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Abstract

In this thesis we study problems related to approximation of asymmetric TSP. First
we give worst case examples for the famous algorithm due to Frieze, Gabiati and Maffioli
for asymmetric TSP with triangle inequality. Some steps in the algorithm consist of
arbitrary choices. To prove lower bounds, these choices need to be specified. We show a
worst case performance with some deterministic assumptions on the algorithm and then
prove an expected worst case performance for a randomised version of the algorithm. The
algorithm by Frieze et al. produces a spanning cactus and makes a TSP tour by shortcuts.
We have proven that determining if there is a spanning cactus in a general asymmetric
graph is an NP-complete problem and that finding a minimum spanning cactus in a
complete, directed graph with triangle inequality is equivalent to finding the TSP tour
and the problems are equally hard to approximate. We also give three other results; we
show a connection between asymmetric TSP and TSP in a bipartite graph, we show that
it is NP-hard to find a cycle cover in a bipartite graph without cycles of length six or less
and finally we present some results for a new problem with ordered points on the circle.
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Sammanfattning

Denna licavhandling – vars titel kan översättas med Om approximation av asymmetrisk

TSP och besläktade problem – tar upp några olika resultat som rör just approximation av
TSP. För asymmetrisk TSP finns det en över tjugo år gammal approximationsalgoritm
av Frieze, Gabiati och Maffioli [12]. Algoritmen bygger genom upprepade cykeltäckningar
en uppspännande kaktus och bildar en TSP-tur genom att dra genvägar. Algoritmen
ger en TSP-tur som är mindre än log

2
n gånger den kortaste turen. Papadimitrio och

Vempala [27] har visat att om P 6= NP så kan inte TSP-turen approximeras bättre än
220/219 − ǫ gånger den kortaste turen. Eftersom den algoritmen och den undre gränsen
är långt ifrån varandra kan någon av dem förbättras betydligt. Det finns två förbättringar
av algoritmen. 2003 gav Bläser [5] en algoritm som ger en approximation i 0.999 log

2
n.

Senare kom Kaplan, Lewenstein, Shafrir and Sviridenko [21] med en algoritm som ger en
approximation inom O(0.842 log

2
n).

I Kapitel 2 ger vi värsta-fallet-grafer för algoritmen av Frieze m. fl. Först visar vi
att med några deterministiska antaganden ger algoritmen en TSP-tur större än log

2
n ·

OPT/(2 + o(1)). Sedan visar vi att en slumpmässig version av algoritmen ger förväntad
vikt i Ω(log n) men med en sämre konstant.

Algoritmen av Frieze m. fl. bygger en uppspännande kaktus i grafen och bildar en TSP-
tur genom att dra genvägar. I Kapitel 3 visar vi att avgöra om det finns en uppspännande
kaktus i en generell graf är NP-fullständigt och att hitta en minimal uppspännande kaktus
i en fullständig, viktad graf med triangelolikheten är ekvivalent med att hitta den minsta
TSP-turen. Båda problemen är dessutom lika svåra att approximera.

Till slut tar vi upp tre andra resultat. Två rör bipartita grafer och det tredje ett nytt
problem om ordnade punkter på en cirkel.
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Chapter 1

Introduction

When solving a problem on a computer there are usually two limiting resources,
time and space. How long time will it take and how much memory is needed? Since
computers are getting faster and faster a more interesting question is how fast do
these parameters grow with the size of the problem. If the size of the input of the
problem is n, can the problem be solved with a number of operations which is linear
in n? quadratic in n? or maybe exponential in n? In complexity theory problems
are classified by this rate.

1.1 A Real-Life Problem

For example [10], a company is drilling n holes in a metal sheet. The drill has
a starting position h0 and moves from hole to hole. After all holes have been
drilled the drill returns to the starting position. The distance between two holes is
d(hi, hj). Suppose that the time to move the drill is proportional to the distance.
Drilling a hole takes time ti. For an order π of the holes the total time required is
∑n

i=0(tπ(i) +k ·d(hπ(i), hπ(i+1))) where π(n+1) = π(0). The time required to drill,
∑n

i=1 ti, is independent of π but we can change the order of the holes to minimise
the moving time k

∑n
i=0 d(hπ(i), hπ(i+1)).

If there are ten holes to be drilled then there are 10! = 3628800 different orders
and a computer can calculate the length of each order and select the shortest. But
if there are one hundred holes, then there are 100! ≈ 9 · 10157 orders and it takes
too much time to try each order.

1.2 Classification of Problems

The drilling problem is an optimisation problems where the best solution is wanted.
The drilling problem is a hard problem where no polynomial time algorithm that
finds the best solution is known. An optimisation problem has a corresponding
decision problem. The decision problem corresponding to the drilling problem is

1
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“Is there an order where the drill moves less than a distance k?”. Characteristic
for a decision problem is that the answer is yes or no.

Another optimisation problem is the shortest path problem “Find the shortest
path from a to b in the graph G”. For this problem there is a polynomial time
algorithm which finds the best path. The corresponding decision problem is “Is
there a path with length shorter than k between a and b in the graph?”. Naturally
also this problem can be solved in polynomial time. There are also decision problems
without natural corresponding optimisation problems for example “Is the integer n
an even square?”. Also this problem can be solved in polynomial time.

A complexity class is a group of problems which are consider equally hard to
solve. Usually the limiting resources is time or space. In this theses we will refer to
the following two classes where time is the limiting resource; the class P is decision
problems which can be solved in polynomial time or reasonable time, the class NP

is a class of decision problems where if the answer is yes there is a proof that the
answer is correct which can be checked in polynomial time. Of cause P ⊆ NP.
A common belief is that P 6= NP in other words that there are problems which
have proofs that are easy to check but where the problem can not be solved in
reasonable time. The drilling problem is one such problem. The proof that there
is an order for which the drill moves less than k is the order it self. Given an order
it is easy to check if the drill moves less than k, but finding the order is believed to
be difficult. Many NP problems are proven to be equally hard to solve. If one can
be solved in reasonable time so can the others. This group of connected problems
are called NP-complete. Unfortunately many problems were early shown to be
NP-complete [13]. The drilling problem is an NP-complete problem.

If it is difficult to decide if there is an order for which the drill moves less than a
distance k of course it is difficult to find the best order. For an optimisation problem,
if the corresponding decision problem is in NP a bit carelessly the optimisation
problem is said to be in NP. Consider an optimisation problem in NP (where we
can not find the optimal solution in reasonable time), can we find an approximate
solution?

A minimisation approximation algorithm has a so-called approximation factor
c if the solution is never worse than c times the optimum solution. The lower the
value of c the better approximation algorithm and if P 6= NP then c > 1. There
is a way to decide if an approximation algorithm is optimal. By reducing another
NP-complete problem to the problem one can decide a so-called lower bound, k,
such that if P 6= NP the approximation factor can never be lower than the lower
bound, c ≥ k > 1. If c = k the approximation algorithm and the lower bound
are optimal and there is no use trying to improve the algorithm (in a theoretical
aspect, practical improvements can still be done). NP-complete problems have
very different behaviour with respect to approximability. Some are possible to
approximate within a constant arbitrarily close to one and others are not possible
to approximate within any constant. In [3] there is a list of more than 200 NP-
complete optimisation problems together with their approximability.



