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Abstract

This thesis concerns the approximation of optimally controlled partial differential equations

for applications in optimal design and reconstruction. Such optimal control problems are often

ill-posed and need to be regularized to obtain good approximations. We here use the theory

of the corresponding Hamilton-Jacobi-Bellman equations to construct regularizations and derive

error estimates for optimal design problems. The constructed Pontryagin method is a simple

and general method where the first, analytical, step is to regularize the Hamiltonian. Next its

stationary Hamiltonian system, a nonlinear partial differential equation, is computed efficiently

with the Newton method using a sparse Jacobian. An error estimate for the difference between

exact and approximate objective functions is derived, depending only on the difference of the

Hamiltonian and its finite dimensional regularization along the solution path and its L
2 projection,

i.e. not on the difference of the exact and approximate solutions to the Hamiltonian systems. In the

thesis we present solutions to applications such as optimal design and reconstruction of conducting

materials and elastic structures.





Preface

This thesis consists of an introduction and two papers.

Paper 1: Carlsson J, Szepessy A and Sandberg M. Symplectic Pontryagin Approxima-
tions for Optimal Design, preprint, 2006.
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Chapter 1

The Optimal Design Problem

Optimal design has with the increase of computational capacity and commercial software for
solving partial differential equations become an important industrial field, with applications
in virtually all fields of science. Two important applications are optimal design of material
structures, and inverse optimal reconstruction of physical properties from experimental
data, see e.g. [3] and [4], respectively.

Mathematically, optimal design can be described as the particular inverse problem of
controlling one or more a partial differential equations to meet some design criteria in
an optimal way. For example, consider the general problem to find a bounded open set
D ⊂ Ω ⊂ R

d such that

inf
D∈Dad

{∫

D

F (u) dx

∣
∣
∣
∣
G(u) = 0 in D

}

, (1.1)

where the design criteria is described by the functional F : R
n → R, the state variable

u : Ω → R
n satisfies the partial differential equation G(u) = 0 in D, and Dad describes a set

of admissible designs. Typically, the partial differential operator G here describes a physical
state, while the design criteria consists of some energy to minimize or, for a reconstruction
problem, an error functional relating the solution u to measurements. Note, that we here
only deal with time independent problems governed by elliptic or at least coercive partial
differential equations.

The above problem (1.1) is usually referred to as an optimal shape problem [15] and is
in general ill-posed in the sense that small perturbations of data lead to large changes in
the solution [9, 17]. Also, for a too large set of admissible designs Dad, the infimum in (1.1)
may not even be attained.

An alternative way to write the optimal shape problem (1.1) is as a parameter design
problem

inf
χ∈χad

{ ∫

Ω

χF (u) dx

∣
∣
∣
∣
Gχ(u) = 0 in Ω

}

, (1.2)

where the domain Ω is fixed and the infimum is taken is over all characteristic functions
χ : Ω → {0, 1} in the admissible set χad. The partial differential operator Gχ here indicates
that the parameter χ is included as a coefficient in the partial differential equation.

Observe, that (1.1) and (1.2) can also represent designing a boundary between two
separate regions, by adding a design criteria and a partial differential equation for the
domain Ω \D in (1.1), or by replacing χ with αχ+ β(1 − χ) in (1.2).

Example 1.1 (Optimal design in conductivity). Consider the problem of minimizing the
power loss in an electric conductor, by placing a given amount C of conducting material in

1



2 CHAPTER 1. THE OPTIMAL DESIGN PROBLEM

a given domain Ω ⊂ R
d, for a given surface current q : ∂Ω → R. In the shape optimization

setting this can be formulated as finding the conducting domain D ⊂ Ω such that

inf
D

{∫

D

|∇ϕ|2 dx

∣
∣
∣
∣
− div(∇ϕ)

∣
∣
D

= 0,
∂ϕ

∂n

∣
∣
∂D\Γ

= 0,
∂ϕ

∂n

∣
∣
Γ

= q,

∫

D

dx = C

}

, (1.3)

where ∂/∂n denotes the normal derivative on the boundary, Γ ≡ {x ∈ ∂Ω : q(x) 6= 0} and
ϕ ∈ V ≡ {v ∈ H1(Ω) :

