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Abstract

Algebraic data type theory has a notion of structural réeonrsCoalgebraic data types similarly
have a notion of structural corecursion. In this thesis wdyst third form of recursion: direcursion.
The other two notions have been used in program derivatgamegctness proofs, and in foundations
of functional and class-based languages. Direcursionherother hand, has not been extensively
studied in the context of programming languages, and ndkiatthe context of algebraic techniques
for object-oriented programming languages or typed olgelculi. Yet, every object in object calculi
is equipped with this recursion principle, and we will dersiwate that this principle can be used in
foundations and in programming (as a powerful and generglafa@omputing with objects), and
when reasoning with object calculi programs, e.g. in canmess proofs.

The family of object calculideveloped by Abadi and Cardelli [3] is one of several prodose
foundations for object-oriented programming languagéss dne of the more general frameworks
available, and arguably the most general framework whidly fwpports subtyping. The study of
direcursion involves dealing with several aspects of digjatculus, with contributions ranging from
giving an operational (natural) semantics of a typed olgattulus and interpreting this semantics
into fixed point calculus while proving soundness and adeguasults to directly constructing a
denotational semantics of typed object calculi. As a rethilt thesis lays a foundation for algebraic
programming techniques and laws for typed object calcidedaon direcursion.
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Chapter 1

Introduction

Algebraic data type theory has a notion of structural raonrs Coalgebraic data types
similarly have a notion of structural corecursion. In thHiggis we study a more general
notion of recursion that occurs in object calculus: dirsgm. This notion of direcursion
has not been extensively studied in the context of objeetted programming languages,
and in particular it has not been investigated as a foundé&dicformal methods for object-
oriented programs with laws and equational reasoning.evety object in object calculus
is equipped with this recursion principle, and we will degkl denotational model for
typed object calculi such that direcursion becomes a uségroperty for each object
type. The overall aim is to provide a foundation for a logiattenables equational reason-
ing with object calculi programs, e.g. in correctness pspbf means of direcursion.

Our investigation of direcursion is driven by an ambitionestablish an “algebra of
objects”, i.e. a methodology and formal method for congiomcof object-oriented pro-
grams much like the so called Bird-Meertens formalism [1&5 7, 8]. In this work we
therefore propose a foundation for this new line of work, amparticular we have found
a promising model of objects as categorical data types,iwhiechope can serve as a basis
for expressing desirable recursion schemes as specied-oathe very general and power-
ful notion of direcursion. The combination of object-oried programming and a theory of
object types of this form seems to have a role to play, pddituconsidering the interest
in expressing recurring idioms such as design patternseimkifject-oriented community.
Our work has the potential of providing a vehicle for suchigiegatterns, allowing them
to be formally expressed, and facilitating formal reasgmiith them in actual programs.

The family of object calculideveloped by Abadi and Cardelli [3] is one of several
proposed foundations for object-oriented programmingleges. It is one of the more
general frameworks available, and arguably the most gétiatzfully supports subtyping.
While exploring direcursion we will cover several aspedtsigect calculus, ranging from
giving an operational semantics of a typed object calcotgrpreting this semantics into
fixed point calculus while proving soundness results, teally constructing a denotational
semantics of object calculi. As a result, this thesis laysuaélation for algebraic program-
ming techniques and laws for typed object calculi based oecdision, and further work
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4 CHAPTER 1. INTRODUCTION

is needed to instantiate this powerful recursion principteactual programs. To this end,
we give in this thesis an example based on an object thatseptenatural numbers. The
simplicity of the construction suggests that further obgented idioms can be treated in
a similar style.

1.1 Motivation

In this section we will further position the research préediin this thesis, and give a more
elaborate motivation for why this research is important.

Firstly, programming languages need a semantical defimitiorder to eliminate inse-
curities and unsound features. This can be witnessed byxé&mple the Simula type sys-
tem, Efitel, and Smalltalk, all of which had significant type insetigs [18, 61, 3]. These
insecurities caused "message not understood”-errorevehilvell-typed object-oriented
program was executing, which is exactly what a typing diguogatried to prevent (in other
words these languages failed to satisfy a type soundnesgt r&n the other hand, a strong
typing discipline renders some programs invalid, spedificaose programs which are not
well-typed. In order to allow more programs to be writterpitally programs which are
more general (e.g. works on more inputs, accepts more setgfc), one wants to extend
the type system. This is the well known conflict between gjriyping and flexibility. An
example of features that increase the flexibility in thissgeare parametric polymorphism
and subtype polymorphism. It should be mentioned that agredtin programming is to
write more general programs. For example, we would like tdendown textbook de-
sign patterns in a programming language, such that they earséd and instantiated in
as many contexts as possible. Extensions to the typingptiiseiwith various forms of
polymorphism, and extensions of the programming constrihetmselves, can help to in-
crease the expressiveness to make it possible to expréspgrams. A third and central
motivation for this research is the correctness of prograitisrespect to a specification.
Even when a programming language has a sound basis (seg)diiscpossible to write
incorrect programs. A correct program is one that satisfiespecification of the problem
it was written to solve.

In this thesis we study foundational (semantical) aspeicts recursion principles in
the context of object-oriented programming languages. r€karsion principle requires
extensions to the typing discipline and to language cootstriWe have taken object calculi
as our core operational language, but much of our work wildleeotational. In fact we
have left as further work to refine the operational semantiagflect the extensions we
develop mathematically in the denotational semanticsréfbee this research is centered
around an extension of object-oriented programs that asaeflexibility while preserving
type soundness. This extension aims at capturing recysrogyamming idioms in a more
succinct and general way. The extension is also tailoreardsvsupporting correctness
calculi, i.e. formal derivation of correct programs. Thagen for this is that when objects
are defined using the computation principle herein, varlaus for optimisations are at
the programmer’s disposal.
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1.2 Contributions

In this section we will describe the contributions of thissis, and briefly explain how our
work is related to other related work.

Ouir first contribution is to link work on generic data typedheto object calculi by
means of higher-order data types and self-applicatiornodigh the self-application inter-
pretation is well-known it seems that we are the first onesutoitgn this context. The
closest previous work is the work of Reus and Streicher [B81,this work is based on
untyped object calculus, does not give the link to direamrsand fusion laws, and has
different scientific aims. Given this interpretation we showt tha generic programming
discipline (a.k.a. Bird-Meertens formalism and polytyprogramming) applies to the ob-
ject calculi setting by spelling out a recursion principtetbe associated object data types.
The recursion principle itself is due to Freyd, and was ithiced in a functional program-
ming setting by Hutton and Meijer. We develop wrappers fgehltaic and coalgebraic
data types which translate ordinary (first-order) data syipto object types. Since we are
working in a self-application interpretation of object @ali, we investigate the denota-
tions of object calculi types and terms in the categu®po and discuss why this category
is needed. The direct interpretation of object calculi ip@po is novel. We further prove
soundness and adequacy for a translation of a typed objecteswithout subtyping into
Fiore’s fixed point calculus, in order to give a solid fouridatfor the self-application in-
terpretation. These results are again original, and firimby dbject calculi to fixed point
calculus.

Most of the work in chapter three and four of this thesis wasiea out as a collab-
oration project between Dr. Neil Ghani of University of Lester and myself. My own
contributions in these chapters includes a substantidlgiahe proofs, examples, and
overall content of chapter 3. The fourth chapter is basecherpaper "Difunctorial Se-
mantics for Object Calculi” where my idea of using recurdiypes to model objects is
investigated. Dr. Ghani and | decided to use the categ@po, and we then developed
the categorical interpretation jointly. The section onpyers arose as a joint result while
| visited Dr. Ghani in 2004.

1.3 Overview

The content of this thesis is based on research results,ahagtich have been published
or have been submitted for publication. The second chaptes thackground in category
theory, semantics, and in object-oriented programmingiguaarly object calculi). It fur-
ther reviews the basic categorical theory of data type$ydheg basic recursion schemes
such as catamorphism, and the type functors for polymonétia types. This chapter is
purely a survey and there are no new results reported in it.

The third chapter on soundness and adequacy is based ongée”’Saundness and
Adequacy of Object Calculi” where we consider the self-aggtion encoding into FPC.
While this encoding is well-known, we provide the first adacpand soundness proofs of
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typed object calculus with regard to this model, and we fioeedink typed object calculus
to a plethora of semantic models, epgpo models.

Next, we study theCpo interpretation in its own right, and pay particular attenti
to the link between object types given by dialgebras anda{gepras. We demonstrate
“wrappers” which give canonical encodings of algebraiatigies as objects. We study in
more detail one particular wrapper for natural numbers,@@mdonstrate that direcursion
can be used to express operations on the constructed oWjeagive a correctness proof
for this simple example.

The final, fifth chapter concludes and plans for further work.



Chapter 2

Background

2.1 Category Theory

In category theory, one studies mathematical structurietysoy means of relationships
between them. These relationships are represented by mmpbetween objects inside
a structure known as a category. An object, such as a grodqearatural numbers, is not
given by its internal (set theoretic) structure, but morstegztly by morphisms going to
and from this object. In other words, an object is charaster{up to isomorphism) solely
by how its surrounding morphisms compose with other morphjswhich is typically
shown in a commuting diagram. It is this, the fact that arromposition rather than, say,
set membership, that is central, that allows us to absyraetht many recurring themes in
a single categorical notion.

Category theory has been termed "abstract nonsense” baitk bygvocators and de-
tractors. Indeed, Goguen [39], in his "Categorical Martidi&sadmits that category theory
can be abused, for example by excessive generalisatioln ésuescribing Galois connec-
tions as adjoints without actually making use of the addeteradity). However, Goguen
also gives a plethora of examples where category theory atedjery theoretic methods
have proven successful in computer science. His exampige feom automata and types
to programs and program schemes, polymorphism, data redimemo models of lambda
calculus using cartesian closure, notions of computatisitey monads, initial algebra se-
mantics, and graph theory. Goguen also tries to explain alggory theory has been so
successful, arguing that set theory has failed to providenancon agreed upon founda-
tion for mathematics (e.g. Aczel suggested an Anti-Fouodaxiom to model non-well
founded sets occurring in computing, e.g. in modelling Mila CCS). One reason why
category theory has proven so useful in computing sciencaciording to Goguen, the
fact that computing science is at an early stage, where tegaacal style helps in driving
the research forward.

In this thesis we apply category theory to the denotatiomalamtics of object-oriented
programming languages. We use category theory to exprésstaypes as higher-order
data types. Indeed, category theory gives a suitable layggteaformalise notions of data

7



8 CHAPTER 2. BACKGROUND

types, as shown by Lehmann and Smyth [47], Manes and Arbib §8 many others. A
significant amount of research has also been devoted toigeiata type theory, e.g. [52],
and to taking Bird and Meertens’ calculus for derivation lgfosithms from specifications
(the so called Bird-Meertens formalism) into a more genfeaahework of category theory.
Malcolm showed that, in a category theoretic frameworkgpam derivations can indeed
benefit from category theory because the derivations thesseeach a level of genericity
with respect to data types. For example notions of recuisiom up as beautiful universal
constructions which are amenable to formal reasoning {f@grogram calculations).

More concretely, the merits of category theory will appeathie modelling of data
types using functors. Functors give us a succinct way ofesging the signatures of alge-
bras, coalgebras, and dialgebras, which has a value wheanfggm program calculations.
Further, we require a non set-theoretic model (domain #t&gexpressed in an axiomatic
categorical style) to model object calculi denotationally

Definition 2.1.1 (Category) A categoryC consists of a class Ob of objects and a class Ar
of arrows, together with a typed binary composition operatavhich is associative and
has identities. An arrow f has a domain, written ddim and a codomain cqd), both

of which are objects (we write fdon(f) — cod(f)). Any two arrows fg compose into
go f exactly when cod) = dom(g). We require fo (g o h) = (f o g) o h) whenever fg, h
have the required domains and codomains. Finally, for angabA, there must exist a
designated identity arrow jd: A — A, with f o idgon(ry = f and idkogry o f = f for any
arrow f in Ar.

We follow standard convention and writ&A, B) or [A, B] for the class of arrowd
such thadom(f) = A andcod(f) = B (thehomsex. We write Ar(C) when the categorg
is not clear from the context (similarly f@b).

Typical examples of categories are the empty cate@atye categoryt with one object
and its identity arrow, the catego8et of sets and total functions, and the categopp of
w-complete partial orders and continuous functions.

Functors and Natural Transformations

Definition 2.1.2 (Functor) A functorF : C — Dis a pair of total operation§ : Ob(C) —
Ob(D) (the object map) andF : Ar(C) — Ar(D) (the arrow map) such that domain,
codomain, composition, and identities are preserved:

(i) Ff:F(domf)) — F(cod(f))

(i) FfoFg=F(fogQ)

(i) Fida=idra

Definition 2.1.3 (Difunctor) LetF : C°P x C — C. SuchF are called(endo-) difunctors

Definition 2.1.4 (Natural Transformation) Given functorsF,G : C — D, a natural
transformatione : F—G consists of a family of arrowgry : F X — G X)xec such
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that for every arrow f: X - Y inC:
FX 2% G X

|

FY —GY
ay

Gf

Cartesian closure, Limits and Colimits

Most interesting categories have additional structure. eéxample, the categor§et has
finite cartesian products and finite coproducts (also knandigjoint sum) etc. The notions
of limits and colimits generalise such structural promerfor arbitrary categories.

Definition 2.1.5 (Product) A product of objects X and Y is an objectXf together with
arrows (“projections”) 3 : X XY — X andn, : X xY — Y such that for any arrows
f:Z—> X g:Z — Y there exists a unique arroyf, gy making the following diagram
commute:

Z
N :
(g N\
;
X

X XxY Y
T T2

Definition 2.1.6 (Coproduct) A coproduct of objects X and Y is an object X together
with arrows (“injections”) inl : X - X+Y — X andinr: Y — X + Y such that for
any arrows f: X - Z,g: Y — Z there exists a unique arrofif, g] making the following
diagram commute:

inl inr

X . X+Y _ Y
Tha 2
\

z

Definition 2.1.7 (Exponentials) LetC be a category with finite products and terminal ob-
ject. The exponential of B by A is an object Rlso written[A, B]) together with ar-
row apply : BA x A — B such that for every f. C x A — B there exists an arrow
curry f : C — B” such that the following diagram commutes:



10 CHAPTER 2. BACKGROUND

BAx A 2PPly

curry f xida “

CxA

The denotational semantics of typed lambda calculus carvea gy Henkin models
[43]. A Henkin model is a many-sorted algebraic structurini(typed) magpp(a typed
applicative structure), satisfying two conditions: exdiemality (i.e. ifapp f x= app g x
for all x, thenf = g), i.e. appis one-to-one [59]) and an environment model condition (a
total meaning function is definable). However, in a catedloepretic setting we generalise
Henkin models into the notion of cartesian closed categorie

Definition 2.1.8 (Cartesian closed categoriesi cartesian closed catego(ZCC) is a
category with finite products, exponentials, and a termatgéct.

Partial Cartesian Closure

In this work we will work in a categorpCpo rather than, say, the category of small com-
plete pointed partial orders (posets with least elemented under lubs ab-chains) and
continuous functions. The categqrgZpo gives a direct treatment of non-termination by
means of partial continuous maps. This category consistsafmplete partial orders and
partial continuous functions. Itis formally defined as éolk:

Definition 2.1.9 (pCpo) The categorpCpo consists of small complete partial orders (posets,
possibly without least element, closed under lubsathains), and partial continuous
functions, i.e. partial functions fP — Q such that:

e Monotonicity. for every xx' € P, if x Cp X/, then either {x) is undefined, or
f(x) Cp f(X) with f(x") defined.

e Continuity: for everyw-chain %,i € 1in P,
Lk f (%) = (LX)

where e~ € means that either e and are both undefined, or else they are equal.
Theu notation is intended to be undefined if evefyj is undefined; or else denote
Liksk, Where Ig is any index for which () is defined.

A more abstract representation of partiality can be givetaking partial maps as total
maps together with domain of definitioni.e. work in the Kleisli category of a lifting
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monad. The standpoint for such a development is to assumiegocg of values (which
means total maps) and next consider a notion of computatiere( non-termination) as
an additional structure on the category of values. Tecligiamne arrives at representing
partial maps by introducing a subcategory of admissableam@¢subobjects) giving the
domains of definition for the partial maps. In this thesis w&ehchosen to work directly
with the above more direct definition pCpo.

We denote byCpo the subcategory giCpo consisting of all cpos and total continuous
functions. The salient facts about the categapi@po andCpo can be found in [64]Cpo
is cartesian closed with finite coproducts. We give a briehsary of the structure of
pCpo:

e Zero object: The empty cpo is a zero object lCpo. That is, it is both an initial
object and a terminal object.

e Coproducts: If AandB are cpos, their disjoint union is the coproducodndB in
pCpo.

