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Absiract

The basal ganglia form an important structure centrally placed in the brain.
They receive input from motor, associative and limbic areas, and produce output
mainly to the thalamus and the brain stem. The basal ganglia have been implied
in cognitive and motor functions. One way to understand the basal ganglia is
to take a look at the diseases that affect them. Both Parkinson's disease and
Huntington’s disease with their motor problems are results of malfunctioning
basal ganglia. There are also indications that these diseases affect cognitive
functions. Drug addiction is another example that involves this structure, which
is also important for motivation and selection of behaviour.

In this licentiate thesis I am laying the groundwork for a detailed model
of the striatum, which is the input stage of the basal ganglia. The striatum
receives glutamatergic input from the cortex and thalamus, as well as dopamin-
ergic input from substantia nigra. The majority of the neurons in the striatum
are medium spiny (MS) projection neurons that project mainly to globus pal-
lidus but also to other neurons in the striatum and to both dopamine producing
and GABAergic neurons in substantia nigra. In addition to the MS neurons
there are fast spiking (FS) interneurons that are in a position to regulate the
firing of the MS neurons. These FS neurons are few, but connected into large
networks through electrical synapses that could synchronise their effect. By
forming strong inhibitory synapses on the MS neurons the FS neurons have a
powerful influence on the striatal output. The inhibitory output of the basal gan-
glia on the thalamus is believed to keep prepared motor commands on hold, but
once one of them is disinhibited, then the selected motor command is executed.
This disinhibition is initiated in the striatum by the MS neurons.

Both MS and FS neurons are active during so called up-states, which are
periods of elevated cortical input to striatum. Here I have studied the FS neu-
rons and their ability to detect such up-states. This is important because FS
neurons can delay spikes in MS neurons and the time between up-state onset
and the first spike in the MS neurons is correlated with the amount of calcium
entering the MS neuron, which in turn might have implications for plasticity
and learning of new behaviours. The effect of different combinations of elec-
trical couplings between two FS neurons has been tested, where the location,
number and strength of these gap junctions have been varied. I studied both the
ability of the FS neurons to fire action potentials during the up-state, and the
synchronisation between neighbouring FS neurons due to electrical coupling. I
found that both proximal and distal gap junctions synchronised the firing, but
the distal gap junctions did not have the same temporal precision. The ability of
the FS neurons to detect an up-state was affected by whether the neighbouring
FS neuron also received up-state input or not. This effect was more pronounced
for distal gap junctions than proximal ones, due to a stronger shunting effect of
distal gap junctions when the dendrites were synaptically activated.

We have also performed initial stochastic simulations of the Ca®"-calmodulin-
dependent protein kinase II (CaMKII). The purpose here is to build the knowl-
edge as well as the tools necessary for biochemical simulations of intracellular
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processes that are important for plasticity in the MS neurons. The simulated
biochemical pathways will then be integrated into an existing model of a full MS
neuron. Another venue to explore is to build striatal network models consisting
of MS and FS neurons and using experimental data of the striatal microcircuitry.
With these different approaches we will improve our understanding of striatal
information processing.

Keywords: striatum, fast spiking interneuron, gap junctions, synchronisation,
up-state detection, CaMKII, mathematical modelling
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Sammanfattning

Basala ganglierna utgér tillsammans en viktig struktur som ligger centralt plac-
erad i hjarnan. De far in signaler frin motor-, associativa- samt limbiska areor
och projicerar i sin tur framst till talamus och hjarnstammen. Basala ganglierna
antas ha bade motoriska och kognitiva funktioner. Genom att studera sjukdo-
mar som paverkar detta system, som Parkinsons och Huntingtons sjukdom,
kan vi fA en insyn i dess funktioner. Aven drogberoende verkar paverka basala
ganglierna.

I denna licentiatavhandling lagger jag grunden {6r en detaljerad modell av
striatum, som ar forsta steget i signalbehandlingen i basala ganglierna. Stria-
tum far glutamatergiska insignaler fran cortex och talamus, samt dopamin fran
substantia nigra. De flesta neuroner i striatum ar medium spiny (MS) projek-
tionsneuroner och projicerar framst till globus pallidus, men dven till andra neu-
roner i striatum och till bade dopaminproducerande och inhibitoriska neuroner
i substantia nigra. Det finns &ven fast spiking (FS) interneuroner i striatum,
vilka trots att de ar relativt fa, kan paverka MS-neuronernas spikande. FS-
neuronerna ar elektriskt kopplade till varandra via gap junctions, vilka synkro-
niserar deras effekt pA MS-neuronerna. Basala ganglierna ligger hela tiden och
inhiberar férberedda motorkommandon. Nar vi ska utféra en motorisk handling
lyfts inhibitionen via disinhibition fran MS-neuronerna.

Insignalen fran cortex till striatum varierar i intensitet. Det ar framst un-
der up-states, perioder av hog aktivitet, som MS- och FS-neuronerna spikar.
Jag har studerat FS-neuronernas férmaga att detektera upstates. Detta ar vik-
tigt eftersom FS-neuronerna kan paverka nir MS-neuronerna spikar. Vidare
vet man att tiden mellan starten pa ett upstate och forsta spiken hos MS-
neuronerna paverkar hur mycket kalcium som kommer in in cellen, vilket i
sin tur paverkar plasticitet och inlarning av beteenden. Jag har studerat hur
bade upstate-detektion och synkronisering mellan par av FS-neuroner paverkas
av att de kopplas ihop elektriskt med gap junctions. Har har kopplingarnas kon-
duktans, antal och placering varierats. En slutsats var att bade proximala och
distala gap junctions synkroniserade spikandet, men att de proximala kopplin-
garna gav en mer precis synkronisering. FS-neuronernas férmaga att detektera
upstates paverkades aven av huruvida deras granne ocksa fick upstate-insignal
fran cortex eller inte. Har var kontrasten stérst for distala gap junctions, pa
grund av stérre shuntningseffekt i dendriterna.

Vi har ocksa utfort stokastiska simuleringar av Ca**-calmodulin-beroende
protein kinas II (CaMKII). Detta var en forstudie till vidare biokemiska simu-
leringar av intracellulara processer som ar viktiga for plasticitet i MS-neuronerna.
Tanken ar att dessa biokemiska simuleringar ska integreras i en existerande
modell fér FS-neuronen. Vi planerar dven att bygga natverk med FS- och MS-
neuroner baserade pa data om mikrostrukturen i striatum. Syftet ar att 6ka var
forstaelse for informationsbehandlingen i striatum.
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Chapter 1

INTRODUCTION

When I started my PhD studies at the Royal Institute of Technology (KTH) I began
by attending a basic neuroscience course at the Karolinska Institute (KI). It was
a fascinating course where we learned about how the brain and the nervous
system worked. One episode in particular stood out from the ordinary lectures
and laborations. As part of the course we were shown real human brains taken
from deceased people and stored in formalin. The teaching assistant took a
brain out of the plastic jar in which it was stored and showed it to us pointing
out the different cortical landmarks. I remember standing there and looking at
the brain she was holding and reflecting on the fact that my own brain, not all
that different from that one, was trying to make sense of what it saw. How could
a structure like that form a thought. The brain and the processes associated
with it have puzzled humans for a long time. It is intimately tied with who we
are and how we perceive ourselves. Je pense, donc je suis or, I think therefore I
am, as René Descartes so eloquently put it.

It is a challenging task to try to understand how the brain works, a long
journey paved with interesting puzzles and great discoveries. Each day we rely
on our brains to make countless choices, some of the choices are life-altering,
while others may be more mundane; what to make for dinner, how best to ap-
proach a possible mate, or whether to turn left or right at the next intersection.
One interesting type of choices is action-selection (Barto, 1994). For example,
if we are a monkey in an experiment hoping for some fruit juice, do we move
our arm left or right in response to the picture shown on the screen ahead of us
(Hollerman and Schultz, 1998; Cromwell and Schultz, 2003)? What processes
in the brain enable us to perform action-selection?

As with so many other things, we only realise how important something is to
us when we are about to lose it. Through the study of various neurological dis-
eases and other, sometimes highly localised, damage to the brain, researchers
and physicians have been able to understand what functions the damaged parts
must have filled. From studies of Parkinson patients, where a loss of dopamine



2 1.1. Scope of the Thesis

producing neurons result not only in motor problems like rigidity, tremor and
freezing, but also in non-motor problems like depression, passivity and demen-
tia (Fahn, 2003; Parkinson, 1817), we learn that there is important interaction
between the cerebral cortex and a centrally placed structure called the basal
ganglia, and that the signalling substance dopamine plays an important role in
this (Schultz, 2006).

How can a complex system like the brain learn to perform certain tasks? In
their book Sutton and Barto (1998) discuss different ways to make a machine
learn new behaviours. An action that leads to a high reward would be selected
over an action that leads to a low reward. This type of matching of behaviour
and reward is relatively simple. However, what happens if the action does not
directly result in a reward? Let us say a sequence of actions is required, like
navigating a maze, before a reward can be collected at the end. How do we
then assign values to the individual actions required? One solution could be
to have two entities; a critic that tries to predict the reward associated with
the current actions available and an actor that based on the predicted reward
chooses an action. Both the actor and critic are improved afterwards based on
the difference between their prediction and the actual reward. Over time the
internal representation of the future reward will get better as the system learns.
This system is also able to cope with changes in the environment.

What is so fascinating is that there are structures in the brain that are be-
lieved to implement this actor-critic type of learning (Houk et al., 1995; Djurfeldt
et al., 2001; Bar-Gad et al., 2003). In particular we are interested in the func-
tion of the striatum, which is the input stage of the basal ganglia, an important
structure for behavioural selection and motor learning that receives input from
large areas of the cortex. The striatum is not homogenous, it can be divided into
acetylcholinesterase-poor striosomes surrounded by the more enriched matrix
(Graybiel and Ragsdale, 1978; Graybiel et al., 1981). The structure is further
described in section 2.2.1. In the striatum the striosomes are believed to take
the role of the critic and the surrounding matrix is thought to be the actor, also
the dopamine signal they received have similarities with the temporal difference
error in the actor-critic learning (Houk et al., 1995; Schultz et al., 1997; Dayan
and Balleine, 2002; Reynolds and Wickens, 2002; Schultz, 20006).

1.1. Scope of the Thesis

We wish to understand the striatum’s structure on different levels. The work
done in this thesis has been mainly on the fast spiking (FS) interneurons, which
only make up a small part of the neuronal population in the striatum. How-
ever, the FS neurons are connected to each other through gap junctions, form-
ing electrical networks that could probably synchronise their effect (Kods and
Tepper, 1999; Galarreta and Hestrin, 2001; Traub et al., 2001; Connors and
Long, 2004). This enables them to have a strong influence on the spiking of
the medium spiny (MS) projection neurons (Bolam et al., 2000; Kods and Tep-
per, 1999; Tepper et al., 2004). The MS neurons are the main population of
neurons in the striatum, and they are the only neuron type projecting to the
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output stages of the basal ganglia. In Paper I I focus on the effect of different
gap junction localisations on synchronisation. Cortical input varies in intensity,
periods of higher activity are termed up-states, and periods of lower activity are
called down-states (Plenz and Kitai, 1998). Paper II concentrates on up-state
detection, or more precisely, the effect gap junctions have on the FS neurons
ability to fire an action potential in response to an up-state. In this paper I also
study different gap junction mechanisms at play during up-state detection. In
Paper III we perform some initial stochastic simulations of Ca*"-calmodulin-
dependent kinase II (CaMKII). The goal here is to later implement this and other
biochemical networks into existing MS neuron models (Wolf et al., 2005). My
contribution here was mainly to help with a parallel implementation of the code
as part of a course project Malin Sandstrém and I worked on together.

1.2. List of Papers

Paper I. Johannes Hjorth, Alex H. Elias, Jeanette Hellgren Kotaleski, The sig-
nificance of gap junction location in striatal fast spiking interneurons, CNS
Edinburgh Submitted, 2006

Paper II. Johannes Hjorth, Jeanette Hellgren Kotaleski, Up-state signalling
and Coincidence Detection in Striatal Fast Spiking Interneurons Coupled
through Gap Junctions, Manuscript, 2006

Paper III. Malin Sandstrom, Johannes Hjorth, Anders Lansner, Jeanette Hell-
gren Kotaleski, The impact of the distribution of isoforms on CaMKII acti-
vation Neurocomputing, 69(10-11) 1010-1013, 2006






Chapter 2

BIOLOGICAL BACKGROUND

Before we can dig into the modelling details we should first get a basic under-
standing of the system we are studying. How does a neuron work, how do they
connect to their neighbours and what is the function of the local microcircuitry.
We need to understand the system from a neuronal level all the way up to the
network level. This chapter introduces the biological basis for the thesis. The
first section deals with the basic functions of a neuron, focusing on the mecha-
nisms required for information processing. It describes how signals are chemi-
cally transmitted between neurons, how the received signals are processed, and
what mechanisms are needed to send the signal onwards to new neurons. The
second section gives an overview of the structure of the striatum, touching upon
the different parts and how they are connected. For a more detailed description,
see one of the many good reviews available (Wickens et al., 2003; Bar-Gad et al.,
2003; Hikosaka et al., 2006). The third section introduces three of the neuron
types that can be found in the striatum; medium spiny (MS) projection neuron,
fast spiking (FS) interneuron and tonically active (TA) interneuron. The fourth
section talks about learning and plasticity in the striatum, introducing the role
of dopamine. The fifth and last section talks about diseases that plague stria-
tum and the basal ganglia, motivating us to better understand this important
structure in the brain.

2.1. Basic Function of a Neuron

The human brain has 100 billion (10'') neurons which is roughly equal to the
number of stars in our galaxy. Connecting these neurons we have on the order
of 100 trillion (10'*) synapses allowing them to share information and make
decisions. Let us for a moment zoom in on one of these neurons. This particular
neuron is for instance located in the striatum, which is the input stage of the
basal ganglia. In Figure 2.1 we can see the three parts that a neuron consists
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6 2.1. Basic Function of a Neuron

Dendrites /

Figure 2.1. Schematic drawing of a neuron. Here we can see the three main
parts; the dendritic tree receiving input, the cell body (soma) and the axon
that relay information orwwards.

of, a dendritic tree that receives inputs from other neurons, a cell body, or
soma, where the input converges and an axon that connects to other neurons
sharing the information (Kandel et al, 2000). Surrounding this neuron there
is a cell membrane that prevents ions from flowing freely. There are different
concentrations of ions on the inside and outside, leading to a potential difference
across the membrane. The inside is more negatively charged than the outside.
When ion channels in the membrane open, ions are allowed to try to reach their
respective equilibrium potential. The neuron can become more depolarised, that
is the potential difference goes towards zero, or a hyperpolarisation can occur,
where the potential difference becomes even larger.

