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Abstract

Algebraic data type theory has a notion of structural recursion. Coalgebraic data types similarly
have a notion of structural corecursion. In this thesis we study a third form of recursion: direcursion.
The other two notions have been used in program derivations,correctness proofs, and in foundations
of functional and class-based languages. Direcursion, on the other hand, has not been extensively
studied in the context of programming languages, and not at all in the context of algebraic techniques
for object-oriented programming languages or typed objectcalculi. Yet, every object in object calculi
is equipped with this recursion principle, and we will demonstrate that this principle can be used in
foundations and in programming (as a powerful and general way of computing with objects), and
when reasoning with object calculi programs, e.g. in correctness proofs.

The family of object calculideveloped by Abadi and Cardelli [3] is one of several proposed
foundations for object-oriented programming languages. It is one of the more general frameworks
available, and arguably the most general framework which fully supports subtyping. The study of
direcursion involves dealing with several aspects of object calculus, with contributions ranging from
giving an operational (natural) semantics of a typed objectcalculus and interpreting this semantics
into fixed point calculus while proving soundness and adequacy results to directly constructing a
denotational semantics of typed object calculi. As a result, this thesis lays a foundation for algebraic
programming techniques and laws for typed object calculi based on direcursion.
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Chapter 1

Introduction

Algebraic data type theory has a notion of structural recursion. Coalgebraic data types
similarly have a notion of structural corecursion. In this thesis we study a more general
notion of recursion that occurs in object calculus: direcursion. This notion of direcursion
has not been extensively studied in the context of object-oriented programming languages,
and in particular it has not been investigated as a foundation for formal methods for object-
oriented programs with laws and equational reasoning. Yet,every object in object calculus
is equipped with this recursion principle, and we will develop a denotational model for
typed object calculi such that direcursion becomes a universal property for each object
type. The overall aim is to provide a foundation for a logic that enables equational reason-
ing with object calculi programs, e.g. in correctness proofs, by means of direcursion.

Our investigation of direcursion is driven by an ambition toestablish an “algebra of
objects”, i.e. a methodology and formal method for construction of object-oriented pro-
grams much like the so called Bird-Meertens formalism [10, 5, 55, 7, 8]. In this work we
therefore propose a foundation for this new line of work, andin particular we have found
a promising model of objects as categorical data types, which we hope can serve as a basis
for expressing desirable recursion schemes as special-cases of the very general and power-
ful notion of direcursion. The combination of object-oriented programming and a theory of
object types of this form seems to have a role to play, particularly considering the interest
in expressing recurring idioms such as design patterns in the object-oriented community.
Our work has the potential of providing a vehicle for such design patterns, allowing them
to be formally expressed, and facilitating formal reasoning with them in actual programs.

The family of object calculideveloped by Abadi and Cardelli [3] is one of several
proposed foundations for object-oriented programming languages. It is one of the more
general frameworks available, and arguably the most general that fully supports subtyping.
While exploring direcursion we will cover several aspects of object calculus, ranging from
giving an operational semantics of a typed object calculi, interpreting this semantics into
fixed point calculus while proving soundness results, to directly constructing a denotational
semantics of object calculi. As a result, this thesis lays a foundation for algebraic program-
ming techniques and laws for typed object calculi based on direcursion, and further work

3



4 CHAPTER 1. INTRODUCTION

is needed to instantiate this powerful recursion principlefor actual programs. To this end,
we give in this thesis an example based on an object that represents natural numbers. The
simplicity of the construction suggests that further object-oriented idioms can be treated in
a similar style.

1.1 Motivation

In this section we will further position the research presented in this thesis, and give a more
elaborate motivation for why this research is important.

Firstly, programming languages need a semantical definition in order to eliminate inse-
curities and unsound features. This can be witnessed by for example the Simula type sys-
tem, Eiffel, and Smalltalk, all of which had significant type insecurities [18, 61, 3]. These
insecurities caused ”message not understood”-errors while a well-typed object-oriented
program was executing, which is exactly what a typing discipline tried to prevent (in other
words these languages failed to satisfy a type soundness result). On the other hand, a strong
typing discipline renders some programs invalid, specifically those programs which are not
well-typed. In order to allow more programs to be written, typically programs which are
more general (e.g. works on more inputs, accepts more subtypes, etc), one wants to extend
the type system. This is the well known conflict between strong typing and flexibility. An
example of features that increase the flexibility in this sense are parametric polymorphism
and subtype polymorphism. It should be mentioned that one trend in programming is to
write more general programs. For example, we would like to write down textbook de-
sign patterns in a programming language, such that they can be used and instantiated in
as many contexts as possible. Extensions to the typing discipline with various forms of
polymorphism, and extensions of the programming constructs themselves, can help to in-
crease the expressiveness to make it possible to express such programs. A third and central
motivation for this research is the correctness of programswith respect to a specification.
Even when a programming language has a sound basis (semantics) it is possible to write
incorrect programs. A correct program is one that satisfies the specification of the problem
it was written to solve.

In this thesis we study foundational (semantical) aspects of a recursion principles in
the context of object-oriented programming languages. Therecursion principle requires
extensions to the typing discipline and to language constructs. We have taken object calculi
as our core operational language, but much of our work will bedenotational. In fact we
have left as further work to refine the operational semanticsto reflect the extensions we
develop mathematically in the denotational semantics. Therefore this research is centered
around an extension of object-oriented programs that increases flexibility while preserving
type soundness. This extension aims at capturing recurringprogramming idioms in a more
succinct and general way. The extension is also tailored towards supporting correctness
calculi, i.e. formal derivation of correct programs. The reason for this is that when objects
are defined using the computation principle herein, variouslaws for optimisations are at
the programmer’s disposal.
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1.2 Contributions

In this section we will describe the contributions of this thesis, and briefly explain how our
work is related to other related work.

Our first contribution is to link work on generic data type theory to object calculi by
means of higher-order data types and self-application. Although the self-application inter-
pretation is well-known it seems that we are the first ones to put it in this context. The
closest previous work is the work of Reus and Streicher [68],but this work is based on
untyped object calculus, does not give the link to direcursion and fusion laws, and has
different scientific aims. Given this interpretation we show that the generic programming
discipline (a.k.a. Bird-Meertens formalism and polytypicprogramming) applies to the ob-
ject calculi setting by spelling out a recursion principle on the associated object data types.
The recursion principle itself is due to Freyd, and was introduced in a functional program-
ming setting by Hutton and Meijer. We develop wrappers for algebraic and coalgebraic
data types which translate ordinary (first-order) data types into object types. Since we are
working in a self-application interpretation of object calculi, we investigate the denota-
tions of object calculi types and terms in the categorypCpo and discuss why this category
is needed. The direct interpretation of object calculi intopCpo is novel. We further prove
soundness and adequacy for a translation of a typed object calculus without subtyping into
Fiore’s fixed point calculus, in order to give a solid foundation for the self-application in-
terpretation. These results are again original, and firmly link object calculi to fixed point
calculus.

Most of the work in chapter three and four of this thesis was carried out as a collab-
oration project between Dr. Neil Ghani of University of Leicester and myself. My own
contributions in these chapters includes a substantial part of the proofs, examples, and
overall content of chapter 3. The fourth chapter is based on the paper ”Difunctorial Se-
mantics for Object Calculi” where my idea of using recursivetypes to model objects is
investigated. Dr. Ghani and I decided to use the categorypCpo, and we then developed
the categorical interpretation jointly. The section on wrappers arose as a joint result while
I visited Dr. Ghani in 2004.

1.3 Overview

The content of this thesis is based on research results, mostof which have been published
or have been submitted for publication. The second chapter gives background in category
theory, semantics, and in object-oriented programming (particularly object calculi). It fur-
ther reviews the basic categorical theory of data types, including basic recursion schemes
such as catamorphism, and the type functors for polymorphicdata types. This chapter is
purely a survey and there are no new results reported in it.

The third chapter on soundness and adequacy is based on the paper ”Soundness and
Adequacy of Object Calculi” where we consider the self-application encoding into FPC.
While this encoding is well-known, we provide the first adequacy and soundness proofs of
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typed object calculus with regard to this model, and we therefore link typed object calculus
to a plethora of semantic models, e.g.pCpo models.

Next, we study thepCpo interpretation in its own right, and pay particular attention
to the link between object types given by dialgebras and (co)algebras. We demonstrate
“wrappers” which give canonical encodings of algebraic datatypes as objects. We study in
more detail one particular wrapper for natural numbers, anddemonstrate that direcursion
can be used to express operations on the constructed object.We give a correctness proof
for this simple example.

The final, fifth chapter concludes and plans for further work.



Chapter 2

Background

2.1 Category Theory

In category theory, one studies mathematical structures solely by means of relationships
between them. These relationships are represented by morphisms between objects inside
a structure known as a category. An object, such as a group or the natural numbers, is not
given by its internal (set theoretic) structure, but more abstractly by morphisms going to
and from this object. In other words, an object is characterised (up to isomorphism) solely
by how its surrounding morphisms compose with other morphisms, which is typically
shown in a commuting diagram. It is this, the fact that arrow composition rather than, say,
set membership, that is central, that allows us to abstractly treat many recurring themes in
a single categorical notion.

Category theory has been termed ”abstract nonsense” both byits advocators and de-
tractors. Indeed, Goguen [39], in his ”Categorical Manifesto”, admits that category theory
can be abused, for example by excessive generalisation (such as describing Galois connec-
tions as adjoints without actually making use of the added generality). However, Goguen
also gives a plethora of examples where category theory and category theoretic methods
have proven successful in computer science. His examples range from automata and types
to programs and program schemes, polymorphism, data refinement, to models of lambda
calculus using cartesian closure, notions of computationsusing monads, initial algebra se-
mantics, and graph theory. Goguen also tries to explain why category theory has been so
successful, arguing that set theory has failed to provide a common agreed upon founda-
tion for mathematics (e.g. Aczel suggested an Anti-Foundation Axiom to model non-well
founded sets occurring in computing, e.g. in modelling Milner’s CCS). One reason why
category theory has proven so useful in computing science is, according to Goguen, the
fact that computing science is at an early stage, where the categorical style helps in driving
the research forward.

In this thesis we apply category theory to the denotational semantics of object-oriented
programming languages. We use category theory to express object types as higher-order
data types. Indeed, category theory gives a suitable language to formalise notions of data

7



8 CHAPTER 2. BACKGROUND

types, as shown by Lehmann and Smyth [47], Manes and Arbib [53], and many others. A
significant amount of research has also been devoted to generic data type theory, e.g. [52],
and to taking Bird and Meertens’ calculus for derivation of algorithms from specifications
(the so called Bird-Meertens formalism) into a more generalframework of category theory.
Malcolm showed that, in a category theoretic framework, program derivations can indeed
benefit from category theory because the derivations themselves reach a level of genericity
with respect to data types. For example notions of recursionshow up as beautiful universal
constructions which are amenable to formal reasoning (e.g.in program calculations).

More concretely, the merits of category theory will appear in the modelling of data
types using functors. Functors give us a succinct way of expressing the signatures of alge-
bras, coalgebras, and dialgebras, which has a value when we perform program calculations.
Further, we require a non set-theoretic model (domain theoretic, expressed in an axiomatic
categorical style) to model object calculi denotationally.

Definition 2.1.1 (Category) A categoryC consists of a class Ob of objects and a class Ar
of arrows, together with a typed binary composition operator ◦ which is associative and
has identities. An arrow f has a domain, written dom( f ), and a codomain cod( f ), both
of which are objects (we write f: dom( f ) → cod( f )). Any two arrows f, g compose into
g ◦ f exactly when cod( f ) = dom(g). We require f◦ (g ◦ h) = ( f ◦ g) ◦ h) whenever f, g, h
have the required domains and codomains. Finally, for any object A, there must exist a
designated identity arrow idA : A→ A, with f ◦ iddom( f ) = f and idcod( f ) ◦ f = f for any
arrow f in Ar.

We follow standard convention and writeC(A, B) or [A, B] for the class of arrowsf
such thatdom( f ) = A andcod( f ) = B (thehomset). We writeAr(C) when the categoryC
is not clear from the context (similarly forOb).

Typical examples of categories are the empty category0, the category1 with one object
and its identity arrow, the categorySet of sets and total functions, and the categoryCpo of
ω-complete partial orders and continuous functions.

Functors and Natural Transformations

Definition 2.1.2 (Functor) A functorF : C → D is a pair of total operationsF : Ob(C)→
Ob(D) (the object map) andF : Ar(C) → Ar(D) (the arrow map) such that domain,
codomain, composition, and identities are preserved:

(i) F f : F(dom( f ))→ F(cod( f ))
(ii) F f ◦ F g = F ( f ◦ g)
(iii) F idA = idF A

Definition 2.1.3 (Difunctor) Let F : Cop× C → C. SuchF are called(endo-) difunctors.

Definition 2.1.4 (Natural Transformation) Given functorsF,G : C → D, a natural
transformationα : F ˙−→G consists of a family of arrows(αX : F X → G X)X∈C such
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that for every arrow f: X→ Y inC:

F X
αX- G X

F Y

F f
?

αY

- G Y

G f
?

Cartesian closure, Limits and Colimits

Most interesting categories have additional structure. For example, the categorySet has
finite cartesian products and finite coproducts (also known as disjoint sum) etc. The notions
of limits and colimits generalise such structural properties for arbitrary categories.

Definition 2.1.5 (Product) A product of objects X and Y is an object X× Y together with
arrows (“projections”) π1 : X × Y → X andπ2 : X × Y → Y such that for any arrows
f : Z → X, g : Z → Y there exists a unique arrow〈 f , g〉 making the following diagram
commute:

Z

X �
π1

�

f

X × Y

〈 f , g〉

?

π2

- Y

g

-

Definition 2.1.6 (Coproduct) A coproduct of objects X and Y is an object X+ Y together
with arrows (“injections”) inl : X → X + Y → X and inr : Y → X + Y such that for
any arrows f : X → Z, g : Y→ Z there exists a unique arrow[ f , g] making the following
diagram commute:

X
inl

- X + Y �
inr

Y

Z

[ f , g]

?�

gf

-

Definition 2.1.7 (Exponentials) LetC be a category with finite products and terminal ob-
ject. The exponential of B by A is an object BA (also written [A, B]) together with ar-
row apply : BA × A → B such that for every f: C × A → B there exists an arrow
curry f : C→ BA such that the following diagram commutes:
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BA × A
apply - B

C × A

curry f × idA

6

f

-

The denotational semantics of typed lambda calculus can be given by Henkin models
[43]. A Henkin model is a many-sorted algebraic structure with a (typed) mapapp(a typed
applicative structure), satisfying two conditions: extensionality (i.e. ifapp f x= app g x
for all x, thenf = g), i.e. app is one-to-one [59]) and an environment model condition (a
total meaning function is definable). However, in a categorytheoretic setting we generalise
Henkin models into the notion of cartesian closed categories:

Definition 2.1.8 (Cartesian closed categories)A cartesian closed category(CCC) is a
category with finite products, exponentials, and a terminalobject.

Partial Cartesian Closure

In this work we will work in a categorypCpo rather than, say, the category of small com-
plete pointed partial orders (posets with least elements closed under lubs ofω-chains) and
continuous functions. The categorypCpo gives a direct treatment of non-termination by
means of partial continuous maps. This category consists ofω-complete partial orders and
partial continuous functions. It is formally defined as follows:

Definition 2.1.9 (pCpo) The categorypCpo consists of small complete partial orders (posets,
possibly without least element, closed under lubs ofω-chains), and partial continuous
functions, i.e. partial functions f: P ⇀ Q such that:

• Monotonicity: for every x, x′ ∈ P, if x ⊑P x′, then either f(x) is undefined, or
f (x) ⊑P f (x′) with f(x′) defined.

• Continuity: for everyω-chain xi , i ∈ I in P,

⊔k f (xk) ≃ f (⊔kxk)

where e≃ e′ means that either e and e′ are both undefined, or else they are equal.
The⊔ notation is intended to be undefined if every f(xk) is undefined; or else denote
⊔k>k0 where k0 is any index for which f(xk0) is defined.

A more abstract representation of partiality can be given bytaking partial maps as total
maps together with adomain of definition, i.e. work in the Kleisli category of a lifting
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monad. The standpoint for such a development is to assume a category of values (which
means total maps) and next consider a notion of computation (here: non-termination) as
an additional structure on the category of values. Technically, one arrives at representing
partial maps by introducing a subcategory of admissable monos (subobjects) giving the
domains of definition for the partial maps. In this thesis we have chosen to work directly
with the above more direct definition ofpCpo.

We denote byCpo the subcategory ofpCpo consisting of all cpos and total continuous
functions. The salient facts about the categoriespCpo andCpo can be found in [64].Cpo
is cartesian closed with finite coproducts. We give a brief summary of the structure of
pCpo:

• Zero object: The empty cpo is a zero object inpCpo. That is, it is both an initial
object and a terminal object.