¢ Partial Products: If A andB are cpos, the cartesian product of the underlying sets
is their partial product. It is not a product as the domainefirdtion of the pairing
(f,g) is the intersection of the domains é6fandg and hencef st(f,g) # f etc.
We denote the partial product Y ® B to remind ourselves it is not a product.
pCpo has partial products given via the base cate@y for a pair of partial maps

(u.u): (RP)—(Q.Q)by

UeU 1 PxP = UxU:(xx) {(“(X)",’(X”’ T u(x) L andur(x) |
undefined otherwise
o Kleisli/Partial Exponentials: If AandB are cpos, then the set of partial continuous
functions fromA to B forms a cpo as usual. We denote this épe=~ B or [A, B].
As expected, partial exponentials are right adjoint to thgial product.— ® A 4
A= - : Cpo —— pCpo. Note the domains and codomains for the functors
involved in this adjunction.

e Compactness:pCpo is algebraically compact in that all locally continuousdtors
have coinciding initial algebras and final coalgebras [36].

The adjoint situation for Kleisli exponentials gives anismrphism such thggCpo(A, B) =
pCpo(1® A, B) = Cpo(1, A= B). Note that the last homset gives the 1-elements a k a
global elements o€po, so that this adjunction corresponds to our intuition araked
shows thalA = B internalises the partial mags— B into pCpo.

Algebras, Coalgebras, and Functors

In pCpo, a covariant endofunctdf : C —— C has a fixed point given by an object
A = FAwhich is the initialF-algebra or finaF-coalgebra.
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Definition 2.1.10 (Algebra, Coalgebra)Given a functoF we say thatan arrow : F A —
A is anF-algebra with carrier A. Suck-algebras are the objects in a categdkig(F) for
every functoir. The dual notion is that df-coalgebra, i.e. reversed arrows: A — F A,
The arrows between (co)algebras @&eéhomomorphisms, i.e. arrows h such that, For
algebras the left diagram below commutes and Faoalgebras the right diagram below
commutes:

FA Fh FB A h B
@ Alg(F) B a| CoalgF) |B
A P B FA T FB

We writeinng for the initial F-algebra anaut- for the finalF-coalgebra. InpCpo we
haveinn:="* = out for locally continuous.

Lemma 2.1.11 (Lambek) An initial algebra FX—~ Xisan isomorphism.

Proof . Ei
Ex oY ppx FINE oy
inng F inng inng
X Oute FX inng
inng o out: = 1 by uniqguenes®ut: o inng = Finng o F oute = F(innpoout) = F1=1

O

Dialgebras and Difunctors

The equationD = [D, D] suggests, by cardinality grounds, that the existence oh su
recursively defined types is not at all obvious, e.g. thereleéarly no setD such that
D = [D,D]. The key feature of this example is that the mapping of arcii) to the
object D, D] is not a functor in that the left occurrence Bfin the expression), D]
occurscontravariantlywhile the right occurrence isovariant Such mappings are called
difunctors

Definition 2.1.12 (Difunctor) If Cis a category, a difunctoris a functér: C°PxC — C.
A fixed point of such a difunctor is an object X such that K X X

There has been much research on finding fixed points for difusic The classic pa-
per [71] defines a category of embedding and projection pdiese the functoF acts co-
variantly and from which a fixed point & can be derived. More recently, [37, 36, 28, 30]
have used the more axiomatic settingatfebraically compactategories. i.e. categories
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where all (in a suitably qualified sense) covariant functage an initial algebra, the in-
verse of whose structure map is the final coalgebra. Theeklaut weaker, property of
algebraic completenesserely requires all (again, in a suitably qualified sensepdant
functors to have an initial algebra.

The axiomatic approach is potentially easier to apply to-domain theoretic models
such as realizability models and models containing interaifeatures. Since we do not
wish to over commit ourselves to a specific semantic settirtpia stage, we therefore
implicitly follow the axiomatic setting of [28, 30] in workig in the Kleisli category of
a lifting monad. However, for concreteness, we are expfigiorking in the canonical
model of the categorgCpo described above.

It is worth making the observation here that, apart from cactpess, we would have
liked our ambient category to be cartesian closed and haite ioproducts so that we
could manipulate polynomial functors and their (co-)algsbusing the standard tech-
nigues. Indeed, settling for partial products and Kleigpenentials may seem like a poor
alternative. However, any compact category has a zero ofifetticed as the fixed point
of the identity functor) and a CCC with a zero object is indstent as

A=Ax1=Ax0=0

Hence we cannot get away from working in a non-cartesianedia®tting. Neverthe-
less, the subcategoGpo (where values take their denotation) is, of course, stilesaan
closed.

So given a category likpCpo, how does one find fixed points for difunctors? When
working with difunctors, algebras and coalgebras gersatidialgebras Note the pres-
ence of both covariance and contravariance in a difunctans¢éhat we have no need for
the dual notion of a dialgebra. The term dialgebra has skgefmitions in the literature
(see for example [37, 6, 67, 42]), and we will use the folloyvitefinition which is due to
Freyd [37]:

Definition 2.1.13 (Dialgebras) A G-dialgebrafor difunctorG : C°P x C — C is a pair of
objects AB together with an associated pair of arrows G AB— Bandg: A— GBA.

The category of dialgebras has maps between dialgebras giviollows

Definition 2.1.14 (Dialgebra Maps) Given G-dialgebras(A, B, ¢, %) and (A, B, ¢', ¢),
a G-homomaorphisnis a pair of arrows(g : B — B’,h : A’ — A) such that the following
diagrams commute:

cas-? .8 A" GBA
Ggh\ \g h Ghg
GAB — B AN —» GB A

¢ '
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A key idea in axiomatic domain theory is to use algebraic cachpess to find fixed
points for difunctors. Here is a sketch of the construction:

Lemma 2.1.15Let G : C°P x C —— C be a difunctor on an algebraically compact
categoryC. ThenG has a fixed point.

Proof Form the functoG’ : C°Px C — C°P x C by following thedoubling trickproposed
by Freyd:
G XY= (G(Y, X),G(X,Y))

Since(C is algebraically complete, so &°P x C and thusG’ has an initial algebra, say
G’'(X,Y)—=(X,Y), which is given by mapéng : X—G(Y,X) andouis : G(X,Y)-Y.
By Lambek’s lemma,nng andouts are isomorphisms. Next, the paouis,inng) :
(Y, X)>G'(Y, X) is easily seen to be the fin@l'-coalgebra. Sinc€ is algebraically com-
pact, so iC°P x C and hence the initigb’-algebra and fina’-coalgebra coincide. Thus
X =Y and we have &-fixed point as required.

mi

Of course, while the above proof may seem simple, much of thik vs hidden in
proving that i) algebraic completeness and compactnegsraserved by taking products
and opposite categories; ii) formalising exactly the clafsdifunctors which are to be con-
sidered; and iii) proving that certain categories are algieblly complete and compact.
Further subtle and technical issues arise, e.g. that thesgbdbints should be suitably pa-
rameterised etc, but for this presentation we have decidglbss over the details. See [28]
for details. Having said this, the modularisation of thestaunction of fixed points is very
elegant. Notice also that more is true than we claimed. Itiquaar we constructed a spe-
cific fixed point of a difunctor with a universal property, naly) the initial dialgebra. We
shall put this universal property to use later.

2.2 Theory of Data Types

Algebraic data types (without parameters), such as listsems, are modelled as least
fixed points of functors. These fixed points appear as initigebras of the associated
functor. Dually, coalgebraic datatypes (without paramgteuch as streams, are modelled
as greatest fixed points and appear as final coalgebras.

In the present work, we use will categorical higher-ordéadgipes to model object
types. In this section we will review the definitions and ifestor the first-order cases,
which we later aim to generalise to a specific higher-ordse «d object types.

Bird-Meertens Formalism

The generic theory of data types we review in this sectionftsnoreferred to as Bird-
Meertens formalism [54, 7, 9, 72]. This generic theory obdgipes serves the purpose of
supporting formal methods for program construction, beeawrrectness proofs become
particularly short and also amenable to automation [52]addition, this generic theory
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of data types provides a mathematical analysis that gesselats for program transfor-
mations, and reveals and classifies the structure of regupriogramming idioms in a rich
mathematical setting of category theory.

It was Malcolm [52] that made the program calculation comityuswvare of Hagino’s
ideas on giving categorical semantics to data types [41,Bgentially, Malcolm demon-
strated that the category theoretic approach lent itsdlftavgprogram calculation. Later,
Fokkinga [35] pursued Malcolm'’s work further, and develdpapics such as algebras with
laws, mutumorphism, and hylomorphism. More recently Uusiad Vene have developed
additional recursion schemes such as primitive (co)réouf3 3].

One striking advantage of the categorical approach to ga&stand recursion, is the
fact that data types (and therefore programs) come with thatscan be used for transfor-
mation. Such laws for example give conditions for when wereanove intermediate data
structures or improve progranffieiency by simplifying programs. These laws include the
so calledfusion laws We will review some of these laws in this section, but muclhef
application of such fusion laws to our model of object cdleul albeit very interesting,
outside the scope of the present thesis.

Notions of Recursion

Definition 2.2.1 (Catamorphism) Let (uF, inng) be the initialF-algebra, andp : F A —
A an arbitrary F-algebra. (¢) : uF —— A is defined to be the unique homomorphism in
the following commuting diagram:

inng
F uF ——— uF

F(2) l { (¢)

FA A

We will give some examples of catamorphism, and for this wetrobloose some object
A andB. Objects are data types, and one of the simplest data typéatighe natural
numbers. The naturals are given as the initial algebra ofuthetorF X = 1 + X. Hence
there are operatiorian : 1 + Nat — Natandinn™ : Nat — 1+ Nat Because we are
in an algebraically compact setting, we writat for inn~* since the inverse of the initial
algebra will be the final coalgebra. This model of algebraitadypes unifies all the data
type constructors in one single operaiton by means of a coproduct. However we have
inn = [zerqsucg, i.e. the ordinary constructozero and succare in fact defined by
the initial algebra. Now that we have given the data type &turals, we can easily use
catamorphism (structural recursion on natural numberdefme sum and product of two
naturals, and the predecessor function:

add nm
mult nm
pred

([Ax.m, sucg) n
([Ax.zerqg Ax.add m %) n
([id + [zera sucd])

1> 1> 11>
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Next, we review the three properties satisfied by any catphiem. These three prop-
erties are useful in program calculation since they tell s ko replace expressions in-
volving catamorphisms with more simple expressions:

Corollary 2.2.2 (Properties of catamorphism) Let (uF, inng) be the initialF-algebra.
e Cancellation: For any otherF-algebra¢ : F A — A we have
(¢) o inne = ¢ o F(g) ((-)-Serr)
e Reflection:
id = (inng) ((-)-Rerv)
e Fusion: For anyF-algebrasp : FA —- Aand¢: FB — B,and arrow f: A— B
fop=EoFf = fo(p)=1(9 ((-)-Fusion)

The dual of catamorphism is called anamorphism. Anamonpigghe notion of struc-
tural corecursion, and is associated to each coalgebrtidyfze. Since we are in an alge-
braically compact setting where coalgebraic data typesadgebraic data types coincide,
anamorphism is simply another (co)recursion principle atadypes. In this setting, both
naturals and the dual “conaturals” (given as the assocfatablcoalgebra) contain the in-
finite natural number. Note also that the functjpred above is in fact the final coalgebra
for Nat. For full generality we will writevF for the carrier of the final coalgebra, although
in the algebraically compact setting we are assuming, we hefactvF = uF:

Definition 2.2.3 (Anamorphism) Let (vF, out:) be the finalF-coalgebra, andy : A —
F A an arbitraryF-coalgebra.[¢] : A—— vF is defined to be the unique homomorphism
in the following commuting diagram:

ou
VoL

(v] Fly]
FA

A

A stream is an example of a coalgebraic data type. The stréamatoral numbers is
given as the final coalgebra of the funckoK = Natx X. Such a stream is always a natural
number paired with the stream of all remaining numbers, Wwigaovitnessed by the type
Stream— Nat x Streamof the corresponding maput The destructoreeadandtail are
not visible in this form, but are in fact defined Kyead tail) = out

We can use anamorphisms to create values for coalgebraidygsts. For example,
to create a stream of all natural numbers greater than sommdenn, we can use an
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anamorphism. Similarly, the function that zips togethey streams into a stream of pairs,
and the stream that repeatedly applies a funcfido its argument creating a stream of
numbers, f(n), f(f(n)), ..., are examples of anamorphisms:

nats £ [(id, suco]
zip £ [{my x 71, w2 X 72) o (OUtx out)}
iterate f = [(id, f)]

Just like catamorphism, anamorphism satisfies some usefpéfies:
Corollary 2.2.4 (Properties of anamorphism) Let (A, out:) be the finaF-coalgebra.
e Cancellation: For any otherF-coalgebray : B — F B we have

out o [y] = Fly] oy ([-)-SkLr)

o Reflection:
id = [out] ([-)-Rerv)
e Fusion: For anyF-coalgebragy : B— FBand¢é: C — FC,andarrow f: B— C
yof=Ffoy = [y]of =g ([-}-Fusion)

Catamorphism and anamorphism aréisient to express at least every primitive re-
cursive function, and in a setting with exponentials alsacfions such as the Ackerman
function [73]. Still, it can sometimes be cumbersome toevfiinctions as catamorphism.
Typical examples of the problems arise when we considerlsipnimitive recursive func-
tions on the naturals, for example the factorial functiore Tactorial function must be
defined usinguplingin the following way:

fact 2 o ([AX(L,0), Af,ny((n+ 1)« f,n+ 1)])

The problem is that at every recursive stigygt depends not only on the value computed
at the preceding recursive step, but also multiplies tHisesaith a counter that has counted
the number of recursive steps that have occurred so fan €. is multiplied byfact nto
producefact n+ 1. This does not immediately fit into the form of a catamorphianless
we use the tupling trick. Therefore, it is practical to alswé a variation of catamorphism
that captures precisely primitive recursion:

Definition 2.2.5 (Paramorphism) Given¢ : F(A x uF) — A, the paramorphisrig) :
uF — As defined to be the unique arrow making the following diag@mmute:

inng

FuF —— > 4F

F (o), id;@\ {dtﬁb

F(A X uF) A
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Now factorial is more simply defined bgct = {[succo zera A(f, ny.mulsucc n )]),
which is using precisely primitive recursion on natural mars, with the two cases sepa-
rated in a coproduct. However, as proved by Meertens [5&jramorphism is still nothing
but a catamorphism in disguise:

Lemma 2.2.6 (Meertens [56]){¢) = m1 o ({¢, iNnno Fr2))
Again the recursion scheme comes with some basic properties

Corollary 2.2.7 (Properties of paramorphism) Let (A, inng) be the finaF-algebra.

e Cancellation: For any arrow¢ : F(Ax uF) — A we have

(@) oinn = ¢ o F({¢), id) (¢-D-SeLr)

e Reflection:

id = (inng o Frry) ({-)-RerFr)

e Fusion: For any arrowse : F(Ax uF) — A,y : F(Bx uF) - Band f: A— Bwe
have

fop=yoF(fxid = folp)=qw (¢-Fusion)

Parametric Data Types

So far we have not considered data types which have paraneter lists or trees of
arbitrary element types. Such data types are however easy to modelsaihe categorical
framework. Instead of having one fixed point associated th elata type, we introduce
bifunctorsF : C x C — C and use them to give a family of fixed points indexed over the
type parameter:

Theorem 2.2.8 (Data Functors [52])Supposé : C x C — C is a bifunctor such that for
any object X there exists an initigk-algebra(uFx, inng,). Then the mapping X = uFx
can be extended to an endofunctor®@iby defining

T f = (inno F(f,id)) (map-Cxr)
The functorT : C — C is called thedata functoof F.

Proof We must show thar is indeed a functor, i.e. that it preserves identities amdmm
sition. First, identities:
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Tid

= { map-Ckr }
(inno F(id, id))

= { F is bifunctor}
(inn)

= {()-Rer}
id

Next, composition:

TfoTg
= { map-Ckr }

Tf o (inno F(g,id))
= { (-)-Fusron }

(inno F(f o g,id))
= { map-Ckr }

T(f oQ)

Note that we could usé-)-Fusion because the condition for the rule was satisfied,
namely:

Tf oinno F(g,id)
{ map-Ckr }

(inno F(f,id)) o inn o F(g, id)
= {(:)-Ser}

inno F(f,id) o F(id, (inn o F(f,id))) o F(g, id)
= { F bifunctor}

inno F(f o g,id) o F(id, (inn o F(f,id)))
= { map-Cer }

inno F(f og,id) o F(id, T f)

mi
The previous theorem immediately dualises to the settirapalgebraic data types:

Corollary 2.2.9 (Codata Functors) Supposé : C x C — C is a bifunctor such that for
any object X there exists an fingk-coalgebra(vFx, out, ). Then the mapping X = vFx
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can be extended to an endofunctor@by defining
T f = [F(f,id) o out] (comap-¥F)

The functorfT : C — C is called acodata functoof F.