1.3. THE TRAVELLING SALESMAN PROBLEM 3

1.3 The Travelling Salesman Problem

The problem of drilling holes is an example of the Travelling Salesman Problem or
TSP. As the name indicates the Travelling Salesman Problem considers a salesman
who wishes to visit n cities in an order that makes the travelled distance as short
as possible. He starts and ends in the same city and visits all other cities exactly
once. It is also assumed that there is a road between every pair of cities. With this
formulation the problem is not very realistic. There is not a road between every
pair of cities and many other factors than the distance are also important for the
choice of tour. But many other formulations of TSP, such as the drilling problem,
are important problems to study.

TSP is an NP-complete problem and is hence not believed to be solvable in
reasonable time. Therefore much effort has been put into finding approximation
algorithms. When studying the problem formally the cities are nodes in a complete
graph with positive weights on the edges and the problem is to find the shortest
Hamiltonian cycle.

TSP was proven to be NP-complete already by Karp [22] in 1972, and Sahni
and Gonzalez [30] showed that it is NP-complete to find a tour with length within
exponential factors of the optimum. When the distance function is constrained
to satisfy the triangle inequality, d(vx, vy) ≤ d(vx, vz) + d(vz , vy), the best known
approximation algorithm has an approximation factor c = 3/2 and is due to Chris-
tofides [7]. The algorithm finds the minimum spanning tree in the graph and then
makes a minimum cost matching of nodes with odd degree. The result is an Eu-
lerian graph. The TSP tour is made by shortcuts in the Eulerian graph. The weight
of the tree is less than the weight of the TSP tour and the matching has weight at
most half the weight of the TSP tour. Since the graph obeys the triangle inequality
the shortcuts do not increase the weight. Hence the result is at most 3/2 times the
optimum solution.

Practical Algorithms

The distances in the drilling problem do not only obey the triangle inequality,
they are also Euclidian distances. For many real world problems this is the case
and therefore many heuristics have been invented to solve or approximate them.
Currently the best tool to find the optimal solution to large-scale Euclidian instances
of TSP is the Concorde [1]. There has been a challenge to find the best TSP tour
visiting all 24 978 cities in Sweden (using Euclidian distances). In May 2004 the
challenge was won by the program Concorde which solved the problem with linear
programming. It was also proven that the solution was optimal. An Euclidian TSP
instance with up to 1000 nodes is solved exactly within some minutes with the
Concorde.

When it comes to approximation there are many different algorithms. The
performance of an algorithm depends on the graph and on the implementation, so
it is difficult to compare them. If one wants to choose approximation algorithm
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for an instance of TSP, the best way is to test the algorithms in question on the
particular instance. The rule of thumb is what you win in time you loose in quality.
Johnson et al. [19] compare a variety of algorithms for different graphs but focus on
2-dimensional Euclidian distance functions. When we refer to their investigation we
will give the performance time for 10 000 nodes uniformly distributed in the plane.
The algorithms were run on a Compaq ES40 with 55-MHz Alpha processors.

One of the fastest algorithms divides the plane into strips, sorts the nodes in
each strip and then connects them. In 0.01 seconds it gives an approximation 1.31
times the optimal solution. The algorithm nearest neighbour chooses in every step
the nearest neighbour as the next city. The algorithm is fast but might perform
poorly, in 0.28 seconds it gives a tour 1.25 times the optimum. First producing a
tour with for example nearest-neighbour and then replacing edges by different local
searches are the algorithms which give the best approximations. 3-Opt makes a TSP
tour with nearest neighbour and then tries improve the tour by deleting three edges
and permute the three resulting paths. It produces an 1.03-approximation in 1.5
seconds. The famous Lin-Kernighan has a more intricate way of changing edges and
is more effective than 3-Opt . It gives an 1.02 approximation in 2.3 seconds. (For
larger testbeds the difference in the approximation constant is larger.) Helsgaun
is a complex heuristic and gives a very good approximation. The disadvantage is
that it is rather slow. In 862 seconds it gives a 1.008-approximation.

Johnson et al. also present results for the algorithm by Christofides. Even
though it is the only algorithm with a proven upper bound it is far from optimal
in practice. In 1.04 seconds it returns an 1.1-approximation.

1.4 Asymmetric TSP

Another drilling problem is when the metal sheet is tilted. The drill is first moved
vertically, y, and then horizontally. The speed moving the drill up y+ is faster
than the speed moving down y−. This is also TSP but the distance function is
asymmetric.

Formally the distance matrix is not restricted to being symmetric. This case is
much less understood than symmetric TSP. In 1982 Frieze, Galbiati and Maffioli [12]
invented their famous algorithm for asymmetric graphs with triangle inequality,
which approximates the TSP tour within a factor of log2 n. The main idea of
the algorithm by Freize et al. is: Find a minimum cycle cover in the graph by
linear programming. Choose one node in every cycle and form a subgraph with
the same distance function as in the original graph. Find a minimum cycle cover
in the subgraph. Continue iteratively until there is only one cycle in the cycle
cover. Similar to the algorithm by Christofides the union of the cycle covers form
an Eulerian graph. Replace edges in the union with a shortcut edge to obtain a
TSP tour. Since the graph respects the triangle inequality the TSP tour has weight
less than or equal to the the sum of the cycle covers.
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There is only a small lower bound: Papadimitriou and Vempala [27] recently
proved that it is NP-hard to approximate the minimum TSP tour within a factor
of 220/219 − ǫ, for any constant ǫ > 0. Obviously, huge improvements can be
made either on a better algorithm or a tighter lower bound. Despite a lot of effort
during the last twenty years there have been only two algorithmic improvements,
both very recent. The first by Bläser was announced in 2003 [5]. He improves the
algorithm by Frieze et al. and proves a factor 0.999 · log2 n. The second algorithm
by Kaplan, Lewenstein, Shafrir and Sviridenko [21] decomposes multigraphs and
gives an approximation of 3/4 log3 n < 0.842 log2 n.

Practical Algorithms

Practical heuristics for approximation are not as well developed as for the sym-
metrical case. Johnson et al. [18] have made a comparison of most algorithms on
different testbeds. There is no obvious choice of testbed and the algorithms per-
form differently depending on the data. Generally the approximation algorithms
are slow, the largest testbed has 3162 nodes, and the approximation factors are lar-
ger than in the symmetric case. Optimisation is also slow and for several testbeds
with 1000 nodes the optimal tour was never found. They had drilling on a tilted
sheet as one testbed (this distances obey the triangle inequality) and when we refer
to there investigation we use performance times for the testbed with 1000 drillholes
on a tilted sheet.