• Coproducts: If A andB are cpos, their disjoint union is the coproduct ofA andB in
pCpo.

• Partial Products: If A andB are cpos, the cartesian product of the underlying sets
is their partial product. It is not a product as the domain of definition of the pairing
( f , g) is the intersection of the domains off andg and hencef st( f , g) , f etc.
We denote the partial product byA ⊗ B to remind ourselves it is not a product.
pCpo has partial products given via the base categoryCpo for a pair of partial maps
(u, u′) : (P,P′) ⇀ (Q,Q′) by

u⊗ u′ : P× P′ ⇀ U × U : (x, x′) 7→















(u(x), u′(x′)), if u(x) ↓ andu′(x′) ↓

undefined, otherwise

• Kleisli /Partial Exponentials: If A andB are cpos, then the set of partial continuous
functions fromA to B forms a cpo as usual. We denote this cpoA ⇀−⇀−− B or [A, B].
As expected, partial exponentials are right adjoint to the partial product.− ⊗ A ⊣
A ⇀−⇀−− − : Cpo - pCpo. Note the domains and codomains for the functors
involved in this adjunction.

• Compactness:pCpo is algebraically compact in that all locally continuous functors
have coinciding initial algebras and final coalgebras [36].

The adjoint situation for Kleisli exponentials gives an isomorphism such thatpCpo(A, B) �
pCpo(1 ⊗ A, B) � Cpo(1,A ⇀−⇀−− B). Note that the last homset gives the 1-elements a k a
global elements ofCpo, so that this adjunction corresponds to our intuition and indeed
shows thatA⇀−⇀−− B internalises the partial mapsA ⇀ B into pCpo.

Algebras, Coalgebras, and Functors

In pCpo, a covariant endofunctorF : C - C has a fixed point given by an object
A � FA which is the initialF-algebra or finalF-coalgebra.
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Definition 2.1.10 (Algebra, Coalgebra)Given a functorF we say that an arrowα : F A→
A is anF-algebra with carrier A. SuchF-algebras are the objects in a categoryAlg(F) for
every functorF. The dual notion is that ofF-coalgebra, i.e. reversed arrowsα : A→ F A.
The arrows between (co)algebras areF-homomorphisms, i.e. arrows h such that, forF-
algebras the left diagram below commutes and, forF-coalgebras the right diagram below
commutes:

F A
F h- F B A

h - B

Alg(F) Coalg(F)

A

α

?

h
- B

β

?
F A

α

?

F h
- F B

β

?

We write innF for the initial F-algebra andoutF for the finalF-coalgebra. InpCpo we
haveinnF

−1 = outF for locally continuousF.

Lemma 2.1.11 (Lambek) An initial algebra FX
f- X is an isomorphism.

Proof

FX
F outF- FFX

F innF- FX

X

innF

?

outF
- F X

F innF

?

innF

- X

innF

?

innF ◦ outF = 1 by uniqueness.outF ◦ innF = F innF ◦ F outF = F(innF ◦ outF) = F1 = 1
�

Dialgebras and Difunctors

The equationD � [D,D] suggests, by cardinality grounds, that the existence of such
recursively defined types is not at all obvious, e.g. there isclearly no setD such that
D � [D,D]. The key feature of this example is that the mapping of an object D to the
object [D,D] is not a functor in that the left occurrence ofD in the expression [D,D]
occurscontravariantlywhile the right occurrence iscovariant. Such mappings are called
difunctors.

Definition 2.1.12 (Difunctor) If C is a category, a difunctor is a functorF : Cop×C - C.
A fixed point of such a difunctor is an object X such that X� F X X

There has been much research on finding fixed points for difunctors. The classic pa-
per [71] defines a category of embedding and projection pairswhere the functorF acts co-
variantly and from which a fixed point ofF can be derived. More recently, [37, 36, 28, 30]
have used the more axiomatic setting ofalgebraically compactcategories. i.e. categories
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where all (in a suitably qualified sense) covariant functorshave an initial algebra, the in-
verse of whose structure map is the final coalgebra. The related, but weaker, property of
algebraic completenessmerely requires all (again, in a suitably qualified sense) covariant
functors to have an initial algebra.

The axiomatic approach is potentially easier to apply to non-domain theoretic models
such as realizability models and models containing intensional features. Since we do not
wish to over commit ourselves to a specific semantic setting at this stage, we therefore
implicitly follow the axiomatic setting of [28, 30] in working in the Kleisli category of
a lifting monad. However, for concreteness, we are explicitly working in the canonical
model of the categorypCpo described above.

It is worth making the observation here that, apart from compactness, we would have
liked our ambient category to be cartesian closed and have finite coproducts so that we
could manipulate polynomial functors and their (co-)algebras using the standard tech-
niques. Indeed, settling for partial products and Kleisli exponentials may seem like a poor
alternative. However, any compact category has a zero object (induced as the fixed point
of the identity functor) and a CCC with a zero object is inconsistent as

A � A× 1 � A× 0 � 0

Hence we cannot get away from working in a non-cartesian closed setting. Neverthe-
less, the subcategoryCpo (where values take their denotation) is, of course, still cartesian
closed.

So given a category likepCpo, how does one find fixed points for difunctors? When
working with difunctors, algebras and coalgebras generalise todialgebras. Note the pres-
ence of both covariance and contravariance in a difunctor means that we have no need for
the dual notion of a dialgebra. The term dialgebra has several definitions in the literature
(see for example [37, 6, 67, 42]), and we will use the following definition which is due to
Freyd [37]:

Definition 2.1.13 (Dialgebras)A G-dialgebrafor difunctorG : Cop × C → C is a pair of
objects A, B together with an associated pair of arrows f: G A B→ B and g: A→ G B A.

The category of dialgebras has maps between dialgebras given as follows

Definition 2.1.14 (Dialgebra Maps) GivenG-dialgebras(A, B, φ, ψ) and (A′, B′, φ′, ψ′),
a G-homomorphismis a pair of arrows(g : B→ B′, h : A′ → A) such that the following
diagrams commute:

G A B
φ- B A

ψ- G B A

G A′ B′

G g h
?

φ′
- B′

g
?

A′

h
6

ψ′
- G B′ A′

G h g
6
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A key idea in axiomatic domain theory is to use algebraic compactness to find fixed
points for difunctors. Here is a sketch of the construction:

Lemma 2.1.15Let G : Cop × C - C be a difunctor on an algebraically compact
categoryC. ThenG has a fixed point.

Proof Form the functorG′ : Cop×C → Cop×C by following thedoubling trickproposed
by Freyd:

G′ X Y , (G(Y,X),G(X,Y))

SinceC is algebraically complete, so isCop × C and thusG′ has an initial algebra, say
G′(X,Y)→(X,Y), which is given by mapsinnG : X→G(Y,X) and outG : G(X,Y)→Y.
By Lambek’s lemma,innG and outG are isomorphisms. Next, the pair (outG, innG) :
(Y,X)→G′(Y,X) is easily seen to be the finalG′-coalgebra. SinceC is algebraically com-
pact, so isCop × C and hence the initialG′-algebra and finalG′-coalgebra coincide. Thus
X = Y and we have aG-fixed point as required.

�

Of course, while the above proof may seem simple, much of the work is hidden in
proving that i) algebraic completeness and compactness arepreserved by taking products
and opposite categories; ii) formalising exactly the classof difunctors which are to be con-
sidered; and iii) proving that certain categories are algebraically complete and compact.
Further subtle and technical issues arise, e.g. that these fixed points should be suitably pa-
rameterised etc, but for this presentation we have decided to gloss over the details. See [28]
for details. Having said this, the modularisation of the construction of fixed points is very
elegant. Notice also that more is true than we claimed. In particular we constructed a spe-
cific fixed point of a difunctor with a universal property, namely, the initial dialgebra. We
shall put this universal property to use later.

2.2 Theory of Data Types

Algebraic data types (without parameters), such as lists ortrees, are modelled as least
fixed points of functors. These fixed points appear as initialalgebras of the associated
functor. Dually, coalgebraic datatypes (without parameters), such as streams, are modelled
as greatest fixed points and appear as final coalgebras.

In the present work, we use will categorical higher-order data types to model object
types. In this section we will review the definitions and results for the first-order cases,
which we later aim to generalise to a specific higher-order case of object types.

Bird-Meertens Formalism

The generic theory of data types we review in this section is often referred to as Bird-
Meertens formalism [54, 7, 9, 72]. This generic theory of data types serves the purpose of
supporting formal methods for program construction, because correctness proofs become
particularly short and also amenable to automation [52]. Inaddition, this generic theory
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of data types provides a mathematical analysis that generates laws for program transfor-
mations, and reveals and classifies the structure of recurring programming idioms in a rich
mathematical setting of category theory.

It was Malcolm [52] that made the program calculation community aware of Hagino’s
ideas on giving categorical semantics to data types [41, 42]. Essentially, Malcolm demon-
strated that the category theoretic approach lent itself well to program calculation. Later,
Fokkinga [35] pursued Malcolm’s work further, and developed topics such as algebras with
laws, mutumorphism, and hylomorphism. More recently Uustalu and Vene have developed
additional recursion schemes such as primitive (co)recursion [73].

One striking advantage of the categorical approach to data types and recursion, is the
fact that data types (and therefore programs) come with lawsthat can be used for transfor-
mation. Such laws for example give conditions for when we canremove intermediate data
structures or improve program efficiency by simplifying programs. These laws include the
so calledfusion laws. We will review some of these laws in this section, but much ofthe
application of such fusion laws to our model of object calculi is, albeit very interesting,
outside the scope of the present thesis.

Notions of Recursion

Definition 2.2.1 (Catamorphism) Let (µF, innF) be the initialF-algebra, andφ : F A→
A an arbitraryF-algebra. (|φ|) : µF - A is defined to be the unique homomorphism in
the following commuting diagram:

F µF
innF- µF

F A

F (|φ|)
?

φ
- A

(|φ|)
?

We will give some examples of catamorphism, and for this we must choose some object
A and B. Objects are data types, and one of the simplest data types isNat, the natural
numbers. The naturals are given as the initial algebra of thefunctorF X = 1+ X. Hence
there are operationsinn : 1 + Nat → Nat and inn−1 : Nat → 1 + Nat. Because we are
in an algebraically compact setting, we writeout for inn−1 since the inverse of the initial
algebra will be the final coalgebra. This model of algebraic data types unifies all the data
type constructors in one single operatorinn by means of a coproduct. However we have
inn ≡ [zero, succ], i.e. the ordinary constructorszero and succare in fact defined by
the initial algebra. Now that we have given the data type for naturals, we can easily use
catamorphism (structural recursion on natural numbers) todefine sum and product of two
naturals, and the predecessor function:

add n m , (|[λx.m, succ]|) n
mult n m , (|[λx.zero, λx.add m x]|) n
pred , (|[id + [zero, succ]] |)
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Next, we review the three properties satisfied by any catamorphism. These three prop-
erties are useful in program calculation since they tell us how to replace expressions in-
volving catamorphisms with more simple expressions:

Corollary 2.2.2 (Properties of catamorphism) Let (µF, innF) be the initialF-algebra.

• Cancellation:For any otherF-algebraφ : F A→ A we have

(|φ|) ◦ innF = φ ◦ F(|φ|) ((|·|)-S)

• Reflection:

id = (|innF|) ((|·|)-R)

• Fusion: For anyF-algebrasφ : F A→ A andξ : F B→ B, and arrow f : A→ B

f ◦ φ = ξ ◦ F f ⇒ f ◦ (|φ|) = (|ξ|) ((|·|)-F)

The dual of catamorphism is called anamorphism. Anamorphism is the notion of struc-
tural corecursion, and is associated to each coalgebraic data type. Since we are in an alge-
braically compact setting where coalgebraic data types andalgebraic data types coincide,
anamorphism is simply another (co)recursion principle on data types. In this setting, both
naturals and the dual “conaturals” (given as the associatedfinal coalgebra) contain the in-
finite natural number. Note also that the functionpredabove is in fact the final coalgebra
for Nat. For full generality we will writeνF for the carrier of the final coalgebra, although
in the algebraically compact setting we are assuming, we have in factνF = µF:

Definition 2.2.3 (Anamorphism) Let (νF, outF) be the finalF-coalgebra, andψ : A →
F A an arbitraryF-coalgebra.[(ψ)] : A - νF is defined to be the unique homomorphism
in the following commuting diagram:

νF
outF- F νF

A

[(ψ)]
?

ψ
- F A

F [(ψ)]
?

A stream is an example of a coalgebraic data type. The stream of natural numbers is
given as the final coalgebra of the functorF X = Nat×X. Such a stream is always a natural
number paired with the stream of all remaining numbers, which is witnessed by the type
Stream→ Nat× Streamof the corresponding mapout. The destructorsheadandtail are
not visible in this form, but are in fact defined by〈head, tail〉 ≡ out.

We can use anamorphisms to create values for coalgebraic data types. For example,
to create a stream of all natural numbers greater than some number n, we can use an
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anamorphism. Similarly, the function that zips together two streams into a stream of pairs,
and the stream that repeatedly applies a functionf to its argument creating a stream of
numbersn, f (n), f ( f (n)), ..., are examples of anamorphisms:

nats , [(〈id, succ〉)]
zip , [(〈π1 × π1, π2 × π2〉 ◦ (out× out))]
iterate f , [(〈id, f 〉)]

Just like catamorphism, anamorphism satisfies some useful properties:

Corollary 2.2.4 (Properties of anamorphism) Let (A, outF) be the finalF-coalgebra.

• Cancellation:For any otherF-coalgebraψ : B→ F B we have

outF ◦ [(ψ)] = F[(ψ)] ◦ ψ ([( ·)]-S)

• Reflection:

id = [(outF)] ([( ·)]-R)

• Fusion: For anyF-coalgebrasψ : B→ F B andξ : C→ F C, and arrow f : B→ C

ψ ◦ f = F f ◦ ψ ⇒ [(ψ)] ◦ f = [(ξ)] ([( ·)]-F)

Catamorphism and anamorphism are sufficient to express at least every primitive re-
cursive function, and in a setting with exponentials also functions such as the Ackerman
function [73]. Still, it can sometimes be cumbersome to write functions as catamorphism.
Typical examples of the problems arise when we consider simple primitive recursive func-
tions on the naturals, for example the factorial function. The factorial function must be
defined usingtupling in the following way:

fact , π1 ◦ (|[λx.〈1, 0〉, λ〈 f , n〉.〈(n+ 1) ∗ f , n+ 1〉]|)

The problem is that at every recursive step,factdepends not only on the value computed
at the preceding recursive step, but also multiplies this value with a counter that has counted
the number of recursive steps that have occurred so far, i.e.n+ 1 is multiplied byfact nto
producefact n+ 1. This does not immediately fit into the form of a catamorphism, unless
we use the tupling trick. Therefore, it is practical to also have a variation of catamorphism
that captures precisely primitive recursion:

Definition 2.2.5 (Paramorphism) Givenφ : F(A × µF) → A, the paramorphism〈|φ|〉 :
µF - A is defined to be the unique arrow making the following diagram commute:

FµF
innF- µF

F(A× µF)

F 〈〈|φ|〉, idµF〉

?

φ
- A

〈|φ|〉

?
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Now factorial is more simply defined byfact= 〈|[succ◦ zero, λ〈 f , n〉.mult〈succ n, f 〉]|〉,
which is using precisely primitive recursion on natural numbers, with the two cases sepa-
rated in a coproduct. However, as proved by Meertens [56], a paramorphism is still nothing
but a catamorphism in disguise:

Lemma 2.2.6 (Meertens [56])〈|φ|〉 = π1 ◦ (|〈φ, inn◦ Fπ2〉|)

Again the recursion scheme comes with some basic properties:

Corollary 2.2.7 (Properties of paramorphism) Let (A, innF) be the finalF-algebra.

• Cancellation:For any arrowφ : F(A× µF)→ A we have

〈|φ|〉 ◦ inn = φ ◦ F〈〈|φ|〉, id〉 (〈|·|〉-S)

• Reflection:

id = 〈|innF ◦ Fπ1|〉 (〈|·|〉-R)

• Fusion: For any arrowsφ : F(A× µF) → A,ψ : F(B× µF) → B and f : A→ B we
have

f ◦ φ = ψ ◦ F( f × id) ⇒ f ◦ 〈|φ|〉 = 〈|ψ|〉 (〈|·|〉-F)

Parametric Data Types

So far we have not considered data types which have parameters, e.g. lists or trees of
arbitrary element types. Such data types are however easy to model in the same categorical
framework. Instead of having one fixed point associated to each data type, we introduce
bifunctorsF : C × C → C and use them to give a family of fixed points indexed over the
type parameter:

Theorem 2.2.8 (Data Functors [52])SupposeF : C × C → C is a bifunctor such that for
any object X there exists an initialFX-algebra(µFX, innFX). Then the mappingT X = µFX

can be extended to an endofunctor onC by defining

T f = (|inn ◦ F( f , id)|) (map-D)

The functorT : C → C is called thedata functorof F.