∫

Ω
v dx = 0} is the electric potential. Note that the boundary ∂D

must contain Γ.
A corresponding parameter design problem can be formulated as to find the characteristic

conductivity function σ : Ω → {0, 1} such that

inf
σ

{∫

Ω

σ|∇ϕ|2 dx

∣
∣
∣
∣
− div(σ∇ϕ)

∣
∣
Ω

= 0, σ
∂ϕ

∂n

∣
∣
∂Ω

= q,

∫

Ω

σ dx = C

}

. (1.4)

This parameter design problem is studied in detail in [7].

1.1 Existence of Solutions

Without any restrictions on the class of admissible designs, optimal design problems often
do not admit any solutions. A simple example is the problem to find the set D ⊂ Ω ∈ R

2

that minimizes 1/l(D), where l(D) is the length of the boundary ∂D. This unconstrained
minimization problem clearly has no minimizer although the minimum tends to zero, and to
attain a minimizer we must add extra constraints on for example the shape of the domain
D, or the boundary ∂D.

To understand why the set of admissible designs is so important we review some condi-
tions on the existence of minimizers, see [15]: To assure existence of a solution D with a cor-
responding state variable u to the minimization problem (1.1), a necessary condition is that
there exists a minimizing sequence Dm to (1.1) such that D̄m → D̄, in the Hausdorff sense.
This does not imply that the corresponding characteristic functions χDm

: Ω → L∞(Ω)
converges pointwise or even weakly * to a characteristic function χD (see Definition 1.1
for weak * convergence). However, there always exists a minimizing sequence such that
the characteristic functions χDm

converges in the weak * sense to a limit not belonging
to the class of characteristic functions. For the problem (1.1) this means that even if the
state variables um, corresponding to the minimizing sequence of shapes Dm, satisfies the
constraint G(um) = 0, the limit u may not be a solution to the original partial differential
constraint G(u) = 0.

Definition 1.1. By weak * convergence of χm : Ω → L∞(Ω) to χ : Ω → L∞(Ω) we mean
that

lim
m→∞

∫

Ω

χm(x)φ(x) dx =

∫

Ω

χ(x)φ(x) dx,

for all test functions φ : Ω → L1(Ω). The notation ’weak *’ is here used since L1(Ω) is not
the dual space of L∞(Ω).

To find a minimizing sequence of characteristic functions that converges to a character-
istic function, we can either alter the original optimal design problem by adding penalty
terms in the design criterion, or change the set of admissible designs, for example by adding
conditions on the smoothness of the boundary, e.g. only allowing Lipschitz boundaries. One
problem is that this restriction usually gives a minimum different from the infimum of the
original problem, i.e. the problem has been altered significantly. Another approach is to
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extend the admissible set χad in (1.2) to include not only characteristic functions, e.g. by
introducing composites of laminated materials as in the homogenization method [1]. Such
composites describes periodic material micro-structures and can for certain laminations give
a minimum that coincides with the true infimum. It is worth to mention that even if a solu-
tion exists, optimal design problems may be ill-posed in the sense that small perturbations
of data lead to large changes in the solution.

In Chapter 2, a different approach more connected with optimal control and calculus of
variations, is used for finding a regularization. For some problems we can derive sufficient
conditions for a minimizer [6, 7].

Remark 1.1. For the particular example of minimizing energy in Example 1.1, there exists
a unique minimizer without any restriction on the shape [15]. On the other hand, changing
the ’inf ’ for a ’sup’ needs regularization to admit a solution. This particular maximization
problem has is addressed in [7], and can be regularized by convexification or homogenization
[1, 11, 12, 13, 14].

1.2 Solution Methods

Roughly, the computational methods solving for optimal design problems can be divided
into two classes: Methods with optimality conditions derived from (1.1), and methods based
on approximation of the characteristic function χ in (1.2).