There are not as many algorithms developed for asymmetric TSP as for sym-
metric. Many algorithms for symmetric TSP can not handle asymmetric distances.
The distances are not Euclidian, so it is not possible to divide the nodes into strips
with respect to position. Local search algorithms where small local optimal paths
are connected have problems since the short paths can be in opposite directions
and are hence expensive to connect. One algorithm that can handle asymmet-
ric distances is nearest neighbour. It gives an 1.28-approximation in 1.9 seconds.
Another algorithm that also works for asymmetric graphs is 3-Opt in 6.6 seconds
3-Opt gives an 1.18-approximation.

One can construct a symmetric counterpart to an asymmetric graph. Replace
each node vi by v+

i and v−i . An edge (vj , vi) is replaced by (v−j , v+
i ) were d(v−j , v+

i ) =

d(vj , vi) and the edge (vi, vj) is replaced by (v−i , v+
j ) where d(v−i , v+

j ) = d(vi, vj).

Let d(v+
i , v−i ) = −∞ and all other edges has weight ∞ (implemented as a large

number). This construction might cause problems because of the large edge weights,
nonpositive weights, loss of triangle inequality and also increases the number of
nodes but it is solvable with some algorithms for symmetric TSP. Making the
graph symmetric and then use the algorithm Helsgaun gives in 318 seconds an
1.01-approximation.

The algorithm by Frieze et al. was also tested. Even though it is the only al-
gorithm with a proven upper bound, an algorithm which builds only one cycle cover
and then patches the cycles together was both faster and gave a better approxim-
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ation for all testbeds. In 2.9 seconds the algorithm with one cycle cover gave an
1.18-approximation.

1.5 Variants of TSP

Many other variants of TSP have been studied. In Max-TSP or informally the
“taxicab ripoff problem” the maximum TSP tour is sought. If the edges are al-
lowed to have negative weights it is the same problem as minimum TSP. In most
cases though only non-negative edge weights are allowed, in which case it is easier
to approximate than minimum TSP and there is an approximation algorithm by
Kosaraju et al. [24] which gives a TSP tour of length at least 38/63 times the
maximum tour.

Group-TSP or TSP with neighbourhood is when a salesman wants to visit n cus-
tomer and the customer can move within a neighbourhood. Safra and Schwartz [29]
give some lower bounds for Group-TSP with restricted distances.

Price collecting TSP is when a visit to a city gives a price reward. The goal
can be to collect a certain amount of money and to minimise the travelled distance.
Or there is a limitation of the distance and the goal is to maximise the collected
money. The problems have in common that the goal is to choose a subset of the
nodes and to find an certain ordering of the selected nodes. Balas gives in [4] a
summary over problems and results in this category.

TSP with multiple salesmen or k-TSP is the problem when k salesmen shall
visit n cities, all staring and ending in the same city [28].

In practice there can be time restrictions. A city must be visited within a certain
time interval [2], or the sheet where holes are drilled is moving so the distances
depend on time [14].

1.6 Results in the Thesis

Most results concern asymmetric TSP in one way or another. Chapter 2 shows a
worst case performance of the approximation algorithm of asymmetric TSP with
triangle inequality by Frieze et al. [12]. Their analysis of the algorithm gives a
upper bound. We construct a family of worst case graphs for the algorithm with
the following assumptions on the algorithm:

1. The first node in every cycle is chosen for the subgraph.
2. The shortcuts are made in a certain specific order.

We show that the analysis is tight up to a constant factor. This section is based
on the paper [25]. Then we construct a family of graphs which obeys an expected
worst case performance with the following weaker assumptions:

1. A random node in every cycle is chosen for the subgraph.
2. The shortcuts are made by a depth-first search.



1.7. ACKNOWLEDGEMENT 7

but get a worse constant.
Both the algorithm by Christofides for symmetric TSP and the algorithm by

Frieze et al. for asymmetric graphs, find an Eulerian graph and produce a TSP tour
by shortcuts. In an asymmetric graph one Eulerian subgraph is the spanning cactus.
Is it possible to find a spanning cactus with less weight than the one produced by
Frieze et al.? Chapter 3 is based on the article [26] and shows that determine
if there is a spanning cactus in a general asymmetric graph is NP-complete and
that finding the minimum spanning cactus in a complete graph is polynomial time
equivalent to TSP and they have the same hardness in approximation.

In Chapter 4 we investigate some correlations between TSP in an asymmetric
graph and TSP in a bipartite graph. This work was done together with Lars
Engebretsen and my contribution to the results in this chapter is approximately
50%.

In [15] Hartvigsen claim that finding a perfect 2-matching without 6-factors in
a bipartite graph is NP-complete. To our knowledge, no proof has been published.
We give a proof in Chapter 5.

A new problem is the Betweenness problem on the circle. In Chapter 6 we show
that it is NP-complete and give an approximation algorithm.
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Chapter 2

Worst Case Performance of the

Approximation Algorithm by

Frieze et al. for Asymmetric TSP

In 1982 Frieze, Galbiati and Maffioli (Networks 12:23-39) published their famous
algorithm for approximating the TSP tour in an asymmetric graph with triangle
inequality. They show that the algorithm approximates the TSP tour within a
factor of log2 n. We construct a family of graphs for which the algorithm (with some
implementation details specified by us) gives an approximation which is log2 n/(2+
o(1)) times the optimum solution. We also relax the assumptions of the algorithm
and show an expected worst case preformance, but the constant is worse in this case.
This shows that the analysis by Frieze et al. is tight up to a constant factor and can
hopefully give deeper understanding of the problem and new ideas in developing
an improved approximation algorithm.

2.1 Introduction

The Travelling Salesman Problem (TSP) is one of the most famous and well-studied
combinatorial optimisation problems.

Definition 1 The (Asymmetric) TSP is the following minimisation problem: Given
a collection of cities and a matrix whose entries are interpreted as the non-negative
distance from a city to another, find the shortest tour starting and ending in the
same city and visiting every city exactly once.

TSP was proven to be NP-hard already by Karp [22] in 1972. This means that
an efficient algorithm for TSP is highly unlikely; hence it is interesting to investigate
algorithms that compute approximate solutions. However Sahni and Gonzalez [30]
showed that in the case of general distance functions it is NP-hard to find a tour
with length within exponential factors of the optimum, this is true even if the

9
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graph is restricted to being symmetric. When the distance function is symmetric
and constrained to satisfy the triangle inequality the best known approximation
algorithm is a factor 3/2-approximation algorithm due to Christofides [7]. With a
c-approximation algorithm we mean a polynomial time algorithm that outputs a
tour with weight at most c times the optimum weight.

