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Abstract

A finite element based numerical method for the two-dimensional elliptic interface problems

is presented. Due to presence of these interfaces the problem will contain discontinuities in the

coefficients and singularities in the right hand side that are represented by delta functionals along

the interface. As a result, the solution to the interface problem and its derivatives may have

jump discontinuities. The introduced method is specifically designed to handle this features of the

solution using non-body fitted grids, i.e. the grids are not aligned with the interfaces.

The main idea is to modify the standard basis function in the vicinity of the interface such

that the jump conditions are well approximated. The resulting finite element space is, in general,

non-conforming. The interface itself is represented by a set of Lagrangian markers together with a

parametric description connecting them. To illustrate the abilities of the method, numerical tests

are presented. For all the considered test problems, the introduced method has been shown to have

super-linear or second order of convergence. Our approach is also compared with the standard

finite element method.

Finally, the method is applied to the interface Stokes problem, where the interface represents

an elastic stretched band immersed in fluid. Since we assume the fluid to be homogeneous, the

Stokes equations are reduced to a sequence of three Poisson problems that are solved with our

method. The numerical results agree well with those found in the literature.
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Chapter 1

Introduction

Many important physical and industrial applications involve flows with very complicated
structure that is characterized by free moving surfaces inside the fluid domain and by
discontinuous or even singular material properties. Examples include composite materials,
multi-phase flows, crystal growth, solidification and many others. This type of problems,
which we refer to as interface problems, has attracted a lot of attention over the past years.
These interface problems can be classified into the following categories:

• Free surface problems: These problems involve fluid interfaces with no separating
material, just a contact discontinuity between different fluids. Examples of this kind
of problems include bubbly flow, motion of vortex sheets with surface tension, mul-
ticomponent fluids with surface tension and generation of capillary waves on the free
surface.

• Fluid-structure interaction and multiphase material: These interface problems con-
cern the interactions between solid structures and fluid or the solid-solid interactions.
Examples include acoustic media, gas/liquid storage tanks, pipeline systems and oth-
ers.

• Material interface problems: For this kind of problems the interface represents a real
material. The interaction between fluid and material interfaces creates rich and com-
plex dynamics that is an interesting subject to many scientists and mathematicians.

In this thesis we will mainly study material interface problems. A good example of a two
dimensional material interface problem is a thin elastic rubber band immersed in the fluid
and moving along with it. Furthermore, this band can separate two immiscible fluids, that
have different viscosity and density and thus experience a jump in a value across the band.
One has also to account for singular forces, such as an elastic or surface tension forces, that
act on the interface with strength that depends on the shape of the interface itself. Any
numerical method designed for the material interface problem has to include an accurate
description of the moving and deforming interface and has to account for the complex
dynamics and the properties of the flow.

1.1 Problem Formulation

This work was motivated was by the need in the robust numerical method for the interface
Stokes problem that models moving inner boundaries in the incompressible flow of a highly
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2 CHAPTER 1. INTRODUCTION

viscous fluid. These equations are a limit case of Navier-Stokes equations where the Reyn-
olds number tends to zero and both the convective and the inertial terms are dropped. We
will concentrate on the two-dimensional problems in which the interface exerts a singular
force on the fluid, e.g. elastic force or surface tension, across the interface. The interface is
a surface of codimension one, that may represent a region separating different fluids or an
elastic boundary immersed in the fluid. A good example is a closed curve that represent an
elastic band immersed in a fluid for a two-dimensional problem.

Consider the two-dimensional Stokes equations

∇p = µ∆u + F

∇ · u = 0
(1.1)

where u = (u, v) is the velocity vector, p is the pressure and F = (F1, F2) is an external
singular force exerted by the interface Γ and that can be written as

F(x) = f(x, t)δΓ

where f(x, t) = (f1, f2) is the force strength in this point and δΓ is a two-dimensional delta
functional with the support along the interface Γ. This singular force is best viewed as a
distribution whose action on any smooth test function ψ(x) is

〈

Fi(x), ψ(x)
〉

=

∫

Ω

fi(x, t)δΓψ(x)dx =

∫ s1

s0

fi(X(s), t)ψ(X(s))|∇X(s)|ds

where X(s) is the location of the interface at time t with some parameterization s for
s0 ≤ s ≤ s1. We also use the notation x = (x, y). A short review of the distributions is
given in Chapter 3. Note that the evolution of the flow with time comes entirely from the
time-dependence of the force F. This is a reflection of the fact that there is no inertia in
the system.

The velocity field u is continuous but has a jump in the first derivatives which is due
to the singularity of the force terms. As it will be shown later the equation for pressure p
involves divergence of F and hence a dipole source. As a result, pressure will be discontinu-
ous along with its derivatives. For more details on the derivation of the jump conditions
see Chapters 4 and 5.

In practice we eliminate the singular source from the right hand side of (1.1) and solve
instead

∇p = µ∆u

∇ · u = 0
(1.2)

with the specified jump conditions. We first define and apply our method for one and
two-dimensional elliptic model problems that contain both singular source terms and dis-
continuous coefficients. Finally, we apply our method to an interface Stokes problem. As
an example of the interface Stokes problem we consider the model problem introduced by
Tu and Peskin [9], an elastic band immersed in a homogeneous fluid.

This model problem is a two-dimensional analog of an elastic balloon in a highly viscous
homogeneous fluid. In equilibrium, an ideal balloon would take a spherical shape, with
zero velocity everywhere, pressure jump across the elastic membrane and uniform pressure
both inside and outside. The magnitude of this jump depends on how far the membrane
is stretched from its resting configuration. In two space dimensions the analog is an elastic
band which contains an incompressible fluid and is stretched to a diameter greater than
its resting diameter. The equilibrium configuration is a circle with jump in pressure that
balances the elastic force exerted by the stretched membrane. This is described in more
detail in Chapter 5.
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1.2 The Present Work

In this thesis, a new finite element based numerical method for the two-dimensional elliptic
interface problems with the inner boundaries is presented. We show that the introduced
method can handle well both the jumps in the coefficients that in general occur across
the interface and the singular forces acting along the interface. The method has also been
successfully applied to the incompressible Stokes equations with moving inner boundary.

Our method is based on the Immersed Interface Method (IIM) that was first introduced
by LeVeque and Li in [31] as a second order accurate finite difference type method for solving
elliptic equation whose solution is not smooth across the interface, due to discontinuous
coefficients or singular source terms in the equation. The main idea of the original IIM was
to incorporate the known jumps in the solution or its derivatives into the finite difference
scheme, obtaining a scheme with the modified stencil whose solution is second order accurate
at all points on the uniform Cartesian mesh even for arbitrary interfaces. This approach
has been extended to parabolic and hyperbolic equations, and successfully applied to many
applications, see Chapter 2 for a brief review. Most important for us are Li’s papers [46]
and [50] where he presented a finite element immersed interface method for one and two-
dimensional elliptic problems involving discontinuities in the coefficients. As a consequence
of the discontinuity in the coefficients, the solution to those problems is a continuous function
that has a jump in the flux. To account for this discontinuity, Li proposed to construct
specific basis functions such that the interface jump conditions for the solution and its flux
are satisfied either exactly or approximately.

However, in the case of most general elliptic interface problem with both discontinuities
in the coefficients and singularities in the source terms, i.e. delta functionals and its deriv-
atives, the solution itself is discontinuous. Thus the original finite element IIM proposed
by Li cannot be applied. To improve the capabilities of the method, we use the fact that
the problems we are dealing with are linear and that we can always identify the source of
the discontinuity in the solution or its derivative. Namely, presence of a delta functional in
the right hand side causes the solution to have discontinuous derivatives, while a dipole is
responsible for the jump in the solution itself. Having this in mind, we apply the super-
position principle. That is, we break the original problem into a set of simpler problems,
with the source term to each of the problems being either an L2 function, a delta functional
or a dipole. As a result, the corresponding solution will satisfy one of three alternatives:
solution and its flux have homogeneous jumps, the solution itself is continuous while the flux
is subject to a non-homogeneous jump condition and finally, the solution is discontinuous
while the flux is continuous.

All information that is needed to evaluate the jump conditions is extracted from the
position of the interface together with the equations itself. Using these explicitly known
values of the jumps we can calculate the solutions to the simple problems and thus the
solution to the original problem, see Chapter 4 for more details. The discretization of
the method is based on a simple piecewise-linear polynomials on a uniformly triangulated
domain. Note that the mesh is not aligned with the interfaces. Thus there is almost no
cost for such grid generation, which is very significant for moving interface problems. This
simple modification allows us to extend Li’s approach to a much broader class of interface
problems. Numerical results are presented, showing that the method is capable of second
order convergence in L2 and L∞ norms.

The modified method has also been applied to the Stokes interface problem, modeling an
elastic band immersed in the homogeneous fluid. We rewrite Stokes equations as a sequence
of three Poisson problems, one for each variable. Namely, by applying the divergence
operator to the momentum equations, adding them together and using the incompressibility
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condition we get the Poisson equation for the pressure p. Once the pressure is known,
the momentum equations become independent Poisson problems for u and v. Thus the
techniques developed for the elliptic interface problems can be applied directly.

Since the flow is considered to be homogeneous, the jumps in the solution result only from
the singularity of the source function, which represent an elastic force along the interface.
This singular force leads to jumps in derivatives of u and v. The Poisson problem for pressure
involves derivatives of this source term, and hence a dipole. As a result, the pressure will be
discontinuous along with its derivatives. Similar to the model problems, the magnitude of
the jump conditions is derived solely from the equations and the location of the interface,
without a-priori knowledge of the solution.

The interface is described by a given set of discrete control points {Xi(s, t)}, together
with a parametric description connecting them. Time evolution of the interface is accom-
plished by moving these control points using an additional constraint that the interface must
move with the fluid. The velocity u is continuous across the interface and the following
differential equation is valid

∂

∂t
X(s, t) = u(X(s, t), t)

The velocities computed on a uniform Cartesian mesh by solving the interface Stokes prob-
lem (1.2) are interpolated to the marker positions, which are then moved with this velocity
over a time step ∆t. In practice one has to use an implicit or semi-implicit method in order
to take reasonable time steps.

Our approach differs from that of Li in several ways. The fundamental difference is
our treatment of the interface problem via the superposition principle. This improves the
applicability of the method greatly by allowing to treat both singular source terms and
discontinuous coefficients at the same time. There are other differences as well. Our de-
rivation of the jump conditions is based on comparing the variational formulation obtained
from the classical formulation of the problem with the one obtained from the distributional
formulation. To our knowledge, it is also first time that finite element IIM was applied to
interface Stokes problem.

1.3 Outline of the thesis

In Chapter 2, we review the existing methods for the interface problems. We also give some
historical background on the Immersed Boundary (IBM) and Immersed Interface methods
(IIM). Chapter 3 contains some basic notations from the distribution theory and definitions
of some spaces that are important for us. In Chapter 4 we introduce our new finite element
based immersed interface method and apply it to several one and two-dimensional model
problems. Numerical results are presented and some conclusion are drawn. The next chapter
contains the application of our method to the interface Stokes problem (Chapter 5). The
derivation of the jump conditions is covered in both Chapter 4 and Chapter 5. Finally, we
summarize current results and give an outlook for the future work.



Chapter 2

Existing numerical methods for the

interface problems

In this chapter we review some of the existing numerical methods for interface problems and
discuss in particular the immersed interface (IIM) method since it had inspired our work.

One of the main difficulties arising when dealing with interface problems is the fact that
the solution itself is usually non-smooth or discontinuous across the moving inner bound-
aries. Due to this fact many classical numerical methods designed for smooth solutions
perform poorly or do not work at all for interface problems. One has also to take care of
the topological changes in the moving free surfaces. To summarize, a numerical scheme
developed particularly for the interface problems should be able to handle the following:

• Discontinuity in the coefficients of the differential equation/system;

• Singularity of the source terms of differential equation/system (Dirac delta function
as an example);

• One or several internal moving boundaries, with a changing topology.

There are two different approaches to the design of a method for interface problems. The
first is to construct the methods on the body fitted grids. That is to solve the interface
problem on the mesh that is aligned with the internal boundaries using some appropriate
method (for example Galerkin finite element method with the standard linear basis func-
tions [21], [42]). However, it is difficult and time consuming to generate this kind of body
fitted grids. Such difficulties becomes even more severe for moving interface problems with
topological changes.

Much effort has been put into the development of the alternative approach, where a
fixed computational grid is used over the global spatial domain. This fixed grid typically
does not align with any internal interfaces. The interfaces are then represented by some
additional structure that is then continuously updated using some information from the
background mesh.

Those numerical methods that follow the second approach can be further classified
as interface tracking or an interface capturing methods. In interface tracking (examples
include the immersed boundary method, the immersed interface method, the boundary
integral method, the volume-of-fluid method and the front tracking method) the interfaces
are then represented as codimension 1 surfaces moving relative to the fixed grid. In interface
capturing methods, such as level-set and phase-field methods, the interface is implicitly
represented by a contour of a particular scalar function, defined over the computational
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domain. The evolution of the interface is governed by the level set PDE’s discretized on
fixed, uniform grids. Recently, a large number of hybrid methods that combine interface
tracking and interface capturing methods together have appeared as well.

2.1 Interface tracking methods

The boundary integral method

The boundary integral method (BIM) is highly accurate for modeling interface problems
with non-changing topologies. BIM was first introduced by Rosehead [26] to study vortex
sheet roll-up. In this approach, the flow equations are mapped from the immiscible fluid
domains to the sharp interfaces separating them thus reducing the dimension of the problem
(the computational mesh discretizes only the interfaces). The flow solution is than deduced
only from the information available on the interfaces.

This approach has been used for both inviscid and Stokes flows. A complete review of
Stokes computations is given by Pozrikidis [6], and for computations of inviscid flows, see
Hou [40]. For flows with both inertia and viscosity, surface integrals must be incorporated
into the formulation.

The main advantage of the boundary integral method is the reduction of the problem by
one dimension since the formulation involve quantities defined on the interface only. There
is also a potential for highly accurate solutions if the flow doesn’t have topological changes.
In addition, highly efficient adaptive surface mesh refinement algorithms have recently been
developed to improve the accuracy and the performance of the methods. On the other
hand, the main disadvantage of the boundary integral method is the difficulty in modeling
topological changes (such as merges or break-ups of the interfaces).

The volume-of-fluid method

The volume-of-fluid (VOF) method was first reported in Nichols and Hirt [5] and [10] (for
a recent review see Scardovelli and Zaleski [36]). In this approach the location of the
interface is determined by the volume fraction cij of fluid 1 in the computational cell Ωij ,
see Figure 2.1. The interface is contained in the cells where 0 < cij < 1, fluid 1 if cij = 1
and fluid 2 if cij = 0.

Generally, the VOF algorithm consists of two parts: a reconstruction step and propaga-
tion step. A typical reconstruction step is a piecewise linear interface construction method
(PLIC), where in every cell Ωij the true interface is approximated by a surface perpen-
dicular to the interface normal vector nij . The normal vector nij is determined from the
volume fraction gradient using data from neighboring cells. Once the interface has been re-
constructed, its motion by the flow field must be modeled by a suitable advection algorithm
(for example, the projection method originally developed by Chorin in [22] for single phase
flows). VOF methods are popular and have been used in commercial multiphase flow codes.
The principal advantage of VOF methods is their inherent volume conserving property.
Unfortunately, spurious bubbles or drops may be created. The computation of geometric
quantities such as curvature and reconstruction of the interfaces from the volume fractions
tends to be less accurate compared to other methods.

The immersed boundary method

The immersed boundary method (IBM) was introduced to study flow patterns around heart
valves [8] and has evolved into a generally useful method for interface problems. It has been
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Figure 2.1: Volume of fluid representation of interface

used for many applications, examples include modeling of swimming organisms, platelet
aggregation in blood clotting, cochlea dynamics, wood pulp fiber dynamics and many more.
See a recent paper of Peskin [7] for a thorough review on the immersed boundary method.

The key idea is to employ a mixture of Eulerian and Lagrangian variables. These
are related by interaction equations in which the Dirac delta function plays a prominent
role. Numerically, the Eulerian variables are defined on a fixed Cartesian mesh, and the
Lagrangian variables are defined on a curvilinear mesh, represented by a set of discrete
control points {Xn

k} for 1 ≤ k ≤ N and t = tn. These points move freely through the fixed
Cartesian mesh without being constrained to adapt to it in any way at all. The interaction
between two meshes comes from the singular force that is exerted by the interface. Namely,
the singular force of each control point F

n
k is spread to the nearby Cartesian grid points

near the interface by a discrete delta function so that it yields nonzero force term F
n
k at grid

points near the interface. A typical example of the discrete one-dimensional delta function
is

δh(x) =

{

(h− |x|)/h2, if |x| ≤ h

0, otherwise
(2.1)

or Peskin’s original discrete cosine delta function

δh(x) =

{

(1 + cos(πx/2h)/4h, if |x| ≤ 2h

0, otherwise
(2.2)

where h is a grid size parameter. The first one is not smooth but the solution obtained using
it gives second order accuracy for some one-dimensional problems [35]. The discrete cosine
delta function is smooth but the solution is only first order accurate. In higher dimensions,
the discrete delta function is often taken as a product of one dimensional discrete delta
functions. Then, the numerical approximation of the singular force is given in the form of
a sum over the interface elements

Fij(x) =
∑

k

fk(t)δh(xij − X
n
k ) (2.3)

where fk is the discrete force density at the point X
n
k and xij is an Eulerian mesh grid point.

After the singular force is approximated the fluid equations can be solved on the cartesian
mesh by a simple finite difference method. The same discrete delta function is used to
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interpolate the resulting velocity to the control points

U
n
k =

∑

ij

uij(x)δh(xij − X
n
k ) (2.4)

Finally, the control points are advected by solving

∂Xk

∂t
= Uk(Xk, t) (2.5)

by an appropriate method. To summarize, the immersed boundary method involves the
following steps

• Given the location of the interface X
n
k at time tn compute the force densities f

n
k at

the immersed points.

• Spread the forces f
n
k to values Fij(x) on the background grid using (2.3).

• Solve the fluid equations on the regular grid with appropriate boundary conditions to
obtain u

n+1
ij .

• Interpolate the resulting velocities u
n+1
ij to the immersed boundary using (2.4) to

obtain U
n+1
k .

• Move the boundary points X
n
k to X

n+1
k using the velocities U

n
k and/or U

n
k and some

discrete approximation to the ODE (2.5).