Polytypic Programming

The above generic theory of data types makes it possibledeerograms correctness
generically i.e. by considering the funct@ representing the data type to be a parameter,
we can derive correctness proofs which are independenegddhticular choice we make
for the functor. A natural question to ask is if we can makedhme generalisation in
programming languages, and thus make it possible to agtiefine the associategneric
functional programs inside the programming languagefitsel

The answer to this question ifiamative, and there have been several languages that
attempts to support “polytypic programming” (in one styleamother) which means pa-
rameterizing programs with respect to the “pattern” fundidor data types. We will
review three such languages in this section: Charity, Relg& Generic Haskell.

Charity

The programming language Charity [23] automatically pdegifunctions such as catamor-
phism for each user-defined data type. As a programming &geylCharity is functional
and strongly normalizing, which means that all programstan@inating. From the per-
spective of this thesis we are primarily interested in reimartypes which are higher-order,
whereas Charity can only model inductiweinductive (first-order) data types. However,
an extension, Higher-order Charity [70], has been propesedh introduces exponential
types. However, the mixed variant data types that we usasrthsiscannotbe modelled
even in this extension of Charity (only covariant positians allowed).

PolyP

The programming language PolyP takes fiedent approach than Charity. In PolyP the
programmer can define their own functions by induction olerdtructure of the pattern
functorF. This means that given a concrete data type, such as listcidn such amap:
can be instantiated. Accordingly, PolyP automaticallyagates one map function for each
user-defined data type, given only one single definitiomap In PolyP’s standard library
the map function is first defined using a polytypic definitipolftypic meaning exactly
induction over the structure of pattern functors):

polytypic fmap2:(a—c) > (b—-d)y—->fab—-fcd
= Ap r — casef of
goh —fmap2pr-e&fmap2pr
geh —fmap2pr-@fmap2pr
Unit — Const()
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Par —p
Rec —r
dog — pmap(fmap2p)
Const t— id

The functionfmap?2replaces the built-in Haskell functidmap which must be user-defined
for every new data type. Given a user-defined data ypPolyP allows both to use the
constructor for this data type by means of generic functionsandout (also generated
for all user-defined data types). The ab@wap2extends these constructor functions into
functors, where the action on functions corresponds to #te flinctors given above cate-
gorically.

Now that we havénn, out, andfmap2for any data type, we can define the map function
pmap as well as the catamorphistataand anamorphisrana

pmap:(a—b)—-Da—-Db
pmap f=inno fmap2 f(pmap f o out

catai:(Fab—h)—-Da->b
cata¢ = ¢ o fmap2 id(cata¢) o out

ana::(b—-Faby—-b—-Da
anay = inno fmap2 id(anay) o ¢

Generic Haskell

In Generic Haskell [44, 51], polytypic functions are defirgdinduction over kinds, and
so have kind-indexed types. Here is an example of a kindxediéype definition of the
map function:

typeMap {x]} st=s—t
typeMap {x — v]} st=VY ab.Map{«]} ab— Map{v]} (s @ (t b)

Instead of the type case statement inside PolyP, the defirofigmap(the map func-
tion) has a clause for each kind-index:

gmap{t:: «}:: Map{«} t t

gmap{® | gmapA gmapHBInl a) = Inl (gmapA a
gmap{ @ | gmapA gmapBInr b) = Inr (gmapB b
gmap{® | gmapA gmapHBa® b) =gmap A av gmapB b
gmap{Unit} Unit = Unit

gmap{Con ¢ gmapA (Con g = Con(gmapA a

Generic Haskell is more powerful than PolyP in that it suppar larger class of data
types. In addition to the unary regular data types suppdsteBolyP, Generic Haskell
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allows polytypic functions to be defined over potentiallyna@gular data types of arbitrary
kinds [60]. However, in allowing more data types, more i@akquired when defining a
polytypic function. In particular, Generic Haskell candaectly defineanaandcatasince
datatypes are not represented by fixed points [60].

2.3 Semantics of Programming Languages

In the first chapter we gave some brief motivation for why opeds formal semantics
when considering extensions of programming languageshignsection we will give an
introduction to the basic notions that occur in formal seticarof programming languages,
particularly the distinction between operational and dational semantics, and the theo-
rems and results that are associated with such semantiesrabef this theorems will be
proved in a particular setting in Chapter 3.

We have explained that the motivation to this work was bothas#ical foundations for
object-oriented programming languages and also correstifdobject-oriented) programs
with respect to specifications. In particular, we claimeal tthe notion of recursion we
study in this thesis comes with laws for program optimisatransformation (such laws
are well-known from the Bird-Meertens formalism). Becawo$ehis, formal semantics
plays another important rolé. Itis the source in which wegmathematical foundations to
the laws, i.e. to the logic that establishes how we can fdyndalrive/reasoycalculate with
object-oriented programs. Of primary important to us isatational semantics, since we
will use universal properties of category theory to expgesgeric laws about object types.

Operational Semantics

In operational semantics one evaluates a formal languaga abstract machine by means
of one or more evaluatigreduction relations. The meaning of a term in the formal lan-
guage is defined to be thalue(also known aganonical formor normal fornj, i.e. to the
term (contractum to which the term (callededexin this context) reduce after all possible
reductions have been applied. In other words, a value cdrentirther reduced. Hence,
it is crucial that it does not matter in which order we applg teduction rules, since oth-
erwise a single term would have multiple meanings. Thisreb® property is known as
confluencéor Church-Rosser propertyf the reduction relation.

There are several approaches to operational semanticbjg-step (natural) semantics
and small-step (reduction) semantics. In small-step séosarwe do not immediately
reduce to canonical forms, although the transitive closiiremall-step reduction must
yield canonical forms when such exist. In small-step seiante distinguish between
strongly normalisingandweakly normalisingeduction relations, the former means that
canonical forms always arise no matter what order we apmyréductions to a term.
Weak normalisation merely requires that for any given temere existsomereduction
sequence that gives a canonical form. Typed object caltudiied in this thesis have
confluent small-step semantics given by Abadi and Card#lli But typed object calculi
can encode untyped lambda calculus, and therefore we chopetto have neither weak
nor strong normalisation (consider e.g. the t&m (AX.XX)(1X.XX)).
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We will be solely be concerned witlypedcalculi (or calculi for which there is a type
assignment system). There are several reasons for theshietyped calculi as opposed to
untyped calculi. First of all, a type system gives a lighye¢imethod for proving absence
of certain bad program behavior, such as “method not unai$errors when invoking a
method that is in fact not available in a particular classygetsystem can indeed be seen as
giving an - often static - approximation to the intended lvédraof the computer program
[62]. Types also ensure a disciplined programming. For gtejmn this thesis we use
recursive types to make precise that an object is given sérsavhen it is applied to value
of its own type. This condition could not have been asserteghiuntyped system. As a
result, more structure is associated to object types, famgte, the recursion principle that
is central to this entire thesis. There are additional nes$or using typed calculi, such
as dficiency, language safety, and so on. However, we will not masson to delve into
these additional topics in the present thesis.

When giving an operational semantics one must take cardittedbe sets of terms and
types. Typically, this is done first with inductive definiti® for raw terms and types, and
then by selecting the well-formed types and well-typed &ramd quotient with respect to
a suitable notion of alpha congruence. The resulting smsdies are termed well-formed
terms and well-formed types, and the rules are called juégésn For example, the typing
judgements determine the set of well-typed terms, and kinlidgements the set of well-
kinded types. The latter notion will not be needed in the gmnéshesis. Instead, a well-
formed type consists of a sequence of distinct type varsalaléype context) together with
a type whose free type variables appear in the sequencelaBymna well-formed term
consists of a type context and a similar sequence of vagatith type assignment of the
form x : 7 (term context), again such that all the free (term) varigolecur in the context.
However, for terms we require additional constraints talhoamely that every term can be
formed by a finite number of applications of typing judgenseiithe following judgements
are used in typing rules (we postpone explaining them):

Definition 2.3.1 (Judgements)

FO well-formed type context

FT well-formed term context
O,l+to=<1 type/subtype judgement
O,T+vo < vt subtype judgement with variance
O,'rm:t typing judgment

A Framework for Operational Semantics

When we give an operational semantics in this thesis, weoft#in need some basic rules
and definitions for context formation. For convenience weettherefore chosen to give a
fragment that we calh.. This fragment sets up the basic notions of well-formed exist
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and a typing judgement for projecting out a variable fromdbatext (the Wr X rule be-
low). The fragment assumes that there existsgaibtype variableslJ of term variables,
and sets of termsX() and types 1) (we regardA, (7, M) as function to allow arbitrary
notation for these two sets). These sets will however be elfitiferently depending on
the calculus the fragmentis included in, and the definitemesin fact by mutual induction
on the sets of terms and types used in any particular calcuilkes A, , operational seman-
tics given in this thesis will also assume some countabk aemethod labelsL(), type
variables V), and term variabledJ). For the elements in these sets we will use symbols
Lo, ..., {n fOr labels, xo, ..., X, for term variables anio, ..., X, for type variables. A well-
formed type consists of a sequence of distinct type varsaaléype context) together with
a type whose free type variables appear in the sequence. @héowned type contexts
are given in definition 2.3.2.

Note that operational semantics is given in a meta-languwageh has a notion of
tuples (e.g¢ for the empty tuple, an{®, X)) and sets. We writee | andi € | —{j} to say
thati is an arbitrary index from a index sktand, for the second case, from the same set
but without the elemenit We will also use a universal quantifi&ti, € |, to indicate that a
premise of a rule is in fact an abbreviation for a list of preesi of slightly more complex
form. In order to simplify contexts where we haXe< T whereT is a designated “greatest
type”, we will allow the shorthan for X < T.

When we give an operational semantics we want to prove ocestaindness results.
First of all for types:

e Free variables are in context at any reduction step all well-typed terftypes with
free (type) variables must be formed such that every frembiaris listed in the
context. This is a very basic requirement, but it still netedse checked.

e Substitution lemma for types the denotation of a term where a type variable has
been substituted by some concrete type should satisfy a mompihism property.
Informally, the property means that this substitution cdinez be done denotation-
ally or in the operational semantics, with the same result.

¢ Unique/minimal type property: in a system without subtyping, unique typing is
desirable. Unique typing means that for any term there istixane type that can
be inferred from the typing judgements. In a system with ibg, the weaker
property of type minimality is instead desirable. This prdp states that the least
possible subtype exists and can be inferred from the rules.

e Type preservatior typings must be preserved during reduction. This notiaise
termed subject reduction.

e Type progress while reducing a term we will either reach a normal form (tiet),
or the term will take a step according to the reduction rul&gpe progress is a
statement about “stuck terms”, i.e. terms that are neitbkres, nor does the rules
tell us how to reduce them. Afilerence between big-step and small-step semantics
appears here. If a term is in normal form in big-step semantien the rules are
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Definition 2.3.2 A. (7", M))

Type context® and term contexts are generated by the following two rules

O | (O©,X<7)y whereXeVandrteT

r O | ,x:7y wherexeUandreT

and well-formed contexts are given by the rules:

Con 0 Con <
FO®

F O F(O,X<7)

whereX e V,X§¥0®, 7€ T

V-Con 0 V-CoN X VAL X Tyee X
FO Ortl OrI,X:0) F(O,X=ZT1)
OF OrI,X:T) O.IX:0) X0 O,X<1HrX

wherex e U, x §T

applicable ad infinitum (values reduce to values). For sistalp semantics, a term
in normal form is stuck by definition. Type progress (for a Bratep reduction
relation) states that the reduction never gets "stuck” é&mmts other than values,
and thus gives a certain completeness result for our remuctiles. Absence of
“stuck states” can also be proved for a big-step reductitatiom e.g. by defining
an algorithm and proving that this algorithm always compuateorrect result given
well-typed input (c.f. Abadi and Cardelli [3]). Progressdgpreservation is known
together asype soundness type safety

Further, after giving a reduction relation we want to prove:

e Substitution lemma for terms: this is similar to the substitution lemma for types,
only here we replace a term variable with some term insteadtygbe variable with
a type. Again, the lemma makes a statement of a homomorphigpe gty of substi-
tution.

e Soundness:if a termt reduces to some terth then the denotations of these terms
are equal.
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e Adequacy: if the denotations of terrhand a ternv in normal form are equal, then
t reduces to.

e Computational soundness this is the property that termination is reflected in the
denotational semantics, i.e. that any term that reducesitoraal form will have a
terminating (e.g. total) denotation in the denotationatastics.

e Computational adequacy this is the property that a term which has terminat-
ing/total denotation will reduce to a value in the operationaiastics.

¢ Full abstraction: identified denotations givebservationally equivalerierms and
vice versa, e.g. meaning that there is no way to write a proghat can distinguish
those two terms, i.e. which reduceffdrently, depending on which of the two terms
the program was built from.

The above explanation makes clear that soungagsguacy is concerned with equality
in the operational semantics and the denotational sensafitie former relation should
be contained in the latter and vice versa) and thus redustigeneral. Computational
soundnegadequacy, on the other hand, is concerned with normalizéti®. reduction to
values). In this thesis we will prove computational sourssremd computational adequacy
for a particular typed calculi.

In this thesis we will give a denotational semantics but @&i$erpretone operational
semantics into another operational semantics. In the ledie the above theorems are rel-
ative to an operational semantics rather than a denotatiomdel. We will see in chapter
3 that the above proof obligations take a particular formhamc¢ontext of such an interpre-
tation.

Subtyping

Subtyping is a reflexive and transitive relation on the ursegef types that allows the use of
any term ofr-subtype in any context whereratyped term is expected. The corresponding
semantical rule is callesubsumption

We distinguish betweewidth subtypingand depth subtyping The former refers to
allowing object types with more methods to be used in cortekiere objects which fewer
methods are expected, whereas the second refers to thg tbdlubtype the method bodies
individually and thus create an object subtype. In otherdspwith depth subtyping, the
type of each method may be subtyped, and as a result the ebijtret type will generate a
subtype. This second notion of subtyping is identified witoaariant object typén [3].

We will here give a fragment- and a fragmeni, < of a conceived typed object calculi,
e.g.SorFOb of [3]. The first of these adds standard subtyping judgenm(saotsumption,
reflexivity, transitivity, variable subtyping, and-subtyping).

The rules for reflexivity and transitivity establishes ttiag subtype relation is a partial
order on types. The rule for establishes that there exists one type which is the subtype
of any other type. The ruled8-X projects out a subtype constraint from the type context.
The rule for subsumption states that a values of subtypésalso of typer.
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Definition 2.3.3 (A<)

Sus REFL Sus TRANS Sus-T
OrT Ora=<p OBy O,I'kr
OrT<T Ora=<vy O,I'rrt=<T
Sus X SUBSUMPTION Tyee Top
FOX<1,0 0. rm:a Ora=xp FO
OX1,0rX=T O,'+m: B OrT

We will consider an object calculus which extends the abaolesmwith three additional
rules based owariance annotationsA variance annotation is one of the symbals, -
which makes precise how a type can be subtyped (details eviiven in a later section).

Definition 2.3.4 (A<,)

SuB INVARIANT Sus COVARIANT SuB CONTRAVARIANT
OrT Orax<p vel®} OrB=a ve(®}
orere Orva<p Orva=p

Recursive Types

Next we will consider recursive types and their interplayfwgubtyping. The interaction
between these two notions is “delicate”. The complicatotiat the fixed point operator
binds a type variablX. This type variable can occur positively dadnegatively in a type
7. For exampleX occurs negatively in the body @{X)X — Y, the function type with
domainX and codomairy. The problem with this situation is apparent from the folilogy
example:

P1
P>

u(X)[x: Int,my : Int — X]
u(X)[x,y o Int,my, my, : Int — X]

11> 11>

In object calculi (e.gFOb;., of [3]) we derive an inconsistency from assumitg<:
P, [3], i.e. the inclusion of this rule is unsound (its inclusimvalidates type soundness).
The reason for this is that there is a contravariant occogdmnding in the object type,
since every method receivesas an implicit argument (the self variable). The rulegS
Rec) in definition 2.3.5is still sound, becauseri®b; .., we require all method bodies to be
invariant with regard to the subtype relation (i.e. we caithee specialise a type expression
occurring in an individual method, nor generalise it). Tdfere, no interesting subtype
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Definition 2.3.5 (A, [3])

Tyre RecC Sus Rec
(O, X)F T OruMrt Or u(X)r O, , X<Y)raxp
0 + u(X)r 0, F u(X)a < u(Y)B

VAL INN VAL ouT

whereX €0

O,T'+m: t{u(X)r/X} O, m: u(X)r
O,T F inn,x-(mM) : u(X)r 0,T +out(m) : {u(X)r/X}

relations are established for object types using this atlee@st when we have a negatively
occurring self type, which must be invariant). In order toagound this problem, we will
review another calculus with primitive covariant self tyipea later section. We give the
rules for recursive types in definition 2.3.5.

