper ancestor of λG\Fm

(u). By the definition of u, any anchor u′

w.r.t. Cm such that λG\Fm
(u′) = λG\Fm

(p) is not a transfer vertex in C∗. By Lemma 13d,

λG\F ∗(p) = λG\Fm
(p). It is now clear that since C∗ contains no moves, then (D∗, F ∗ \ (u, v))

contains no moves, contradicting the optimality of C∗.
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In all cases, our assumption that β �= ∅ leads to a contradiction. Hence, Fm = F ∗.

If Dm = D∗, then Cm = C∗ and we are done. Assume instead that Dm ⊂ D∗. Define Cm+i

for i = 1, . . . , n as follows. If Cm+i contains a d-move, then let u be the d-move chosen on

line 12 and define Cm+i+1 as

Cm+i+1 = (Dm+i ∪ {u}, Fm+i).

If Cm+i contains no d-move, then i = n.

Clearly, Cm ≺ C∗. Assume that Cm+i ≺ C∗. Since Cm+i contains no s-moves and is not

final, it contains a d-move u. If u /∈ D∗, then u is a d-move of C∗. Therefore, u ∈ D∗.

Hence, Cm+i+1 � C∗. By induction, Cm+n � C∗. But Cm+n contains no s-move or d-move

and is therefore final. Hence, Cm+n = C∗.

Finally, we prove the time complexity of the algorithm. Note that the proof contains detailed

descriptions of how the search for s-moves and d-moves can be implemented to achieve the

time complexity.

Theorem 3: Given S, G, and σ, Algorithm 2 returns the set of optimal candidates and can

be implemented to run in time O(m + n · 3c), where m = |V (S)|, n = |V (G)|, and c is the

minimum cost of any final candidate for S, G, and σ.

Proof: The correctness of the algorithm is an easy consequence of Lemma 16 and

Lemma 17. We will now proceed to show how the algorithm can be implemented to run in

time O(m + n · 3c).

By doing a one-time precomputation in time O(m), it is possible to compute lca {x, y}

for any pair of vertices x, y ∈ V (S) in time O(1). A clear exposition of how this can be

done can be found in [37].

The while-loop of the algorithm is executed at most O(3c) times. To see this, note that

each candidate C that is dequeued on line 4 is replaced by at most three other candidates,

each having a cost of |C| + 1. No candidate with cost exceeding c + 1 is ever inserted into

Q. Hence the while-loop is executed at most 3c+1 times.

It only remains for us to show that every operation within the while-loop can be performed

in time O(n). More specifically, we have to show how to find an s-move or d-move in time

O(n).

We will assume that we can determine whether an arbitrary gene tree vertex u is unmarked

in constant time. First, we will precompute λG\F (u) for all vertices of G. Using the recursion

in Lemma 2, we see that this can be done in time O(n).
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Next we precompute pG\◦F (u). This can also be done in time O(n) using the following

recursion:

P [u] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∅ if u = root(G) or (pG(u), u) ∈ F ,

P [pG(u)] if (pG(u), u′) ∈ F , u′ sibling of u,

pG(u) otherwise.

Clearly, if u ∈ G \◦ F , then P [u] = pG\◦F (u).

Now, a gene tree vertex u with children v, w is an s-move iff u is unmarked, pG\◦F (u)

is unmarked, λG\F (u) �= λG\F (v), λG\F (u) �= λG\F (w), and λG\F (pG\◦F (u)) = λG\F (u). To

check these conditions for each internal gene tree vertex takes time O(n).

To find a d-move we simply check, for each vertex u ∈ D ∪ L(G), whether pG\◦F (u) is

unmarked and λG\F (pG\◦F (u)) = λG\F (u). If so, pG\◦F (u) is a d-move. Clearly, this can also

be done in time O(n).

Hence, Algorithm 2 can be implemented to run in time O(m + n · 3c).

VIII. A NOTE ON CYCLES AND GENE LOSSES

As mentioned earlier, the interpretation of a transfer edge (u, v) in a scenario is that a

lateral transfer has occurred from the incoming edge of γ(u) to some ancestral edge of γ(v)

that is not ancestral to γ(u). So, although the starting point of each transfer in the species

tree is made explicit in a scenario, the end point is not; the end point could be anywhere

between γ(v) and lca {γ(v), γ(u)}. This is in contrast to earlier work [32], where both the

start and end points of lateral transfer events were made explicit. As such, the notion of

cyclic scenarios is somewhat different.

In [32], a path was defined as a sequence x1, x2, . . . , xn of species tree vertices where, for

each pair of consecutive vertices xi and xi+1, either (xi, xi+1) is an edge of the species tree,

or xi and xi+1 represent the edges between which a lateral transfer event has occurred. In

the latter case, the transfer could be in any direction, i.e., either from the incoming edge of

xi to the incoming edge of xi+1, or vice versa. In this way, whenever we move from one

vertex to another in a path we never move backward in time. A cycle is a path that starts and

ends in the same vertex, and if a scenario contains a cycle, then the scenario is biologically

infeasible. With our new definitions, a cyclic DTL-scenario would contain a cycle no matter

where the end points of lateral transfer events were placed. We note here, that as pointed out

in [32], cycles seem not to be a problem in practice.
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Note, however, that the issue of transfer end points is the only essential difference between

the old and new definitions. In fact, for each DTL-scenario we can find a corresponding set of

old-style scenarios by explicitly choosing all possible end points for each transfer in the DTL-

scenario. Hence, the set of most parsimonious scenarios are essentially the same irrespective

of which definition we use.

We mentioned in section IV that there are many ways a gene tree could be mapped into

a species tree, even when keeping the set of events, i.e., the sets Σ, Δ, and Ξ, fixed. In our

present context, we do not view the exact placement of the gene tree vertices within the

species tree as an important question. Such questions are better answered by, for example,

using sequence data. However, a more interesting question is whether or not every scenario

with a fixed set of events is cyclic. In terms of the definitions in section VII, the question

can be phrased: Given a final candidate (D,F ) for S, G, and σ, is there an acyclic scenario

for S, G, and σ such that Δ = D and Ξ = F ?

The name of DTL-scenarios comes from the fact that we are using three biological events—

duplications, lateral transfers, and gene losses—to explain the differences between species

trees and gene trees. In the algorithms we have presented, however, we optimize the number

of duplications and transfers only. There are several reasons for this. First, gene loss occurs

frequently during evolution of genomes, where many duplications are followed by gene loss.

Secondly, minimizing the number of losses can lead to the introduction of unnecessary and

artificial transfer events. A duplication near the root of the species tree, for example, can

lead to many losses further down the tree. However, a transfer could instead move the gene

tree bifurcation closer to the leaves of the species tree, thereby eliminating losses. Instead,

we propose to use the number of losses as a second criteria to choose between the different

most parsimonious scenarios. A conservative approach for the detection of lateral transfer

events would be to choose among the most parsimonious scenarios the ones with the fewest

transfers, and among these, the ones with the fewest number of losses.

IX. EMPIRICAL PERFORMANCE

In this section we will analyze a biological dataset using the algorithms described previ-

ously. We will see how to handle some of the difficulties that may arise in dealing with real

data, such as dealing with unrooted gene trees, and how to overcome them. Our results are

comparable to other analyses done on the same data set, but we have the added advantage

of being able to also take into account the role of duplications.
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In [38], Matte-Tailliez et al. constructed phylogenies for 14 archaeal species: one based

on the concatenation of 53 ribosomal proteins (7175 positions), which we will call SRP, and

one based on the concatenation of SSU and LSU rRNA (3933 positions), which we will

call SrRNA. These two species trees are shown in Fig. 6. In the same article, the authors

also analyzed the impact of LGTs in their dataset and concluded that 8 genes may have

undergone lateral gene transfer events. One of these is the rpl12e ribosomal protein, which

we will study in this section. The same dataset was also analyzed by Jin et al. in [39].

The aligned rpl12e sequences were generously provided by Hervé Philippe. We used

MrBayes [40] to obtain the ML gene tree shown in Fig. 7 (the tree with maximum posterior

likelihood and the consensus tree were the same), which is identical to the one presented

in [38] and has high edge posterior probabilities. We were not able to find any outgroup

sequences that aligned well with the archaeal sequences, so instead of using an outgroup, we

rooted the gene tree in all possible ways, thereby obtaining 25 candidate rooted gene tree

G1, . . . , G25.

Reconciling any of the rooted gene trees with SRP without using transfers, i.e., according

to the duplication loss model, requires at least 7 duplications and 27 losses. For SrRNA,

the numbers are 6 duplications and 25 losses. We analyzed each pair of rooted gene tree

and species tree using our algorithms. Note that the gene tree in Fig. 7 nicely groups the

Crenarchaeota (S. solfataricus, A. pernix, and P. aerophilum), but internally, this clade is in

conflict with each of the species trees in Fig. 6. This conflict can be reconciled using either

one duplication and 3 losses or just one transfer. We will take the conservative approach here

and use a duplication to explain the difference. A similar remark applies to the Pyrococcus

clade which is different from that of SRP.

We examined each of the scenarios obtained and discarded those that were considered

highly unlikely and those with transfers within the Crenarchaeota or the Pyrococcus clade;

For SRP at least 5 events, i.e., transfers or duplications, were needed. Among the cases with

d duplications and t transfers, satisfying d + t = 5, we kept only those with a minimum

number of losses. One gene tree whose root was placed in a very unlikely position, inside

the Pyrococcus clade, was discarded. A similar analysis was performed for SrRNA where a

minimum of 4 events were required. One scenario with 4 LGTs and no duplications turned

out to be cyclic and was discarded. The results of the undiscarded scenarios for both species

trees are summarized in Table I. The roots of the gene trees in Table I are highlighted in

Fig. 7.
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TABLE I

SUMMARY OF THE DTL-SCENARIOS RECONCILING THE ROOTED GENE TREES WITH THE TWO SPECIES TREES. THE

COLUMNS D, T, AND, L CORRESPOND TO THE NUMBER OF DUPLICATIONS, TRANSFERS, AND LOSSES RESPECTIVELY.

SRP SrRNA

Gene Tree D T L Gene Tree D T L

G17 4 1 16 G17 3 1 15

G19 3 2 10 G19 2 2 8

G9 2 3 7 G15 1 3 5

G19 2 3 7 G21 1 3 5

For each pair of gene tree and species tree in Table I, we examined all most parsimonious

scenarios and looked for common features. For SRP, every most parsimonious scenario has a

transfer to Methanobacter thermoautotrophicum, and every scenario except G17 that has only

one transfer, has also a transfer to the Crenachaeota. These are indicated with solid arrows

in Fig. 6a. A scenario for G19 has a transfer from the parent of Archaeoglobus fulgidus

to Methanococcus janaschii, and a scenario for G9 has a transfer from the parent of Ther-

moplasma acidophilum to the Pyrococcus clade. The latter two transfers are indicated with

dashed arrows in Fig. 6a.

All scenarios for SrRNA has a transfer to Methanobacter thermoautotrophicum, just as for

SRP, and all scenarios except for G15 and G17 (the latter has only one transfer) has a transfer

to the Crenarchaeota. The scenario for G15 has instead two transfers in the opposite direction:

from the least common ancestor of the Crenarchaeota to Thermoplasma acidophilum and to

Ferroplasma acidarmanus. The scenario for G21 has a transfer from the Pyrococcus clade to

the parent of Thermoplasma acidophilum. See Fig. 6b.

There are similarities between our analysis of the data and that in [39]: e.g., there is

a transfer to M. thermautotrophicum, and also a transfer from the Crenarchaeota to the

least common ancestor of T. acidophilium and F. acidarmanus (similar to our scenario for

G15). A transfer within the Pyrococcus clade is present in [39], but as discussed above, we

chose not to examine it further based on the fact that it may be just as easily explained

by one duplication. The method given in [39] cannot handle duplications, and so uses

transfers to explain any incongruency between the gene evolution model, the species tree,

and the sequences. Finally, a transfer is indicated in [39] from the least common ancestor

of T. acidophilium and F. acidarmanus to the Crenarchaeota A. pernix. No such transfer is
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Methanococcus jannaschii

Methanobact. thermoautotrophicum

Halobacterium sp.

Haloarcula marismortui
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(a) SRP

Methanococcus jannaschii

Methanobact. thermoautotrophicum

Halobacterium sp.

Haloarcula marismortui

Methanosarcina barkeri

Ferroplasma acidarmanus

Thermoplasma acidophilum

Archaeoglobus fulgidus

Pyrococcus horikoshii

Pyrococcus furiosus

Pyrococcus abyssi

Sulfolobus solfataricus

Aeropyrum pernix

Pyrobaculum aerophilum

G21

G15

(b) SrRNA

Fig. 6. The two organismal phylogenies from [38]. Fig 6a is based on 53 ribosomal proteins and 6b is based on SSU and

LSU rRNA. See main text for the explanation of the transfer edges indicated in the figure.

Sulfolobus solfataricus

Pyrobaculum aerophilum

Aeropyrum pernix

Thermoplasma acidophilum

Ferroplasma acidarmanus

Methanococcus jannaschii

Halobacterium sp.

Haloarcula marismortui

Methanobact. thermoautotrophicum

Methanosarcina barkeri

Archaeoglobus fulgidus

Pyrococcus horikoshii

Pyrococcus furiosus

Pyrococcus abyssi

•
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•
G17

•
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?G21

•

?

•
G19

Fig. 7. The gene tree obtained from the archaeal rpl12e sequences. Note that the gene tree is unrooted. The highlighted

positions show the roots of the indicated rooted gene trees. The edge posterior probabilities are all above 0.9 except for

two edges that are indicated by question marks; the posterior probability of the edge in the Pyrococcus clade was 0.69, and

for the other edge it was 0.86.
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present in our analysis, and in fact, such a transfer contradicts the gene tree in Fig. 7.

Overall, there are significant similarities between the two analyses, although some transfers

present in [39] clearly contradict the gene tree. For example, the scenario in [39] groups A.

pernix together with T. acidophilum and F. acidarmanus. The posterior probability of such

a clade (in the output from MrBayes) is close to zero. Our method also benefits from being

able to consider duplications and transfers simultaneously.

X. OPEN PROBLEMS AND DISCUSSION

In this paper, we have given a sound and biologically relevant definition of reconciliations

between gene trees and species trees and devised algorithms for detecting most parsimonious

reconciliations. For reasons that we explained in section VIII, we do not attempt to minimize

the number of losses. But as we showed in our empirical tests, the number of losses can be

used to choose among the most parsimonious scenarios when more than one exist. Moreover,

we have seen that it can be of great use when the root of the gene tree under consideration

is hard to determine.

The FPT-algorithm has a potential to be expanded in future work. First, if the minimum

cost of reconciling G and S is known, then the algorithm can be easily modified to do

a depth-first instead of a breadth-first search, something that will minimize the amount of

memory needed. Second, it may be possible to extend the algorithm to search beyond the

optimal scenarios and thereby provide the user the ability to search for non-parsimonious

solutions if the most parsimonious ones are not satisfactory in light of other biological data.

It is also interesting to consider weighting duplications and LGTs differently. Ideally, such a

weighting should reflect the likelihood of each event under a probabilistic model of evolution.