We will study the case when the distance function satisfies the triangle inequality
but is not limited to being symmetric. This case is much less understood. In 1982
Frieze, Galbiati and Maffioli [12] invented their famous algorithm for asymmetric
graphs with triangle inequality, which approximates the TSP tour within a factor of
log2 n. There is only a small lower bound: Papadimitriou and Vempala [27] recently
proved that it is NP-hard to approximate the minimum TSP tour within a factor
less than 220/219−ǫ, for any constant ǫ > 0. Obviously, huge improvements can be
done either on a better algorithm or a tighter lower bound. Despite a lot of effort
during the last twenty years there have only been two algorithmic improvements,
both very recent. The first by Bläser was announced in 2003 [5]. He improves the
algorithm by Frieze et al. and proves a factor 0.999 · log2 n. The second algorithm
by Kaplan, Lewenstein, Shafrir and Sviridenko [21] decomposes multigraphs and
gives an approximation of 3/4 log3 n < 0.842 log2 n. Hence, any new insight re-
garding the asymmetric TSP is important. One way to achieve such insight is to
identify potential “hard” instances for the known approximation algorithms. The
algorithms by Bläser and by Kaplan et al. are more complicated than the original
algorithm due to Frieze et al. and are hence more difficult to understand. Therefore,
we study the original algorithm in this paper. By constructing an explicit family
of graphs we establish that the analysis of the algorithm is tight up to a constant
factor (Theorem 1 and 2).

The main idea of the algorithm by Freize et al. is: Find a minimum cycle cover
in the graph by linear programming. Choose one node in every cycle and form a
subgraph with the same distance function as in the original graph. Find a minimum
cycle cover in the subgraph. Continue iteratively until there is only one cycle in the
cycle cover. The union of the cycle covers form an Eulerian graph. Replace edges
in the union with a shortcut edge to obtain a TSP tour. Since the graph respects
the triangle inequality the TSP tour has weight less than or equal to the the sum
of the cycle covers. First we construct a family H of graphs which have a worst
case performance of the algorithm by Frieze et al. with the following assumptions
on the algorithm;

1. The first node in every cycle is chosen for the subgraph.
2. The shortcuts are made in a certain specific order.

This shows that the analysis of the algorithm by Frieze et al. is tight and our
first main result is:

Theorem 1 For every ǫ (0 < ǫ < 1/n), there exists a family G of graphs, Gn,
such that the approximation algorithm by Frieze et al. [12] with our deterministic
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specifications, gives a TSP tour, T such that

T

opt(Gn)
>

log2 n

2 + 2ǫ

Then we have constructed a family, G, of graphs which obeys an expected worst
case performance with the following weaker assumptions:

1. A random node in every cycle is chosen for the subgraph.
2. The shortcuts are made by a depth-first search.

With these assumptions the expected weight of the TSP tour is proportional to
log n · opt(Gn) but the constant is worse than before. The spanning cactus is heavy
regardless of the choice of node in the subgraph. The first assumption is needed for
the expected length of the TSP tour. The second assumption that the shortcuts
are made by a depth-first search is a fast and natural implementation and is also
needed for the lower bound of the length of the TSP tour.

Theorem 2 There exists a family, G, of graphs, Gn, such that the approximation
algorithm by Frieze et al. [12] with random choices gives a TSP tour with expected
weight

Ω(opt(Gn) log n)

Both constructions are symmetric graphs and they can easily be approximated
by the algorithm by Christofides. For the first construction we give as a corollary
a family of asymmetric graphs which also have weight respective expected weight
of the TSP tour proportional to opt(Ga

n) log n. For asymmetric graphs Frieze et
al. [12] give another data dependent algorithm which gives a 3α/2-approximation
of the TSP tour, where α is the maximum ratio of d(vi, vj)/d(vj , vi) for vi, vj ∈ V ,
vi 6= vj . The idea of the algorithm is to make the graph symmetric and then use the
algorithm for symmetric graphs by Christofides [7]. We will not show a worst case
behaviour of this algorithm, but the family of asymmetric graphs is not guaranteed
to be well-approximated by the data dependent algorithm.

Some terminology

All graphs in this chapter have n = 2m nodes placed in a circle. When an algorithm
operates on an arbitrary node the ordering is modulo n. For example the node
before v0 is vn−1 and v0 = vn. An interval of node-indexes [a, b] represents, if
a < b all numbers a ≤ i ≤ b and if b < a the numbers [a, n − 1] ∪ [0, b]. The

length of an interval is if a < b d[va, vb] =
∑i<b

i=a d(vi, vi+1) and if a > b d[va, vb] =
∑i<n

i=a d(vi, vi+1) +
∑i<b

i=0 d(vi, vi+1).
We often discuss parts of graphs; we therefore introduce some terms describing

such parts. By cycle we mean simple cycle and a cycle is denoted by the nodes in
it written in the cycle order. For example c = (v1, v2, v3) is the directed cycle from
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v1 to v2 to v3 and back to v3. Sometimes we do not know which index the nodes
have on the circle, then a cycle i is denoted Ci = (vi1 , vi2 , vi3) and ij is a symbol
for the index on the circle. The weight of a cycle w(C) =

∑

e∈C d(e) is the sum of
the weight of the edges in the cycle.

Definition 2 A directed cactus is a strongly connected, asymmetric graph where
each edge is contained in at most (and thus, in exactly) one simple directed cycle
[31]. A spanning cactus for an asymmetric graph G is a subgraph of G that is a
directed cactus and connects all vertices in G.

The weight of a cactus w(K) =
∑

e∈K d(e) is the sum of the weight of the edges
in the cactus. Throughout the paper, T is a TSP tour, opt(G) is the weight of the
minimum TSP tour in the graph G, and C is a cycle, K is a cactus and K is a set
of cacti.

Given a strongly connected graph, G = (V, E) with weighted edges, we define
the distance between two nodes, d(vi, vj), as the weight of the shortest path in G
from vi to vj . This distance function clearly obeys the triangle inequality.

2.2 The Approximation Algorithm

An intuitive description of the approximation algorithm by Frieze et al. [12] is given
in the introduction. Their description of the algorithm, is given in this section.

The main algorithm is ATSP; it calls the procedure ASSIGN which returns a
minimum cycle cover and the procedure TOUR which makes the shortcuts.

Procedure ASSIGN(G, D)

Input: A graph G = (V, E)
A cost function D : E → Q+

Output: A cycle cover C ⊂ E
The procedure finds a set C ⊂ E of minimum cost such that every node in V has

in and out degree equal to one.

For the next procedure we need some notations: In a spanning cactus K the
following holds for every node v ∈ V :

1. indegree(v) = outdegree(v) = deg(v)

2. the removal of node v from K leaves deg(v) connected components

Remark 1 Frieze et al. make the observation that these properties imply that for
each connected component Ki obtained by removing v there exists nodes ui, wi ∈ Ki

such that (ui, v) and (v, wi) are in K.