2.4 Object Calculi and other Foundations

It is common to distinguish between object-based and ddassd programming, where
class-based programming is perhaps the most well-knowh(ké@presented by languages
such as Java, €+, Smalltalk, Simula, and Hel). In this thesis we will entirely consider
object-based programming (including delegation-basquatotype-based programming,
and represented by languages such as Emerald and Self)laimeages in this family
can be regarded as more foundational (classed-baseddsaiamn be reduced to object-
based features e.g. on object calculus). In the systemsudg, slass-based languages are
encoded as an often straightforward special case. We vélthes ternobject-orientedo
mean the family of class-based or object-based languagehisl section we will survey
some characteristics typical to the programming languamgiss family.

Following [34] and [3], we consider the following charadstics as typical for an
object-oriented language:

e Encapsulation an object typically contains a local state together witlerations
acting on that state. In some cases, such as for object ielvaldistinction be-
tween local state and operations are blurred, but the maaniglthat a single object
encapsulates both data and actions on that particular Ggbécally there are ways
of hiding selected components of the object, e.g. the compsrthat should be
conceived as the local state, and only present an interfaggnallows to abstractly
operate on those hidden (protected) components.

e Dynamic dispatch when we operate on an object by invoking some of its meth-
ods, the actual selection of an appropriate method is tajeardically. This at least
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means that it is not statically decided that an object of tyfes a particular set
of method bodies. In our setting, it additionally means thatmethod bodies are
allowed to change at run-time and that invocations of mettvail refer to the cur-
rent method bodies. There exists a generalisation of mdtiva¢ation where the
the selection of method may depend on the arguments passechathod. Such
generalisations (known as multiple dispatch) are not camed in this thesis.

¢ Inheritance: it is allowed for an object to copy method bodies from anotitgect.
In class-based languages this may happen statically, ahar¢he object calculi that
we use in this thesis, method updates provide inheritandewamtime (but there are
some restrictions due to the unsoundness of arbitrary rdegkivaction).

e Subtyping and subsumption subtyping is a relation on the universe of types that
formally defines when we are entitled to replace terms of typith terms of some
other subtyper of r. Those types that satisfy such subsumption are said to be in
subtype relation, writtenr <: 7.

Given the above five characteristic features, one is edtitleask what distinguishes
object-oriented programming languages from, for exanfplegtional programming lan-
guages such as Standard ML or Haskell. We will see in the restiams that although
there exists encodings into typed lambda calculi (thustfanal languages), these encod-
ings are often far from trivial. The main problem are the pres of subtyping, and the
recursion inherent in objects (i.e. the ability of one methwrefer to other methods inside
the same object).

This thesis takes Abadi and Cardellibject calculi[1, 2, 3] as a viable class of formal
models for object-oriented programming, i.e. as a founddtiat satisfies all of the char-
acteristic we have given for an object-oriented prograngtanguage. In the remainder of
this section we will describe these object calculi in som&itiéparticularly those calculi
in this family that we will be most interested in, the firsder typed calculi).

Abadi and Cardelli's object calculi (hence forth referrequst as “object calculi”) are
also contrasted to Mitchell and Fishel&nbda calculus of objectsThis is really also a
family of calculi that has undergone several refinementsextensions over the last ten
years, ranging from the original system of Mitchell [58]ethefined system of [32], the
system of Fisher’s PhD thesis [31], and more recent extassidth subtyping and match-
ing [50, 14, 13]. These two approaches embody axiomaticcsgmbies to object-oriented
foundations, and are in a later subsection contrasteddoding$nto typed lambda calculi.

Superficially, the dterences between object calculi and lambda calculus of sjao
be summarised in the following table:

Lambda Calculus of Objects

Object Calculus [3] [31] [12]
Typing Church-style Curry-style Church-style
Overriding Method update Method update | Method update
Extension None Method addition| Method addition
Subtyping WidthDepth None Width*
* subject to additional constraints
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The table compares a particular object calculus, namelgsyS of [3] with two dif-
ferent systems of lambda calculi of objects. However, reeamk [12, 49] show that the
two systems can be unified in a single Church-style systeim mvéthod update, method
addition, and limited subtyping.

Object Calculi

In section we will give the formal definition of syste®of [3]. This is an object calculus
with subtyping, variance annotations, structural typinigs, and a powerful covariant self
type. The presentation is basically Abadi and Cardelliilgioal presentation, The only
difference is that we have replaced the unit type with an empgcbbype, separate the
type context from the term context, and have a type judgewfahe formX < T instead
of X, i.e. we avoid type judgements by using subtype judgemeut ial the case of no
subtype bound on variable. |.e. subtype judgements gésetgpe judgements.

Types and Terms

We will now formally define systers from [3]. This system embodies complicated recur-
sive types (although they are implicit in the semantic$)eathan given using fixed point
binders). An object type may recursively refer to its owneyp (the self type [3], also
calledMyType[18]). This means that object types are abstracted oversbk#itypeo. In
addition, objects are abstracted over the value of selipatjh the actual self type is also
abstracted (it may in fact be a subtype in a particular capt&his is termed a primitive
covariant self type [3] and al9dyTypepolymorphism [18]. It is a crucial feature to allow
object types to have proper subtypes also in cases wher&dvey-valued methods (i.e.
methods that return the self type).

To make the presentation more convenient, we follow [3] anteit; : 7;]'€' for [y :
71, ..., {n : Tn] With n € N and equate object types which are equivalent under perionitat
of the order of labels.

Definition 2.4.1 (S-types)
The set7s is defined by induction with

T == X type variable
T ' greatest type
Obj(X)[Giv; = Ti(X)]' object types{; distinct)

whereX € V (whereV is some infinite set of type variables) and for each € L (L
some infinite set of labels, for which meta notatipis used)y; € {o, +, -} (the variance
annotations).
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Except for the typer which is inhabited by any possible value (it is the supertype
all other types), the only other types in this system areathjgpes, of which the empty
object type, writterOb j(X)[] is a special case.

Next, figure 2.4.2 gives the syntax for the termsSin The terms are built up from
variablesx, objects (the empty obje@b j(X = o)[] is written separately for clarity of its
syntax), and method updates and invocations.

Definition 2.4.2 (Syntax of S-terms)
The setMs is defined by induction with

m = Obj(X=0)[] empty object
Xi term variables
Obj(X = o)t = g(x : X)b]'€"  object ¢; distinct)
ml=(Y <0o,y:Y)s(x:Y)m, method update
ml method invocation

where for each, x; e U, X € V, o, 7i € Ts, and{; € L.

An object has the formdbj(X = o)[4 = g(x : X)bi]'® whereo is some instantiation
of the self type. Variance annotations are present in thecéed type. Method update is
written with the< operator, and takes in addition to a new method body alsolthsedf
(denotedy) and the unknown self typ¥. Finally, method invocations are written using
dot notation, and corresponds to substituting the currelfitfer the argumenk : X in
the associated method body. The precise meaning will appé¢lae associated reduction
rules.

Next, we give the definition of free variables for a term andddype (scoping), and
the substitution of a term for a free variable occurring iermt.

SystemS decorates the labels of any object type with a variance atinat The an-
notations aré, ~, ° for positive, negative, and invariant components, andt&rpreted as
admitting subtyping, admitting reversed subtypinggopertyping, or admitting no sub-
typing at all. Figure 2.4.5 gives an extended definition ofradpcate determining if a
variable occurs with a given variance in some gigetype.

This notion of variant occurrences should be read as folloBfs<*} means thak
occursat mostpositively inB, and similarlyB{X~} means thaK occursat mostnegatively
in B.

Given the syntax for types and type-annotated terms, we @reraady to give the
judgements fos which determine the well-typed terms and the well-formgae; These
are shown in figure 2.4.6. Since we already have given cefitagiments of these judge-
ments, we simply refer to these fragments in the presentitiefin

We will give explanations for the rules ifis excluding the fragments which have al-
ready been given some explanation in a previous section. rleeType Opiect makes
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Definition 2.4.3 (Object Scoping)

FV(s(x: 1)b) =FV(b)\ {x}

FV(X) _ = FV(x)

FV(Obj(X = 0)[6 = g(x : X)b]'"") = Uies FV(s(x: 7i)by)
FV(m.6) =FV(m)

FV(Mm( = g(x : 7)b) = FV(m) U FV(s(x : 7)b)

Definition 2.4.4 (Object Substitution)

(s(x: 7)b){c/x} = s(y: 7)(blc/x})

where y# X,y € FV(s(x : 7)b),y § FV(c)
x{c/x} = C
yic/x} _ = xfory#x .
Obj(X = o[t =s(x : X)b]'“'{fe/x} = Obj(X =)t = (s(x : T)b)fc/x}]
(m.O){c/x} = m{c/x}.¢
(mf=g(x:1)b = (M{c/x}).c = ((s(x: T)b){c/x})

precise how to form an object type from legal types of methadids. Note that the vari-
ableX must occur positively in all body types.

Similarly, the rule ML Osiect makes precise how to form an object term from well-
formed method bodies of correct type. The structure of thwsdfirst rules are the same
for all typed object calculi we will consider in this thesis.

The rule AL SeLect is astructuralrule because it makes assumptions about the struc-
ture of object types [3]. The rule shows how the self typealalgX is being replaced by a
known typeo- which is assumed to also be an object type. This assumptapeigationally
sound, but one must take care for it to hold in a denotatiomaleh[3]. This known typer
is allowed to be any subtype of the true type The substitution allows for the return type
of a method to be parametric. In this case a method can, fongbeareturn something of
typeo. Itis this form of parametricity that giveSits notion of “primitive covariant” self
type.

The rule AL Uppatk is a bit more involved due to the possibility of updating afeab
which has been subsumed, and due to the fact that a methodmdwant to refer to the
previous method body. This means that we must require thetuqgdmethod body to work
with the partially known self type, and again we have a notibparametricity inherentin
S. It also explains the syntax for method update which inallideY for the old self. The
rule VaL Uppate assumes that the true type of the object to be updated idowever, we
are updating this object in a context where it is subsumegped, a subtype ot~’. The
parametricity required for the self-returning method bédgs follows: the method must
return the selik : X, the old selfx : o, or a modification of these.

The rule $B Ogiect allows a “wider” object to be subsumed for a “narrower” objec
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Definition 2.4.5 (Variant Occurrences)

Y{X*} whetherX =YorX #Y

T{X"} always

Obj)[twi : ri(X)I'€'{X*} if X=Y, orforalliel:
if v =7, thenBi{X"}

if vj =7, thenBj{X"}

if vj =°, thenX §FV(B;)
Y{X"} if X£Y
T{X"} always
Obj)[twi : ri(X)'€'{X"} if X=Y,orforalliel:

if vy =%, thenBi{X"}

if v; = 7, thenB;{X"}

if vj =°, thenX §FV(B;)
A{X°} if neither A{X*} nor A{X"}

The length here refers to the number of methods. In additianance annotations allow
us to subtype an object type while changing also the type difitual method bodies,
provided that the variance restrictions are satisfied.

We say that a syntactically correct termSns well-typed if there exist well-formed
contextd, I' and a well-formed typ® + 7 such tha®, " + m: 7 is derivable. We letMs
denote the set of well-typed terms up to permutations of otetabels.

Despite the failure of unique types (due to subtyping), tikfving lemma for mini-
mality of types holds foS. Unfortunately, with the inclusion of variant types (in @da
section) we will fail to have the unique type property evethwit subtyping.

Lemma 2.4.7 (Minimal Type) If + m: 7, then there exists a typesuch that m: o and,
forany7’,if+ m: 7/, thenr o < 7.

This is proved by induction on the derivations of typing jedwents [3]. Next, the
definition of substitution respects types:

Lemma 2.4.8 (Substitution) If ©,(I',x: 7'y vt : Tand®,T + t’ : 7/ are derivable then
S0 is®, Tk tft'/x} : 7.

Again, the proof is by induction. The following result edtabes type soundness for
SystemsS (the progress lemma is omitted):

Lemma 2.4.9 (Subject Reduction)If - m: r and m~ v, then- v : 7.

The proof is an induction om~» v, c.f. [3].
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Definition 2.4.6 (S-judgements Ag)

All the judgements for systei@is given byA,, A, < together with the following additional
rules:

Tyre OBJECT VAL OBJECT _
¢ distinct,v; € {°, 7, %} o = 0bj(X)[6v; : Ti(X)]IEI
(0, X), T+ 1i(X") iel O, X% : o)+ bi{o} : tilo} Viel
O r Obj(X)[&vi : wi(X)]' O,T F Obj(X = o)[& = g(x : X)b]" : o
Sus OBJECT
a = Obj(X)[6v; : Ti(X)]<' V7 VaL SELECT _
B =Obj(X)[&v] : 7/(X)]* o’ = Obj(X)[6wi : Ti(X)]*
Ora Orp 0,'rtm:o
0,Y < a) FuititY} = viri{Y} Oro=<o’ vjef{’, "} jel
Oraxp m.¢; : ti{o}
VAL UPDATE

o’ = Obj(X)[&w; : 7i(X)]
O,I'rm:o
Oro<c’ (@Yo Ly Xx:VrbiglYl e} el

O.rrméj=(Y<0oy:YXx:Y)b: 0o

Operational Semantics

The operational semantics f8iis given in [3]. We give an overview of the reduction rules
are given in figure 2.4.10. These rules will reappear for ateel operational semantics
in chapter 3, but in that setting there is no subtyping so ferational meaning will be
slightly different. Here, all rules involve substitutions of the selfgpagters. The rule
Rep Uppate replaces the old self, whereastRSeLect replaces the self variable inside a
particular method body. Also type substitutions are cdroiet to handle presence of type
variables in objects (replacing the self type variableith the actual type). The other rules
are trivial (variables, and the statement that an objectenical form).

We have now completely defined the syntax and evaluatiors foleS. We could extend
this system with quantifiers, b&tis already rich enough to express many examples. In fact,
there is, as we mentioned, already a notion of parametiiti§ the self type. However,
adding parametric types by means of universal type quanstifizzes the system better
features with regard to inheritance and method reuse.

S satisfies many “nice” properties. In particular, it has tgoseindness and satisfies
various substitution lemmas [3]. The details are omittethia survey, but we will prove
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Definition 2.4.10 (Operational Semantics for S)

REeD x
X~ X
ReDp SeLECT
REDOObB_J)E(CT . e V = 0Obj(X = )& = (% : X)b]*e
V= 0bj(X = 0)[fi = g(x : X)bi] m~V  bfV,o} ~ v
V-~V
m.{j ~ v
ReDp UPDATE

v=0bj(X = o)[6 = g(x : X)b]'*
m~» v jel
mé=(Y <o,y Y)s(x: )by}  ~
Obj(X = o)[lj = g(x : X)b{X, v}, Ii = g(x : X)by]'<! "1

soundness and adequacy for an interpretation of a simplifesion ofS (dropping sub-
typing) in a later chapter of this thesis.
We conclude this section by giving a small example of a “paogrexpressed if%:

Example 2.4.11 A movable point and coordinate can be defined elegant$y in

Point
Coordinate

Obj(X)[x: Int, mw : Int - X]
Obj(X)[x,y: Int, my : Int = X, my, : Int — X]

Il 11>

Our subtyping rules can be used to prove Coordinateoint (simply by means of tt&s
Ossect rule since Coordinate contains more methods, and all "iriteel” methods have
equal types, i.e. invariance). Now, we may define a valuegefGoordinate:

origin = Obj(X = Coordinatg[x=0, y=0,my = ..., my, =..]
At some point, we may update the move method to change theitwetforigin:
originmy = (Y <o,y : Y)g(x: Y)t

The method body t may use the old self y and therefore refdret@rtevious definition
of my to allow incremental change of an object. Further, a meth®dlivays given the
present self as a parameter. This self parameter x has a petrantype. Its type Y may be
any subtype of Coordinate.

Lambda Calculus of Objects

Lambda calculus of objects [58, 32] is similar to Syst8nbut has a rule for method addi-
tion which means that we can extend an object with more methiis is also makes the
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type system more complicated and technical restrictionst ioe1 added to support subtyp-
ing. The original system of [58, 32] did not support any forhsebtyping. However, in a
later work, Fisher and Mitchell [33] proposed a system witb tifferent syntactical enti-
ties: objects and prototypes. Prototypes are objects wgipport method addition, but not
subtyping. In this way, they could get around the problennsiibtyping. Another idea
was studied by Bono and Liquori [15]. Here the type system exdsnded with labeled
types to allow limited subtyping. The restriction is that @an apply width subtyping (i.e.,
hiding a method from an object type), if and only if this mettie not used by any of the
other methods.

Other Encodings

Object-oriented calculi are frequently studied by encgdirem into more well-understood
target calculi, typically some flavor of typed lambda calsul Unfortunately, encoding

object types and subtyping into a target language igfecdit task and may fail to explain

object-oriented features (as expressed in the aboveaki@maticapproaches) as more
primitive notions in typed lambda calculus [3]. Neverttsslea considerable amount of
research has proposed encodings of object types and suptyppd a plethora of target

languages. These encodings are surveyed in [19] and al84.i59, 62].