In the first class we find the classical method of shape derivatives, which derives the
optimal variation of the boundary. Topological derivatives, or the bubble method, is a
similar method that derives optimality conditions for the creation of holes in the domain,
i.e not only moves the boundary but also changes the topology. The shape optimization
methods commonly use a finite element or finite difference discretization of the domain D
to solve the partial differential equation G(u) = 0 and update both D and the discretization
from the optimality conditions. Alternatively, a fixed mesh and a mapping onto the domain
D can be used. Another method that uses the shape derivative, the topological derivative,
or a combination of both is the level-set method. A level-set function is then used to indicate
the boundary, and boundary movement and creation of holes is done by solving a transport
equation for the level-set function on the whole domain Ω.

The second class of computational methods is based on the formulation (1.2) and relaxes
the class of admissible designs to allow a global minimum, either by smooth approximation
of χ, or as in the homogenization method, by a special class of admissible controls χad

based on periodic micro-structures. Since these methods uses a discretization of the whole
region Ω it is here often necessary to use a weak material to mimic void, i.e. χ > 0. Also,
to produce sharp boundaries between, in this case, the weak and the solid phase, some
penalization procedure is often added. This may seem counter productive, but the hope is
to first reach a global minimum to the relaxed problem, followed by a penalization which
removes existence of a global minimum but forces the solution to a nearby local minimum.

In this presentation, we only deal with the continuous problem, and do not discuss any
of the many optimization methods dealing with the discretized versions of (1.1) and (1.2).
An introduction to discrete methods concerning optimal design of material structures can
be found in [3].
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Shape and Topological Derivative

Consider the problem (1.1) and define the objective functional

J(D) ≡

∫

D

F (u) dx,

where u : D → V is the solution, belonging to some Hilbert space V , to the partial
differential equation G(u) = 0 in (1.1)

For a small perturbation θ : R
d → R

d of the domain D ⊂ R
d into D+θ = {x+θ(x), x ∈

D} the shape derivative in the direction θ can be defined as

δJ(D; θ) =

∫

∂D

L
(
u(s), λ(s)

)
θ(s) · n ds, (1.5)

where n denotes the outward boundary normal. The functional L is here a certain problem
dependent functional which is described for an example below, see Example 1.2. The
variable λ : D → V is here the solution to a corresponding adjoint problem. One way to
define the adjoint problem is from the Lagrangian

L(D,u, λ) ≡ J(D,u) + 〈λ,G(u)〉,

where 〈v, w〉 is the duality pairing on V , which reduces to the L2 inner product if v, w ∈
L2(D). The Gâteau derivative with respect to λ gives the original constraint G(u) = 0, in
the distribution sense, while the Gâteau derivative with respect to u gives the dual problem
for λ. The shape derivative (1.5) gives the sensitivity of the value function J with respect
to change in the domain, and indicates how to move the boundary ∂Ω, or the individual
mesh points in the discretization of D.

Example 1.2. Consider a simplified version of the conductivity optimization problem (1.3),
given in Example 1.1, where the objective functional now is

J(D) =

∫

D

|∇ϕ|2 dx+ η

∫

D

dx,

and the state variable ϕ solves

−div(∇ϕ)
∣
∣
D

= 0,
∂ϕ

∂n

∣
∣
∂D\Γ

= 0,
∂ϕ

∂n

∣
∣
Γ

= q.

The shape derivative is then given by

δJ(D; θ) =

∫

∂D

(∇u · ∇λ) θ · n ds+ η

∫

∂D

θ · n ds

where the dual solution is given by λ = ϕ, see [15].

Unfortunately, the shape derivative does not deal with changes in the topology, e.g.
nucleation of holes in the domain. A method which does consider topological changes is the
method of topological derivatives, see e.g. [8]. The topological derivative is an extension of
the shape derivative, and derives an expression for the change in the value function with
respect to the creation of a small hole inside the domain.
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Level-Set Methods

The level-set method, conveniently connects the two problems (1.1) and (1.2) by paramet-
erizing the boundary between the phases using a level-set function ψ : Ω× [0, T ] → R, given
by 