2.2. THE APPROXIMATION ALGORITHM 13

Procedure TOUR(G, K)

Input: A graph G = (V, E)
A spanning cactus K ⊂ E

Output: A TSP tour K
begin

while there exists a node v ∈ V with deg(v) > 1 do
begin

K ← K ∪ (u1, w2)*;
K ← K \ {(u1, v), (v, w2)};

end
end

* Remark 1

Procedure ATSP(G0,D0)

Input: A graph G0 = (V, E)
A cost function D0 : E → Q+

Output: A TSP tour T
begin
1 K ← ∅;
2 D ← D0;
3 G← G0;
4 k← 2;
5 while k 6= 1 do
6 begin
7 {C1, C2, ..., Ch} ← ASSIGN(G, D);
8 V ← ∅;
9 for i = 1 until h do
10 begin
11 choose* a node vi of Ci;
12 V ← V ∪ {vi};
13 K ← K ∪ {Ci};
14 end
15 Let G be the complete subgraph of G0 induced by V and

D the induced cost matrix of G;
16 k← h;
17 end
18 T ← TOUR(G0, K);
19 return T ;
end

In the last iteration the single node in V is the root of the cactus. To get an
upper bound on their algorithm Frieze et al. make the following analysis: In the
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worst case all cycles in the cycle cover have length two, hence at most ⌊log2 n⌋ cycle
covers are produced. The weight of every cycle cover is less than or equal to opt(G).
Thus the spanning cactus formed by the union of the cycle covers has weight at
most opt(G) · log2 n. Since the graph obeys the triangle inequality the TSP tour
found from the spanning cactus is shorter than or equal to opt(G) · log2 n.

2.3 Deterministic Assumptions on the Algorithm

Specification of the Approximation Algorithm

In order to analyse the algorithm we need to specify the arbitrary choices in the
description by Frieze et al.:

1. An arbitrary node from every cycle in a cycle cover is chosen to be in the
next subgraph (row 11 in DTSP). We choose the node with lowest index.

2. The shortcuts made to transform the spanning cactus to a TSP tour in the
procedure TOUR are in arbitrary order. We use our procedure SHORTCUT
below which makes the shortcuts in a specific order.

SHORTCUT(G, K, r) DEPTH-FIRST(G, K, r, s)
Input: A graph G = (V, E) Input: A graph G = (V, E)

A cactus K ⊂ E A cactus K ⊂ E
The root node r A root node r

The present node s
Output: A TSP tour P Output: The last node added
begin begin

global P ← ∅; t← s, U ← U ∪ {s};
global set of visited nodes U ← ∅; for all* (s, v) ∈ K : v /∈ U do
t← DEPTH-FIRST (G, K, r, r); P ← P ∪ (t, v);
P ← P ∪ (t, r); t← DEPTH-FIRST(G, K, r, v);
return P ; end

end return t;
end

* The edges e = (s, vi) ∈ K are selected in decreasing order first with respect
to lr(e) and then with respect to index i.

The algorithm with these specifications is called DTSPS.

Notations and conventions

Definition 3 For an m-bit integer x the we define the function

zm(x) = max{k ∈ Zm | 2k divides x}
In particular zm(0) = m− 1 since all numbers divide zero.
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In words, zm(i) is, for i 6= 0, the position of the least significant non-zero bit in
the binary representation of i.

Definition 4 A cycle cover for a directed graph G = (V, E) is a subgraph of G
such that for each node v ∈ V , indegree(v) = outdegree(v) = 1. A cycle cover
where every cycle has exactly two nodes is called a 2-cover.

Definition 5 Given a directed cactus K and a root node r we define for a simple
cycle C ∈ K a function lr(C) in the following way: If r ∈ C then lr(C) = 1. The
rest of the function values are defined iteratively. For a cycle C with lr(C) = j a
cycle C′ without function value, connected to C gets lr(C

′) = j +1. Since the graph
is a cactus the function value is unique. For every edge e in the cycle C we define
with a slight abuse of notation lr(e) = lr(C). For a node in the graph we define

lr(r) = 0
lr(s) = min{lr(e)|e incident to s}

The level function defines a partial order of the cycles in the cactus.

Definition 6 For a cactus K, a root node r and an edge e, let Ce be the cycle
containing e and the subcactus BK,r,e be the the connected component containing e
in

Ce ∪ (
⋃

lr(C)>lr(Ce)

C)

The union of all such subcacti starting in a node s is defined by

BK,r,s =
⋃

e incident to s
lr(e) > lr(s)

BK,r,e

The complete graph with nodes in the subcactus BK,r,s is denoted KK,r,s.

The last definition is analogus to a subtree.

Analysis of SHORTCUT

A straightforward analysis shows that the tour produced by the procedure SHORT-
CUT is a TSP tour. Since the algorithm is independent of the distance function
this TSP tour only depends on the structure of the spanning cactus. A comparison
with the original algorithm by Frieze et al. shows the following:

Lemma 1 The TSP tour produced by SHORTCUT on a spanning cactus can be
produced by the algorithm by Frieze et al. on the same graph.
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Proof 1 In the algorithm by Frieze et al. the procedure TOUR transforms the
spanning cactus into a TSP tour. We prove that SHORTCUT can be simulated by
TOUR.

Let K be the initial cactus. The procedure SHORTCUT repeatedly adds edges
to a TSP tour P . TOUR stepwise adds and removes edges to the cactus. When
simulating SHORTCUT with TOUR let T denote the edges in the cactus at the
current step. Initially T = K and P = ∅ and our task is to prove that in the end
T = P with a certain order of the shortcuts in TOUR.

Claim: Given a complete graph G, a spanning cactus K with root in node r
DEPTH-FIRST(G, K, r, r) repeatedly adds nodes to a simple path P starting in r
and returns the last node t in the path. The path P connects all nodes in the graph.
This process can be simulated by TOUR in such a way that if K = T before any step
in TOUR, the order of the shortcuts can be chosen such that the set T , when the
simulation is finished, has the following properties: (t, r) /∈ P and P ∪ (t, r) = T .

If the claim is true we get the following: The procedure SHORTCUT calls
DEPTH-FIRST with start node r. Then K = T and P = ∅. By the claim DEPTH-
FIRST adds nodes to P which is a simple path connecting all nodes in K, starting
in r and ending in t. The order of shortcuts in TOUR can be chosen such that
T = P ∪ (t, r). In the next step in SHORTCUT P ← P ∪ (t, r) and P is the final
TSP cycle. Now P = T and both procedures have returned the same TSP tour.

The proof of the claim is by induction on the number of cycles in the cactus.
Figure 2.1 shows some of the cases we have to cover in the proof. For a cactus with
one cycle T = K = S = (r, v1, ..., vk) DEPTH-FIRST adds all but the last edge to
P and returns t = vk. Since T = P ∪ (vk, r) the claim holds.

Assume that the claim is true for every cactus with less than n cycles and con-
sider what happens when K in the claim is a cactus with n cycles: If there are
several cycles connected to r all edges ei = (r, vi), i = 1, ..., k have the same lr.