Our starting pointis second order typed lambda calculdled8&ystent. This system
was developed by Girard [38] (in logic) and independentlgvented by Reynolds [69]
(for programming languages). Systémwhile having impredicative polymorphic types,
can encode inductive types (but not full recursive typesjgian encoding [11, 48].

SystemF can also encode subtyping as coercions. However, the aoétieres, to-
gether with Philip Wadler and Benjamin C. Pierce (personatmunication, 2005), that it
is an open problem if Systef can simultaneously encode inductive types and coercions
between them.

Cardelli [22] proposed an extension of this system to supgdityping. The resulting
system is calle ... In addition to subtyping it has bounded quantification (¢(X < 7)o
is a type). When we discuss encodings of object calculi betmme of the encodings
assume recursive types in addition to inductive types, aratlfpoint operators on ele-
mentgvalues. In other words, some encodings may require noiaitextensions of ...

The first approach of giving semantics to objects and objgmtd was theecursive
record semantic$20, 21, 24, 25, 26, 16]. This semantics is based on a typetddam
calculus with records and record types, and objects areesaltnich are defined using a
fixed point operatoon termg(i.e. to create an object we apply the fixed point operator on a
record-valued function abstracted on self). For exampl@kgectPoint would be defined
in Haskell like this:

data Point = Point{x :: Integer, dx:: Integer— Integern
fix:(a—a) —a
fixf =letx="f xin x

makePoint: Integer— Point
makePoint xG= fix (pointF x0
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where
pointF:: Integer— Point — Point
pointF x1 s= Point{x = X1, dx= AX2 — ((x 9 — x2)}

In this encoding of objects, there is no immediate need founsve types since ref-
erences to “self” are captured under fhecombinator. However, and as pointed out by
Cardelli [20], if thePoint type contains also a method that returns a Reint value, we
still will require a recursive type. Fortunately, the remai recursive type has a “nice” form
(the self variable occurs positively), and subtyping cawvdlelated [3]. This model also
can be extended to handle classes (the extended model, whichargely developed in
[75, 25, 26], is sometimes referred to as the “generator ¢t2]). Less satisfactory
with the recursive record approach is the hard-wiring ofsbié variable that occurs when
an object is created. As a consequence only internaélftinflictedmethod updates can
be modelled with this approach [3]. Another limitation isitlecursive records cannot be
combined with method addition [34].

A different approach is taken in tiself-applicationencoding of objects, which was
proposed for Smalltalk-80 [45, 46] some years after Cartalil developed the recursive
record model. An object in this approach is abstracted froengelf variable (using a
lambda or sigma binder), and remains so until a method ifi@taccurs, at which point
the self is applied to the invoked method. Both lambda cakwif objects and object
calculi are variations of this approach, and an object tgpeduired to be a special form
of recursive type. However, this encoding fails to suppakitgping when we interpret
lambda calculus of objects or object calculi iftg. Nevertheless, this thesis is dedicated
to precisely this form of encoding, but in a denotationatisgt so we will continue to
study it in the following chapters. This gives a denotatls®iting where coercions and
thus subtyping can later be studied.

In order to translate both method update and subtyping, iPdtaal [4] proposed the
split-method interpretation, which extends recursiverd@ncoding such that also exter-
nal method updates are possible.

data Point = Point{x :: Integer dx:: Integer— Integer,
upd, :: (Point— Integen — Point,
upd,y :: (Point— (Integer— Integep) — Point}
createF:: Point — (Point — Intege) —
(Point — (Integer— Integen) — Point
createF self hbgyx = Point{x = by self, dx = by self,
upd, = Ab — Point{x = b self, dx = bgx self}
upd,, = Ab — Point{x = by self, dx = b self}}
create= fix createF
wherefix f = let x =f xin x

Other interpretations are typically based on interpretibgects into typed lambda cal-
culus (see [19] for a more detailed survey). However, thesdypically restricted to the
class-based case where method update is inhibited.






Chapter 3

Soundness and Adequacy of SystenTS

In this chapter we will define SysteBr, a typed object calculus without subtyping, and
interpret this calculus into Fixed-Point Calculus [65, 68] using an eager self-application
encoding, and prove soundness and adequaSy wfith respect to this interpretation.
Self-application encodings have been studiedfor but unfortunately-.. is too weak
as a basis for object-oriented programming languagesmust be extended with a fixed-
point operator on terms, recursive types, and either F-dedmuantification or higher-
order functions from types to types, and some sort of recetehsion operator [17]. The
reason for this requirement is that recursive types andg/pirg require special techniques
to work together irF... Therefore we instead consider an encoding into FPC whish ha
some of these features (recursive types and recursivéiyedieelements).

3.1 First-Order Object Calculus without Subtyping

Abadi and Cardelli have developed a family of Object Calcstime of which are more
powerful than others, e.g. by having subtyping, recursypes$, variance annotations,
polymorphism, oiSelf-type in addition to the standard first-order fragment. Wit fecus
on first-order calculi and one particular higher-order ahls which has only the powerful
Self-type and no polymorphism. Table 3.1.1 gives an overvievhefdalculi that we will
study in this chapter, some similar or simpler typed objettui, and the Systers from
the introductory chapter.

The table shows, for example, that variance annotations@treonsidered at all in
this chapter (this is however no fundamental limitatiorceisuch annotations can easily
be adjoined to an extended system). The main systems undsideoation isS-, which
will be defined in this section and which is an adaptatio® of [3]. This system has the
Obj-binder, but no subtyping and thus no r&alf-type. This system i&Ob,, of Abadi
and Cardelli [3], but wittObj-binder instead of the-binder, and with the extensions listed
in the diagram. We have chosén instead ofFOb,, becaus&™ contains a larger subset
of the syntax and rules f@, which is one of the most powerful typed object calculi. 8inc
S is endowed with products and coproducts, FPC will containtesst of the rules o

39
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Definition 3.1.1 Object Calculi

FOb, FObi. | FObi, S S
Subtyping . ° °
Recursive typeg . o
Obj-binder .
Self-type o
Variance ann. o
Products
Coproducts
Functions ° ° °

Note thatS is not a subset 08, but contains some extensions such functions. These
extensions can however also be given to Syskeaithough Abadi and Cardelli’'s original
presentation o6 does not include them.

We will now defineS™ and give some simple examples. We chonsgy products
and coproducts to simplify these examples. We give an opedtsemantics with a clear
notion of values. Our choice of an operational approach fisums to prove soundness and
adequacy with respect to a denotational model. These se=uild not be proven were we
to have used the reduction based approach as certain r@auetie in fact unsound. The
reason for this is that a reduction-based semantics adrdiggi@e of non-determinism in
evaluations that invalidates the soundness proof. Ngtablybject with some terminat-
ing methods and some non-terminating methods, is intexgr@s$ a product of functions,
such that even the terminating method may become non-tatimgnunder some reduction
strategies in FPC.

We assume a countable set of method labetgpe variabled/, and term variablel .
The types ofS are given in definition 3.1.2. Notationally, we writ§ [ =;]'¢' for [¢; :
71, ..., {n : Tn] With n € N and equate object types which are equivalent under perionitat
of the order of labels or under the obvious notionaeéquivalence induced by the type
binderObj. We introduce shorthand x 2 = []i¢12 7i @and similarlyr; + 72 = [[icj1.9 7i
for binary products and coproducts.

Definition 3.1.2 also gives the pre-terms®f. We identify pre-terms which are equal
up to the order of method label or are equivalent under th@éols\notion ofx-equivalence
induced by the term-binders ¢, andcaseand the type-bindedbj. We use the standard
definition of substitution which can be found in Abadi and @li, and writem{a/x} to
mean thatis substituted for all free occurrencesxah m[3]. Further,m(x) means< may
occur free inm. We use similar notation for the substitution of types fqrayariables in
both types and terms. When clear from the context, we elitaithee type or term variable
being substituted for and simply write{a} andm{r}.

A type judgement consists of a sequence of distinct typelites (a type context) to-
gether with a type whose free type variables appear in theeseg. The formal definition
of type contexts appear in Definition 3.1.3.
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Definition 3.1.2 (Syntax of S)

Syntax for Types
The set7¢rop is defined by induction with
T = X type
1 terminal type
[Tiel 7i product types
Lie i coproduct types
T12T2 function types

Obj(X)[& : 7i(X)]' object types{; distinct)

whereX € V, and for eaclhi in a finite setl, ¢; € L are pairwise distinct.

Syntax for Terms
The setMs is defined by induction with

m = *% unit
X; term variables
(M, ..., My) tupling
i m projections
casémg, X1.my, ..., Xn.My) case
Gim injections
mo (M) A-application
AX:T.m A-abstraction
Obj(X = o)[6 = g(x : X)b]'®"  object introduction
M. =g(xX: 7)mp method update
m.{ method invocation

where for each, x; € U, X € V, 0., 7 € T¢rop, and¢; € L.

Here are a couple of examples:

Example 3.1.4 One may consider representing the Java-like interface

interface Point{public void bum); public int val(); }
as the following type it5~ (assuming a type Int exists):

Point= Obj(X)[val : Int,bump: X]

Example 3.1.5 The Java-like interface

interface UnLam{public void bumg); }
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Definition 3.1.3 (Types and Type Contexts in

Type Contexts
Type contexts are generated by the following rules

TyCon X

TyCon Empry o)

F O where X e V, X £0
F(O, X)

Well-formed Types
The typing judgment® + 7 are those generated by the following rules:

Tyre X Type UNiT Type Fun
FO FO® OrTty OF1
where X € ® — —_—
O+ X 1 OrT1—> T

Type OBJECT

0, X+ T i€l Ort el
O + Obj(X)[&i : 7i(X)]'® O F LiaiTi

where @ € {[], LI}

gives rise to an object type of the form
UnLam= Obj(X)[bump: X]

Once we have the type judgements, we can define term contekthan term judge-
ments (Definition 3.1.7). As one would expect, terms areedasnder substitution. That
is,if ., x:7y+t:7and®, I+t : v are derivable thenso ®,T" + t{t'/x} : 7.

Example 3.1.6 A point whose value i8 and whose bump method adb® the value can
be represented i as

p £ Obj(X =Poiny)[ val = g(x: X)O,
bump g(x: X)xval=g(y: X)xval+1 ]

Unlike JavaS™ makes no distinction between objects and classes. Therefatass is
represented by an object, which can be cloned or copied awoatbjects which will (ini-
tially at least) have the same methods. There are otliereinces: object calculus allows
methods to be updated, which is impossible in Java, &nbas no imperative features.
Since we have method updates, there is no need to have septiributes. Attributes, like
val, are instead identified with method bodies in which the saffable does not occur.
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Definition 3.1.7 (S -Typing judgments)

Term Contexts
Well-formed term contexts are given by the rules

CoN Empry ConN x
O OrTT

— wherexe U, x§T
OF OrI,X:T)

Well-typed Terms
The typing judgments d& are

VaL OsJECT _
o= ObJ(X)[f, LT (x)]IE| VAL SELECT )
0.0 % o) Fbfo) iti{o}  Yiel ©TFm:ObjiX[6: nOe  Viel

O,T FObj(X = )6 =c(x : X)b]" 100 ©,T'Fmé : t{Obj(X)[& : wi(X)]'€"}

VaL UpDATE _
o = Obj(X)[64 : ni(X)]'
O,.'rm: o O,I,x:0)yrblo}:7i{o} jel

O,T'rmtj=g(x:o)blo} o

VAL Probuct

@,Fl—a:l_[‘rijel VAL PAIR
il 0,'rta;: 7y O,['Fay: ™
O,I'+ma:T; ®,1“F<a1,...,an):l_[n
iel
VaL CAsg “
VAL Sum , @,F»—m:]_[o-i O.(L,xj:oprmi:t jel
O.'rta:rjjel =
O.Trga: U 7 O,T F casém, X..Mmy, ..., Xo.My) © T
iel
VaL UNiT VAL X
O.I'rx:1 Ok, X Ti,...)
O, I, X Ti,..)F X . Ti
VaL EvaL VaL Fun
O, FmM 71— T2,Mb Ty O,Ix:t)rb:m
O, F m(my) : 72 O.TrAX b1 > 1

We say a pre-terrm € Nop is well-typed if there exists well-formed contex@sI” and
a type judgemer® + 7 such tha®,T" + m: 7 is derivable. We letMs denote the set of
well-typed terms up ta-equivalence and permutations of method labels.




44 CHAPTER 3. SOUNDNESS AND ADEQUACY OF SYSTE®R

Operational Semantics

We have now defined the languageSt and will give it an operational semantics. The
semantics is call-by-value and, in particular, each corepbif a product must have a
value for a projection of the product to attain a value. THegtior the non-object part of
the calculus are standard while we feel that those for theabbjtro, elim and update rules
are reasonable, e.g. one does not reduce under the bindgeirt mtro terms and hence
all object intro terms are values. This feeling is reinfalbg the results we derive later on
soundness and adequacy. The values (or ngcarabnical forms) are as follows:

vV = X | 1|4V ]| {vi,..,Vn) | 4x:r.m |
Obj(X = o)[i = g(x : X)m]'!

The actual operational rules are given in Definition 3.1.Nate that the values are
precisely the terms such that ~ v, where~» means the reduction relation. This is the
statement that values are irreducible in a formal sense.o§ramp is a term such that
for some typer we haver p : 7, i.e. a well-typed term with empty contexts. The key
theorem which means that the implementation of the cal¢calsigiiven by its operational
semantics, respects compile time type information is tlesguvation of types as shown in
the next theorem.

Theorem 3.1.8 (Preservation)If t is a well-typed tern®, T + t : 7 such that t~ t’, then
O,I-t:r

Proof The proofis by induction on the derivation bf» t’ and is fairly routine. Suppose
O,I'+t: randt~ t'. We have omitted trivial cases:

Case (Rp Case): We havet = casém, X;.my, ..., X,.my) and®, T + t : 7. Sincet is
well-typed we have®,I' + m : [[iq o5 and®, (I, x : oy + m : T fori € |I. We have
subderivatiorm ~ v andm{v/x} ~ t’. But by induction hypothesis this means, by
Lemma 2.4.8(" : 7.

Case (Rp Propuct): We havet = zij(m) and®,T" + t : 7, which is to saym =
(ay, ...,any for some®,T + & : 7;. The result follows by induction hypothesis on the
required component.

Case (Rp EvaL): We have = my(np) and®, T +t: 7o. Therefore®, ' my ;11 — 12
and®,T" + nm, : 1. Thatis to saym = Ax: 72.b. Now form, ~ vwe haved, I" + b{v/x} :
7, and by induction hypothesis: 7, as required.

Case (Mc Serect): we havet = m.6j and®, T+t : 7 form= Obj(X = )[4 = (X :
X)b]'€" and®,T + m: o with o = Obj(X)[£ : 7i(X)]'®'. Form~> v andbi{v, o} ~ t’
we have®, T + t’ : ri{o} by induction hypothesis.

Case (ML Osiect): we havet = m.fj<g(x @ o).bandt : o. Since®,({I,x: o)
bj{c} : 7j{oc} we have®,I' + t’ : o as required.

m]

Corollary 3.1.9 (Type Soundness) Ssatisfies type soundness.
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Definition 3.1.10 (Operational Semantics for S)

REeD x Rep Unit
X~ X * N> Kk
ReD Palr Rep Proy
My ~> Vi My~ Vp M~ (Vq, ..., Vp) 1<ign
(Mg, ..., M) ~> (V1, ..., Vo) (M) ~ Vi
RED Sum Rep CASE
m~» v m~> ¢j(v) mi{v/Xj} ~ VvV jell,n]
tym~s (v casém, Xi.Mmy, ..., Xn.My) ~> V/
Rep EvaL
Rep Fun m ~ AX: t.b m ~> Vv b{v/x} ~ V'
AX:TM~ AX . .M
my(mp) ~ V'
ReD SeLECT
Rep Opsecr . V=0bj(X=0)6i =504 : X)b]
v=0bj(X = o)t = s(X : X)bi] m~V  b{V,o}~ v
V~>V
md ~ v
Rep UpDATE

v = 0bj(X = ) = g(x : X)bi]'
m~»> Vv
m.j =g(x: obte} ~ Obj(X = )[4 = s(x: Xy, £ = g(x: X)b]= 1

where in the last rule we delete tli¢h method fromv and then add the updated method
£ =g(x: X)b.
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3.2 Fixed Point Calculus

Our intention is to interpret object types as solutions afaia recursive equations. We
do this i) syntactically by translating the Object Calcuilo® the Fixed-Point Calculus
(FPC); and ii) semantically by giving denotational models the object calculus using
some sophisticated categorical models. Note that thisfardnt encoding of objects as
recursive types than is found in e.g. the recursive recamisécs in the literature, e.g.
[20, 3]. Notably, the recursive record semantics would ¢fxesfollowing interpretation of

the p : Pointobject given in the previous examples:

p=Y ap.(0,{m p+ 1,72 p))

whereY : (t—1)—7 is a fixed point combinator (which can be encoded into FPC. Th
type of pis uX.Intx X, but as seen in this example we cannot replace the first coempoh
p without giving a completely new definition gf. We will give p the typeuX.(X—Int) x
(X—>X). This means thap is denoted simply by a product which enjoys the ordinary
projections on each component.