ψ(x, ·) > 0, x ∈ Ω −D,
ψ(x, ·) = 0, x ∈ ∂D,
ψ(x, ·) < 0, x ∈ D,

where the normal n of ∂D is given by ∇ψ/|∇ψ| and the curvature by div(∇ψ/|∇ψ|). The
time is here an artificial variable used to evolve the shape towards its optimum, by the
dynamics of the Hamilton-Jacobi equation

∂tψ + V |∇ψ| = 0 in Ω (1.6)

where V : Ω × [0, T ] → R denotes the normal velocity of ∂D. Here, the normal velocity
can be chosen according to the shape or topological derivatives, see [2, 5], and the time T
corresponds to the length of the gradient step. In practice, the T is chosen such that the
normal and curvature of the level-set function does not become too distorted. From the
solution ψ(·, T ), a reinitialization where the partial differential equation in (1.2) is solved,
gives new initial data ψ(·, 0) for solving (1.6) again. The level-set method requires using
a weak phase to mimic void when solving the partial differential equation in (1.2), and
extra computational work is introduced from introducing the additional function ψ. Also, a
fixed discretization of the whole domain Ω is used for both (1.6) and the partial differential
equation constraint in (1.2).

Homogenization

The previous methods all tried to find an optimal domain D ∈ Ω, which may not exist
for certain problems, unless some restriction is put on the shape of the boundary ∂D.
The homogenization method, on the other hand, looks for optimal designs in the class of
periodic micro-structures. Such structures do not in general form sharp boundaries, but
instead share the property that there exists a minimum which coincides in average with the
infimum of the original problem, as mentioned in Section 1.1.

To exemplify, we state the problem briefly mentioned in Remark 1.1: Find the con-
ductivity function σ : Ω → {σ−, 1} that maximizes the power loss in an electric conductor,
i.e.

sup
σ:Ω→{σ− ,1}

{∫

Ω

σ|∇ϕ|2 dx

∣
∣
∣
∣
− div(σ∇ϕ)

∣
∣
Ω

= 0, σ
∂ϕ

∂n

∣
∣
∂Ω

= q,

∫

Ω

σ dx = C

}

. (1.7)

Note that we have here filled the void with a weak phase σ− > 0. This maximization
problem lacks maximizers, but can be relaxed to allow the existence a maximizer by simply
using σ : Ω → [σ−, 1] instead of σ : Ω → {σ−, 1}. A more clever approach is to use the
homogenization method for laminated materials. We then look at the problem

max
θ,φ

{∫

Ω

σ∗|∇ϕ|2 dx

∣
∣
∣
∣
− div

(
σ∗∇ϕ

)∣
∣
Ω

= 0, σ∗ ∂ϕ

∂n

∣
∣
∂Ω

= q,

∫

Ω

θ dx = C

}

. (1.8)

with θ : Ω → [0, 1], φ : Ω → [0, π] and the rank-1 laminate tensor

σ∗(θ, φ) =

(
cosφ sinφ

− sinφ cosφ

)(
λ+

θ 0
0 λ−θ

)(
cosφ − sinφ
sinφ cosφ

)

,
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with

λ−θ =

(
θ

σ−
+

1 − θ

σ+

)−1

, λ+
θ = θσ− + (1 − θ)σ+.

The tensor σ∗ is obtained from rotation and mixing of the two tensor valued controls σ−I
and σ+I in proportions θ and 1− θ and direction φ, see Figure 1.1. We have thus enlarged
the set of admissible controls by introducing two new parameters θ, φ describing a laminated
material. The effective conductivities in the principal directions of the material is λ+

θ and
λ−θ , while (λ+

θ )−1 and (λ−θ )−1 correspond to the total resistances for resistors connected
in parallel and in series, respectively. The homogenization method has the advantage that
a maximizer (θ, φ) is found and that that the value of (1.8) coincides with (1.7). This
particular problem uses a rank-1 laminate, but higher rank laminates, sufficient to find
minimizers (or maximizers) for many important optimal design problems, can be found [1].

x

y

φ

θ
1 − θ

σ−

σ+

Figure 1.1: The rank-1 laminate used in (1.8)



Chapter 2

Optimal Control and the Pontryagin

Method

In the previous chapter we saw that optimal design problems often need to be regularized
to obtain good approximations, and that regularization may also be necessary to assure the
mere existence of a solution. In this chapter we present a method for optimal design using
a regularization derived from the Hamilton-Jacobi-Bellman equations for the corresponding
optimal control problem. We first describe the method for control of a system of ordin-
ary differential equations, and then apply the methodology to control partial differential
equations.