Calling DEPTH-FIRST(G, K, r, r) is the same as calling DEPTH-FIRST(G ∩
KK,r,ei

, BK,r,ei
, r, r) for all i and gluing the paths together. Since K is a cactus

every BK,r,ei
is a cactus with less than n cycles not connected to any other part

of the graph. By assumption DEPTH-FIRST connects every node in KK,r,ei
with

a path Pi starting in r and returns a last node t. The shortcuts in TOUR can
by assumption be chosen such that T ∩ KK,r,ei

= (P ∪ (t, r)) ∩ KK,r,ei
. The same

holds for every subcactus BK,r,ei
. All paths Pi can be glued together such that

P = (∪iPi \ ∪i>1(r, vi)) ∪i<k (ti, vi+1). For 1 ≤ i < k (r, vi+1) ∈ T and (ti, r) ∈ T
therefore TOUR can replace (ti, r), (r, vi+1) with (t, vi+1) in T and the claim is true
for this cactus as well.

If the root r has in- and out-degree one it is in a directed cycle S = (r, v1, ..., vk)
and T = K (Figure 2.1); in particular (vk, r) ∈ T . If a node vi ∈ S is not connected
to any other cycle than S, DEPTH-FIRST adds the edge (vi, vi+1) to P . Since the
edge is in T no shortcuts are made by TOUR when simulating DEPTH-FIRST. If
a node vi is connected to other cycles than S, calling DEPTH-FIRST(G, K, r, vi)
is the same thing as calling DEPTH-FIRST(G ∩ KK,r,vi

, BK,r,vi
, vi, vi), gluing the

paths together and then continue with the edge in the cycle S. This is true since;
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K is a cactus and therefore the subcactus BK,r,vi
is a cactus with less than n cycles

not connected to any other part of the graph. The relative order of the cycles in
this subcactus is the same if vi or r is the root. DEPTH-FIRST chooses edges with
respect to lr(e) and therefore the edges in the subcactus BK,r,vi

are chosen first. By
assumption DEPTH-FIRST connects all nodes in KK,r,vi

with a path starting in
vi and ending in t. By the same assumption TOUR can add and remove edges in
T such that (P ∪ (t, vi)) ∩ KK,r,vi

= T ∩ KK,r,vi
. When DEPTH-FIRST continue

with the edge (vi, vi+1) ∈ S P ← P ∪ (t, vi+1). Since (vi, vi+1) ∈ T TOUR can
perform T ← (T \ {(t, vi), (vi, vi+1)}) ∪ (t, vi+1). At the last node vk in the circle
S the recursion in DEPTH-FIRST halts since the next node r is visited. If vk

was not connected to any other cycle than S, t = vk and the claim holds. If vk

was connected to other cycles there is an edge (t, vk) ∈ T and TOUR can replace
{(t, vk), (vk, r)} with (t, r) in T and the claim also holds.

Preliminary construction

In this section we construct a simple family of graphs to illustrate the algorithm
by Frieze et al. and the main ideas of the worst case performance. Most proofs are
omitted and the purpose of the example is to give an intuitive understanding. Since
the graphs are symmetric they can be approximated within 3/2 by the algorithm
due to Christofides [7].

Constructing the graph

The distance function is induced by a graph (Fig. 2.2a) defined as follows:

Definition 7 The distance function, d1
n(vi, vj), is induced by an undirected graph

with n = 2m nodes arranged in a circle. Adjacent nodes are connected by edges of
weight one and there are no other edges in the graph.

Definition 8 Let G1
n be a complete, directed graph with n = 2m nodes and the

distance function d1
n(vi, vj).

The distance between two nodes in G1
n is the difference in index; d1

n(vi, vj) =
min{|i − j|, n − |i − j|}. The edges are directed even though they have the same
distance in both directions. The minimum TSP tour is of course to traverse the
nodes in clock-wise order (or counter-clock-wise) and opt(G1

n) = n.

The spanning cactus

The algorithm by Frieze et al. recursively finds a minimum cycle cover in the graph.
In a complete, asymmetric graph, the union of all cycle covers recursively produced
by the algorithm forms a spanning cactus.

To get an intuitive understanding of the algorithm DTSPS and the worst case
behaviour of G1

n we use a graph with n = 24 = 16 nodes as an example (Fig. 2.2a).
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r

vkv1

v2

r

vkv1

v2

t

Figure 2.1: Left (a): A cactus with root r, the ellipsis symbolize parts of the
directed cactus. Right (b): After simulating DEPTH-FIRST: Solid edges are
edges added to the simple path P and t is the last node in P .

In the first recursion the minimum cycle cover can consist of one large cycle or
eight of weight two. Both have total weight 16. Assume that the 2-cover is chosen.
Choose the first node in every cycle to be in the set of nodes for the next recursion.
In our example this gives the nodes with even index. Now the shortest distance
between any nodes in the subgraph G is two. Again the procedure can return one
large cycle or four cycles of weight four. Both have the total weight 16 and we
assume that the 2-cover is returned. Proceed in the same way until there is just
one cycle in the cycle cover. The union of all 2-covers is called a W-cactus.
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Figure 2.2: Left (a): The graph inducing the distance function, d1
16(vi, vj). All

edges have weight one. Right (b): The Worst Case Spanning Cactus (W-cactus)
in the graph G1

16. Each 2-cycle is symbolised with an edge.

Definition 9 For a graph G with n = 2m nodes a Worst Case Spanning Cactus or
a W-cactus is a subgraph of G such that E = {(vi, vi−2k), (vi−2k , vi) : zm(i) = k}.

For n = 16 nodes the W-cactus looks like in Fig. 2.2b. It can be seen that a
W-cactus in G1

n has weight n log n.

Lemma 2 For a W-cactus, K, in a graph G with n = 2m nodes and an node s = vi

the procedure DEPTH-FIRST returns vi if i is odd and vi+1 if i is even.

Proof 2 Every node vi in a W-cactus with odd index, i.e., such that zm(i) = 0,
is by Definition 9 in exactly one cycle (vi, vi−1). Every node vi in a W-cactus
with even index, i.e., such that zm(i) = k ≥ 1, is in least two cycles (vi, vi+1) and
(vi, vi−2k). When DEPTH-FIRST is called with an odd node s = vi as input there
is no other cycle (s, v) ∈ K and the procedure returns t = s. If the input node s = vi

is even there may be several cycles (s, v) ∈ K but the one with smallest difference
in index is (vi, vi+1) and it is the last cycle selected in the loop. The node vi+1 /∈ U
since there is just one cycle connecting the odd node vi+1 with the rest of the cactus.
After the recursive call to DEPTH-FIRST t ← vi+1. Hence the procedure returns
t = vi+1 in this case.