The neurons are connected to each other through both chemical and elec-
trical synapses. Our neuron receives information from other neurons through
synapses located on its soma or in the dendritic tree. Chemical signalling sub-
stances, called transmittors, are released from axon terminals and travel across
the small gap, the synaptic cleft, between the axon of the first neuron and the
dendrite of the second neuron. When the transmittor substances reach a recep-
tor on the target side a reaction starts which results in ion channels opening,
either depolarising or hyperpolarising a neuron from the resting potential. The
chemical signal has become an electrical signal that is typically transmitted
through the dendrites to the soma, where it is summed together with other elec-
trical signals. If the depolarisation is large enough sodium channels will begin to
open in a self-regenerating process resulting in an action potential, this creates
a strong electrical signal that travels actively along the axon. The depolarisation
resulting from the action potential opens channels at the axon terminal that
allow calcium to flow into the neuron, calcium triggers the merging of synap-
tic vesicles with the cell membrane, releasing their content of transmittors into
the synaptic cleft that are then transferred to the next neuron and the process
begins anew.
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2.1.1. Ligand Gated Channels

In order to receive the chemical signal that is transmitted by transmittor sub-
stances across the synaptic cleft the receiving neuron has to be able to detect
the signal and transform it into an electrical signal. This can be done by ligand
gated channels, a channel type which is one of many different types of channels
in the neuron. A ligand gated channel is a channel that is activated by binding
to a ligand, like for instance a transmittor substance such as glutamate, binding
to the AMPA receptor. This binding of glutamate results in the channel opening,
allowing sodium ions to flow into the neuron depolarising it. Below are a few
examples of the different ligand gated channels that exist in the input stage of
the basal ganglia, the striatum.

AMPA Receptors

AMPA is short for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid.
It is a specific agonist for the AMPA receptor. The AMPA receptor is a glu-
tamate receptor that is permeable to cations as sodium and potassium (Hille,
2001). Some types of AMPA receptors are also permeable to calcium. The AMPA
synapse has excitatory effects on the neuron and depolarises it bringing it closer
to firing threshold.

NMDA Receptors

NMDA (N-methyl-D-aspartic acid) is an agonist for the NMDA receptor (Hille,
2001). The NMDA receptor is permeable to sodium and potassium but also to
calcium. This is very important since the intracellular concentration of calcium
is very low. The opening of NMDA channels results in a notable concentration
change for calcium, which then activates other processes. At resting poten-
tial the NMDA channel is blocked by a magnesium ion. This block is however
removed at more depolarised transmembrane potentials which means that glu-
tamate alone can not activate this channel unless the neuron is already slightly
depolarised by other inputs. This property is considered important for memory
and learning. The NMDA channel is slower to activate and inactivate than the
AMPA channel, which results in a more drawn out effect.

GABA Receptors

Gamma-aminobutyric acid, or GABA, is an inhibitory neurotransmitter that by
binding to the GABA receptor opens a channel which allows negatively charged
chloride ions to enter and positively charged potassium ions to exit, resulting in
a hyperpolarisation of the neuron (Hille, 2001).

Dopamine

The dopamine receptors are metabotropic and act by second messenger path-
ways. There are two main types of dopamine receptors, the D1 and D2, that
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have different effect and localisation. In striatum dopamine is believed to signal
how unexpected a reward was (Schultz et al., 1997).

2.1.2. Voltage Gated lon Channels

The voltage gated ion channels have a small charge in their protein structure
that makes them sensitive to the transmembrane potential. A depolarisation
of the neuron can either open or close the channel, changing the flow of ions
across the membrane. This is important as it allows the neuron to respond in a
nonlinear way, an example of this is the action potential. Here we give examples
of two voltage gated channels, the sodium and potassium channels.

Sodium Channels

The voltage gated sodium channels are important for the eliciting of action po-
tentials in the neuron, without it the neuron is unable to spike. The sodium
channel is made up of four subunits that all must be open simultaneously to
allow Na** to pass through (Hille, 2001). The more depolarised the neuron is
the higher probability that the channel opens, but once it has opened it begins
to inactivate. If more channels open than close then a self sustained process will
start. Open channels let sodium pass through, depolarising the neuron further,
which in turn opens more channels, resulting in an action potential. After the
sodium channels have opened, they become inactivated, a process that needs
to be reversed by a hyperpolarisation, before they can open again. The action
potential, ones elicited, is actively propagated along the axon as neighbouring
sodium channels sense the depolarisation and also open. The sodium channels
are usually located on the soma and at the so called nodes of Ranvier on the
axons. There also exist neurons that have sodium channels on the dendrites.

Potassium Channels

The potassium channels are the most common ion channels, they come in many
flavours and can be either voltage gated, ligand gated, calcium gated, etc, or
purely passive leak channels (Hille, 2001). Potassium channels are responsi-
ble for the equilibrium potential in the neuron and they also activate during an
action potential to hyperpolarise the neuron. The Kv3.1-Kv3.2 channel is im-
portant for the FS neurons ability to spike rapidly, which is discussed further in
section 2.3.2.

2.1.3. Gap Junctions

The most common type of connections between neurons are the chemical synapses
that can be either excitatory or inhibitory. In addition to the chemical synapses
there are also electrical synapses, referred to as gap junctions. Gap junctions
are reciprocal connections that allow ions and small molecules up to 1000 dal-
tons to pass between the neurons. Nutrients, metabolites, second messengers,
cations and anions can all diffuse through the central pore (Evans and Martin,



2. BIOLOGICAL BACKGROUND 9

2002; Sohl et al., 2005). Gap junctions are simpler than chemical synapses and
respond faster. The amount of coupling appears to be regulated by dopamine
in the basal ganglia, probably through the addition or removal of gap junctions
between the neurons. Experiments have been performed where Lucifer yellow,
a dye used to stain cells, was injected into neurons to see how the dye would
spread to neighbouring neurons through gap junctions. Activation of the D1-
receptor decreases dye-coupling, and activation of the D2-receptor increases
dye-coupling (O'Donnell and Grace, 1993). D1-receptors are usually associated
with the direct pathway and D2 with the indirect pathway in the basal ganglia
(see below). Several of the early studies did not detect dye coupling between
fast spiking interneurons where more recent studies are able to detect electrical
coupling. Bennett and Zukin (2004) offer some explanations to why this is the
case, the geometry and dilution of tracers gave a measure below threshold for
the early studies. In vivo recordings have shown that pharmacological manipu-
lations of the dopamine system can result in a 4-fold increase in the number of
couplings between e.g. MS neurons (Onn and Grace, 1999). Low cytoplasmic pH
and high cytoplasmic Ca®" concentration block gap junctions. There is also to
some extent transjunctional voltage gating (Bennett and Zukin, 2004). Early in
development electrical coupling is present in many types of neurons, but grad-
ually subsides as the animal matures (Peinado et al., 1993; Bennett and Zukin,
2004). In parvalbumin positive interneurons the gap junctions are also present
in adult animals (Galarreta and Hestrin, 2002).

2.2. Basal Ganglia Nuclei

The basal ganglia consist of several nuclei as seen in Figure 2.2. Below we will
briefly describe each of these with the focus on striatum which is the input stage
of the basal ganglia, receiving inputs from large areas of the cortex. The basal
ganglia are able to activate different behaviours through its connections to the
thalamus and the brain stem.

In the classical view there are two main pathways through the basal ganglia;
the direct and indirect pathway. The direct pathway goes from the striatum to
the globus pallidus interna (GPi), whereas the indirect pathway goes through
globus pallidus externa (GPe) to sub-thalamic nucleus (STN) and then to GPi.
The direct pathway activates basal ganglia target areas, such as thalamus and
the brainstem, by a process called disinhibition (that is removal of inhibition),
while the indirect pathway acts inhibitory on the same areas. Dopamine can ac-
tivate the direct pathway through the D1-receptor while decreasing the activity
in the indirect pathway through the D2-receptor. Dopamine depletion leads to
low activity in the direct pathway and too high activity in the indirect pathway.
This is a simple model to explain the effects of Parkinson (DeLong, 1990). The
MS neurons of the striatum that are part of the direct pathway are believed to
activate motor commands and those that project to the indirect pathway inac-
tivate or prevent motor commands from starting (Bar-Gad et al., 2003). Newer
studies however have shown that the division between the two pathways might
be less distinct (Graybiel, 2005; Lévesque et al., 2005).
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Figure 2.2. Basal ganglia circuitry. The striatum and the sub-thalamic nu-
cleus (STN) receive input from the cortex. Both striatum and the tonically
active STN project to globus pallidus interna (GPi), substantia nigra reticulata
(SNr1) and globus pallidus externa (GPe). Further the striatum has a reciprocal
connection with the dopamine producing neurons in substantia nigra com-
pacta. Thalamus, which acts as a relay station, receives input from cortex,
GPi, SNr and prgjects back to both cortex and striatum. Filled arrows are
glutamate, white arrows are GABA and open arrows are dopamine synaptic
projections (Bar-Gad et al., 2003).

In addition to the projections to motor and premotor areas there are also
extensive projections in an organised manner back to multiple areas of the pre-
frontal cortex indicating that the basal ganglia influence cognitive processes
(Middleton and Strick, 2002). These prefrontal areas in turn project back to
the input regions of the basal ganglia forming what appears to be closed loops.
There seem to be separate loops for motor and cognitive functions (Bar-Gad
et al., 2003).

2.2.1. Striatum

The striatum can be subdivided into two parts. One part is the dorsal striatum,
which handles sensorimotor systems. In humans, this part consists of caudate
and putamen. The other part is the ventral striatum which is part of the limbic
system and consists of the nucleus accumbens. On a finer scale the striatum
has an interesting structure with regions called striosomes surrounded by ma-
trix (Graybiel and Ragsdale, 1978; Bar-Gad et al., 2003). The basal ganglia
are thought to implement actor-critic reinforcement based learning (Sutton and
Barto, 1998). The matrix is active during execution of behaviour and the strio-
somes are mainly active during learning of new behaviours indicating that the
matrix is the actor and the striosomes are the critic (Houk et al., 1995; Djurfeldt
et al., 2001). Furthermore the matrix receives input mostly from motor and so-
matosensory areas and posterior singulate cortex while the striosomes receive
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input mainly from prelimbic, infralimbic, orbital, and anterior cortices. Both
anterior cingulate and orbitofrontal cortices are involved in motivation, learning
and decision making (Canales, 2005).

The majority of the neurons in the striatum are GABAergic medium spiny
(MS) projection neurons. These neurons receive corticostriatal input and project
to globus pallidus, they also form collaterals to neighbouring MS neurons how-
ever these collaterals have been shown to be weak (Jaeger et al., 1994). In
addition to MS neurons there are fast spiking (FS) interneurons that form gap
junction connected networks and inhibit the MS neurons, as further described
below.

2.2.2. Sub-Thalamic Nucleus

The sub-thalamic nucleus (STN) receives glutamatergic input from the frontal
cortex and cortical somato-motor areas (Bar-Gad et al., 2003). It is smaller than
the striatum and populated mainly by tonically active projection neurons that
form excitatory connections to globus pallidus and substantia nigra reticulata
(SNr).

2.2.3. Globus Pallidus Externa

The globus pallidus externa (GPe) is part of the indirect pathway and receives
input from the striatum and projects to the sub-thalamic nucleus (STN) (Bar-
Gad et al., 2003). There are projections back from the STN to GPe and from
GPe there are projections back to the parvalbumin positive fast spiking (FS)
interneurons in striatum (Bevan et al.,, 1998). GPe also projects directly to SNr
and to GPi. The majority of the neurons in GPe are GABAergic.

2.2.4. Globus Pallidus Interna

Globus pallidus interna (GPi) receives GABAergic input from GPe and gluta-
matergic input from STN (Bar-Gad et al., 2003). It is considered the output
stage of the basal ganglia and projects both to the thalamus and the brain stem
(Parent et al., 2001).

2.2.5. Substaniia Nigra Reticulata

The substantia nigra reticulata (SNr) is an extension of GPi which also receives
input from the striatum, however it appears to be closer linked to substantia
nigra pars compata (SNc) with more extensive dopamine connections (Bar-Gad
et al., 2003).

2.2.6. Substantia Nigra Pars Compacta

Substantia nigra pars compacta (SNc) and other dopamine structures receive
input from the striatum, STN and the limbic systems (Bar-Gad et al., 2003).
Dopaminergic neurons in SNc fire tonically at low frequencies (4-10Hz) (Schultz
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et al., 1998), with increased or decreased activity for unexpected reward or ab-
sence thereof. The dopaminergic projections terminate onto the spines and the
dendritic shafts of the MS neurons in the striatum.

2.3. Neurons in Striatum

There are several types of neurons in the striatum (Kawaguchi et al., 1995). Here
we will focus on two of them: the medium spiny (MS) projection neuron and the
fast spiking (FS) interneuron. The MS neurons are the most numerous and are
the ones that project out of the striatum. The FS neurons are fewer, but are able
to affect the MS neurons’ firing and thus affect the output of the striatum.

2.3.1. Medium Spiny Projection Neuron

The numerous medium spiny projection neuron (MS neuron) appears to be
bistable and intense synaptic input can drive the neuron from the more hy-
perpolarised down-state to the up-state where the neuron may fire. Different
studies investigate the MS response to the cortical and dopaminergic inputs
(Wolf et al.; Gruber et al., 2003; Wolf et al., 2005; Kasanetz et al., 2002).

D1-dopamine receptors increase inward rectifying potassium and L-type Ca
currents. The inward rectifying potassium current is activated at hyperpolarised
potentials and acts to counter any depolarisations and stabilises the down-state
(Niesenbaum and Wilson, 1995). A slowly inactivating potassium current delays
the time to the first spike for the MS neuron upon depolarisation. The L-type
Ca’"-current is activated at subthreshold potentials and is also modulated by
the D1-dopamine receptor and increases the excitability at depolarised poten-
tials (Cooper and White, 2000; Bargas et al., 1994). Thus dopamine has both
excitatory and inhibitory effects, increasing the contrast (Nicola et al., 2004) by
depolarising during up-states and hyperpolarising during down-states.