An interesting question is whether there is an efficient algorithm for computing the optimal

number of duplications and transfers for all weighting schemes simultaneously.
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Inferring Duplications and Lateral Gene Transfers—

An Algorithm for Parametric Tree Reconciliation

Ali Tofigh and Jens Lagergren

Abstract

Prediction of the function of genes and their products is an increasingly
important computational problem. The ability to correctly identify the his-
toric relationship of homologous genes is essential for making accurate predic-
tions. In 1970, Fitch made a distinction between paralogous and orthologous
genes, its importance lying in the observation that genes are more likely to
have similar functions when they have evolved from a common ancestral gene
through speciation rather than duplication. Lateral gene transfer (LGT) is
yet another important evolutionary event that creates copies of genes, and as
our understanding of the importance and prevalence of LGT in evolution is
deepening, there is a high demand for methods for detection of LGTs when
reconstructing the evolutionary past of genes.

In this paper, we present highly efficient and practical algorithms for tree
reconciliation that simultaneously consider both duplications and LGTs. We
allow costs to be associated with duplications and LGTs and develop methods
for finding reconciliations of minimal total cost between species trees and
gene trees. Moreover, we provide an efficient algorithm for parametric tree
reconciliation—a computational problem analogous to parametric sequence
alignment. Experimental results on synthetic data indicate that our methods
are robust with high specificity and sensitivity.

1 Introduction

Crucial to prediction of gene function is reconstruction of the historic relationship
of homologous genes and detection of evolutionary events responsible for shaping
the genomes of species. The fate of a single gene is determined by both large
scale and small scale events. The nucleotide composition of a gene, and thereby
the function of its products, is affected by events such as mutations, insertions,
deletions, exon shuffling, exon duplications, and gene conversion. Genes are lost
by chromosomal deletions or silencing mutations. New genes are born via events
that duplicate a gene, e.g. via segmental duplication, or via other events such
as interstitial deletions—deletions of internal regions of chromosomes that can
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result in the formation of chimeric genes. Genes can also be transferred between
different organisms via lateral gene transfers (LGTs), also known as horizontal
gene transfers. Studying the evolution of genes and their history is an important
step towards the prediction of the function of genes in genomes.

There is a long history of using trees to describe relationships among species
as well as among sets of homologous genes from different organisms. It is quite
common that reconstructed gene trees differ topologically from their corresponding
organismal phylogenies. The evolutionary events mentioned in the previous para-
graph as well as population genetic effects may be the cause of such incongruities.
In this article, we will consider genes as atomic units that evolve inside an organis-
mal phylogeny, and we will consider three evolutionary events when explaining the
differences in topology between gene and species trees, namely gene duplication,
gene loss, and lateral gene transfer.

Gene duplication has long been known to be a major factor driving the evolu-
tion of genomes [1,2] and the rate with which gene duplication occurs in different
parts of the tree of life has been extensively studied [3–7]. In [8, 9], the fates
of recently duplicated genes were termed non-functionalization (loss of function),
sub-functionalization (where each copy takes on a subset of the original function),
and neo-functionalization (where one copy assumes a new function). In [3], the
frequency of gene duplications among a set of eukaryotic species was estimated
to be approximately the same as individual nucleotide substitutions: 0.01 gene
duplications per gene per million years.

The realization that gene duplications and losses can create incongruities be-
tween a gene tree and a corresponding species tree has lead to the formulation of
several interesting phylogenetic problems. Already in 1979, Goodman et al. gave
a parsimony method in which a gene tree is embedded in the species tree such
that the number of duplications and losses required to explain the gene evolution
is minimized [10]. Guigó et al. continued this work by attempting to find the
species tree that explains a set of gene trees with a minimum number of duplica-
tions [11]. Ma et al. proved hardness results for several variations of species tree
reconstruction problems [12]. Due the intrinsic hardness of species tree reconstruc-
tion, several heuristics have been developed, e.g., [13–15]. Assuming that one of
the gene trees has had a constant number of lineages in each species tree lineage,
Hallett et al. gave an efficient algorithm for finding an optimal species tree [16].

Contrary to gene duplications, the importance and prevalence of lateral gene
transfers have been the subject of much controversy. The possibility of lateral gene
transfers in bacteria was realized already in 1946 [17,18] and demonstrated to occur
between different bacterial species in 1959 [19]. Its occurrence among prokaryotes
has since been well documented, see for example [20] and [21]. Evidence has also
been presented for the occurrence of lateral gene transfers from prokaryotes to
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eukaryotes and even between eukaryotes, see [22] for a recent review. Overall, the
importance of HGT is today recognized as a major force of evolution, in particular
among prokaryotes. In fact, due to its apparent impact on prokaryotic evolution,
the appropriateness of using species trees to represent the evolutionary history of
certain taxa have been questioned [23–25], see also [26] and references therein.

Here, we will adopt an intermediate view with respect to prokaryotic evolu-
tion that has emerged in recent years, namely that although LGT is common, it
is not so common among the genes of a species that phylogenetic trees cannot
meaningfully represent the history of organismal evolution [27]. When accepting
this intermediate view, we are faced with relevant and important computational
challenges. These include reconstructing species trees and gene trees, and to ask
if and where LGT has occurred among homologous genes.

The parsimony version of phylogenetic detection of LGTs was formalized and
treated in [28]. Other heuristics for the problem include [29–31].

There have been few attempts to devise phylogenetic methods for the simul-
taneous detection of duplications and lateral gene transfers. Early work in this
direction was performed in the related field of host-parasite co-evolution [32]. Host
and parasite phylogenies can differ for reasons similar to that of species trees and
gene trees: speciation of a parasite independent of its host, host switching, and
lineage sorting correspond to duplication, LGT, and gene loss, respectively. A
similar comparison can be made to biogeography, where species track geographical
areas much in the same way that parasites track hosts and genes track organisms,
see [33] for an overview. Although the method developed in [32] considered both
duplications and LGTs (in the context of host-parasite phylogenies) and was an
excellent first attempt, the presentation in [32] is not mathematically sound and
the time complexity of the algorithm is unclear. The first mathematically rigorous
formalization appeared in [34,35].

Methods that take sequence information into account directly, rather than via
a gene tree, have started to emerge. For example, methods have been proposed for
so-called duplication analysis where construction of a gene tree from sequences,
the embedding of the gene tree within the corresponding species tree, and the
identification of duplications are all considered simultaneously. An ad hoc method
for duplication analysis that also considers gene order information was presented
in [36]. A probabilistic model of gene evolution for the duplication-loss model and
computational tools for duplication analysis have been developed in [37–40].

Atypical sequence information has been used in several cases to detect recent
lateral gene transfers, for example [41]. Probabilistic methods have also been
developed that utilize models of sequence evolution on a species tree to detect
LGTs, for example [42]. In the context of hosts and parasites, Huelsenbeck et al.
developed a Bayesian framework for the detection of host switches using Markov
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chain Monte Carlo and taking advantage of sequence information from the host
and parasite species [43]. The model in [43] assumes a one-to-one correspondence
between hosts and parasites and does not consider duplications.

To our knowledge, the first probabilistic method for simultaneous analysis of
duplications and LGTs was proposed just recently in [44], although a probabilistic
model based on the birth-death process [45] was used in [34] to generate synthetic
data, and a similar model was used in [46] to estimate gene family sizes,

In this article, we expand on previous work in [34] and [35] where a duplication-
transfer-loss model of gene evolution was described in a parsimony setting. We
improve the time complexity of our algorithms and extend our methods by allowing
costs to be associated with the events. In this way, more refined analyses of
duplications and LGTs may be performed and a greater degree of freedom is given
to the user to make adjustments according to prior information about the relative
prevalence of duplications and LGTs.

We also provide an algorithm for the parametric version of the tree reconcilia-
tion problem. This is analogous to parametric sequence alignment where regions
of the parameter space are sought such that the set of optimal solutions for every
point in the same region is identical [47–49]. We provide an efficient algorithm
that partitions the space of duplication and LGT costs into regions in which the
set of optimal solutions is identical for any set of points in the same region.

The outline of the paper is as follows. In section 3, the duplication-loss and
duplication-transfer-loss models of gene evolution are thoroughly discussed. Sec-
tion 4 provides the definition of DTL-scenarios and discusses various related issues
such as gene losses and temporal feasibility of reconciliations. In section 5, we
improve on previous algorithms for the parsimony version of tree reconciliation by
providing a dynamic programming algorithm with a significantly lower time com-
plexity that also allows costs to be associated with duplication and transfer events.
Section 6 contains an algorithm for parametric tree reconciliation. Finally, in sec-
tion 7, we provide empirical tests of our algorithms on different sets of synthetic
data.

2 Definitions

In this article, we follow the same notational conventions as in [35]. Although most
of the notation is standard in the field, we will comment on a few conventions used
in this article.

We deal only with rooted binary trees. The edges of a tree T are assumed to
be directed away from the root. We write v ≤T u to denote that v is a descendant
of u in the tree T . Note that each vertex is a descendant of itself. When v is a
descendant of u distinct from u, we write v <T u and v is said to be the proper
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descendant of u. If v is a (proper) descendant of u, we also say that u is a (proper)
ancestor of v.

3 Models of Gene Evolution and DTL-scenarios

In [35], we developed methods for reconciling the differences between a gene tree
and a corresponding species tree while simultaneously considering both duplica-
tions and LGTs. There, we defined Duplication-Transfer-Loss scenarios (DTL-
scenarios) to serve as our formal notion of reconciliations. Here, we expand on
that work by providing new methods and improvements on those presented in [35].
First, we give a review of DTL-scenarios.

We assume that the data to be analyzed consists of a gene tree G, in the form of
a rooted binary tree, and a corresponding species tree S, also a rooted binary tree.
The correspondence between S and G is given via a function σ : L(G) → L(S)
that maps each gene to the extant species to which it belongs. A DTL-scenario
for S, G, and σ, as defined in the next section, gives a biologically feasible history
of the evolution of G inside S by mapping the gene tree into the species tree and
assigning to each internal gene tree vertex either a speciation, duplication, or LGT
event. The conditions for a DTL-scenario ensure that the mapping of G into S and
the assignment of events to the bifurcations of G are biologically consistent. Also,
we must pay attention to the direction of time which exists implicitly in the trees.
Before giving the formal definition, we will explain some of the reasoning that went
into its formulation. We begin with a short review of the duplication-loss model
of gene evolution.

3.1 The Duplication-Loss Model

In the duplication-loss model of gene evolution, each bifurcation of a gene tree
G represents either a speciation or duplication that has occurred during the evo-
lution of the genes inside a corresponding species tree S. Each gene tree vertex
that represents a speciation is associated with a species tree vertex (the one that
represents the same speciation event). Each gene tree vertex that represents a
duplication is associated with a species tree edge (the edge along which the du-
plication occurred). It is clear that the true history of the evolution of the genes
can be depicted as G evolving strictly within the edges of S, see Figure 1 for an
example.

Although duplications and speciations are made explicit in such a reconcilia-
tion, losses exist only implicitly. They can, however, be inferred by examining each
gene tree edge and the path it takes in the species tree, see for example [50] for a
formal treatment. Informally, if (u, v) is a gene tree edge, then at least one loss is
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Figure 1: Examples of how a gene family evolves inside a species tree according to the

duplication-loss model. A species tree and a corresponding gene tree are shown in (a) and (b),
respectively. (c) is an example of a possible evolutionary history of the gene tree according to the
duplication-loss model. Note that in this example, the history consists of three duplications and
five losses. In (d), the gene tree has been mapped into the species tree using the least common
ancestor mapping that minimizes the number of duplications and losses, which in this case are
one and zero, respectively.
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inferred for each species tree vertex that lies strictly between the path from u to v
in S (exact definitions are given later).

When treating a reconciliation mathematically, we need to formulate a precise
definition for the association of gene tree vertices with vertices and edges of S. A
convenient way to do this is to map the gene tree vertices to species tree vertices
via a function that extends σ, say f : V (G) → V (S). The interpretation of
this mapping is then as follows: If u is a duplication in the gene tree, then the
duplication has occurred along the incoming edge of f(u). If u is a speciation,
then f(u) is the speciation event that caused the bifurcation.

Given a gene tree and a species tree, we may ask what the true reconciliation
is. To answer this computationally, we can define, based on biological studies or
input from biologists, suitable cost functions on the set of possible mappings of
G into S and search for those with optimal cost. Of course, we must also define
exactly what constitutes a valid mapping. Necessary and sufficient conditions to
ensure that a mapping f : V (G) → V (S) is biologically and temporally feasible
is that it extends σ and that for each gene tree edge (u, v), f(u) ≥S f(v). This
ensures that the mapping has a valid biological interpretation and can be depicted
with figures such as those in Figure 1.

However, the sets of gene tree vertices corresponding to duplications and spe-
ciations are not made explicit by such a mapping. In fact, each such mapping
corresponds to a, possibly large, set of different reconciliations. This disparity
between mappings and reconciliations is due to the fact that a mapping does not
make explicit which gene tree vertices are associated with species tree edges, and
which are associated with species tree vertices. However, given a mapping, only
certain gene tree vertices can feasibly be classified as speciations, namely those
whose children are mapped to incomparable species tree vertices. The rest of the
internal gene tree vertices must be classified as duplications. Given a mapping f ,
a vertex of G could conceivable be a speciation only if its children are mapped to
incomparable species tree vertices, say x and y, and who is itself mapped to the
least common ancestor of x and y; all others must be duplications.

Most research dealing with reconciliation of trees has been performed in a
parsimony setting where it turns out that there is a unique mapping of the gene
tree into the species tree that simultaneously minimizes the number of inferred
losses and duplications. We call this mapping the least common ancestor mapping
and it is defined as:

λ(u) = lca (σ(L(Gu))),

where we slightly abuse our notation by letting σ map sets of gene tree leaves
to the corresponding sets of species tree leaves. See Figure 1d for an example
of using λ to map a gene tree inside a species tree. Since λ is the unique most
parsimonious mapping, usually no other reconciliations are considered. Instead,
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the focus has mainly been on finding the species tree that minimizes the total
number of duplications and losses with respect to a set of gene trees. In [51], a
more general definition of a mapping was given that explicitly mapped gene tree
vertices to either species tree vertices or edges. There is also a need to deal with
non-parsimonious reconciliations in probabilistic models of gene evolution, see for
example [37].

3.2 The Duplication-Transfer-Loss Model

The picture becomes significantly more complex when we also consider lateral gene
transfers. An LGT event involves one gene and two different but contemporary
species, and can be depicted as an arc between two edges of a species tree. The
evolution of genes in the duplication-loss model is fully contained within the edges
of the species tree. For example, a single edge of the gene tree represents direct
inheritance of the gene from generation to generation along a set of species tree
edges. Hence, although there may have been intermediate duplications followed by
loss along a gene tree edge, the edge still represents a path in the species tree. In
the duplication-transfer-loss model (DTL-model), however, the history of a gene
tree edge could be rather complex. A gene may for example be transferred to
another species and later be lost in the species from which the transfer originated.
This process could conceivably be repeated many times before a branching occurs
such that both copies have surviving descendants at the present time. Hence, the
true evolutionary history represented by a gene tree edge in the DTL-model may
include several species tree edges, i.e., not necessarily a path in the species tree.
Figure 2 shows a possible reconciliation between the same trees as in Figure 1. See
Figure 3 for several examples of complicated and perhaps unlikely histories that
are conceivable in a general DTL-model.