To make the notation in some proofs clear we need the following definition:

Definition 10 For the algorithm DTSPS and the graph Gn = Gn,0 with n nodes,
the subgraph remaining after the first cycle cover is found is denoted by Gn,1 and
the subgraph remaining after the i:th recursion is denoted by Gn,i.
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Since every cycle in the cycle cover is a 2-cycle of edges with equal weight, we
visualize every 2-cycle as an undirected weighted edge. The union of the cycle
covers can with this view be seen as a spanning, undirected tree. Since every node
is in at least one cycle the tree is spanning and by the construction the cover is
cycle-free. The view of the spanning cactus as a spanning tree directly gives that a
W-cactus has n− 1 cycles.

The TSP tour

We proceed by analysing SHORTCUT. The procedure takes a spanning cactus and
returnes a TSP tour. It is independent of the distance function and only considers
the structure of the spanning cactus. Again we use the graph G1

16 as an example
to describe the procedure and the spanning cactus is a W-cactus. The procedure
starts at node v0. After some recursive calls to DEPTH-FIRST the graph will look
like Fig. 2.3(a).
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Figure 2.3: Left (a): The TSP tour after some steps with the procedure SHORT-
CUT on a W-cactus with n = 24 = 16 nodes. Undirected edges represent 2-cycles
in the W-cactus and arrows represent edges in the TSP tour. Right (b): The
graph inducing the distance function d16(vi, vj). For simplicity weights equal to
one are omitted.

It can be seen that the TSP tour produced by DTSPS with the assumtion that
small cycles are prefered in the cycle cover, on the graph G1

n, has weight larger than
1
2n log2 n. Since the optimum TSP tour has length n, this gives an approximation
in Ω(log n).
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The final construction

In this section we construct the family of graphs that gives the worst case preform-
ance of the algorithm DTSPS. The graphs in the previous section have two main
disadvantages: That they are symmetric and hence can be approximated by the
algorithm due to Christofides and that the minimal cycle cover is not unique. The
graphs defined in this section do not have these disadvantages.

Figure 2.3(b) shows a graph defined as follows:

Definition 11 The distance function, dn(vi, vj), is induced by a graph GD
n with

n = 2m nodes arranged in a circle. Edges (vi−1, vi) in GD
n have weight w(vi−1, vi) =

1 + zm(i)ǫ where 0 < ǫ < 1/n. Edges (vi, vi−2k) in GD
n with zm(i) = k < m − 1

have weight w(vi, vi−2k) = 2k + (2k − 1)ǫ.

Definition 12 Let H be a family of complete, asymmetric graphs, Gn, where Gn

has n = 2m nodes and distance function dn(vi, vj).

The next lemma shows that the graph GD
n , inducing the distance function, obeys

the triangle inequality. Hence the distance between vi and vj in Gn is equivalent
to the edge weight of (vi, vj) in GD

n whenever such an edge weight is specified in
Definition 11. In fact, it also holds that d(vi, vi−2k) = 2k + (2k − 1)ǫ even when
zm(i) = k = m− 1. We use this in several proofs below.

Lemma 3 If there is an edge (vi, vj) in the graph GD
n then the shortest path in

GD
n from vi to vj is dn(vi, vj).

Proof 3 Look at the edges (vi, vi±1). The largest edge has weight < 2, d(vn−1, v0) =
1 + zm(0)ǫ = 1 + (m − 1) 1

m < 2. A path over at least two edges has length larger
than two (since the shortest edge has weight one). Hence the edge is always the
shortest path.

An edge (vi, vi−2k), zm(i) = k has length 2k + (2k − 1)ǫ. There are two ways
to get from vi to vi−2k in GD

n . One is clockwise around the circle and the path is
2m + (2m − 2)ǫ − (2k + (2k − 1)ǫ) ≥ 2k + (2k − 1)ǫ since k < m. The other is
to use another edge (vi, vi−2k′ ) with k′ > k. But that edge has length larger than

2k + (2k − 1)ǫ and thus the shortest path from vi to vi−2k is the edge (vi, vi−2k).

Lemma 4 In a graph Gn ∈ H, the maximum ratio, α, of edges in different direc-
tions is greater than n/2 if ǫ < log2 n and n ≥ 4.

Proof 4 The edge (vn−1, v0) has by Definition 11 and Lemma 3 length 1+ǫ(m−1).
The edge (v0, vn−1) has length 2m − 1 + (2m − (m))ǫ since the shortest path in GD

n

is clockwise around the circle. Thus the ratio is

2m − 1 + ǫ(2m −m)

1 + ǫ(m− 1)
>

n− 1 + 2m/m− 1

2
=

n− 2 + 2m/m

2
≥ n

2

if m ≥ 2 and ǫ < 1/ log2 n
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The graph is clearly asymmetric and by Lemma 4 the maximum ratio between
edges in different directions is linear in n. Frieze et al. show in their analysis of their
data dependent algorithm that the approximation is in O(α). Hence, a graph Gn

at least is not proven to be easily approximated by the data dependent algorithm.

Lemma 5 In a graph Gn ∈ H the optimum TSP tour has weight n + (n− 2)ǫ.

Proof 5 The minimum TSP tour, opt(Gn), is to traverse the nodes in clockwise
order. Every edge has weight at least one which gives a weight of n. The “extra”
weight is

log2 n
∑

i=1

(
nǫ

2i
)− ǫ = nǫ(

log2 n
∑

i=1

(
1

2i
))− ǫ = (n− 2)ǫ

and the total weight is n + (n− 2)ǫ.
Is the tour minimal? There are n edges in Gn of weight one. Only half of them

can be in a TSP tour since they have opposite direction. There are n/2 edges of
weight less than two, all induced edges have length greater than 2. The TSP tour
consists of the n shortest edges possible in a TSP tour and is hence minimal.

For the following two lemmas we need a simpler distance function (Figure 2.3):

Definition 13 The distance function dS
n(vi, vj) is induced by a symmetric graph

GDS
n with n = 2m nodes arranged in a circle. Adjacent nodes are connected by

an edge. The weight of an edge is w(vi−1, vi) = 1 + zm(i)ǫ where 0 < ǫ < 1/n.
Let GS

n be a complete, directed graph with n = 2m nodes and the distance function
dS

n(vi, vj).

The distance function in GS
n is a “symmetrised” version of the distance function

in Gn. The distance of (vi, vi−1) in GDS
n is equal to the minimum of the weights of

(vi, vi−1) and (vi−1, vi) in GD
n (non-existent edges in GD

n are here given weight∞).
Edges (vi, vi−2k) in GS

n with zm(i) = k < m−1 are assigned to the induced distance
d(vi, vi−2k) = 2k + (2k− 1)ǫ which is the minimum of the weights of (vi, vi−2k) and
(vi−2k , vi) in GD

n . Hence edges in GS
n are equal to or shorter than edges in Gn. If a

cycle cover is minimal in GS
n and all edges in the cycle cover have the same distance

in GS
n and in Gn then the cycle cover is minimal in Gn as well.