The MS neurons form collaterals to neighbour MS neurons, but these collat-
erals have been shown to be relatively weak (Jaeger et al., 1994). In addition, the
MS neurons receive strong inhibitory input from another neuronal population,
the fast spiking (FS) interneurons. It is the MS neurons that project out of stria-
tum and their spike timing is important. It has been shown that the amount of
calcium entering a MS neuron is dependent on how much time passes between
onset of an up-state and the first spike (Kerr and Plenz, 2004). Calcium levels
are important for plasticity, so this might have functional consequences.

Dopamine activation of D1-receptor decreases gap junction coupling while
D2-receptor activation appears to increase gap junction coupling (O’'Donnell and
Grace, 1993).

2+

2.3.2. Fast Spiking Interneuron

The fast spiking (FS) interneurons only make up a small fraction of the neurons
in the striatum, but they are connected to each other through gap junctions,
into networks (Kods and Tepper, 1999; Galarreta and Hestrin, 2001). The FS
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neurons form pericellular baskets on the MS neurons, allowing the FS neurons
to exert powerful inhibition with low failure rates. They are thus in a position
to affect the spike timing of the more numerous MS neuron, either delaying or
altogether preventing firing (Bolam et al., 2000; Tepper et al., 2004; Kods and
Tepper, 1999). The FS neurons also form GABAergic synapses on the somata
and dendrites of other FS neurons (Chang and Kita, 1992), however it is un-
known if they synapse on FS neurons that they also share gap junctions with.
The FS neurons are unevenly distributed but are both present in the matrix and
striosomes of the striatum and their dendrites cross the boundaries between the
different regions (Kita et al., 1990).

The FS neurons are, as the name implies, able to fire in rapid bursts. It
is the fast activation of the Kv3.1-Kv3.2 channel, named after the proteins that
distinguishes this channel from other potassium channels, and allows for the FS
neurons ability to fire at high frequencies. A common technique to investigate
the effect of a channel is to use blockers that prevent the channel from working.
TEA is a blocker that in small quantities blocks the Kv3.1-Kv3.2 channel but
not other potassium channels. The Kv3.1-Kv3.2 channel is able to open and
close rapidly (Erisir et al.,, 1999) and FS neurons without a functional Kv3.1-
Kv3.2 channel were not able to sustain rapid firing. When the Kv3.1-Kv3.2 had
been knocked out the remaining channels were unable to hyperpolarise the FS
neuron fast enough, in order to remove the sodium inactivation, so that a new
action potential could be elicited.

2.3.3. Tonically Active Interneuron

Tonically active (TA) interneurons fire largly due to intrinsic membrane prop-
erties and require only a modest amount of input to alter their firing patterns
(Bar-Gad et al., 2003). TA neurons produce acetylcholine (ACh) which together
with dopamine play an important role in striatum (Cragg, 2006). There are re-
sults indicating that it is D2-receptors on TA neurons that are also important
for mediating a form of synaptic plasticity, called long term depression (LTD), in
MS neurons, by first reducing ACh release (Wang et al., 2006).

2.4. Learning in the Striatum

The basal ganglia are important both for learning and action selection. Dopamine
mediates reinforcement learning through synaptic plasticity and modulation of
ionic channels of striatal neurons.

2.4.1. Dopamine - Temporal Difference Signal

In order to be able to distinguish between a good and a not so good outcome the
body needs some kind of reward signal. Elevated levels of dopamine appear after
an unexpected positive outcome while an unexpected negative outcome or the
absence of a positive expected outcome results in depressed levels of dopamine.
For expected positive or negative outcomes we get a tonic dopamine activation
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of intermediate levels (Schultz et al., 1997). The dopamine signalling is time
dependent, meaning that if an expected reward does not occur when it was
expected but earlier or later it will result in changed dopamine levels (Hollerman
and Schultz, 1998), this explains why trained animals in experiments continue
to receive varying dopamine signals. D1-receptors also increase the activation
of NMDA (Reynolds and Wickens, 2002; Gruber et al., 2003), which might be
important for reward dependent learning as explained below.

2.4.2. Synaptic Plasticity — Three Factor Rule

Synaptic plasticity is the ability to change the efficacy of synaptic connections.
For instance Hebbian learning uses the fact that neurons that fire together wire
together, i.e. the strength of synaptic connections are either increased or de-
creased depending on when the neurons spike in relation to each other (Bi and
Poo, 2001).

Three factors are important for plasticity; a phasic increase in dopamine re-
lease, presynaptic activity and postsynaptic depolarisation (Reynolds and Wick-
ens, 2002). This can be summarised as follows. When cortical input elevates
the neurons activity in conjunction with increased dopamine input we get long
term potentiation (LTP). This results in a strengthening of the corticostriatal
synapses. However if the dopamine input would decrease instead, then we
would get LTP and weakened synapses (Hikosaka et al., 20086).

2.4.3. Actor-Critic Reinforcement Learning - Abstract Models

Before we begin diving into the biological jungle let us for a moment step back
and study another concept, reinforcement learning. Assume we have some ma-
chine that we wish should be autonomous, able to perform tasks without out-
side interaction. This machine could be a Martian rover exploring the surface
for signs of life or it could be a human maneuvering a bike through a forest.

Ideally we would want a machine that is able to learn and improve its be-
haviour by trial and error. It would then be able to adapt to unpredicted changes
in the environment. We can classify the learning into two regimes, supervised
and unsupervised. In the supervised learning the machine is shown a scenario
and then afterwards told what is the correct response. However, in the unsuper-
vised learning there is no one to provide the correct answer. Instead, at the end
of the trial a reward is either given or not. This feedback could be in the form
of money from winning a poker game or the pain from driving head first into a
thorn bush. Based on this reward the machine has to optimise its behaviour.
One solution is then to use a predictor for the reward. This predictor values im-
mediate rewards more and later rewards are discounted the more distant they
are.

Sutton and Barto (1998) describes a mechanism for unsupervised learning,
called the actor-critic reinforcement learning. This system is based upon two
entities within the machine. One actor that decides what action to take and a
critic that grades the outcome using a prediction of the future reward. There
will then be an error between the predicted reward and the actual reward, the
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temporal difference (TD) error. The TD error is then used to update the actor’s
and the critic’s behaviour accordingly. Remarkably this TD error is similar to
the nigrostriatal dopamine signal. It has suggested that the striosomes together
with the dopamine producing neurons, implement the critic. The striatal neu-
rons receiving dopamine input but projecting to SNr and GPi, act as the actor,
influencing motor outputs (Houk et al., 1995; Schultz et al., 1997; Hikosaka
et al., 20006).

2.5. Some Disorders Involving Striatum

2.5.1. Addiction

In normal reinforcement learning, once the behaviour is properly predicted
the dopamine signal will go down. However, in drug abuse the high levels of
dopamine may remain, leading to pathological changes. Studies have shown
that the initiation of addiction requires dopamine, however once the subject is
addicted dopamine release is not critical for cravings, instead changes in the
projections from cortex cause them (Kalivas and Volkow, 2005). These long last-
ing changes in the brain make it hard for addicts to stop, and can also cause
relapse after years of abstaining.

2.5.2. Parkinson

Parkinson’s disease affects roughly 3% of the population over the age of 65
(Moghal et al., 1995). It is characterised by a progressive decrease in motor func-
tion and is a result of imbalance between the direct and indirect pathways in the
basal ganglia, leading to a rigid stance and problems initiating movement (Lang
and Lozano, 1998a,b). Parkinson patients show a degeneration of dopamine
producing nigrostriatal neurons, resulting in reduced dopamine mediated con-
trol of striatum (Picconi et al., 2005). Dopamine denervation causes the loss of
both LTP (Long-term Potentiation) and LTD (Long-term Depression), which are
required for plasticity. This denervation also leads to the reduction in dendrites
(McNeill et al., 1988} and the number of spines on the MS neurons, and the
remaining spines have abnormal size and shape (Day et al., 2006). This should
lead to a reduction in firing, however the opposite appears to be the case, prob-
ably because of compensatory effects. In Parkison patients oscillations appear
between globus pallidus and the reciprocally connected sub-thalamic nucleus.
Deep-brain stimulations silencing this abnormal patterns can lessen the motor
symptoms shown (Gross et al., 2005).

Also interesting to note is that in Parkinson patients the ability to group a

sequence of actions into a chunk disappears, forcing them to pay attention to
all parts of the movement (Graybiel, 2004).
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2.5.3. Huntingfon

Where Parkinson’s disease is a result of low activity in the direct pathway and
too high in the indirect, Huntington’s disease is the opposite. Here instead pa-
tients have a problem to control their movements, leading to unvoluntary move-
ment (Albin et al., 1989; Picconi et al., 2006). One early sign in Huntington’s
disease is MS neuron cell death, although this disease is not understood fully
(Handley et al., 2006).



Chapter 3

METHODOLOGICAL APPROACH

In this chapter we will first briefly discuss why we use computer models as a
tool in neuroscience. Then in subsequent sections we will go through different
models that can be fruitful to use, starting with compartmental neuron mod-
els. Here we describe the fast spiking (FS) interneuron model used in Paper I
and Paper II. The Shuffle Corrected Cross-Correlogram (SCCC) and Joint Peri-
stimulus Time Histogram (JPSTH), used to quantify spike synchronisation, are
also discussed. The last section deals with Paper III and biochemical modelling,
both stochastic and deterministic.

3.1. The Role of Modelling in Understanding the Brain

Biological systems such as a neuron are inherently complex, there are numerous
variables to take into account and their interactions are often nonlinear. It is
not enough to look at the isolated compartments to elucidate how things work,
to get the big picture we need to look at the system as a whole. Here modelling
plays a crucial role, allowing us to put together the pieces and see how they
interact.

A model serves many purposes. It is a tool with which we can verify that
the components we have identified and parameterised actually work together. If
they do not work there must be something missing. Not all quantities can be
readily measured, a model can help us find the range of a parameter, or rule out
certain options or parameter ranges as unrealistic or impossible.

What characterises a good model? It should model the phenomena and be
able to give accurate predictions. This could help reduce the number of experi-
ments needed to be done on live animals, but it is important to understand that
there will still be a need to do experiments to verify that the model’s predictions
are valid. However, a good model should point at the experiments that need to
be done.

17
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A model should not be too complex. With a larger number of parameters we
have a higher degree of freedom, meaning that the model can be made to fit a
wider range of parameters and we could get all kinds of behaviours out of our
model. If a certain behaviour is desired, a change of a few parameters could
conjure it up. Instead it would be more interesting if there are strict limits on
the parameter range, that the model will not allow values outside. Then it is
far easier to make predictions. Fewer degrees of freedom also mean a simpler
model, easier to tune and probably faster to simulate.

Our goal is to create a model representing the striatum, we are not there yet,
however we have some of the building blocks required. Here it is important to
make sure that the parts do work before connecting them together if we should
have any hope to get the finished network to work. We need to identify what
components are needed and what their characteristics are.

The models can be formulated on different levels. We have detailed bio-
chemical models that describe interactions between molecules, processes that
are important to for instance synaptic plasticity involved in learning. There are
cell models based on Hodgkin and Huxley formalism that describe the electrical
properties. These cell models can be connected into a network of neurons to
simulate interactions on a larger scale. In order to understand the full system
we need them all.

3.2. Compartmental Modelling

When modelling a three dimensional neuron we have to deal with both the space
and time dimensions. These equations would be quite complex. By dividing the
neuron into compartments that are assumed to be isopotential we reduce the
equations and have only to deal with time as a variable.

3.3. Modelling Channels with Hodgkin & Huxley Formalism

The Hodgkin-Huxley model (Hodgkin and Huxley, 1952) is a set of nonlinear
ordinary differential equations that model the voltage dependent ion channels
underlying the electrical characteristics of neurons. They were originally used
to describe the squid giant axon, but has since found applications in numerous
neuronal models. The cell is described by an equivalence scheme that has been
inspired by electrical circuit theory as shown in Figure 3.1. Here the different
components of a neuron are modelled by electrical components. The cell mem-
brane, with its ion channels, has different permeability for different neurons.
This, in combination with active ion pumps, leads to a concentration difference
between the inside and outside of the membrane for the ions. Since the ions
have positive or negative charge this concentration gradient leads to a voltage
potential across the membrane. The membrane itself is not normally permeable
to ions, leading to the buildup of positive and negative ions on opposing sides
of the membrane wall, in other words, the membrane acts as a capacitor with a
typical capacitance of 1 yF/cm?.
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Figure 3.1. Equivalence circuit for a generic neural compartment. The ca-
pacitor (C,,) represents the cell membrane. The leak currents are represented
by a resistor (R,, coupled with a battery (F,,). Batteries with voltages cor-
responding to reversal potentials (E)) coupled with a variable resistance (Gy,)
represent the different ion species. Resistive elements couple neighbouring
compartments together and current injections can be easily modelled (I;;).

When using compartmental models the neuron is divided into a number
of compartments that are each assumed to be iosopotential, meaning that the
voltage is the same inside the entire compartment. If the compartments are
small enough this is a reasonable assumption. The potential in the compartment
is determined by,

Cdd_‘t/ - Ico'mp - Iion - ]syn - [leak' - [inj (31)
where I..mp is the current entering the compartment from neighbouring com-
partments, I;,» the current through the ion channels, [I,y, the current through
the synaptic ion channels, /.. the leak current through the membrane and iy
the injected current if there is an electrode.

Hodgkin & Huxley assumed that the ion channels had a number of gates
that all had to be open in order to let ions through. These gates could open or
close in a voltage dependent manner. For a channel with two types of gates X
and Y with n and m instances respectively, the current entering through the
channel can be described by,

1= g'maaz(v - ‘/M,U)Xnym (32)

where gmq, is the maximal conductance and V;., is the reversal potential, e.g.
E}, in Figure 3.1. The gates are opened and closed with rates « and 3, and the
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Figure 3.2. Schematic drawing of a modelled FS neuron showing the soma,
three primary dendrites, six secondary dendrites and twelve tertiary den-
drites.

state of the gate can thus be calculated from
dx
= —a(l—g) — .
7 a(l —xz) — Bz (3.3)
where the values of o and 3 can vary as the membrane potential varies. If the
voltage is held fixed the value of z will reach a steady state value,

L«
T a+4

Tss (3.4)
For channels that have more than one gating particle, all of the particles need
to be in the open state for current to pass through.

3.4. Modelling the Fast Spiking Interneuron

The fast spiking (FS) interneuron model was implemented in GENESIS (Bower
and Beeman, 1994) on a GNU/Linux system and originally published in Hellgren
Kotaleski et al. (2006). It has been tuned to replicate FS cell behaviour in vivo.