2.1 Dynamic Programming

Consider an optimal control problem for a controlled ordinary differential equation

inf
α∈A

{

g
(
X(T )

)
+

∫ T

0

h
(
X(s), α(s)

)
ds

∣
∣
∣
∣
X ′(t) = f

(
X(t), α(t)), X(0) = X0

}

, (2.1)

with given data g : R
n → R, h : R

n × B → R, f : R
n × B → R

n, X0 ∈ R
n, the state

variable X : [0, T ] → R
n and a set of controls A = {α : [0, T ] → B ⊂ R

m}. Optimal control
problems like (2.1) can be solved by dynamic programming or by the Lagrange principle.
From the dynamic programming approach, a value function u : R

n × [0, T ] → R, defined by

u(x, t) ≡ inf
X(t)=x,α∈A

{

g
(
X(T )

)
+

∫ T

t

h
(
X(s), α(s)

)
ds

}

, (2.2)

is the unique viscosity solution (see Definition 2.1 and [10]) of the nonlinear Hamilton-
Jacobi-Bellman partial differential equation

∂tu(x, t) +H
(
∂xu(x, t), x

)
= 0, (x, t) ∈ R

n × (0, T ),

u(x, T ) = g(x), x ∈ R
n,

(2.3)

where the Hamiltonian function H : R
n × R

n → R is defined by

H(λ, x) ≡ min
α∈B

{
λ · f(x, α) + h(x, α)

}
. (2.4)

The value function (2.2) indicates the least cost from starting at a point (x, t) and following
an optimal path X(s) and control α(s) for the remaining time s ∈ [t, T ], and the infimum

7



8 CHAPTER 2. OPTIMAL CONTROL AND THE PONTRYAGIN METHOD

of (2.1) is given by the solution to (2.3) in the point (X0, 0). Although we can here find a
global minimum, the Hamilton-Jacobi equation can in practice not be solved numerically
for high dimensional problems where n≫ 1.

Definition 2.1. (Viscosity solution) A bounded uniformly continuous function u is a vis-
cosity solution to (2.3), if u(·, T ) = g(·), and for each v ∈ C∞(Rn × (0, T ))

• ∂tv(x, t) +H
(
∂xv(x, t), x

)
≥ 0 when u− v has a local maximum in (x, t), and

• ∂tv(x, t) +H
(
∂xv(x, t), x

)
≤ 0 when u− v has a local minimum in (x, t).

The viscosity solution u is also unique, see [10].

2.2 The Pontryagin Principle

To derive information on the optimal path X(t) and the corresponding optimal control
α(t), we consider the Pontryagin (Minimum) Principle, which states the following necessary
condition for an optimal control to (2.1): Assuming that f, g, h are differentiable, then given
an optimal path X(t) with an optimal control α(t), there exists a path λ(t) such that

∂tX(t) = f
(
X(t), α(t)

)
,

X(0) = X0,

−∂tλi(t) = ∂xi
f
(
X(t), α(t)

)
· λ(t) + ∂xi

h
(
X(t), α(t)

)
,

λ(T ) = ∂xg
(
X(T )

)
,

(2.5)

and

λ(t) · f
(
X(t), α(t)

)
+ h

(
X(t), α(t)

)
≤ λ(t) · f

(
X(t), a

)
+ h

(
X(t), a

)
, a ∈ B,

or equivalently
α(t) ∈ argmina∈B

{
λ(t) · f

(
X(t), a

)
+ h

(
X(t), a

)}
. (2.6)

Also, assuming that the Hamiltonian H defined in (2.4) is differentiable, the Pontryagin
Principle (2.5) and (2.6), equals the Lagrange principle, i.e. an optimal path X(t) satisfies
the Hamiltonian boundary value system