Proof We must show thatT is indeed a functor, i.e. that it preserves identities and compo-
sition. First, identities:
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T id

= { map-D }

(|inn ◦ F(id, id)|)

= { F is bifunctor}

(|inn|)

= { (|·|)-R }

id

Next, composition:

T f ◦ Tg

= { map-D }

T f ◦ (|inn ◦ F(g, id)|)

= { (|·|)-F }

(|inn ◦ F( f ◦ g, id)|)

= { map-D }

T( f ◦ g)

Note that we could use (|·|)-F because the condition for the rule was satisfied,
namely:

T f ◦ inn ◦ F(g, id)

= { map-D }

(|inn ◦ F( f , id)|) ◦ inn ◦ F(g, id)

= { (|·|)-S }

inn ◦ F( f , id) ◦ F(id, (|inn ◦ F( f , id)|)) ◦ F(g, id)

= { F bifunctor}

inn ◦ F( f ◦ g, id) ◦ F(id, (|inn ◦ F( f , id)|))

= { map-D }

inn ◦ F( f ◦ g, id) ◦ F(id,T f )

�

The previous theorem immediately dualises to the setting ofcoalgebraic data types:

Corollary 2.2.9 (Codata Functors) SupposeF : C × C → C is a bifunctor such that for
any object X there exists an finalFX-coalgebra(νFX, outFX). Then the mappingT X = νFX
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can be extended to an endofunctor onC by defining

T f = [(F( f , id) ◦ outF)] (comap-D)

The functorT : C → C is called acodata functorof F.

Polytypic Programming

The above generic theory of data types makes it possible to prove programs correctness
generically, i.e. by considering the functorF representing the data type to be a parameter,
we can derive correctness proofs which are independent of the particular choice we make
for the functor. A natural question to ask is if we can make thesame generalisation in
programming languages, and thus make it possible to actually define the associatedgeneric
functional programs inside the programming language itself.

The answer to this question is affirmative, and there have been several languages that
attempts to support “polytypic programming” (in one style or another) which means pa-
rameterizing programs with respect to the “pattern” functor F for data types. We will
review three such languages in this section: Charity, PolyP, and Generic Haskell.

Charity

The programming language Charity [23] automatically provides functions such as catamor-
phism for each user-defined data type. As a programming language, Charity is functional
and strongly normalizing, which means that all programs areterminating. From the per-
spective of this thesis we are primarily interested in recursive types which are higher-order,
whereas Charity can only model inductive/coinductive (first-order) data types. However,
an extension, Higher-order Charity [70], has been proposedwhich introduces exponential
types. However, the mixed variant data types that we use in this thesiscannotbe modelled
even in this extension of Charity (only covariant positionsare allowed).

PolyP

The programming language PolyP takes a different approach than Charity. In PolyP the
programmer can define their own functions by induction over the structure of the pattern
functorF. This means that given a concrete data type, such as list, a function such asmapF

can be instantiated. Accordingly, PolyP automatically generates one map function for each
user-defined data type, given only one single definition ofmap. In PolyP’s standard library
the map function is first defined using a polytypic definition (polytypic meaning exactly
induction over the structure of pattern functors):

polytypic fmap2:: (a→ c)→ (b→ d)→ f a b→ f c d
= λp r → casef of

g⊕ h → fmap2 p r−⊕− fmap2 p r
g⊗ h → fmap2 p r−⊗− fmap2 p r
Unit → Const()
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Par → p
Rec → r
d⊙ g → pmap(fmap2 p r)
Const t→ id

The functionfmap2replaces the built-in Haskell functionfmap, which must be user-defined
for every new data type. Given a user-defined data typeD, PolyP allows both to use the
constructor for this data type by means of generic functionsinn andout (also generated
for all user-defined data types). The abovefmap2extends these constructor functions into
functors, where the action on functions corresponds to the data functors given above cate-
gorically.

Now that we haveinn, out, andfmap2for any data type, we can define the map function
pmap, as well as the catamorphismcataand anamorphismana:

pmap:: (a→ b)→ D a→ D b
pmap f= inn ◦ fmap2 f (pmap f) ◦ out

cata:: (F a b→ b)→ D a− >b
cataφ = φ ◦ fmap2 id(cataφ) ◦ out

ana:: (b→ F a b)→ b→ D a
anaψ = inn ◦ fmap2 id(anaψ) ◦ ψ

Generic Haskell

In Generic Haskell [44, 51], polytypic functions are definedby induction over kinds, and
so have kind-indexed types. Here is an example of a kind-indexed type definition of the
map function:

typeMap {[⋆]} s t= s→ t
typeMap {[κ→ ν]} s t= ∀ a b .Map{[κ]} a b→ Map{[ν]} (s a) (t b)

Instead of the type case statement inside PolyP, the definition of gmap(the map func-
tion) has a clause for each kind-index:

gmap{|t :: κ|} :: Map {|κ|} t t
gmap{| ⊕ |} gmapA gmapB(Inl a) = Inl (gmapA a)
gmap{| ⊕ |} gmapA gmapB(Inr b) = Inr (gmapB b)
gmap{| ⊗ |} gmapA gmapB(a⊗ b) = gmap A a⊗ gmapB b
gmap{|Unit|} Unit = Unit
gmap{|Con c|} gmapA (Con a) = Con (gmapA a)

Generic Haskell is more powerful than PolyP in that it supports a larger class of data
types. In addition to the unary regular data types supportedby PolyP, Generic Haskell
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allows polytypic functions to be defined over potentially non-regular data types of arbitrary
kinds [60]. However, in allowing more data types, more is also required when defining a
polytypic function. In particular, Generic Haskell cannotdirectly defineanaandcatasince
datatypes are not represented by fixed points [60].

2.3 Semantics of Programming Languages

In the first chapter we gave some brief motivation for why one needs formal semantics
when considering extensions of programming languages. In this section we will give an
introduction to the basic notions that occur in formal semantics of programming languages,
particularly the distinction between operational and denotational semantics, and the theo-
rems and results that are associated with such semantics. Several of this theorems will be
proved in a particular setting in Chapter 3.

We have explained that the motivation to this work was both semantical foundations for
object-oriented programming languages and also correctness of (object-oriented) programs
with respect to specifications. In particular, we claimed that the notion of recursion we
study in this thesis comes with laws for program optimisation/transformation (such laws
are well-known from the Bird-Meertens formalism). Becauseof this, formal semantics
plays another important rolê. It is the source in which we give mathematical foundations to
the laws, i.e. to the logic that establishes how we can formally derive/reason/calculate with
object-oriented programs. Of primary important to us is denotational semantics, since we
will use universal properties of category theory to expressgeneric laws about object types.

Operational Semantics

In operational semantics one evaluates a formal language onan abstract machine by means
of one or more evaluation/reduction relations. The meaning of a term in the formal lan-
guage is defined to be thevalue(also known ascanonical formor normal form), i.e. to the
term (contractum) to which the term (calledredexin this context) reduce after all possible
reductions have been applied. In other words, a value cannotbe further reduced. Hence,
it is crucial that it does not matter in which order we apply the reduction rules, since oth-
erwise a single term would have multiple meanings. This desirable property is known as
confluence(or Church-Rosser property) of the reduction relation.

There are several approaches to operational semantics, e.g. big-step (natural) semantics
and small-step (reduction) semantics. In small-step semantics, we do not immediately
reduce to canonical forms, although the transitive closureof small-step reduction must
yield canonical forms when such exist. In small-step semantics we distinguish between
strongly normalisingandweakly normalisingreduction relations, the former means that
canonical forms always arise no matter what order we apply the reductions to a term.
Weak normalisation merely requires that for any given term there existssomereduction
sequence that gives a canonical form. Typed object calculi studied in this thesis have
confluent small-step semantics given by Abadi and Cardelli [3]. But typed object calculi
can encode untyped lambda calculus, and therefore we cannothope to have neither weak
nor strong normalisation (consider e.g. the termΩ = (λx.xx)(λx.xx)).



2.3. SEMANTICS OF PROGRAMMING LANGUAGES 23

We will be solely be concerned withtypedcalculi (or calculi for which there is a type
assignment system). There are several reasons for the interest in typed calculi as opposed to
untyped calculi. First of all, a type system gives a lightweight method for proving absence
of certain bad program behavior, such as “method not understood” errors when invoking a
method that is in fact not available in a particular class. A type system can indeed be seen as
giving an - often static - approximation to the intended behavior of the computer program
[62]. Types also ensure a disciplined programming. For example, in this thesis we use
recursive types to make precise that an object is given semantics when it is applied to value
of its own type. This condition could not have been asserted in an untyped system. As a
result, more structure is associated to object types, for example, the recursion principle that
is central to this entire thesis. There are additional reasons for using typed calculi, such
as efficiency, language safety, and so on. However, we will not havereason to delve into
these additional topics in the present thesis.

When giving an operational semantics one must take care to define the sets of terms and
types. Typically, this is done first with inductive definitions for raw terms and types, and
then by selecting the well-formed types and well-typed terms, and quotient with respect to
a suitable notion of alpha congruence. The resulting smaller sets are termed well-formed
terms and well-formed types, and the rules are called judgements. For example, the typing
judgements determine the set of well-typed terms, and kinding judgements the set of well-
kinded types. The latter notion will not be needed in the present thesis. Instead, a well-
formed type consists of a sequence of distinct type variables (a type context) together with
a type whose free type variables appear in the sequence. Similarly, a well-formed term
consists of a type context and a similar sequence of variables with type assignment of the
form x : τ (term context), again such that all the free (term) variables occur in the context.
However, for terms we require additional constraints to hold, namely that every term can be
formed by a finite number of applications of typing judgements. The following judgements
are used in typing rules (we postpone explaining them):

Definition 2.3.1 (Judgements)

⊢ Θ well-formed type context
⊢ Γ well-formed term context
Θ, Γ ⊢ σ � τ type/subtype judgement
Θ, Γ ⊢ υσ � υ′τ subtype judgement with variance
Θ, Γ ⊢ m : τ typing judgment

A Framework for Operational Semantics

When we give an operational semantics in this thesis, we willoften need some basic rules
and definitions for context formation. For convenience we have therefore chosen to give a
fragment that we call∆⊢. This fragment sets up the basic notions of well-formed contexts
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and a typing judgement for projecting out a variable from thecontext (the V x rule be-
low). The fragment assumes that there exists setsV of type variables,U of term variables,
and sets of terms (M) and types (T ) (we regard∆⊢(T ,M) as function to allow arbitrary
notation for these two sets). These sets will however be defined differently depending on
the calculus the fragment is included in, and the definitionsare in fact by mutual induction
on the sets of terms and types used in any particular calculus. Like ∆⊢, operational seman-
tics given in this thesis will also assume some countable sets of method labels (L), type
variables (V), and term variables (U). For the elements in these sets we will use symbols
ℓ0, ..., ℓn for labels,x0, ..., xn for term variables andX0, ...,Xn for type variables. A well-
formed type consists of a sequence of distinct type variables (a type context) together with
a type whose free type variables appear in the sequence. The well-formed type contexts
are given in definition 2.3.2.

Note that operational semantics is given in a meta-languagewhich has a notion of
tuples (e.g.〈〉 for the empty tuple, and〈Θ,X〉) and sets. We writei ∈ I andi ∈ I − { j} to say
that i is an arbitrary index from a index setI , and, for the second case, from the same set
but without the elementj. We will also use a universal quantifier,∀i ∈ I , to indicate that a
premise of a rule is in fact an abbreviation for a list of premises of slightly more complex
form. In order to simplify contexts where we haveX � ⊤where⊤ is a designated “greatest
type”, we will allow the shorthandX for X � ⊤.

When we give an operational semantics we want to prove certain soundness results.
First of all for types:

• Free variables are in context: at any reduction step all well-typed terms/types with
free (type) variables must be formed such that every free variable is listed in the
context. This is a very basic requirement, but it still needsto be checked.

• Substitution lemma for types: the denotation of a term where a type variable has
been substituted by some concrete type should satisfy a homomorphism property.
Informally, the property means that this substitution can either be done denotation-
ally or in the operational semantics, with the same result.

• Unique/minimal type property : in a system without subtyping, unique typing is
desirable. Unique typing means that for any term there is exactly one type that can
be inferred from the typing judgements. In a system with subtyping, the weaker
property of type minimality is instead desirable. This property states that the least
possible subtype exists and can be inferred from the rules.

• Type preservation: typings must be preserved during reduction. This notion isalso
termed subject reduction.

• Type progress: while reducing a term we will either reach a normal form (“value”),
or the term will take a step according to the reduction rules.Type progress is a
statement about “stuck terms”, i.e. terms that are neither values, nor does the rules
tell us how to reduce them. A difference between big-step and small-step semantics
appears here. If a term is in normal form in big-step semantics, then the rules are
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Definition 2.3.2 (∆⊢(T ,M))

Type contextsΘ and term contextsΓ are generated by the following two rules

Θ F 〈〉 | 〈Θ,X � τ〉 whereX ∈ V and τ ∈ T

Γ F 〈〉 | 〈Γ, x : τ〉 where x ∈ U andτ ∈ T

and well-formed contexts are given by the rules:

C ∅

⊢ 〈〉

C �
⊢ Θ

⊢ 〈Θ,X � τ〉

whereX ∈ V,X ∈\ Θ, τ ∈ T

V-C ∅
⊢ Θ

Θ ⊢ 〈〉

V-C x
Θ ⊢ τ, Γ

Θ ⊢ 〈Γ, x : τ〉

V x
Θ ⊢ 〈Γ, x : σ〉

Θ, 〈Γ, x : σ〉 ⊢ x : σ

T X
⊢ 〈Θ,X � τ〉

〈Θ,X � τ〉 ⊢ X

wherex ∈ U, x ∈\ Γ

applicable ad infinitum (values reduce to values). For small-step semantics, a term
in normal form is stuck by definition. Type progress (for a small-step reduction
relation) states that the reduction never gets ”stuck” for terms other than values,
and thus gives a certain completeness result for our reduction rules. Absence of
“stuck states” can also be proved for a big-step reduction relation e.g. by defining
an algorithm and proving that this algorithm always computes a correct result given
well-typed input (c.f. Abadi and Cardelli [3]). Progress and preservation is known
together astype soundnessor type safety.

Further, after giving a reduction relation we want to prove:

• Substitution lemma for terms: this is similar to the substitution lemma for types,
only here we replace a term variable with some term instead ofa type variable with
a type. Again, the lemma makes a statement of a homomorphism property of substi-
tution.

• Soundness:if a term t reduces to some termt′, then the denotations of these terms
are equal.
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• Adequacy: if the denotations of termt and a termv in normal form are equal, then
t reduces tov.

• Computational soundness: this is the property that termination is reflected in the
denotational semantics, i.e. that any term that reduces to anormal form will have a
terminating (e.g. total) denotation in the denotational semantics.

• Computational adequacy: this is the property that a term which has terminat-
ing/total denotation will reduce to a value in the operational semantics.

• Full abstraction: identified denotations giveobservationally equivalentterms and
vice versa, e.g. meaning that there is no way to write a program that can distinguish
those two terms, i.e. which reduces differently, depending on which of the two terms
the program was built from.

The above explanation makes clear that soundness/adequacy is concerned with equality
in the operational semantics and the denotational semantics (the former relation should
be contained in the latter and vice versa) and thus reductionin general. Computational
soundness/adequacy, on the other hand, is concerned with normalization (i.e. reduction to
values). In this thesis we will prove computational soundness and computational adequacy
for a particular typed calculi.

In this thesis we will give a denotational semantics but alsointerpretone operational
semantics into another operational semantics. In the latter case the above theorems are rel-
ative to an operational semantics rather than a denotational model. We will see in chapter
3 that the above proof obligations take a particular form in the context of such an interpre-
tation.

Subtyping

Subtyping is a reflexive and transitive relation on the universe of types that allows the use of
any term ofτ-subtype in any context where aτ-typed term is expected. The corresponding
semantical rule is calledsubsumption.

We distinguish betweenwidth subtypinganddepth subtyping. The former refers to
allowing object types with more methods to be used in contexts where objects which fewer
methods are expected, whereas the second refers to the ability to subtype the method bodies
individually and thus create an object subtype. In other words, with depth subtyping, the
type of each method may be subtyped, and as a result the entireobject type will generate a
subtype. This second notion of subtyping is identified with acovariant object typein [3].

We will here give a fragment∆� and a fragment∆υ� of a conceived typed object calculi,
e.g.Sor FOb of [3]. The first of these adds standard subtyping judgements(subsumption,
reflexivity, transitivity, variable subtyping, and⊤-subtyping).