3.4.1. Morphology

The neuron consists of a somatic compartment connected to series of cylindri-
cal compartments of subsequently finer diameter forming the dendrites. There
are three primary dendrites extending from the soma, each of these branches
into two secondary dendrites that in turn branch into a total of twelve tertiary
dendrites as shown in Figure 3.2.

3.4.2. Synapltic Input

The striatum receives extensive input from large regions of cortex. In anaes-
thetised animals the cortical input is very synchronised (Stern et al., 1998)
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with aperiodic up-states appearing simultaneously in neighbouring neurons. In
awake and behaving animals correlations have been found in the corticostriatial
input as well as spike bursts in MS neurons. These neurons do not have an
intrinsic burst mechanism, indicating that there are indeed periods of higher
cortical activity, however it is unknown whether these up-states are correlated
or not (Nicola et al., 2004). It is interesting to note that the synchronisation
detected in EEGs appears to increase when anaesthetised animals are further
sedated (Contreras and Steriade, 1997).

In our model we have used periodic up-states with a frequency of 2Hz and
a duty cycle of 0.5 which corresponds to 250 ms up-state followed by 250ms
down-state. The up-state is caused by elevated corticostriatal synaptic input.
The input frequency per synapse for up-states was 20/9 Hz and for down-states
1/9Hz.

In order to quantify the correlation within the generated input we used the
correlation measure from Rudolph and Destexhe (2001) that is based on the
generation process of the input. In order to create N synaptic inputs with a
given correlation C' Rudolph and Destexhe (2001) generate No = N + v/ C(1 — N)
uncorrelated input trains and randomly distribute them over the N input trains.
The uncorrelated trains were then reconnected in each timestep, so that it would
not be the same synapses that were correlated all the time.

We used the same basic idea but modified the generation process. In order
to create N synaptic inputs with frequency f and correlation C we generated
a Poisson process with frequency f - No. We then had two alternative genera-
tion mechanism, either we distributed each spike to N/Ny synapses, or for each
synapse and spike we allowed the spike to be sent to the given synapse with
a probability p = 1/Ny. Both generation mechanisms give the same amount of
spikes to each process but the variation differs. In our work we are focusing
mainly on the former generation mechanism, in order to be able to compare re-
sults with Hellgren Kotaleski et al. (2006), but future developments will probably
also investigate the latter.

3.4.3. Dopamine Input

The D2-receptor acts presynaptically reducing the amount of GABA that is re-
leased and the D5-receptor, which belongs to the D1 family, acts postsynapti-
cally depolarising the neuron (Bracci et al., 2002; Centonze et al., 2003; Nicola
et al., 200). The dopamine’s effect was simulated by depolarising the neuron
2mV and reducing the GABA-synapses efficiency to 80 %.

3.4.4. AMPA and GABA Channel

The AMPA-channels are distributed throughout the entire dendritic tree. The
GABA-channel distribution differs from the AMPA-channel distribution in that
they are concentrated proximally, there are no GABA-channels on the tertiary
dendrites. This was needed in order to get the right input characteristics (Hell-
gren Kotaleski et al., 2006).
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3.4.5. Voltage Gated lon Channels

Voltage gated ion channels are modelled using the Hodgkin and Huxley formal-
ism. They open or close in response to a depolarisation. Below we will touch
upon some of the channels that are important for the FS neuron.

Fast Sodium Channel

The fast sodium channel enables action potential. Hodgkin and Huxley (1952)
proposed that the channel could be modelled as having four gating particles
that each had to be in the opened state for current to flow through. Three of
these gating particles are closed in hyperpolarised states and open in response
to a depolarisation, but the fourth is open at hyperpolarised states, and slowly
begins to close as the membrane is depolarised. It is this last particle that leads
to the inactivation of the sodium channel. The current through the channel can
be calculated by,

Ing = m®h - Gna(V — 0.045) (3.5)

where m and h are the two types of gating particles. In the FS model the opening
and closing rates are voltage dependent. The opening rate («) and closing rate
(0) for the gating particle m are,

10% - (3.020 — 40 - V)

Qm = C0.07554V)/0.0135 _ | (3.6)
B = 12262 . V/0:042248 3.7)
and the corresponding rates for i are
an = 3.5.7v/0.024186 3.8)
10% - (0.8712 417 -V)
P = 1 — ¢—(0.05125+V)/0.0052 (3.9)

here V is the membrane potential. Using the above equations together with
equation 3.3 we can compute m and h used in equation 3.5 to calculate the
current through the channel.

Potassium Channel Kv1.3

Hellgren Kotaleski et al. (2006) found that the model required the potassium
channel Kv 1.3 together with the Kv3.1-Kv3.2 channel to reproduce the experi-
mentally observed spike latency and high firing rate. The current through this
channel can be calculated by,

Ikv13 =n' - grv13(V 4 0.090) (3.10)

where the opening and closing rates for n are,

616 4 14000 - V
1 — ¢ (0.044+V)/0.0023

4.3 . ¢~ (0-04414V)/0.034 (3.12)

(3.11)

G

Bn
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Transient Potassium Channel Kv3.1-Kv3.2

The transient potassium channel Kv3.1-Kv3.2 is a fast channel that is required
for the FS neurons ability to fire rapidly (Erisir et al., 1999). The current through
this channel is,

Tkvsi-Kuz2 =1° - Jrvs.1-Kvs.2(V + 0.090) (3.13)

where the opening and closing rates for n are given by,

95000 — 10° .V
Xn T T6.095-v)/0.0118 _ | (3.14)
B, = 25- o V/0.022222 (3.15)

Transient Potassium A-channel

The model aslo includes a transient potassium A-channel. The current through
it can be calculated by,

Trca = m*hgra(V + 0.090) (3.16)

Given enough time the fraction m (and 4) of open particles will have stabilised at
a steady state value mq (and ho). This value together with a decay constant 7,
(and 73,) can be used to describe the time evolution of m (and h). These values
can be calculated from,

1
Moo = T =(V10.045)/0.013 (3.17)
Tm = 0.001.(1+ ¢ (V10.070)/0.013 (3.18)
1
hoo = 1 + e(V+0.077)/0.008 (3.19)
™ = 0.014 (3.20)

This can then be used in

dm Moo — M

_— = 3.21
dt T ( )
dh hoo — h
— = — 3.22
dt Th ( )

to get the values for m and h.

3.4.6. Gap junctions

Gap junctions are modelled as a resistive element connecting two compartments
of neighbouring neurons together. The conductance has been kept within the
physiological range of 0.13-0.58 nS (Galarreta and Hestrin, 2002).
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3.5. Analysis of Spiking Activity in FS neurons

3.5.1. Shuffle Corrected Cross-Correlogram

The Shuffle Corrected Cross-correlogran (SCCC) is used to find correlations in
firing patterns between two neurons. An ordinary cross correlogram is gen-
erated by taking the spike traces from two neurons and then calculating all
combinations of inter spike intervals between spikes from different neurons and
then binning them. This histogram is the cross correlogram. For a signal that
repeats itself it is possible to remove some of the bias in the signal. If we assume
that the synchronisation properties are only active on a small timescale then we
can get an estimate of the bias. By shifting the first spike trace one period for-
ward in time we will destroy all the short time correlations but leave the bias.
By binning once again all the inter spike intervals between all the combinations
of spike pairs in different neurons we get a correction. To get a better correction
we can shift the spike traces two periods and repeat the calculation, if we do
this several times, shifting different number of periods and then averaging the
results, we get the final correction, which is subtracted from the original cross
correlogram to generate our shuffle corrected cross correlogram. For a more
complete description see Brody (1999) and Palm et al. (1988)

3.5.2. Joint Peristimulus Time Histogram

The SCCC is unable to tell us if there are variations in the synchronisation
during the up-state period since it bins all the data together. To get information
about the temporal development and to get a measure of the significance values
of the synchronisation we analyse the data with JPSTH also. The so-called
surprise value has been described before (Palm et al., 1988; Aertsen et al., 1989).
This surprise value estimates if the outcome differs significantly from the null
hypothesis. In our simulations the null hypothesis is that the two neurons
are uncorrelated. The surprise value is equal to the negative logarithm of the
probability to find this outcome or a more deviant one under the null hypothesis.
A “surprise” value of 2.996 corresponds to a significance value of 5%.

A JPSTH is useful when there is a periodic signal and the synchronisation
between two neurons varies with time within the duration of each period. It
consists of a two dimensional matrix where the coordinates of each bin corre-
spond to a time in the first and in the second neuron. To generate a JPSTH
each period is binned individually, if the same period has a spike both in the
first and in the second neuron, the bin in the 2D matrix corresponding to these
two times is marked. This is repeated for all combinations of spikes during the
same period, in other words two spikes in the first neuron and three spikes in
the second neuron will result in six bins in the matrix being marked as shown
in Figure 3.3. Based on the probability to fire at a specific time for either neu-
rons their joint probability to fire in the uncorrelated case can be calculated by
simply multiplying the two. Using this as the null hypothesis we can calcu-
late how unexpected the outcome was. If there is correlation it will appear as
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Figure 3.3. Creation of a joint peristimulus time histogram (JPSTH). Traces
Jrom two simultaneously recorded neurons are binned against each other. If
they have a tendency to synchronize a cluster of filled bins will appear on the
diagonal.

a denser region of marked bins on the diagonal, any variations in density along
the diagonal indicate the variations in synchronisation during the time of the
period.

3.6. Modelling of Biochemical Pathways

Cellular signalling circuits have grown in complexity through evolution to the
point where they have become hard to overview without the help of additional
tools. Through computer models developed, based on biological experiments,
we can begin to understand better what is going on in these systems (Bhalla,
2004a). There are different assumptions that we have to make when doing
modelling, for instance there is the question of how many pathways to include
in the model. There have to be enough pathways to capture the behaviour of the
system studied, but each adds to the complexity. Another factor we have to take
into account is the scale of the system. On the larger scale we can use mass-
action kinetics, where the outcome is deterministic. However on the smaller
scale, where there might be only a few molecules taking part in the reaction we
have to use stochastic algorithms that are inherently noisy.

Reactions that take place in the spines on the dendrites of the MS neurons
are typical candidates for stochastic simulations, since the spines have a very
small volume and diffusion through the neck of the spine is limited. In Paper III
we model CamKII as a first step to understand better how to perform stochastic
simulations. Also a one compartmental model with glutamate and D1-receptors
have been implemented by (Kotaleski et al., 2005). The goal for us is to in-
tegrate these simulated biochemical pathways, that are important for synaptic
plasticity, into the MS neuron model.
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3.6.1. Deterministic Modelling

Modelling can take place on different scales. When we deal with large number
of molecules the processes are deterministic as small fluctuations are averaged
out, however we do not always have this luxury. For small volumes and few
molecules the processes become stochastic and we need to change our modelling
accordingly.

For large number of molecules we deal with concentrations, the concentra-
tion of a substance X is denoted by [X]. A reaction where a substrate or reactant
S is transformed into a product P through a biomolecular reaction or with the
help of an enzyme F is written as,

S=P (3.23)

and since each molecule of S that undergoes this reaction turns into a P we
must have that,

d[s] _ d[P]

Todt T dt (3.24)
which, using the forward k; and backward k_; reaction rates, can be written as,
v =k1[S] = k_1[P] (3.25)

and from this we can find the equilibrium constant K.,

[P] k1

Keg =15 =— 3.26
N Ch (3.26)

for the reaction. This is valid for reactions allowed to reach steady state. For
reactions where the substrates bind to a complex before finally forming the prod-
uct we often use Michaelis-Menten kinetics (Michaels and Menten, 1913).

k1 ko
E+S;f ES=FE+P (3.27)
-1
where k1, k—1 and k. are the reaction rates. The rate of change for the interme-
diate complex can be written as,

d[ES]

E2L = hu([Bo] - [BS]) - [S] — k-1 [ES] — ko BS] (3.28)

where [Eo]—[ES] represents the amount of available free enzyme. At steady state
we have d[ES]/dt = 0. If we solve for [ES] we get,

ki1 [Eol[S]
ES|= —F—FF——— 3.29
B5] ko1 + ko + ki [S] ( )
which, using the fact that v = d[P]/dt = kz[ES], can be written on the form
kiksz|Eol[S] k2| Eol[S]
= = 3.30
k1 + k2 + ka[S] ]L71€—+]Q+[S] ( )
1
which is recognised as
Vimas 9] (3.31)

R TS|
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Ub-CaMKII  CaMKII
Bo-CaMKII  CaMKIT*CaM*Ca, (bound)
‘Tr—CaMKII CaMKII*CaM*Ca, phosphorylated on Thr 286/287 (trapped)

N Au-CaMKII  CaMKII phosphorylated on Thr 286/287 (autonomous)
CaM*Ca Cp-CaMKII  CaMKII phosphorylated on Thr 286/287 and Thr 305/306 (capped)

1
CaN*CaM*Ca 3}—{ CaM*Ca,

CaN 3 3

CaN*CaM*CaA}—{ CaM*Ca,

<—>[ CaMKII*CaM*Cagy }

Figure 3.4. Biochemical network of the CaMKII model. The stochastic parts
are dashed, solid parts correspond to the deterministic parts. The grey boxes
indicate where the two models are coupled.

3.6.2. Stochastic Modelling

Let us assume that we have a deterministic model that tells us that at a given
time, 5% of the molecules are bound. If we have only ten molecules in our
simulation, does that mean that we have half a molecule bound? Surely this can
not be the case. To avoid this problem we turn to stochastic models, where each
molecule is modelled individually instead of all molecules being modelled as a
group (Bhalla, 2004b,c). At each timestep we calculate the transition probability
for each molecule and draw a random number to see what the outcome for that
particular molecule is. If we assume that the reaction is

A% B (3.32)

where k; is the forward rate, then the probability that there has not been a
transition in time dt is
p=e krdt (3.33)

For large number of molecules this will be quite computer intensive, which is
why there is still a place for deterministic models. However, for the cases with
few interacting molecules, this approach works. Since the model is stochastic
it means that if we run the simulation twice we will not get the same outcome.
To verify our results, we thus often have to run the same simulation several
times. These variations in results are the strength and weakness of stochastic
modelling. The relative size of the variation in a Poisson process is inversely
proportional to the square of the number of molecules. For a sufficiently large
number of molecules these variations go to zero and we have the deterministic
case.
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3.6.3. Hybrid models

Sometimes it can be fruitful to combine stochastic and deterministic models
(Vasudeva and Bhalla, 2004). Paper III, which is based on a model by Holmes
(2000), is an example of such a case, see Figure 3.4. Here the calcium binding to
calmodulin is deterministically modelled, while the CaMCay4’s interactions with
CaMKII is modelled stochastically. The reason why the second half is stochas-
tically modelled is because the activation of CaMKII subunits is dependent on
their neighbouring subunit’'s state. If we were to take all of these combina-
tions into account we would have to evaluate many different possibilities in each
timestep. Our approach is instead to do a stochastic simulation, where one of
these possibilities is explicitly chosen in each timestep. The entire stochastic
simulation is repeated to get a sample of the system’s behaviour. In the re-
gion where the two models meet we have to convert concentrations to discrete
molecules and back (grey boxes in Figure 3.4).