• Repeat all the steps for next timestep.

The immersed boundary method is fast and simple to implement. Additionally, it is
a flexible method that can deal with complex geometries. However, as a trade off the
original method is at most first-order accurate (except for a few special cases), due to
the smearing effect of the discrete delta function [35] (though some recent work [3] uses
adaptive gridding to overcome this limitations). Immersed boundary computations have
also been demonstrated to suffer from a high degree of stiffness. In [9] Tu and Peskin
recognized the necessity of handling the singular force calculation implicitly and several
implicit and semi-implicit schemes were proposed. Unfortunately, in practice, scheme based
on the fully implicit equations are extremely expensive since it requires the solution of the
nonlinear coupled interface-fluid equations at each time step. Due to their simplicity, the
semi-explicit and "approximate implicit" schemes perform much better than the implicit
ones, but the time-step restrictions are still severe.

The front-tracking method

This method was introduced by Richtmyer and Morton [30] and further developed by Glimm
[23]. For most recent advances see Unverdi and Tryggvason [17] and [38]. The front-tracking
method has its roots in the immersed boundary method of Peskin and McQueen [8] and
marker-and-cell (MAC) method [16]. The basic idea is very similar to Peskin’s approach,
that is to use of two grids, see Figure 2.2. One standard, Eulerian finite difference mesh is
used to solve the fluid equations. The other is a set of Lagrangian markers, the disretized
interface mesh, that is used to explicitly track the interface and compute the singular force
which is then transferred to the finite difference mesh via discrete delta-functions. Similar
to the immersed boundary method, the interface is represented by a given ordered list of
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Figure 2.2: Example of the stationary and moving meshes for the front-tracking method.
Here the stationary mesh is showed with the dashed lines. The stars mark the positions of
the markers and the solid line represents the piecewise linear reconstruction of the interface.

marker particles {Xn
k}. The first step in this algorithm is to reconstruct the interface by a

list of connected polynomials using the marker list. This gives a parametric representation of
the interface. Since both lists are ordered the topology of the interface is uniquely identified.
Next, one computes the singular forces defined only along the interfaces. This is done using
Peskin’s immersed boundary technique. That is, one uses discrete function (2.1) or (2.2)
to distribute the singular forces over the grid points nearest to the interface via (2.3). The
same discrete delta functions are used to interpolate the velocity field from the stationary
grid to the interface using (2.4).

The major novelty in the front-tracking method is the construction of the indicator
function I(x) which enables computations with discontinuous material properties. This is
done by solving the Poisson equation

∆I = ∇ · G

where G(x) is a grid-gradient field generated by spreading the jump in the indicator function
by the discrete delta function to the stationary grid. The indicator function is constant
within each material region. The primary advantage of this approach is that closed interfaces
can interact in a natural way since the gradients simply add or cancel as the grid distribution
is constructed from the information carried by the tracked front. Then the fluid properties
are easily determined via ρ(x) = ρ1 + (ρ2 − ρ1)I(x), etc.

The next step is to solve the resulting fluid equations on the Eulerian mesh and inter-
polate the velocity field on the marker positions. Finally, the advection of the particles is
performed by solving equation (2.5).

Front-tracking methods give the precise location and geometry of the interfaces. These
algorithms are considered to be very accurate since they can use a large number of grid
points on the interface. In addition, front-tracking permits more than one interface to be
present in one computational cell without coalescence, which can be important in some
applications. Another crucial property of the front tracking method is the ability to handle
topological changes. During the computations the interface usually moves and deforms,
thus markers tend to deplete in some regions and cluster in other regions. Thus, one has to
add or delete some of these markers to maintain regularity. Namely, the distance between
the adjacent points, d, is maintained on the order of the stationary grid spacing, h (for
example 0.4 < d/h < 0.6). To accommodate topology changes, interfaces are allowed to
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reconnect when either parts of the same interface or parts of two separate interfaces come
close together. The instantaneous change in topology is, of course, only an approximation
of what happens in reality. Since it is not well known at what distance the interfaces will
merge, we artificially reconnect the interface when two points come closer than some small
distance, l. This distance is chosen rather arbitrarily for lack of a better physical model.
But here the advantage of front-tracking is evident since we can control the distance at
which the interfaces merge and study the effect of varying l, unlike in some other methods
where there is no control over topology changes.

The major disadvantages of front-tracking methods is the difficulty in handling topolo-
gical changes for three-dimensional simulations and the relative complexity in implementa-
tion.

2.2 Interface capturing methods

The level set method

The level set method was first introduced by Osher and Sethian [37] and is a popular
computational technique for tracking moving interfaces. The main idea is to rely on a
implicit representation of the interface as the zero set of an auxiliary function (level-set
function). The first application of this method to incompressible multiphase flows was done
by Sussman [29] and Chang [41].

The level set function φ(x, t) is defined as follows

φ(x, t) =











> 0, if x ∈ fluid 1

= 0, if x ∈ Γ (the interface between fluids)

< 0, if x ∈ fluid 2

and the evolution of φ is given by the level set PDE

φt + u · ∇φ = 0,

meaning that the interface moves with the fluid (see Figure 2.3 for an example of the level set
function). To keep the interface geometry well resolved, the level-set function is required to
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be a distance function near the interface. However, under the evolution φ will not necessary
remain as such. Typically, a reinitilization step (solving a Hamilton-Jacobi type equation)
is performed to keep φ as a distance function near the interface while keeping the original
zero level set unchanged. Namely, given φ at time t, the contours are redistributed by
finding the steady state solution of the equation

∂d

∂τ
= Sǫ(φ)(1 − |∇d|), (.x, 0) = φ(x)

where Sǫ is the smoothed sign function defined as

Sǫ(φ) =
φ

√

φ2 + ǫ2
,

where ǫ is usually equal to one or two grids lengths. After solving the above equations to
steady state φ(x, t)is then replaced by d(x, τsteady). The density and viscosity are defined
as

ρ(φ) = ρ2 + (ρ1 − ρ2)Hǫ(φ) and µ(φ) = µ2 + (µ1 − µ2)Hǫ(φ)

where Hǫ(φ) is the smoothed Heaviside function given by

Hǫ(φ) =











0 if φ < −ǫ
0.5(1 + φ/ǫ+ sin(πφ/ǫ)) if |φ| ≤ ǫ

1 if φ > −ǫ

The mollified delta function is δǫ(φ) = dHǫ/dφ. The surface tension force is given as

Fsing = −τ∇ ·
( ∇φ
|∇φ|

)

δǫ(φ)
∇φ
|∇φ|

Finally, the fluid equations are solved with some appropriate method.
Advantages of the level-set algorithm include the simplicity of implementation, the in-

herited ability to capture topological changes of interfaces and ease with which the intrinsic
properties of the interface (such as curvature, normal, etc.) can be obtained from the level-
set function. The main disadvantage of the level set method is that mass is not conserved.

The phase-field method

Phase field, or diffuse-interface, models are another popular technique that belongs to the
family of interface capturing methods. For a recent review see [15]. The main idea is to
replace sharp fluid interfaces by thin but nonzero thickness transition regions where the
interfacial forces are smoothly distributed. The idea is to introduce a conserved order
parameter, for example mass concentration, that varies continuously over thin interfacial
layers and is mostly uniform in the bulk phases.

The phase field is governed by the following advective Cahn-Hilliard equation

∂c

∂t
+ u · ∇c = ∇ ·

(

M(c)∇µ
)

,

µ = F ′(c) − ǫ2∆c
(2.6)

where M(c) = c(1− c) is the mobility, F (c) = 0.25c2(1− c)2 is a Helmholtz free energy that
describe the coexistence of immiscible phases, and ǫ is a measure of interface thickness. It
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can be shown that in the sharp interface limit ǫ⇒ 0, the classical Navier-Stokes equations
and jump conditions are recovered [25]. The singular surface tension force is Fsing =
−6

√
2τǫ∇ · (∇c⊗∇c), where τ is the surface tension coefficient [25].

The main advantages of the phase-field method are: topological changes are automatic-
ally described and the composition field c has a physical meaning both in the bulk phases
and near the interface. It is also easy to incorporate complex physics into the framework,
thus the phase-field methods are straightforwardly extended to multicomponent systems,
where miscible, immiscible and partially miscible phases can be modeled. Unfortunately,
for some case the numerical solution can be computationally expensive to obtain.

2.3 Hybrid methods

Recently, a number of hybrid methods that combine good features of each algorithm, have
been developed. These include coupled particle level-set methods, level-set VOF algorithms,
marker and VOF methods.

In the particle level-set method [13], Lagrangian disconnected marker particles are ran-
domly positioned near the interface and are passively advected by the flow in order to
rebuild the level set function in underresolved zones, such as high curvature regions. In
these regions, the standard non-adaptive level-set method regularizes excessively the inter-
face structure and mass is lost. The use of the Lagrangian markers significantly decreases
these difficulties.

VOF and level-set methods have been combined in [28] and [27]. The level-set function
is used to describe the geometry of the interface while VOF is used to maintain volume
conservation properties. Both functions are made compatible after every time step. The
coupling between the volume fraction function cij and level-set function φ occurs through
the normal of the reconstructed interface and through the fact that the level-set function is
reset to the exact signed normal distance to the reconstructed interface.

The hybrid method that uses both VOF and marker particles is developed in [1].
As usual, the volume fraction function is used to assure mass conservation while marker
particles are used to reconstruct and move the interface. As a result, one achieves a smooth
motion of the interface, typical for all marker methods, together with volume conservation,
which is standard for VOF methods. Thus, this approach increases both the accuracy of
interface tracking, when compared to standard VOF methods, and the conservation of mass,
with respect to original marker method.

2.4 Immersed interface method and its extensions

The immersed interface method (IIM) was first introduced by LeVeque and Li in [31] as a
finite difference type method for elliptic equations

∇ · (β(x, y)∇u) + k(x, y)u = f (x, y) ∈ Ω

with interface Γ being an arbitrary piecewise smooth curve such that Ω = Ω+ ∪ Ω− ∪ Γ,
discontinuous coefficients β(x, y), k(x, y) across the interface

β(x, y) =

{

β+(x, y) ∈ Ω+ (outer part)

β−(x, y) ∈ Ω− (inner part)
k(x, y) =

{

k+(x, y) ∈ Ω+

k−(x, y) ∈ Ω−

and a singular force f .
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Similar to IBM and front-tracking methods, immersed interface method employs two
different meshes: a fixed mesh for the fluid equations and a moving one for the interface
representation. However, it seemed unlikely [35] that the discrete delta function approach
can achieve second order or higher accuracy in two or three dimensional problems (except
for a few special situations when the grid is aligned with the interface). Thus, the key idea
of the IIM is to avoid the discretisation of the delta function by introducing the explicitly
calculated jump conditions directly into the finite difference stencil. To do that, we modify
the finite difference stencil, which uses the grid points on either side of the interface. Namely,
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Figure 2.4: The geometry near the modified stencil. The coefficients γ1 through γ6 will be
determined in the labeled points.

we rewrite the finite difference equation as

∑

k

γkui+ik,j+jk + kijuij = fij + Cij

for every grid point (xi, yj). The sum over k involves a finite numbers of points neighboring
(xi, yj) (at most six in the derived formula). So each ik, jk will take a value in the set
{−1, 0, 1}. If the interface does not lie between any points in the standard 5-point stencil
centered in (xi, yj) no modification is needed for γk and Cij = 0. For the rest of the grid
points the modified coefficients γk are determined by requiring truncation error at these
points to be of order O(h). It turns out to be sufficient to require O(h) truncation error
since the interface forms a lower dimensional set.

To obtain γk we expand the solution uxi,yj±1
,uxi±1,yj

and uxi,yj
in Taylor series at some

point (x∗i , y
∗
j ) on the interface (which is usually the closest point to (xi, yj)), being careful

to use the limiting values of derivatives of u from the correct side of the interface. As an
example, in the configuration shown on Figure 2.4, we would expand

u(xi, yj) = u− + u−x (xi − x∗) + u−y (yj − y∗) +
1

2
u−xx(xi − x∗)2

+
1

2
u−yy(yj − y∗)2 + u−xy(xi − x∗)(yj − y∗) +O(h3)
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and

u(xi+1, yj) = u+ + u+
x (xi+1 − x∗) + u+

y (yj − y∗) +
1

2
u+
xx(xi+1 − x∗)2

+
1

2
u+
yy(yj − y∗)2 + u+

xy(xi+1 − x∗)(yj − y∗) +O(h3)

After inserting this expansions at each point in the difference equation we can express the
local truncation error as a linear combination of the values u±, u±x , u±y , u±xx, u

±
yy and u±xy.

We now wish to eliminate all values on one side, say the values on +, in terms of the values
on the other side, say − side. To do this, we must use the jump conditions across the
interface

[u] = u+ − u− = G(x, y) and
[

β
∂u

∂n

]

= β+ ∂u
+

∂n
− β− ∂u

−

∂n
= H(x, y)

where ∂/∂n represents a differentiation in normal direction. Differentiating these jump con-
ditions and manipulating the results allows us to perform the desired elimination. In order
to do this, it turns out to be very convenient to perform a local coordinate transformation
into normal and tangential directions to the interface.

Once the local truncation error is expressed as a linear combination of the values u±,
u±x , u±y , u±xx, u

±
yy and u±xy, we must require that the coefficient of each of these terms

vanish in order to achieve an O(h) truncation error. This gives a system of six equations to
determine the unknown coefficients γk. Thus, we require six points in the stencil: 5-point
stencil together with one additional point. To summarize, in order to determine a modified
stencil we need to do the following

• Select a point (x∗i , y
∗
j ) ∈ Γ near (xi, yj).

• Apply a local coordinate transformation in directions normal and tangential to Γ at
(x∗i , y

∗
j ).

• Derive the jump conditions relating u+ and u− (and their derivatives) at (x∗i , y
∗
j ) in

the local coordinates.

• Choose an additional point to form a 6-point stencil.

• Set up and solve a linear system of six equations for the coefficients γk. The value of
Cij is also obtained.

Finally, the resulting linear system is solved then with some appropriate method. The
method has been successfully used in several applications and extended in different dir-
ections, notably to hyperbolic and parabolic problems. Li applied the IIM idea to heat
equations in 2D with fixed interfaces, followed by his dissertation [43] where IIM was ap-
plied to some 3D partial differential equations. LeVeque and Li used IIM for Stokes interface
problem in 2D [31]. In [44] and [4] the method was extended to treat nonlinear problems.

However, the original method suffered from lack of fast solvers and strong dependence of
the error on the relative position of interface and grid even for moderate contrast in the coef-
ficients. In the original paper [32], the discontinuities in the coefficient were always "mild"
(the quotient between β’s on different sides of the interface was always 0.1 ≤ β+/β− ≤ 10).

In [45], where Li introduced a Fast Iterative IIM (FIIIM). Li used the observation that
for piecewise constant coefficients, the equation can be written as a Poisson equation by
dividing through the coefficient, if in addition one observes the jump condition across the
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interface. This leads naturally to the idea of splitting the finite differences near the interface
into standard differences and corrections to the standard differences, and brings the FIIIM
closer to Peskin’s immersed boundary method. The jumps in the function and its derivatives
( not jumps in the flux [βun]) turn out to be crucial quantities. Given the jumps, the FIIIM
needed only corrections to the right hand side. Li chose to do that in the spirit of the
original IIM, by selecting a point on the interface and developing Taylor expansions about
it on both sides of the interface. Another question was how to find the jumps. To do that,
Li used the equations for the jumps based on local properties of the solution derived in [31].
The jumps were computed only at the fixed set of control points and then interpolated.

It was shown in [19] and [2] that stability of the original algorithm depends on the
choice of one or more extra grid points in addition to the standard five-point stencil. In
other words, it is not always guaranteed that the original IIM will converge and satisfy
the maximum principle. To eliminate this problem, Li and Ito proposed a modification to
the original approach [48]. The new method was to guarantee that the discrete maximum
principle is satisfied.

The original spline representation of the interface was replaced with a level set method
by Hou, Li, Osher and Zhao which allowed to compute moving interface problems with
topological changes [39]. This formulation was used to study electron migration in [49] and
applied to Stefan problems in [47]. IIM was combined with a multigrid approach by Adams
in [24]. LeVeque and Zhang used IIM for hyperbolic systems of partial differential equations
with discontinuous coefficients arising from acoustic or elastic problems in heterogeneous
media [33],[11]. Calhoun [12] and LeVeque and Calhoun [34] extended the IIM to a stream-
function vorticity formulation of incompressible flow in 2D.

The most recent advances include a finite element formulation of IIM for 1D and 2D
elliptic interface problems with discontinuous coefficients [46], [50].





Chapter 3

Distribution theory preliminaries

It is a common situation for the interface problem to contain singular and discontinuous
quantities. A good example of that is a two-phase flow where two different fluids are
separated by an elastic membrane. In this case the singularity comes from the forcing term,
defined only on the surface of the membrane, while discontinuity is due to inhomogeneity of
the fluid. A natural way to model such quantities is the use of distributions or generalized
functions.

In this chapter we introduce some basic notation and definitions from the theory of
distributions. We begin by giving the physical background of the generalized functions,
starting with delta functional, which is considered to be the origin of distributional theory.
Next, we lay out basic notation of generalized functions and define operations of algebra
and calculus on them. We finalize this chapter with the definition of the jump conditions.
For detailed discussion of distributions see [20] and [14].

3.1 Background

The theory of generalized functions was invented in order to give a solid theoretical found-
ation to the delta functional, which was first introduced by Dirac (1930) as a mathematical
tool in quantum mechanics. Dirac’s idea of the delta functional can be easily understood
in the following way.