Our calculus of recursive types is known in the semantiesdiure as FPC. This sys-
tem is originally due to Plotkin [65, 66, 64], but detailedpesitions are given e.g. by
Gunter [40] and Fiore [29]. FPC intuitively arises fra@n by deleting the types and terms
related to objects and inserting types and terms relatecked fpoints of mixed variant
type constructors. Thus FPC uses the same countable sippéiadV of type and term
variables. We summarise the formal rules in Definition 3.2.1

The notions of substitutiory-congruence, contexts, well-formed types, are all identi-
cal, except that we replace object type formation with tHe¥ang rule for well formed
recursive types. The preterms of FPC are exactly thosk obmitting all terms derived
from the object formation rule, method updates, and methealcation, and adding to the
grammar terms of the forimn,x . for u-introduction (Mw Inn) andout for u-elimination
(VaL Our). The term judgments for FPC are similarly obtained fromsthofS-, but the
VaL Ossect, VAL SeLect and VAL Uppatk rules are replaced by two rules for typing recursive
types. Finally, the operational semantics of FPC is obthimedeleting ML Ossect terms
as values, removing the operational rules fep Rsiect, Rep SeLect and Rip Uppare and
adding the following values and rules from definition 3.2Tbpe with recursive types.

Vi= o] inngx.(V)

In addition to thiseager(call-by-value) version of FPC, we will briefly also recaikt
lazy (call-by-name) operational semantics that can be givenisdanguage.



3.2. FIXED POINT CALCULUS 47

Definition 3.2.1 (Eager FPC)

VAL INN

X§0 VaL Out
O, m: r{uX71/X} O, m: uXrt

O,T Finnx.(m) : uX7t  O,T Fout(m) : t{uX7/X}

Tyre Rec REeD INN Rep Our
O, X)+ 71 e~V e~ inn(v)

O+ uXt inn(e) ~ inn(v) out(e) ~ v

Definition 3.2.2 (Lazy FPC)

Operational Semantics

The following rules take the place ofsRPros, Rep Case, and Rip EvaL and all other rules
are the same:

RebL Pros RepL CAse
m~» {my, ..., Mp) m~ v m~ (k) m{k/xj}~ Vv je[ln]
7i(m) ~ v casém, x3.my, .., Xp.My) ~> V/
RepL EvaL

my ~ AX: 7.b b{mp/X} ~ v
my(mp) ~> v
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Under a lazy semantics, we have more values than we had iratfer semantics. If
ti, Ax. mare closed terms, the values now also include:

Vi=..ogt | Axm | (ty, .ty | inngx.(V)

3.3 Translating Object Calculus in FPC

This section contain a translation 8f into (eager) FPC. This translation is at the level
of types, terms and operational semantics and we find anlertét whereby the oper-
ational semantics for FPC is both sound and complete. Thiwslus to transport the
well-understood theory of FPC, in particular its denotagilomodels (e.g. [29, 76, 40]), to
S.

First, recall the key feature of this encoding is that it reBeur intuition that the object
types ofS are fixed points of recursive type equations. More spedificdie recursion is
over the self-parameter which occurs both covariantly amdravariantly. This intuition is
clearly seen in the AL Ossecr typing rule foro- = Obj(X)[¢ : 7i(X)]'®" which suggests the
i'th method will consume the self-parameter, which has typ& produce something of
typer; whereo- may occur free, e.g. also be produced. Thus, intuitivelyjiterpretation
of o should satisfy

[o] = [o]=[T1] X -+ X[o]->[Tn]
where, as we mentioned above, each ofthmay contairno. Hence the interpretation of

o should be the fixed poiptX.X—[11] X - - - x X—[7,] where ther; may containX free.
Thus the interpretations of the object tyg&sintandUnLamare

[Point]
[UnLam]|

uX.(X—X) x (X—Int)
UXX—>X

Note the interpretation of this example shows how the typentyped lambda terms
arises naturally as an object. We do not need to translat dgptexts since we have
identified the sets of type variables. We thus begin by tedimg well-formedS™ types
into FPC-types:

X1 = X

1l = 1

[A—B] = [A]-[B]
H_[iel A|-| = niel |_A|-|
MMl AT = LLialAly

As mentioned above, the translation of object types is iméasblution of a mixed variance
recursive type equation.

[ObjX)[6 : ti(X)]'€'1 2 uXX—>[11]X ... x X—=[14]
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Notice that the translation of types respects substitstithat i [o-/ X]1 = [t1[[o1/X].
We can now syntactically translate (term) contexts:

[0+ (]
[OF,X: 1)

O
OF(IT,x: [T

11> 11>

Now we extend our translation to typing judgments. The tetitns of terms in the
intersection of the calculi are just by induction.

[O, T+ X : 7] 2 O,[TFX:[7]

[0, F % :1] z O,[TrF*x:1

[0, F(Mmp,...My) 1 7] = O,[TTF(Mo],..,[My]) : [7]
[O, Fmym: 7] 2 O,[TFmm]: 7]
[0,k m:T] O,[TTF¢jm]: 7]

[0, T +mym : 7]
[O,T+AX:o)m: 7]

O, [TTF [molfmy] : 7]
O,[TTF AX: [oeDIM] : [1]

1> 1> 11>

[, + cas€my, X1.Mmy, ..., Xn.My) & 7]
£ 0,[T + casd[mo], Xo.[My], ..., Xn.[My]) © [7]

We translate object introductions, method update, andcokjenination (method in-
vocation) in the obvious way once one recalls the transiaifmbject types.

[, Fm: o]
£ O, Finn(AX : [ol.Tb{o 1, ..., AX: [o1.[bn{a} 1)) : [o]
[0, F md]
= 0,[TTF (m a)(Im]) : [ri{o N
[0, F Ml =g(x: o)bio}]
£ 0,[TTFinn((me, ..., tj—1a, AX : [ol.[bl{c}, tjaa, ..., ma)) © [o]
where
a = out(fm])
m= Obj(X = o)[6 = g(x : X)b]'
o = Obj(X)[4 : (X))

Heremn, is the projection of a labeled product.

Let F; be type expressions. We have interpreted object typgaXdX—F; X) x
... X (X—>F, X) (where for method invocation, self is appliafter projection) rather than
uX.(X—F X). This is because the latter interpretation would breakdoass. Consider,
for example the interpretation of method invocation. Farrminess, we need to prove that
e, applied to a term reduces to a value in the case whépreduces to & -value. How-
ever, the eager operational semantics of projection in FER@ires that all components of
the tuple have a value, and we can easily construct an olgjeettich this would not hold.
However, given a lazy operational semantics for FPC (e.gnsWél [76]) this argument
would no longer apply, since partially evaluated terms €rtipular products) are included
as values.
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We will now prove an important lemma which shows that ourrptetation function
[—1is substitutive on terms (it is trivially substitutive orpigs):

Lemma 3.3.1[m{v/x,o/y}1 = [M{[V]/X. [o]/7}

Proof The proofis by induction on the image of terms unfle}l. We need only consider
object intro, elim, update und@+:

[Obj(X = o)[6 = (% : X)b]'' {v/x, o/y} : 6]
= by definition
inn((Ax: 7.[ba{d, v/X, o /y}, ..., AX: T.[bafS, V/X, o/ ¥}1))
= by induction hypothesis o
inn({Ax : 7.[b {SYUTVI/X, o 1/7}, . AX T [bafSYUTVI/ X, [0 /v D)
= since[-1 is substitutive onnn, tupling, andl
inN({AX : 7.[by{6}], ..., AX : T.[op{SYIUIVI/X, [0/}
= by definition .
[Obj(X = o)[6i = s(x : X)b]"<' HIVI/X, [/}

The situation is similar for object elim and method updatethat[—1 will be substitu-
tive on sub-terms formed according to the rules of FPC.
O

Our translation preserves types:
Lemma 3.3.21f ®,T +t: rthen[®], [T+ [t]: 7]

Proof The proof is by induction on well-typed terms. We consideydral Object, \AL

SeLect, and Val Update, since the other cases follow by inductiampp®sed, I - Obj(X =

A6 = s(x : X)) : o whereo = Obj(X)[¢4 : 7i(X)]'®'. We must show tha®, [T] -

inn((Ax : [o].[bi{o}, ..., AX : [o].Tba{o}1)) : ol where[o] = uX. X—>[11]X ... X X=[1,].
This follows if we can satisfy the premises of thé)rule, i.e. if

O,[TT+ inn(ax: [ol.[b a1}, ..., AX: [o].[ba [ 1) :
X>[11] X ... X X>[11]
{u(X)X—>[11] X ... X X>[1h1/X}

The premises of M. Ossect assert®, (I, x; : o) + bi{o} : 7i{o} which by induction
hypothesis mean®, ([T, x; : [o1) + [bi{c}] : [ti{o}]. We then have a FPC-term of the
required type from the bodig¢bi{c}1 = [bi1{[o1} by the substitution lemma. ThewwFun
and AL Pros rules gives ugax : X.[bi1{X}, ..., AX : X[b /{XP{[o1/X}. Finally VaL Inn
gives us the required type.

The case for WL Uppate is almost identical. For M. SeLect we assum@®, I’ + m: o
wherem = Obj(X = o)[6 = ¢(x : X)b]* ando = Obj(X)[£ : 7i(X)]'€" and consider
0. + m¢ @ mifoc}. We want®, [Tl + (m, out(m]))(fm]) : [ri{c}]. By induction
hypothesis we hav®, [T’ + [m] : [o]. Further®,[T"] + out(fm]) : [o{uX.o/X}] and
after projection we have the botly of type ri{c}, and the result follows by applying the
induction hypothesis tb;.

m|
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3.4 Soundness and Adequacy

We will prove the soundness and adequacy of our translafi@ eto FPC. This means
that not only does the translation 8f into FPC work at the level of types and terms, but
also that the operational semantics of FPC is strong encugftdrpret the operational
semantics oS- while not being so strong as to give extra computations whiere not
presentins .

We will show thatt ~» v implies[t] ~ [Vv]. This establishes that our translation is
correct (soundness). We also prove an adequacy result optrational semantics & .
These two results establish that the denotational sensanitiEPC given by Fiore is, via
the self-application interpretation, a suitable mathérahsetting for object calculus. For
example, a category such p€po immediately gives us a denotational model of object
calculus.

In what follows we assume that]] : FPC — M is the interpretation of FPC into a
sound and adequate model such as the one given by Fiore akuhPlo

Definition 3.4.1 (Computational Soundness)Ve say that an interpretatigin-1 of S~ into
FPC is computationally sound if, for eve® I 0 : 7 such that o~ v where v is a value,
we have thaf[®,T + o : 71] is a total map.

Definition 3.4.2 (Computational Adequacy) We say that an interpretatigi-1 of S~ into
FPC is computationally adequate if given a@yI' + 0 : 7, wheneve{[O,T + 0: 7]] is a
total map, we also have that-o v for some value v.

Theorem 3.4.3 (SoundnessYhe interpretatiorf—1 is computationally sound. That is, if
t ~ v, then[t] ~ [V]

Proof We only check the derivation rulessWOssect, VaL SeLect, and \AL Uppatk, Since
the result follows from induction for the other derivatiarigs. The translation of ans¥/
Osject term is an FPC value and hence the theorem holds for ternisgaas the result of
the VAL Ogikct rule.

For VAL SeLect, supposeén ~» V' andbi{V’, o} ~ v, wherev = Obj(X = o)[l1 = g¢(X :
X).bi]'€". We want to show thgim.£;]1 ~» [v]. By inductionfm] ~ [V'] and hence

mi(outfm]) ~ AX: [o7].by;

Again, by induction[m] ~ [V'] and[bi{V', o}1 ~ [V]. The result then follows by the
substitution lemma sindd{V', o}] = [bi1{[V'], o}

For method update, suppose~» v wherev = Obj(X = o)[6 = g(x : X)b]<. In
order to provgm.{; =g(x : 0).b] ~ [V']wherev = Obj(X = o)[li = g(x : X).b, |} =
s(x: X).b]'s" we must prove that

inn((ma, ..., AX: [o].[b], ..., mha)) ~>
inn({Ax : [o].[b1], ..., AX: [o].[b], ..., AX : [o].[bATY)
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wherea = out(fm]). By induction
[M] ~ [V] = inn({Ax : [o].[b1], ..., AX: [o-].[bn1))

and hencerja ~ AX : [o7].[b] as required.
O

We proceed with adequacy which shows that the operationzhistcs of FPC is not
too strong with respect to the operational semantics of

Theorem 3.4.4 (Adequacy)The interpretatiorf—] is computationally adequate, that is if
[t] ~ v, then there is a’vsuch that t~ vV and[v] = v

Proof The proof is by induction on the derivation tree fot ~ v. If tis a variable or
any of the terms related to the standard type constructorsafculus, then the proofis as
expected. It is a VAL Ossect term, then both and[t] are values and hence the theorem
trivially holds. There are two more cases:

If tis given by L SeLect, sayt = m.¢j, then[t] ~ v must have the following form:

[m] ~ inn{..., AX.b, ...)
outfm] ~ (..., Ax.b, ...)
mjoufm] ~ Ax.b [m]~ u [b{u/x, o}~ v

(rjoufmi)(fm7) ~ v

We see that the derivation fob{u/x, o}1 ~ v is contained in the above derivation.
Therefore we can apply the induction hypothesis to it, asd & the ternm. The premises
of the rule \AL SeLect are now satisfied, and we can conclude that & for valueé. It
remains to be shown thgg] = v, but this is just the induction hypothesis fdo{u/x}1.

Finally, lett = m.{<=g(x : o)b be a method update term given byit\MJppate, and
[t] ~ v for some valuer. Such a term has the following derivation tree:

[m] ~ innv

oufm] ~ v = (..., Ax.b,...)
inn¢routfmy, ..., rji—soufml, Ax : [ol.[bl{o}, mjr0utm, ..., mpoutfm) ~» v

The derivation tree clearly shows tHat reduces to a value exactly whem] reduces
to a value which means, by induction hypothesis, that we have u for some value. In
other words, the premise of theMUppatk rule is satisfied, so we have indeed that U’
for some valuear'. It remains to be shown thét'] = v. Howevery has the form indicated
in the derivation tree((.., Ax.b, ...)), which is given as the interpretation of precisely the
valueObj(X = o)[6 = g(x : X)by;,1j = g(x : X)b]' € | to whicht reduces to by thesf)
rule.

m]
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Although adequacy holds, the stronger property of full @usion doesothold. In or-
der to discuss full abstraction we first need to define theonaif observation (contextual)
equivalence with which we can define the full abstractiorpprty:

Definition 3.4.5 (Contextual Equivalence)Let C[-] be a one-hole context such thtl" +
Clo] : randO,I" + C[0] : 7 (i.,e. (o] and 0] are closed typeable terms). We
say that o is contextually equivalent t6, avritten o = o, if for all contexts C, we have
[1®,T'+ C[o]: 71] being total f[ [®,I + C[0'] : 7]] is total.

Definition 3.4.6 (Full Abstraction) Full abstraction is the property that for any terms
o,0,ifandonlyif[ [@,T+o:71] =[O, + 0 : 7]], then o= ¢, i.e. identified
denotations correspond to observationally congruent g2rm

Now consider the counter-example in [74]. leet Obj(X = o)[¢ = ¢(x : X)x.€ and
b = Obj(X = 0)[¢ = ¢(x : X)caséx.{,y..q x,Y..2 x)]. Notel : 1+ 1 (representing a
boolean type) in botla andb. Although,a = b, we do not have equal denotations, since
self-application admits application of an object whereltireethod converges, which gives
different function values.

Although most FPC models ffar from expressiveness of "parallel or” which cannot
be defined operationally, there are in other words additiobstacles with self-application
relative to FPC. What are the consequences of this addititrséacle? It means that with
regard to self-applications of the "non-intended” forne, iapplying a dierent object to
another object, more properties will be valid than thosecWhire provabl@bservable
from the operational semantics. Viswanathan [74] avoids phoblem by removing the
dependence of bodids of |;, which givesn mutually recursive self-applicable functions,
each usingn — 1 labels in their method bodies, wharare the total number of labels. The
corresponding interpretation satisfies full abstract&ative toF .., butis instead cluttered
with technicalities needed to handle the mutual recursionéthods.

In summary, we have developed an interpretatio® of typed object calculi extended
with functions, coproducts, and products, into FPC, andga@adequacy and soundness,
while considering both eager and lazy variations of FPQ.&hdtraction does not hold, but
from a pragmatic point of view the simplicity of the interpagon is of greater importance
than its precise characterisation of objects. The selfiegjpon interpretation into FPC
that we have studied is simple but comes with a powerful onrscheme, that will be
studied further in the next chapter of this thesis.