Chapter 4

RESULTS AND DISCUSSION

With the background from the previous sections we can begin to summarise
the results from this thesis. Below we discuss synchronisation and up-state
detection in electrically coupled FS neurons. We also touch upon how noise can
improve a weak signal. The last section of this chapter deals with biochemical
modelling of CaMKII.

4.1. FS Neuron Spike Synchronisation

Between 4 and 27 FS neurons innervate each MS neuron (Ko6s and Tepper,
1999). If the FS neurons synchronise their activity, their inhibitory effect on
the MS neuron should be even stronger and more robust. From previous exper-
iments and modelling studies it is known that gap junctions can synchronise
spiking between neighbouring neurons (Traub et al., 2001; Connors and Long,
2004; Gibson et al., 2005). Here we investigated the effect of gap junction locali-
sation since it is currently not known where these gap junctions are located. To
analyse the data we used both joint peristimulus time histogram (JPSTH) and
shuffle corrected cross-correlogram (SCCC). The FS effect on MS spike timing
is important since it affects calcium levels in the MS neurons (Kerr and Plenz,
2004), which have implications for plasticity. Also, it is the MS neurons that
project to basal ganglia output stages, as mentioned above.

In Paper I we study the synchronisation of electrically coupled FS neurons
that receive cortical input with physiological characteristics. The effect of the
gap junction localisation is investigated. We compare two cases: proximal and
distal gap junctions. Here the gap junction conductance for both cases has been
calibrated so that they give the same coupling coefficient for a steady state injec-
tion into the soma. The coupling coefficient is defined as the voltage change in
the neighbouring neuron’s soma divided by the voltage change in the stimulated
neuron’'s soma.
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Figure 4.1. Synchronisation effect of gap junctions. (A) Shuffle-corrected
cross-correlogram. Both somatic and the tertiary dendritic gap junctions syn-
chronise the two neurons, but the time window is narrower for somatic cou-
plings. (B) Joint peristimulus histogram (JPSTH). The upper figure shows the
raw JPSTH for the tertiary dendritic gap junctions and the lower for the so-
matic gap junctions (Palm et al., 1988; Aertsen et al., 1989). The diagonal
representing synchronisation can be seen for both the tertiary dendrite and
somatic gap junction cases.

From the SCCC in Figure 4.1A we can see that the peak for the proximal
gap junctions is much higher and narrower, while the distal gap junction’s peak
is more spread out in time. The gap junctions in this figure had been cali-
brated to have 14.1 % somatic steady state coupling. Figure 4.2A and 4.2B both
show a normalised SCCC for distal and proximal gap junctions respectively,
these show how the synchronisation varies with conductance. We see that with
increased conductance the synchronisation becomes more pronounced. Fig-
ure 4.2C shows the SCCC for proximal and distal gap junctions with conduc-
tance 0.20nS corresponding to a somatic steady state coupling of 8.8 %. Figure
4.2D shows the same configuration as the previous figure, but this time with
dopamine added. We see that dopamine increases the activity in the FS neu-
rons as compared to the reference case. The added spikes also make it easier to
distinguish the difference in synchronisation between proximal and distal gap
junctions.

The JPSTHSs in Figure 4.1B show a clear diagonal, indicating synchronisa-
tion, both for the proximal and distal case, where the proximal is more precise,
whereas the distal is more smeared out in time for gap junctions of comparable
strength. It is hard to know exactly how important the spike timing is for this
system, there are however reports of spike timing dependent plasticity (STDP) at
the corticostriatal synapses (Fino et al., 2005). Here the timing could be critical.
As an example, the difference between long term potentiation (LTP) and long
term depression (LTD) has been found to be a few milliseconds for STDP in the
hippocampus (Bi and Poo, 1998).
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Figure 4.2.  Shuffle corrected cross correlogram (SCCC). Two FS neurons
connected through distal gap junctions (A) or proximal gap junctions (B), nor-
malised SCCC. SCCC for conductance 0.20 nS without dopamine (C) and with
dopamine (D).

4.2. Up-State Detection and the Robustness to Noise

As mentioned in Chapter 2 the input from the cortex has periods of elevated ac-
tivity, up-states, follow by periods of lower activity, down-states. It is important
that the neurons in the striatum can distinguish between the two, in particular
we are interested in detecting the up-states. If a neuron fires during an up-state
it is considered detected. At the same time we do not wish the neurons to fire
when there is no up-state. Gap junction localisation can alter the total number
of spikes fired as shown in Figure 4.3 and it also matters whether the neighbour
receives up-state input simultaneously or not. In all cases where the individual
input spikes were uncorrelated between the FS neurons we found that the to-
tal number of spikes were lower with gap junctions than without. However, if
the two FS neurons were given correlated inputs we got a small increase in the
number of spikes. The mechanisms behind this was discussed in Paper II.

In Figure 4.3 we can see that it takes a short while after up-state onset before
the FS neuron begins to fire. Likewise there are some spikes following directly
after the up-state ended. It is also clear that distal gap junctions of comparable
strength to proximal gap junctions have more spikes when their neighbour is in
up-state, and fewer spikes when their neighbour is in downstate. The shunting
between the neurons is higher for distal gap junctions, resulting in a higher
contrast between both neurons in up-state and only one of the neurons in up-
state. This is perhaps not that surprising since normal neurons receive most of
their inputs through the dendrites.
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In order to quantify the up-state detection we now introduce a concept called
signal to noise ratio percent correct (SNRpc). An up-state is considered correctly
detected if it causes at least one spike in the neuron and a downstate is correctly
rejected if there are no spikes during it. SNRpc is defined as the sum of the
correctly detected up-states and correctly rejected down-states divided by the
total number of up-states and down-states. SNRpc values below one means
that not every up-state is correctly detected or the neurons spikes during some
of the down-states. A value of zero means that we got everything wrong, and the
cell spiked during down-states only.

Using such a measure, one can now quantify how up-state detection is af-
fected by noise. The neuron fires an action potential in an all or none fashion
if a threshold is passed, i.e. when more sodium channels open than close. The
exact location of the threshold can vary a bit depending on whether the in-
put makes the neuron slowly approach the threshold or not. This is because
sodium channels inactivate after a while. If the threshold is approached rapidly
the inactivation has not had time to set in and the point where more channels
open than close will be reached faster. A system receiving input too weak to
reach threshold could benefit from the addition of noise, which could bring the
neuron’s potential above threshold more often. This only works for moderate
amounts of noise as adding too much noise will drown the original signal in the
extra noise.

To investigate how the up-state detection was affected by noise we varied the
amount of noise that was added to the neuron during simulation and calculated
the SNRpc. Figure 4.4 shows the five cases that were compared, each pair
of neurons had the same input as the other pairs, however the input to the
two neurons in each pair were independent. The simulation was run for 50
seconds, corresponding to 100 up/down-state periods. The first pair was left
unconnected as reference, the second pair was connected through distal gap
junctions and the third pair was connected through somatic gap junctions. The
fourth and fifth pair were not connected to each other but to a neighbour that
did not receive up-state input, where the fourth had distal gap junctions and
the fifth had proximal gap junctions. For all cases we see that the SNRpc ratio
increases with moderate levels of noise. This is termed stochastic resonance
in some literature (Gammaitoni et al., 1998). Stochastic resonance was first
used to describe the arrival of ice ages with a periodicity of 10° years. Only
the variations in the eccentricity of the planetary orbits due to neighbouring
planets were on that timescale, but the effect was small. However, with the help
of annual variations in solar influx (noise) the observed phenomenon could be
modelled. The noise helped the weak signal carry through, giving us a wonderful
sheet of ice and snow covering large parts of Europe, from time to time.

In our case there is a threshold effect, where we have an in signal that excites
the neuron close to the threshold, and variations lead to the occasional spike. By
adding noise to the FS neuron we increase the frequency of both the upstate and
downstate input. During the upstate the noise is able to increase the number of
action potentials fired, however during downstate, the added noise is not enough
to make the neuron fire.
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Figure 4.3. Up-state detection. Histogram of spike times during the periods,
the FS neuron spikes more if its neighbour receives up-state input also. The
figure shows 250 ms up-state followed by 250 ms down-state.

4.3. Biochemical Modelling

Reinforcement learning and plasticity are important for the function of the stria-
tum. Bhalla (2003) and Kotaleski et al. (2002) have shown that biochemical net-
works can perform temporal computations on the subcellular level. In order to
understand better the information processing we have to be able to model the
processes that are required for both long and short term plasticity. Plasticity
often takes place in the spines, small compartments with a limited amount of
molecules. Paper III is an initial study of stochastic simulations which are re-
quired when we can no longer assume that large quantities of substrates take
place in the reaction. We have implemented a CaMKII model by Holmes (2000).
CaMKII is important for Ca*'-dependent plasticity and pathological high levels
of phosphorylated a-CaMKII has been observed in Parkinson’s disease (Picconi
et al., 2004). The subunits activity is dependent on their neighbouring sub-
unit on one side, this interaction is one directional. Subunits of type « and 3
have different affinity for calmodulin (CaM) and different rates for neighbouring-
dependent phosphorylation. The novelty in this study is to include both types
of subunits and study how they interact. The different subunit types interact in
a non-linear fashion where the order of the subunits types is significant for the
activity.

A future step for the biochemical modelling is to combine the one compart-
ment model with glutamate and D1-receptors with the MS neuron (Kotaleski
et al., 2005), which is equally important since dopamine has a role in plasticity.
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Chapter 5

Future Work

The long-term goal of this project is to understand better the mechanisms be-
hind reinforcement learning and action selection in the basal ganglia. Here we
wish to understand the process both on a neuronal, microcircuitry and network
level as well as on the subcellular level. The former requires information on how
the striatal neurons are connected on the microcircuitry level, and using models
we can test how the processing of the corticostriatal input is affected. Future
goals are to increase the insight of the information processing going on in the
second messenger pathways and how this might be changed by neuromodulator
interactions.

We already have a detailed model of the F'S neuron and currently a MS model
(Wolf et al., 2005) is being converted from Neuron to GENESIS. The current MS
model lacks explicit spines and one plan is to add them on the dendrites to e.g.
investigate the role of corticostriatal vs thalamic inputs. Using detailed mod-
els with spines and active dendrites also allows us to investigate the possible
consequences of altering those properties. For example, dopamine denervation,
which is seen in Parkinson’s disease, results in a rapid and profound loss of
spines and glutamatergic synapses on striatopallidal MS neurons, but not on
striatonigral MS neurons (Day et al., 2006; McNeill et al., 1988). Simulations of
reduced dendritic trees show a reduction in firing (Kotter and Wickens, 1998),
however recent studies reviewed in Day et al. (2006) instead show an increase
in excitability, probably because of compensatory mechanisms or changes in
potassium currents. It would be interesting to investigate further the effects of
Parkinson’s disease on both the individual MS neuron, and networks of con-
nected MS and FS neurons.

Models of striatal FS and MS neurons including mechanisms for synaptic
plasticity could also allow us to investigate further the systems capabilities for
performing actor-critic reinforcement learning (Sutton and Barto, 1998). Houk
et al. (1995) suggested such a mechanism in the striatum where the striosomes
represent the critic and the matrix the actor. There are also other considerations
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for studying networks instead of only pairs of neurons. Electrical coupling may
have a stronger influence in networks that are highly connected, than can be
shown in pairwise neuron simulations (Andreu et al., 2001).

Another interesting venue of research is to extend an already developed
one compartment biochemical model (Kotaleski et al., 2005), that currently
implements the D1-receptor and glutamate activated second messenger path-
ways, with the D2-receptor and acetylcholine (ACh) dependent interactions. The
dopamine and ACh signals interact with one another (Wang et al., 2006) and a
quantitative model with both could be interesting to study further.

Through modelling of the striatum we will be able to increase our under-
standing of how the basal ganglia system work, and how different diseases af-
fect them. This will enable researchers to design better treatments for diseases
in this system. One hope is that one day they will be able not only to easen
the burden for addicts and patients of Parkinson’s and Huntington’s disease,
but to cure or even prevent the diseases. In order to do that, we first need to
understand how these systems, and striatum in particular, work. Our research
is hopefully a small piece in this puzzle.
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Abstract

Fast spiking interneurons (FS) in the striatum are hypothesised to control spike
timing in the numerous medium spiny projection neurons (MS) by inhibiting or
delaying firing in the MS neurons. The FS neurons are connected to each other
through electrical gap junctions. This might synchronise the F'S neurons, leading to
increased influence on target neurons. Here we explore the possible difference be-
tween proximal and distal gap junction locations. Somatic and distal dendritic gap
junctions with equal coupling coefficient, as defined for steady-state somatic inputs,
showed significantly different coupling coefficient with transient inputs. However,
the ability to synchronise spiking in pairwise coupled FS neurons, which received
synaptic inputs as during striatal up-state periods, was as effective with distal gap
junctions as with proximal ones. Proximal gap junctions, however, caused synchro-
nisation within a more precise time window.

Key words: Striatum, fast spiking interneurons, gap junctions, synchronisation

1 Corresponding author. Tel.: +46 8 7906902; fax: +46 8 7900930.
E-mail address: hjorth@csc.kth.se (J. Hjorth)
2 B-mail address: jeanette@csc.kth.se (J. Hellgren Kotaleski)

Preprint submitted to Elsevier Science 14 May 2006



1 Introduction

The basal ganglia are involved in action selection and behavioural control
[10]. The input stage is called the striatum and it receives input from both
the motor and limbic systems. The principal neurons in the striatum are the
medium spiny projection neurons (MS) which project to the basal ganglia
output stages. The cortical input to the striatum is glutamatergic and varies
in intensity, giving rise to up-states and down-states in the striatal neurons.
Approximately 50 % of the inputs to the MS neurons are GABAergic [2].
Since the MS neuron collaterals are weak [12] it has been speculated that the
inhibition is mediated by the fast spiking interneurons (FS). The FS neurons
are not as numerous but they form inhibitory pericellular baskets with low
failure rates on the MS neurons and are able to delay or altogether prevent
the MS neuron from firing [3, 13, 15].