The rules for reflexivity and transitivity establishes thatthe subtype relation is a partial
order on types. The rule for⊤ establishes that there exists one type which is the subtype
of any other type. The rule S-X projects out a subtype constraint from the type context.
The rule for subsumption states that a values of subtype toτ is also of typeτ.
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Definition 2.3.3 (∆�)

S R
Θ ⊢ τ

Θ ⊢ τ � τ

S T
Θ ⊢ α � β Θ ⊢ β � γ

Θ ⊢ α � γ

S-⊤
Θ, Γ ⊢ τ

Θ, Γ ⊢ τ � ⊤

S X
⊢ Θ,X � τ,Θ′

Θ,X � τ,Θ′ ⊢ X � τ

S
Θ, Γ ⊢ m : α Θ ⊢ α � β

Θ, Γ ⊢ m : β

T T
⊢ Θ

Θ ⊢ ⊤

We will consider an object calculus which extends the above rules with three additional
rules based onvariance annotations. A variance annotation is one of the symbols◦, +, −

which makes precise how a type can be subtyped (details will be given in a later section).

Definition 2.3.4 (∆�υ)

S I
Θ ⊢ τ

Θ ⊢ ◦τ � ◦τ

S C
Θ ⊢ α � β υ ∈ {◦, −}

Θ ⊢ υα � +β

S C
Θ ⊢ β � α υ ∈ {◦, −}

Θ ⊢ υα � −β

Recursive Types

Next we will consider recursive types and their interplay with subtyping. The interaction
between these two notions is “delicate”. The complication is that the fixed point operatorµ
binds a type variableX. This type variable can occur positively and/or negatively in a type
τ. For example,X occurs negatively in the body ofµ(X)X → Y, the function type with
domainX and codomainY. The problem with this situation is apparent from the following
example:

P1 , µ(X)[x : Int,mvx : Int→ X]
P2 , µ(X)[x, y : Int,mvx,mvy : Int→ X]

In object calculi (e.g.FOb1<:µ of [3]) we derive an inconsistency from assumingP2 <:
P1 [3], i.e. the inclusion of this rule is unsound (its inclusion invalidates type soundness).
The reason for this is that there is a contravariant occurrence hiding in the object type,
since every method receivesX as an implicit argument (the self variable). The rule (S
R) in definition 2.3.5 is still sound, because inFOb1<:µ we require all method bodies to be
invariant with regard to the subtype relation (i.e. we can neither specialise a type expression
occurring in an individual method, nor generalise it). Therefore, no interesting subtype
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Definition 2.3.5 (∆µ [3])

T R

〈Θ,X〉 ⊢ τ

Θ ⊢ µ(X)τ

S R

Θ ⊢ µ(Y)τ Θ ⊢ µ(X)τ 〈Θ,Y,X � Y〉 ⊢ α � β

Θ, Γ ⊢ µ(X)α � µ(Y)β

V 
whereX ∈\ Θ

Θ, Γ ⊢ m : τ{{µ(X)τ/X}}

Θ, Γ ⊢ innµ(X)τ(m) : µ(X)τ

V 

Θ, Γ ⊢ m : µ(X)τ

Θ, Γ ⊢ out(m) : τ{{µ(X)τ/X}}

relations are established for object types using this rule (at least when we have a negatively
occurring self type, which must be invariant). In order to goaround this problem, we will
review another calculus with primitive covariant self typein a later section. We give the
rules for recursive types in definition 2.3.5.

2.4 Object Calculi and other Foundations

It is common to distinguish between object-based and class-based programming, where
class-based programming is perhaps the most well-known kind (represented by languages
such as Java, C++, Smalltalk, Simula, and Eiffel). In this thesis we will entirely consider
object-based programming (including delegation-based orprototype-based programming,
and represented by languages such as Emerald and Self) sincelanguages in this family
can be regarded as more foundational (classed-based features can be reduced to object-
based features e.g. on object calculus). In the systems we study, class-based languages are
encoded as an often straightforward special case. We will use the termobject-orientedto
mean the family of class-based or object-based languages. In this section we will survey
some characteristics typical to the programming languagesin this family.

Following [34] and [3], we consider the following characteristics as typical for an
object-oriented language:

• Encapsulation: an object typically contains a local state together with operations
acting on that state. In some cases, such as for object calculi, the distinction be-
tween local state and operations are blurred, but the main idea is that a single object
encapsulates both data and actions on that particular data.Typically there are ways
of hiding selected components of the object, e.g. the components that should be
conceived as the local state, and only present an interface which allows to abstractly
operate on those hidden (protected) components.

• Dynamic dispatch: when we operate on an object by invoking some of its meth-
ods, the actual selection of an appropriate method is taken dynamically. This at least
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means that it is not statically decided that an object of typeτ has a particular set
of method bodies. In our setting, it additionally means thatthe method bodies are
allowed to change at run-time and that invocations of methods will refer to the cur-
rent method bodies. There exists a generalisation of methodinvocation where the
the selection of method may depend on the arguments passed toa method. Such
generalisations (known as multiple dispatch) are not considered in this thesis.

• Inheritance: it is allowed for an object to copy method bodies from another object.
In class-based languages this may happen statically, whereas in the object calculi that
we use in this thesis, method updates provide inheritance and run-time (but there are
some restrictions due to the unsoundness of arbitrary method extraction).

• Subtyping and subsumption: subtyping is a relation on the universe of types that
formally defines when we are entitled to replace terms of typeτ with terms of some
other subtypeσ of τ. Those types that satisfy such subsumption are said to be in
subtype relation, writtenσ <: τ.

Given the above five characteristic features, one is entitled to ask what distinguishes
object-oriented programming languages from, for example,functional programming lan-
guages such as Standard ML or Haskell. We will see in the next sections that although
there exists encodings into typed lambda calculi (thus functional languages), these encod-
ings are often far from trivial. The main problem are the presence of subtyping, and the
recursion inherent in objects (i.e. the ability of one method to refer to other methods inside
the same object).

This thesis takes Abadi and Cardelli’sobject calculi[1, 2, 3] as a viable class of formal
models for object-oriented programming, i.e. as a foundation that satisfies all of the char-
acteristic we have given for an object-oriented programming language. In the remainder of
this section we will describe these object calculi in some detail (particularly those calculi
in this family that we will be most interested in, the first-order typed calculi).

Abadi and Cardelli’s object calculi (hence forth referred to just as “object calculi”) are
also contrasted to Mitchell and Fisher’slambda calculus of objects. This is really also a
family of calculi that has undergone several refinements andextensions over the last ten
years, ranging from the original system of Mitchell [58], the refined system of [32], the
system of Fisher’s PhD thesis [31], and more recent extensions with subtyping and match-
ing [50, 14, 13]. These two approaches embody axiomatic approaches to object-oriented
foundations, and are in a later subsection contrasted toencodingsinto typed lambda calculi.

Superficially, the differences between object calculi and lambda calculus of objects can
be summarised in the following table:

Lambda Calculus of Objects
Object Calculus [3] [31] [12]

Typing Church-style Curry-style Church-style
Overriding Method update Method update Method update
Extension None Method addition Method addition
Subtyping Width/Depth None Width⋆

⋆ subject to additional constraints
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The table compares a particular object calculus, namely systemS of [3] with two dif-
ferent systems of lambda calculi of objects. However, recent work [12, 49] show that the
two systems can be unified in a single Church-style system with method update, method
addition, and limited subtyping.

Object Calculi

In section we will give the formal definition of systemS of [3]. This is an object calculus
with subtyping, variance annotations, structural typing rules, and a powerful covariant self
type. The presentation is basically Abadi and Cardelli’s original presentation, The only
difference is that we have replaced the unit type with an empty object type, separate the
type context from the term context, and have a type judgementof the formX � ⊤ instead
of X, i.e. we avoid type judgements by using subtype judgement also in the case of no
subtype bound on variable. I.e. subtype judgements generalise type judgements.

Types and Terms

We will now formally define systemS from [3]. This system embodies complicated recur-
sive types (although they are implicit in the semantics, rather than given using fixed point
binders). An object type may recursively refer to its own typeσ (the self type [3], also
calledMyType[18]). This means that object types are abstracted over their self typeσ. In
addition, objects are abstracted over the value of self, although the actual self type is also
abstracted (it may in fact be a subtype in a particular context). This is termed a primitive
covariant self type [3] and alsoMyTypepolymorphism [18]. It is a crucial feature to allow
object types to have proper subtypes also in cases where theyhaveσ-valued methods (i.e.
methods that return the self type).

To make the presentation more convenient, we follow [3] and write [ℓi : τi ] i∈I for [ℓ1 :
τ1, ..., ℓn : τn] with n ∈ N and equate object types which are equivalent under permutation
of the order of labels.

Definition 2.4.1 (S-types)

The setTS is defined by induction with

τ F X type variable
⊤ greatest type
Ob j(X)[ℓiυi : τi(X)] i∈I object types (ℓi distinct)

whereX ∈ V (whereV is some infinite set of type variables) and for eachi, ℓi ∈ L (L
some infinite set of labels, for which meta notationℓi is used),νi ∈ {◦,+,−} (the variance
annotations).
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Except for the type⊤ which is inhabited by any possible value (it is the supertypeof
all other types), the only other types in this system are object types, of which the empty
object type, writtenOb j(X)[] is a special case.

Next, figure 2.4.2 gives the syntax for the terms inS. The terms are built up from
variablesxi , objects (the empty objectOb j(X = σ)[] is written separately for clarity of its
syntax), and method updates and invocations.

Definition 2.4.2 (Syntax of S-terms)

The setMS is defined by induction with

m F Ob j(X = σ)[] empty object
xi term variables
Ob j(X = σ)[ℓi = ς(xi : X)bi] i∈I object (ℓi distinct)
m1.l↼↽ (Y � σ, y : Y)ς(x : Y)m2 method update
m.l method invocation

where for eachi, xi ∈ U, X ∈ V, σ, τi ∈ TS, andℓi ∈ L.

An object has the formOb j(X = σ)[ℓi = ς(xi : X)bi] i∈I whereσ is some instantiation
of the self type. Variance annotations are present in the associated type. Method update is
written with the↼↽ operator, and takes in addition to a new method body also the old self
(denotedy) and the unknown self typeY. Finally, method invocations are written using
dot notation, and corresponds to substituting the current self for the argumentx : X in
the associated method body. The precise meaning will appearin the associated reduction
rules.

Next, we give the definition of free variables for a term and for a type (scoping), and
the substitution of a term for a free variable occurring in a term.

SystemS decorates the labels of any object type with a variance annotation. The an-
notations are+, −, ◦ for positive, negative, and invariant components, and is interpreted as
admitting subtyping, admitting reversed subtyping (orsupertyping), or admitting no sub-
typing at all. Figure 2.4.5 gives an extended definition of a predicate determining if a
variable occurs with a given variance in some givenS-type.

This notion of variant occurrences should be read as follows: B{{X+}} means thatX
occursat mostpositively inB, and similarlyB{{X−}}means thatX occursat mostnegatively
in B.

Given the syntax for types and type-annotated terms, we are now ready to give the
judgements forS which determine the well-typed terms and the well-formed types. These
are shown in figure 2.4.6. Since we already have given certainfragments of these judge-
ments, we simply refer to these fragments in the present definition.

We will give explanations for the rules in∆S excluding the fragments which have al-
ready been given some explanation in a previous section. Therule T O makes
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Definition 2.4.3 (Object Scoping)

FV(ς(x : τ)b) = FV(b) \ {x}
FV(x) = FV(x)
FV(Ob j(X = σ)[ℓi = ς(xi : X)bi] i∈I ) =

⋃

i∈I FV(ς(x : τi)bi)
FV(m.ℓi) = FV(m)
FV(m.ℓ↼↽ ς(x : τ)b) = FV(m) ∪ FV(ς(x : τ)b)

Definition 2.4.4 (Object Substitution)

(ς(x : τ)b){{c/x}} = ς(y : τ)(b{{c/x}})
where y, x, y ∈\ FV(ς(x : τ)b), y ∈\ FV(c)

x{{c/x}} = c
y{{c/x}} = x for y, x
Ob j(X = σ)[ℓi = ς(xi : X)bi] i∈I {{c/x}} = Ob j(X = σ)[ℓi = (ς(xi : τi)bi){{c/x}}i∈I ]
(m.ℓ){{c/x}} = m{{c/x}}.ℓ
(m.ℓ↼↽ ς(x : τ)b = (m{{c/x}}).ℓ↼↽ ((ς(x : τ)b){{c/x}})

precise how to form an object type from legal types of method bodies. Note that the vari-
ableX must occur positively in all body typesτi .

Similarly, the rule V O makes precise how to form an object term from well-
formed method bodies of correct type. The structure of thesetwo first rules are the same
for all typed object calculi we will consider in this thesis.

The rule V S is astructuralrule because it makes assumptions about the struc-
ture of object types [3]. The rule shows how the self type variableX is being replaced by a
known typeσwhich is assumed to also be an object type. This assumption isoperationally
sound, but one must take care for it to hold in a denotational model [3]. This known typeσ
is allowed to be any subtype of the true typeσ′. The substitution allows for the return type
of a method to be parametric. In this case a method can, for example, return something of
typeσ. It is this form of parametricity that givesS its notion of “primitive covariant” self
type.

The rule V U is a bit more involved due to the possibility of updating an object
which has been subsumed, and due to the fact that a method bodymay want to refer to the
previous method body. This means that we must require the updating method body to work
with the partially known self type, and again we have a notionof parametricity inherent in
S. It also explains the syntax for method update which included y : Y for the old self. The
rule V U assumes that the true type of the object to be updated isσ′. However, we
are updating this object in a context where it is subsumed to typeσ, a subtype ofσ′. The
parametricity required for the self-returning method bodyis as follows: the method must
return the selfx : X, the old selfx : σ, or a modification of these.

The rule S O allows a “wider” object to be subsumed for a “narrower” object.
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Definition 2.4.5 (Variant Occurrences)

Y{{X+}} whetherX = Y or X , Y
⊤{{X+}} always
Ob j(Y)[ℓiυi : τi(X)] i∈I {{X+}} if X = Y, or for all i ∈ I :

if υi ≡
+, thenBi{{X+}}

if υi ≡
−, thenBi{{X−}}

if υi ≡
◦, thenX ∈\ FV(Bi)

Y{{X−}} if X , Y
⊤{{X−}} always
Ob j(Y)[ℓiυi : τi(X)] i∈I {{X−}} if X = Y, or for all i ∈ I :

if υi ≡
+, thenBi{{X−}}

if υi ≡
−, thenBi{{X+}}

if υi ≡
◦, thenX ∈\ FV(Bi)

A{{X◦}} if neitherA{{X+}} nor A{{X−}}

The length here refers to the number of methods. In addition,variance annotations allow
us to subtype an object type while changing also the type of individual method bodies,
provided that the variance restrictions are satisfied.

We say that a syntactically correct term inS is well-typed if there exist well-formed
contextsΘ, Γ and a well-formed typeΘ ⊢ τ such thatΘ, Γ ⊢ m : τ is derivable. We letMS

denote the set of well-typed terms up to permutations of method labels.
Despite the failure of unique types (due to subtyping), the following lemma for mini-

mality of types holds forS. Unfortunately, with the inclusion of variant types (in a later
section) we will fail to have the unique type property even without subtyping.

Lemma 2.4.7 (Minimal Type) If ⊢ m : τ, then there exists a typeσ such that⊢ m : σ and,
for anyτ′, if ⊢ m : τ′, then⊢ σ � τ′.

This is proved by induction on the derivations of typing judgements [3]. Next, the
definition of substitution respects types:

Lemma 2.4.8 (Substitution) If Θ, 〈Γ, x : τ′〉 ⊢ t : τ andΘ, Γ ⊢ t′ : τ′ are derivable then
so isΘ, Γ ⊢ t{{t′/x}} : τ.

Again, the proof is by induction. The following result establishes type soundness for
SystemS (the progress lemma is omitted):

Lemma 2.4.9 (Subject Reduction)If ⊢ m : τ and m{ v, then⊢ v : τ.

The proof is an induction onm{ v, c.f. [3].