Consider a rod of nonuniform thickness and introduce a mass-density function ρ(x)
which describes mass distribution along the rod. Physically, this function is defined as mass
per unit length of the rod at some point x. The total mass of some section of the rod

(a < x < b) is defined as
∫ b

a ρ(x)dx. But if the mass is concentrated only at a finite number
of points instead of being continuously distributed, then the above description is no longer
valid. Consider a wire of negligible mass, with a small but heavy load attached to some
point x = α. Suppose that the load has unit mass and is small enough to be mathematically
represented as a point. Then the total mass of the segment of the rod is zero if it doesn’t
include point α and one otherwise. Unfortunately, there is no continuous function ρ(x) that
can represent such mass distribution. If there were, it would be ρ(x) = 0 for all x 6= α. But
if a function vanishes except for a few discrete points, it is easy to show that the integral
over the whole rod is zero. Thus the integral including α will not give a correct result,
1. Therefore, Dirac introduced a mathematical tool δα, the delta functional, having the
properties

δα(x) = 0 for x 6= α and

∫ b

a

δα(x)dx = 1 if a < α < b

17
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For some short time, delta functional lacked theoretical foundation and was considered as a
technical trick for obtaining results for discrete point particles from the continuous theory.
The situation was similar to that of complex numbers in 16th century. It proved useful to
pretend that −1 has a square root, since one could then use an algorithm involving complex
numbers for obtaining real roots of cubic equations. Any result obtained this way could be
directly verified substituting it in the equation and showing that it really was a root. It was
only much later that complex numbers were given a solid mathematical foundation, and
then with the development of the theory of functions of a complex variable their application
was fully discovered.

In the same way, the solid theoretic foundation that was developed by Sobolev (1936)
and Schwartz (mid 1950’s) went far beyond then justification of the delta functional. The
theory of generalized function or distributions can be used to replace ordinary analysis, and
is in many ways simpler. For example, any generalized function can be differentiated and
integration of series can be perform term by term without worrying about convergence.
Naturally, there are limitations as well. For example, multiplication of the delta functional
by itself or any discontinuous function is meaningless, [14].

3.2 Definition of the spaces

For the sake of simplicity we restrict ourselves to at most two dimensional problems. The
generalization to higher dimensions is obvious. Then, let Ω ⊂ R

d (d = 1, 2) be a bounded
domain and assume that the boundary ∂Ω of Ω is sufficiently smooth such that the diver-
gence theorem applies. Moreover, let u : Ω → R and x ∈ Ω.

Definition 3.2.1. The following standard function spaces will be employed in this thesis:

Ck(Ω) = {u : Ω → R| u is k-times continuously differentiable}
Lp(Ω) = {u : Ω → R| u is Lebesque measurable, ||u||Lp(Ω) <∞}
L∞(Ω) = {u : Ω → R| u is Lebesque measurable, ||u||L∞(Ω) <∞}
Lploc(Ω) = {u : Ω → R|u|K ∈ Lp(K) for each closed subset K ⊂ Ω}

where k is a non-negative integer and

||u||L∞(Ω) = ess sup
Ω

|u| and ||u||Lp(Ω) =
(

∫

Ω

|u|pdx
)1/p

(1 ≤ p <∞)

Definition 3.2.2. The support of a function φ : Ω → R is denoted by

supp(φ) := {x ∈ Rd|φ(x) 6= 0}

where the overline denotes the closure.

Remark 1. The functions with the compact support that belong to Ck(Ω) are denoted by
Ckc (Ω).

In order to introduce the Sobolev spaces we will need the following definitions

Definition 3.2.3. A vector of the form α = (α1, .., αd), where each component αi is a
nonnegative integer, is called a multi-index of order

|α| = α1 + ...+ αd
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Definition 3.2.4. Given a multi-index α, define

Dαu(x) =
∂|α|u(x)

∂xα1

1 · · · ∂xαd

d

= ∂α1

x1
· · · ∂αd

xd
u(x)

Then

Definition 3.2.5. We define the Sobolev space as follows

W k,p(Ω) = {u : Ω → R| u ∈ Lploc(Ω) and ∀ α : |α| ≤ k,Dαu ∈ Lp(Ω)}

Remark 2. In this thesis we are interested in Sobolev spaces with p = 2 which are denoted
by

Hk(Ω) = W k,2(Ω) k = 0, 1, ..

Note, that H0(Ω) = L2(Ω).

Definition 3.2.6. If u ∈ Hk(Ω), we define its norm to be

||u||Hk(Ω) =
(

∑

|α|≤k

∫

Ω

|Dαu|2dx
)1/2

Definition 3.2.7. We denote by Hk
0 (Ω) the closure of C∞

c (Ω) in Hk(Ω)

3.3 Basic notation and definitions

There are several approaches how to describe a generalized function. We will follow the
Schwartz approach, who called generalized functions - distributions. The idea is to define
Dirac’s delta functional as something which makes sense only under the integral sign, pos-
sibly multiplied by some other function φ. Namely, we will define distribution as a rule,
which, given any function φ, provides a number. This number may be thought of as a
weighted average, with weight function φ, of a corresponding mass-distribution. However,
one has to be careful about which function are allowed to be considered as a weight function.

Definition 3.3.1. A function φ : Ω → R is said to be smooth if φ ∈ C∞(Ω).

Definition 3.3.2. A smooth function φ : Ω → R with supp(φ) ⊂ Ω is called a test function.
The set of all test functions is denoted by D(Ω).

Definition 3.3.3. A linear functional on D(Ω) is a mapping F : D(Ω) → R such that
F (aφ+ bψ) = aF (φ) + bF (ψ) for all a, b ∈ R and φ, ψ ∈ D(Ω).

For a linear functional F on D(Ω) it is convenient to use the following notation

〈

F, φ
〉

:= F (φ) ∀φ ∈ D(Ω)

Then we define convergence in the space D(Ω) as follows

Definition 3.3.4. Let {φn} be a sequence of test function in D(Ω) and ψ some test function.
We say that {φn} is a convergent sequence and φn → ψ in D(Ω) if

(i). there is a closed subset K ⊂ Ω containing supp(φn) for all n and supp(ψ),

(ii). for any k, φkn(x) → ψk(x) as n → ∞ uniformly for x ∈ K. Here φk(x) denotes the
k-th derivative of φ(x).
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Then a distribution is defined as follows:

Definition 3.3.5. A functional F on D(Ω) is continuous if it maps every convergent se-
quence in D(Ω) into a convergent sequence in R, that is, if

〈

F, ψn
〉

→
〈

F, ψ
〉

whenever
φn → ψ in D(Ω). A continuous linear functional on D(Ω) is called a distribution, or
generalized function. The set of all distributions on D(Ω) is denoted by D′(Ω).

In order to establish the connection between distributions and ordinary functions we
need the following definition

Definition 3.3.6. To every function f ∈ L1
loc(Ω) there corresponds a distribution F defined

by
〈

F, φ
〉

:=

∫

Ω

f(x)φ(x)dx (3.1)

Remark 3. (i). For f ∈ L1
loc(Ω) it is common to identify f and the distribution F ∈

D′(Ω) given in (3.1). Therefore, L1
loc(Ω) ⊂ D′(Ω).

(ii). Let F be a distribution. If F ∈ L1
loc(Ω), then F is called a regular distribution.

Otherwise, F is called a singular distribution.

(iii). If F ∈ L2(Ω) ⊂ L1
loc(Ω)

〈

F, φ
〉

=

∫

Ω

F (x)φ(x)dx = (F, φ)

where (·, ·) denote the usual scalar product in L2(Ω).

Thus the class of distributions contains objects that correspond to ordinary functions
as well as singular distributions which do not. For later use, the following property is
convenient

Definition 3.3.7. For F ∈ D′(Ω) and h ∈ D(Ω), the product hF ∈ D′(Ω) is defined by

〈

hF, φ
〉

=
〈

F, hφ
〉

∀φ ∈ D(Ω)

We now proceed to the differential calculus of distributions. Partial derivatives with
respect to the space variables will be denoted by ∂i = ∂

∂xi
. If d = 1, let ∂ = ∂1.

Definition 3.3.8. Distributions can be differentiated as follows: for f ∈ D′(Ω), ∂if ∈
D′(Ω) is the distribution satisfying

〈

∂if, φ
〉

= −
〈

f, ∂iφ
〉

for all φ ∈ D(Ω)

Consequently, the derivative of the product of a distribution F and any smooth function
h is given by

〈

∂i(hF ), φ
〉

= −
〈

hF, ∂iφ
〉

We will use the following distributions

Definition 3.3.9. Let d = 1 and α ∈ Ω. The delta function δα is the distribution that
satisfies

〈

δα, φ
〉

:= φ(α)

for all φ ∈ D(Ω).
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Remark 4. In view of (3.1) it is common to write

〈

δα, φ
〉

=

∫

Ω

δα(x)φ(x)dx

Definition 3.3.10. Let d = 1 and α ∈ Ω. The dipole function δ′α is the distributional
derivative of the delta function δ′α = ∂δα.

Remark 5. (i) If d = 1, δα is a continuous linear functional on D(Ω) w.r.t. the Sobolev
norm ||.||1. Therefore, it can be continuously and uniquely extended onto all of H1

0 (Ω).
For the extension we will continue to use the same notation δα.

(ii) Similarly, for d = 1 the dipole function can be continuously extended onto H2
0 (Ω).

(iii) By definition of the functional derivative, it holds

〈

∂δα, φ
〉

= −
〈

δα, ∂φ
〉

= −∂φ(α)

(iv) It is sometimes common to denote the delta function δα by

〈

δ(x− α), φ
〉

=

∫

Ω

δ(x − α)φ(x)dx = φ(α)

Similarly, the dipole function yields

〈

δ′(x− α), φ
〉

=

∫

Ω

δ′(x− α)φ(x)dx = −φ′(α)

For the two-dimensional case, we need a description of the surface. Our guiding picture
is that of a bubble in a surrounding medium. The surface of the bubble shall be described
by a smooth closed double-point free curve Γ ⊂ Ω : Let there exist a sufficiently smooth one-
to-one mapping X : (s0, s1) → Γ such that X(s0) = X(s1) and X(s) 6= X(t) if s, t ∈ (s0, s1)
and s 6= t.

Definition 3.3.11. Let d = 2 and Γ be as defined above. The functional δΓ ∈ D′(Ω) is
defined by

〈

δΓ, φ
〉

=

∫ s1

s0

φ(X(s))|∇X(s)|ds

for all φ ∈ D(Ω).

Remark 6. (i) The definition of δΓ is independent of its representation.

(ii) By the trace theorem, δΓ can be extended to a continuous linear functional on H1
0 (Ω).

(iii) Another common notation for the functional δΓ is

〈

δΓ, φ
〉

=

∫

Ω

φ(x)δΓ(x)dx

(iv) According to the Def. 3.3.8

〈

∂iδΓ, φ
〉

= −
〈

δΓ, ∂iφ
〉

=

∫ s1

s0

∂iφ(X(s))|∇X(s)|ds
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(v) Let F = (f1, f2). Then the divergence operator applied to the distribution FδΓ is given
by

〈

∇ · (FδΓ), φ
〉

=

2
∑

i=1

〈

∂i(fiδΓ), φ
〉

= −
2

∑

i=1

〈

fiδΓ, ∂iφ
〉

= −
2

∑

i=1

∫ s1

s0

fi(X(s))∂iφ(X(s))|∇X(s)|ds

where the second equality is obtained by applying Def. 3.3.8.

(vi) For the sake of simplicity, in the rest of this thesis, we will use the following notation

∫

Γ

f(X(s))ds :=

∫ s1

s0

f(X(s))|∇X(s)|ds

When later on deriving classical expressions for partial differential equations containing
distributions we must take care of the discontinuities arising in the solutions across the
interface Γ. We will use the following notations

Definition 3.3.12. Let d = 1 , α ∈ Ω and u : Ω → R. The jump of u at α is denoted by

[u]|α = lim
x→α+

u(x) − lim
x→α−

u(x)

whenever the expression on the right-hand side is well defined. The superscripts − and +
indicates that we approach the interface point α from the left (or right) side, correspondingly.

Definition 3.3.13. Let d = 2 and the assumptions of Def. 3.3.11 be fulfilled. The interface
Γ splits the domain Ω into two parts. The part encircled by the interface Γ is denoted by
Ω− and the outer part is denoted by Ω+. Let u : Ω → R. If the traces u− and u+ of u|Ω−

and u|Ω+
, respectively, on Γ exist, then denote

[u]|Γ = u+ − u−

Definition 3.3.14. Let d = 2 and the assumptions of Def.(3.3.11) be fulfilled and β some
real-valued function. Moreover, let the traces ∇u+ and ∇u− of ∇u|Ω+

and ∇u|Ω−
, together

with the traces β+ and β− of β|Ω+
and β|Ω−

, respectively, exist on Γ, then denote

[

β
∂u

∂n

]

|Γ = β+ ∂u
+

∂n
− β− ∂u

−

∂n

where n is the outward normal vector on Γ.



Chapter 4

Finite Element IIM for the elliptic

interface problems

In this chapter we describe in detail our finite element formulation of the immersed interface
method for the elliptic interface problems. We start with the model problem formulation
(both one and two dimensional) and explain the relevance of these problems in the context
of solving the interface Stokes problem. Next, we present the weak formulation and discuss
the construction of the specific basic functions that accounts for the presence of the jumps
in the solution. Finally, the numerical experiments are presented and the conclusions are
drawn.

4.1 Model problems formulation

Here, we formulate the model problems which we will use to describe our finite element
immersed interface method. As it was stated in the Chapter 1, the motivation for our
approach comes from the interface Stokes problem in two dimensions (the generalization to
3D is straightforward but tedious). The solution to that problem consists of the velocity
field (u1, u2) and the pressure p. Generally, the velocity components are continuous, but
not smooth. The pressure is discontinuous itself together with its derivatives. To solve the
interface Stokes problem, we intend to reduce the system of equations to three separate
Poisson problems. That is one Poisson problem for the pressure and two for the velocity
components, see Chapter 5 for more details.

Naturally, we first approach similar problems but in one space dimension where the in-
terface is represented by a single point α. That is, we construct two elliptic model problems:
the first one with a continuous but non-smooth solution and the second model problem with
the solution that is discontinuous together with its derivatives. For the sake of definiteness,
we assume that the computational domain Ω is a simple domain, such as an interval in one
dimensional case or a square in two space dimensions. The interface is typically not aligned
with the grid but rather intersects the gridlines.

For the first model problem the non smoothness of the solution arises from the presence
of the delta functional on the right hand side and the discontinuity of the coefficient β.

23
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Model problem 1

Consider the following problem

(βux)x + ku = fc + νδα on Ω

u = 0 on ∂Ω
(4.1)

where β is a piecewise continuous function, fc ∈ L2(Ω), k ∈ L∞(Ω) and ν ∈ R. Here δα is
a delta functional with the support at α.

Since the second model problem is intended to have a discontinuous solution, we include
a dipole functional in the source terms. Thus the problem reads

Model problem 2

Let α ∈ Ω, fc ∈ L2(Ω) and ν, w ∈ R. Consider

uxx = fc + νδα + wδ′α on Ω

u = 0 on ∂Ω
(4.2)

where δα and δ′α are the delta and the dipole functionals, respectively.
Next, we define an analog of Model problem 1 in two space dimensions. The main

difference is that the delta functional has now support along a curve, instead of one single
point.

Model problem 3

Let fc ∈ L2(Ω) and Γ be defined as in Def. 3.3.11 and β ∈ L∞(Ω)

∇ · (β∇u) = fc + fδΓ on Ω

u = 0 on ∂Ω
(4.3)

where f ∈ C(Γ).
Finally, Model problem 4 is defined as follows

Model problem 4

Let fc ∈ L2(Ω) and Γ be defined as before. Then

∆u = fc + ∇ ·F on Ω

u = 0 on ∂Ω
(4.4)

where F = (F1, F2) = (f1δΓ, f2δΓ) with f1, f2 ∈ C(Γ). Later in this Chapter we show
that the discontinuities in the solution of eq. (4.4) and its derivatives arise from the presence
of the ∇ ·F term.

Remark 7. As it has been shown in Chapter 3, it is reasonable to consider Dirichlet
boundary conditions for model problems 2 and 4.

4.2 Variational formulation of the model problems

In all the cases above, the equations are to be understood in the distributional sense.
Thus we will proceed as follows. We first formulate the variational formulations using
the properties of the distributions, than, using the extension operators we reformulate the
weak formulations in terms of the Sobolev spaces. Finally, we state the equivalent classical
formulations of the above model problems.



4.2. VARIATIONAL FORMULATION OF THE MODEL PROBLEMS 25

Model problem 1

Rewrite eq. (4.1) using the test functions ψ ∈ D(Ω). Then, the problem reads: Find
u ∈ D′(Ω)

〈

∂(β∂u) + ku, ψ
〉

=
〈

fc + νδα, ψ
〉

∀ψ ∈ D(Ω)

Using the linearity of distributions and Def. 3.3.8 we get

−
〈

β∂u, ∂ψ
〉

+
〈

ku, ψ
〉

=
〈

fc, ψ
〉

+
〈

νδα, ψ
〉

∀ψ ∈ D(Ω)

Recall the definition of the delta functional and apply Remark 5 (i), we arrive at the
following: Find u ∈ H1

0 (Ω)
∫

Ω

(−βuxψx + kuψ)dx =

∫

Ω

fcψdx+ νψ(α) ∀ψ ∈ H1
0 (Ω) (4.5)

Let

a(u, ψ) =

∫

Ω

(−βuxψx + kuψ)dx

Lcont(ψ) =

∫

Ω

fcψdx

Ldisc1(ψ) = νψ(α)

Then, the weak form reads: Find u ∈ V0(Ω)

a(u, ψ) = Lcont(ψ) + Ldisc1(ψ) ∀ψ ∈ V0(Ω)

Split the solution u = uH +uN (admissible due to the linearity of the bilinear form a(u, ψ))
such that

a(uH , ψ) = Lcont(ψ)

a(uN , ψ) = Ldisc1(ψ)
(4.6)

and approximate the discontinuous part of the solution uN by an explicitly calculated
function. Thus, we end up with: Find uH ∈ V0(Ω)

a(uH , ψ) = Lcont(ψ) + Ldisc1(ψ) − a(uN , ψ) ∀ψ ∈ V0(Ω) (4.7)

For proof of existence and uniqueness of the solution of (4.5) see, for example, [21] and [42].
The following remarks should be done here:

Remark 8. • The exact cancellation does not occur during discretisation of (4.7) due
to the discrete representation of uN , explained further in the subsection 4.3.

• For the sake of completeness, let us write the classical formulation of the model prob-
lem. Let Ω = Ω+ ∪Ω− ∪ α and define two arbitrary test functions ψ+ ∈ H1

0 (Ω+) and
ψ− ∈ H1

0 (Ω−). Then eq. (4.5) can be written on two separate domains
∫

Ω±

(−βuxψ±
x + kuψ±)dx =

∫

Ω±

fcψ
±dx ∀ψ± ∈ H1

0 (Ω±)

since H1
0 (Ω±) ⊂ H1

0 (Ω). Integration by parts of the first term on the left hand side
yields the following classical formulation of the problem

(βux)x + ku = fc on Ω\α
u = 0 on ∂Ω

(4.8)
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For the solution of (4.8) to be uniquely defined two additional boundary conditions are
required. The following theorem will supply us with them.