In addition to having chemical synapses, the F'S neurons are connected to each
other through electrical synapses, i.e. gap junctions. In one study FS neurons
were found to be coupled to one third of the neighbours [6]. To measure the
strength of a gap junction coupling one can use the coupling coefficient [9],
which is defined as the ratio between the voltage change in the coupled neuron
divided by the voltage change in the stimulated neuron. When injected with
50ms current pulses the coupling coefficient has been found to vary between
3% and 20 % [13]. The situation is quite different for transient activations.
In fact, the coupling resulting from a short pulse, like an action potential, is
much smaller [6]. Here we investigate through computational modelling how
the coupling coefficient is affected by the duration of the input pulse and
discuss how this can be used as an alternative way to determine if the gap
junctions are proximal or distal. We also explore the role of gap junction
location for the ability to synchronise spiking between F'S neurons receiving
synaptic input as during up-state periods.

2 Methods

Fast spiking interneurons were simulated using GENESIS [4] on a Debian
GNU/Linux system. The cell model has been described in detail recently [11].
It has three primary dendrites that branch into six secondary dendrites which
in turn branch into a total of twelve tertiary dendrites (see Figure 1A). The
model has Na, K332, Ki3 and K4 conductances.
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Fig. 1. Tuning of gap junction conductance. (A) shows two FS neurons connected
through gap junctions on the tertiary dendrites. Here only two out of six gap junc-
tions are shown. (B) To determine the coupling coefficient a current was injected
into the soma of one neuron and the depolarisation was measured both in that neu-
ron (Cell A) and in the coupled neuron (Cell B). (C) shows the coupling coefficient
for different gap junction conductances when only one somatic gap junction was
used. For 0.38nS, which is within the physiological range, a coupling coefficient of
14 % was achieved. (D) shows the coupling coefficient when six tertiary dendritic
gap junctions were used, yielding 14 % coupling at 0.67nS. The coupling is lower
when the six distal gap junctions are used, because they are more electrotonically
distant from the current injection.

Synaptic conductances, distributions and activation frequency are adjusted
to reproduce the amplitude, rise time and inter event interval distribution
histograms as measured during spontaneous activity in co-cultures [11].

The FS neurons were pairwise connected through gap junctions (see Figure
1A). Studies indicate that gap junctions are usually located at the same elec-
trotonic distance from the soma in both neurons [7]. Thus we investigated
two configurations; in the first configuration the FS neurons are connected
through one somatic gap junction; in the second configuration they are con-
nected through gap junctions located on the tertiary dendrites.

To quantify spike synchronising properties in pairwise coupled FS neurons
we used a shuffle-corrected cross-correlogram (SCCC). The construction of
such an SCCC has been described in detail previously [5, 14]. The inter spike
intervals between all combinations of spikes from the two FS neurons were
binned and a histogram was created. To remove bias the spike train of one FS
neuron was shifted relative to the other and a new histogram was generated.
This was done for all possible shifts and the average shifted histogram was



subtracted from the original histogram, yielding the SCCC.

We also generated the normalised joint peristimulus time histogram (NJP-
STH) [1, 14] for the data. An ordinary JPSTH is a 2D-diagram where each
combination of spike time in cell A and cell B is indicated. Diagonal elements
thus represent simultaneous spiking in both neurons. By calculating the sur-
prise measure as defined previously [1, 14] the significance of the synchroni-
sation can be estimated. A “surprise” value of 2.996 corresponds to p = 0.05.
When studying a JPSTH, regions of elevated “surprise” are of interest. Part
of the JPSTH calculations was done by matlab code generously provided by
Jeff Keating.

3 Results and Discussion

The proximal and distal gap junction conductances were adjusted to have the
same coupling coefficient under steady-state conditions by injecting 1s current
pulses into the soma of one of the modelled FS neuron (Figure 1B, cell A) and
measuring the corresponding voltage change in the neighbouring FS neuron
(Figure 1B, cell B). For somatic gap junctions a coupling coefficient around
14% was achieved at 0.38nS (Figure 1C), a gap junction strength within
the physiological range of 0.13-0.58nS [8]. To reproduce the same coupling
coefficient using distal gap junctions with reasonable conductances we used six
gap junctions. The gap junction conductance used for these tertiary dendritic
gap junctions was 0.67nS (Figure 1D) and we distributed them so that they
did not share secondary dendrites. These gap junction conductances were then
used in the simulation below unless otherwise stated.

To investigate how the coupling coefficient was affected by transient somatic
inputs the input pulse duration in the simulation was varied between 1ms
and 100ms in 1ms increments. For shorter input pulses the two configura-
tions differed. Brief pulses give larger coupling coefficients when proximal gap
junctions are used (Fig 2A, solid line) compared to distal gap junctions (Fig
2A, dashed line). Short pulses are thus filtered more by distal gap junctions. In
Figure 2B we also confirm that the coupling coefficient for an excitatory post-
synaptic potential (EPSP) resulting from an activation of an AMPA synapse
on one of the cells behaves in a similar manner. These relative differences in
coupling coefficients for steady state versus transient inputs could be used to
give a rough estimation of the location of gap junctions.

Gap junctions are able to synchronise neurons that are triggered to fire repeat-
edly by somatic current injection [9]. To compare the synchronising effects of



A . 015 B - — Somatic gap junction
S g 0.15y| - - - Six tertiary gap junctions
g S
T 01 E
8 . g o1
=) g =)
£ /! <
5. 0.05] ! a I
s : _ Soosf e
o /|~ Somatic gap junction 8 P
o ‘|- --Six tertiary gap junctions /
GU 0.05 0.1 % 0.2 0.4 0.6 0.8 1
Pulse duration (s) Gap conductance (nS)

Fig. 2. Role of stimulus duration for the coupling coefficient. (A) The coupling
coefficients for two different configurations of gap junctions were compared for dif-
ferent durations of injected current. Despite a similar coupling coefficient for steady
state inputs, tertiary dendritic gap junctions (dashed) are significantly less effective
for shorter pulses than somatic ones (solid). (B) shows the coupling coefficient for
somatic (solid) and six tertiary dendritic gap junctions (dashed) when an AMPA
EPSP was elicited in one neuron’s soma.

the somatic and tertiary dendritic gap junction configurations we simulated
periods of up-state and down-state synaptic input to the neurons. Three pairs
of F'S neurons were created. The pairs differed in how the cells were connected
to each other. One pair was connected through somatic gap junctions, an-
other pair was connected through six tertiary dendritic gap junctions and the
third pair was left unconnected for reference. From the SCCC shown in Figure
3A we see that both the proximal and the distal gap junction configuration
were able to synchronise the neurons, however the somatic configuration had
a narrower peak in the SCCC. In the JPSTH the synchronisation can be seen
as a diagonal (Figure 3B). The diagonal is visible both for the tertiary den-
dritic gap junctions configuration and the somatic gap junction configuration.
We also calculated the normalised JPSTH and its surprise values and found
the synchronisation to be significant, p < 0.05 [1, 14]. Figure 3C shows the
significance level of the different spike intervals.

In summary, this study investigated whether fast spiking interneurons in the
striatum connected through proximal as well as distal gap junctions can syn-
chronise activity during up-state periods. The simulation results suggest that
although the distal gap junctions have a significantly smaller coupling coef-
ficient as measured by transient somatic input, both gap junction configura-
tions synchronise the spikes between the coupled cells. However, with distal
gap junctions the synchronising window is more dispersed.
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Fig. 3. Synchronisation effect of gap junctions. (A) Shuffle-corrected cross-correl-
ogram. Both somatic and the tertiary dendritic gap junctions synchronise the two
neurons, but the time window is narrower for somatic couplings. (B) Joint peristim-
ulus histogram (JPSTH). The upper figure shows the raw JPSTH for the tertiary
dendritic gap junctions and the lower for the somatic gap junctions [1, 14]. The di-
agonal representing synchronisation can be seen for both the tertiary dendrite and
somatic gap junction cases. (C) Delayed coincidence matrix for the corresponding
JPSTHs in B. The figures show the significance value of spike intervals -50 to 50 ms
and from 50 ms to 250 ms of the up-state period. There is a significant synchronisa-
tion, the diagonal bins have p < 0.05.
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Abstract

The main population of neurons in the input stage of the basal ganglia, the
striatum, are the medium spiny (MS) projection neurons. In addition to the
MS neurons there are several other small neuron populations, one of which is the
fast spiking (FS) interneuron. Both MS and FS neurons receive glutamatergic
input from cortex and thalamus as well as dopamine from substantia nigra. The
F'S neurons form pericellular baskets on the MS neurons, this allow them to exert
powerful inhibition on the MS neurons activity. Furthermore, the FS neurons
are connected to each other through gap junctions, forming electrical networks.
Here we further explore the role of gap junctions for up-state signalling, coinci-
dence detection and synchronisation. These factors could all contribute to the
control of spike timing in MS neurons. We have found that an F'S neuron that is
connected with intermediate gap junction strength to another F'S neuron have
7% or 14 % more spikes for proximal and distal gap junctions, respectively. Fur-
thermore, gap junctions allow coincidence detection of transient inputs arriving
close in time to the electrically coupled neurons.

Introduction

The basal ganglia are a group of subcortical nuclei that are involved in cognitive
and motor functions. The input stage of the basal ganglia is called the striatum
and it receives glutamatergic input from large regions of the cortex (Bolam
et al., 2000; Bar-Gad et al., 2003; Graybiel, 2005). The striatum also receives
modulating dopaminergic input from substantia nigra compacta (SNRc) and
the ventral tegmental area (VTA) and there exist projections from the striatum
back to the dopamine producing neurons (Canales, 2005). The majority of
the neurons in the striatum are medium spiny (MS) projection neurons that
project to the globus pallidus and substantia nigra. The MS neurons also form
collaterals onto other MS neurons in the striatum but these have been shown
to be relatively weak (Jaeger et al., 1994).

There are other neurons in the striatum in addition to the MS neurons.
Amongst these are the parvalbumin positive fast spiking (FS) interneurons.
The FS neurons are able to fire in rapid succession in response to depolarising
input. By forming pericellular baskets on the MS neurons the F'S neurons can
exert powerful inhibition with low failure rates which can delay or prevent an
action potential in MS neurons (Bolam et al., 2000; Kods and Tepper, 1999;
Tepper et al., 2004). Each FS neuron synapse onto 135-541 MS neurons, and
each MS neuron is innervated by at least four (4-27) FS neurons (Kods and
Tepper, 1999). The activity of the FS neuron can thus change MS neuron spike
timing. There are variations in the synaptic strength between an FS neuron
and its different target MS neurons, but generally the feedforward connections
from cortex, via FS to MS neurons, are twice as strong and roughly 1 ms faster
than the MS to MS neuron feedback loop (Gustafson et al., 2006). The cortical
input to both MS and FS neurons varies in frequency between the relatively
silent down-state and the more active up-state. It is during the up-state that
the MS neurons in the striatum mainly fire and their activity reflects encoding
of procedural memories (Barnes et al., 2005). Both during up-state and down-
state approximately 50 % of the striatal input is GABAergic (Blackwell et al.,



2003).

In addition to chemical synapses, recent studies have detected electrical cou-
pling between FS neuron in the striatum that is mediated through gap junctions.
Networks of FS neurons are thus formed where each FS neuron may connect
to one third of its neighbours (Koés and Tepper, 1999; Galarreta and Hestrin,
2001b). Gap junctions have been shown to synchronise neurons, both experi-
mentally (Traub et al., 2001; Connors and Long, 2004) and in computational
studies (Gibson et al., 2005), including in the striatum (Hjorth et al., 2006).
Therefore, if several striatal F'S neurons fire simultaneously during an up-state
period, their effects on the MS neurons become more robust. Through computa-
tional modelling we investigate the effect gap junctions have on synchronisation,
up-state signalling and coincidence detection during physiologically realistic in-
put. We show that an FS neuron coupled to a neighbouring FS neuron has
more spikes during up-state periods if the neighbouring neuron also receives up-
state input. Furthermore, simulations suggest that coupled neurons, receiving
simultaneous depolarising inputs, can both depolarise more than without gap
junctions. Also gap junctions allow coincidence detection which in some cases
leads to spike synchronisation.

Methods

Cell model

The fast spiking (FS) interneuron were modelled using GENESIS (Bower and
Beeman, 1994) on a Debian GNU/Linux system. The model has been described
before in detail (Hellgren Kotaleski et al., 2006). Briefly it consists of a soma
compartment connected to three primary dendrites that branch into six sec-
ondary dendrites that in turn branch into a total of twelve tertiary dendrites.
The model implements fast sodium channels, potassium channels (Kv1.3 and
Kv3.1-Kv3.2) as well as a transient potassium channel (A-channel). The fast ac-
tivation of Kv3.1-Kv3.2 is responsible for the F'S neurons ability to spike rapidly
(Erisir et al., 1999). All dendritic branches are passive except for proximally
distributed K4 conductances.

Synaptic Input

AMPA synapses are evenly distributed over the neuron, but the GABA synapses
are concentrated on the soma and proximally on the dendrites. The synapses are
activated by Poisson trains to give postsynaptic inputs that have the right inter-
spike interval, rise time and amplitude distributions and the simulated input
can recreate the characteristic phases of up-states and down-states (Hellgren
Kotaleski et al., 2006). Each synapse is activated during up-state periods with
the frequency of 20/9 Hz and during down-state with 1/9Hz. For the correlation
we have used a generative measure as defined by Rudolph and Destexhe (2001)
with C' = 0.5. Correlation is generated by having fewer input trains than
synapses, which results in some input trains being reused. If N is the number
of synapses and Ny is the number of independent input trains then

No =N +VC(1 - N).



For each time step the input trains were reconnected to random synapses in such
a way that the number of synapses per input train were constant. We changed
the previous implementation by generating a mother process from which the
spikes for the input train were randomly selected. The reason for this was that
GENESIS did not allow reconnection of the spike trains during a simulation.
The mother process had a frequency of f,, = Ny - f where f is the desired
frequency on the input trains. Each spike in the mother process was then
selected for inclusion in an input train on average N/Ny times yielding the
desired correlation. In this implementation AMPA and GABA inputs were not
activated simultaneously. This gave rise to slightly larger spike probability but is
well within the experimentally obtained range for F'S neurons (Blackwell et al.,
2003; Hellgren Kotaleski et al., 2006).