34 CHAPTER 2. BACKGROUND

Definition 2.4.6 (S-judgements -∆S)

All the judgements for systemS is given by∆⊢,∆υ� together with the following additional
rules:

T O
ℓi distinct,υi ∈ {

◦, −, +}

〈Θ,X〉, Γ ⊢ τi(X+) i ∈ I

Θ ⊢ Ob j(X)[ℓiυi : τi(X)] i∈I

S O
α ≡ Ob j(X)[ℓiυi : τi(X)] i∈I ∪ J

β ≡ Ob j(X)[ℓiυ
′
i : τ′i (X)] i∈I

Θ ⊢ α Θ ⊢ β

〈Θ,Y � α〉 ⊢ υiτi{{Y}} � υ
′
iτ
′
i {{Y}}

Θ ⊢ α � β

V O
σ ≡ Ob j(X)[ℓiυi : τi (X)] i∈I

Θ, 〈Γ, xi : σ〉 ⊢ bi{{σ}} : τi{{σ}} ∀i ∈ I

Θ, Γ ⊢ Ob j(X = σ)[ℓi = ς(xi : X)bi]
i∈I : σ

V S
σ′ ≡ Ob j(X)[ℓiυi : τi(X)] i∈I

Θ, Γ ⊢ m : σ
Θ ⊢ σ � σ′ υ j ∈ {

◦, +} j ∈ I

m.ℓ j : τ j{{σ}}

V U
σ′ ≡ Ob j(X)[ℓiυi : τi(X)] i∈I

Θ, Γ ⊢ m : σ
Θ ⊢ σ � σ′ 〈Θ,Y � σ〉, 〈Γ, y : Y, x : Y〉 ⊢ b : τ j{{Y}} υ j ∈ {

◦, −} j ∈ I

Θ, Γ ⊢ m.ℓ j ↼↽ (Y � σ, y : Y)ς(x : Y)b : σ

Operational Semantics

The operational semantics forS is given in [3]. We give an overview of the reduction rules
are given in figure 2.4.10. These rules will reappear for a related operational semantics
in chapter 3, but in that setting there is no subtyping so the operational meaning will be
slightly different. Here, all rules involve substitutions of the self parameters. The rule
R U replaces the old self, whereas R S replaces the self variable inside a
particular method body. Also type substitutions are carried out to handle presence of type
variables in objects (replacing the self type variableX with the actual type). The other rules
are trivial (variables, and the statement that an object is acanonical form).

We have now completely defined the syntax and evaluation rules for S. We could extend
this system with quantifiers, butS is already rich enough to express many examples. In fact,
there is, as we mentioned, already a notion of parametricityin S: the self type. However,
adding parametric types by means of universal type quantifiers gives the system better
features with regard to inheritance and method reuse.

S satisfies many “nice” properties. In particular, it has typesoundness and satisfies
various substitution lemmas [3]. The details are omitted inthis survey, but we will prove
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Definition 2.4.10 (Operational Semantics for S)

R 
x{ x

R O
v ≡ Ob j(X = σ)[ℓi = ς(xi : X)bi ]

i∈I

v{ v

R S
v′ ≡ Ob j(X = σ)[ℓi = ς(xi : X)bi ] i∈I

m{ v′ bi{{v
′, σ}}{ v

m.ℓi { v

R U
v ≡ Ob j(X = σ)[ℓi = ς(xi : X)bi ]

i∈I

m{ v j ∈ I

m.ℓ j ↼↽ (Y � σ′, y : Y)ς(x : Y)b{{Y, y}} {

Ob j(X = σ)[l j = ς(x : X)b{{X, v}}, l i = ς(xi : X)bi]
i∈I−{ j}

soundness and adequacy for an interpretation of a simplifiedversion ofS (dropping sub-
typing) in a later chapter of this thesis.

We conclude this section by giving a small example of a “program” expressed inS:

Example 2.4.11A movable point and coordinate can be defined elegantly inS:

Point , Obj(X)[x : Int, mvx : Int→ X]
Coordinate , Obj(X)[x, y : Int, mvx : Int→ X, mvy : Int→ X]

Our subtyping rules can be used to prove Coordinate� Point (simply by means of theS
O rule since Coordinate contains more methods, and all ”inherited” methods have
equal types, i.e. invariance). Now, we may define a value of type Coordinate:

origin , Obj(X = Coordinate)[x = 0, y = 0 ,mvx = ..., mvy = ...]

At some point, we may update the move method to change the behavior of origin:

origin.mvx ↼↽ (Y � σ, y : Y)ς(x : Y)t

The method body t may use the old self y and therefore refer to the previous definition
of mvx to allow incremental change of an object. Further, a method is always given the
present self as a parameter. This self parameter x has a parametric type. Its type Y may be
any subtype of Coordinate.

Lambda Calculus of Objects

Lambda calculus of objects [58, 32] is similar to SystemS, but has a rule for method addi-
tion which means that we can extend an object with more methods. This is also makes the
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type system more complicated and technical restrictions must be added to support subtyp-
ing. The original system of [58, 32] did not support any form of subtyping. However, in a
later work, Fisher and Mitchell [33] proposed a system with two different syntactical enti-
ties: objects and prototypes. Prototypes are objects whichsupport method addition, but not
subtyping. In this way, they could get around the problem with subtyping. Another idea
was studied by Bono and Liquori [15]. Here the type system wasextended with labeled
types to allow limited subtyping. The restriction is that wecan apply width subtyping (i.e.,
hiding a method from an object type), if and only if this method is not used by any of the
other methods.

Other Encodings

Object-oriented calculi are frequently studied by encoding them into more well-understood
target calculi, typically some flavor of typed lambda calculus. Unfortunately, encoding
object types and subtyping into a target language is a difficult task and may fail to explain
object-oriented features (as expressed in the above twoaxiomaticapproaches) as more
primitive notions in typed lambda calculus [3]. Nevertheless, a considerable amount of
research has proposed encodings of object types and subtyping into a plethora of target
languages. These encodings are surveyed in [19] and also in [34, 59, 62].

Our starting point is second order typed lambda calculus, called SystemF. This system
was developed by Girard [38] (in logic) and independently reinvented by Reynolds [69]
(for programming languages). SystemF, while having impredicative polymorphic types,
can encode inductive types (but not full recursive types) using an encoding [11, 48].

SystemF can also encode subtyping as coercions. However, the authorbelieves, to-
gether with Philip Wadler and Benjamin C. Pierce (personal communication, 2005), that it
is an open problem if SystemF can simultaneously encode inductive types and coercions
between them.

Cardelli [22] proposed an extension of this system to support subtyping. The resulting
system is calledF≺:. In addition to subtyping it has bounded quantification (e.g. ∀(X � τ)σ
is a type). When we discuss encodings of object calculi below, some of the encodings
assume recursive types in addition to inductive types, and fixed point operators on ele-
ments/values. In other words, some encodings may require non-trivial extensions ofF≺:.

The first approach of giving semantics to objects and object types was therecursive
record semantics[20, 21, 24, 25, 26, 16]. This semantics is based on a typed lambda
calculus with records and record types, and objects are values which are defined using a
fixed point operatoron terms(i.e. to create an object we apply the fixed point operator on a
record-valued function abstracted on self). For example, an objectPoint would be defined
in Haskell like this:

data Point= Point{x :: Integer, dx :: Integer→ Integer}

fix :: (a→ a)→ a
fix f = let x = f x in x

makePoint:: Integer→ Point
makePoint x0= fix (pointF x0)
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where
pointF :: Integer→ Point→ Point
pointF x1 s= Point{x = x1, dx= λx2→ ((x s) − x2)}

In this encoding of objects, there is no immediate need for recursive types since ref-
erences to “self” are captured under thefix combinator. However, and as pointed out by
Cardelli [20], if thePoint type contains also a method that returns a newPoint value, we
still will require a recursive type. Fortunately, the required recursive type has a “nice” form
(the self variable occurs positively), and subtyping can bevalidated [3]. This model also
can be extended to handle classes (the extended model, whichwas largely developed in
[75, 25, 26], is sometimes referred to as the “generator model” [12]). Less satisfactory
with the recursive record approach is the hard-wiring of theself variable that occurs when
an object is created. As a consequence only internal orself-inflictedmethod updates can
be modelled with this approach [3]. Another limitation is that recursive records cannot be
combined with method addition [34].

A different approach is taken in theself-applicationencoding of objects, which was
proposed for Smalltalk-80 [45, 46] some years after Cardelli had developed the recursive
record model. An object in this approach is abstracted from the self variable (using a
lambda or sigma binder), and remains so until a method invocation occurs, at which point
the self is applied to the invoked method. Both lambda calculus of objects and object
calculi are variations of this approach, and an object type is required to be a special form
of recursive type. However, this encoding fails to support subtyping when we interpret
lambda calculus of objects or object calculi intoF≺:. Nevertheless, this thesis is dedicated
to precisely this form of encoding, but in a denotational setting, so we will continue to
study it in the following chapters. This gives a denotational setting where coercions and
thus subtyping can later be studied.

In order to translate both method update and subtyping, Abadi et al [4] proposed the
split-method interpretation, which extends recursive record encoding such that also exter-
nal method updates are possible.

data Point= Point{x :: Integer, dx :: Integer→ Integer,
updx :: (Point→ Integer)→ Point,
upddx :: (Point→ (Integer→ Integer))→ Point}

createF:: Point→ (Point→ Integer)→
(Point→ (Integer→ Integer))→ Point

createF self bx bdx = Point{x = bx self, dx= bdx self,
updx = λb→ Point{x = b self, dx= bdx self}
upddx = λb→ Point{x = bx self, dx= b self}}

create= fix createF
where fix f = let x = f x in x

Other interpretations are typically based on interpretingobjects into typed lambda cal-
culus (see [19] for a more detailed survey). However, these are typically restricted to the
class-based case where method update is inhibited.





Chapter 3

Soundness and Adequacy of System S−

In this chapter we will define SystemS−, a typed object calculus without subtyping, and
interpret this calculus into Fixed-Point Calculus [65, 66,64] using an eager self-application
encoding, and prove soundness and adequacy ofS− with respect to this interpretation.

Self-application encodings have been studied forF≺:, but unfortunatelyF≺: is too weak
as a basis for object-oriented programming languages.F≺: must be extended with a fixed-
point operator on terms, recursive types, and either F-bounded quantification or higher-
order functions from types to types, and some sort of record extension operator [17]. The
reason for this requirement is that recursive types and subtyping require special techniques
to work together inF≺:. Therefore we instead consider an encoding into FPC which has
some of these features (recursive types and recursively-defined elements).

3.1 First-Order Object Calculus without Subtyping

Abadi and Cardelli have developed a family of Object Calculi, some of which are more
powerful than others, e.g. by having subtyping, recursive types, variance annotations,
polymorphism, orSelf-type in addition to the standard first-order fragment. We will focus
on first-order calculi and one particular higher-order calculus which has only the powerful
Self-type and no polymorphism. Table 3.1.1 gives an overview of the calculi that we will
study in this chapter, some similar or simpler typed object calculi, and the SystemS from
the introductory chapter.

The table shows, for example, that variance annotations arenot considered at all in
this chapter (this is however no fundamental limitation since such annotations can easily
be adjoined to an extended system). The main systems under consideration isS−, which
will be defined in this section and which is an adaptation ofS of [3]. This system has the
Obj-binder, but no subtyping and thus no realSelf-type. This system isFOb1µ of Abadi
and Cardelli [3], but withObj-binder instead of theµ-binder, and with the extensions listed
in the diagram. We have chosenS− instead ofFOb1µ becauseS− contains a larger subset
of the syntax and rules forS, which is one of the most powerful typed object calculi. Since
S− is endowed with products and coproducts, FPC will contain a subset of the rules ofS−.

39



40 CHAPTER 3. SOUNDNESS AND ADEQUACY OF SYSTEMS−

Definition 3.1.1 Object Calculi

FOb1 FOb1� FOb1�µ S− S
Subtyping • • •

Recursive types • • •

Obj-binder • •

Self-type •

Variance ann. •

Products •

Coproducts •

Functions • • • •

Note thatS− is not a subset ofS, but contains some extensions such functions. These
extensions can however also be given to SystemS, although Abadi and Cardelli’s original
presentation ofS does not include them.

We will now defineS− and give some simple examples. We choosen-ary products
and coproducts to simplify these examples. We give an operational semantics with a clear
notion of values. Our choice of an operational approach permits us to prove soundness and
adequacy with respect to a denotational model. These results could not be proven were we
to have used the reduction based approach as certain reductions are in fact unsound. The
reason for this is that a reduction-based semantics admits adegree of non-determinism in
evaluations that invalidates the soundness proof. Notably, an object with some terminat-
ing methods and some non-terminating methods, is interpreted as a product of functions,
such that even the terminating method may become non-terminating under some reduction
strategies in FPC.

We assume a countable set of method labelsL, type variablesV, and term variablesU.
The types ofS− are given in definition 3.1.2. Notationally, we write [ℓi : τi ] i∈I for [ℓ1 :
τ1, ..., ℓn : τn] with n ∈ N and equate object types which are equivalent under permutation
of the order of labels or under the obvious notion ofα-equivalence induced by the type
binderOb j. We introduce shorthandτ1 × τ2 =

∏

i∈{1,2} τi and similarlyτ1 + τ2 =
∐

i∈{1,2} τi

for binary products and coproducts.
Definition 3.1.2 also gives the pre-terms ofS−. We identify pre-terms which are equal

up to the order of method label or are equivalent under the obvious notion ofα-equivalence
induced by the term-bindersλ, ς, andcaseand the type-binderOb j. We use the standard
definition of substitution which can be found in Abadi and Cardelli, and writem{{a/x}} to
mean thata is substituted for all free occurrences ofx in m [3]. Further,m(x) meansx may
occur free inm. We use similar notation for the substitution of types for type variables in
both types and terms. When clear from the context, we eliminate the type or term variable
being substituted for and simply writem{{a}} andm{{τ}}.

A type judgement consists of a sequence of distinct type variables (a type context) to-
gether with a type whose free type variables appear in the sequence. The formal definition
of type contexts appear in Definition 3.1.3.
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Definition 3.1.2 (Syntax of S−)

Syntax for Types
The setTςFOb is defined by induction with

τ F X type
1 terminal type
∏

i∈I τi product types
∐

i∈I τi coproduct types
τ1→τ2 function types
Ob j(X)[ℓi : τi(X)] i∈I object types (ℓi distinct)

whereX ∈ V, and for eachi in a finite setI , ℓi ∈ L are pairwise distinct.

Syntax for Terms
The setMS is defined by induction with

m F ⋆ unit
xi term variables
〈m0, ...,mn〉 tupling
πi m projections
case(m0, x1.m1, ..., xn.mn) case
ιi m injections
m0 (m1) λ-application
λx : τ.m λ-abstraction
Ob j(X = σ)[ℓi = ς(xi : X)bi] i∈I object introduction
m1.ℓ↼↽ ς(x : τ)m2 method update
m.ℓ method invocation

where for eachi, xi ∈ U, X ∈ V, σ, τi ∈ TςFOb, andℓi ∈ L.

Here are a couple of examples:

Example 3.1.4 One may consider representing the Java-like interface

interface Point {public void bump(); public int val(); }

as the following type inS− (assuming a type Int exists):

Point= Ob j(X)[val : Int, bump: X]

Example 3.1.5 The Java-like interface

interface UnLam{public void bump(); }
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Definition 3.1.3 (Types and Type Contexts in S−)

Type Contexts
Type contexts are generated by the following rules

TC E
⊢ 〈〉

TC X
⊢ Θ

⊢ 〈Θ,X〉
where X ∈ V,X ∈\ Θ

Well-formed Types
The typing judgmentsΘ ⊢ τ are those generated by the following rules:

T X
⊢ Θ

Θ ⊢ X
where X ∈ Θ

T U
⊢ Θ

1

T F
Θ ⊢ τ1 Θ ⊢ τ2

Θ ⊢ τ1 → τ2

T O
Θ,X ⊢ τi i ∈ I

Θ ⊢ Ob j(X)[ℓi : τi(X)] i∈I

Θ ⊢ τi i ∈ I
Θ ⊢ �i∈Iτi

where � ∈ {
∏

,
∐

}

gives rise to an object type of the form

UnLam= Ob j(X)[bump: X]

Once we have the type judgements, we can define term contexts and then term judge-
ments (Definition 3.1.7). As one would expect, terms are closed under substitution. That
is, if Θ, 〈Γ, x : τ′〉 ⊢ t : τ andΘ, Γ ⊢ t′ : τ′ are derivable then so isΘ, Γ ⊢ t{{t′/x}} : τ.

Example 3.1.6A point whose value is0 and whose bump method adds1 to the value can
be represented inS− as

p , Ob j(X = Point)[ val = ς(x : X)0,
bump = ς(x : X)x.val↼↽ ς(y : X)x.val+ 1 ]

Unlike Java,S− makes no distinction between objects and classes. Therefore, a class is
represented by an object, which can be cloned or copied into new objects which will (ini-
tially at least) have the same methods. There are other differences: object calculus allows
methods to be updated, which is impossible in Java, andS− has no imperative features.
Since we have method updates, there is no need to have separate attributes. Attributes, like
val, are instead identified with method bodies in which the self variable does not occur.