Theorem 4.2.1. The solution to the model problem 1 (4.1) satisfies the following boundary
conditions at the interface point α (jump conditions)

[u]|α = 0, [βux]|α = ν (4.9)

Proof. Consider equation (4.8)

(βux)x + ku = fc (4.10)

defined on the separate intervals [0, α] and [α, 1]. The functions β(x) and k(x) are continuous
on either side of the interface. Namely,

β =

{

β−(x) on [0, α]

β+(x) on [α, 1]
and k =

{

k−(x) on [0, α]

k+(x) on [α, 1]

and fc is a smooth function as before. Multiply by some test function ψ ∈ H1
0 (Ω), integ-

rating by parts on [0, α] and [α, 1] and add the equations together we get

∫ 1

0

(−βuxψx + kuψ)dx+ (β−(α)u−x (α) − β+(α)u+
x (α))ψ(α) =

∫ 1

0

fcψdx ∀ψ ∈ H1
0 (Ω)

(4.11)
where the integrals should be understood in the classical sense. Compare with the equation
(4.5) and recall Definition 3.3.13, we uniquely identify the jump conditions as

[u] = 0 and [βux] = ν

Remark 9. We can think of splitting (4.6) as decoupling the original equation (4.1) into
two problems

(βuHx )x + kuH = fc on Ω

uH = 0 on ∂Ω
(4.12)

and

(βuNx )x + kuN = νδα on Ω

uN = 0 on ∂Ω
(4.13)

where the solution to (4.12) satisfies

[uH ]|α = 0 [βuHx ]|α = 0

and the solution to (4.13) fulfills

[uN ]|α = 0 [βuNx ]|α = ν
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Model problem 2

As before, we will proceed in the distributional sense. Find u ∈ D′(Ω)

〈

∂2u, ψ
〉

=
〈

fc + νδα + wδ′α, ψ
〉

∀ψ ∈ D(Ω)

Using the linearity of distributions and Def. 3.3.8 we get

〈

u, ∂2ψ
〉

=
〈

fc, ψ
〉

+
〈

νδα, ψ
〉

+
〈

wδ′α, ψ
〉

∀ψ ∈ D(Ω)

Recall the definition of the delta and dipole functionals and apply Remark 5 (ii) we arrive
at the following: Find u ∈ L2(Ω)

∫

Ω

uψxxdx =

∫

Ω

fcψdx+ νψ(α) − wψx(α) ∀ψ ∈ H2
0 (Ω) (4.14)

Let

â(u, ψ) =

∫

Ω

uψxxdx

Lcont(ψ) =

∫

Ω

fcψdx

Ldisc1(ψ) = νψ(α)

Ldisc2(ψ) = wψx(α)

Then, the weak form reads: Find u ∈ L2(Ω)

â(u, ψ) = Lcont(ψ) + Ldisc1(ψ) + Ldisc2(ψ) ∀ψ ∈ H2
0 (Ω)

We split the solution using the superposition principle

u = uH + uN + uM

such that

â(uH , ψ) = Lcont(ψ)

â(uN , ψ) = Ldisc1(ψ)

â(uM , ψ) = −Ldisc2(ψ)

(4.15)

and approximate uN and uM by an explicitly calculated functions. Thus, we end up with:
Find uH ∈ H1

0 (Ω)

â(uH , ψ) = Lcont(ψ) + Ldisc1(ψ) − Ldisc2(ψ) − â(uN , ψ) − â(uM , ψ) ∀ψ ∈ H2
0 (Ω) (4.16)

Remark 10. Using the same arguments as for the first model problem we get the following
classical formulation of (4.2)

uxx = fc on Ω\α
u = 0 on ∂Ω

(4.17)

To obtain the additional boundary conditions at α we use the following theorem.
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Theorem 4.2.2. The solution to the model problem 2 (4.2) satisfies the following boundary
conditions at the interface point α

[u]|α = w, [βux]|α = ν (4.18)

Proof. Consider equation (4.17)

uxx = fc on [0, α] ∪ [α, 1] (4.19)

where fc is a smooth function. Multiply by some test function ψ ∈ H2
0 (Ω), integrating by

parts twice on [0, α] and [α, 1] and add the equations together we get

∫ 1

0

uψxxdx+ (u−x (α) − u+
x (α))ψ(α) + (u+(α) − u−(α))ψx(α) =

∫ 1

0

fcψdx ∀ψ ∈ H2
0 (Ω)

(4.20)
where the integrals should be understood in the classical sense. Compare with the equation
(4.14) and recall Definition 3.3.13, we uniquely identify the jump conditions as

[u] = w and [ux] = ν

At this point we should note that

Remark 11. Similar to the first model problem, the splitting (4.15) can be regarded as
decoupling the original equation (4.2) into three separate problems

(uHx )x = fc on Ω

uH = 0 on ∂Ω

(uNx )x = νδα on Ω

uN = 0 on ∂Ω

and

(uMx )x = −wδ′α on Ω

uM = 0 on ∂Ω

with the following jumps for the solutions

[uH ]|α = 0 [uHx ]|α = 0

[uN ]|α = 0 [uNx ]|α = ν

[uM ]|α = w [uMx ]|α = 0

(4.21)

Integrate by parts â(., ψ) separately on [0, α] and [α, 1] intervals we get

â(uM , ψ) = −
∫ α

0

uMx φxdx−
∫ 1

α

uMx φxdx− [uM ]|αφx = −a(uM , φ) − Ldisc2(φ)

â(uN , ψ) = −
∫ α

0

uNx φxdx−
∫ 1

α

uNx φxdx− [uN ]|αφx = −a(uN , φ)

â(uH , ψ) = −
∫ α

0

uHx φxdx−
∫ 1

α

uHx φxdx− [uH ]|αφx = −a(uH , φ)

(4.22)
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where

a(u, φ) =

∫

Ω\α

uxφxdx (4.23)

and we have used (4.21). Substitute (4.22) in (4.16) we get: Find uH ∈ H1
0 (Ω)

−a(uH , φ) = Lcont(φ) + Ldisc1(φ) + a(uN , φ) + a(uM , φ) ∀φ ∈ H1
0 (Ω) (4.24)

note, that the test function ψ belongs to H1
0 (Ω). This is due to fact that we have changed

the bilinear form from â(., .) to a(., .) such that we require only H1 regularity of the test
functions.

Model problem 3

Consider (4.3). This is a two-dimensional analog of (4.1) thus we will proceed in the similar
way. Find u ∈ D′(Ω)

〈

∇ · (β∇u), ψ
〉

=
〈

fc + fδΓ, ψ
〉

∀ψ ∈ D(Ω)

By linearity of distributions and Definition 3.3.8 we get

〈

∂1(β∂1u), ψ
〉

+
〈

∂2(β∂2u), ψ
〉

=
〈

fc, ψ
〉

+
〈

fδΓ, ψ
〉

∀ψ ∈ D(Ω)

−
〈

β∂1u, ∂1ψ
〉

−
〈

β∂2u, ∂2ψ
〉

=
〈

fc, ψ
〉

+
〈

fδΓ, ψ
〉

∀ψ ∈ D(Ω)

Recall the Definition 3.3.11 and Remark 6 (iv) we arrive at the following: Find u ∈ V0(Ω)

−
∫∫

Ω

β∇u · ∇ψdx =

∫∫

Ω

fcψdx +

∫

Γ

f(X(s))ψ(X(s))ds ∀ψ ∈ V0(Ω) (4.25)

Let

a(u, ψ) = −
∫∫

Ω

β∇u · ∇ψdx

Lcont(ψ) =

∫∫

Ω

fcψdx

Ldisc1(ψ) =

∫

Γ

f(X(s))ψ(X(s))ds

Thus, the weak form reads: Find u ∈ V0(Ω)

a(u, ψ) = Lcont(ψ) + Ldisc1(ψ) ∀ψ ∈ V0(Ω)

Split the solution u = uH + uN such that

a(uH , ψ) = Lcont(ψ)

a(uN , ψ) = Ldisc1(ψ)
(4.26)

approximate the discontinuous part of the solution uN explicitly. Thus, we end up with:
Find uH ∈ V0(Ω)

a(uH , ψ) = Lcont(ψ) + Ldisc1(ψ) − a(uN , ψ) ∀ψ ∈ V0(Ω) (4.27)

subject to homogeneous Dirichlet boundary conditions.
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Remark 12. Let Ω = Ω+ ∪ Ω− ∪ Γ and define two arbitrary test functions ψ+ ∈ H1
0 (Ω+)

and ψ− ∈ H1
0 (Ω−). Since H1

0 (Ω±) ⊂ H1
0 (Ω) we can rewrite eq. (4.25) for two separate

domains

−
∫∫

Ω

β∇u · ∇ψ±dx =

∫∫

Ω

fcψ
±dx ∀ψ± ∈ V0(Ω

±) (4.28)

Applying the Greens theorem to the left hand side yields the following classical formulation
of the problem

∇ · (β∇u) = fc on Ω\Γ
u = 0 on ∂Ω

(4.29)

The additional boundary conditions are obtained with the help of following theorem

Theorem 4.2.3. The solution to the model problem 3 (4.3) satisfies the following boundary
conditions at the interface Γ

[u]|Γ = 0,
[

β
∂u

∂n

]∣

∣

∣

Γ
= f (4.30)

Proof. Consider equation (4.29)

∇ · (β∇u) = fc (4.31)

defined on the separate domains Ω+ and Ω−. Here β is

β =

{

β−(x, y) on Ω+

β+(x, y) on Ω−

and fc is a smooth function. Multiply by some test function ψ ∈ H1
0 (Ω), apply Greens

theorem separately on Ω+ and Ω− and add the equations together we get

−
∫

Ω

β∇u · ∇ψdx + (β−(α)
∂

∂n
u−(α) − β+(α)

∂

∂n
u+(α))ψ(α) =

∫

Ω

fcψdx ∀ψ ∈ H1
0 (Ω)

(4.32)
where the integrals should be understood in the classical sense. Compare with the equation
(4.25) and recall Definition 3.3.14, we uniquely identify the jump conditions as

[u]|Γ = 0 and
[

β
∂u

∂n

]∣

∣

∣

Γ
= f

Remark 13. In the same fashion as for the previous model problems, we think of (4.26)
as solving

∇ · (β∇uH) = fc on Ω

uH = 0 on ∂Ω
(4.33)

and

∇ · (β∇uN ) = fδΓ on Ω

uN = 0 on ∂Ω
(4.34)

where the corresponding solutions satisfy

[uH ]|Γ = 0
[

β
∂uH

∂n

]∣

∣

∣

Γ
= 0

[uN ]|Γ = 0
[

β
∂uN

∂n

]∣

∣

∣

Γ
= f

(4.35)
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Model problem 4

Similar to model problem 2: Find u ∈ D′(Ω)

〈

∆u, ψ
〉

=
〈

fc + ∇ ·F, ψ
〉

∀ψ ∈ D(Ω)

where F = (F1, F2)
T = (f1δΓ, f2δΓ)T and fc ∈ L2(Ω). Due to linearity and Definition 3.3.8

we get
〈

u,∆ψ
〉

=
〈

fc, ψ
〉

+
〈

∂1F1, ψ
〉

+
〈

∂2F2, ψ
〉

∀ψ ∈ D(Ω)

Recall Definition 3.3.11 and apply the Remark 6 (v) we end up with: Find u ∈ L2(Ω)

∫∫

Ω

u∆ψdx =

∫∫

Ω

fcψdx −
∫

Γ

f1(X(s))
∂

∂x
ψ(X(s))ds

−
∫

Γ

f2(X(s))
∂

∂y
ψ(X(s))ds ∀ψ ∈ H2

0 (Ω) (4.36)

In order to split the solution in smooth/discontinuous parts, as we did previously, we have
to identify discontinuous parts of the solution with the corresponding parts of the right
hand side. We express ∂ψ

∂x and ∂ψ
∂y in terms of the normal and tangential derivatives along

the interface

∂ψ

∂x
=

∂

∂n
ψ cos(Θ) − ∂

∂τ
ψ sin(Θ)

∂ψ

∂y
=

∂

∂n
ψ sin(Θ) +

∂

∂τ
ψ cos(Θ)

where τ is a tangent vector, Θ is the angle between x-axis and outward normal vector n.
Then

∫

Γ

(f1(X(s))
∂

∂x
ψ(X(s)) + f2(X(s))

∂

∂y
ψ(X(s)))ds

=

∫

Γ

(

(

f1(X(s)) cos(Θ) + f2(X(s)) sin(Θ)
) ∂

∂n
ψ(X(s))

+
(

f2(X(s)) cos(Θ) − f1(X(s)) sin(Θ)
) ∂

∂τ
ψ(X(s))

)

ds =

=

∫

Γ

(f̂1(X(s))
∂

∂n
ψ(X(s)) + f̂2(X(s))

∂

∂τ
ψ(X(s)))ds

where f̂1(X(s)) and f̂2(X(s)) are correspondingly the normal and tangential components
of the force density f(X(s))

f̂1(X(s)) = f1(X(s)) cos(Θ) + f2(X(s)) sin(Θ)

f̂2(X(s)) = −f1(X(s)) sin(Θ) + f2(X(s)) cos(Θ)
(4.37)

Integrating the second term by parts and using the fact that the interface Γ is a closed
curve

∫

Γ

f̂2(X(s))
∂

∂τ
ψ(X(s)))ds = f̂2ψ|s=s1 − f̂2ψ|s=s0−

∫

Γ

∂f̂2(X(s))

∂τ
ψ(X(s))ds = −

∫

Γ

∂f̂2(X(s))

∂τ
ψ(X(s))ds
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Then
∫∫

Ω

u∆ψdx =

∫∫

Ω

fcψdx +

∫

Γ

∂

∂τ
f̂2(X(s))ψ(X(s)) − f̂1(X(s))

∂

∂n
ψ(X(s))ds (4.38)

and let

â(u, ψ) =

∫∫

Ω

u∆ψdx

Lcont(ψ) =

∫∫

Ω

fcψdx

Ldisc1(ψ) =

∫

Γ

∂

∂τ
f̂2(X(s))ψ(X(s))ds

Ldisc2(ψ) =

∫

Γ

f̂1(X(s))
∂

∂n
ψ(X(s))ds

Then, the weak form reads: Find u ∈ L2(Ω)

â(u, ψ) = Lcont(ψ) + Ldisc1(ψ) − Ldisc2(ψ) ∀ψ ∈ H2
0 (Ω)

Similarly to model problem 2, represent the solution as

u = uH + uN + uM (4.39)

such that

â(uH , ψ) = Lcont(ψ)

â(uN , ψ) = Ldisc1(ψ)

â(uM , ψ) = −Ldisc2(ψ)

(4.40)

and approximate uN and uM explicitly. Thus our weak formulation reads: Find uH ∈ H1
0 (Ω)

â(ũ, ψ) = Lcont(ψ) + Ldisc1(ψ) − Ldisc2(ψ) − â(uN , ψ) − â(uM , ψ) ∀φ ∈ H2
0 (Ω)

Remark 14. Similar to the previous model problems, we derive the equivalent classical
formulation

∆u = fc on Ω\Γ
u = 0 on ∂Ω

(4.41)

where the additional boundary conditions at the position of the interface Γ are given by
the following theorem.

Theorem 4.2.4. The solution to the model problem 4 (4.4) satisfies the following boundary
conditions at the interface Γ

[u]|Γ = f̂1,
[∂u

∂n

]∣

∣

∣

Γ
=

∂

∂τ
f̂2 (4.42)

Proof. Consider (4.41)

∆u = fc on Ω+ ∪ Ω−
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Apply Greens formula twice to the left hand side we get

∫∫

Ω+

∆uψdx =

∫∫

Ω+

u∆ψdx −
∫

Γ

∂

∂n
u+ψds+

∫

Γ

u+ ∂

∂n
ψds

∫∫

Ω−

∆uψdx =

∫∫

Ω−

u∆ψdx +

∫

Γ

∂

∂n
u−ψds−

∫

Γ

u−
∂

∂n
ψds

(4.43)

where u±n is a derivative with respect to outward normal vector to the interface Γ and
the superscripts ± indicate that solution approaches the interface from Ω+ or Ω− side,
respectively. Add equations (4.43) together and recall the Definition 3.3.14 we obtain Find
u ∈ H2

0 (Ω)

∫∫

Ω

u∆ψdx −
∫

Γ

[ ∂

∂n
u
]

ψds+

∫

Γ

[u]
∂

∂n
ψds =

∫∫

Ω

fcψdx ∀ψ ∈ H2
0 (Ω) (4.44)

Compare this equation with (4.38) and use the fact that ψ is arbitrary we get the following
jump conditions

[u]|Γ = f̂1 and [un]
∣

∣

∣

Γ
= (∇f̂2 · τ)

Remark 15. By this time it should be evident that the splitting (4.40) can be regarded as
solving three problems instead of the original (4.4). The first problem is

∆uH = fc on Ω

uH = 0 on ∂Ω
(4.45)

the second one is given by

∆uN =
∂f̂2
∂τ

δΓ on Ω

uN = 0 on ∂Ω

(4.46)

and the last one is defined as

∆uM = ∇ · (nf̂1δΓ) on Ω

uM = 0 on ∂Ω
(4.47)

Here, f̂1 and f̂2 are defined in (4.37), and s is some parameterization parameter for the
interface Γ. Additionally, the corresponding solutions must satisfy the following jump con-
ditions

[uH ]|Γ = 0
[∂uH

∂n

]∣

∣

∣

Γ
= 0

[uN ]|Γ = 0
[∂uN

∂n

]∣

∣

∣

Γ
=
∂f̂2
∂τ

[uM ]|Γ = f̂1

[∂uM

∂n

]∣

∣

∣

Γ
= 0

(4.48)



34
CHAPTER 4. FINITE ELEMENT IIM FOR THE ELLIPTIC INTERFACE

PROBLEMS

Integrate by parts â(., ψ) separately on Ω+ and Ω−

â(uM , ψ) = −
∫∫

Ω\Γ

∇uM · ∇φdx − [uM ]|Γφn = −a(uM , φ) − Ldisc2(φ)

â(uN , ψ) = −
∫∫

Ω\Γ

∇uN · ∇φdx − [uN ]|Γφn = −a(uN , φ)

â(uH , ψ) = −
∫∫

Ω\Γ

∇uH · ∇φdx − [uH ]|Γφn = −a(uH , φ)

(4.49)

where

a(u, φ) =

∫∫

Ω\Γ

∇u · ∇φdx (4.50)

and we have used (4.48). Substitute (4.49) in (4.38) we rewrite the weak form as follows:
Find uH ∈ H1

0 (Ω)

−a(uH , φ) = Lcont(ψ) + Ldisc1(φ) + a(uN , φ) + a(uM , φ) ∀φ ∈ H1
0 (Ω) (4.51)

as for model problem 2, we note that we relax the regularity requirement on the test function
ψ by applying the divergence theorem to bilinear form â(., .) constrained to the separate
regions Ω+ and Ω− only.