Gap Junctions and Coupling Coefficient

A gap junction is modelled as a passive resistive element connecting two com-
partments of neighbouring neurons. The coupling coefficient is defined as the
ratio between the somatic voltage change in the neighbouring neuron divided
by the soma response in the directly stimulated neuron. Since it is not known
where the gap junctions are located between striatal F'S neurons we investigated
proximal (soma-soma) as well as distal (tertiary dendrites—tertiary dendrites)
gap junction configurations.

Detection of Spike Synchronisation

Synchronisation was tested by giving two neurons simulated up-state input.
Here the up-states occurred simultaneously, but the input spikes to either neu-
ron were uncorrelated between the neurons. From the resulting spike trains
we generated shuffle corrected cross-correlograms (SCCC) (Brody, 1999). The
inter-spike intervals between all combinations of spike pairs from the two FS
neurons were binned and a histogram was then created. To remove any bias
the spike train of the first F'S neuron was shifted relative to the other and a
new shifted histogram was generated. This new shifted histogram could then
be used to remove the bias, since correlations are assumed to occur only on
a short timescale, and these interactions are destroyed by the shifting, leaving
only the bias in the shifted histogram. This process was repeated for all possible
shifts and the average shifted histogram was then subtracted from the original
histogram, yielding the SCCC. The procedure is described in detail in Brody
(1999).

Results

Coupling Coefficient During Steady State versus Transient
Inputs

Gap junctions can be formed at different distances from the soma (Tamés et al.,
2000; Fukuda et al., 2006), however studies of fast spiking (FS) interneurons in
the brain indicate that gap junctions are usually located at the same electro-
tonic distance from the soma in both coupled neurons (Galarreta and Hestrin,



2001a). As in an earlier study (Hjorth et al., 2006), we defined two reference
cases in order to investigate whether the results are critically dependent on the
location of gap junctions. In one case FS neurons were connected through so-
matic gap junctions and in the other case F'S neurons were connected through
gap junctions located on the tertiary dendrites. We calibrated the conductance
so that the steady state coupling would be comparable between the two cases
and within the physiological range of 3-20 % (Kods and Tepper, 1999). In order
to fulfil this constraint for different gap junction locations we had to use more
than one tertiary dendrite gap junction. We used a configuration of six tertiary
dendrite gap junctions distributed so that they did not share secondary dendritic
branches (Figure 1A). The gap junction conductance calibration was done by
connecting two neurons through gap junctions and injecting current into the
first neuron, while measuring the resulting voltage change in both this neuron
and in the neighbouring neuron, when steady state had been reached (Figure
1B). This was repeated for the two different configurations of gap junction lo-
cations and for different conductances. The two curves intersect at 0.22nS,
which means that the gap junction conductance is equal for both proximal and
distal configurations and within experimentally measured values of 0.13-0.58 nS
(Galarreta and Hestrin, 2002) (Figure 1C). The resulting coupling coefficient
was measured to be 0.088, also within the physiological range. In this study we
used this as a reference value unless otherwise stated.

When cells are electrically coupled to other cells, the voltage changes may be
shunted away through the gap junction conductances. We therefore investigated
how the shunting ratio varied. This ratio we defined as the depolarisation caused
by a somatic current injection in a neuron, when this neuron was coupled to a
neighbouring neuron, divided by the depolarisation in the same neuron without
any gap junction couplings (Figure 1D).

The coupling coefficient is in general dependent on the dynamics of the input
(Galarreta and Hestrin, 2001b) which normally are transient. We investigated
this quantitatively for both proximal and distal inputs. In Figure 2A we injected
current pulses of different durations into the soma of the first neuron in order to
observe the effect of the electrical coupling. Short pulses were filtered more, i.e.
had a lower coupling coefficient, than long pulses both for proximal and distal
gap junctions. The exact coupling differed for the two gap junction reference
cases; the proximal connections had a higher coupling coefficient than the distal
connections for pulses of intermediate length (Hjorth et al., 2006). For com-
parison, a more physiological transient input generated by an AMPA activation
was also used as an input. When activating an AMPA EPSP on the soma the
proximal gap junction was more efficient than the distal gap junctions, Figure
2B. In real cells much of the input comes from dendritic synapses. We therefore
also injected currents to the end points of all dendrites and calculated the so-
matic coupling coefficient as shown in Figure 2C. Here we see that, in contrast
to proximal inputs, the distal gap junctions are much more efficient in terms of
coupling coefficient. This is because the electrotonic distance to both somas, as
seen from the more peripheral injection site, are not that different. We did also
elicit AMPA EPSPs at the endpoints of all tertiary dendritic compartments, as
shown in Figure 2D. Here the distal gap junctions gave a coupling coefficient
almost three times as large as if proximal gap junctions are used. The above
results show that, depending on the input location, either proximal or distal
gap junctions can be more efficient as measured by the coupling coefficient.
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Figure 1: Calibrating the gap junction conductances. (A) shows two FS neurons
connected through tertiary dendrite gap junctions, here only two out of six gap junc-
tions are shown. (B) To determine the coupling coefficient a current was injected into
the soma of one neuron and the depolarisation was measured both in that neuron (Cell
A) and in the coupled neuron (Cell B). (C) shows the steady state coupling coefficient
as a function of gap junction conductance, both for one somatic gap junction and
six tertiary dendrite gap junctions. At 0.221nS both the somatically coupled and the
tertiary coupled FS neurons have a coupling coefficient of 0.088. (D) Shunting ratio
of somatic potential defined as depolarisation in Cell A with gap junction coupling to
another cell, divided by the depolarisation in Cell A when lacking gap junctions.

Critical Window

A depolarised cell electrically coupled to another less depolarised cell might loose
charge, and the less depolarised cell will gain depolarisation. We investigated
if there is some case where two FS neurons could both gain electrical charge
and become more depolarised for a certain input, by being connected through
gap junctions. We assumed that we had two FS neurons connected by distal
gap junctions. Close to a gap junction at the first neuron we activated an
AMPA EPSP, close to another gap junction in the second FS neuron we also
activated an AMPA EPSP as shown in Figure 3A. These AMPA EPSPs can be
activated simultaneously or with a time offset. If there were no gap junctions,
each of the two neurons would just see one AMPA EPSP which would lead
to a depolarisation in the soma (dashed line in Figure 3B). If we add the gap
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(C) Here the injected current was given
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considerably more effective. (D) Coupling coefficient measured when the endpoints of
the tertiary dendrites all received an AMPA EPSP.



junctions and activate an AMPA EPSP in one of the neurons then what we
see is that some of the charge entering the dendrite will be shunted away to
the neighbouring neuron’s dendrite. This leads to a lower depolarisation in the
first soma (Figure 3B, line at -61.6mV). But since the current that enters the
first dendrite is proportional to the difference between the reversal potential
and the dendrite’s local potential more charge will enter the cell if taking into
account also the charge that is lost to the neighbouring cell. Now if we also
activate a second AMPA EPSP in the other cell, then we find that it too will be
more efficient in transporting charges into the dendrite. Summing the charges
entering into the neurons we see that both neurons have each received more
than they would have without the gap junction. Thus if the two neurons are
activated almost simultaneously, the maximal somatic depolarisation in each of
the neurons reaches above the value they would have had without gap junctions
and when receiving the same synaptic activation (Figure 3B, peak around time
offset 0s). The amplitude of the postsynaptic responses depends on when the
other neuron receives an input. For assymetrical couplings, where a gap junction
might be located proximally on one neuron and distally on the neighbour, there
is still a critical window, but it is shifted in time either left or right in the figure.
An example of a somatic voltage trace is shown in Figure 3C for three different
cases (indicated as «, § and 7 in B). Next we wanted to see if the presence of gap
junctions could help elicit an action potential when an activation of an AMPA
synapse was done simultaneously in both neurons. Figure 3D shows that when
we are close enough to the threshold potential the presence of gap junctions can
lead to a spike as a result, while in the case without gap junctions the spiking
threshold was not reached.

Synchronisation is Affected by Gap Junction Location and
Strength

It is generally believed that gap junctions synchronise neurons (Bennett and
Zukin, 2004; Connors and Long, 2004) and this has also been shown for striatal
FS neurons (Hjorth et al., 2006). To quantify further to what extent this occurs
in the striatum during periods of up and down-states, the FS neurons were
connected pairwise with gap junctions and given simulated 250 ms up and down-
states of synaptic input. The synaptic inputs were correlated within each neuron
as described in Methods, but not between the two neurons. We compared
proximal and distal gap junctions capability to synchronise spikes for different
gap junction conductances. This was done by calculating the shuffle corrected
cross-correlogram from the resulting spike traces. Here we made use of the fact
that in a simulation it is possible to repeat the same experiment exactly, so we
used the same synaptic inputs for all gap junction conductances.

What we see for both proximal and distal gap junctions is that the synchro-
nisation increases as we increase the gap junction conductance. The effect is
more pronounced for proximal gap junctions (compare Fig. 4A and B). Figure
4C and D illustrate, using a SCCC, more visibly that the number of spikes
occurring almost simultaneously in the coupled cells are dispersed if distal gap
junctions are used. This general tendency is seen also when dopamine effects
are simulated. Dopamine was simulated by reducing the GABA efficiency to
80 % and depolarising the neuron 2mV as in previous simulations (Hellgren
Kotaleski et al., 2006). This results in increased excitability of the neuron and
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Figure 3: Critical window for increased depolarisation. (A) AMPA synapses
were activated close to the tertiary dendrite gap junctions. (B) Comparison
between two coupled neurons (cell A and cell B) and uncoupled reference neu-
rons, all neurons receive one AMPA EPSP on a tertiary dendrite. The maximal
depolarisation of the neuron can be up to 16 % larger if the other neuron re-
ceives an AMPA EPSP during a critical time window of a few milliseconds. (C)
Voltage traces showing the effect of spike timing. The largest depolarisation oc-
curs when the coupled neurons receive their inputs almost simultaneously. (D)
When keeping the neurons close to the threshold a simultaneous AMPA input
to both neurons will evoke a spike in the electrically coupled pair but not in the
non-connected reference cells.
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(B) when the conductance is varied. SCCC for a gap junction conductance of
0.22n8S without dopamine (C) and with dopamine (D).

more spikes in the up-state.
The total number of spikes, however, decreases with increasing gap junction
conductance as a result of shunting as further explained below.

Robustness and Up-state Detection

The shunting through gap junctions would transfer charge between the two
neurons to even out the potential difference between them. We investigated to
what extent this could be used to detect if both FS neurons received up-states
simultaneously or not. An up-state is considered detected if the F'S neuron fires
a spike during its duration.

In Table 1 the number of spikes during periods of 250 ms up- and 250 ms
down-states are shown. During up-state periods the neurons connected to a
neighbour FS neuron, which also receives up-state inputs, spike significantly
more, 7% and 14 %, with proximal and distal gap junctions with the reference
conductance of 0.22nS, respectively. With simulated dopamine effects the neu-
rons become less dependent on their neighbours for detecting up-states. The
above results are robust to varying the background (i.e. down-state) noise, see
also Hellgren Kotaleski et al. (2006).

Although there is an increased up-state detection when the neighbours are
also in up-states, there are still slightly fewer spikes as compared to the uncon-



Configuration Detected up-states/falsely detected down-states (£ SEM)
Reference Dopamine

Six tertiary 0.708 +0.010 | 0.003 £0.001 | 0.873 £0.007 | 0.010 4+ 0.002

Somatic 0.680 + 0.010 | 0.002 £ 0.001 | 0.849+ 0.008 | 0.008 £ 0.002

Six tertiary to silent | 0.619 £0.011 | 0.003 + 0.001 | 0.817 £ 0.009 | 0.009 %+ 0.002

Somatic to silent 0.635 £ 0.011 | 0.003 +0.001 | 0.823 £ 0.009 | 0.008 + 0.002

Table 1: Number of spikes for different gap junction configurations and using the
reference gap junction of 0.22nS conductance. Proximally connected neurons
have 7 % more spikes if their neighbour is also receiving up-state input than if it
is silent. Distally connected neurons have 14 % more spikes if their neighbour is
in an up-state. When we add dopamine these numbers change to 3% and 7 %,
respectively.

nected reference cell pair, which had 0.733 & 0.010 detected up-states without
dopamine and 0.887 £ 0.007 with dopamine. By driving two coupled neurons
with successively more and more correlated input between the cells, one can
even reach a value slightly above the reference case. This implies that coinci-
dence detection within the critical window has a small but measurable effect
during physiological up-states, when the inputs to both neurons have highly
correlated inputs.

Exploring the Mechanisms

From the above results it is shown that the spiking activity is altered in the
presence of gap junctions. Two opposite phenomena are at play, action poten-
tials arise or disappear as a result. Here we will illustrate examples of these
cases and try to pinpoint the mechanisms. We have simulated three F'S neuron
pairs with cells labelled A and B. All neurons labelled A receive the same in-
put and all neurons labelled B receive the same input. The first pair was left
unconnected as reference, the second pair was connected through proximal gap
junctions and the third pair was connected through distal gap junctions. The
initial conditions for all pairs were identical. We ran the simulation for 250 ms
and then reset it and repeated the run with new inputs to the pairs. The reason
for the reset is that the the spike history affects the timing of subsequent spikes,
this makes a direct comparison harder and could hide some of the more subtle
mechanisms we are looking for. The spike traces were then analysed both by
inspection and by automated matlab scripts to see which pair configuration that
had spiked first.

The mechanisms are grouped into three categories: a) shunting, where spikes
that exist in the reference traces disappear when the neurons are connected
through gap junctions; b) subthreshold detection, where the coupled neurons
have spikes that none of the unconnected reference neurons have; ¢) suprathresh-
old detection or synchronisation, when a spike in the first neuron induces a spike
in the neighbouring neuron.

Shunting occurs because charge leaks through the gap junctions, e.g. a
neuron depolarised closer to the threshold looses positive charge to a more
hyperpolarised neighbour. This mechanism can reduce the number of spikes
as shown in Figure 5A. This is because it evens out the depolarisation between
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Figure 5: Gap junction effects. Non-connected and distally coupled neurons are
compared. (A) Shunting: Number of spikes are reduced because charge leaks
to the neighbouring neuron. (B) Suprathreshold detection: One spike in the
reference trace becomes two spikes in the coupled neurons. (C) Subthreshold
detection: No spike in the reference trace, the previous subthreshold excitation
give rise to a spike in the coupled neurons if they are already close enough to
the threshold. (D) Changes in spike timing.

the two neurons.