3.1. FIRST-ORDER OBJECT CALCULUS WITHOUT SUBTYPING 43

Definition 3.1.7 (S−-Typing judgments)

Term Contexts
Well-formed term contexts are given by the rules

C E
⊢ Θ

Θ ⊢ 〈〉

C 
Θ ⊢ τ, Γ

Θ ⊢ 〈Γ, x : τ〉
wherex ∈ U, x ∈\ Γ

Well-typed Terms
The typing judgments ofS− are

V O
σ ≡ Ob j(X)[ℓi : τi(X)] i∈I

Θ, 〈Γ, xi : σ〉 ⊢ bi{{σ}} : τi{{σ}} ∀i ∈ I

Θ, Γ ⊢ Ob j(X = σ)[ℓi = ς(xi : X)bi] i∈I : σ

V S
Θ, Γ ⊢ m : Ob j(X)[ℓi : τi(X)] i∈I ∀i ∈ I

Θ, Γ ⊢ m.ℓi : τi{{Ob j(X)[ℓi : τi(X)] i∈I }}

V U
σ ≡ Ob j(X)[ℓi : τi (X)] i∈I

Θ, Γ ⊢ m : σ Θ, 〈Γ, x : σ〉 ⊢ b{{σ}} : τ j{{σ}} j ∈ I

Θ, Γ ⊢ m.ℓ j ↼↽ ς(x : σ)b{{σ}} : σ

V P
Θ, Γ ⊢ a :

∏

i∈I

τi j ∈ I

Θ, Γ ⊢ π j a : τ j

V P
Θ, Γ ⊢ a1 : τ1 ... Θ, Γ ⊢ an : τn

Θ, Γ ⊢ 〈a1, ..., an〉 :
∏

i∈I

τi

V S
Θ, Γ ⊢ a : τ j j ∈ I

Θ, Γ ⊢ ιi a :
∐

i∈I

τi

V C
Θ, Γ ⊢ m :

∐

i∈I

σi Θ, 〈Γ, x j : σ j〉 ⊢ mj : τ j ∈ I

Θ, Γ ⊢ case(m, x1.m1, ..., xn.mn) : τ

V U
Θ, Γ ⊢ ⋆ : 1

V 
Θ ⊢ 〈Γ, xi : τi , ...〉

Θ, 〈Γ, xi : τi , ...〉 ⊢ xi : τi

V E
Θ, Γ ⊢ m1 : τ1 → τ2,m2 : τ1

Θ, Γ ⊢ m1(m2) : τ2

V F
Θ, 〈Γ, x : τ1〉 ⊢ b : τ2

Θ, Γ ⊢ λx : τ1.b : τ1→ τ2

We say a pre-termm ∈ NςFOb is well-typed if there exists well-formed contextsΘ, Γ and
a type judgementΘ ⊢ τ such thatΘ, Γ ⊢ m : τ is derivable. We letMS denote the set of
well-typed terms up toα-equivalence and permutations of method labels.
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Operational Semantics

We have now defined the language ofS−, and will give it an operational semantics. The
semantics is call-by-value and, in particular, each component of a product must have a
value for a projection of the product to attain a value. The rules for the non-object part of
the calculus are standard while we feel that those for the object intro, elim and update rules
are reasonable, e.g. one does not reduce under the binder in object intro terms and hence
all object intro terms are values. This feeling is reinforced by the results we derive later on
soundness and adequacy. The values (or normal/canonical forms) are as follows:

v F x | 1 | ιi v | 〈v1, ..., vn〉 | λx : τ.m |
Ob j(X = σ)[ℓi = ς(xi : X)mi] i∈I

The actual operational rules are given in Definition 3.1.10.Note that the values are
precisely the termsv such thatv{ v, where{ means the reduction relation. This is the
statement that values are irreducible in a formal sense. A programp is a term such that
for some typeτ we have⊢ p : τ, i.e. a well-typed term with empty contexts. The key
theorem which means that the implementation of the calculus, as given by its operational
semantics, respects compile time type information is the preservation of types as shown in
the next theorem.

Theorem 3.1.8 (Preservation)If t is a well-typed termΘ, Γ ⊢ t : τ such that t{ t′, then
Θ, Γ ⊢ t′ : τ.

Proof The proof is by induction on the derivation oft{ t′ and is fairly routine. Suppose
Θ, Γ ⊢ t : τ andt{ t′. We have omitted trivial cases:

Case (R C): We havet = case(m, x1.m1, ..., xn.mn) andΘ, Γ ⊢ t : τ. Sincet is
well-typed we haveΘ, Γ ⊢ m :

∐

i∈I σi andΘ, 〈Γ, x : σ〉 ⊢ mi : τ for i ∈ I . We have
subderivationm{ ιkv andmk{{v/xk}} { t′. But by induction hypothesis this means, by
Lemma 2.4.8,t′ : τ.

Case (R P): We havet = πi(m) andΘ, Γ ⊢ t : τ, which is to saym =
〈a1, ..., an〉 for someΘ, Γ ⊢ ai : τi . The result follows by induction hypothesis on the
required component.

Case (R E): We havet = m1(m2) andΘ, Γ ⊢ t : τ2. ThereforeΘ, Γ ⊢ m1 : τ1 → τ2

andΘ, Γ ⊢ m2 : τ1. That is to saym1 = λx : τ2.b. Now form2{ v we haveΘ, Γ ⊢ b{{v/x}} :
τ2 and by induction hypothesist′ : τ2 as required.

Case (V S): we havet = m.ℓi andΘ, Γ ⊢ t : τi for m = Ob j(X = σ)[ℓi = ς(xi :
X)bi] i∈I andΘ, Γ ⊢ m : σ with σ = Ob j(X)[ℓi : τi(X)] i∈I . For m{ v′ andbi{{v′, σ}} { t′

we haveΘ, Γ ⊢ t′ : τi{{σ}} by induction hypothesis.

Case (V O): we havet = m.ℓ j ↼↽ ς(x : σ).b and t : σ. SinceΘ, 〈Γ, x : σ〉 ⊢
b j{{σ}} : τ j{{σ}} we haveΘ, Γ ⊢ t′ : σ as required.

�

Corollary 3.1.9 (Type Soundness) S− satisfies type soundness.
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Definition 3.1.10 (Operational Semantics for S−)

R 
x{ x

R U
⋆{ ⋆

R P
m1{ v1 ... mn{ vn

〈m1, ...,m2〉{ 〈v1, ..., vn〉

R P
m{ 〈v1, ..., vn〉 1 6 i 6 n

πi(m){ vi

R S
m{ v

ι j m{ ι j v

R C
m{ ι j(v) mj{{v/x j}}{ v′ j ∈ [1, n]

case(m, x1.m1, ..., xn.mn){ v′

R F
λx : τ.m{ λx : τ.m

R E
m1{ λx : τ.b m2{ v b{{v/x}}{ v′

m1(m2){ v′

R O
v ≡ Ob j(X = σ)[ℓi = ς(xi : X)bi ]

i∈I

v{ v

R S
v′ ≡ Ob j(X = σ)[ℓi = ς(xi : X)bi ]

i∈I

m{ v′ bi{{v
′, σ}}{ v

m.ℓi { v

R U
v ≡ Ob j(X = σ)[ℓi = ς(xi : X)bi ]

i∈I

m{ v

m.ℓ j ↼↽ ς(x : σ)b{{σ}}{ Ob j(X = σ)[ℓi = ς(x : X)bi, ℓ j = ς(x : X)b] i∈I−{ j}

where in the last rule we delete thej’th method fromv and then add the updated method
ℓ j = ς(x : X)b.
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3.2 Fixed Point Calculus

Our intention is to interpret object types as solutions of certain recursive equations. We
do this i) syntactically by translating the Object Calculusinto the Fixed-Point Calculus
(FPC); and ii) semantically by giving denotational models for the object calculus using
some sophisticated categorical models. Note that this a different encoding of objects as
recursive types than is found in e.g. the recursive record semantics in the literature, e.g.
[20, 3]. Notably, the recursive record semantics would givethe following interpretation of
the p : Point object given in the previous examples:

p = Y λp.〈0, 〈π1 p+ 1, π2 p〉〉
whereY : (τ→τ)→τ is a fixed point combinator (which can be encoded into FPC). The

type ofp isµX.Int×X, but as seen in this example we cannot replace the first component of
p without giving a completely new definition ofp. We will give p the typeµX.(X→Int) ×
(X→X). This means thatp is denoted simply by a product which enjoys the ordinary
projections on each component.

Our calculus of recursive types is known in the semantics literature as FPC. This sys-
tem is originally due to Plotkin [65, 66, 64], but detailed expositions are given e.g. by
Gunter [40] and Fiore [29]. FPC intuitively arises fromS− by deleting the types and terms
related to objects and inserting types and terms related to fixed points of mixed variant
type constructors. Thus FPC uses the same countable supplies U andV of type and term
variables. We summarise the formal rules in Definition 3.2.1.

The notions of substitution,α-congruence, contexts, well-formed types, are all identi-
cal, except that we replace object type formation with the following rule for well formed
recursive types. The preterms of FPC are exactly those ofS−, omitting all terms derived
from the object formation rule, method updates, and method invocation, and adding to the
grammar terms of the forminnµX.τ for µ-introduction (V I) andout for µ-elimination
(V O). The term judgments for FPC are similarly obtained from those ofS−, but the
VO, V S and V U rules are replaced by two rules for typing recursive
types. Finally, the operational semantics of FPC is obtained by deleting V O terms
as values, removing the operational rules for R O, R S and R U and
adding the following values and rules from definition 3.2.1 to cope with recursive types.

vF ... | innµX.τ(v)

In addition to thiseager(call-by-value) version of FPC, we will briefly also recall the
lazy(call-by-name) operational semantics that can be given to this language.
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Definition 3.2.1 (Eager FPC)

V I
X ∈\ Θ

Θ, Γ ⊢ m : τ{{µX.τ/X}}

Θ, Γ ⊢ innµX.τ(m) : µX.τ

V O
Θ, Γ ⊢ m : µX.τ

Θ, Γ ⊢ out(m) : τ{{µX.τ/X}}

T R
〈Θ,X〉 ⊢ τ

Θ ⊢ µX.τ

R I
e{ v

inn(e){ inn(v)

R O
e{ inn(v)

out(e){ v

Definition 3.2.2 (Lazy FPC)

Operational Semantics
The following rules take the place of R P, R C, and R E and all other rules
are the same:

RL P
m{ 〈m1, ...,mn〉 mi { v

πi(m){ v

RL C
m{ ι j(k) mj{{k/x j}}{ v′ j ∈ [1, n]

case(m, x1.m1, .., xn.mn){ v′

RL E
m1{ λx : τ.b b{{m2/x}}{ v

m1(m2){ v
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Under a lazy semantics, we have more values than we had in the eager semantics. If
ti , λx.mare closed terms, the values now also include:

vF ... ι j t | λx.m | 〈t1, ..., tn〉 | innµX.τ(v)

3.3 Translating Object Calculus in FPC

This section contain a translation ofS− into (eager) FPC. This translation is at the level
of types, terms and operational semantics and we find an excellent fit whereby the oper-
ational semantics for FPC is both sound and complete. This allows us to transport the
well-understood theory of FPC, in particular its denotational models (e.g. [29, 76, 40]), to
S−.

First, recall the key feature of this encoding is that it reflects our intuition that the object
types ofS− are fixed points of recursive type equations. More specifically, the recursion is
over the self-parameter which occurs both covariantly and contravariantly. This intuition is
clearly seen in the V O typing rule forσ = Ob j(X)[ℓi : τi(X)] i∈I which suggests the
i’th method will consume the self-parameter, which has typeσ, to produce something of
typeτi whereσ may occur free, e.g. also be produced. Thus, intuitively, the interpretation
of σ should satisfy

⌈σ⌉ � ⌈σ⌉→⌈τ1⌉ × · · · × ⌈σ⌉→⌈τn⌉

where, as we mentioned above, each of theτi may containσ. Hence the interpretation of
σ should be the fixed pointµX.X→⌈τ1⌉ × · · · × X→[[τn]] where theτi may containX free.
Thus the interpretations of the object typesPoint andUnLamare

⌈Point⌉ = µX.(X→X) × (X→Int)
⌈UnLam⌉ = µX.X→X

Note the interpretation of this example shows how the type ofuntyped lambda terms
arises naturally as an object. We do not need to translate type contexts since we have
identified the sets of type variables. We thus begin by translating well-formedS− types
into FPC-types:

⌈X⌉ , X
⌈1⌉ , 1
⌈A→B⌉ , ⌈A⌉→⌈B⌉
⌈
∏

i∈I Ai⌉ ,
∏

i∈I ⌈Ai⌉

⌈
∐

i∈I Ai⌉ ,
∐

i∈I ⌈Ai⌉y

As mentioned above, the translation of object types is into the solution of a mixed variance
recursive type equation.

⌈Ob j(X)[ℓi : τi(X)] i∈I⌉ , µX.X→⌈τ1⌉ × ... × X→⌈τn⌉
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Notice that the translation of types respects substitutions, that is⌈τ[σ/X]⌉ = ⌈τ⌉[⌈σ⌉/X].
We can now syntactically translate (term) contexts:

⌈Θ ⊢ 〈〉⌉ , Θ ⊢ 〈〉

⌈Θ ⊢ 〈Γ, x : τ〉⌉ , Θ ⊢ 〈⌈Γ⌉, x : ⌈τ⌉〉

Now we extend our translation to typing judgments. The translations of terms in the
intersection of the calculi are just by induction.

⌈Θ, Γ ⊢ xi : τ⌉ , Θ, ⌈Γ⌉ ⊢ xi : ⌈τ⌉
⌈Θ, Γ ⊢ ⋆ : 1⌉ , Θ, ⌈Γ⌉ ⊢ ⋆ : 1
⌈Θ, Γ ⊢ 〈m0, ...,mn〉 : τ⌉ , Θ, ⌈Γ⌉ ⊢ 〈⌈m0⌉, ..., ⌈mn⌉〉 : ⌈τ⌉
⌈Θ, Γ ⊢ πi m : τ⌉ , Θ, ⌈Γ⌉ ⊢ πi ⌈m⌉ : ⌈τ⌉
⌈Θ, Γ ⊢ ι j m : τ⌉ , Θ, ⌈Γ⌉ ⊢ ι j ⌈m⌉ : ⌈τ⌉
⌈Θ, Γ ⊢ m0 m1 : τ⌉ , Θ, ⌈Γ⌉ ⊢ ⌈m0⌉⌈m1⌉ : ⌈τ⌉
⌈Θ, Γ ⊢ λ(x : σ)m : τ⌉ , Θ, ⌈Γ⌉ ⊢ λ(x : ⌈σ⌉)⌈m⌉ : ⌈τ⌉

⌈Θ, Γ ⊢ case(m0, x1.m1, ..., xn.mn) : τ⌉
, Θ, ⌈Γ⌉ ⊢ case(⌈m0⌉, x1.⌈m1⌉, ..., xn.⌈mn⌉) : ⌈τ⌉

We translate object introductions, method update, and object elimination (method in-
vocation) in the obvious way once one recalls the translation of object types.

⌈Θ, Γ ⊢ m : σ⌉
, Θ, ⌈Γ⌉ ⊢ inn(〈λx : ⌈σ⌉.⌈b1{{σ}}⌉, ..., λx : ⌈σ⌉.⌈bn{{σ}}⌉〉) : ⌈σ⌉

⌈Θ, Γ ⊢ m.ℓi⌉

, Θ, ⌈Γ⌉ ⊢ (πi α)(⌈m⌉) : ⌈τi{{σ}}⌉

⌈Θ, Γ ⊢ m.ℓ j ↼↽ ς(x : σ)b{{σ}}⌉
, Θ, ⌈Γ⌉ ⊢ inn(〈π1α, ..., π j−1α, λx : ⌈σ⌉.⌈b⌉{{σ}}, π j+1α, ..., πnα〉) : ⌈σ⌉

where
α ≡ out(⌈m⌉)
m≡ Ob j(X = σ)[ℓi = ς(xi : X)bi] i∈I

σ ≡ Ob j(X)[ℓi : τi(X)] i∈I

Hereπl j is the projection of a labeled product.
Let Fi be type expressions. We have interpreted object types asµX.(X→F1 X) ×

... × (X→Fn X) (where for method invocation, self is appliedafter projection) rather than
µX.(X→F X). This is because the latter interpretation would break soundness. Consider,
for example the interpretation of method invocation. For soundness, we need to prove that
πℓ j applied to a term reduces to a value in the case whenm.ℓ j reduces to aS−-value. How-
ever, the eager operational semantics of projection in FPC requires that all components of
the tuple have a value, and we can easily construct an object for which this would not hold.
However, given a lazy operational semantics for FPC (e.g. Winskel [76]) this argument
would no longer apply, since partially evaluated terms (in particular products) are included
as values.
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We will now prove an important lemma which shows that our interpretation function
⌈−⌉ is substitutive on terms (it is trivially substitutive on types):

Lemma 3.3.1 ⌈m{{v/x, σ/γ}}⌉ = ⌈m⌉{{⌈v⌉/x, ⌈σ⌉/γ}}

Proof The proof is by induction on the image of terms under⌈−⌉. We need only consider
object intro, elim, update under⌈−⌉:

⌈Ob j(X = σ)[ℓi = ς(xi : X)bi] i∈I {{v/x, σ/γ}} : δ⌉
= by definition

inn(〈λx : τ.⌈b1{{δ, v/x, σ/γ}}⌉, ..., λx : τ.⌈bn{{δ, v/x, σ/γ}}⌉〉)
= by induction hypothesis onbi

inn(〈λx : τ.⌈b1{{δ}}⌉{{⌈v⌉/x, ⌈σ⌉/γ}}, ..., λx : τ.⌈bn{{δ}}⌉{{⌈v⌉/x, ⌈σ⌉/γ}}〉)
= since⌈−⌉ is substitutive oninn, tupling, andλ

inn(〈λx : τ.⌈b1{{δ}}⌉, ..., λx : τ.⌈bn{{δ}}⌉〉){{⌈v⌉/x, ⌈σ⌉/γ}}
= by definition
⌈Ob j(X = σ)[ℓi = ς(xi : X)bi] i∈I ⌉{{⌈v⌉/x, ⌈σ⌉/γ}}

The situation is similar for object elim and method update, in that⌈−⌉ will be substitu-
tive on sub-terms formed according to the rules of FPC.