4.3 Finite Element Formulation of the 1-dimensional IIM

We now turn our attention to the construction of the discrete finite element spaces in
one space dimension whose basis functions satisfy (or approximate) the jump conditions.
Introduce a Cartesian uniform mesh Λh = {xi = ih, i = 1, 2, ..., n} with the stepsize h
and T being an element of the mesh. The interface reduces to one or several discrete points
αi that are not aligned with Λh.

Definition 4.3.1. An element T = [xk, xk+1] is called an interface element if the interface
Γ passes through interior of T , otherwise we call T a non-interface element.

In the next subsection, we introduce a finite element space on each element T of the
partition Λh denoted by Fh(T ). On the non-interface elements, the standard piecewise
linear (hat) basis functions are used. Thus the modification to the hat functions is only
needed on the interface elements. For the sake of completeness let us also define the following
finite-dimensional spaces

V h = {vh|vh ∈ H1(Ω), vh|T ∈ P1, ∀T ∈ Λh}
V h0 = {vh|vh ∈ V0, vh|T ∈ P1, ∀T ∈ Λh, vh|∂Ω = 0}

where P1 is the space of polynomials of degree ≤ 1.

Model Problem 1

For the sake of simplicity assume that the interface is represented by a single point α and
recall the solution of (4.7)

u = uH + uN

where uH is subject to
[uH ]|α = 0 and [βuHx ]|α = 0 (4.52)
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and uN satisfies
[uN ]|α = 0 and [βuNx ]|α = ν (4.53)

The discrete representation of uH is a linear combination of the modified basis functions
φi(x)

uHh =

N−1
∑

i=1

UHi φi(x)

The need to modify the basis functions comes from the fact that jump conditions (4.52)
won’t be satisfied by the standard piecewise-linear basis. Thus, in general, the solution uHh
will only be first order accurate in the L∞ norm. To avoid the problem, we redefine the
basis function on the interface elements using the jump conditions as external constraint

φi(xk) =

{

1, if i = k

0, otherwise

[φi(x)]|α = 0,

[β(φi(x))x]|α = 0

This modification to the basis functions was proposed by Li in [46]. Calculating the coeffi-
cients for the modified basis we end up with the following expressions

φi(xk) =



































0, if 0 ≤ x ≤ xj−1
x− xj−1

h
, if xj−1 ≤ x ≤ xj

xj − x

D
+ 1, if xj ≤ x ≤ α

ρ
xj+1 − x

D
, if α ≤ x ≤ xj+1

0, if xj+1 ≤ x ≤ 1

(4.54)

and

φi+1(xk) =



































0, if 0 ≤ x ≤ xj
x− xj
D

, if xj ≤ x ≤ α

ρ
x− xj+1

D
+ 1, if α ≤ x ≤ xj+1

xj+2 − x

h
, if xj+1 ≤ x ≤ xj+2

0, if xj+2 ≤ x ≤ 1

(4.55)

where

ρ =
β−

β+
, D = h− β+ − β−

β+
(xj+1 − α) = ρ(xj+1 − α) + (α − xj)

In Figure 4.1, we can clearly see the kink in the basis function at the interface point α which
reflects the jump condition in the derivative. Furthermore, define the local finite element
space Fh(T ) as follows:

Fh(T ) =

{

{φi(x) | standard piecewise linear hat basis on the non-interface element T }
{φi(x) | given by (4.54) and (4.55) on the interface element T }

(4.56)
Then the finite element space over all of Ω is given by

Fh
0 (Ω) = {φ(x) | ∀T ∈ Λh, φ|T ∈ Fh(T ), φ|∂Ω = 0} (4.57)
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Remark 16. At this point we should point out that Fh
0 (Ω) is in many ways similar to the

space of standard piecewise linear basis functions. Namely:

• On the non-interface elements the basis functions are equal to the usual hat functions.

• From (4.54) and (4.55) we also conclude that the modified basis functions are equal
to the standard ones for the case when β+ = β−. Thus the space Fh

0 (Ω) reduces to
the standard one V h0 (Ω).
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Figure 4.1: An example of the modified basis functions φ, satisfying [φi]|α = 0 and
[β(φi)x]|α = 0.

The discrete representation of uN is a linear combination

uNh = uN,1h + uN,2h

where uN,1h is defined over the entire computational domain, uN,2h has support only on the
interface element and they satisfy the following jump conditions

[uN,1h ]|α = 0 [uN,2h ]|α = 0,

[β(uN,1h )x]|α = 0 [β(uN,2h )x]|α = ν

The sole purpose of this additional splitting is to enforce the already known jump conditions
in the solution of (4.7). As we can see (Figure 4.2) all irregularity of uNh is inherited by

uN,2h , while uN,1h is a function that belongs to Fh
0 (Ω). Thus to approximate uN,1h we use the

same modified basis functions as for uHh . That is

uN,1h =

N−1
∑

i=1

UNi φi(x) ∈ Fh
0 (Ω)

while uN,2h is approximated by

uN,2h =















0, if 0 ≤ x ≤ xj
η(x − xj), if xj ≤ x ≤ α

(ρη + ξ)(x − xj+1), if α ≤ x ≤ xj+1

0, if xj+1 ≤ x ≤ 1

(4.58)
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Figure 4.2: Discrete representation of the uN part of the solution u. The solid line represents
uNh and uN,2h is shown as a dashed line.

where

ξ =
ν

β+
, η =

ξ(α− xj+1)

D
.

The coefficients of uN,2h are obtained in the similar way as we did for φi(x). Since uHh , u
N,1
h ∈

Fh
0 (Ω), denote ũh = uHh +uN,1h ∈ Fh

0 (Ω). Then uh = ũh+u
N,2
h , where uN,2h is a approximated

explicitly by (4.58) and

ũh =

N−1
∑

i=1

Uiφi(x)

Thus, the resulting discretisation of (4.7) reads: Find ũh ∈ Fh
0 (Ω)

a(ũh, ψ) = Lcont(ψ) + Ldisc1(ψ) − a(uN,2h , ψ) ∀ψ ∈ Fh
0 (Ω)

Model Problem 2

Similar to model problem 1, we represent the discrete solution as a linear combination

uh = uHh + uN,1h + uN,2h + uM,1
h + uM,2

h = ũh + uN,2h + uM,2
h (4.59)

where ũh ∈ Fh
0 (Ω) is given by

ũh = uHh + uN,1h + uM,1
h =

N−1
∑

i=1

Uiφi(x)

with φi defined by (4.57). The discrete linear functions uN,2h and uM,2
h have support only

on the interface element and satisfy

uN,2h (xj) = uN,2h (xj+1) = uM,2
h (xj) = uM,2

h (xj+1) = 0,

[uN,2h ]|α = 0 [uM,2
h ]|α = w,

[(uN,2h )x]|α = ν [(uM,2
h )x]|α = 0
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Here, uN,2h is approximated by (4.58) and uM,2
h is given by

uM,2
h =















0, if 0 ≤ x ≤ xj
σ(xj − x), if xj ≤ x ≤ α

ρσ(xj+1 − x), if α ≤ x ≤ xj+1

0, if xj+1 ≤ x ≤ 1

(4.60)

where σ = w/D.
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Figure 4.3: Discrete representation of the uM part of the solution u. As before, the jump
in uM (solid line) is enforced through the explicitly calculated function uM,2

h (dashed line).

Substitute the discrete solution (4.59) in (4.24): Find ũh ∈ Fh
0 (Ω)

−a(ũh, ψ) = Lcont(ψ) + Ldisc1(ψ) + a(uN,2h , ψ) + a(uM,2
h , ψ) ∀ψ ∈ Fh

0 (Ω)

4.4 Finite Element Formulation of the 2-dimensional IIM

Here, we introduce a non-conforming finite element space satisfying (approximating) the
jump conditions and discuss the treatment of these jump conditions. Consider a rectangular
domain Ω subdivided by the interface Γ (that is represented by a closed curve) in two
subdomains Ω+ and Ω− such that Ω = Ω+ ∪ Ω− ∪ Γ. An uniform triangulation Th that is
not aligned with the interface Γ is introduced with the stepsize h and T being an element
of this triangulation.

Definition 4.4.1. An element T ∈ Th is called an interface element if the interface Γ
passes through interior of T (we consider only the cases when interface Γ can cut at most
two edges of the element T ), otherwise we call T a non-interface element.

Inside the interface element T the interface is approximated by a line segment that
connects the intersections of the Γ with the edges of T (for example line segment ED in
Figure 4.4) and separates the element in

T = T+ ∪ T− ∪ ED
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parts. At this point we should also mention that this particular representation of the
interface introduces a O(h2) error in the solution. Namely, for every interface element T
there is an area

Tr = T \((T+ ∩ Ω+) ∪ (T− ∩ Ω−))

of order O(h3). The sum of this areas over all interface elements contribute to the perturb-
ation in the interface position of O(h2) magnitude. From [42] and discussions in [50] we
know that this perturbation will only affect the solution up to O(h2).

As is common practice, we introduce a finite element space on each element T of the
partition Th denoted by Sh(T ). On the non-interface elements, the standard piecewise linear
(pyramid) basis functions are used. The modification to the basis function is only required
on the interface elements. We construct the modified basis function in the similar way as
we did in the one-dimensional case, as it is described in the following subsections.

Model Problem 3

Similar to the one dimensional case, we represent the discrete solution as a combination

uh = uHh + uN,1h + uN,2h = ũh + uN,2h

where ũh =
∑N−1
i=1 Uiφi(x) and uN,2h is defined only on the interface elements and they

satisfy

[ũh]|Γ = 0 [uN,2h ]|Γ = 0,

[

β
∂ũh
∂n

]∣

∣

∣

Γ
= 0

[

β
∂uN,2h

∂n

]∣

∣

∣

Γ
= f

Consequently, the linear basis functions φi(x) must satisfy the same jump conditions as ũh

[φi(x)]|Γ = 0 and
[

β
∂φi
∂n

]∣

∣

∣

Γ
= 0 (4.61)

To introduce the appropriate modification to the basis functions φi(x), without loss of
generality, we consider a general interface element showed in Figure 4.4

A B

C

E

D

F

.

.

..
.

.

Figure 4.4: One of the three possible cases for the interface element. The line segment ED
represents the approximated interface that cuts the triangle in T+ and T− parts. Here F is
a middle point of the segment ED.
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We define the modified basis functions φi(x) as follows

φi(x) =

{

φ+
i = C1 + C2x+ C3y

φ−i = C4 + C5x+ C6y

where the + or − signs indicate if the function lies on plus or minus side of the interface.
Additionally, let xk be the coordinates of one of the nodes in the interface triangle (for
example A,B or C in the Figure 4.4). Then the jump conditions (4.61) on the element T
are approximated by

[φi]|Γ =

{

φ+
i (D) − φ−i (D) = 0,

φ+
i (E) − φ−i (E) = 0,

[

β
∂φi
∂n

]
∣

∣

∣

Γ
= β+ ∂φ

+
i (F )

∂n
− β− ∂φ

−
i (F )

∂n
= 0

(4.62)

where E and D are the points where the interface intersects with the element and F is the
middle point of the line segment ED. This approximation to the jumps together with the
usual requirement that the basis function is unity in one of the nodes and zero in others

φi(xk) =

{

1, if i = k

0, otherwise
(4.63)

constitutes a 6 × 6 system of equations (with a small variation depending on where Γ cuts
the element), see Figure 4.5 for a typical example of such modified piecewise linear basis
function. As it was shown in [50] the solution of such system exists and is unique. Thus
the local finite element space on each element T is given by

Sh(T ) =

{

{φi(x) | standard piecewise linear basis on the non-interface element T }
{φi(x) | given by (4.62) and (4.63) on the interface element T }

(4.64)
Then the finite element space over the entire computational domain Ω is defined as follows

Sh0 (Ω) = {φ(x) | ∀T ∈ Th, φ|T ∈ Sh(T ), φ|∂Ω = 0} (4.65)

At this point we should note:

Remark 17. • Sh0 (Ω) is very similar to the usual linear finite element space defined on
the Th. That is, on the non-interface elements they are the same. For the cases when
there is no discontinuity present in the coefficient β the Sh0 (Ω) space reduces the the
standard one.

• Generally, Sh0 (Ω) will be a non-conforming finite element space, since the basis func-
tion are not constrained to be continuous across the edges of the interface elements
(see Figure 4.5 for a typical example).

• The approximation capability of Sh0 (Ω) has been discussed in [50].

Analogically to one-dimensional case we also introduce a piecewise linear function uN,2h (x)
(defined only on the interface elements) that satisfies the following conditions:

uN,2h (A) = uN,2h (B) = uN,2h (C) = 0,

[uN,2h ]|Γ =

{

(uN,2h )+(D) − (uN,2h )−(D) = 0,

(uN,2h )+(E) − (uN,2h )−(E) = 0,

[

β
∂uN,2h

∂n

]∣

∣

∣

Γ
= β+ ∂(uN,2h )+(F )

∂n
− β− ∂(uN,2h )−(F )

∂n
= f(F )

(4.66)
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Figure 4.5: An example of the modified basis functions, satisfying [φi]|Γ = 0 and [β(n ·
∇φi)]|Γ = 0. The discontinuity over the edges of interface elements are clearly seen.

with the coefficients of uN,2h (x) obtained in the same manner (from a 6×6 system) as we did
for φi(x). Substitute the discrete solution in the equation (4.27) we get: Find ũh ∈ Sh0 (Ω)

a(ũh, ψ) = Lcont(ψ) + Ldisc1(ψ) − a(uN,2h , ψ) ∀ψ ∈ Sh0 (Ω) (4.67)

Model Problem 4

Finally, we consider the two dimensional model problem where the jump is imposed on both
solution and its derivative. Here, the discrete representation of the solution (4.39) is given
by

uh = uHh + uN,1h + uN,2h + uM,1
h + uM,2

h = ũh + uN,2h + uM,2
h

where ũh ∈ Sh0 (Ω) is given by

ũh =

N−1
∑

i=1

Uiφi(x)

with φi ∈ Sh0 (Ω) defined by (4.65). The discrete linear functions uN,2h and uM,2
h have support

only on the interface element and satisfy

[uN,2h ]|Γ = 0
[∂uN,2h

∂n

]∣

∣

∣

Γ
= ∂f̂2/∂τ,

[(uM,2
h )x]|Γ = f̂1

[∂uM,2
h

∂n

]
∣

∣

∣

Γ
= 0

Here uN,2h is approximated as before (by solving a 6×6 system originating from (4.66) with

the appropriate value of the jump in the normal derivative of uN,2h ) and uM,2
h is computed
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by using the following conditions:

uM,2
h (A) = uM,2

h (B) = uM,2
h (C) = 0,

[uM,2
h ]|Γ =

{

(uM,2
h )+(D) − (uM,2

h )−(D) = ∂f̂2(D)/τ,

(uM,2
h )+(E) − (uM,2

h )−(E) = ∂f̂2(E)/τ,

[n · ∇uM,2
h ]|Γ = n · ∇(uM,2

h )+(F ) − n · ∇(uM,2
h )−(F ) = 0

(4.68)

Finally, we arrive at the following: Find ũh ∈ Sh

−a(ũh, ψ) = Lcont(ψ) + Ldisc1(ψ) + a(uN,2h , ψ) + a(uM,2
h , ψ) ∀ψ ∈ Sh0 (Ω) (4.69)

4.5 Numerical Results

Here, we present the numerical results for both one and two dimensional problems. The
main emphasis is to check how well our method can perform for various elliptic problems
with discontinuous coefficients and singular distributions on the right hand side. For every
test problem, we also compare the results from our approach with the ones obtained using
the standard finite element method.

One-dimensional case

We begin by considering the one-dimensional test problems. For simplicity the computa-
tional domain is always an interval Ω = [a, b] and the interface is represented by one or
several points αi. Moreover, the solution satisfies homogeneous Dirichlet boundary condi-
tions and is approximated on the uniform grid

xi = a+ ih i = 0, 1, .., n with h = (b − a)/n

that is not aligned with the interface points. We will employ the discrete L∞ and L2 norms
defined by

||En||L∞ = max
j

{|ej|} and ||En||L2 =

√

h
∑

j

e2j

respectively. Here ej = u(xj) − uj is the error in the grid point xj between the exact
solution u(xj) and the approximate solution uj. Note, that the grid {xj} is typically finer
then {xi}. We also display the ratios between the successive errors

ratio = ||En||L∞/||E2n||L∞ , or ||En||L2/||E2n||L2

A ratio of 2 corresponds to first order accuracy, while a ratio of 4 indicates second order of
accuracy.

Test problem 1

In this example we apply our method to a problem where there is both a delta functional
and discontinuous coefficients. Let β be a piecewise constant function with a jump at some
point α

β =

{

β+, if x ≥ α

β−, if x < α
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and define γ+ =
√

1/β+ and γ− =
√

1/β−. Then the differential equation is given by

(βux)x + u = 1 + δα for x ∈ [0, 2/(πγ+)]

u(0) = u(2/(πγ+)) = 0

where α = π/(6γ+), β− = 10 and β+ = 100. The exact solution to this problem is

u(x) =

{

C1 cos(xγ−) + C2 sin(xγ−) + 1, if 0 ≤ x < α

C3 cos(xγ+) + C4 sin(xγ+) + 1, if α ≤ x ≤ π/(2γ+).

where the constants Ci’s are chosen such that both the boundary and jump conditions are
fulfilled, see Appendix A. The plots of the exact solution and its approximation are done
for the resolution up to 2560 discretisation points (Figure 4.6). From the results we see that
our method accurately gives the jump in the derivative. Table 4.1 shows the results of a
grid refinement study for our method.
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Figure 4.6: The solution and the error plots for test problem 1.

n ||En||∞ ratio ||En||L2 ratio
20 1.0274e-04 - 1.3948e-04 -
40 2.5714e-05 3.9954 3.4913e-05 3.9951
80 6.4418e-06 3.9917 8.7502e-06 3.9899

160 1.6106e-06 3.9996 2.1878e-06 3.9995
320 4.0282e-07 3.9984 5.4722e-07 3.9980
640 1.0070e-07 4.0000 1.3681e-07 4.0000

Table 4.1: Grid refinement study for the test problem 1 using FEM IIM.