In a parsimony setting, not every possible reconciliation needs to be considered.
Just as only one mapping, the least common ancestor mapping, is used in the
duplication-loss model in a parsimony setting, we only wish to consider a relevant
subset of all possible reconciliations in the DTL-model. For example, assume that
both endpoints of a gene tree edge are mapped to comparable vertices or edges of
the species tree in the true reconciliation. Even if the history of that edge contains
transfer events, like the situation in Figure 3b, we cannot really hope to be able to
reconstruct such a history (at least not only with data in the form of phylogenetic
trees). Hence, in our DTL-scenarios, we will consider an edge as a transfer edge if
and only if the endpoints are placed at incomparable locations within the species
tree.

Classification of vertices introduces yet another complexity. It is conceivable
that a bifurcation of the gene tree is due to a duplication or a speciation, while
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Figure 2: An example of a gene family evolving inside a species tree according to the

DTL-model. Note how a gene is transferred from species A and back without leaving a trace in
other species. There is really no hope of being able to recover such evolutionary histories, which
leads to us instead classifying the bifurcation caused by the transfer as a duplication.

at the same time, one of the outgoing edges is a transfer edge. But for a transfer
edge we cannot hope to gain insight from our data about the true cause of the
bifurcation represented by the parent vertex. For example, we cannot distinguish
between the simple case of lateral gene transfer and the case of a duplication
followed by the transfer of one of the copies and the subsequent loss of the gene
from which the transfer originated (Figure 3c). A similar remark can be made
about a transfer to a second species and back. Since the placement of both parent
and child are comparable in the species tree, we can only hope to classify the parent
as a duplication. Hence, the approach we will take is to classify a gene tree vertex
as a transfer vertex if and only if one of its outgoing edges is a transfer edge.

Finally, we must consider the case when both outgoing edges of a gene tree ver-
tex are transfer edges (Figure 3e). Though such a case is biologically conceivable,
we consider it as degenerate in a parsimony setting. Hence, we will also restrict
our attention to those reconciliations where at most one of the outgoing edges of
each gene tree vertex is a transfer edge.

Even with the above restrictions, when considering different mappings of the
gene tree into the species tree, there is no single best mapping that minimizes
the number of events, as was the case in the duplication-loss model. First, there
is a trade-off between using duplications and transfers to explain incongruities
between a gene tree and a species tree. Also, the consideration of time that is
implicitly present in the trees is much more complicated in the DTL-model. For
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Figure 3: Examples of complicated and unlikely evolutionary histories in the DTL-

model.

10



these reasons, we will need to allow a greater amount of freedom when defining valid
mappings compared to the duplication-loss model, while discarding the degenerate
cases discussed above. This then leads to the definition of DTL-scenarios as stated
in the next section.

4 DTL-scenarios

The definition of DTL-scenarios presented here is taken from [35] where they were
first defined. Informally, a DTL-scenario partitions the internal gene tree vertices
into three parts corresponding to speciations, duplications, and transfers; these
parts will be denoted Σ, Δ, and Θ, respectively. The gene tree is mapped into
the species tree via a function γ : V (G) → V (S). The set of transfer edges, i.e.,
those gene tree edges whose endpoints are mapped by γ to incomparable species
tree vertices are denoted by Ξ. A transfer edge (u, v) represents an LGT that
has occurred from the incoming edge of γ(u) to some edge along the path from
lca {γ(u), γ(v)} to γ(v).

Formally, A DTL-scenario for a species tree S, a gene tree G, and a leaf-
mapping function σ : L(G) → L(S) is an octuple

(S, G, σ, γ, Σ, Δ, Θ, Ξ),

where S and G are rooted binary trees, σ : L(G) → L(S) is a function, γ : V (G) →
V (S) is an extension of σ, Σ, Δ, and Θ form a partition of V̊ (G), and Ξ ⊂ E(G)
is a subset of the gene tree edges such that:

(I) If u ∈ V̊ (G) is a gene tree vertex with children v and w, then

(a) γ(u) is not a proper descendant of γ(v) or γ(w)

(b) At least one of γ(v) and γ(w) is a descendant of γ(u)

(II) (u, v) ∈ Ξ if and only if γ(u) is incomparable to γ(v)

(III) If u ∈ V̊ (G) is a gene tree vertex with children v and w, then

(a) u ∈ Θ if and only if (u, v) ∈ Ξ or (u, w) ∈ Ξ

(b) u ∈ Σ only if γ(u) = lca {γ(v), γ(w)} and γ(v) and γ(w) are incompa-
rable

(c) u ∈ Δ only if γ(u) ≥S lca {γ(v), γ(w)}

As mentioned in the previous section, our goal is to assign costs to reconcil-
iations and find those that are optimal. In [35] the cost of a DTL-scenario was
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Figure 4: An example of a cyclic DTL-scenario. By Definition 1, the DTL-scenario in the
figure is acyclic since there is no way to linearly order the species tree vertices such that the
parent of species D comes before the parent of species B and vice versa.

simply the number of duplications and LGTs. Here we will allow different costs
to be attributed to duplications and LGTs. If the duplication cost is Cd and the
transfer cost is Ct, then the cost of a DTL-scenario α is defined by

|α| = |Δ| · Cd + |Θ| · Ct = |Δ| · Cd + |Ξ| · Ct

A DTL-scenario is called optimal if and only if its cost is minimum among the set
of all DTL-scenarios for S, G, and σ.

Following [35], we do not minimize the number of losses as this can lead to an
overestimation of the number of LGTs. The approach we take here is the same as
that in [35]; we propose that the number of losses should be used to refine the set
of optimal DTL-scenarios. It is, however, not too difficult to extend our algorithms
to also take losses into account.

4.1 Cycles

One of the difficulties in finding biologically feasible reconciliations in the DTL-
model arises from the implicit notion of time present in the trees. As stated in
section 3.1, this does not cause any problems in the duplication-loss model. DTL-
scenarios that are temporally infeasible are called cyclic, an example of which
is shown in Figure 4. In this section, we discuss the technical aspects of cycle
detection and the difficulties that cycles create. But first, we formally define what
constitutes a cyclic DTL-scenario.

In a DTL-scenario, the interpretation of a transfer edge (u, v) ∈ Ξ is that a
lateral gene transfer event has occurred between the incoming edge of γ(u) to some
ancestral edge of γ(v). However, this edge cannot be ancestral to γ(u) since that
would imply a transfer from a species to one of its ancestors. Hence, as mentioned
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Figure 5: Part of a DTL-scenario that is acyclic according to definition used in Jungles,

but is temporally infeasible. By the definition of acyclicity in Jungles, we only need to find
a linear ordering of the species tree vertices such that the parent of species D comes before the
parent of species C, and the parent of species C comes before species D. An example of such a
linear order is the root, then the parent of A, the parent of D, the parent of C, and finally the
leaves in any order. However, the DTL-scenario is clearly temporally infeasible.

in section 4, we interpret the transfer as having occurred between the incoming
edge of γ(u) and some edge along the path from lca {γ(u), γ(v)} to γ(v). In other
words, a DTL-scenario makes explicit the location in the species tree from which
a transfer has occurred but not the point to which the gene was transferred.

A similar idea was used in Jungles [32] where the “landing point” of a transfer
was allowed to be moved closer to the root. However, although the condition
used in Jungles to define temporally infeasible reconciliations is necessary, it is not
sufficient. The main idea, recast in terms of our DTL-scenarios, can be described
as follows. A reconciliation in [32] was considered temporally feasible if the partial
order on the species tree vertices induced by the edges of the species tree could
be extended to a linear order such that for each transfer edge (u, v), the parent
of γ(u) appeared before γ(v) in the linear order. This guarantees that for each
transfer edge (u, v), the incoming edge of γ(u) is contemporary to some ancestral
edge of γ(v). Hence, a temporally appropriate landing point can always be chosen
for each transfer edge.

The problem with this definition is that it does not fully consider the tem-
poral aspect of the gene tree. Figure 5 shows a DTL-scenario that satisfies the
above condition but is clearly temporally infeasible. Here we give the definition
of acyclic DTL-scenarios that was used in [35] and prove that it is both necessary
and sufficient to ensure temporal feasibility.

Definition 1. We say that a DTL-scenario is acyclic if and only if there is a total
order < on V (S) such that
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a. if (x, y) ∈ E(S), then x < y,

b. if (u, v), (u′, v′) ∈ Ξ and v ≥G v′, then p(γ(u)) < γ(v′).

To prove that the above definition is both necessary and sufficient we prove
its equivalence to the following alternative definition. This definition makes the
notion of time explicit in both the species tree and the gene tree thus dispensing
with any doubts concerning its necessity or sufficiency.

Definition 2. We say that a DTL-scenario is temporally feasible if and only if
there exists a time function t : V (S) ∪ V (G) → R such that

a. t|V (S) is one-to-one,

b. if (x, y) ∈ E(S), then t(x) < t(y),

c. if (u, v) ∈ E(G), then t(u) < t(v),

d. if u ∈ Σ ∪ L(G), then t(u) = t(γ(u)),

e. if u ∈ Δ ∪ Θ, then t(p(γ(u))) < t(u) < t(γ(u)) where t(p(root(S))) = −∞.

Theorem 1. A DTL-scenario is acyclic if and only if it is temporally feasible.

Proof. Let α = (S, G, σ, γ, Σ, Δ, Θ, Ξ) be scenario for S, G, and σ.
Assume that α is temporally feasible, and let t be a time function for α satisfy-

ing the conditions of Definition 2. Order the vertices of S according to t, i.e., x < y
iff t(x) < t(y). Clearly, < is a total order on the vertices of S and satisfies 1a. Let
(u, v), (u′, v′) ∈ Ξ such that v ≥G v′. By 2c, we have that t(u) < t(v′). Hence,
by 2d and 2e, we have that

t(p(γ(u))) < t(u) < t(v′) ≤ t(γ(v′)),

and by the definition of our order < on V (S), we see that p(γ(u)) < γ(v′), so that
1b is also satisfied.

To prove the other direction, assume that α is acyclic. Let < be a total order
on the vertices of S satisfying 1a and 1b. We will show how to define a time
function t : V (G) ∪ V (S) → R that satisfies the conditions of definition 2.

Let t assign, in an arbitrary fashion, distinct real numbers to each vertex of S
according to the order < such that t(x) < t(y) iff x < y. For u ∈ Σ ∪ L(G), let
t(u) = t(γ(u)). Note that 2a, 2b, and 2d are satisfied. Next, we will assign times
to the transfer vertices of G. We will do this recursively from the root towards the
leaves (inorder). If (u, v) ∈ Ξ, then define

A(u) = {γ(v′) : v′ ≤G v, (u′, v′) ∈ Ξ} ∪ {γ(u)},
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and
B(u) = {u′ : (u′, v′) ∈ Ξ, u′ >G u} ∪ {p(γ(u))}.

Note that by 1b, we have that p(γ(u)) < x for each x ∈ A(u), which in turn implies
t(p(γ(u))) < t(x). Thus, assuming that each gene tree vertex u′ ∈ B(u) has been
assigned a time such that for each x ∈ A(u) we have that t(u′) < t(x), we can
assign a time to u that lies between maxa∈B(u) t(a) and minx∈A(u) t(u). Hence, we
can assign times to the transfer vertices of G recursively as follows:

t(u) =

max
a∈B(u)

t(a) + min
x∈A(u)

t(x)

2
.

It should be clear at this point that if a gene tree vertex has been assigned a time,
i.e., if it is a leaf, speciation, or transfer vertex, then its assigned time is greater
than any time assigned to its proper ancestors, less than any time assigned to its
proper descendants, and t(p(γ(u))) < t(u) < t(γ(u)).

It remains for us to assign times to the duplications of G. If u ∈ Δ, then let

C(u) = {v <G u : γ(v) = γ(u), v /∈ Δ} ∪ {γ(u)}.

Clearly, we have already assigned times to all members of C(u) for any u ∈ Δ. We
now recursively assign times to the duplication vertices of G by

t(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t(root(S)) − 1 if u = root(G), γ(u) = root(S),

t(p(γ(u))) + min
a∈C(u)

t(a)

2
if u = root(G), γ(u) �= root(S),

max{t(p(u)), t(p(γ(u)))} + min
a∈C(u)

t(a)

2
if u �= root(G).

It is now a straightforward verification to check that 2c and 2e are also satisfied.

We can check if a DTL-scenario is acyclic in quadratic time. Create a di-
graph H as follows. Let V (H) = V (S) and A(H) = E(S) ∪ {〈p(γ(u)), γ(v′)〉 :
(u, v), (u′, v′) ∈ Ξ, v′ ≤G v}. The DTL-scenario is acyclic iff H is a DAG. The time
complexity is O(m + n2), where m = |S| and n = |G| (since |A(H)| = O(m + n2)
and checking that a digraph is a DAG can be performed in time proportional to
the number of arcs).

It was shown in [35] that finding optimal acyclic DTL-scenarios is NP-hard.
The proof can easily be changed to show that finding optimal DTL-scenarios that
satisfy the condition used by Jungles is also NP-hard. Hence, the time complexity
of Jungles, cannot be polynomial unless P = NP . By separating the hard and easy
tasks in our methods we obtain an efficient algorithm that works well in practice.
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4.2 Losses

The process of inferring the number of losses associated with a DTL-scenario was
described in [35]. Briefly, for each non-transfer edge (u, v) ∈ E(G), we count the
number of intermediate species tree vertices along the path from γ(u) to γ(v), i.e.,
γ(u) and γ(v) are not counted. If u is a duplication, then we add one to our count
if γ(u) �= γ(v).

Note that this procedure gives us a lower bound on the number of losses. Also,
transfer edges do not contribute to our count of losses in any way; we can only
consider losses along transfer edges if we postulate the landing point of the transfer.

5 Dynamic Programming Algorithm

In this section, we give an improved dynamic programming algorithm for comput-
ing the minimum cost of any DTL-scenario for S, G, and σ. In [35], a dynamic
programming algorithm with time complexity O(|S|2 · |G|) was presented for com-
puting the minimum number of duplications and LGTs needed to reconcile S and
G. The algorithm in this section computes the minimum cost of any DTL-scenario
for S, G, and σ, where the costs of duplications and LGTs are given by Cd and
Ct, respectively. The time complexity is improved by an order of magnitude to
O(|S| · |G|).

The idea is to use two arrays, below and outside, both of size |G| × |S|, to
keep track of the minimum costs of reconciling subtrees of G with subtrees of S.
For a gene tree vertex u and species tree vertex x, below[u, x] is the minimum
cost of any DTL-scenario for Gu and S where u is mapped by γ to some vertex in
the subtree Sx. For a gene tree vertex u and species tree vertex x, outside[u, x]
is the minimum cost of any DTL-scenario for Gu and S given that u is mapped
by γ to a species tree vertex incomparable to x. By computing the entries in the
order specified in the algorithm in Figure 6, the time complexity stated above is
achieved. The algorithm can be proved correct along the same lines as the proof
in [35] and we omit the proof here.