�

Our translation preserves types:

Lemma 3.3.2 If Θ, Γ ⊢ t : τ then⌈Θ⌉, ⌈Γ⌉ ⊢ ⌈t⌉ : ⌈τ⌉

Proof The proof is by induction on well-typed terms. We consider only Val Object, V
S, and Val Update, since the other cases follow by induction. SupposeΘ, Γ ⊢ Ob j(X =
σ)[ℓi = ς(xi : X)bi] i∈I : σ whereσ = Ob j(X)[ℓi : τi(X)] i∈I . We must show thatΘ, ⌈Γ⌉ ⊢
inn(〈λx : ⌈σ⌉.⌈b1{{σ}}⌉, ..., λx : ⌈σ⌉.⌈bn{{σ}}⌉〉) : ⌈σ⌉ where⌈σ⌉ = µX.X→⌈τ1⌉× ...×X→⌈τn⌉.

This follows if we can satisfy the premises of the (µI ) rule, i.e. if

Θ, ⌈Γ⌉ ⊢ inn(〈λx : ⌈σ⌉.⌈b1⌉{{⌈σ⌉}}, ..., λx : ⌈σ⌉.⌈bn⌉{{⌈σ⌉}}〉) :
X→⌈τ1⌉ × ... × X→⌈τn⌉

{{µ(X)X→⌈τ1⌉ × ... × X→⌈τn⌉/X}}

The premises of V O assertsΘ, 〈Γ, xi : σ〉 ⊢ bi{{σ}} : τi{{σ}} which by induction
hypothesis meansΘ, 〈⌈Γ⌉, xi : ⌈σ⌉〉 ⊢ ⌈bi{{σ}}⌉ : ⌈τi{{σ}}⌉. We then have a FPC-term of the
required type from the bodies⌈bi{{σ}}⌉ = ⌈bi⌉{{⌈σ⌉}} by the substitution lemma. The V F
and V P rules gives us〈λx : X.⌈b1⌉{{X}}, ..., λx : X.⌈bn⌉{{X}}〉{{⌈σ⌉/X}}. Finally V I
gives us the required type.

The case for V U is almost identical. For V S we assumeΘ, Γ ⊢ m : σ
wherem = Ob j(X = σ)[ℓi = ς(xi : X)bi] i∈I andσ = Ob j(X)[ℓi : τi(X)] i∈I and consider
Θ, Γ ⊢ m.ℓi : τi{{σ}}. We wantΘ, ⌈Γ⌉ ⊢ (πl i out(⌈m⌉))(⌈m⌉) : ⌈τi{{σ}}⌉. By induction
hypothesis we haveΘ, ⌈Γ⌉ ⊢ ⌈m⌉ : ⌈σ⌉. FurtherΘ, ⌈Γ⌉ ⊢ out(⌈m⌉) : ⌈σ{{µX.σ/X}}⌉ and
after projection we have the bodybi of typeτi{{σ}}, and the result follows by applying the
induction hypothesis tobi .

�
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3.4 Soundness and Adequacy

We will prove the soundness and adequacy of our translation of S− into FPC. This means
that not only does the translation ofS− into FPC work at the level of types and terms, but
also that the operational semantics of FPC is strong enough to interpret the operational
semantics ofS− while not being so strong as to give extra computations whichwere not
present inS−.

We will show thatt { v implies ⌈t⌉ { ⌈v⌉. This establishes that our translation is
correct (soundness). We also prove an adequacy result of theoperational semantics ofS−.
These two results establish that the denotational semantics of FPC given by Fiore is, via
the self-application interpretation, a suitable mathematical setting for object calculus. For
example, a category such aspCpo immediately gives us a denotational model of object
calculus.

In what follows we assume that [[−]] : FPC → M is the interpretation of FPC into a
sound and adequate model such as the one given by Fiore and Plotkin.

Definition 3.4.1 (Computational Soundness)We say that an interpretation⌈−⌉ ofS− into
FPC is computationally sound if, for everyΘ, Γ ⊢ o : τ such that o{ v where v is a value,
we have that[[ ⌈Θ, Γ ⊢ o : τ⌉]] is a total map.

Definition 3.4.2 (Computational Adequacy) We say that an interpretation⌈−⌉ of S− into
FPC is computationally adequate if given anyΘ, Γ ⊢ o : τ, whenever[[ ⌈Θ, Γ ⊢ o : τ⌉]] is a
total map, we also have that o{ v for some value v.

Theorem 3.4.3 (Soundness)The interpretation⌈−⌉ is computationally sound. That is, if
t{ v, then⌈t⌉{ ⌈v⌉

Proof We only check the derivation rules V O, V S, and V U, since
the result follows from induction for the other derivation rules. The translation of an V
O term is an FPC value and hence the theorem holds for terms arising as the result of
the V O rule.

For V S, supposem{ v′ andbi{{v′, σ}}{ v, wherev′ = Ob j(X = σ)[l1 = ς(xi :
X).bi] i∈I . We want to show that⌈m.ℓi⌉{ ⌈v⌉. By induction⌈m⌉{ ⌈v′⌉ and hence

πi(out⌈m⌉){ λx : ⌈σ⌉.bi

Again, by induction,⌈m⌉{ ⌈v′⌉ and⌈bi{{v′, σ}}⌉ { ⌈v⌉. The result then follows by the
substitution lemma since⌈bi{{v′, σ}}⌉ = ⌈bi⌉{{⌈v′⌉, σ}}.

For method update, supposem{ v wherev = Ob j(X = σ)[ℓi = ς(xi : X)bi] i∈I . In
order to prove⌈m.ℓ j ↼↽ ς(x : σ).b⌉ { ⌈v′⌉ wherev′ = Ob j(X = σ)[l i = ς(x : X).bi, l j =

ς(x : X).b] i∈I we must prove that

inn(〈π1α, ..., λx : ⌈σ⌉.⌈b⌉, ..., πnα〉){
inn(〈λx : ⌈σ⌉.⌈b1⌉, ..., λx : ⌈σ⌉.⌈b⌉, ..., λx : ⌈σ⌉.⌈bn⌉〉)
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whereα = out(⌈m⌉). By induction

⌈m⌉{ ⌈v⌉ = inn(〈λx : ⌈σ⌉.⌈b1⌉, ..., λx : ⌈σ⌉.⌈bn⌉〉)

and henceπiα{ λx : ⌈σ⌉.⌈bi⌉ as required.
�

We proceed with adequacy which shows that the operational semantics of FPC is not
too strong with respect to the operational semantics ofS−.

Theorem 3.4.4 (Adequacy)The interpretation⌈−⌉ is computationally adequate, that is if
⌈t⌉{ v, then there is a v′ such that t{ v′ and⌈v′⌉ = v

Proof The proof is by induction on the derivation tree for⌈t⌉ { v. If t is a variable or
any of the terms related to the standard type constructors ofλ-calculus, then the proof is as
expected. Ift is a V O term, then botht and⌈t⌉ are values and hence the theorem
trivially holds. There are two more cases:

If t is given by V S, sayt ≡ m.ℓ j , then⌈t⌉{ v must have the following form:

⌈m⌉{ inn〈..., λx.b, ...〉

out⌈m⌉{ 〈..., λx.b, ...〉

π jout⌈m⌉{ λx.b ⌈m⌉{ u ⌈b{{u/x, σ}}⌉{ v

(π jout⌈m⌉)(⌈m⌉){ v

We see that the derivation for⌈b{{u/x, σ}}⌉ { v is contained in the above derivation.
Therefore we can apply the induction hypothesis to it, and also to the termm. The premises
of the rule V S are now satisfied, and we can conclude thatt { ξ for valueξ. It
remains to be shown that⌈ξ⌉ = v, but this is just the induction hypothesis for⌈b{{u/x}}⌉.

Finally, let t = m.ℓ↼↽ ς(x : σ)b be a method update term given by V U, and
⌈t⌉{ v for some valuev. Such a term has the following derivation tree:

⌈m⌉{ inn v

out⌈m⌉{ v ≡ 〈..., λx.b, ...〉

inn〈π1out⌈m⌉, ..., π j−1out⌈m⌉, λx : ⌈σ⌉.⌈b⌉{{σ}}, π j+1out⌈m⌉, ..., πnout⌈m⌉〉{ v

The derivation tree clearly shows that⌈t⌉ reduces to a value exactly when⌈m⌉ reduces
to a value which means, by induction hypothesis, that we havem{ u for some valueu. In
other words, the premise of the V U rule is satisfied, so we have indeed thatt{ u′

for some valueu′. It remains to be shown that⌈u′⌉ = v. However,v has the form indicated
in the derivation tree (〈..., λx.b, ...〉), which is given as the interpretation of precisely the
valueOb j(X = σ)[ℓi = ς(x : X)bi, l j = ς(x : X)b] i ∈ I to which t reduces to by the (↼↽)
rule.

�
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Although adequacy holds, the stronger property of full abstraction doesnothold. In or-
der to discuss full abstraction we first need to define the notion of observation (contextual)
equivalence with which we can define the full abstraction property:

Definition 3.4.5 (Contextual Equivalence)Let C[−] be a one-hole context such thatΘ, Γ ⊢
C[o] : τ and Θ, Γ ⊢ C[o′] : τ (i.e. C[o] and C[o′] are closed typeable terms). We
say that o is contextually equivalent to o′, written o � o′, if for all contexts C, we have
[[ ⌈Θ, Γ ⊢ C[o] : τ⌉ ]] being total iff [[ ⌈Θ, Γ ⊢ C[o′] : τ⌉ ]] is total.

Definition 3.4.6 (Full Abstraction) Full abstraction is the property that for any terms
o, o′, if and only if [[ ⌈Θ, Γ ⊢ o : τ⌉ ]] = [[ ⌈Θ, Γ ⊢ o′ : τ⌉ ]] , then o� o′, i.e. identified
denotations correspond to observationally congruent terms.

Now consider the counter-example in [74]. Leta = Ob j(X = σ)[ℓ = ς(x : X)x.ℓ and
b = Ob j(X = σ)[ℓ = ς(x : X)case(x.ℓ, y.ι1 ⋆, y.ι2 ⋆)]. Note l : 1 + 1 (representing a
boolean type) in botha andb. Although,a � b, we do not have equal denotations, since
self-application admits application of an object where thel method converges, which gives
different function values.

Although most FPC models suffer from expressiveness of ”parallel or” which cannot
be defined operationally, there are in other words additional obstacles with self-application
relative to FPC. What are the consequences of this additional obstacle? It means that with
regard to self-applications of the ”non-intended” form, i.e. applying a different object to
another object, more properties will be valid than those which are provable/observable
from the operational semantics. Viswanathan [74] avoids this problem by removing the
dependence of bodiesbi of l i , which givesn mutually recursive self-applicable functions,
each usingn− 1 labels in their method bodies, wheren are the total number of labels. The
corresponding interpretation satisfies full abstraction relative toF<:, but is instead cluttered
with technicalities needed to handle the mutual recursion in methods.

In summary, we have developed an interpretation ofS−, a typed object calculi extended
with functions, coproducts, and products, into FPC, and proved adequacy and soundness,
while considering both eager and lazy variations of FPC. Full abstraction does not hold, but
from a pragmatic point of view the simplicity of the interpretation is of greater importance
than its precise characterisation of objects. The self-application interpretation into FPC
that we have studied is simple but comes with a powerful recursion scheme, that will be
studied further in the next chapter of this thesis.

Finally, we would like to remark that subtyping has not been studied in this chapter,
but is certainly very important and need to be addressed. To this end, FPC can interpret
subtyping using coercion functions, but the details are saved for future work.





Chapter 4

Direcursion

4.1 Denotational Semantics

In this section we give a denotational model ofFOb1, first-order object calculus similar to
S−, but without the extra notation for self type support. Our model is developed using the
categorypCpo. The key feature of this semantics is that it reflects our intuition that the
object types ofFOb1 are fixed points of recursive type equations. More specifically, the
recursion is over the self-parameter which occurs negatively. This intuition is clearly seen
in the object-intro typing rule forσ = [l1 : τ1, . . . , ln : τn] which suggests thei’th method
will consume the self-parameter, which has typeσ, to produce something of typeτi . Thus,
intuitively, the interpretation ofσ should satisfy

[[σ]] � [[σ]] ⇀ [[τ1]] × · · · × [[τn]]

and hence the denotation ofσ should be the fixed point ofµX.X ⇀ [[τ1]] × · · ·× [[τn]]. Cru-
cially, the following lemma shows that such an interpretation supportsself-application[32]
which our semantics both requires and supports. We state thelemma specifically forpCpo
to make clear we are not using cartesian closure in the proof.

Lemma 4.1.1 Let F : pCpo - pCpo be a covariant functor and O an object ofpCpo
satisfying O� [O, FO]. Then there is a self-application map sapp: O→FO.

Proof All isomorphisms are total and hence the isomorphism uncurries to give a map
O⊗O→FO. Now precompose with the diagonal which partial products possess.

�

Notice how this differs with the recursive record semantics [3], where the recursion is
in the output or covariant position while the contravariantoccurrence ofself is replaced
by having a separate state type, and a fixed point operator at the level of terms. Our
semantics also differs from other encodings such as various encoding with existentials
[63, 19] where the contravariant occurrence is present but hidden under the existential
quantifier. In our model ofFOb1 we instead explicate the contravariantself parameter

55
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and interpret all object types into more elaborate recursive types which, as we have seen,
support self-application.

If C is a category we denote bŷC the categoryCop × C and note that (̂C)n = ˆ(Cn).
The doubling trick used to obtain fixed points of difunctors assigns to each difunctorF :
Cop×C - D a functorF̂ : Cop×C - Dop×D. We call functors that arise in this way
symmetric- see [28] for a full definition. Each symmetric functorF induces two functors
F1 andF2 by post-composition with the projectionsΠ1 andΠ2 arising from the product on
Cat. In fact the mappingF 7→ F̂ is a bijection between difunctors and symmetric functors
with inverse sendingF to F2. This fact will be used below to define symmetric functors by
giving difunctors. Finally letP be the categorypCpoop × pCpo.

With this notation we can give a semantics to types as follows. If a typeτ hasn-free
type variables1, its interpretation is a symmetric functor

[[τ]] : Pn - P

Using the bijection mentioned above, we define the symmetricfunctor [[τ]] by giving [[τ]]2.
The exceptions to this rule are for the interpretations of recursive types and object types.