Additional simultaneous spikes can appear (i.e. synchronisation or suprathresh-
old detection occurs) in the coupled neurons, when for instance the depolarisa-
tion during, or just before, an action potential in one neuron helps the coupled
neuron to also reach the threshold for a spike (Figure 5B).

It could also be the case that a spike appears in at least one of the neurons
where there are no spike in any of the reference neurons (Figure 5C). This,
which we call subthreshold detection, can occur because the spiking neuron had
moments before gained charge from its neighbour through the gap junctions,
moving it closer to the threshold than in the unconnected reference case.

All the above mechanisms also affect neuronal spike timing. For example
when one of the neurons spikes the after-hyperpolarisation will reduce the like-
lihood of any subsequent action potentials directly following the first, see Fig-
ure 5D. Studying the traces in detail we see that the neurons take turns lending
charge to each other. Depending on where the input arrives in the dendritic tree
different amounts of charge will flow to the neighbour thus either increasing or
decreasing the probability to reach spike threshold.
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Discussion

Studies have shown that gap junctions can synchronise spiking activity in neu-
rons (Bennett and Zukin, 2004; Connors and Long, 2004). We extend an earlier
study (Hjorth et al., 2006) showing that both proximal and distal gap junctions
between striatal FS neurons can cause spike synchronisation during up-state
periods. This synchronisation occurs over a large range of gap junction conduc-
tances (see Fig 4), however, the synchronisation for distal gap junctions was less
precise in time. In addition to causing more synchronous activity in coupled FS
neurons, the presence of gap junctions affected the ability to detect up-state pe-
riods (compare Table 1). Significantly more up-state periods were detected, and
more up-state spikes occurred if the neighbour neurons also received up-state
synaptic inputs. This effect was more pronounced with distal gap junctions.
The total number of spikes could even increase above the reference case with no
gap junctions, if correlated inputs were given to the coupled FS cells. The addi-
tion of gap junctions can also help detect coincident subthreshold excitation in a
pair or network of F'S neurons. This can evoke spikes in one of the coupled neu-
rons, while no spiking occurred in the reference case without gap junctions (see
Fig. 5C). Thus, both increased spike synchronisation, subthreshold coincidence
detection and the neighbour dependent ability to spike during up-state periods
would increase the total GABAergic synaptic output from groups of FS neu-
rons connected through gap junctions. In this context it is interesting that FS
neurons can delay the spiking of medium spiny projection neurons (MS) (Kods
and Tepper, 1999). This may be important since it has been shown that the
delay to the first spike after up-state onset in MS neurons affects calcium levels
(Kerr and Plenz, 2004), which in its turn might have important implications for
synaptic plasticity and learning in this system.

Spike synchronisation and subthreshold coincidence detection in F'S neurons
could also enable stronger and simultaneous inhibition of a larger number of
MS neurons, possibly allowing for a more widespread inhibition. This might
be required for a “winner takes all” mechanism, which is hypothesised to exist
in the striatum (Djurfeldt et al., 2001; Plenz, 2003). An interesting possibility,
which is not currently known, would be that FS neurons that synapse onto
functionally similar MS neuron also are connected through gap junctions. FS
neurons are furthermore known to form GABAergic synapses with other FS
neurouns, in addition to MS neurons (Kita et al., 1990). The detailed organisation
of GABA synapses and gap junctions between striatal FS cells is not known,
but different possibilities of implementing lateral inhibition, not only between
functional groups of MS neurons, but likewise between groups of FS neurons
might be possible.

Spontaneous up- and down-state activity occurs in organotypic co-cultures
in vivo (Plenz and Aertsen, 1996). In awake behaving animals studies of cross-
correlograms have also shown bursting in the MS neuron. This taken together
with the fact that MS neuron do not have an intrinsic bursting mechanism
indicate that there are indeed elevated periods of activity (up-states) also in
awake animals (Nicola et al., 2004). It is, however, not known to what extent
neighbouring FS and MS neurons have synchronous up-states. Highly synchro-
nised up-states might be an artefact of the anaesthetics commonly used. In this
context it is interesting to see that the F'S neurons detect up-states in neigh-
bouring neurons and spike significantly more if the coupled cells also receives

12



up-state input. Using intermediate gap junction conductances, we show that if
a neighbouring connected F'S neuron also receives up-state input the neuron will
spike 7 % more if they are connected through proximal gap junctions and 14 %
more with distal gap junctions. Interestingly, it seems that in the presence of
dopamine the neurons become less dependent on their neighbours. Although, it
would be hard to link this observation to the functioning of the microcircuitry, it
is interesting that dopamine affects gap junctions (O’Donnell and Grace, 1993;
Onn and Grace, 1999). Also pharmacological blocking of the gap junctions
between the FS neurons by intra-striatal infusion affects dopamine mediated
behaviour in rats (Moore and Grace, 2002).

It is important to note that this study only deals with pairs of neurons
connected through gap junctions, for larger networks the proportion of input
through the gap junction is larger and some of the effects may be more pro-
nounced (Andreu et al., 2001). In summary, however, the present study high-
lights questions regarding the functional organisation of the striatal microcir-
cuitry. Interesting questions are: a) to what extent are up-states in neighbouring
neurons simultaneous in vivo, and does this change during behavioural tasks; b)
do gap junctions connect functionally similar FS neurons; ¢) do the GABAergic
FS to F'S synapses occur between FS neurons activated during different or sim-
ilar functional tasks, and d) to what extent do neighbouring FS neurons receive
correlated inputs from cortex.
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Abstract

We have developed a computational model of the regulation of «- and f-CaMKII activity, in order to examine (i) the importance of
neighbour subunit interactions and (i) the effect the higher CaMCay affinity of §-CaMKII has on the holoenzyme activity in different
configurations with the same «: § ratio. The model consists of a deterministic biochemical network coupled to stochastic activation of
CaMKII. The results suggest that CaMKII holoenzyme activity is non-linear and dependent on the holoenzyme configuration of

isoforms. This is especially pronounced in situations with a high-dephosphorylation rate of CaMKII.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Calcium/calmodulin-dependent kinase type II, CaMKII,
has long been the focus of much interest since it is crucial for
plasticity and learning [7]. It has four types of isoforms; o, f,
y and 6. In the brain, CaMKII holoenzymes are mainly
composed of the z and f isoforms, which are typically
present in the same holoenzyme [1,4,5]. x-CaMKII, but
probably not f-CaMKII, may also form homomers [1].

The ratio «: § is different in different parts of the brain—it
is for instance 3:1 in the rat forebrain but 1:4 in the rat
cerebellum [9]. Reported values of o: § ratios range from 6: 1
to 1: 8 [5]. There has been some controversy over the structure
of the CaMKII holoenzyme, but the most probable structure
is a dodecamer composed of two hexameric rings [4].

One of the key features of CaMKII holoenzymes is the
neighbour-dependent phosphorylation [7]. The require-
ment for initiation of phosphorylation is that two
neighbouring subunits have bound CaM at the same time.
Thus, different subunit affinities for CaM may influence
the rate and probability of phosphorylation.

The o and f isoforms have different affinities for CaM
and different rates of neighbour-dependent phosphoryla-
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tion [4]. Both of these differences will affect the dependence
of CaMKII activation on Ca?* stimulus frequency, but
earlier simulations indicate that the rate of phosphoryla-
tion will have the largest effect [4]. The average proportion
of « to f within a holoenzyme has also been shown to be
regulated by the cell spiking activity. Low firing levels
increase the relative amount of the f isoform, while higher
firing levels decrease it [11].

Taken together, these facts imply that overall enzyme
properties depend on the isoform composition of CaMKII,
and that changes in composition might have functional
relevance. These possibilities have been discussed before [1]
but not investigated by computational modelling.

2. Methods

We have developed a computational model of regulation
of » and p CaMKII activity. The mathematical model is
implemented in Matlab. Our modelling partly follows the
example of Holmes [6], with a deterministic biochemical
network coupled to stochastic activation of CaMKII (see
Fig. 1). The model includes five different CaMKII activity
states for each subunit. Concentrations and rates were the
same as in (6], with the following exceptions:

e f-CaMKII was added;
e CaN and CaMKII binding to CaMCay, X <2 was
excluded;
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Ub-CaMKII CaMKII

Bo-CaMKII CaMKI*CaM*Ca, (bound)

Tr-CaMKIE CaMKI*CaM*Ca, phosphorylated on Thr 286/287 (trapped)
Au-CaMKII CaMKII phosphorylated on Thr 286/287 (autonomous)
Cp-CaMKII CaMKII phosphorylated on Thr 286/287 and Thr 305/306 (capped)

CaN*CaM*Ca CaM*Cag H CaMKII*CaM*Ca, . .
CaN { i CaMKil LBk
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CaN*CaM*Ca, CaM*Ca, T
H dP;
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Fig. 1. Biochemical network of the model. Dashed boxes denote the stochastic parts of the model. Dashed arrows show stochastic transitions and solid
arrows show deterministic reactions. Shadowed boxes show the correspondences that link the deterministic and stochastic model parts. When needed for
the calculations, concentrations were converted to numbers of molecules and vice versa.

e only the volume corresponding to the PSD was
simulated;

e the dephosphorylation rate was increased by a factor
of 10;

e the Ca?* concentration was modeled by a 4Hz sine
function with a maximum of 2 uM.

Many models of CaMKII activation have been published
previously [2,3,6,8,10,12]. Few published models include ali
CaMKII activity states and, to the best of our knowledge,
no published model includes both o and f isoforms.

We have used the CaMKII activation scheme from
Holmes’ model [6], which allows study of neighbour
subunit interactions in a way suitable for the question at
issue. Each CaMKII subunit can be of either « or f type
and then, independently of isoform type, be in one of five
different activity states. This means the “influencing
neighbour” of a subunit can be one of ten choices, giving
a total of 10° possible configurations for a hexameric ring.
Thus, with a deterministic model, over one million
equations would be needed in order to capture the same
level of detail—for one hexameric ring—as with the
stochastic model we use.

Our approach allows us to include both «- and f-
CaMKII isoforms and, crucially, to study the neighbour
subunit interactions in detail. Interactions between neigh-
bours are assumed to be in one direction, and there is no
interaction between the two hexamer rings. This means
that the state of each subunit is only affected by the state of
one other subunit. In this work, the influencing neighbour
is taken to be the neighbour to the right of the subunit.

We have investigated the amount of activation resulting
from two different configurations of CaMKII, both with
an 3:1 ratio of « to f. Assuming the most likely

configuration of two hexamer rings [4], we have tested a
‘separated’ and a ‘mixed’ case: oooooo—pffoo and
oo — Pofofior.

3. Results and discussion

Our simulation results indicate that (i) the subunit
activation state is strongly dependent on subunit type, and
(ii) the probability of activation of a certain subunit is
strongly dependent on the isoform type (i.e. CaMCay
affinity and/or phosphorylation rate) of its neighbour.

Due to the larger f affinity for CaMCay, almost all active
f subunits are in the trapped form, see Figs. 2 and 3. 8
subunits in the bound state will quickly become phos-
phorylated (trapped), and autonomous f subunits will
quickly rebind CaMCa,. This means that most of the
autonomous activity comes from the x subunits, especially
those with f§ neighbours. One of the main reasons for the
difference between the isoforms in activation is the
rebinding of CaMCay to autonomous «- and f-CaMKII
subunits, the rate of which is assumed to be higher for f
subunits due to their higher affinity for CaMCay. Based on
[4], we have chosen a 3 times larger CaMCay affinity for f
than for «. This may be a conservative estimate; according
to [1] the differences are larger.

In our simulations, we can see that § subunits with an o
neighbour are much less activated than those with a f
neighbour though the amount of bound subunits is
largely equal (see Fig. 2). Similarly, o subunits with
a f neighbour are substantially more activated than
those with an o neighbour (see Fig. 2). This suggests that
the role of neighbour interactions is crucial: due to the fact
that trapping is a long-lived state, the activity of the
trapped f subunits ‘“forces up” the activity of their
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Fig. 2. To the right the 6x— fffaxx configuration, and to the left the 6a— pafxfo configuration. In grayscale of decreasing darkness: probability for a
subunit in this position to be in the bound, trapped, autonomous and capped states at the end of the simulation. Note that the “influencing neighbour” is
the one to the subunit’s right-hand side (higher number), and that the hexameric structure means that subunits #1 and #7 are the neighbours of subunits #6
and #12, respectively. 100 CaMKII holoenzymes were simulated. Simulation time was 80s, using 50 uM of CaM and a 4Hz Ca®" stimulus. The
dephosphorylation rate was 0.03s~'. The CaMCay affinity of f-CaMKII and the probability of f-CaMKII phosphorylation were both assumed to be 3

times that of x-CaMKII.
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Fig. 3. The same situation as in the previous figure, but with a ten times larger dephosphorylation rate.

neighbours. If the neighbour is a f§ this leads to further
trapping, if the neighbour is an x a larger relative part
of its activity is often autonomous (and subsequentially
capped).

The “neighbour forcing” effect becomes more pro-
nounced when the dephosphorylation rate of CaMKII is
higher (see Fig. 3, compare the relative difference between
subunit #12 in this figure and in Fig. 2. #12 is an « that
becomes much more active than other o:s due to its f
neighbour—but the difference in activation level, com-
pared to other a:s, is much larger with the high depho-
sphorylation rate than with the lower dephosphorylation
rate). Also, § activity is much less sensitive to changes
in the dephosphorylation rate than x activity (see Fig. 3).
The apparent insensitivity of f-CaMKII compared to

o-CaMKII is due to the fact that x-CaMKII more easily
becomes autonomous, and subsequentially inactive when
dephosphorylated. If trapped -CaMKII is dephosphory-
lated it will return to the bound state from which it
relatively quickly becomes trapped again.

Due to the relative insensitivity of f-CaMKII its activity
will be much harder to regulate than the activity of o«-
CaMKII. A p-homomer would, in our conditions, prob-
ably show a rather uninteresting behaviour compared to
a-homomers and heteromers—its subunits would generally
be either trapped or inactive.

Doubling the concentration of CaM had no qualitative
influence on these results (not shown).

We conclude that the seemingly modest differences
between 2 and f CaMKII in CaMCa, affinity and
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autophosphorylation rate can have large non-linear effects
on holoenzyme activity. Changing the ratio of o: § or the
rate of dephosphorylation will not only adjust the level of
CaMKII activity, but also the distribution of activity
states. Thus, the regulation of the o: § ratio in response to
spiking may have more complex consequences than the
simple gain control proposed in [11] and the shift of
Ca®" frequency sensitivity examined in [1].
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