Finally, we would like to remark that subtyping has not beerigd in this chapter,
but is certainly very important and need to be addressedhiscend, FPC can interpret
subtyping using coercion functions, but the details areddor future work.






Chapter 4

Direcursion

4.1 Denotational Semantics

In this section we give a denotational modeF@b, first-order object calculus similar to
S, but without the extra notation for self type support. Ourd@lds developed using the
categorypCpo. The key feature of this semantics is that it reflects ouritiotu that the
object types ofOb; are fixed points of recursive type equations. More specifictie
recursion is over the self-parameter which occurs nedgtivéis intuition is clearly seen
in the object-intro typing rule foo- = [l1: 71,...,ln: mn] Which suggests théth method
will consume the self-parameter, which has typeo produce something of typg. Thus,
intuitively, the interpretation of- should satisfy

[o] =[o] = [rad -~ x [l

and hence the denotation@fshould be the fixed point @fX. X — [11] x---x [tn]. Cru-
cially, the following lemma shows that such an interpretasupportself-applicatior{32]
which our semantics both requires and supports. We statertiraa specifically fopCpo
to make clear we are not using cartesian closure in the proof.

Lemma4.1.1 LetF : pCpo —— pCpo be a covariant functor and O an objecte€po
satisfying O= [O, FOJ. Then there is a self-application map sap@—FO.

Proof All isomorphisms are total and hence the isomorphism uiesito give a map
O ® O—FO. Now precompose with the diagonal which partial productsspss.
O

Notice how this difers with the recursive record semantics [3], where the sioniis
in the output or covariant position while the contravariaaturrence ogelf is replaced
by having a separate state type, and a fixed point operatdredevel of terms. Our
semantics also flers from other encodings such as various encoding with eaxisis
[63, 19] where the contravariant occurrence is present lolideim under the existential
quantifier. In our model oFOb; we instead explicate the contravariaeif parameter
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and interpret all object types into more elaborate recarsipes which, as we have seen,
support self-application.

If C is a category we denote I the categonC®P x C and note that@)" = (C").
The doubling trick used to obtain fixed points of difunctossigns to each difunctdt :
CoPxC — DafunctorF : CoPxC — D°PxD. We call functors that arise in this way
symmetric- see [28] for a full definition. Each symmetric functerinduces two functors
F1 andF; by post-composition with the projectioils andIl; arising from the product on
Cat. In fact the mappindr — F is a bijection between difunctors and symmetric functors
with inverse sendin to F,. This fact will be used below to define symmetric functors by
giving difunctors. Finally letP be the categorgCpo°P x pCpo.

With this notation we can give a semantics to types as folld#va type r hasn-free
type variable its interpretation is a symmetric functor

[]:P"— P

Using the bijection mentioned above, we define the symmitnictor [r] by giving [ 7] 2.
The exceptions to this rule are for the interpretations ofirsive types and object types.

[1]2X =1

[r1+ 722X = [ra]oX+[72]2X
[rex722X = [r]2X®[72]2X
I[T]_—>T2]|2X = |[T1]| 1X - |[7'2]|2X
[uvrlX = ([<1X)'

where ([rf] X)" is the fixed point of f] X : # — #. Finally, for an object typer = [l;:
71, ..., Im:Tm], we have

[Ml:7a, .. lmitml] = [puv. v— 110X - X ]
Unwinding the definition, we thus have
[o]X = [0]2X = [r1]2X @ - - - @ [tm] 2X

and note that, in this situation, Lemma 4.1.1 applies sineeawn takd- to be the constant
functor returning 1] 2X ® - - - ® [tm] 2X. Just as we gave an interpretation to types, so we
give one to environments. E is an environment with-free type variables, then

[E]: P" — P
is the symmetric functor defined by

|[X1:T1,...,XmZTm]|2X= |[T1]|2X®"'®|[Tm]lzx

1At this point we play a slight price of informality for not iesting judgments by free type variables. However
we previously gained by having less notationally cumbeesqmgments. We leave the reader to decide if this
was an appropriate choice.
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Finally we come to the interpretation for term judgmentsE If e:r is a judgment using
n-type variables, then its interpretation is an indexed fawfi morphisms

[Erer]a:[E]l.A— [7]2A

for each symmetric functok : P", i.e. for someX : pCpo" the functorA is of the form

A = (X1, X1), . .., (Xn, Xn)). Since the semantic clauses for the term constructs iassdc

with the basic types,}, x, —» are as expected, we leave them as an exercise and focus
instead on the judgments for object introduction, updatk elimination which we take
verbatim from Definition 3.4

e Object Introduction:By assumption we are given maps
[E,x:o+rbiri]a: [E x: 0] 2A — [7i]2A

in pCpo. Using the definition of [, x : o] 2 and the the adjunction between partial
product and and partial exponentials, these corresportiptiowing mapsn the
categoryCpo:

[ElA — ([o]2A — [7i]2A)
and hence we get, for eaétone map
[EIA — ([o]2A = [71 X - X Tn] 2A)
But, since p]2A — [t1 X - - - x Tp] 2A Is isomorphic to ] 2A, we are done.
¢ Object Elimination:We are given a family of maps
[Erac]a:[El2A — [d]2A

and want a map
[Erac]a: [E]l.A— [7i]2A

This can be constructed by postcomposing with the selfiegigdn map ] 2A — [11]2A%
.-+ [tn] 2A and then thg’th projection.

e Object UpdateStart with the map
[E+rac]a:[E]l2A — [o]2A
Unwind the isomorphism definingif] 2A. Replace thg’th component of the tuple
with
[E.x:orbr]a:[E x:c]A — [1i]2A

and then refold the isomorphism to get the required map.
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4.2 Wrappers

We saw in the previous section how object types and the ageddierm judgments can be
given a semantics by solving recursive equations of the formO—K for some constant

K representing the types of the fields of the object type. Tisatais an asymmetry in that
the self parameter can be consumed by the methods but th@dsethn’t produce new

self’s or objects. More generally one would like methodseaable to both consume and
return the self parameter - this would make sense in bothtifured and imperative object

calculi. Doing this means solving equations of the form

O=[0O,FQ]

whereF is some covariant functor. Such generalised objects aaglglsupported by the
semantics we have already developed. Also note by instangtiawith the identity functor
we get the classic equatidh= [D, D].

We put this idea to use by asking the following question. @itleat both the initial
algebra and final coalgebra styles of programming have pravée very popular in the
functional world, can we incorporate them into the world bjexts? More precisely, ¥
is a covariant functor with initial algebge and final coalgebraF, can we find an object
O which supports the kind of programming enjoyed/yandvF. Of course, since we
work in an algebraically compact categqify = vF.

We provide a positive answer to this question by choo$intp be the fixed point
of the equationO = [O,F O]. Note that our analysis is semantic in that we treat all
covariant functors rather than retreating into some sl syntactic class of functors
such as polynomials. For the rest of this section, fix a cavafunctorF and define the
difunctorG(X,Y) = X—F Y. Also we writeinn andoutfor the structure maps

inn:[O,FO] —~ O  out: O — [O,FO]

of the initial G-dialgebra. Our first result is that objects can be "evaldiaiteto the final
coalgebra and hence enjoy a notion of equality induced bgnhiation.

Lemma 4.2.1 0 is an F-coalgebra and hence there isFacoalgebra homomorphism
O — vF.

Proof From lemma 4.1.1, self application gives a coalggbra— FO.
mi

Not only is there a map fror® to the finalF-coalgebra, but also there is a map from
the initial algebra t@®

Lemma 4.2.2 O is anF-algebra and hence there issaalgebra homomorphispF — O.

Proof We would like constructors fdD, that is forO to be arF-algebra. Using the isomor-
phism defining), the structure map O — O can be given by amapO — [O,F Q]
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which we take to be the first projection after uncurrying. Nt O is anF-algebra, the
fold operation of the initial algebra defines Bralgebra homomorphisp- — O.
mi

That the compositeF —— O —— vF is the canonical map induced by the initiality
of uF andor the finality ofvF relies on the regularity aD. In this settingO is therefore a
retract ofuF showing it contains the elementsdf but a whole lot more as well.

Next, we wish to consider recursion principles. Initialeligas come with a canonical
recursion operatofold (catamorphism) which arises as the unique map from theainiti
algebra to some other algebra. Similarly there is a recarsjmeratorunfold (anamor-
phism) which arises as the unique map from some coalgebteetéirtal coalgebra. As
we mentioned earlie® has the universal property of being the initial dialgebrd hence
comes with its own recursion principle for defining maps fr@nto any other dialgebra.
Unwinding the definition of dialgebra etc, this gives thenpiple ofdirecursion

Definition 4.2.3 (Direcursion) Let (¢, ) be a dialgebra with types given in the diagram
below. Defindg) : O — B and[y] : A—— O to be the unique dialgebra homomor-
phism such that the following diagram commutes:

[0.Fo] — ™M, o 00— _ 0F0Q
G (¢, v1(¢, lﬂ[){ (¢, ¥) (¢, v] G (¢, ¥)9.y]
[AF B] B A [B,F Al

By simply chasing the above diagram, one can extract thewliseon principle as two
mutually recursive combinators:

Definition 4.2.4 (Direcursion - combinators)

(6. ¥)o=¢ ((F(4.¥)) o (outs 0) o [, ¥])
[¢.¢]a=inng ((F[¢.¢]) o (¥ @) o (s.4)) (direc-Der)

Corollary 4.2.5 (Properties of direcursion) Let (O, inng, outs) be the initial G dialge-
bra.

e Cancellation: For any otherG-dialgebra given by{A,¢ : G B A — A) and(B,y :
B — G A B) we have

outg o [¢,y¢] = Glg, Yo, y¥] oy
(¢, ¥ oinng = ¢ o G[ ¢, Y)(0, ) (direc-SiLr)
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e Reflection:

id = (inng, oute)
id = [inng, oute) (direc-RerL)

e Fusion: Let¢ : GAB—-By:A—->GBAand¢y’ . GAB - B,y : A -
G B’ A’ be twoG-dialgebras. Now, given a pair of arrows:g\" - Alh: B — B,
we have:

hog=¢"0Ggh - ho (¢.¥) = (¢'.¥')
Yyog=Ghgoy (¢.¢]og=[¢",¢]

This recursion scheme has been developed as a programmirgytby [27, 57] and
also opens the way for potential optimisations of prograasel upon fusion, deforesta-
tion etc and gives laws for object-oriented programsAltgebra of Programmingchool.

Here, we use direcursion to show tliatan be used to simulate the unfold operation
of the finalF-coalgebra. That is given arscoalgebrar : A—F A, we define a map from
Ato O. This can be done by instantiating the direcursion prircipt takingB to be the
one element cpo. The maamust then be the unique total map, while the Map[1, F A]
sendsa to the total function returning(a).

(direc-Fusion)

Wrapper Naturals

In this section we explicitly construct translation mépsA — O andw : O — A for the
well-known algebraic data type for naturalqi.e. uF whereF X = 1 + X). The coalgebra
sapp: O — F O has a unique map to the final coalgebtg- : vF — F vF. This map is
denotedv and defined as follows:

w(0) inl x if sapp o= inl x

inr(w @) if sapp o= inro’

Here, we have writtes for the element of 1 (which is unique up to isomorphism). We
also write= for definitional equality.

We know that, inC, uF is the initial F-algebra. We can equiP with an F-algebra
structure by defining a map O — O. We define a ma : FO - (O — F O) by
k= ax. Ay.X. Note thatk is the (typed)X-combinator. By composmg with inn : (O —

F O) —» O we have

1> 11>

innok: FO— 0O
as required. Thus we have a unique rkauF — O, anF-algebra homomorphism:
k(0)
kin+ 1)

We have a canonical mag= — vF which embeds finite terms into the set of finite and
infinite terms:

inn(1o.inl x) wherelo.inl x is the functionO - 1+ O
inn(Ao.inr(k n))

11> 11>
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Lemma4.2.6 wo k = id

Proof The proofis by induction. Forthe base case, we showthat] 0 = w(inn(10.inl x)
by calculation:

sapginn(A.inlx))

out(inn(1o.inl x))(inn(A0.inl x))
(A0.inl x)(inn(A0.inl %))
= inlx

For the induction step, we show e k) (n+ 1) = (n+ 1). We have:
(Wo k) (n+ 1) = w(inn(2o.inr(k(n)) = inr(w(k(n)) = inr(n)
mi
Underk, we see that the naturalsl) and alsav, are translated into wrappers as follows:
innAxinl x  innAxinr(innax.inl x)  innAx.x
etc. The corresponding object type is:

NatO = uX.[zeraor_succ: 1+ X]

The wrapper naturals are hence the followk@b, -terms (settindg NatO = out NatO:

zero = [zeraor_succ= g(x: UNatQ)inl x]
one = [zeraor_succ=¢(x:UNatO)inr zerg
w £ [zeraor_succ= ¢(x: UNatOX]

We are now in a position where we would like to compare addtfandor naturals to
an add function for wrapper naturals. In other words, girea N we wish to define a
function+n, : O — O such that+n, k(n) = k(m + n) for anyn € N. For this function we
will write k(m) + k(n) although we are actually defining a section for fixadWe proceed
denotationally:

+m0 = (ém.¥)O
where

b0 = k(m), if sapp o= inl x
™7 }inn (1g.0%), otherwise

and where we havg = Ax.1o.sapp KO). We have instantiated direcursion such that
[#,¢] : 1 — O. To see how this computation proceeds we expand the defiraficata-
morphism for|¢m, v) k(0):
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(#m: ) k(0) = dm(F (¢m, ) o (out KO)) o [¢m, ¥])

This shows that the anamorphism is first evaluated. Si@ediscards its argument,
this anamorphism will have no role to play provided that tbenposed function termi-
nates even if its un-evaluated argument involves non-teatiun. Formally, we prove the
following correctness property:

Lemma 4.2.7 +nq k(n) = k(m + n)

Proof By induction on the numbert. Let mbe an arbitrary but fixed natural number. First
for the base case, we set 0 and reason:

(om. ¥) k(0)
= { by definition of catamorphist
$m (F (ém. ¥) o out(k(0))) o [¢m, ¥]
= { sinceout(k(0)) discards its argumet
$m (F (#m. ¥) o out(k(0)))
= { functor}
$m ((id1 + (ém, ¥)) o (20.inl %))
= { composition withid; }
dm(A0.nl x)
= { definition of¢m }
k(m)

By similar reasoning, it holds fan = 1. Note the overloaded meaning-ef both the add
function and in the derivation also coproduct. For the irduncstep we first assume that
for n — 1 the statement holds, i.ey, k(n — 1) = k(m+ n — 1), and then derive the required
equality:

(P, ¥) k(n)
= { by definition of catamorphism
ém (F(ém, ¥) o out(k(n)) o [¢m, ¥])
= { sinceout(k(n)) discards its argumeit
$m (F(ém, ) o out(k(n)))
= {functor}
$m ((id1 + (ém, ¥)) © out(k(n)))
= {assumingr> 0}
ém (inr (pm, ) o out(k(n)))
= {sinceax.inr(out(k(n — 1))) = out(k(n)) }
$m (inr (pm, Y o (Ax.inr(out(k(n — 1)))))
= { property ofk and (- ), assumingn > 1}
inn o (Ay.Ax.inry) o out(¢m (inr (¢m, ¥) o out(k(n — 1))))
= { by induction hypothesis we have
k(m+n—1) = (ém ¥) k(n = 1) = ¢m(inr (m, v) o out(k(n - 1))) }
inn o (Ay.Ax.inry) o outtk(m+n - 1))
= k(m+n)
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Lists

A second example is given X = N+ Xx N, the functor for lists of naturals, i.e. its fixed
point given by the initiaF-algebra is isomorphic to the natural numbers. The trainslat
maps are now defined by:

k(Nil) = inn(20.inl x)
k(Consaap = inn(lo.inr (k(a),as)
w() = Nil % if sapp o= inl x
w(0) = Consaas if sapp o=inr (a,a9

We save for future work to more generally study the transfatif folds on algebraic
data types into folds on their corresponding wrappers. Htitech, we would like to also
consider laws for lifting a recursive function, for exampe factorial function, into its
canonical object and object type. Such “object introduttioles are left as further work,
and involves translation a recursive definition to its cepanding iterative object-oriented
form. We anticipate that such introduction rules fits wetbithe idea of deriving object-
oriented programs from (e.g. purely functional) specifarad.

Of course the above examples merely scratch the surface efithsioned applications
of direcursion to objects. Firstly, the use of the fusion tawld eliminate induction proofs
such as the correctness proof feigiven above. Secondly, we would like to go beyond
natural numbers and lists and also consider design patterhother canonical object-
oriented phenomena together with their associated alggmaperties.