[[1]] 2X = 1
[[τ1 + τ2]]2X = [[τ1]]2X + [[τ2]]2X
[[τ1 × τ2]]2X = [[τ1]]2X ⊗ [[τ2]]2X
[[τ1→τ2]]2X = [[τ1]]1X ⇀ [[τ2]]2X
[[µv.τ]]X = ([[τ]]X)†

where ([[τ]]X)† is the fixed point of [[τ]]X : P - P. Finally, for an object typeσ = [l1 :
τ1, . . . , lm:τm], we have

[[[ l1 :τ1, . . . , lm:τm]]] = [[µv. v→ τ1 × · · · × τm]]

Unwinding the definition, we thus have

[[σ]]2X � [[σ]]2X ⇀ [[τ1]]2X ⊗ · · · ⊗ [[τm]]2X

and note that, in this situation, Lemma 4.1.1 applies since we can takeF to be the constant
functor returning [[τ1]]2X ⊗ · · · ⊗ [[τm]]2X. Just as we gave an interpretation to types, so we
give one to environments. IfE is an environment withn-free type variables, then

[[E]] : Pn - P

is the symmetric functor defined by

[[ x1 :τ1, . . . , xm:τm]]2X = [[τ1]]2X ⊗ · · · ⊗ [[τm]]2X

1At this point we play a slight price of informality for not indexing judgments by free type variables. However
we previously gained by having less notationally cumbersome judgments. We leave the reader to decide if this
was an appropriate choice.
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Finally we come to the interpretation for term judgments. IfE ⊢ e:τ is a judgment using
n-type variables, then its interpretation is an indexed family of morphisms

[[E ⊢ e:τ]] A : [[E]]2A - [[τ]]2A

for each symmetric functorA : Pn, i.e. for someX : pCpon the functorA is of the form
A = ((X1,X1), . . . , (Xn,Xn)). Since the semantic clauses for the term constructs associated
with the basic types 1,+,×,→ are as expected, we leave them as an exercise and focus
instead on the judgments for object introduction, update and elimination which we take
verbatim from Definition 3.4

• Object Introduction:By assumption we are given maps

[[E, x : σ ⊢ bi:τi ]] A : [[E, x : σ]]2A - [[τi ]]2A

in pCpo. Using the definition of [[E, x : σ]]2 and the the adjunction between partial
product and and partial exponentials, these correspond to the following mapsin the
categoryCpo:

[[E]]2A - ([[σ]]2A ⇀ [[τi ]]2A)

and hence we get, for eachA, one map

[[E]]2A - ([[σ]]2A ⇀ [[τ1 × · · · × τn]]2A)

But, since [[σ]]2A⇀ [[τ1 × · · · × τn]]2A is isomorphic to [[σ]]2A, we are done.

• Object Elimination:We are given a family of maps

[[E ⊢ a:σ]] A : [[E]]2A - [[σ]]2A

and want a map

[[E ⊢ a:σ]] A : [[E]]2A - [[τ j]]2A

This can be constructed by postcomposing with the self-application map [[σ]]2A - [[τ1]]2A×
· · · [[τn]]2A and then thej’th projection.

• Object Update:Start with the map

[[E ⊢ a:σ]] A : [[E]]2A - [[σ]]2A

Unwind the isomorphism defining [[σ]]2A. Replace thej’th component of the tuple
with

[[E, x : σ ⊢ b:τ j ]] A : [[E, x : σ]]2A - [[τ j ]]2A

and then refold the isomorphism to get the required map.
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4.2 Wrappers

We saw in the previous section how object types and the associated term judgments can be
given a semantics by solving recursive equations of the formO � O→K for some constant
K representing the types of the fields of the object type. Thereis thus an asymmetry in that
the self parameter can be consumed by the methods but the methods can’t produce new
self’s or objects. More generally one would like methods to be able to both consume and
return the self parameter - this would make sense in both functional and imperative object
calculi. Doing this means solving equations of the form

O � [O,F O]

whereF is some covariant functor. Such generalised objects are clearly supported by the
semantics we have already developed. Also note by instantiatingF with the identity functor
we get the classic equationD � [D,D].

We put this idea to use by asking the following question. Given that both the initial
algebra and final coalgebra styles of programming have proven to be very popular in the
functional world, can we incorporate them into the world of objects? More precisely, ifF
is a covariant functor with initial algebraµF and final coalgebraνF, can we find an object
O which supports the kind of programming enjoyed byµF andνF. Of course, since we
work in an algebraically compact categoryµF = νF.

We provide a positive answer to this question by choosingO to be the fixed point
of the equationO � [O,F O]. Note that our analysis is semantic in that we treat all
covariant functors rather than retreating into some restricted syntactic class of functors
such as polynomials. For the rest of this section, fix a covariant functorF and define the
difunctorG(X,Y) = X→F Y. Also we writeinn andout for the structure maps

inn : [O, FO] - O out : O - [O, FO]

of the initial G-dialgebra. Our first result is that objects can be ”evaluated” into the final
coalgebra and hence enjoy a notion of equality induced by bisimulation.

Lemma 4.2.1 O is an F-coalgebra and hence there is aF-coalgebra homomorphism
O - νF.

Proof From lemma 4.1.1, self application gives a coalgebraO - FO.
�

Not only is there a map fromO to the finalF-coalgebra, but also there is a map from
the initial algebra toO

Lemma 4.2.2 O is anF-algebra and hence there is aF-algebra homomorphismµF - O.

Proof We would like constructors forO, that is forO to be anF-algebra. Using the isomor-
phism definingO, the structure mapF O - O can be given by a mapF O - [O,F O]
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which we take to be the first projection after uncurrying. NowthatO is anF-algebra, the
fold operation of the initial algebra defines anF-algebra homomorphismµF - O.

�

That the compositeµF - O - νF is the canonical map induced by the initiality
of µF and/or the finality ofνF relies on the regularity ofO. In this settingO is therefore a
retract ofµF showing it contains the elements ofµF but a whole lot more as well.

Next, we wish to consider recursion principles. Initial algebras come with a canonical
recursion operatorfold (catamorphism) which arises as the unique map from the initial
algebra to some other algebra. Similarly there is a recursion operatorunfold (anamor-
phism) which arises as the unique map from some coalgebra to the final coalgebra. As
we mentioned earlier,O has the universal property of being the initial dialgebra and hence
comes with its own recursion principle for defining maps fromO to any other dialgebra.
Unwinding the definition of dialgebra etc, this gives the principle ofdirecursion.

Definition 4.2.3 (Direcursion) Let (φ, ψ) be a dialgebra with types given in the diagram
below. Define(|φ|) : O - B and[(ψ)] : A - O to be the unique dialgebra homomor-
phism such that the following diagram commutes:

[O,F O]
innG - O O

outG - [O,F O]

[A,F B]

G [(φ, ψ)](|φ, ψ|)
?

φ
- B

(|φ, ψ|)
?

A

[(φ, ψ)]
6

ψ
- [B,F A]

G (|φ, ψ|)[(φ, ψ)]
6

By simply chasing the above diagram, one can extract the direcursion principle as two
mutually recursive combinators:

Definition 4.2.4 (Direcursion - combinators)

(|φ, ψ|) o , φ ((F (|φ, ψ|)) ◦ (outG o) ◦ [(φ, ψ)])

[(φ, ψ)] a , innG ((F [(φ, ψ)]) ◦ (ψ a) ◦ (|φ, ψ|)) (direc-D)

Corollary 4.2.5 (Properties of direcursion) Let (O, innG, outG) be the initial G dialge-
bra.

• Cancellation: For any otherG-dialgebra given by(A, φ : G B A→ A) and (B, ψ :
B→ G A B) we have

outG ◦ [(φ, ψ)] = G(|φ, ψ|)[(φ, ψ)] ◦ ψ

(|φ, ψ|) ◦ innG = φ ◦G[(φ, ψ)](|φ, ψ|) (direc-S)
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• Reflection:

id = (|innF , outF |)

id = [(innF , outF)] (direc-R)

• Fusion: Let φ : G A B→ B, ψ : A → G B A andφ′ : G A′ B′ → B′, ψ′ : A′ →
G B′ A′ be twoG-dialgebras. Now, given a pair of arrows g: A′ → A, h : B→ B′,
we have:















h ◦ φ = φ′ ◦ G g h

ψ ◦ g = G h g◦ ψ′
⇒















h ◦ (|φ, ψ|) = (|φ′, ψ′|)

[(φ, ψ)] ◦ g = [(φ′, ψ′)]
(direc-F)

This recursion scheme has been developed as a programming tool by by [27, 57] and
also opens the way for potential optimisations of programs based upon fusion, deforesta-
tion etc and gives laws for object-oriented programs á laAlgebra of Programming-school.

Here, we use direcursion to show thatO can be used to simulate the unfold operation
of the finalF-coalgebra. That is given anyF-coalgebraα : A→F A, we define a map from
A to O. This can be done by instantiating the direcursion principle by takingB to be the
one element cpo. The mapφ must then be the unique total map, while the mapA→[1,F A]
sendsa to the total function returningα(a).

Wrapper Naturals

In this section we explicitly construct translation mapsk : A→ O andw : O→ A for the
well-known algebraic data type for naturalsN (i.e. µF whereF X = 1+ X). The coalgebra
sapp: O→ F O has a unique map to the final coalgebraoutF : νF → F νF. This map is
denotedw and defined as follows:

w(o) , inl ⋆ if sapp o= inl ⋆
, inr(w o′) if sapp o= inr o′

Here, we have written⋆ for the element of 1 (which is unique up to isomorphism). We
also write, for definitional equality.

We know that, inC, µF is the initial F-algebra. We can equipO with an F-algebra
structure by defining a mapF O → O. We define a map̂k : F O → (O → F O) by
k̂ = λx.λy.x. Note thatk̂ is the (typed)K-combinator. By composinĝk with inn : (O →
F O)→ O we have

inn ◦ k̂ : F O→ O

as required. Thus we have a unique mapk : µF → O, anF-algebra homomorphism:

k(0) , inn(λo.inl ⋆) whereλo.inl ⋆ is the functionO→ 1+O
k(n+ 1) , inn(λo.inr(k n))

We have a canonical mapµF → νF which embeds finite terms into the set of finite and
infinite terms:
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Lemma 4.2.6 w ◦ k = id

Proof The proof is by induction. For the base case, we show that (w◦ k) 0 = w(inn(λo.inl ⋆)
by calculation:

sapp(inn(λ.inl⋆))
= out(inn(λo.inl ⋆))(inn(λo.inl ⋆))
= (λo.inl ⋆)(inn(λo.inl ⋆))
= inl ⋆

For the induction step, we show (w ◦ k) (n+ 1) = (n+ 1). We have:

(w ◦ k) (n+ 1) = w(inn(λo.inr(k(n)) = inr(w(k(n)) = inr(n)

�

Underk, we see that the naturals 0, 1, and alsoω, are translated into wrappers as follows:

inn λx.inl ⋆ inn λx.inr(innλx.inl ⋆) innλx.x

etc. The corresponding object type is:

NatO= µX.[zero or succ: 1+ X]

The wrapper naturals are hence the followingFOb1-terms (settingUNatO= out NatO):

zero , [zeroor succ= ς(x : UNatO)inl ⋆]
one , [zeroor succ= ς(x : UNatO)inr zero]
...

ω , [zeroor succ= ς(x : UNatO)x]

We are now in a position where we would like to compare add function for naturals to
an add function for wrapper naturals. In other words, givenm ∈ N we wish to define a
function+m : O → O such that+m k(n) = k(m+ n) for anyn ∈ N. For this function we
will write k(m) + k(n) although we are actually defining a section for fixedm. We proceed
denotationally:

+m o , (|φm, ψ|) o

where

φm o =















k(m), if sapp o= inl ⋆

inn (λq.o⋆), otherwise

and where we haveψ = λx.λo.sapp k(0). We have instantiated direcursion such that
[(φ, ψ)] : 1 → O. To see how this computation proceeds we expand the definition of cata-
morphism for (|φm, ψ|) k(0):
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(|φm, ψ|) k(0) = φm(F (|φm, ψ|) ◦ (out k(0)) ◦ [(φm, ψ)])

This shows that the anamorphism is first evaluated. Sincek(0) discards its argument,
this anamorphism will have no role to play provided that the composed function termi-
nates even if its un-evaluated argument involves non-termination. Formally, we prove the
following correctness property:

Lemma 4.2.7 +m k(n) = k(m+ n)

Proof By induction on the numbern. Let mbe an arbitrary but fixed natural number. First
for the base case, we setn = 0 and reason:

(|φm, ψ|) k(0)
= { by definition of catamorphism}

φm (F (|φm, ψ|) ◦ out(k(0)))◦ [(φm, ψ)]
= { sinceout(k(0)) discards its argument}

φm (F (|φm, ψ|) ◦ out(k(0)))
= { functor}

φm ((id1 + (|φm, ψ|)) ◦ (λo.inl ⋆))
= { composition withid1 }

φm(λo.inl ⋆)
= { definition ofφm }

k(m)

By similar reasoning, it holds forn = 1. Note the overloaded meaning of+, both the add
function and in the derivation also coproduct. For the induction step we first assume that
for n− 1 the statement holds, i.e.+m k(n− 1) = k(m+ n− 1), and then derive the required
equality:

(|φm, ψ|) k(n)
= { by definition of catamorphism}

φm (F(|φm, ψ|) ◦ out(k(n)) ◦ [(φm, ψ)])
= { sinceout(k(n)) discards its argument}

φm (F(|φm, ψ|) ◦ out(k(n)))
= { functor}

φm ((id1 + (|φm, ψ|)) ◦ out(k(n)))
= { assumingn > 0 }

φm (inr (|φm, ψ|) ◦ out(k(n)))
= { sinceλx.inr(out(k(n− 1))) = out(k(n)) }

φm (inr (|φm, ψ|) ◦ (λx.inr(out(k(n− 1)))))
= { property ofk and (| · |), assumingn > 1 }

inn ◦ (λy.λx.inr y) ◦ out(φm (inr (|φm, ψ|) ◦ out(k(n− 1))))
= { by induction hypothesis we have

k(m+ n− 1) = (|φm, ψ|) k(n− 1) = φm(inr(|φm, ψ|) ◦ out(k(n− 1))) }
inn ◦ (λy.λx.inr y) ◦ out(k(m+ n− 1))

= k(m+ n)
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�

Lists

A second example is given byF X = N+X×N, the functor for lists of naturals, i.e. its fixed
point given by the initialF-algebra is isomorphic to the natural numbers. The translation
maps are now defined by:

k(Nil) = inn(λo.inl ⋆)

k(Cons a as) = inn(λo.inr 〈k(a), as〉)

w(o) = Nil ⋆ if sapp o= inl ⋆
w(o) = Cons a as if sapp o= inr 〈a, as〉

We save for future work to more generally study the translation of folds on algebraic
data types into folds on their corresponding wrappers. In addition, we would like to also
consider laws for lifting a recursive function, for examplethe factorial function, into its
canonical object and object type. Such “object introduction” rules are left as further work,
and involves translation a recursive definition to its corresponding iterative object-oriented
form. We anticipate that such introduction rules fits well into the idea of deriving object-
oriented programs from (e.g. purely functional) specifications.

Of course the above examples merely scratch the surface of the envisioned applications
of direcursion to objects. Firstly, the use of the fusion lawcould eliminate induction proofs
such as the correctness proof for+ given above. Secondly, we would like to go beyond
natural numbers and lists and also consider design patternsand other canonical object-
oriented phenomena together with their associated algebraic properties.

To summarise, we have defined a translation of some of the key features of initial algebra
and final coalgebra programming into the world of objects. That is, we have defined an
object type which contains the elements of the initial algebra, has constructors for pattern
matching, can be evaluated into the final coalgebra, supports a notion of bisimulation and
supports an unfold operator. That these constructions are quite simple suggests to us that
these wrapper objects are natural and gives us hope that further concepts can be incorpo-
rated into the model without it becoming intractable.





Chapter 5

Conclusions and Further Work

In this licentiate thesis, I have demonstrated the foundations for “algebra of objects”, a
treatment of object-oriented/object-based programs in a style similar to Bird-Meertens for-
malism. This has been done by developing a dialgebraic semantics of object types such
that objects can be interpreted as higher-order data types.

More work is required before we can claim to have establishedsuch a programming
algebra for objects. It seems from the example in chapter 4, that it may already be possible
to harvest some applications of direcursion to object-oriented programs. For example, it
seems possible to definek andw themselves using direcursion, and next define additional
methods inside the object representing a natural number using the same technique. How-
ever, the notion of direcursion is the subject of the author’s current research and the aim is
to find variations of direcursion. This follows precisely the development of Bird-Meertens
formalism. For example, catamorphism cannot always be usedto express the functions
one want to use in functional programming, and as a result Meertens defined paramor-
phism which generalises catamorphism for natural numbers into a notion corresponding
to primitive recursion, to give just one example. The case for direcursion is similar, and
we leave as important future work to refine the notion of direcursion into notions such
as parametric direcursion. Interestingly, objects have their special self-application seman-
tics which means that they are a particular form of higher-order data types. As a result,
specialisations and variations of direcursion seems plausible.

The present work has been mostly denotational in nature. It would be interesting to
extend typed object calculi with the combinators (| · |) and [(· )]. This is, of course, a slightly
different line of research, oriented more towards actual programming languages, than their
denotational semantics.

We have studied apCpo model of object calculi. Other models have been studied,
e.g. the metric approach proposed by Abadi and Cardelli [3] which uses pers (partial
equivalence relations). Future work should more extensively compare with such models.

65
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The treatment of subtyping has been left as further work. This is indeed the subject
of the author’s current research, and notions of naturality/dinaturality appear together with
embedding/projection pairs which are used for coercions. One goal of this line of research
is to explain inheritance in terms of direcursion.
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