∂tX(t) = ∂λH
(
λ(t), X(t)

)
, X(0) = X0,

−∂tλ(t) = ∂xH
(
λ(t), X(t)

)
, λ(T ) = ∂xg(X(T )),

(2.7)

which in fact is the method of characteristics for the Hamilton-Jacobi equation (2.3) provided
λ(t) ≡ ∂xu(X(t), t) exists. The Lagrange principle has the advantage that high dimensional
problems, n ≫ 1 can be solved computationally and the drawback is that in practice only
local minima can be found computationally. When using (2.7) to solve the minimization
problem (2.1) it is assumed that the Hamiltonian is explicitly known and differentiable. In
general, Hamiltonians are only Lipschitz continuous for smooth f , g and h.

Many optimal control problems lead to non-smooth optimal controls, which occur by
two reasons: the Hamiltonian is in general only Lipschitz continuous, even though f, g, h are
smooth, and backward optimal paths X(t) may collide. To be able to use the computational
advantage of solving the Hamiltonian boundary value system (2.7) a regularized problem
with a C2(Rn × R

n) λ-concave approximation Hδ of the Hamiltonian H , is introduced in
[16]. This approximation not only gives meaning to (2.7), but is well defined in the sense
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that the corresponding approximated value function uδ is close to the original value function
u, see [16]. In [16], error analysis yields the estimate

‖uδ − u‖L∞(Rn×R+) = O(δ), (2.8)

for the real and approximate value functions u and uδ, and with a regularization parameter
δ, such that ‖Hδ−H‖L∞(Rn×Rn) = O(δ). This error estimate is not explicitly dependent on
the dimension n, which makes the regularization suitable for optimal control of discretized
partial differential equations. Observe that ‖uδ − u‖L∞(Rn×R+) → 0 does not necessarily
imply convergence of the optimal paths X(t) or the controls α(t).

2.3 Pontryagin Approximations for Optimal Design

In [7], the above analysis for optimal control of ordinary differential equations is extended
to control of a time dependent partial differential equation

∂tϕ(x, t) = f
(
ϕ(x, t), α(x, t)

)
, (x, t) ∈ Ω × (0, T )

ϕ(x, 0) = ϕ0, x ∈ Ω

where f is a partial differential operator, Ω ⊂ R
n, and ϕ(·, t) belongs to some Hilbert space

V on Ω. The minimization problem corresponding to (2.1) then becomes

inf
α:Ω×[0,T ]→B

{

g
(
ϕ(·, T )

)
+

∫ T

0

h
(
ϕ(·, t), α(·, t)

)
dt

∣
∣
∣
∣

∂tϕ = f
(
ϕ(·, t), α(·, t)

)
, ϕ(·, 0) = ϕ0

}

,

(2.9)

The Hamiltonian H : V × V → R is defined as

H(λ, ϕ) ≡ min
α:Ω→B

{〈λ, f(ϕ, α)〉 + h(ϕ, α)}, (2.10)

and the value function u : V × [0, T ] → R,

u(φ, τ) ≡ inf
α:Ω×[0,T ]→B

{

g
(
ϕ(·, T )

)
+

∫ T

τ

h
(
ϕ(·, t), α(·, t)

)
dt

∣
∣
∣
∣

∂tϕ = f
(
ϕ(·, t), α(·, t)

)
, ϕ(·, τ) = φ ∈ V

}

solves the Hamilton-Jacobi-Bellman equation

∂tu(φ, t) +H
(
∂φu(φ, t), φ

)
= 0, u(·, T ) = g. (2.11)

Here, ∂ now denotes Gâteaux derivatives (except for ∂t), and 〈v, w〉 is the duality pairing
on V , which reduces to the L2(Ω) inner product if v, w ∈ L2(Ω). The Lagrange principle
gives the Hamiltonian system

∂tϕ = ∂λH(λ, ϕ), ϕ(·, 0) = φ

∂tλ = −∂ϕH(λ, ϕ), λ(·, T ) = ∂ϕg
(
ϕ(·, T )

)
.