6 Parametric Tree Reconciliation

In this section, we develop an algorithm for exploring the space of duplication
and LGT costs. Given a gene tree G and a corresponding species tree S, there
is a finite set of DTL-scenarios that reconcile S and G. We associate with each
DTL-scenario a pair of natural numbers, (d, t), called the event count pair of the
DTL-scenario, where d = |Δ| is the number of duplications and t = |Ξ| is the
number of LGTs of the scenario. We define a partial order on event count pairs as
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1: below ← Array[1..|V (G)|, 1..|V (S)|] initialized to ∞
2: outside ← Array[1..|V (G)|, 1..|V (S)|] initialized to ∞
3: for all u ∈ V (G) in postorder do

4: for all x ∈ V (S) in postorder do

5: if u ∈ L(G) then

6: if σ(u) ≤S x then

7: below[u, x] ← 0
8: end if

9: else

10: v, w ← children of u
11: d ← Cd + below[v, x] + below[w, x]
12: tv ← Ct + outside[v, x] + below[w, x]
13: tw ← Ct + outside[w, x] + below[v, x]
14: if x ∈ L(S) then

15: below[u, x] ← min{d, tv, tw}
16: else

17: y, z ← children of x
18: s ← min{below[v, y] + below[w, z], below[w, y] + below[v, z]}
19: below[u, x] ← min{d, s, tv, tw, below[u, y], below[u, z]}
20: end if

21: end if

22: end for

23: for all x ∈ V̊ (S) in preorder do

24: y, z ← children of x
25: outside[u, y] ← min{outside[u, x], below[u, z]}
26: outside[u, z] ← min{outside[u, x], below[u, y]}
27: end for

28: end for

Figure 6: The dynamic programming algorithm for computing the minimum cost of reconciling
S and G.
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follows. We say that (d, t) ≤ (d′, t′) when d ≤ d and t ≤ t. Two event count pairs
are incomparable iff d < d′ and t > t′, or d > d′ and t < t′. An event count pair
(d, t) is minimal among a set of event count pairs if there is no event count pair
(d′, t′) such that (d′, t′) < (d, t). An event count pair is globally minimal if it is
minimal in the set of all event count pairs for S and G. Note that for any choice
of parameters, Cd and Ct, only DTL-scenarios with globally minimal event count
pairs can be optimal.

Our goal in this section is to develop an efficient algorithm for enumerating all
globally minimal event count pairs whose associated DTL-scenarios are optimal
for some choice of the parameters Cd and Ct, together with a description of the
parameter space under which such DTL-scenarios are optimal.

Using the same dynamic programming approach as in section 5, we can com-
pute, in time O(|G|3 · |S|), the set of globally minimal event count pairs. We use
two arrays below and outside, both of size |G| × |S|, and compute the entries
by traversing the gene tree vertices and species tree vertices as specified in the
algorithm in Figure 7. Let u and x be a gene tree vertex and a species tree vertex,
respectively. If β is the set of all event count pairs associated with the DTL-
scenarios for S and Gu such that γ(u) ≤S x, then the entry below[u, x] is the set
of all minimal event count pairs of β. Similarly, if ω is the set of all event count
pairs associated with the DTL-scenarios for S and Gu such that γ(u) is incompara-
ble to x, then outside[u, x] is the set of all minimal event count pairs of ω. The set
of globally minimal event count pairs for S and G is then below[root(G), root(S)].

We now describe how to compute the region of the parameter space in which the
DTL-scenarios associated with a certain event cost pair in below[root(G), root(S)]
are optimal. As we will see shortly, it is possible that no such region exists for
some event cost pairs.

Since the set of optimal DTL-scenarios depends only on the relative sizes of Cd

and Ct, we will assume that
Cd + Ct = 1.

Hence, we can view the parameter space as the interval [0, 1], say for the duplication
cost Cd.

Theorem 2. Given S, G, and σ, let the globally minimal event count pairs be

(d1, t1), (d2, t2), . . . , (dn, tn),

where di < dj for i < j. A DTL-scenario for S, G, and σ such that |Δ| = di and
|Ξ| = ti is optimal when

max({Mij : j > i} ∪ {0}) ≤ Cd ≤ min({Mij : j < i} ∪ {1}),

where Mij =
tj − ti

di − dj + tj − ti
.
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1: below ← Array[1..|V (G)|, 1..|V (S)|] initialized to ∅
2: outside ← Array[1..|V (G)|, 1..|V (S)|] initialized to ∅
3: for all u ∈ V (G) in postorder do

4: for all x ∈ V (S) in postorder do

5: if u ∈ L(G) then

6: if σ(u) ≤S x then

7: below[u, x] ← {(0, 0)}
8: end if

9: else

10: v, w ← children of u
11: below[u, x] ← {d1 + d2 + 1, t1 + t2 : (d1, t1) ∈ below[v, x],

(d2, t2) ∈ below[w, x]}
∪ {d1 + d2, t1 + t2 + 1 : (d1, t1) ∈ below[v, x],

(d2, t2) ∈ outside[w, x]}
∪ {d1 + d2, t1 + t2 + 1 : (d1, t1) ∈ below[w, x],

(d2, t2) ∈ outside[v, x]}
12: if x /∈ L(S) then

13: y, z ← children of x.
14: below[u, x] ← below[u, x]

∪ {(d1 + d2, t1 + t2) : (d1, t1) ∈ below[v, y],
(d2, t2) ∈ below[w, z]}

∪ {(d1 + d2, t1 + t2) : (d1, t1) ∈ below[v, z],
(d2, t2) ∈ below[w, y]}

15: end if

16: end if

17: Remove from below[u, x] all non-minimal event counts
18: end for

19: for all x ∈ V̊ (S) in preorder do

20: y, z ← children of x
21: outside[u, y] ← outside[u, x] ∪ below[u, z]
22: outside[u, z] ← outside[u, x] ∪ below[u, y]
23: Remove from outside[u, y] and outside[u, z] all non-minimal event

counts
24: end for

25: end for

Figure 7: The dynamic programming algorithm for computing all globally minimal event count
pairs.
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Figure 8: The species tree and the corresponding gene tree used in the example in the main text.

Proof. The cost of a DTL-scenarios associated with (di, ti) is less than or equal to
the cost of a DTL-scenario associated with (dj , tj), i < j, when

diCd + tiCt ≤ djCd + tjCt,

which after substitution of Ct by 1 − Cd and some rearrangements becomes

Cd ≥
tj − ti

di − dj + tj − ti
= Mij .

Note that Mij = Mji (just multiply the numerator and denominator by −1). We
can now conclude, by symmetry, that the cost of DTL-scenarios associated with
the event count pair (di, ti) are optimal only when

max({Mij : j > i} ∪ {0}) ≤ Cd ≤ min({Mij : j < i} ∪ {1}).

As an example, take the species tree and gene tree in Figure 8. Using the
algorithm of Figure 7, we find that the globally minimal event count pairs are

(d1, t1) = (0, 4)

(d2, t2) = (1, 3)

(d3, t3) = (2, 2)

(d4, t4) = (4, 1)

(d5, t5) = (5, 0).
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The Mijs are shown below as a matrix:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2

1
2

3
7

4
9

1
2 − 1

2
2
5

3
7

1
2

1
2 − 1

3
2
5

3
7

2
5

1
3 − 1

2

4
9

3
7

2
5

1
2 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
So for example, DTL-scenarios with two duplications and two transfers, i.e., DTL-
scenarios associated with the event count pair (d2, t2) = (2, 2), are optimal when

2

5
= max{0,

1

3
,
2

5
} ≤ Cd ≤ min{

1

2
, 1} =

1

2
.

Note that DTL-scenarios with event count pair (1, 3) are optimal exactly when
Cd = 1

2 and those with event count pair (4, 1) are never optimal for any choice of
Cd.

7 Experimental Results

In order to test the applicability of our algorithms, we performed a series of tests on
synthetic data. Species trees and gene trees were generated using a probabilistic
model of evolution based on the standard birth-death process. We use a pure
birth process to generate species trees with divergence times associated with the
vertices. A birth-death process is then used to generate gene trees on the generated
species trees. A detailed description of the gene evolution model is given in [44].
In short, the model has three rates, δ, τ , and μ, corresponding to the events of
duplication, transfer, and loss, respectively. A single gene starts at the root of
the species tree and evolves towards the leaves creating a gene tree in the process.
The rates determine the distribution of the times between events. When a gene
lineage is exposed to a loss event, the gene is removed and its former parent vertex is
suppressed. When a gene lineage is exposed to a duplication event, it is replaced by
two separate and independent gene lineages that continue evolving along the same
species tree edge. When a gene lineage is exposed to a transfer event, it is replaced
by two independent lineages, one of which continues to evolve in the same species
tree edge, while the other starts to evolve on a different species tree edge chosen
uniformly among those that existed at the time of the transfer event. When a gene
lineage reaches a species tree vertex, a speciation occurs: the lineage is replaced
by two independent lineages that continue evolving along different outgoing edges
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of the species tree vertex. This process continues until it reaches the leaves of the
species tree at which point the leaf-mapping function, σ, is defined in the natural
way.

7.1 Varying the Costs

First we tested the effect of varying duplication and transfer costs when inferring
transfer edges. Having the algorithm for parametric tree reconciliation at our
disposal, we are able to get a complete list of all optimal DTL-scenarios using the
dynamic programming algorithm in Figure 6.

The sizes of the species trees were restricted to between ten and fifty leaves,
and the total time from root to leaf in every species tree was set to one. When
generating gene trees, the total birth rate was kept equal to the death rate, i.e.,
δ + τ = μ. We varied the total birth rate, and the transfer rate was set to between
0.05 and 0.95 of the total birth rate. When generating gene trees, we kept track
of the edges whose history included at least one transfer event; these edges where
classified as transfer edges. To infer transfer edges, we obtained the complete set
of optimal DTL-scenarios under all cost schemes. For Ct ∈ [0, 1], we classify a
gene tree edge as a transfer edge if it is classified as a transfer edge in at least
half of the DTL-scenarios that are optimal when the transfer cost equals Ct. In
this way, we are able to compute ROC-curves which show the trade-off between
high and low transfer costs in terms of sensitivity and false positive rate. Figure 9
shows ROC-curves obtained when the birth rate was set to 1.0. A birth rate of 0.1
generates very few transfer edges so that both sensitivity and specificity (which is
equal to one minus the false positive rate) are close to one. Increasing the birth
rate leads to more and more difficult cases and when set to 10, our methods give
no better results than expected from chance alone. We note here that a birth rate
of 1.0 for a species tree with root-to-leaf time of 1.0 is quite high, and a birth rate
of 10 appears to be unrealistic for most biological applications.

7.2 Completely Accurate DTL-scenarios

We also tested the ability of our methods to make completely accurate inferences
about transfer edges and duplications. More specifically, we wanted to see how
often we can expect to find, under some cost scheme, a DTL-scenario that is one
hundred percent accurate in classifying both the duplications and the transfer
edges. Figure 10 shows how often we find such a DTL-scenario depending on the
rate used to generate the gene trees. The size of the species trees varied between
10 and 30 leaves. We should mention that the process of generating gene trees
was slightly altered for this test. The general model of gene evolution described
in the previous subsection can generate gene trees whose histories cannot be fully
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(a) Transfer rate 5% of total birth-rate.
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(b) Transfer rate 25% of total birth-rate.
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(c) Transfer rate 50% of total birth-rate.
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(d) Transfer rate 75% of total birth-rate.
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(e) Transfer rate 95% of total birth-rate.

Figure 9: ROC-curves for detection of transfer edges based on 50% majority rule. See the main
text for details. Each individual curve is obtained from 200 pairs of species trees and gene trees.
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Figure 10: The probability that the DTL-scenario that correctly identifies all transfers and all
duplications is an optimal DTL-scenario under some cost scheme is plotted against increasing
transfer rate. The root-to-leaf time of the species trees used for this plot was set to 1.0.

described with a DTL-scenario for reasons which were discussed in section 3.2.
Therefore, for this test, only gene trees that could adequately be described with
a DTL-scenario were kept and the rest were discarded. This simply ensures that
there does exist a completely accurate DTL-scenario for each generated pair of
species trees and gene tree, and our test is a measure of how often such a DTL-
scenario is optimal.

When performing the above test, we also took note of the cost scheme under
which the correct DTL-scenario was optimal. To our surprise, we found that the
correct DTL-scenario was almost always optimal when Ct = Cd, so that we would
have obtained basically the same curves as in Figure 10 by only considering that
case. In other words, if the true DTL-scenario is optimal under some cost scheme
it is almost always optimal when Ct = Cd. One explanation for this observation
is that the vast majority of optimal DTL-scenarios are optimal exactly when the
costs of transfers and duplications are equal.
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Detecting LGTs using a novel probabilistic model

integrating duplications, LGTs, losses, rate variation,

and sequence evolution

A. Tofigh, J. Sjöstrand, B. Sennblad, L. Arvestad, and J. Lagergren

Abstract

The debate over the prevalence of lateral gene transfers (LGTs) has been intense.
There is now to a large extent consensus around the view that LGT is an important
evolutionary force as well as regarding its relative importance across species. This
consensus relies, however, mainly on studies of individual gene families.

Up until now, the gold standard for identifying LGTs has been phylogenetic
methods where LGTs are inferred from incongruities between a species tree and
an associated gene tree. Even in cases where there is evidence of LGT, several
concerns have often been raised regarding the significance of the evidence. One
common concern has been the possibility that other evolutionary events have caused
the incongruities. Another has been the significance of the gene trees involved in
the inference; there may for instance be alternative, almost equally likely, gene trees
that do not provide evidence for LGT. Independently of these concerns, there has
been a need for methods that can be used to quantitatively characterize the level
of LGT among sets of species, but also for methods able to pinpoint where in the
species tree LGTs have occurred.

Here, we provide the first probabilistic model capturing gene duplication, LGT,
gene loss, and point mutations with a relaxed molecular clock. We also provide all
fundamental algorithms required to analyze a gene family relative to a given species
tree under this model. Our algorithms are based on Markov chain Monte Carlo
(MCMC) methodology but build also on techniques from numerical analysis and
involve dynamic programming (DP).

1 Introduction

The importance and prevalence of lateral gene transfers (LGT) have been debated in-
tensely. The interest in LGT is partly explained by its capacity to transfer pathogenic
elements and antibiotic resistance between bacteria, but also the concern that it could
transfer, e.g., pesticide resistance from genetically modified crops to other plants.

Transformation, transduction, and conjugation are the mechanisms through which
lateral gene transfer can be accomplished among bacteria. Especially transformation has
played a pivotal role in several ground-breaking biological experiments. Although DNA
had not yet been identified as the carrier of genetic information, pneumococcal strains were
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observed to be possible to transform by Griffith in 1928 [16]. Later, the Avery-MacLeod-
McCarty experiment showed that DNA is the substance causing bacterial transformation.
The possibility of lateral gene transfers among bacteria was realized already in 1946 [27, 28]
and demonstrated to occur between different bacterial species in 1959 [31]. A number
of studies have established that LGT occurs among prokaryotes, see for example [32]
and [4]. Evidence has also been presented for the occurrence of lateral gene transfers from
prokaryotes to eukaryotes and even between eukaryotes, see [23] for a recent review.

There has been an intense debate concerning the relative benefits of different meth-
ods for phylogenetic tree reconstruction. Today, however, it is common to describe the
development of phylogeny algorithms as a progression starting in 1965 with parsimony
methods [5, 26, 12], continuing with Maximum Likelihood (ML) methods introduced by
Felsenstein [11], and where the most recent contribution is Bayesian methods [21].

The first phylogenetic incongruence methods were constructed to identify gene du-
plications based on the parsimony principle. Goodman et al. [15] pioneered the field by
introducing the term reconciliation for an embedding of a gene tree into a species tree
explaining the evolution of the former. In later contributions, parsimony-based phylo-
genetic incongruence methods have been described for LGT alone [19], but also for the
combination of gene duplications and LGT [18]. The application of Kishino-Hasegawa
tests in [30] is another example of a phylogenetic incongruence method for LGT.