Note that second order accuracy is obtained which is consistent with our expectations.
The approximate solution obtained with the standard finite element method is expected to
be of the first order accuracy, see Table 4.2. Though, if the interface points are aligned
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n ||En||∞ ratio ||En||L2 ratio
20 1.2462e-02 - 1.4718e-02 -
40 6.0878e-03 2.0470 7.0033e-03 2.1016
80 3.1830e-03 1.9126 3.6570e-03 1.9151

160 1.5770e-03 2.0184 1.7995e-03 2.0322
320 7.9997e-04 1.9713 9.1262e-04 1.9718
640 3.9768e-04 2.0116 4.5291e-04 2.0150

Table 4.2: Grid refinement study for the test problem 1 using standard FEM.

with the grid points, the common finite element method will regain second order accuracy.
Unfortunately in two or higher dimensions it can be very costly to create these sort of
body-fitting grids.

Test problem 2

In this example we impose a jump on the solution itself but not on the derivative of the
solution. That is we consider a problem with continuous part fc(x) = 0, dipole as a source
function and the interface represented by two points α1 = 1/3 and α2 = 2/3

uxx = δ′α1
− δ′α2

for x ∈ [0, 1]

u(0) = u(1) = 0

with the known jump conditions

[u]|α1
= 1, [u]|α2

= −1, [ux]|α1
= [ux]|α2

= 0

The exact solution in this case is

u(x) =

{

0, for x ∈ [0, α1) ∪ (α2, 1]

1, for x ∈ (α1, α2)

n ||En||L2 standard FEM ratio ||En||L2 IIM FEM ratio
20 2.2212e-02 - 5.8934e-32 -
40 1.1131e-02 1.9955 8.7204e-31 -
80 5.5123e-03 2.0193 1.4784e-29 -

160 2.7787e-03 1.9838 8.2754e-30 -
320 1.3669e-03 2.0328 4.9155e-30 -
640 6.9444e-04 1.9683 1.1097e-28 -

Table 4.3: Grid refinement study for the test problem 2. The first column represents the
results obtained with standard FEM, the second column corresponds to FEM IIM.

As we can see from the Figure 4.8, the actual error in the solution obtained with the
standard FEM occurs only at those intervals that contain the interface points. Away from
the interface points the solution is captured exactly since it is a a piecewise constant func-
tion. Our modified approach captures the piecewise linear discontinuous solution exactly
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Figure 4.7: The solution and the error plots for the test problem 2 for n = 80 using IIM
FEM. Note that we obtain an error in the order of magnitude of a roundoff error for for
other values of n as well.
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Figure 4.8: The solution and the error plots for the test problem 2 for n = 80 using standard
FEM.

up to roundoff, see Figure 4.7. Since the standard FEM always provides a continuous ap-
proximation, we expect the error to be of O(1) in the L∞ norm and O(h) in the L2 norm.
For the IIM FEM we expect the error to be up to roundoff. In the Table 4.3 we present the
grid refinement study for both methods using the L2 norm. The standard FEM solution is
only first order accurate while IIM FEM solution is exact up to roundoff.

Test problem 3

Finally, we impose the jump on both the solution and its derivative. Namely, the right hand
side of the problem consists of both the dipole and delta functionals, fc(x) = 0 and α = 1/3

uxx = δα + δ′α, for x ∈ [0, 1]

u(0) = u(1) = 0
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and the jump conditions given by

[u] = 1, [ux] = 1.

The exact solution is
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Figure 4.9: The solution and the error plot for the test problem 3 for n = 80 using IIM
FEM. Again, note that the solution is exact up to roundoff.
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Figure 4.10: The solution and the error plot for the test problem 3 for n = 80 using standard
FEM.

u(x) =

{

x(α− 2), for x ∈ [0, α)

(α− 1)(x− 1) for x ∈ (α, 1]

Similar to the test problem 2 the IIM FEM solution is exact up to roundoff, see Figure 4.9.
The standard FEM delivers a solution that is first order accurate in the L2 norm and
produces O(1) error in the L∞ norm, Figure 4.10. See Table 4.4 for the tabulated results.
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n ||En||L2 standard FEM ratio ||En||L2 IIM FEM ratio
20 5.6811e-03 - 9.5014e-32 -
40 2.7472e-03 2.0680 3.9825e-32 -
80 1.3966e-03 1.9671 5.6323e-32 -

160 6.9252e-04 2.0167 1.1149e-31 -
320 3.4771e-04 1.9917 5.7921e-30 -
640 1.7349e-04 2.0042 3.1085e-31 -

Table 4.4: Grid refinement study for the test problem 3. The first column represents the
results obtained with standard FEM, the second column corresponds to FEM IIM.

Two-dimensional case

Here, we the investigate the performance of our modified finite element method for the
two-dimensional elliptic problems. For the sake of simplicity, for all the test cases the
computational domain Ω is the rectangle −1 ≤ x, y ≤ 1 and the interface Γ is represented by
a circle with the center at the origin and with some radius r0. For every problem the source
term and the Dirichlet boundary conditions are determined from the exact solution. Once
again, the main concern will be to investigate the performance of our modified approach
and compare it to the results obtained with the standard finite element method, that is a
standard conforming Galerkin finite element whose piecewise linear basis functions has not
been modified. In all the test problems, the solution is approximated on the uniform n× n
Cartesian mesh with m discrete points, representing the interface Γ. For the performance
analysis we employ the discrete L∞ and L2 norms defined by

||En||L∞ = max
i,j

{|eij |} and ||En||L2 = h

√

∑

i,j

e2ij

where eij = u(xi, yj) − uij is the error in the grid point (xi, yj) between the exact solution
u(xi, yj) and the approximate solution uij . As in the one dimensional case, we display the
ratios between the successive errors

ratio = ||En||L∞/||E2n||L∞ , or ||En||L2/||E2n||L2

A ratio of 2 corresponds to first order accuracy, while a ratio of 4 indicates second order of
accuracy.

Test problem 4

In this example we compare the results from our method and the standard FEM for a
problem where there is a two-dimensional delta functional with the support on the interface
Γ on the right hand side of the equation. Then the problem reads

∆u = 2δΓ on Ω

with the Dirichlet boundary conditions which are determined from the exact solution

u(x) =

{

1, if r ≤ 1/2

1 + log(2r), if r ≥ 1/2.
(4.70)
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where r =
√

x2 + y2 and the jump conditions

[u]|Γ = 0 and [∂u/∂n]|Γ = 2

Figure 4.11 shows the numerical solution obtained with the IIM FEM. As we can see, the
jump in the normal derivative of the solution is captured sharply. In Tables 4.5 and 4.6 we
present the grid refinement study for the IIM FEM. In Table 4.5 we fix m = 400 points on
the interface and sequentially increase the resolution of the fixed background mesh while
in Table 4.6 we do the opposite. That is, we fix 400 × 400 Cartesian mesh and refine the
resolution of the interface.
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Figure 4.11: The inverse of the solution obtained by FEM IIM for the test problem 4 using
20 × 20 mesh.

n× n ||En||∞ ratio ||En||L2 ratio
20 1.0727e-02 - 3.0438e-03 -
40 2.9084e-03 3.6883 6.2860e-04 5.4149
80 7.6542e-04 3.7998 1.4938e-04 4.2081

160 2.1134e-04 3.6217 3.8007e-05 3.9303

Table 4.5: Grid refinement study for the test problem 4 using the FEM IIM for n×n grids
with 400 points on the interface.

In both cases second order convergence is obtained in L∞ and L2 norms. With the
fixed resolution of the interface, we perform similar grid refinement study for the standard
conforming FEM.

As we see from Table 4.7, the standard FEM has at most p ≈ 1.6 order of convergence
in the L2 norm and first order convergence in the L∞ norm. Notice, that since β− = β+

the modified basis is equal to the standard one. Thus the main difference from the usual
FEM is the presence of

a(uN,2h , ψ) =

∫∫

Ω\Γ

β∇uN,2h · ∇ψdx

on the right hand side of the variational formulation (4.67).
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m ||En||∞ ratio ||En||L2 ratio
20 6.6108e-03 - 5.0629e-03 -
40 1.6681e-03 3.9631 1.2604e-03 4.0169
80 4.0783e-04 4.0902 3.0743e-04 4.0998

160 9.9335e-05 4.1056 7.3802e-05 4.1656

Table 4.6: Grid refinement study of the interface discretisation for the test problem 4 using
the FEM IIM with the fixed 400 × 400 background mesh.

n ||En||∞ ratio ||En||L2 ratio
20 3.0096e-02 - 7.5408e-03 -
40 1.6072e-02 1.8725 2.3363e-03 3.2277
80 8.3142e-03 1.9331 7.3416e-04 3.1823

160 4.2287e-03 1.9661 2.4100e-04 3.0462

Table 4.7: Grid refinement study for the test problem 4 using the standard FEM for n× n
grids with 400 points on the interface.

Test problem 5

We now consider a problem with the piecewise constant coefficient β. The equations are

∇ · (β∇u) = 9
√

x2 + y2 on Ω

β(x) =

{

β− if r ≤ r0

β+ otherwise

where the interface radius r0 = π/6.28 and the Dirichlet boundary conditions are given by
the exact solution

u(x) =

{

r3/β−, if r ≤ r0

r3/β+ + (1/β− − 1/β+)r30 , otherwise

It is easy to check that in this case the solution and its flux are continuous ([u]|Γ = 0 and
[β∂u/∂n]|Γ = 0). In this test problem, the emphasis is to investigate how well the modified
and the standard schemes can handle the jump in the β coefficient. The FEM IIM solution
for the case when β+ = 1000, β− = 1 is presented in Figures 4.12. Note, that the jump
in the normal derivative of the solution caused by the large difference in the coefficients is
captured sharply.

The convergence studies for the case when β+ = 1000 and β− = 1 for IIM FEM are
presented in Tables 4.8 and 4.9. For the second case with β+ = 1 and β− = 1000 the results
are shown in Table 4.11.

Note, that for both ratios the modified approach exhibits second order convergence in
the L2. The standard FEM is atmost first order accurate in both norms, see Tables 4.10
and 4.12.
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n ||En||∞ ratio ||En||L2 ratio
20 4.0595e-03 - 1.4868e-03 -
40 1.5311e-03 2.6514 4.8463e-04 3.0679
80 5.5109e-04 2.7783 1.0785e-04 4.4936

160 1.5760e-04 3.5079 2.4501e-05 4.4019

Table 4.8: Grid refinement study for the test problem 5 with β+ = 1000 and β− = 1 using
the FEM IIM for n× n grids with 400 points on the interface.

m ||En||∞ ratio ||En||L2 ratio
20 4.5810e-03 - 2.7894e-03 -
40 1.1719e-03 3.9090 7.0470e-04 3.9583
80 3.4362e-04 3.4105 1.7423e-04 4.0447

160 1.0021e-04 3.4290 4.2478e-05 4.1017

Table 4.9: Grid refinement study of the interface discretisation for the test problem 5 with
β+ = 1000 and β− = 1 using the FEM IIM with the fixed 400 × 400 background mesh.
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Figure 4.12: The inverse of the solution for the test problem 5 with piecewise constant
coefficients β+ = 1000 and β− = 1 using 20 × 20 mesh.

n ||En||∞ ratio ||En||L2 ratio
20 6.1865e-02 - 3.9485e-02 -
40 3.6550e-02 1.6926 2.0004e-02 1.9739
80 1.9453e-02 1.8789 9.7176e-03 2.0585

160 9.3965e-03 2.0702 4.3156e-03 2.2517

Table 4.10: Grid refinement study of the interface discretisation for the test problem 5 with
β+ = 1000 and β− = 1 using the standard FEM.
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n ||En||∞ ratio ||En||L2 ratio
20 2.2484e-03 - 1.6318e-03 -
40 1.2201e-03 1.8428 4.3821e-04 3.7238
80 2.6801e-04 4.5524 1.0410e-04 4.2095

160 8.5229e-05 3.1446 2.4940e-05 4.1740

Table 4.11: Grid refinement study for the test problem 5 with β+ = 1 and β− = 1000 using
the FEM IIM for n× n grids with 400 points on the interface.

n ||En||∞ ratio ||En||L2 ratio
20 3.9971e-02 - 3.2445e-02 -
40 2.1669e-02 1.8446 2.0443e-02 1.5871
80 1.1219e-02 1.9315 1.0352e-02 1.9748

160 6.1210e-03 1.8328 5.6070e-03 1.8462

Table 4.12: Grid refinement study for the test problem 5 with β+ = 1 and β− = 1000 using
standard FEM.

Test problem 6

Here, we consider more elaborate problem with both discontinuous coefficients and a sin-
gular source function

∇ · (β∇u) = fc(x) + CδΓ on Ω

fc(x) = 8(x2 + y2) + 4

β(x) =

{

x2 + y2 + 1, if r ≤ 0.5

b, otherwise

with C = 0.1, b = 10 and the boundary conditions given by the exact solution

u(x) =

{

r2, if r ≤ 0.5

(1 − 1/(8b)− 1/b)/4 + (r4/2 + r2)/b+ C log(2r)/b, otherwise

n ||En||∞ ratio ||En||L2 ratio
20 5.4989e-02 - 1.5642e-02 -
40 2.6735e-02 2.0568 4.2840e-03 3.6511
80 1.3026e-02 2.0524 1.1375e-03 3.7662

160 6.4181e-03 2.0296 2.6921e-04 4.2253

Table 4.13: Grid refinement study for the test problem 6 with β = 10 and C = 0.1 using
IIM FEM for n× n grids with 400 points on the interface.

Tables 4.13 and 4.14 gives the numerical results for the IIM FEM and the standard
FEM, respectively. The computed solution is presented in Figure 4.13. In this case the
error in L∞ norm is of first order, while the solution is still second order accurate in the L2

norm.
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n ||En||∞ ratio ||En||L2 ratio
20 4.0315e-02 - 2.6917e-02 -
40 2.2166e-02 1.8188 1.4601e-02 1.8436
80 1.1606e-02 1.9099 6.8580e-03 2.1290

180 6.2381e-03 1.8605 3.7439e-03 1.8318

Table 4.14: Grid refinement study for the test problem 6 with β = 10, C = 0.1 and with
400 points on the interface using standard FEM.
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Figure 4.13: The inverse of the solution for the test problem 6 using 20 × 20 mesh.
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Figure 4.14: The error plot for the test problem 6 computed on the 41 × 41 mesh.

This is due to the fact that the jump in the normal flux of the solution is approximated
only at one single point per element. Thus, in the cases when the magnitude of the jump
is non-constant or the coefficient β is a function of x and y (on either side of the interface)
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the L∞ norm will only capture the spikes in error (see Figure 4.14).

Test problem 7

Finally, we impose a jump on both the solution and its normal derivative. The differential
equation on each side of the interface Γ is just a Laplace equation

∆u = 0 on Ω\Γ
The jumps

[u]|Γ = excos(y), and [∂u/∂n]|Γ = n · [excos(y),−exsin(y)]T

and the boundary conditions are found from the exact solution

u(x) =

{

excos(y), if r ≤ 1/2

0, if r ≥ 1/2.
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Figure 4.15: The solution for the test problem 7 using 40 × 40 mesh.

n ||En||L2 standard FEM ratio ||En||L2 IIM FEM ratio
20 2.2488e-01 - 2.3973e-04 -
40 1.2820e-01 1.7541 6.2697e-05 3.8236
80 8.2396e-02 1.5559 1.9771e-05 3.1711

160 5.3091e-02 1.5520 6.2049e-06 3.1864

Table 4.15: Grid refinement study for the test problem 7 with 400 points on the interface.
The first column corresponds to the standard FEM, the second represents the results of the
IIM FEM.

Table 4.15 shows that IIM FEM has p ≈ 1.6 order of convergence in the L2 norm
while standard FEM is at most first order accurate. Since the standard FEM provides the
continuous approximation to the solution the L∞ norm of the error is expected to be of
O(1) and thus is not presented.
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4.6 Conclusions

We have proposed and tested a relatively simple modification of the standard finite ele-
ment method based on the immersed interface method. It has been shown that the modi-
fied approach can handle well both one and two-dimensional elliptic problems with severe
discontinuities in the coefficients and singularities represented by the delta and/or dipole
functionals. Moreover the new approach proved to be higher then first order accurate in
both the L2 and the L∞ norms for the considered elliptic interface problems. Additionally,
we should remind that our method uses meshes that are not aligned with the interface.

Potentially, our approach can be applied to other type of problems containing discontinu-
ous coefficients or singular forces. All that is required is the explicit knowledge of the jump
conditions of the solution and its flux. In the next Chapter we will show that our approach
can be successfully applied to even more sophisticated problems, such as an incompressible
Stokes equation with a moving immersed interface.



Chapter 5

Finite Element Formulation of the IIM

for the interface Stokes problem

5.1 Overview

In this chapter we apply our modified finite element IIM to the interface Stokes problem,
modeling an incompressible, viscous flow at low Reynolds numbers with some moving inner
boundaries within it. This moving boundary may represent a contact discontinuity between
two different fluids without any separating material or some material immersed in a fluid.
In this thesis, we will concentrate on a two-dimensional material interface problems.

In two space dimensions Stokes equations take the form

∇p = µ∆u + F

∇ · u = 0
(5.1)

where p is the pressure, u = (u1, u2) is the velocity vector and F = (F1, F2)
T is an external

singular force exerted by the immersed interface Γ on the fluid. The necessary boundary
conditions will be discussed later. The source term F can be written as

F(x, t) = f(x, t)δΓ

where f(x, t) = (f1(x, t), f2(x, t))
T is the force density in this point and δΓ is a two-

dimensional delta functional. This force is best viewed as a generalized function, or distri-
bution. That is for any suffiently smooth test function ψ(x) we have

〈

Fi(x, t), ψ(x)
〉

=

∫

Ω

fi(x, t)δΓψ(x)dx =

∫

Γ

fi(X(s), t)ψ(X(s))ds

where X(s, t) gives the location of the interface at time t with some parameterization s for
s0 ≤ s ≤ s1. Moreover, the equation (5.1) should also be understood in the distributional
sense.