(2.12)

In [6, 7], the time-independent version of Equation (2.12) is solved for ϕ, λ defined on a
finite element subspace V̄ ⊂ V and using a C2 regularized approximate Hamiltonian H̄δ.
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As an example of a time-independent optimal control problem for partial differential
equations we review problem (1.4) in Example 1.1, which using Gauss theorem and a pre-
scribed multiplier η ∈ R corresponding to the volume constraint C, can be written as

inf
σ:Ω→{0,1}

{∫

∂Ω

qϕ ds+ η

∫

Ω

σ dx

∣
∣
∣
∣
− div(σ∇ϕ)

∣
∣
Ω

= 0, σ
∂ϕ

∂n

∣
∣
∂Ω

= q

}

. (2.13)

I this case, the Hamiltonian becomes

H(λ, ϕ) = min
σ:Ω→{0,1}

{∫

Ω

σ(η −∇ϕ · ∇λ
︸ ︷︷ ︸

v

) dx+

∫

∂Ω

q(ϕ+ λ) ds

}

=

∫

Ω

min
σ∈{0,1}

{σv}

︸ ︷︷ ︸

h(v)

dx+

∫

∂Ω

q(ϕ+ λ) ds.

By replacing h with a smooth function hδ (see Figure 2.1) the time-independent version of
the Hamiltonian system (2.12) can by symmetry ϕ = λ be reduced to the non-linear partial
differential equation







−div
(

h′δ(η − |∇ϕ|2)∇ϕ
)

= 0, in Ω

h′δ(η − |∇ϕ|2)
∂ϕ

∂n
= q, on ∂Ω

The regularization is here similar to adding a standard Tichonov penalty, c.f. [9], on the
L2-norm of σ in problem (2.13), which combined with allowing intermediate conductivities
σ : Ω → [0, 1] gives the problem

inf
σ:Ω→[0,1]

{ ∫

∂Ω

qϕ ds+ η

∫

Ω

σ dx+ δ

∫

Ω

σ2 dx

∣
∣
∣
∣
− div(σ∇ϕ)

∣
∣
Ω

= 0, σ
∂ϕ

∂n

∣
∣
∂Ω

= q

}

,

with a regularization parameter δ > 0. The Hamiltonian then becomes

H(λ, ϕ) = min
σ:Ω→[0,1]

{ ∫

Ω

σ(η −∇ϕ · ∇λ
︸ ︷︷ ︸

v

+δσ) dx+

∫

∂Ω

q(ϕ+ λ) ds

}

=

∫

Ω

σ∗(v) v dx+

∫

∂Ω

q(ϕ+ λ) ds,

with the control

σ∗(v) =







1, v < −2δ,

−v

2δ
, −2δ ≤ v ≤ 0,

0, 0 < v,

see, Figure 2.1.
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h

hδ

v

h, hδ

σ∗

h′δ

v

h′δ, σ
∗

Figure 2.1: Top: The function h and its regularization hδ with respect to v. Bottom: The
approximation h′δ compared to a control σ∗ obtained from adding a Tichonov type penalty
δ
∫

Ω
σ2 dx to (2.13) with σ : Ω → [σ−, σ+].





Chapter 3

Summary of Papers

3.1 Paper 1: Pontryagin Approximations for Optimal Design

In this paper we use the Pontryagin method presented in Chapter 2 to solve three different
typical optimal design problems; one scalar concave maximization problem in conductivity,
one scalar non-concave maximization problem in elasticity, and one inverse reconstruc-
tion problem in impedance tomography. An error estimate for the difference in the true
and approximated value functions, using only the difference of the true and approximated
Hamiltonians along the same paths, is also derived. This estimate gives an error estimate
which in practice can be bounded in terms of the regularization parameter and the finite
element mesh size, such that the value functions converge even though the optimal paths
do not.

3.2 Paper 2: Pontryagin Approximation for Optimal Design of

Elastic Structures

In this paper we test the derived Pontryagin method on problems in optimal design of elastic
structures, such as distributing a limited amount of material to minimize its compliance, or
to detect interior material distributions from surface measurements.

13
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