The statistical significance of the investigated phylogenetic trees has been a common
concern in the context of phylogenetic incongruence methods. Recently, partly prompted
by such concerns, Bayesian phylogenetic incongruence methods were developed for dupli-
cation analysis. In [37], the GSR model was presented; it is a probabilistic model integrat-
ing gene duplication, sequence evolution, and a relaxed molecular clock for substitution
rates. Based on the GSR model and using Markov Chain Monte Carlo (MCMC) methodol-
ogy, a Bayesian analysis tool, PrIME-GSR, was constructed, which takes a known species
tree into account and performs simultaneous gene tree reconstruction and reconciliation.

The extreme view that LGT hardly exists (implying that discrepancies between gene
and species trees are due to random effects or to insufficiently sophisticated tree recon-
struction methods, or possibly due to other events such as duplications) has lost most
of its supporters, and instead, LGT is recognized as a major evolutionary force. In fact,
due to its prevalence among prokaryotes, the appropriateness of using trees to represent
the evolution of some sets of species has been questioned [14, 7, 36], see also [8] and
references therein. Here, we will adopt an intermediate view that has emerged in recent
years with respect to prokaryotic evolution, namely, that although LGTs are common,
they occur with a frequency which is sufficiently low to render tree based representations
of organismal evolution meaningful [3].

In the context of hosts and parasites, Huelsenbeck et al. developed a Bayesian frame-
work for the detection of host switching using MCMC and taking advantage of sequence
information from the host and the parasite species [20]. The model in [20] assumes a one-
to-one correspondence between hosts and parasites and does not consider duplications.
To our knowledge no probabilistic phylogenetic method has been proposed for simulta-
neous analysis of duplications and LGTs, although a probabilistic model based on the
birth-death process [24] was used in [18] to generate synthetic data, and a similar model
was used in [6] to estimate gene family sizes. However, the former never analyzed data
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with respect to the model; the latter was only concerned with gene family size, not trees,
and LGTs were modeled by introduction events without any explicit points of origin.

We provide the first probabilistic model capturing gene duplication, LGT, gene loss,
and point mutations with a relaxed molecular clock. We also provide all fundamental
algorithms required to analyze a gene family relative to a given species tree under this
model. In the next section, our probabilistic model is presented. In Section 3, we describe
an MCMC approach for estimating the posterior distribution of our model. It turns out
that computing the generation probability of a gene tree G with edge lengths l, Pr [G, l|θ]
(where θ consists of parameters of the model), is crucial. We carefully describe how
this probability can be expressed, and also, how it can be approximated by introducing
discretization points in the species tree. Section 4 contains derivations of differential equa-
tions for several important distributions, for instance the probability of extinction. The
corresponding distributions can be evaluated at the discretization points using numerical
techniques. Also in section 4, we describe how a dynamic programming (DP) algorithm
can be constructed for the approximation of Pr [G, l|θ] by taking advantage of differential
equations, which are also formulated in the section. Differential equations and algorithms
that enable approximation of the probability that G, l has been generated using k LGTs
are presented in Section 5. Finally, preliminary results from experiments on synthetic
data are presented in Section 6

2 A new model for duplication, LGT, loss, rate varia-

tion, and sequence evolution

The duplication-transfer-loss gene sequence evolution model with iid rates across gene tree
edges, which we denote DTLSR, is a joint generalization of models used in [18] (which
are here described for the first time) and the GSR model [37]. DTLSR integrates the
following probabilistic sub-models, which will be described more fully below:

1. A probabilistic duplication-transfer-loss model (DTL-model) describing a gene evolv-
ing over a species tree through gene duplication, LGT, and gene loss, thereby gen-
erating a gene tree.

2. A substitution rate model describing rate variation over the gene tree.

3. A sequence evolution model describing how nucleotide substitutions occur.

Let the species tree S and the gene tree G generated by the duplication-transfer-loss
process be planted trees, i.e., trees with a root of degree one. These trees also have
divergence times associated with their vertices. Because S and its divergence times are
considered given, they will be omitted from our notation for probabilities, i.e., Pr [·|S] will
be written Pr [·].

A gene tree vertex represents either a speciation, a duplication, or an LGT event; the
divergence time for a speciation vertex is given by the corresponding species tree vertex,
while the divergence time for a duplication or an LGT vertex is given by the duplication-
transfer-loss process. Divergence times associated with vertices of a tree induce edge times
in the natural way.
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We use the substitution rate model in order to obtain a relaxed molecular clock [35,
25, 1, 34, 9, 29, 33], which allows for more biological realism. The substitution rate model
also turns out to facilitate a more efficient and more accurate MCMC implementation. In
the next three subsections, we briefly describe each of the DTLSR sub-models.

2.1 Gene duplication, LGT, and gene loss

In the probabilistic DTL-model, a gene tree G evolves over a species tree S with given
divergence times. Over any edge 〈x, y〉 in the species tree, each gene lineage is exposed
to gene duplications, LGTs, and gene losses with rates δ, τ , and μ, respectively. That is,
in an interval of length h on a species tree edge 〈x, y〉 the probabilities of a single gene
lineage being exposed to a duplication, an LGT, and a loss are, respectively,

δh, τh, and μh. (1)

Moreover, the probability of two or more events happening in such an interval is o(h).
When a gene u is exposed to a duplication event, it is replaced by two children, which
both continue evolving over the same species tree edge as did u. When a gene u is exposed
to an LGT, it is replaced by two children: one continuing to evolve over the same species
tree edge 〈x, y〉 as did u, and one evolving over another species tree edge chosen uniformly
from those concurrent with 〈x, y〉 at the time of the LGT event. A loss of the gene u
removes it from the process as well as from the generated tree, in which also its former
parent is suppressed. Each gene lineage reaching a speciation vertex y in S splits into
two independent processes, each evolving down distinct outgoing edges of y. The process
continues recursively down to the leaves where it stops.

The process also generates a realization explaining how the gene tree has evolved by
mapping each gene tree vertex to a pair with one component being the species tree edge
or vertex where the event happened and the other component being the time when the
event creating the vertex happened. We will later introduce several types of realizations
and the type of realization generated by the process will be called c-realizations. Com-
puting the probability of a given gene tree under the model is non-trivial and we will
use a combination of dynamic programming and techniques from numerical analysis to
accomplish this task.

2.2 Substitution rates

The purpose of the substitution rate model is to transform dated trees with leaves repre-
senting extant entities, such trees being necessarily ultra-metric (i.e., all root-to-leaf paths
have the same length), into trees consistent with a relaxed molecular clock. This provides
a biologically realistic prior distribution for edge lengths—the convolution of edge times
and substitution rates conventionally used in substitution models. We achieve a relaxed
molecular clock by assuming that edge substitution rates are independently and identi-
cally Γ-distributed variables with mean m and variance ν [29, 38]. We denote this gamma
distribution ρ.

Let l, r, and t denote functions associating an edge length, an edge specific rate, and
an edge time, respectively, to each edge of G so that, e.g., l(u, v) is the edge length of the
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edge 〈u, v〉. The relation between lengths, rates, and times over all edges will be denoted
by l = rt, or conversely r = l/t.

2.3 Sequence evolution

Each edge in the gene tree has, as explained above, been assigned an edge length by the
duplication-transfer-loss process and the substitution rate process. Sequence evolution
over the gene tree with these edge lengths can be modeled using any of the standard
substitution models used in phylogenetics [11].

3 MCMC and discretizing the gene tree probability

MCMC is commonly used to estimate the posterior of phylogenetic trees for given gene
sequences [21]. In this application of the MCMC methodology, it is natural to let the states
consist of trees with edge lengths and additional parameters. When considering to use
MCMC to estimate posterior probabilities under the GSR model [37], the most immediate
idea is to also include a reconciliation of the gene and species tree (which explains how
the gene tree evolved by mapping it into the species tree, the explanation may contain
duplications and losses but not LGTs) as a component of the state; this approach would,
however, lead to several technical complications. Fortunately, it is possible to evade these
problems by estimating an integral over all reconciliations [37]. Here we will use a similar
approach, although in our case, estimating the integral is significantly harder due to the
inclusion of LGTs.

To simplify notation, let θ = (δ, τ, μ, m, ν) denote the parameters of the DTLSR model
(there may also be additional parameters associated with the sequence evolution model,
but we omit these from the present notation). Our Markov chain will have states of the
form (G, l, θ) where G is a gene tree, l denotes edge lengths, and θ denotes parameters
of the DTLSR model. Ratios between posterior probabilities of the form p[G, l, θ|D] need
to be computed in order to determine acceptance probabilities of proposed states in our
Markov chain. This posterior probability can be rewritten as follows:

p[G, l, θ|D] =
Pr [D|G, l] Pr [G, l|θ] p[θ]

Pr [D]
, (2)

where the parameters θ are assigned independent priors (which will be uniform or some
other distribution that we can compute). As usual in MCMC estimation of posterior
probabilities, the denominators will cancel in any ratio between two such probabilities.
Moreover, the factor Pr [D|G, l] can be computed using the standard DP algorithm intro-
duced by Felsenstein [11]. The last component of our MCMC algorithm for estimating
the posterior of the DTLSR model is a procedure to estimate Pr [G, l|θ].

In the next subsections, we will show how to estimate Pr [G, l|θ] by summing over
realizations that only associate gene tree vertices to points from a set of discretization
points on the species tree. We will clearly describe the two approximations we make. The
expression below is formally incorrect (since our density function is discontinuous at the
vertices of S) but fits intuitively with the formal description we will give, and it also leads
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to a functional MCMC algorithm for estimating posteriors of gene trees. The integration
is over realizations t and the summation over discretized realizations:

Pr [G, l|θ] ≈

∫
t

p[G, l, t|θ]dt

=

∫
t

p[(r = l/t)|m, ν] p[G, t|δ, τ, μ]dt

≈
∑

t

p[(r = l/t)|m, ν] p[G, t|δ, τ, μ].

3.1 Definitions

We will now introduce several concepts that will be useful in the rest of the article. When
the notation introduced in this subsection is used, the tree will be clear from the context.
For each species tree T and each vertex x ∈ V (T ), there will be an associated divergence
time t(x). Associated with each edge 〈x, y〉 of a species tree is the interval I(x, y) =
[t(y), t(x)]. The leaves of a species tree have divergence time 0 and each internal vertex
has divergence time > 0. We will assume that all speciations have taken place at distinct
times although all our results can easily be modified to allow concurrent speciations.

The following definitions are standard. An edge 〈x, y〉 has tail x and head y and it is
an outgoing edge of x. For a pair of edges e and f of the same tree, if the head of e is the
tail of f , then e is the parent of f and f a child of e. If there is an edge 〈x, y〉 in the tree T ,
then x is the parent of y and denoted pT (y). The proper ancestor relation is the transitive
closure of the parent relation. That a is a proper ancestor of b in the tree T is denoted
a >T b, and b is also said to be a proper descendant of a. If a equals b or is a proper
ancestor of b in T , then a is an ancestor of b in T , which is denoted a ≥T b. Two vertices
are said to be comparable if one is a descendant of the other, and incomparable otherwise.
Finally, the planted subtree of T containing u, its parent pT (u), and all descendants of u
is denoted T u.

3.2 A discrete approximation of the probability of a gene tree

In this subsection, we show how to properly express Pr [G, l|θ]. A key step is to discretize
the species tree, which will also give us subintervals of the edges of S in which the dis-
cretization points can be considered to be midpoints. We will use two approximation
steps in order to compute Pr [G, l|θ]. The first approximation is an assumption that only
one of any two comparable vertices in G can be created by the events occurring in a par-
ticular subinterval. The second approximation is obtained by approximating the density
function in any point of the subinterval by the density function’s value in the subinterval’s
midpoint.

We will now in two steps introduce discretization points in S to obtain a second
species tree S′ and then also a third species tree S′′. Let S′ be the tree obtained from S
by recursively for each t ∈ {t(x) : x ∈ V (S)} subdividing each edge 〈x, z〉 of S such that
t(z) < t < t(x) by introducing a new vertex y and letting the divergence time of y be
defined by t(y) = t. See Figure 1a and 1b for an example.
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Figure 1: The subdivisions and subintervals of the species tree. (a) A species tree
S. (b) The tree S′. (c) The tree S′′. (d) The subintervals Δ associated with the vertices
of S′′. Note how each discretization point in D is a “midpoint” of a subinterval.
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We subdivide S′ by introducing new vertices at a number of discretization points D.
The set of discretization points can in principle be arbitrary, although the accuracy of the
algorithm will depend on it. It is, for instance, natural to use all multiples of an interval
length d as the set of discretization points, i.e.,

D = {dk : k ∈ N+ and dk ≤ t(root(S′))}.

We will for convenience assume that D and {t(x) : x ∈ V (S′)} are disjoint. Let S′′ be
the tree obtained from S′ by recursively for each t ∈ D subdividing each edge 〈x, z〉 such
that t(z) < t < t(x) by introducing a new vertex y and letting the divergence time of y
be defined by t(y) = t. See Figure 1c for an example.

A continuous realization (c-realization) of G is a function c : V (G) → {〈e, t〉 : e ∈
E(S′) and t ∈ I(e)} ∪ {〈x, t(x)〉 : x ∈ V (S)} such that for each u >G v,

ct(u) > ct(v),

where ct(u) denotes the projection of the second component of c(u). The projection of
the first component of c(u) is denoted cV (u). A speciation realization (s-realization) of G
is a function s : U → V (S) where U ⊆ V (G) such that for each u, v ∈ U , u >G v implies

t(s(u)) > t(s(v)).

A discrete realization (d-realization) of G is a function d : V (G) → (V (S′′)\V (S′))∪V (S)
such that for each u >G v,

t(d(u)) > t(d(v)).

Notice that for each edge e of S′′, there is a unique edge 〈x, y〉 of S′ such that the path in
S′′ between the vertices x and y contains e; we say that the edge 〈x, y〉 captures the edge
e. Analogously for each vertex z ∈ V (S′′) \ V (S′), there is a unique edge 〈x, y〉 of S′ such
that the path in S′′ between the vertices x and y contains z; we say that the edge 〈x, y〉
captures the vertex z.

For each vertex x ∈ V (S′′)\V (S′) that is captured by the edge e ∈ E(S′), we associate
what can be called a subinterval of e as follows. Assume that y is the single child of x.
First, if pS′′(x) ∈ V (S′), define tp(x) to be t(pS′′(x)), and otherwise define tp(x) to be
(t(pS′′(x)) + t(x))/2. Second, if y ∈ V (S′), define tc(x) to be t(y), and otherwise define
tc(x) to be (t(x) + t(y))/2. Finally, let Δ(x) = [tc(x), tp(x)) and let |Δ(x)| denote the
length of the the interval Δ(x), i.e., |Δ(x)| = tp(x)− tc(x). See Figure 1d for an example.

Let s be an s-realization of G. A c-realization c of G is a c-extension of s if cV |c−1

V
(V (S)) =

s. Similarly, a d-realization d of s is a d-extension of s if d|d−1(V (S)) = s. A c-realization
is sparse if for each x ∈ V (S′′) and each pair of vertices u, v ∈ V (G),

u >G v and ct(u) ∈ Δ(x) implies ct(v) /∈ Δ(x).