To summarise, we have defined a translation of some of thedatyres of initial algebra

and final coalgebra programming into the world of objectsatTih, we have defined an
object type which contains the elements of the initial atgehas constructors for pattern
matching, can be evaluated into the final coalgebra, supparbtion of bisimulation and

supports an unfold operator. That these constructionsudte simple suggests to us that
these wrapper objects are natural and gives us hope thaefurdoncepts can be incorpo-
rated into the model without it becoming intractable.






Chapter 5

Conclusions and Further Work

In this licentiate thesis, | have demonstrated the foundatfor “algebra of objects”, a
treatment of object-orientgabject-based programs in a style similar to Bird-Meertemns f
malism. This has been done by developing a dialgebraic sieaaf object types such
that objects can be interpreted as higher-order data types.

More work is required before we can claim to have establishath a programming
algebra for objects. It seems from the example in chaptérad jtmay already be possible
to harvest some applications of direcursion to objectrdeié programs. For example, it
seems possible to defitkkeandw themselves using direcursion, and next define additional
methods inside the object representing a natural numbeg tise same technique. How-
ever, the notion of direcursion is the subject of the authoutrent research and the aim is
to find variations of direcursion. This follows preciselgttievelopment of Bird-Meertens
formalism. For example, catamorphism cannot always be tseapress the functions
one want to use in functional programming, and as a resultrtdes defined paramor-
phism which generalises catamorphism for natural numiseesa notion corresponding
to primitive recursion, to give just one example. The caseadfrecursion is similar, and
we leave as important future work to refine the notion of dirsmn into notions such
as parametric direcursion. Interestingly, objects hae& 8$pecial self-application seman-
tics which means that they are a particular form of higheleodata types. As a result,
specialisations and variations of direcursion seems jilkus

The present work has been mostly denotational in nature.olidvbe interesting to
extend typed object calculi with the combinatdrg @nd [- ]. This is, of course, a slightly
different line of research, oriented more towards actual progniag languages, than their
denotational semantics.

We have studied aCpo model of object calculi. Other models have been studied,
e.g. the metric approach proposed by Abadi and Cardelli [8ckvuses pers (partial
equivalence relations). Future work should more extehst@mpare with such models.
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The treatment of subtyping has been left as further work.s Thindeed the subject
of the author’s current research, and notions of natuydlitaturality appear together with
embeddingprojection pairs which are used for coercions. One goalisflite of research
is to explain inheritance in terms of direcursion.



Bibliography

(1]

(2]

(3]
(4]

(5]

(6]

[7]

(8]

9]

Martin Abadi and Luca Cardelli. A semantics of objecpé&g. InNinth Annual
IEEE Symposium on Logic in Computer Science, Paris, Frapages 332—-341, Los
Alamitos, CA, July 1994. IEEE.

Martin Abadi and Luca Cardelli. A theory of primitive @zts — untyped and first-
order systems. In Masami Hagiya and John C. Mitchell, esliidreoretical Aspects
of Computer Softwarevolume 789 ofLecture Notes in Computer Sciengages
296-320. Springer-Verlag, April 1994.

Martin Abadi and Luca CardelliA Theory of ObjectsSpringer-Verlag, 1996.

Martin Abadi, Luca Cardelli, and Ramesh Viswanathan.idterpretation of objects
and object types. IMCM Symposium on Principles of Programming Languages
(POPL), St. Petersburg Beach, Floridaages 396—409, 1996.

R. Backhouse, P. Jansson, J. Jeuring, and L. Meertenseri@grogramming — an
introduction. InLecture Notes in Computer Sciene®lume 1608, pages 28-115.
Springer-Verlag, 1999. Revised version of lecture noteé\feP’98.

Roland Backhouse and Paul Hoogendijk. Final dialgeblfasm categories to alle-
gories.Theoret. Informatics Appl33:401-426, 1999.

Roland C. Backhouse. An exploration of the Bird-Meegdarmalism. Techni-
cal Report Technical Report CS 8810, Department of Com&dince, Groningen
University, 1988.

John Backus. Can programming be liberated from the Voarhnn style? a func-
tional style and its algebra of programSommunications of the ACN21:613-641,
1978.

Richard S. Bird. An introduction to the theory of listsn M. Broy, editor,Logic
of Programming and Calculi of Discrete Desigvolume 36 ofNATO ASI Series F
pages 3-42. Springer-Verlag, 1987.

[10] Richard S. Bird and Oege de Modklgebra of ProgrammingPrentice Hall, 1997.

67



68 BIBLIOGRAPHY

[11] Corrado Bohm and Alessandro Berarducci. Automatrtlisgsis of typed -programs
on term algebrasTheoretical Computer Sciencg9d(2—3):135-154, August 1985.

[12] V. Bono, M. Bugliesi, and S. Crafa. Typed Interpretasoof Extensible Objects.
ACM Transactions on Computational Logic (TOCB)4):562—603, Agosto 2002.
Revised and extended version &f.[

[13] V. Bono, M. Bugliesi, and L. Liquori. A Lambda Calculu$ mcomplete Objects.
In Proc. of MFCS, International Symposium of Mathematicalrfgation of Com-
puter Sciencevolume 1113 ofLecture Notes in Computer Scienc@ages 218—
229. Springer Verlag, 1996. (38%})tp://www-sop.inria.fr/mirho/Luigi.
Liquori/PAPERS/mfcs-96.ps.gz.

[14] Viviana Bono and Michele Bugliesi. Matching constrairfior the lambda calculus
of objects. InProc. of TLCA volume 1210 olecture Notes in Computer Science
pages 46—62. Springer-Verlag, 1997.

[15] Viviana Bono and Luigi Liquori. A Subtyping for the FishHonsell-Mitchell
Lambda Calculus of Objects. Proc. of CSL, International Conference of Computer
Science Logicvolume 933 ofLecture Notes in Computer Sciencesges 16-30.
Springer Verlag, 1995.

[16] Gérard Boudol. The recursive record semantics ofabjeevisited.Journal of Func-
tional Programming14(3):263—-315, 2004.

[17] K. B. Bruce and G. Longo. A modest model of records, iitaece, and bounded
quantification. In C. A. Gunter and J. C. Mitchell, editoi$)eoretical Aspects of
Object-Oriented Programmingages 151-195. MIT Press, London, 1994.

[18] Kim B. Bruce. Paradigmatic object-oriented programgnianguage: Design, static
typing and semantics.Journal of Functional Programming4(2):127-206, April
1994,

[19] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Gmaring object encodings.
Information and Computatiqri55(1-2):108-133, 1999.

[20] Luca Cardelli. A Semantics of Multiple Inheritance. G Kahn, D.B. MacQueen,
and G. Plotkin, editorssemantics of Data Types, International Symposium, Sophia-
Antipolis, France pages 51-67. Springer-Verlag, 1984. Lecture Notes in Cdenp
Science, volume 173.

[21] Luca Cardelli. A semantics of multiple inheritandaformation and Computatign
76(2/3):138-164, Februaf@arch 1988.

[22] Luca Cardelli. Typeful programming. In E. J. Neuholdda¥. Paul, editorsFor-
mal Description of Programming Concepfmges 431-507. Springer-Verlag, Berlin,
1991.



69

[23] Robin Cockett and Tom Fukushima. About Charity. Yell@gries Report No.
92/48(/18, Department of Computer Science, University of Calgaume 1992.

[24] William R. Cook. A self-ish model of inheritance. Undigihed manuscript., 1987.

[25] Wwilliam R. Cook. A Denotational Semantics of InheritancdhD thesis, Brown
University, Department of computer Science, Provident®de Island, May 1989.

[26] William R. Cook and Jens Palsberg. A denotational sdiogof inheritance and its
correctness. IfConference proceedings on Object-oriented programmiistesys,
languages and applicationpages 433-443. ACM Press, 1989.

[27] Leonidas Fegaras and Tim Sheard. Revisiting cataniemmover datatypes with em-
bedded functions (or, programs from outer space)Canf. Record 23rd ACM SIG-
PLANSIGACT Symp. on Principles of Programming Languages, PO®LSt. Pe-
tersburg Beach, FL, USA, 21-24 Jan. 19péges 284—294. ACM Press, New York,
1996.

[28] Marcelo P. Fiore Axiomatic Domain Theory in Categories of Partial Mag3istin-
guished Dissertations in Computer Science. Cambridgeddsity Press, 1996.

[29] Marcelo P. Fiore.Axiomatic Domain Theory in Categories of Partial Maps. Cam-
bridge University Press, Distinguished Dissertations on@puter Science, 1996. Ax-
iomatic Domain Theory in Categories of Partial MapBistinguished Dissertations
in Computer Science. Cambridge University Press, 1996.

[30] Marcelo P. Fiore and Gordon D. Plotkin. An extension afdals of axiomatic domain
theory to models of synthetic domain theory.GSL, pages 129-149, 1996.

[31] Kathleen Fisher. Type Systems for object-oriented programming languadggsD
thesis, Stanford University, Stanford, CA, USA, August 8995 TAN-CS-TR-98-
1602.

[32] Kathleen Fisher, Furio Honsell, and John C. Mitchelllatnbda calculus of objects
and method specializatioiordic Journal of Computingl(1):3-37, 1994.

[33] Kathleen Fisher and John Mitchell. A delegation-basbfbct calculus with sub-
typing. In Fundamentals of Computation Theory (FCT'98)lume 965 ofLecture
Notes in Computer Sciengeages 42—-61. Springer Verlag, 1995.

[34] Kathleen Fisher and John C. Mitchell. Notes on typeatobpriented programming.
In TACS '94: Proceedings of the International Conference oeorétical Aspects of
Computer Softwareages 844—885. Springer-Verlag, 1994.

[35] Maarten M. Fokkinga. Calculate categorically!Formal Aspects of Computing
4(4):673-692,1992.



70 BIBLIOGRAPHY

[36] Peter J. Freyd. Algebraically complete categories.Ptac. 1990 Como Category
Theory Conferencevolume 1488 ofLecture Notes in Mathematicpages 95-104.
Springer-Verlag, 1990.

[37] Peter J. Freyd. Recursive types reduced to inductpedy InProceedings 5th IEEE
Annual Symp. on Logic in Computer Science, LICS{8Qes 498-507. IEEE Com-
puter Society Press, June 1990.

[38] Jean-Yves Girard. Interprétation functionelle et élimination des coupsirdans
I'arithmétique d’'ordre supérieurePhD thesis, Université Paris VII, 1972.

[39] Joseph A. Goguen. A Categorical Manifeskdathematical Structures in Computer
Sciencel(1):49-67, 1989.

[40] C. A. Gunter. Semantics of Programming Languages: Structures and Teuhni
Foundations of Computing. MIT Press, 1992.

[41] T. Hagino. A typed lambda calculus with categoricaléygonstructors. In D. H. Pitt,
A. Poigne, and D. E. Rydeheard, edito@ategory Theory and Computer Science
volume 283 ofLecture Notes in Computer Scienpages 140-157. Springer-Verlag,
1987.

[42] T.Hagino. A categorical programming language. In Mkdiahi, editor Advances in
Software Science and Technolpgglume 4, pages 111-135. Academic Press, 1993.

[43] Leon Henkin. Completeness in the theory of type$Symb. Log15(2):81-91, 1950.

[44] Ralf Hinze. Generic programs and proofs. Habilitagechrift, University of Bonn,
October 2000.

[45] Samuel N. Kamin. Inheritance in Smalltalk-80: a detiotzal definition. InProceed-
ings of the 15th ACM SIGPLAN-SIGACT symposium on Principigsogramming
languagespages 80-87. ACM Press, 1988.

[46] Samuel N. Kamin and U. S. Reddy. Two semantic models ¢éattoriented lan-
guages. In C. A. Gunter and J. C. Mitchell, editoraeoretical Aspects of Object-
Oriented Programmingpages 463—495. MIT Press, London, 1994.

[47] Daniel J. Lehmann and Michael B. Smyth. Algebraic sfieaiion of data types: A
synthetic approachMathematical Systems Theof4:97-139, 1981.

[48] Daniel Leivant. Reasoning about functional programd aomplexity classes as-
sociated with type disciplines. IRroceedings of the 24th Annual Symposium of
Foundations of Computer Sciengages 460-469. IEEE, 1983.

[49] Luigi Liquori. On object extension. IProceedings of ECOQR/olume 1445 of
Lecture Notes in Computer Scienpages 498-522, 1998.



71

[50] Luigi Liquori. Bounded polymorphism for extensiblejebts.Lecture Notes in Com-
puter Sciencgl657, 1999.

[51] Andres Loh.Exploring Generic HaskellPhD thesis, Utrecht University, 2004.

[52] Grant R. Malcolm.Algebraic data types and program transformatidph.D. thesis,
Department of Computing Science, Groningen Universitg Netherlands, 1990.

[53] Ernest G. Manes and Michael A. ArbiBlgebraic approaches to program semantics
Springer-Verlag, 1986.

[54] Lambert Meertens. Algorithmics — towards programmasg mathematical activity.
In J. W. De Bakker, M. Hazewinkel, and J. K. Lenstra, edité®tmceedings CWI
Symposium on Mathematics and Computer Sciemaeber 1 in CWI Monographs,
pages 289-334. North-Holland, 1986.

[55] Lambert Meertens. Constructing a calculus of prograins]. L. A. Van de Snep-
scheut, editoMathematics of Program Constructipmolume 375 ofLecture Notes
in Computer Sciencpages 66—90. Springer-Verlag, 1989.

[56] Lambert Meertens. ParamorphisnmBrmal Aspects of Computing(5):413-424,
1992.

[57] Erik Meijer and Graham Hutton. Bananas in space: extentbld and unfold to
exponential types. In S. Peyton-Jones, ediamctional Programming Languages
and Computer Architecturgpages 324—333. Association for Computing Machinery,
1995.

[58] John C. Mitchell. Toward a typed foundation for meth@eéaialization and inheri-
tance. InProceedings of the 17th ACM SIGPLAN-SIGACT symposium owiphes
of programming languagepages 109-124. ACM Press, 1990.

[59] John C. Mitchell.Foundations for Programming Languagekhe MIT Press, 1996.

[60] UIf Norell. Implementing functional generic progranmg. Licentiate thesis,
Chalmers University of Technology and Goteborg Univergio04.

[61] Benjamin C. Pierce. The essence of obje®&i$&GSOFT Softw. Eng. Notezb(1):69—
71, 2000.

[62] Benjamin C. PierceTypes and programming languagéhe MIT Press, 2002.

[63] Benjamin C. Pierce and David N. Turner. Simple typeette¢ic foundations for
object-oriented programmingJournal of Functional Programming}(2):207-248,
April 1994,

[64] G. D. Plotkin. Post-graduate lecture notes in advamtmdain theory (incorporating
the “Pisa Notes”). Dept. of Computer Science, Univ. of Edimgh, 1981.



72 BIBLIOGRAPHY

[65] G. D. Plotkin. A metalanguage for predomainsWorkshop on the Semantics of Pro-
gramming Languagepages 93-118. Programming Methodology Group, University
of Goteborg and Chalmers University of Technology, 1983.

[66] G. D. Plotkin. Lectures on predomains and partial fiores. Notes for a course given
at the Center for the Study of Language and Information,f8ten1985.

[67] Erik Poll and Jan Zwanenburg. From algebras and coaégdb dialgebras. InH. Re-
ichel, editor,Coalgebraic Methods in Computer Science (CMCS’208ljmber 44
in ENTCS. Elsevier, 2001.

[68] Bernhard Reus and Thomas Streicher. Semantics anclddgbject calculi.Theor-
ertical Computer Scien¢g816(1):191-213, 2004.

[69] John C. Reynolds. Towards a theory of type structure.Célloque sur la Pro-
grammation, Paris, Francevolume 19 ofLecture Notes in Computer Scienpages
408-425. Springer-Verlag, 1974.

[70] Marc A. Schroeder. Higher-order Charity. Master'sdise The University of Calgary,
July 1997.

[71] M. Smyth and G. Plotkin. The category theoretic solutid recursive domain equa-
tions. SIAM Journal of Computindl1(4):761-783, 1982.

[72] M. Spivey. A categorical approach to the theory of lista J. L. A. Van de Snep-
scheut, editoMathematics of Program Constructipmolume 375 ofLecture Notes
in Computer Scieng@ages 399—-408. Springer-Verlag, 1989.

[73] Varmo Vene.Categorical programming with inductive and coinductivpag PhD
thesis, University of Tartu, 2000.

[74] Ramesh Viswanathan. Full abstraction for first-ordiejeots with recursive types
and subtyping. IProceedings of the Thirteenth Annual IEEE Symposium oncLogi
in Computer Science (LICS), 1998 EE Computer Society, 1998.

[75] Mitchell Wand. Type inference for objects with instaneariables and inheritance.
In C. A. Gunter and J. C. Mitchell, editor§heoretical Aspects of Object-Oriented
Programming pages 97-120. MIT Press, London, 1994. Originally apmktase
Northeastern University College of Computer Science TamahReport NU-CCS-
89-2, February, 1989.

[76] Glynn Winskel. The Formal Semantics of Programming Languag®8lT Press,
1993.