To solve (5.1), we first reduce it to a sequence of three separate Poisson problems, one
for the pressure and two for the velocity vector. That is, we multiply the equations (5.1) by
some test function ψ ∈ D(Ω) and differentiate the first momentum equation with respect
to x and the second one with respect to y in the distributional sense and use the linearity
of the distributions

〈

∂2
1p, ψ

〉

= µ(
〈

∂3
1u1, ψ

〉

+
〈

∂1∂
2
2u1, ψ

〉

) +
〈

∂1F1, ψ
〉

〈

∂2
2p, ψ

〉

= µ(
〈

∂2∂
2
1u2, ψ

〉

+
〈

∂3
2u2, ψ

〉

) +
〈

∂2F2, ψ
〉 (5.2)
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Add the equations (5.2) together to get

〈

∂2
1p+ ∂2

2p, ψ
〉

= µ(
〈

∂2
1(∂1u1 + ∂2u2), ψ

〉

+
〈

∂2
2(∂1u1 + ∂2u2), ψ

〉

)

+
〈

∂1F1 + ∂2F2, ψ
〉

∀ψ ∈ D(Ω) (5.3)

Use the incompressibility condition

〈

∂1u1 + ∂2u2, ζ
〉

= 0 ∀ζ ∈ D(Ω)

together with the Definition 3.3.8 in (5.3) we get the pressure equation that reads

〈

∂2
1p+ ∂2

2p, ψ
〉

=
〈

∂1F1 + ∂2F2, ψ
〉

∀ψ ∈ D(Ω)

or
〈

∆p, ψ
〉

=
〈

∇ · F, ψ
〉

∀ψ ∈ D(Ω) (5.4)

with the appropriate boundary conditions. Since F is a known function we can obtain the
pressure directly. Once the pressure is known, we can separately solve both momentum
equations to obtain the velocity components. We note that time-dependence of the flow
comes entirely from the right hand side F, but since F is explicitly known at every particular
instance of time the system becomes elliptic and the solution (u, p) can be determined
independently of the previous time.

We will consider a model problem introduced by Tu and Peskin [9], and later used by
Leveque and Li in [32]. In this problem the interface represents an immersed elastic band
in a fluid and the properties of the fluid are the same on both sides of the interface. This
problem can be regarded as a two-dimensional analog of a elastic balloon in a homogeneous
highly viscous fluid. In equilibrium configuration, this elastic band will take a circular
shape, with piecewise constant pressure (experiencing a jump along the band) and zero
velocity everywhere. The magnitude of the pressure jump depends on how much the band
is stretched from its resting configuration.

By the equilibrium configuration we always mean the steady state solution with a given
quantity of fluid inside the encircled area. In this configuration, the band will be stretched
since the fluid inside it cannot escape. In contrast, the resting configuration is obtained if
we allow a small leak of the fluid from the encircled area, until the exerted elastic force
vanishes, together with the pressure difference. Since the flow is incompressible, the band
perturbed from its equilibrium position should return to it after some time.

The force densities f(X(s), t) are established solely from the position of the interface.
Namely, we start from Newton’s Second Law stating the equivalence of mass times acceler-
ation to a sum of all forces, which in our case are the tension force and force exerted from
the fluid to the interface

m(s)
∂2

X

∂t2
= FT (s, t) + FR(s, t), (5.5)

The tension force FT (s, t) is represented by

FT (s, t) =
∂

∂s
(Tτ)

where τ is the interface tangent vector at X(s, t)

τ(s, t) =
∂X

∂s

/∣

∣

∣

∂X

∂s

∣

∣

∣
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and T (s, t) is the tension at the same point defined by the Hooke’s Law

T (s, t) = T0

(∣

∣

∣

∂X(s, t)

∂s

∣

∣

∣
− 1

)

The elastic properties of the band are represented by the scalar T0 (which we assume uniform
for our problem).

The force FR(s) is measured in terms of the jumps in pressure and in the derivative of
the velocity in the fluid

FR(s, t) =
[

−p(s, t)n+ µ
∂u(s, t)

∂n

]

The quantity −p(s, t)n + µ∂u(s,t)
∂n is known as the normal stress of the fluid element, in

terms of the fluid stress tensor. These jumps are what we need for our method. However, it
is not possible to compute these jumps directly from the fluid equations. Instead we obtain
the jumps by subtracting the inertial terms on the left hand side of equation (5.5) from the
tension force

f(s, t) = −
[

−p(s, t)n+ µ
∂u(s, t)

∂n

]

=
∂

∂s
(Tτ) −m(s)

∂2
X

∂t2

In this thesis, we consider an important special case of a massless interface m(s) = 0. Thus
the expression for the force densities reduces to

f(s, t) =
∂

∂s
(Tτ) (5.6)

Note that when s is an arclength parameter, the density of the elastic force f(s, t) = 0 for

a relaxed state, since
∣

∣

∣

∂
∂sX(s, t)

∣

∣

∣
= 1.

To apply our finite element IIM discussed earlier we need an explicit expressions for jump
conditions for each of the three Poisson problems (for pressure p and velocity components
u1, u2). Namely, we have to know both the jump in the function and in its normal derivative
at any point along the interface. The idea of derivation of the jump condition is the same
as used in the model problems. In the next subsections we show that the velocity vector
u = (u1, u2) is continuous across the inner boundary, while its normal derivatives are
discontinuous. We also prove that the pressure is discontinuous itself together with its
normal derivative.

5.2 Variational formulation of the interface Stokes problem

In this section, we present the variational formulation of the interface Stokes problem and
derive the necessary jump conditions. This is done in the following way: We start with the
the pressure Poisson problem (5.4), derive the appropriate jump conditions and present the
corresponding weak formulation. Next, we proceed to the velocity components. With the
known right hand side and computed pressure, the momentum equations in (5.1) decouples
in two separate Poisson problem. Since they are essentially identical we will explain the
procedure in detail only for one of them, say to obtain u1. For u2 we will simply state the
weak formulation and the corresponding jump conditions.

Pressure Poisson problem

With the location of the interface fixed at some moment of time, we wish to solve the Poisson
problem for pressure (5.4) with the force densities of F given by (5.6) and appropriate
boundary conditions.
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This problem is similar to the Model problem 4 discussed in the Chapter 4. Thus, we
will treat this problem in a same fashion. By Definition 3.3.8 we get

〈

p,∆ψ
〉

=
〈

∂1F1, ψ
〉

+
〈

∂2F2, ψ
〉

∀ψ ∈ D(Ω)

From Definition 3.3.11 and Remark 6 (v) we have: Find p ∈ L2(Ω)

∫∫

Ω

p∆ψdx = −
∫

Γ

f1(X(s, t), t)
∂

∂x
ψ(X(s, t), t)ds−

∫

Γ

f2(X(s, t), t)
∂

∂y
ψ(X(s, t), t)ds ∀ψ ∈ H2

0 (Ω) (5.7)

In order to apply the superposition principle, we have to identify discontinuous parts of the
solution with the corresponding parts of the right hand side. We express ∂ψ

∂x and ∂ψ
∂y in

terms of the normal and tangential derivatives along the interface

∂ψ

∂x
=

∂

∂n
ψ cos(Θ) − ∂

∂τ
ψ sin(Θ)

∂ψ

∂y
=

∂

∂n
ψ sin(Θ) +

∂

∂τ
ψ cos(Θ)

where Θ is the angle between an outward normal vector n and x-axis and τ is the tangent
vector. Then

∫

Γ

(f1(X(s, t), t)
∂

∂x
ψ(X(s, t), t) + f2(X(s, t), t)

∂

∂y
ψ(X(s, t), t))ds

=

∫

Γ

(

(

f1(X(s, t), t) cos(Θ) + f2(X(s, t), t) sin(Θ)
) ∂

∂n
ψ(X(s, t), t)+

(

f2(X(s, t), t) cos(Θ) − f1(X(s, t), t) sin(Θ)
) ∂

∂τ
ψ(X(s, t), t)

)

ds

=

∫

Γ

(f̂1(X(s, t), t)
∂

∂n
ψ(X(s, t), t) + f̂2(X(s, t), t)

∂

∂τ
ψ(X(s, t), t))ds

where f̂1(X(s, t), t) and f̂2(X(s, t), t) are correspondingly the normal and tangential com-
ponents of the force density f(X(s, t), t)

f̂1(X(s, t), t) = f1(X(s, t), t) cos(Θ) + f2(X(s, t), t) sin(Θ)

f̂2(X(s, t), t) = −f1(X(s, t), t) sin(Θ) + f2(X(s, t), t) cos(Θ)
(5.8)

Integrating the second term by parts and using the fact that the interface Γ is a closed
curve we get

∫

Γ

f̂2(X(s, t), t)
∂ψ(X(s, t))

∂τ
ds = f̂2ψ|s=s1 − f̂2ψ|s=s0−

∫

Γ

∂f̂2(X(s, t), t)

∂τ
ψ(X(s, t), t)ds = −

∫

Γ

∂f̂2(X(s, t), t)

∂τ
ψ(X(s, t), t)ds

Then
∫∫

Ω

p∆ψdx =

∫

Γ

(
∂

∂τ
f̂2(X(s, t), t)ψ(X(s, t), t) − f̂1(X(s, t), t)

∂

∂n
ψ(X(s, t), t))ds
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and let

â(p, ψ) =

∫∫

Ω

p∆ψdx

Ldisc1(ψ) =

∫

Γ

∂

∂τ
f̂2(X(s, t), t)ψ(X(s, t), t)ds

Ldisc2(ψ) =

∫

Γ

f̂1(X(s, t), t)
∂

∂n
ψ(X(s, t), t)ds

Then, the weak form reads: Find p ∈ L2(Ω)

â(p, ψ) = Ldisc1(ψ) − Ldisc2(ψ) ∀ψ ∈ H2
0 (Ω)

Due to superposition principle we can represent the solution as

p = pH + pN + pM (5.9)

such that

â(pH , ψ) = 0

â(pN , ψ) = Ldisc1(ψ)

â(pM , ψ) = −Ldisc2(ψ)

(5.10)

and approximate pN and pM explicitly in the same fashion as it was done for the Model
problem 4. Thus our weak formulation reads: Find pH ∈ H1

0 (Ω)

â(pH , ψ) = Ldisc1(ψ) − Ldisc2(ψ) − â(pN , ψ) − â(pM , ψ) ∀φ ∈ H2
0 (Ω) (5.11)

Remark 18. Similar to the model problems, we derive the equivalent classical formulation

∆p = 0 on Ω\Γ (5.12)

with some appropriate boundary conditions on ∂Ω discussed later.

The additional boundary conditions at the position of the interface Γ are given by the
following theorem.

Theorem 5.2.1. The solution to the pressure Poisson problem (5.4) satisfies the following
boundary conditions at the interface Γ

[p]|Γ = f̂1,
[ ∂p

∂n

]∣

∣

∣

Γ
=

∂

∂τ
f̂2 (5.13)

The proof is similar to the one given in Theorem 4.2.4.

Remark 19. The splitting (5.9) can be understood as decoupling the original problem (5.4)
in three separate problems. The first one is

∆pH = 0 on Ω (5.14)

the second one is given by

∆pN =
∂f̂2
∂τ

δΓ on Ω (5.15)
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and the last one is defined as

∆pM = ∇ · (nf̂1δΓ) on Ω (5.16)

with the appropriate boundary conditions on ∂Ω. Here, f̂1 and f̂2 are defined in (5.8), and
s is some parameterization parameter for the interface Γ. Additionally, the corresponding
solutions must satisfy the following jump conditions

[pH ]|Γ = 0
[∂pH

∂n

]∣

∣

∣

Γ
= 0

[pN ]|Γ = 0
[∂pN

∂n

]∣

∣

∣

Γ
=
∂f̂2
∂τ

[pM ]|Γ = f̂1

[∂pM

∂n

]∣

∣

∣

Γ
= 0

(5.17)

Integrate by parts â(., ψ) separately on Ω+ and Ω−

â(pM , ψ) = −
∫∫

Ω\Γ

∇pM · ∇φdx − [pM ]|Γφn = −a(pM , φ) − Ldisc2(φ)

â(pN , ψ) = −
∫∫

Ω\Γ

∇pN · ∇φdx − [pN ]|Γφn = −a(pN , φ)

â(pH , ψ) = −
∫∫

Ω\Γ

∇pH · ∇φdx − [pH ]|Γφn = −a(pH , φ)

(5.18)

where a(p, φ) is defined in (4.50) and the jumps in pH , pN and pM are given by (5.17).
Substitute (5.18) in (5.11) we rewrite the weak form as follows: Find pH ∈ H1

0 (Ω)

−a(pH , φ) = Ldisc1(φ) + a(pN , φ) + a(pM , φ) ∀φ ∈ H1
0 (Ω) (5.19)

as for model problem 2 and 4, we relaxed the regularity requirement on the test function
ψ by applying the divergence theorem to bilinear form â(., .) constrained to the separate
regions Ω+ and Ω− only.

Remark 20. Since the pressure is unique only up to a constant, it is appropriate to take
Neumann boundary conditions for the pressure. After discretization, this results in a sin-
gular linear system of equations. Deflation algorithm is used to obtain the solution of such
system, as described in Appendix B (see Stewart [18] for more details).

Velocity Poisson problems

Here, we explain the solution procedure for the velocity components. Since they are almost
identical we will describe only the algorithm to obtain u1. In this case we have two sources
of discontinuity: the forcing term F1, which represents a delta functional singularity along
the interface Γ and a partial derivative of the discontinuous pressure that also contains a
delta functional. Both of them lead to a jump in the normal derivative of u1.

Consider first eq. (5.1). Multiplying by a sufficiently smooth test function φ ∈ D(Ω) we
obtain the following distributional formulation: Find u1 ∈ D′(Ω)

〈

µ∆u1, φ
〉

=
〈

∂p/∂x, φ
〉

−
〈

f1δΓ, φ
〉

∀φ ∈ D(Ω) (5.20)

integrating by parts we get

µ
〈

∇u1,∇φ
〉

=
〈

p, ∂φ/∂x
〉

+
〈

f1δΓ, φ
〉

∀φ ∈ D(Ω)
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Recalling Definition 3.3.11 and Remark 6 (v) we arrive at the following: Find u1 ∈ H1
0 (Ω)

∫∫

Ω

µ∇u1 · ∇φdx =

∫∫

Ω

p∂φ/∂xdx +

∫

Γ

f1(X(s, t), t)φ(X(s, t), t)ds ∀φ ∈ H1
0 (Ω) (5.21)

Let

a(u1, φ) =

∫∫

Ω

µ∇u1 · ∇φdx

Lcont(φ) =

∫∫

Ω

p
∂φ

∂x
dx

Ldisc1(φ) =

∫

Γ

f1(X(s, t), t)φ(X(s, t), t)ds

Then, the weak form reads: Find u1 ∈ H1
0 (Ω)

a(u1, φ) = Lcont(φ) + Ldisc1(φ) ∀φ ∈ H1
0 (Ω)

By the superposition principle the solution u1 is represented as

u1 = uH1 + uN1 (5.22)

such that

a(uH1 , φ) = Lcont(φ)

a(uN1 , φ) = Ldisc1(φ)
(5.23)

Approximate the discontinuous part of the solution uN explicitly. Thus, we end up with:
Find uH1 ∈ H1

0 (Ω)

a(uH1 , φ) = Lcont(φ) + Ldisc1(φ) − a(uN1 , φ) ∀φ ∈ H1
0 (Ω) (5.24)

subject to appropriate boundary conditions.

Remark 21. The following classical formulation of the problem is valid

µ∆u1 = px on Ω\Γ (5.25)

with the additional boundary conditions obtained with the help of following theorem

Theorem 5.2.2. The solution to (5.20) satisfies the following boundary conditions at the
interface Γ

[u1]|Γ = 0,
[

µ
∂u1

∂n

]∣

∣

∣

Γ
= f̂2 sinΘ (5.26)

Proof. From the equivalent form (5.25) we have
∫∫

Ω±

µ∆u1φdx −
∫∫

Ω±

∂p

∂x
φdx = 0 (5.27)

Apply Greens theorem to the first term of the left hand side for each of the domains
∫∫

Ω+

µ∆u1φdx = −
∫

Γ

µ(∇u+
1 · n)φds−

∫∫

Ω+

µ(∇u1 · ∇φ)dx

∫∫

Ω−

µ∆u1φdx =

∫

Γ

µ(∇u−1 · n)φds−
∫∫

Ω−

µ(∇u1 · ∇φ)dx

(5.28)
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The second term of (5.27) is
∫∫

Ω+

∂p

∂x
φdx = −

∫

Γ

φ([p+, 0]T · n)ds+

∫∫

Ω+

[∂φ

∂x
,
∂φ

∂y

]T

· [p, 0]Tdx

∫∫

Ω−

∂p

∂x
φdx =

∫

Γ

φ([p−, 0]T · n)ds+

∫∫

Ω−

[∂φ

∂x
,
∂φ

∂y

]T

· [p, 0]Tdx

(5.29)

Insert (5.29) and (5.28) in (5.27) to get an alternative variational formulation
∫∫

Ω

(−µ∇u1∇φ+ p
∂φ

∂x
)dx +

∫

Γ

[p] cos(θ)φds −
∫

Γ

[µ
∂u1

∂n
]φds = 0

Comparing this with (5.21) and using the fact that φ is arbitrary, we get

[u1]|Γ = 0 and
[

µ
∂u1

∂n

]∣

∣

∣

Γ
= [p] cos(Θ) − f1 = f̂2 sin Θ

In the last equality we used pressure jump conditions (5.13).

Naturally, similar results apply to the u2 component of the velocity. For both velocity
components we use homogeneous Dirichlet boundary conditions.

Remark 22. Similar to Theorem 5.2.2, we derive the jump conditions for u2

[u2]|Γ = 0 and
[

µ
∂u2

∂n

]∣

∣

∣

Γ
= [p] sin Θ − f2 = −f̂2 cos(Θ) (5.30)

Remark 23. Insert (5.6) in (5.8). Then the jump conditions (5.26) and (5.30) can be
expresses as

[

µ
∂u1

∂n

]∣

∣

∣

Γ
= −∂T

∂s
sin(Θ)

[

µ
∂u2

∂n

]∣

∣

∣

Γ
=
∂T

∂s
cos(Θ) (5.31)

5.3 Discrete formulation of the interface Stokes problem

In this section, we introduce our finite element method for the interface Stokes problem.
Here, we use the same non-conforming finite element space (4.65) defined in Chapter 4 for
the two-dimensional model problems. We also discuss the interface representation and its
propagation with the flow.