Let sG be the set of s-realizations of G. Let dG be the set of d-realizations of G. For
any s-realization of G, let χc(s), χs(s), and χd(s) be the sets of c-extensions, sparse c-
extensions, and d-extensions of s, respectively. Since the vertices of S create discontinuities
in the density p[G, l, c|θ], we express the probability Pr [G, l|θ] as the following sum:∑

s∈sG

Pr [G, l, s|θ] =
∑
s∈sG

∫
c∈χc(s)

p[G, l, c|θ]dc.
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We approximate the RHS by ∑
s∈sG

∫
c∈χs(s)

p[G, l, c|θ]dc.

Notice that, for any c-realization or sparse c-realization c,

p[G, l, c|θ] =
∏

〈u,v〉∈E(G)

p[l(u, v), c(v)|c(u), θ].

As a notational convenience, we define |Δ(x)| = 1 for x ∈ V (S′). Our approximation of
the probability Pr [G, l|θ] can now be summarized as

Pr [G, l|θ] =
∑

s∈sG

∫
c∈χc(s)

p[G, l, c|θ]dc

≈
∑

s∈sG

∫
c∈χs(s)

p[G, l, c|θ]dc

=
∑

s∈sG

∫
c∈χs(s)

∏
〈u,v〉∈E(G)

p[l(u, v), c(v)|c(u), θ]dc

≈
∑

s∈sG

∑
d∈χd(s)

∏
〈u,v〉∈E(G)

p[l(u, v), d(v)|d(u), θ] · |Δ(d(v))|. (3)

In the next section, we will show how to compute the right hand side of the above equation.

4 Computing the probability of a gene tree using DP

In this section, we will show how to compute the RHS of (3) using DP. In the DP algorithm,
two distributions will turn out to be useful. First, the probability of extinction, for which
we will derive differential equations in Subsection 4.1. Second, in Subsection 4.2, we will
derive differential equations for the probability of a single gene u evolving, between two
points in the species tree, to a single descendant v that may give rise to descendants in
the extant species (u may also have other descendants contemporary to v but these will
go extinct before reaching the leaves of the species tree). In the last subsection, we derive
a DP algorithm for computing (3) from differential equations.

Let φ = δ + τ + μ. When the notation introduced in this paragraph is used it will
be clear from the context whether the species tree concerned is S′ or S′′. Two vertices x
and y are said to be contemporary if t(x) = t(y). Two edges 〈x, y〉 and 〈x′, y′〉 are said to
be contemporary if t(x) = t(x′) and t(y) = t(y′) (in fact, in both S′ and S′′, t(x) = t(x′)
implies t(y) = t(y′) and the other way around). An edge generation is a maximal set of
pairwise contemporary edges. The edge generation containing e is denoted GE(e) and the
edges contemporary to e, i.e., GE(e) \ {e}, is denoted CE(e). For two edges e, f , if e is the
parent of f , then GE(e) is the parental generation of GE(f).
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4.1 The probability of extinction

In this subsection, we derive differential equations for the probability of extinction, which
can be solved numerically. For e ∈ E(S′) and t ∈ I(e), let Qe(t) be the probability of
extinction when starting with a single gene at time t on edge e. The following system of
differential equations follow from standard techniques for Poisson processes [10, 2] and the
fact that when an LGT occurs, the edge to which the transfer is made is chosen uniformly:

d

dt
Qe(t) = δ(Qe(t))

2 + τ

⎛⎝ ∑
f∈CE(e)

1

|CE(e)|
Qe(t)Qf (t)

⎞⎠ + μ − φQe(t). (4)

For e = 〈x, y〉 ∈ E(S′), the initial values for the system of equations above are given by

Qe(t(y)) =

⎧⎪⎨⎪⎩
0 if y is a leaf,

Qf (t(y)) if f is the single child of e,

Qf (t(y))Qg(t(y)) if f and g are the two children of e.

For one generation of edges of S′, the systems of equations for Qe can be solved using
standard Runge-Kutta numerical solvers [17] once the systems for proper descendant
generations have been solved. That is, we can solve these equations first for the generation
of edges incident to the leaves and then continue upwards to the root of the species tree.
For the edge generation GE(e), we solve Qe(t) for all t ∈ {t(x) : x ∈ V (S′′)} ∩ I(e).

4.2 The probability of exactly one mortal descendant

In this subsection, we apply the same approach as in the previous subsection. In this
case, we are interested in the probability of a single gene u evolving, between to points in
the species tree, to a single descendant v that may give rise to descendants in the extant
species (u may also have other descendants contemporary to v but none of these should
give rise to extant descendants).

By a ghost we mean a gene in the probabilistic DTL-model that will not have any
descendants among the leaves of the species tree. In contrast, a mortal is a gene that may
or may not yield descendants among the leaves of the species tree. For a pair of edges e, f
of S′ such that s ∈ I(e), t ∈ I(f), and t < s, define Qef (s, t) as the probability of starting
on e at time s and having one mortal in f at time t and all other descendants at time t
being ghosts.

Let e, f ∈ E(S′) be two contemporary edges. As before, the following system of
differential equations can be obtained using standard techniques:

d

ds
Qef (s, t) = 2δQe(s)Qef (s, t) − φQef (s, t)

+ τ
∑

g∈CE(e)

1

|CE(e)|

(
Qgf (s, t)Qe(s) + Qef (s, t)Qg(s)

)
.

The initial values for the above equations are given by

Qef (t, t) =

{
1 if e = f,

0 otherwise.
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For one generation of edges of S′, the systems of equations for Qef and Qe can be solved
together using standard Runge-Kutta numerical solvers. For the edge generation GE(e),
we solve Qfg(s, t) for all f, g ∈ GE(e) and s, t ∈ {t(x) : x ∈ V (S′′)} ∩ I(e).

We will now show how to compute Qef when e is a proper ancestor of f , i.e., when e
and f belong to different edge generations of S′. Let e = 〈x, y〉 and assume that g is the
unique edge that is contemporary with e and has two children g′ and g′′. For any s ∈ I(e)
and t ∈ I(f), Qef (s, t) can be written

Qef (s, t) = Qeg(s, t(y))
(
Qg′f (t(y), t)Qg′′ (t(y)) + Qg′′f (t(y), t)Qg′(t(y))

)
+

∑
h∈CE(g)

Qeh(s, t(y))Qhf (t(y), t).

The above equations are solved for all s ∈ {t(x) : x ∈ V (S′′)} ∩ I(e) and all t ∈ {t(x) :
x ∈ V (S′′)} ∩ I(f). These equations can be solved for all pairs of edge generations and
discretization points recursively from the leaves of the species tree towards the root.

4.3 The final recursion

In this subsection, we derive a DP algorithm for computing (3) from the differential
equations in the previous subsections.

We will need to compute the probability of extinction at the vertices of S′′ and the
probability of evolving to exactly one mortal between any pair of vertices in S′′. For
e = 〈y, z〉 ∈ E(S′′) and x ∈ V (S′′) which is the head of the edge f in S′′ and satisfies
t(x) ≤ t(z), we define p11(e, x) as follows

p11(e, x) = Qe′f ′(t(y), t(x)),

where e′ and f ′ are the edges of S′ that capture e and f , respectively.
Now, to compute the probability of a gene tree G, we sum the probabilities of every

possible mapping of the gene tree vertices on the vertices of S′′. For x ∈ V (S′′) \ L(S′′)
and u ∈ V (G)\L(G), define a(x, u) as the probability of Gu given that the event creating
u occurred at x. For e ∈ E(S′′) and u ∈ V (G), define s(e, u) as the probability of the
planted tree Gu when starting at the tail of e. These two probabilities can be computed
as follows. If x is a speciation, then

a(x, u) = s(e, v)s(f, w) + s(e, w)s(f, v),

where e, f are the outgoing edges of x and v, w are the children of u. If x is not contem-
porary to any speciations, then

a(x, u) = 2δs(e, v)s(e, w) + τ
∑

f∈CE(e)

1

|CE(e)|

(
s(e, v)s(f, w) + s(e, w)s(f, v)

)
,

where e is the outgoing edge of x. We define a(x, u) to be zero in the two other possible
cases, i.e., when x is a leaf or has out-degree one and is also contemporary to a speciation.
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For e = 〈x, y〉 ∈ E(S′′) and u ∈ V (G), we can compute s(e, u) as follows:

s(e, u) =

⎧⎨⎩p11(e, σ(u))ρ
(

l(p(u),u)
t(x)

)
if u ∈ L(G),∑

z∈Q(x) p11(e, z)ρ
(

l(p(u),u)
t(x)−t(z)

)
a(z, u) otherwise,

where Q(x) is the set of all vertices z of S′′ such that t(z) < t(x).

5 Counting Transfers

In this section we present differential equations and algorithms that enable approximation
of the probability that G, l has been generated using k LGTs. We wish to compute the
probability that G is generated and that exactly k LGTs has occurred on the paths to
the leaves of G during the generation of G. In order to accomplish this, we will compute
almost the same probabilities as in the previous section, but with the addition of an index
k to keep track of the number of LGTs used. In this sense, this section is an extension of
the previous section. The probability of extinction is the same as before, since we are not
counting the number of LGTs only creating ghosts.

Let e and f be two contemporary edges of S′′. For t ≤ s ∈ I(e), define Qefk(s, t) to
be the probability of starting on e at time s having some number of ghosts at time t and,
except for these ghosts, having only produced one mortal on f at time t using exactly k
LGTs (so there is a path containing k LGTs that end on f at time t). For k > 0, the
following holds

d

dt
Qefk(t) = 2δQe(s)Qefk(s, t) − φQefk(s, t)

+ τ
∑

g∈CE(e)

1

|CE(e)|

(
Qgf(k−1)(s, t)Qe(s) + Qefk(s, t)Qg(s)

)
.

For k = 0 a similar expression can be obtained

d

dt
Qef0(t) = 2δQe(s)Qef0(s, t) − φQef0(s, t) + τ

∑
g∈CE(e)

1

|CE(e)|
Qef0(s, t)Qg(s).

As before, the initial values for the above equations are given by

Qefk(t, t) =

{
1 if e = f and k = 0,

0 otherwise.

We will now show how to compute Qefk when e = 〈x, y〉 and f belong to different
edge generations. Assume that g is the unique edge in GE(e) that has two children g′ and
g′′. For any edge h ∈ CE(g), let h′ denote the unique child of h. For any s ∈ I(e) and
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t ∈ I(f), Qefk(s, t) can be written

Qefk(s, t) =∑
k′+k′′=k

(
Qegk′ (s, t(y))

(
Qg′fk′′ (t(y), t)Qg′′ (t(y)) + Qg′′fk′′(t(y), t)Qg′ (t(y))

)

+
∑

h∈CE(g)

Qehk′(s, t(y))Qh′fk′′(t(y), t)

)
.

For e = 〈y, z〉 ∈ E(S′′) and x ∈ V (S′′) such that t(x) ≤ t(z), we define p11k(e, x) as
follows

p11k(e, x) = Qe′f ′k(t(y), t(x)),

where e′ and f ′ are the edges of S′ that captures e and f , respectively.
To compute the probability of a gene tree G with k LGTs, we sum the probabilities

of every possible mapping of the gene tree vertices on the vertices of the subdivision S′′.
For x ∈ V (S)\L(S) and u ∈ V (G)\L(G), define ak(x, u) as the probability of generating
Gu using exactly k LGTs given that the event creating u occurred at x. For e ∈ E(S′)
and u ∈ V (G), define sk(e, u) as the probability of generating the planted tree Gu using k
LGTs when starting at the tail of e. These two probabilities can be computed as follows.

If x is a speciation, then

ak(x, u) =
∑

k′+k′′=k

sk′ (e, v)sk′′(f, w) + sk′(e, w)sk′′ (f, v),

where e, f are the outgoing edges of x and v, w are the children of u. If x is not contem-
porary to any speciations, i.e., contemporary to any vertices of S, then

ak(x, u) =
∑

k′+k′′=k

2δsk′(e, v)sk′′ (e, w)

+ τ
∑

k′+k′′=k−1

∑
f∈CE(e)

1

|CE(e)|

(
sk′ (e, v)sk′′ (f, w) + sk′′ (e, w)sk′ (f, v)

)
,

where e is the outgoing edge of x. We define ak(x, u) to be zero in the two other cases,
i.e., when x is a leaf or has out-degree one and is also contemporary to a speciation.

For e = 〈x, y〉 ∈ E(S′) and u ∈ V (G), we can compute sk(e, u) as follows:

sk(e, u) =

⎧⎨⎩p11k(e, σ(u))ρ
(

l(p(u),u)
t(x)

)
if u ∈ L(G),∑

k′+k′′=k

∑
z∈Q(x) p11k′ (e, z)ρ

(
l(p(u),u)
t(x)−t(z)

)
ak′′ (z, u) otherwise,

where Q(x) is the set of all vertices z of S′ such that t(z) < t(x).

6 Experimental results

In this section, we present results of preliminary experiments performed on synthetic data.
For our species tree, we selected a subset of the taxa in the yeast tree which together with
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S. cerevisiae

K. lactis

C. albicans

Y. lipolytica

N. crassa

A. nidulans

S. pombe

100 MY

Figure 2: The yeast tree used in the experiments. The root-to-leaf time of the tree
is approximately 400 million years. In the experiments, the time was rescaled so that the
root-to-leaf time became 1.0 and the total birth-rate became 0.17 (relative to the new
time scale).

divergence times was presented in [37]. The species tree is shown in Figure 2. The species
tree was rescaled so that the root-to-leaf time equaled 1.0. In addition, an edge of length
0.1 preceding the root was introduced in order to allow duplication events to occur prior
to the first speciation. Naturally, LGT events may not take place along this edge.

We generated 11 distinct sets of gene trees according to the probabilistic DTL-model,
each comprising 100 trees. Analysis of the data from [37] yields an estimated death rate
of approximately 0.17. When generating the trees, both the death rate μ and the total
birth rate, i.e., δ + τ , were kept fixed at 0.17, while the LGT rate τ varied between 0%
and 100% of the total birth rate in steps of 10% increments. All gene trees were produced
starting with a single lineage at the earliest point of the species tree.

We used the resulting gene tree topologies and divergence times to generate sequences
using the JTT amino acid substitution model [22]. Edge rates were drawn iid from a
gamma distribution with mean 0.5 and variance 0.1, with no rate variation among sites.
The output of this procedure was aligned amino acid sequences of length 1,000.

In order to verify the soundness of our probabilistic model, we analyzed the posterior
distributions of the duplication and LGT rates. The gene tree topologies were kept fixed to
the true topologies, while the remaining parameters were inferred by the MCMC process.

As we are not yet able to perform automatized convergence testing, we conducted a
series of pilot tests to analyze mixing and simulation length requirements. We selected
several of the smallest and largest trees from each set and ran three seperate chains with
1,000,000 iterations per tree, sampling every 100th iteration. A small number of trees
proved too small for stable performance, each such tree had only two leaves. These were
consequently removed from further consideration. Parameter trace plots on remaining
trees indicated good mixing. Convergence was evaluated using the Gelman-Rubin test [13],
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Figure 3: Results of tests performed on synthetic data. The estimated duplication
and LGT rates are plotted against the true rates. The blue curve plots the true rates
showing the ideal estimation curves. The green curve shows our reference estimate of the
rates using previous knowledge about the true duplication vertices and transfer edges.
The red curve is obtained by first estimating the number of events using the posterior
distribution of the rates, and analogous to the green curve, using these values to obtain
estimates of the rates.

where all parameters had a joint test statistic ≤ 1.02, with the exception of the LGT rate
in one instance reaching 1.08. All tests were conducted with the first 10% of the samples
removed as burn-in. We concluded that these settings are sufficient to provide convergence
in most cases, and used them in subsequent analyses.

The output of each tree, i.e., the merged chain triplet, was used to estimate the
posterior distribution. We then analyzed the marginal distributions of the duplication
and LGT rates, and after applying a moderate smoothing kernel, the MAP rate for each
gene tree was used to estimate the number of duplication and LGT events.

The true number of duplication vertices and transfer edges divided by the total length
of the species tree was used to estimate the birth rates of each gene tree. The average value
for each set was used as a reference estimate of the birth rates. Similarly, the estimated
number of duplications and LGTs derived from the posterior distributions were divided
by the total length of the species tree to obtain estimates of the birth rates from our
MCMC procedure. Figure 3 shows the results.
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A global structural EM algorithm
for a model of cancer progression

Ali Tofigh, Erik Sjölund, Mattias Höglund, and Jens Lagergren

Abstract

Cancer has complex patterns of progression that include converging as well as di-
verging progressional pathways. Vogelstein’s path model of colon cancer was clearly
a pioneering contribution to cancer research. Since then, several attempts have been
made at obtaining mathematical models of cancer progression, devising training algo-
rithms, and applying these to cross-sectional data.

Beerenwinkel et al. provided, what they coined, EM-like algorithms for Oncogenetic
Trees (OTs) and mixtures of such. Given the small size of current and future data
sets, it is important to minimize the number of parameters of a model. For this reason,
also we focus on tree-based models and introduce Hidden-variable Oncogenetic Trees
(HOTs). In contrast to OTs, HOTs allow for errors in the data and thereby provide
more realistic modeling. We also design global structural EM algorithms for learning
HOTs and mixtures of HOTs (HOT-mixtures). The algorithms are global in the sense
that, during the M-step, they find a structure that yields a global maximum of the
expected complete log-likelihood rather than merely one that improves it.

The algorithm for single HOTs performs very well on reasonable-sized data sets,
while that for HOT-mixtures requires data sets of sizes obtainable only with tomorrows
more cost efficient technologies. To facilitate analysis of complex cytogenetic data sets
requiring more than one HOT, we devise a decomposition strategy based on Principal
Component Analysis and train parameters on a colon cancer data set. The method so
obtained is then successfully applied to kidney cancer.

1 Introduction

We view cells in cancer progression as progressing towards further malignancy by repeatedly
being exposed to genetic or epigenetic aberrations that up-regulate, down-regulate, or dys-
regulate pathways. Thus, cancer progression is viewed as a walk through a set of states, each
representing a set of affected pathways and the type of alterations they have been subjected
to. This can be represented by a a progression graph, which is a directed graph where
the vertices are states and the arcs represent possible transitions between them. Although a
tumor is typically heterogeneous with respect to cell types, we make the common assumption
that it is homogeneous; a proper discussion of this subject lies outside the scope of this
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paper. Consider a situation where it is possible to repeatedly sample from the same tumor
of a mouse and identify the malign cell types. Clearly, this would provide a path through our
progression graph, and by concatenating paths obtained from different mice having the same
cancer type the entire progression graph could conceivably be inferred. In this hypothetical
situation, transition probabilities could also be estimated, which would provide a Markov
chain. Unfortunately, the accessible biological samples typically do not comprise a time
series for each tumor, but are cross-sectional, i.e., a data set is a collection of tumors that
each have been removed from a different diseased individual after diagnosis.

In the near future, multiple types of high throughput (HTP) data will be available for
large collections of tumors, providing great opportunities for state identification, and thereby,
providing computational challenges for progression model inference. In this paper, we focus
on cytogenetic data for colon and kidney cancer, mostly due to the availability of cytogenetic
data for large numbers of tumors provided by the Mitelman database [17]. Rather than
attempting to find a progression graph, we develop a tree-based model, since they have the
significant advantage of having fewer parameters. It also turns out that these models allow
for efficient algorithms. One of the main motivations for our models and inference methods
is that they enable analysis of future HTP-data, which most likely will require the ability to
handle large numbers of mutational events.

1.1 Mathematical models and algorithms

Vogelstein made a pioneering contribution to cancer research by proposing a path model
for colon cancer. Since then, numerous examples of narrative models, often depicted with
DAGs, e.g., [20], have been published. In an effort to provide mathematical models of
cancer progression, Desper et al. [6] introduced the Oncogenetic Tree model where observable
variables corresponding to aberrations are associated with vertices of a tree. They then
proceeded to show that an algorithm based on Edmonds’s optimum branching algorithm
will, with high probability, correctly reconstruct an Oncogenetic Tree from sufficiently long
series of data generated from it. In [7], another algorithm is described and shown to converge
to an Oncogenetic Tree that generates a distribution close to the one generated by the true
tree.

The Oncogenetic Tree model suffers from two problems: (1) monotonicity: an aberration
associated with a child cannot occur unless the aberration associated with its parent has
occurred, and (2) non-convergence: different progression paths cannot converge on the same
aberration, as often is the case in tumor progression. In an attempt to remedy these problems,
the Network Aberration Model was proposed [12,18]. However, the computational problems
associated with these network models are hard; for instance, no efficient EM algorithm for
training is yet known. In another attempt, Beerenwinkel et al. used mixtures of Oncogenetic
Trees to overcome the problem of non-convergence, but without removing the monotonicity
and only obtaining an algorithm with an EM-like structure, which has not been proved to
deliver a locally optimal maximum likelihood (ML) solution [1,2,19]. These mixture models
were originally developed to model HIV evolution and were only later applied to model
cancer progression.
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It is customary to distinguish between EM algorithms and generalized EM algorithms,
the difference being that in the M-step of the former, parameters are found that maximize
the expected complete log-likelihood, whereas in the latter, parameters are found that merely
improve it. As Friedman notes in his article on the Bayesian Structural EM algorithm [10],
the same distinction can be made regarding the maximization over structures. Clearly, it
would be convenient to use the same terminology for structural EM algorithms as for ordinary
EM algorithms. However, for structural EM algorithms, the distinction is often not made,
and even researchers that consider themselves experts in the field seem to be unaware of it.
For this reason, we define global structural EM algorithms to be EM algorithms that in the
M-step find a structure yielding a global maximum of the expected complete log-likelihood
(rather than merely improving the expected complete log-likelihood).

In the learning literature, there are several previous results on learning trees and global
structural EM algorithms. Chow and Lieu considered trees where the vertices were associ-
ated with observable variables and gave an efficient algorithm for finding a globally optimal
ML solution [4]. Subsequently, Meila et al. presented a global structural EM algorithm for
finding the ML mixture of trees [16], as well as MAP solutions with respect to various priors.
Friedman et al. [11] described a global structural EM algorithm for phylogenetic trees. It
is interesting, in relation to the present result, to note that Friedman et al. consider phylo-
genetic trees, i.e., trees with observable variables associated to leaves and hidden variables
associated to the internal vertices, and where, moreover, a reversible probabilistic model
relates any pair of variables associated with neighboring vertices. Solving the maximum
spanning tree problem for a weighted graph is a main component of all these algorithms.

We present the Hidden-variable Oncogenetic Tree (HOT) model where a hidden and an
observable variable are associated with each vertex of a rooted directed tree. The value
of the hidden variable indicates whether the tumor progression has reached the vertex (a
value of one means that cancer progression has reached the vertex and zero that it has not),
while the value of the observable variable indicates whether a specific aberration has been
detected in HTP-data (a value of one represents detection and zero the opposite). This
interpretation provides several relations between the variables in a HOT that are specified in
the formal definition of our model. An asymmetric relation is required between the hidden
variables associated with the two endpoints of an arc of the directed tree. Because of the
asymmetry, the global structural EM algorithm that we derive for the HOT ML problem
can, in contrast to the above mentioned algorithms, not be based on a maximum spanning
tree algorithm, and is instead based on the optimal branching algorithm [3, 15, 21]. Having
so rectified the monotonicity problem, we proceed to obtain a model allowing for a higher
degree of convergence by introducing mixtures of HOTs (HOT-mixtures) and, in contrast to
Beerenwinkel et al., we derive a proper structural EM algorithm for training these.

We focus on tree models for two reasons: (1) there is a global structural EM algorithm
for inference from cross-sectional data and (2) tree models have few parameters. The latter
is very important due to the relatively small number of data points available, both in data
sets today and in those of the future, compared to the number of mutational events under
consideration. It has been observed that cancer progression paths can diverge as well as
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converge. In one form of cancer two tumors having different possibly disjoint sets of aber-
rations such as {1, 2} and {3, 4} may both obtain the aberration 5, i.e., they converge in
the sense that they both obtain the same aberration. It is also possible to have convergence
when two tumors with different sets of aberrations both make transitions to the same set of
aberrations. Divergence is possible when two different tumors having progressed along the
same path of states up to some point in the next step acquire different aberrations. The un-
derlying tree structure of a HOT allows for divergence and convergence, and HOT-mixtures
allow for convergence to an even greater extent. Again, in our HOT model, hidden variables
model the cancer progression and observable variables correspond to detection of progression
in data. So, in contrast to Oncogenetic trees and mixtures of such, HOTs and HOT-mixtures
can handle cases where in some tumors a subset of aberrations are undetected in HTP-data.

In Section 2, we show how to model cancer progression by using HOTs and HOT-
mixtures. In section 3, this modeling methodology is applied to cytogenetic copy number
aberration (CNA) data for colon and kidney cancer.

2 HOTs and the novel global structural EM algorithm

This section contains four subsections. In the first, we introduce the HOT model and com-
pare it to the OT model. Subsection 2.2 contains a description of our EM algorithm for
training HOTs. In subsection 2.3, we show how to compute certain probabilities that are
required during training. Finally, an EM algorithm for training HOT-mixtures is described
in subsection 2.4.

2.1 Hidden-variable Oncogenetic Trees

We will denote the set of observed data points D and an individual data point X. In
Section 3, we will apply our methods to CNA, i.e., a data point will be a set of observed
CNA, but in general, more complex events can be used.

A rooted directed tree T consists of a set of vertices, denoted V (T ) and a set of arcs
denoted A(T ). An arc 〈u, v〉 is directed from the vertex u called its tail towards the vertex v
called its head. If there is an arc with tail p and head u in a directed tree T , then p is called
the parent of u in T and denoted p(u) (the tree T will be clear from context).

An OT is a rooted directed tree where there is an aberration associated with each vertex
and a probability associated with each arc. One can view an OT as generating a set of aber-
rations by first visiting the root and then continuing towards the leaves (preorder) visiting
each vertex with the probability of its incoming arc if the parent has been visited, and with
probability zero if the parent has not been visited. Finally, the result of the progression is
the set of aberrations associated with the visited vertices.

In Figure 1(b), an OT for CNA is depicted. It can generate the following sets of CNAs: ∅,
{−3p}, {−3p,−4p}, {−3p, +Xp}, {−3p,−4p, +Xp}, {+17q}, {−3p, +17q}, {−3p,−4p, +17q},
{−3p, +Xp, +17q}, and {−3p,−4p, +Xp, +17q} (all these aberrations are written in the
standard notation for CNAs in cytogenetic data, i.e., each represents a duplication (+) or
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Figure 1: (a) A rooted directed tree with the root at the top. All arcs are directed downwards,
i.e., away from the root. (b) An OT with probabilities associated with arcs and CNAs associated
with vertices. (c) A HOT with probabilities associated with arcs (indicating the probability that the
hidden variable associated with the head of the arc receives the value 1 conditioned that the hidden
variable associated with the tail has this value), and CNAs as well as probabilities associated with
vertices (indicating the probability that the observable variable associated with the vertex receives
the value 1 conditioned that the hidden variable associated with the vertex has received this value).
(d) A HOT-mixture consisting of two HOTs. The mixing probability for T1 is 0.7 and that for T2 is
0.3. So with probability 0.7 a synthetic tumor is generated from T1 and otherwise one is generated
from T2.

deletion (-) of a specific chromosomal region). Notice that an aberration associated with
a vertex cannot occur unless the aberration associated with its parent has occurred. For
instance, the set {+Xp, +17q} cannot be generated by the OT in Figure 1(b). In a data-
modeling context, this is highly undesirable, since data is typically noisy and whatever
mutational events we are modeling some of those that have occurred are likely to have gone
undetected. Our HOT model does not suffer from this problem.

A Hidden-variable Oncogenetic Tree (HOT) is a directed tree where there is an aberration
associated with each vertex and a probability associated with each arc, exactly as in a OT.
Moreover, in contrast to the OT, there is also a probability associated with each vertex. One
can view the HOT as generating data by first allowing cancer progression to reach a subset of
the vertices of the tree, exactly as in an OT, i.e., based on the probabilities associated with the
arcs. In the HOT, however, an aberration associated with a vertex reached by the progression
process is not automatically generated, instead it is generated with the probability associated
with that vertex. As an example consider the HOT illustrated in Figure 1(c). The probability
that it generates the set {+Xp, +17q} is 0.25·0.8·0.5·0.1·0.25·0.8·(0.75+0.25·0.1) = 0.00155.

We will now give a formal definition of HOTs. Notice that the probabilities associated
with edges in the description above are the conditional probabilities in (4) and those asso-
ciated with vertices are the conditional probabilities in (5). A Hidden-variable Oncogenetic
Tree (HOT) is a pair T = (T, Θ) where:

1. T is a rooted directed tree and Θ consists of two conditional probability distributions
(CPDs), θX(u) and θZ(u), for each vertex u;
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2. two random variables are associated with each vertex u ∈ V (T ): an observable variable
X(u) and a hidden variable Z(u), each assuming the values 0 or 1,

3. the hidden variable associated with the root, Z(r), always assumes the value 1,

4. for each non-root vertex u of V (T ), θZ(u) is a conditional probability distribution on
Z(u) conditioned by Z(p(u)) satisfying Pr[Z(u) = 1|Z(p(u)) = 0] = 0, and

5. for each non-root vertex u of V (T ), θX(u) is a conditional probability distribution on
X(u) conditioned by Z(u) satisfying Pr[X(u) = 1|Z(u) = 0] = 0.

For practical reasons, in the implementation of the algorithm, we use the condition Pr[Z(u) =
1|Z(p(u)) = 0] = εZ , where εz is a small value, rather than the strict condition in (4). The
motivation is basically the same as for using so called pseudo-counts [8]. Namely, once a
parameter receives the value 0 in an EM algorithm for training, it will subsequently not be
changed. For modeling reasons, we use the condition Pr[X(u) = 1|Z(u) = 0] = εX for some
small εX rather than the condition stated in (5).

In Subsection 3, when modeling a collection of tumors represented by CNAs, we will
number the CNAs 1, . . . , n and also use these numbers to represent the non-root vertices,
and we will consider a CNA i to have happened if and only if X(i) = 1, i.e., the final set of
aberrations generated is {i : X(i) = 1}.

It is also possible to have CPDs where X(u) and Z(u) depend on both X(p(u)) and
Z(p(u)) and even to let X(u) depend on all three of Z(u), X(p(u)), and Z(p(u)). We do
not cover these cases in the following text, but our arguments can easily be extended to also
cover these.