Finite element formulation of the pressure Poisson equation

We represent the discrete solution (5.9) as a linear combination given by

ph = pHh + pN,1h + pN,2h + pM,1
h + pM,2

h = p̃h + pN,2h + pM,2
h

where p̃h ∈ Sh0 (Ω) is given by

p̃h =

N−1
∑

i=1

Piφi(x)

with φi ∈ Sh0 (Ω) defined by (4.65). The discrete linear functions pN,2h and pM,2
h have support

only on the interface element, satisfy

[pN,2h ]|Γ = 0
[∂pN,2h

∂n

]
∣

∣

∣

Γ
= ∂f̂2/∂τ,

[(pM,2
h )x]|Γ = f̂1

[∂pM,2
h

∂n

]∣

∣

∣

Γ
= 0
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and are approximated as before (by solving a 6×6 system originating from (4.66) and (4.68)
with the appropriate value of the jumps). Thus, we arrive at the following finite element
formulation of the pressure equation: Find p̃h ∈ Sh0 (Ω)

−a(p̃h, ψ) = Ldisc1(ψ) + a(pN,2h , ψ) + a(pM,2
h , ψ) ∀ψ ∈ Sh0 (Ω) (5.32)

Finite element formulation of the velocity Poisson equation

To simplify the notation, denote the discretisation of u1 by uh. Then, the discrete solution
is represented by a combination

uh = uHh + uN,1h + uN,2h = ũh + uN,2h

Here ũh ∈ Sh0 (Ω) is given by

ũh =

N−1
∑

i=1

Uiφi(x)

where φi ∈ Sh0 (Ω) defined by (4.65). The discrete linear function uN,2h is defined only on
the interface element and satisfies

[uN,2h ]|Γ = 0
[∂uN,2h

∂n

]∣

∣

∣

Γ
= f̂2 sin Θ

We compute uN,2h by solving a 6 × 6 system originating from (4.66) with the appropriate

value of the jump in the normal derivative of uN,2h . Consequently, we arrive at the following
finite element formulation: Find ũh ∈ Sh0 (Ω)

−a(ũh, ψ) = Lcont(ψ) + Ldisc1(ψ) + a(uN,2h , ψ) + a(uM,2
h , ψ) ∀ψ ∈ Sh0 (Ω) (5.33)

The interface propagation

At any moment in time tn, the interface is described by a given finite set of control points
{Xn

k , Y
n
k } for k = 0, 1, .., NInt and some parametrisation through these points. Here, kth

control point gives an approximation to (X(sk, tn), Y (sk, tn)) where s is an arclength para-
metrisation of the interface. To reconstruct the interface between the control points, we
compute piecewise linear interpolants Xn(s) and Y n(s).

To calculate the force acting along the interface, we first compute ∂X/∂s in every control
point and hence the tension T (s, tn). By multiplying the tension with the tangent vector
and differentiating again, we obtain an approximation to the force densities (5.6). These
densities are then spread all along the interface by constructing another linear interpolant
f
n(s).

To evolve the interface we chose to use the simplest explicit method, namely, the forward
Euler scheme

Xn+1
k = Xn

k + ∆tUnk

Y n+1
k = Y nk + ∆tV nk

where the local velocities {Unk , V nk } are obtained by interpolating the velocity field {un1 , un2}
at the control points {Xn

k , Y
n
k }. This interpolation is complicated by the fact that the

velocity field {un1 , un2} has jumps in the normal derivatives across the interface. Thus the
usual bilinear interpolation scheme cannot be applied in this case. A modified interpolation
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scheme is required such that the jump conditions for velocity field (5.26) and (5.30) are
accounted for. There are different ways to do that. We follow an idea of LeVeque and Li
[32] where they used a modified linear interpolation based on three nearby points such that
the jump conditions are incorporated.

To obtain local velocities {Unk , V nk } at control point {Xn
k , Y

n
k } choose the three closest

grid points (x1, y1), (x2, y2) and (x3, y3) (which will typically be the nodes of the triangular
element containing the control point {Xn

k , Y
n
k }). Form a linear combination of these values

to obtain, say Unk

Unk = γ1u(x1, y1) + γ2u(x2, y2) + γ3u(x3, y3) + C (5.34)

where u(xi, yi) is the grid velocity corresponding to the point (xi, yi). The coefficients γi
and the correction term C are chosen such that a second order approximation is achieved.
Use Taylor approximation around {Xn

k , Y
n
k } to get the values of γi’s and C

u(xi, yi) = u± + (xi −Xn
k )u±x + (yi − Y nk )u±y +O(h2)

where h is the stepsize and + or − sign indicates whether we approach {Xn
k , Y

n
k } from

inside or outside of the interface Γ. Insert this Taylor expansion in eq. (5.34) we get

Unk = a1u
− + a2u

+ + a3u
−
x + a4u

+
x + a5u

−
y + a6u

+
y + C +O(h2)

= (a1 + a2)u
− + (a3 + a4)u

−
x + (a5 + a6)u

−
y + (a2[u] + a4[ux] + a6[uy]) + C +O(h2)

where the jump condition for [ux] and [uy] are obtained from (5.26), [u] = 0 since the
velocities are continuous across the interface and ai’s are the linear combination of the γi’s
such that

a1 =
∑

i∈K−

γi a2 =
∑

i∈K+

γi

a3 =
∑

i∈K−

(xi −Xn
k )γi a4 =

∑

i∈K+

(xi −Xn
k )γi

a5 =
∑

i∈K−

(yi − Y nk )γi a6 =
∑

i∈K+

(yi − Y nk )γi

with the index sets K± defined as

K± = {i : (xi, yi) is on the ± side of the interface Γ}

Finally, we desire

a1 + a2 = 1

a3 + a4 = 0

a5 + a6 = 0

Solving this system of linear equations we obtain the expression for the γi’s

γ1 = 1 − γ2 − γ3

γ2 =
(y1 − Y nk )(x3 − x1) − (x1 −Xn

k )(y3 − y1)

(x2 − x1)(y3 − y1) − (x3 − x2)(y2 − y1)

γ3 =
(y2 − y1)(x1 −Xn

k ) − (x2 − x1)(y1 − Y nk )

(x2 − x1)(y3 − y1) − (x3 − x2)(y2 − y1)



5.4. NUMERICAL RESULTS 65

while the correction term C is given by

C = −(a4[ux] + a6[uy])

The same coefficients are used to compute Unk but the correction term will be based on [vx]
and [vy] instead.

To review, the numerical solution of the interface Stokes problem is obtained by the
following procedure:

• Use the location of the interface given by the set of the control points {Xn
k , Y

n
k } to

compute the forces (5.6) and jump conditions (5.26), (5.30) and (5.13).

• Obtain the background grid velocities u1 and u2 by solving three Poisson problem
with the known jump conditions.

• Interpolate u1 and u2 to compute the local velocities {Unk , V nk } at every control point
{Xn

k , Y
n
k }.

• Advect the interface with these velocities for time ∆t.

The procedure is repeated for every time step ∆t. This concludes our description of the
finite element IIM for the Stokes interface problem.

5.4 Numerical Results

In this section we present the numerical solution of the interface Stokes problem ob-
tained with our approach. The test problem modeling an elastic band immersed in a
fluid was described earlier in this Chapter. The computational domain Ω is the rectangle
−1 ≤ x, y ≤ 1 and the interface Γ is represented by a closed curve that is, initially, an
ellipse with the major and minor axis a = 0.75 and b = 0.5, respectively.
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Figure 5.1: Different configuration of the interface. Here, the solid line represents the initial
position, the resting configuarion is the the dashed circle and the equilibrium configuration
is depicted by dash-dot circle.

Due to the restoration force, that is applied only along the interface, the ellipse will
converge to the equilibrium position, that is a circle with radius re =

√
ab ≈ 0.61237,
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[32]. Note, that the equilibrium radius re is larger than the resting radius r0 due to the
incompressibility of the encircled fluid. Thus, in the equilibrium position, the interface is
still stretched, with the pressure balancing the non-zero boundary force. The solution is
approximated on the uniform n×n Cartesian mesh with m discrete points, representing the
interface Γ. Since the exact solution is unknown we measure the accuracy of our method by
using the extrapolation principle. That is, we investigate the error between two successive
solutions e = un − u2n for every resolution n. To measure the error we employ the discrete
L∞ and the L2 norms defined by

||En||L∞ = max
i,j

{|eij |} and ||En||L2 = h

√

∑

i,j

e2ij

We also display the ratios between the successive errors

ratio = ||En||L∞/||E2n||L∞ , or ||En||L2/||E2n||L2

As usual, a ratio of 2 corresponds to first order accuracy, while a ratio of 4 indicates second
order of accuracy.
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Figure 5.2: The solution to the Stokes interface problem at t = 0.

First, we compute the solution at t = 0, when the interface has not moved. Pressure
p and one of the velocity field are shown in Figure 5.2. As expected, the pressure is
discontinuous and the flow goes from the regions with high pressure to the regions with low
pressure. In Figure 5.3 we present cross sections of p and u1 at t = 0.

To explain the smooth behavior of the the normal derivative of u1 in Figure 5.3 we recall
Remark 23 which states that the magnitude of the jump in the normal derivative of u1 is
proportional to the change in the tension T which does not vary a lot along the band in our
model.

Next, a grid refinement study is performed to measure the order of accuracy of our
method. The solution (p, u1 and u2) was computed on four different n × n grids with
n = 40, 80, 160 and 320 and m = 400 points on the interface.

Tables (5.4) and (5.4) shows the ratios in both norms to be around 4 which is a clear
indication of second order accuracy.
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(a) A cross section of the pressure at
t = 0 and y = 0. Note, that there is
no smoothing of the pressure. The jump
is captured sharply.

(b) A cross section (y = 0) of the u1

velocity component at t = 0.

Figure 5.3: The cross section of the pressure and u1 velocity at t = 0.

n p ratio in L∞ norm u1 ratio in L∞ norm
40 3.2821 3.9166
80 3.4858 4.0552

Table 5.1: The ratio in the error between the successive solutions, i.e. e = pn − p2n and
e = un − u2n at t = 0 in L∞ norm.

n p ratio in L2 norm u1 ratio in L2 norm
40 3.9903 4.2687
80 4.0112 4.1602

Table 5.2: The ratio in the error between the successive solutions, i.e. e = pn − p2n and
e = un − u2n at t = 0 in L2 norm.

We now consider the error at later times, when the interface has moved. The main
difficulty in comparing the solution at all the points on the fixed grid comes from the fact
that the interface may lie on one side of certain fixed grid point in one calculation, but
slightly to the other side in a different calculation.

Since the area enclosed by the interface should be conserved we can use the mass con-
servation as a measure of the convergence of our method. Namely, for the fixed values of
the time step ∆t = 0.01 and the background grid n = 80, we refine the resolution of the
interface m and consider the error

Em = A0 −Am

where A0 = πab is the initial area of the ellipse and Am is the area at some moment in time
t = T with m points on the interface.
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m |Em| at t = 0.1 ratio |Em| at t = 1.0 ratio
20 0.0192513 - 0.0189312 -
40 0.0048583 3.9626 0.0050331 3.7613
80 0.0012161 3.9950 0.0012407 4.0567

160 0.0003032 4.0109 0.0003061 4.0533

Table 5.3: Grid refinement study for the Stokes interface problem with ∆t = 0.01 on the
80×80 mesh. The columns represent the error in the area at t=0.1 and t=1, correspondingly.

Table 5.3 shows the refinement study for T = 0.1 and T = 1. As we can see, the area is
preserved with second-order accuracy using IIM FEM.

We also consider the behavior of IIM FEM over longer period of time. Define the
smallest and the greatest distances from the origin to the interface at time tn, rnmin and
rnmax respectively

rnmin = min
1≤k≤Nint

√

(Xn
k )2 + (Y nk )2 rnmax = max

1≤k≤Nint

√

(Xn
k )2 + (Y nk )2
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Figure 5.4: The plot shows the behavior of rnmax (upper curve) and rnmin (lower curve) with
time. Clearly they converge towards the equilibrium radius re. This results are obtained
with the 100 × 100 mesh with 100 points on the interface and ∆t = 0.25.

As we can see from Figure 5.4 both distances converge towards the equilibrium radius re.
This is the expected behavior since the interface should eventually obtain the equilibrium
circular shape with radius re and thus we expect rnmin → re and rnmin → re as n → ∞.
Similar behavior was shown in [32] and [9]. Figure 5.5 shows the error in the area.
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Figure 5.5: The error in the mass conservation. This results are obtained with the 100×100
mesh with 100 points on the interface and ∆t = 0.25.





Chapter 6

Conclusions and future work

In this thesis, we have presented a new finite element based method for the solution of the
one and two-dimensional elliptic interface problems. The advantages of using distributions
in terms of treatment of the singular forces and discontinuous coefficients have been pointed
out. The use of distributions leads naturally to the weak form of the equations. This fact
together with the thorough theoretical basis have motivated our choice of using the finite
element method for the discretization of the problems.

The interface jump conditions associated with the discontinuities in the coefficients and
singularities of the forces have been derived and used to appropriately modify the basis
functions such that the jump conditions are satisfied either exactly or approximately. This
modification of the basis function resulted in a non-conforming finite element space whose
approximation capabilities were numerically studied.

The numerical experiments have been made to confirm that the modified approach can
handle well both one and two-dimensional elliptic problems with severe discontinuities in the
coefficients and singularities represented by the delta functional and its derivatives. For the
considered test problems our approach proved to be superior to the standard finite element
method and exhibited second order convergence in the L2 norm. In addition, we should
remind that all the results are obtained on the grids that are not aligned with the interface.
That allows us to to avoid the difficulties and additional time consumption associated with
the generation of the body fitted meshes for the interface problems. This property of our
method is even more desirable for the moving interface problems where the body fitted grid
has to be generated at each time step.

As an example of the moving interface problem, we considered an incompressible Stokes
flow with the immersed elastic boundary. The numerical results obtained with our method
show good agreement with the results found in the literature. In addition, our approach
provides very good mass conservation. We should also note that, using the proposed method,
we can handle much more severe singularities that those appearing in the Stokes problem.
Although we have presented our method mainly in the context of two dimensional problems,
the ideas extend to the three space dimensions as well.

Future work points in several directions from the current stand. One is the theoretical
investigation of the introduced non-conforming finite element method. The other is the
extension and improvement of the method itself. Finally, it is intriguing to apply our
method to some more realistic applications.

The thorough theoretical investigation of the approximation capabilities of the intro-
duced non-conforming finite element method can help us to improve the performance of our
approach. In addition, a rigorous investigation of the interplay between the approximation
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of the flow and the interface should be done. The primary focus for the extension of the
method should be the incorporation of the density and viscosity jumps in the interface
Stokes flows, such that more realistic interface fluid models can be considered. That should
not be a problem since similar elliptic model problems have already been considered in this
thesis. An improved approximation of the interface should be added as well. It might be also
interesting to couple our approach with some different interface representation techniques,
for example a level-set method.
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Appendix

Appendix A

In this appendix we present the exact solution for the test problem 1 from Chapter 4.
Consider

βuxx + ku = 1 + δα

u(0) = u(π/(2γ+) = 0

with x ∈ [0, π/(2γ+)] , k = 1, α = π/(6γ+) and

β(x) =

{

β−, if x ≥ α

β+, if x < α

where γ+ =
√

k/β+ and γ− =
√

k/β−. The exact solution in this case is

u(x) =

{

C1 cos(xγ−) + C2 sin(xγ−) + 1/k, if 0 ≤ x < α

C3 cos(xγ+) + C4 sin(xγ+) + 1/k, if α ≤ x ≤ π/(2γ+).

where

C1 = C4 = −1/k,

C3 =
(sin(γ+) − cos(γ−))/k + C2 sin(γ−))

cos(γ+)

C4 =
1 +

√

β+/k(cos(γ+) + (sin(γ+) − cos(γ−)) tan(γ+)) +
√

β−/k sin(γ−)
√

kβ− cos(γ−) +
√

kβ+ sin(γ−) tan(γ+)
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R(A)R(A)
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lin{d}

lin{v}

β
d

Pv

(b) STEP3

Figure 7.1: Projection method

Appendix B

Model problems 2 and 4 lead to the standard Neumann problems whose discretisation yields
the linear system

Ax = b

with one-dimensional null-space of the system matrix A. In order to solve this discrete
system we apply an approach proposed by Stewart in [9]. Let u and v be left and right
null vectors of A (i.e. uTA = Av = 0 ) and assume that ‖v‖ = ‖u‖ = 1. Define orthogonal
projections Pu := I − uuT , Pv := I − vvT such that Pu projects onto R(A) and Pv onto
R(AT ). The solution x is the unique vector satisfying

PuAPvx = Pub

Pvx = x
(7.1)

Equivalently, we obtain the solution through the following iterative procedure

Algorithm Let x0 be given with Pvx0 = x0

Step 1. r = Pu(b− Axi)

Step 2. d = A−1r

Step 3. xi+1 = xi + Pvd

There are two factors affecting the performance: the errors made in calculating the residual
(b − Ax) and the errors done in solving the almost singular system Ad = r. By use of Pu
(Fig. 7.1(a)) and Pv (Fig. 7.1(b)) we are projecting out the roundoff errors, which are due
to the matrix singularity. At this point several remarks should be made:

Remark 24. • Under reasonable conditions, few iterations should be sufficient [9].

• For a given vector y, the product Pvy can be computed as follows:

Pvy = (I − vvT )y = y − v(vT y) = y − γV

where γ = vT y = (v, y) is an Euclidean scalar product.
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• The left and right null vectors are obtained by a variant of the inverse power method

– Av̂i+1 = ui

– vi+1 = v̂i+1/‖v̂i+1‖
– Aûi+1 = vi

– ui+1 = ûi+1/‖ûi+1‖

• The angle β , between null-space of A and the space spanned by vectors d (Fig. 7.1(b)),
is the measure of how much the error will be projected out. Thus the closer β is to 0o

the better is the expected performance. When β is close to 90o the performance is the
worst.
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