2.2 The novel global structural EM algorithm for HOTs

When viewing probabilistic models as generating data, the model-training problem can be
cast as an optimization problem where the goal is to find the maximum likelihood solution,
i.e., the model that with the highest probability generates the observed data. This optimiza-
tion problem is often solved using an Expectation Maximization (EM) algorithm [5], which
is not guaranteed to deliver a globally optimal solution but used to obtain locally optimal
ones.

The EM theory shows that given a current solution, another solution with higher like-
lihood can be found by maximizing the so-called expected complete log-likelihood or the
Q-term. Friedman et al. [11] extended the use of EM algorithms from the standard param-
eter estimation to also finding an optimal structure. In their case, the probabilistic model
was reversible which makes it possible to maximize the expected complete likelihood over
all trees, using a maximum spanning tree algorithm. In our case, the pair-wise relations be-
tween hidden variables are asymmetric. However, as shown below, the maximization of the
expected complete log-likelihood can in our case be solved using Edmonds’s optimal branch-
ing algorithm. Tarjan’s variation of Edmonds’s algorithm runs in quadratic time [3, 15,21].
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The weighted expected complete log-likelihood function will be useful when treating
HOT-mixtures. We introduce it already here and also show how to maximize it. The
expected complete log-likelihood of a HOT T ′ with respect to another HOT T , weighted by
a function f , and with our observed variables as parameters, is defined as

Qf (T ′; T ) =
∑
X∈D

∑
Z

f(X)Pr[Z|X, T ] log Pr[Z, X|T ′]. (1)

We now show that if f can be evaluated in constant time, then the HOT T ′ that maxi-
mizes (1) can be found in time O(n2), where n is the number of aberrations or vertices.

Following the standard derivation of an EM algorithm, it can be shown that Qf (T ′; T )
equals

∑
〈u,v〉∈A(T ′)

∑
a,b∈{0,1}

∑
X∈D

f(X)Pr[Z(v) = a, Z(u) = b|X, T ] log Pr[Z(v) = a|Z(u) = b, θ′Z(u)]

+
∑

〈u,v〉∈A(T )

∑
σ,a∈{0,1}

∑
X∈D:X(u)=σ

f(X)Pr[Z(v) = a|X, T ] log Pr[X(v) = σ|Z(v) = a, θ′X(u)].

As long as the directed tree T ′ is fixed, the standard EM methodology (see for instance [8])
can be used to find the Θ′ that maximizes Qf (T

′, Θ′; T ), as follows. First, let

Au(a, b) =
∑
X∈D

f(X)Pr[Z(u) = a, Z(p′(u)) = b|X, T ] (2)

and
Bu(σ, a) =

∑
X∈D:X(u)=σ

f(X)Pr[Z(u) = a|X, T ]. (3)

Then the Θ′ that for a fixed T ′ maximizes Qf (T ′; T ) (i.e. Qf (T
′, Θ′; T )) is given by letting

Pr[Z(u) = a|Z(p′(u)) = b, θ′Z(u)] = Au(a, b)/(
∑

a∈{0,1}
Au(a, b))

and
Pr[X(u) = σ|Z(u) = a, θ′Z(u)] = Bu(σ, a)/(

∑
σ∈{0,1}

Bu(σ, a)).

In the next Section 2.3, we will describe how the probabilities on the right hand sides of (2)
and (3) can be computed. The time required for computing all such probabilities will turn
out to be no more than O(|D| · n2), where n is the number of aberrations.

For each arc 〈p, u〉 of T ′, using the CPDs defined above, we define the weight of the arc,
specific to this tree to be∑

a,b∈{0,1}

∑
X∈D

f(X)Pr[Z(u) = a, Z(p′(u)) = b|X, T ] log Pr[Z(u) = a|Z(p′(u)) = b, θ′Z(u)]

+
∑

b∈{0,1}

∑
X∈D

f(X)Pr[Z(u) = a|X, T ] log Pr[X(u)|Z(u) = a, θ′X(u)].
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We now make two important observations from which it follows how to maximize the
weighted expected complete log-likelihood over all directed trees. First, notice that if two
directed trees T ′ and T ′′ have a common arc 〈p, u〉, then this arc has the same weight in
these two trees. This allows us to define a complete directed and arc-weighted graph D (i.e.,
a combinatorial structure with a set of vertices and an arc in each direction between any
two vertices) with the same vertex set as the tree T , and define the weight of the arc 〈u, v〉
in this directed graph to be the same as in any directed tree containing the arc.

An optimal arborescence of a directed graph is a rooted directed tree on the same set of
vertices as the directed graph that has exactly one directed path from one specific vertex
called the root to any other vertex and, moreover, has maximum arc weight sum among
all such rooted directed trees. Now we are in position to conclude that Edmonds’s optimal
branching algorithm (of which a variation can produce an optimal arborescence) can be used
to maximize the weighted expected complete log-likelihood. For any branching T ′ of D, the
sum of the weights of its arcs equals by construction the maximum value of Qf (T

′, Θ′; T )
for any Θ′. From this follows that, a (spanning) directed tree T ′ is an optimal branching
of D if and only if T ′ maximize the Qf term. So applying Tarjan’s variation of Edmonds’s
algorithm [3, 15, 21] to D gives the desired directed tree. In the next subsection, we show
how to compute the probabilities required in (2) and (3), thereby, complete the description
of our model-training algorithm for HOTs.

2.3 Computing the required probabilities

The most basic computation for a HOT T = (T, Θ) is computing the probability that an
observation X is generated from T , i.e., Pr[X|T ]. This probability as well as the probabilities
Pr[Z(u) = a, X|T ] and Pr[Z(u) = a, Z(p(u)) = b, X|T ] can be computed in linear time
using dynamic programming, i.e., a procedure very similar to the pruning algorithm used to
compute likelihoods of phylogenetic trees [9]. Doing so for all vertices u can, hence, be done in
time O(n2). Using the above probabilities, we can in linear time compute Pr[Z(u) = a|X, T ]
and Pr[Z(u) = a, Z(p(u)) = b|X, T ] for all vertices u. Finally, using the so computed
probabilities, the probability Pr[Z(u) = a, Z(v) = b|X, T ] can then be computed using
techniques analogous to those appearing in [11].

2.4 HOT-mixtures

In the previous section, we considered a HOT T = (T, Θ). We will now extend the model
to HOT-mixtures by including an initial random choice of one out of several HOTs and
letting the final outcome be generated by the chosen HOT. We will also obtain an EM based
model-training algorithm for HOT-mixtures by showing how to optimize expected complete
log-likelihoods for HOT-mixtures. Formally, we will use k HOTs T1, . . . , Tk and a random
mixing variable I taking on values in 1, . . . , k. The probability that I gets the value i is
denoted λi and λ = (λ1, . . . , λk) is a vector of parameters of the model, in addition to those
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of the HOTs (λ1, . . . , λk are constrained to sum to 1). The following notation is convenient

γi(X) = Pr[I = i|X, M ] =
λiPr[X|Ti]∑

j∈[k] λjPr[X|Tj]
.

For a HOT-mixture, the expected complete log-likelihood can be expressed as follows∑
X∈D

∑
Z,I

Pr[Z, I|X, M ] log Pr[Z, I,X|M ′]. (4)

Using standard EM methodology, it is possible to show that (4) can be maximized by
independently maximizing ∑

i∈[k]

∑
X∈D

γi(X) log(λ′
i) (5)

and, for each i = 1, . . . , k, maximizing∑
X∈D

∑
Z

Pr[Z|X, Ti]γi(X) log(Pr[Z, X|T ′
i ]) (6)

Finding a λ′ = λ′
1, . . . , λ

′
k maximizing (5) is straightforward (see for instance [8]) and, for

each i = 1, . . . , k, finding a T ′
i maximizing (6) can be done as described in the previous

subsections.

3 Results

In this section, we report results obtained by applying our algorithms to synthetic data as
well as cytogenetic cancer data. For ease of notation, we will denote the parameters of the
model as follows:

pz(u) = Pr[Z(u) = 1|Z(p(u)) = 1]

px(u) = Pr[X(u) = 1|Z(u) = 1]

ez(u) = Pr[Z(u) = 1|Z(p(u)) = 0]

ex(u) = Pr[X(u) = 1|Z(u) = 0].

We will collectively call the three parameters, (1 − px), ez, and ex, the error parameters.
In the standard version of the EM algorithm, four parameters are associated with each

edge of a HOT. In order to reduce the total number of parameters, it is possible to let some
of the four parameters be global instead. For example, in the case of ex, this means that
we would require that ex(u) = ex(u

′) for all pairs of vertices u and u′. Ideally, we would
like to let all the error parameters be global. However, for technical reasons, requiring that
ez be global makes it impossible to derive an EM algorithm. Therefore, we will distinguish
between two different versions of the algorithm: one with free parameters and one with global
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Figure 2: Histograms showing the mean percentage of edges that were correctly recovered
by the algorithm for the free parameter case together with errorbars showing one standard
deviation.

parameters. The free parameter version then corresponds to the standard EM algorithm,
while the global parameter version corresponds to letting (1 − px) and ex be global. When
evaluating the global parameter version of the algorithm using synthetic data, we will follow
the convention of letting all three error parameters be global when generating data.

Other conventions used for all the tests described here include the following. Unless
stated otherwise, we enforce an upper limit of 0.5 on ez and ex. Also, when running the
algorithm on a dataset, we first run the algorithm on a set of randomly generated start
HOTs or start HOT-mixtures for 10 iterations. The HOT or HOT-mixture that resulted in
the best likelihood is then run until convergence. Unless stated otherwise, the number of
start trees or mixtures is 100.
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Figure 3: Histograms showing the mean percentage of edges that were correctly recovered
by the algorithm for the global parameter case together with errorbars showing one standard
deviation.
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3.1 Tests on Synthetic Datasets

3.1.1 Single HOTs

In order to test the algorithm’s ability to recover a HOT from data, we generated random
HOTs with different sizes and parameters. We then generated data from these HOTs and
attempted to recover the HOTs using the hotmix algorithm. The sizes of the HOTs were
fixed at 10, 25, and 40 vertices. The parameters on the edges, i.e., the probabilities pz, px,
ez, and ex, were chosen uniformly in the intervals

pz ∈ [0.1, 1.0], (7)

(1 − px), ex, ez ∈ [0.01, q], (8)

where q ∈ {0.05, 0.10, 0.25, 0.50}. For each combination of possible sizes and values for q,
100 HOTs were generated for a total of 3 × 4 × 100 = 1200 HOTs. Data was generated
from each HOT with 100, 500, 2000, and 5000 datapoints. Each dataset was then passed to
the algorithm and the resulting HOT was compared to the original HOT. The result of this
comparison can be seen in Figure 2. An edge of the original HOT connecting one specific
aberration to another is considered to have been correctly recovered if the HOT obtained
from the algorithm connects the same two aberrations in the same direction.

We also tested how the reduction of parameters affected the results by generating HOTs
with global error parameters. This is the so-called “global parameters” case as described
in the introduction. We then applied the relevant version of the algorithm, and the results
can be seen in Figure 3. As shown by the figures, there is a slight improvement when the
number of parameters is reduced.

We also compared the performance of our algorithms with that of Mtreemix by Beeren-
winkel et al [2]. The generated data from our single HOTs were passed to Mtreemix and the
same criteria as above were used to detect correctly recovered edges (no special options were
set when running Mtreemix on data generated with global parameters since no distinction
between global and free parameters can be made on oncogenetic trees) Figure 4 and 5 show
the results. As can be seen, Mtreemix outperforms our methods when the HOTs and the
error parameters are small, and our algorithms outperform Mtreemix significantly as the
HOTs or error parameters become larger.

3.1.2 HOT Mixtures

We also tested the ability of the algorithm to recover a mixture of two HOTs. The sizes
of the HOTs were set at either 10 or 25 vertices (i.e. a total of 18 or 48 edges). The error
parameters, which were global, were chosen randomly from a uniform distribution on the
interval [0.01, q] where q ∈ {0.05, 0.10, 0.25}. Three different mixture distributions on the
HOTs were also tested.

When measuring the number of correctly recovered edges, the following procedure was
used. Each HOT produced from the algorithm was compared to each HOT from which the
data was generated, and the number of correctly recovered edges was noted. The best way
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Figure 4: Histograms showing the mean percentage of edges that were correctly recovered by
Mtreemix together with errorbars showing one standard deviation. The data was the same
as those used in Figure 2.
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Figure 5: Histograms showing the mean percentage of edges that were correctly recovered by
Mtreemix together with errorbars showing one standard deviation. The data was the same
as those used in Figure 3.
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Figure 6: Histograms showing the mean percentage of edges that were correctly recovered for
mixtures of two HOTs with 10 vertices each. The errorbars indicate one standard deviation.
Each bar represents 100 mixtures.
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Figure 8: HOTs obtained from RCC data. (a) shows an adapted version of the pathways for
CC data published in [13]. (b) is a figure adapted from [14] showing the pathways obtained from
statistical analysis of RCC data. (c) and (d) are the HOTs we obtained from the RCC data using
only aberrations on the left and right pathways in (b), respectively.

of matching the two HOTs produced from the algorithm with the two original HOTs was
then determined. The result can be seen in Figure 6 and 7.

For the case with 25 vertices, two features can clearly be distinguished: the results
improve as the size of the data increases, and the algorithm performs better when the HOTs
have equal probability in the mixture.

3.2 Tests on Cancer Data

Our cytogenetic data for colon (CC) and kidney (RCC) cancer consist of 512 and 998 tumors,
respectively. The data consist of measurements on 41 common aberrations (18 gains, 23
losses) for CC and 28 (13 gains, 15 losses) for RCC. The data have previously been analyzed
in [13] and [14] resulting in suggested pathways of progression. These analyses were based on
Principal Component Analysis (PCA) performed on correlations between aberrations and a
statistical measure called time of occurrence (TO) that is a measure on how early or late
an aberration occurs during progression. The aberrations were then clustered based on the
PCA and each cluster was manually formed into a pathway (based on PCA and TO). One
advantage of our approach is that we are able to replace the manual curation by automated
computational steps. Another advantage is that our models assign probabilities to data and
the different models can therefore be compared objectively.

We expect the parameters ez(u) = Pr[Z(u) = 1|Z(p(u)) = 0] and ex(u) = Pr[X(u) =
1|Z(u) = 0] to be small in real data. We obtained the n most correlated aberrations in
our CC data, for n ∈ {4, . . . , 11}, and tested different upper limits on ez and ex. The best
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correspondence to previously published analyses of the data was found when ez(u) ≤ 0.25
and ex(u) ≤ 0.01 with the number of bad edges given in the table below. A bad edge is one
that contradicts the partial ordering given by the pathways described in [13], of which the
relevant part is shown in the Figure 8(a).

size 4 5 6 7 8 9 10 11
bad edges 0 0 0 0 2 2 3 2

Having found upper limits that work well on the CC data, we applied the algorithm with
these upper bounds to the RCC data. The earlier analyses in [14] strongly suggests that two
HOTs are required to model the RCC data. Given that our mixture model, from synthetic
data tests, appears to require substantially more data points to recover the underlying HOTs
in a satisfactory manner, we used the results of the analysis in [14] to divide the aberrations
into two (overlapping) clusters for which we created HOTs separately. These HOTs can be
seen in Figure 8(c) and 8(d) and they show very good agreement to the pathways from [14]
shown in Figure 8(b). For instance, each root-to-leaf path in the HOT of Figure 8(c) agrees
perfectly with the pathway shown in Figure 8(b).
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