Lemma 6 For j < m and n = 2m it holds in GS
n that d(vi−2j , vi) = 2j + ǫ · (2j −

1 + zm(i ≫ j)). Here ≫ denotes a bitwise shift to the right padded with zeros on
the left, i.e., i≫ j = ⌊i · 2−j⌋

Proof 6 Consider the edge (vi−2j , vi) in GS
n . The path of edges [i− 2j, i] in GDS

n

has weight

d(vi−2j , vi) =
i

∑

t=i−2j+1

(1 + zm(t)ǫ) = 2j + ǫ ·
i

∑

t=i−2j+1

zm(t)
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Figure 2.4: The graph GDS
16 inducing the distance function dS

n(vi, vj). For simplicity
weights equal to one are omitted.

When the j least significant bits in t are zero zm(t) = zm(t≫ j)+j. The remaining
terms sum up to

2j
−1

∑

t=1

zm(t) = 2j − 1− j

If j = m− 1 the path [i, i− 2j ] has equal weight to the path [i− 2j , i]. If j < m− 1
the path [i, i − 2j ] has weight larger than 2m−1. Since ǫ < 1/n this is larger than
the weight of the path [i− 2j , i]. Hence the path [i− 2j , i] is minimal and therefore
induces the distance between vi−2j and vi in GS

n.

An edge (vi−2j , vi) with fixed value of j has minimum distance if it is in the
W-cactus since edges in the W-cactus has zm(i) = j which gives zm(i≫ j) = 0 in
the lemma above.

Lemma 7 In the graph Gn ∈ H the algorithm DTSPS produces a W-cactus as
spanning cactus and it has weight at least n log2 n.

Proof 7 First we show by induction that a minimum cycle cover in GS
n is a W-

cactus and has the desired weight. Then we show that the same cover exists in
Gn. In the beginning GS

n,0 consists of all n nodes vi and zm(i) ≥ 0. Every other
edge has length one and every other edge has at least one extra ǫ-distance added
and the 2-cover is the unique minimal cycle cover. The edged in the cycles are
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(vi, vi−20), (vi−20 , vi) and the index i is odd or zm(i) = 0. If the first node in every
cycle is put in the subgraph, GS

n,1 consists of nodes vi with even index i : zm(i) ≥ 1.

Suppose GS
n,j consists of all nodes vi with zm(i) ≥ j and that the cycle covers in

GS
n,r for r < j form a subgraph of the W-cactus. Every other edge has by Lemma 6

distance 2j + (2j − 1)ǫ and every other has by at least one extra ǫ-distance added.
The 2-cover is minimal. Select the first node in every cycle to be in GS

n,j+1. Then

the cycle cover in GS
n,j is a subgraph of the W-cactus and nodes vi in GS

n,j+1 have
zm(i) ≥ j +1. By induction the 2-cover is minimal for every subgraph and it forms
a W-cactus.

If there were no ǫ-weights the cactus would have weight n log2 n. Since all edges
in the minimum cycle cover have the same weight in Gn the W-cactus is a minimum
cycle cover in Gn as well.

Now we have a W-cactus as spanning cactus. The procedure SHORTCUT makes
a TSP tour from the cactus.

Lemma 8 In the graph Gnin the family H the approximation algorithm DTSPS
gives a TSP tour of weight greater than (n log2 n)/2.

Proof 8 For a graph Gn the procedure DTSPS gives by Lemma 7 a W-cactus with
weight greater than n log n as spanning cactus. The procedure SHORTCUT does
not depend on the distance function. Hence if the spanning cactus is a W-cactus
SHORTCUT will always return the same TSP tour. We show that the TSP tour
in GS

n with a W-cactus as spanning cactus has the desired weight and since every
edge in Gn has at least the same weight as in GS

n the TSP tour in Gn must have
at least the same weight.

From the proof of Lemma 7 the algorithm DTSPS given GS
n , produces a W-

cactus of weight greater than n log2 n. To show that the TSP tour produced by the
algorithm has weight larger than half the weight of the W-cactus, we construct an
injective function from the cycles in the cactus to the edges in the TSP tour such
that each edge in the TSP tour has higher or equal distance than the longest edge
in the corresponding cycle.

A cycle in the W-cactus (vi, vj) is mapped to an edge (vt, vj) in the TSP tour
such that either t = i or t = j+(j−i)+1. The value of t is determined by the order
in which edges are added to the TSP tour in SHORTCUT. Suppose DEPTH-FIRST
is called with some even node s. The first cycle (s, v) ∈ K processed in the loop is
mapped to the edge (s, v). For the remaining iterations in the loop, the cycle (s, v)
is mapped to the edge (t, v) where t was obtained from the call to DEPTH-FIRST
in the previus iteration of the loop.

The mapping is obviously injective since DEPTH-FIRST visits every node ex-
actly once. The first cycle is mapped to one edge in the cycle. If there are several
cycles (s, v) ∈ K in DEPTH-FIRST, s is even. Consider the cycle (vi, vj) =
(vi, vi+2k) which is not the first cycle chosen. The node v = vi+2k+1 was sent to
DEPTH-FIRST in the previous recursion. Since i + 2k+1 is even t← i + 2k+1 + 1
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was returned by Lemma 2. Hence, the cycle is mapped to the edge (vt, vj) =
(vi+2k+1+1, vi+2k). The difference between the indices of the nodes in this edge
is min{|t− j|, n− |t− j|} = 2k +1 which is greater than the corresponding differnce
for the cycle (vi, vj) since min{|i− j|, n−|i− j|} = 2k. Therefore Lemma 6 implies
that d(vt, vj) ≥ d(vi, vj).

Thus for every cycle there is an associated edge with length at least as high as
the edges in the cycle and the TSP tour has weight at least half of the W-cactus in
GS

n.

By combining Lemma 8 and Lemma 5 we have proved Theorem 1.

2.4 Random Assumption on the Algorithm

Specification of the Approximation Algorithm

In order to analyse the algorithm we need to specify the arbitrary choices in the
description by Frieze et al.:

1. An arbitrary node from every cycle in a cycle cover is chosen to be in the next
subgraph (row 11 in ATSP). Choose the node randomly with equal probability
for each node in the cycle.

2. The shortcuts made to transform the spanning cactus to a TSP tour in the
procedure TOUR are in arbitrary order. Make the shortcuts by a depth-first
search starting from the root of the cactus.

Constructing the graph

In this section we construct the family of symmetric graphs which has a worst case
performance of the cycle covers produced by the algorithm ATSP.

Definition 14 The distance function, dn(vi, vj), is induced by an undirected graph
with n = 2m nodes arranged in a circle. Adjacent nodes are connected and there
are no other edges in the graph. The weight of an edge w(vi, vi+1) = 1 + 2iǫ with
0 ≤ i < m and ǫ < 1/22n and w(vi, vi+1) = δ with m ≤ i < n and δ < ǫ/8m.

Definition 15 Let G be a family of complete, directed graphs Gn where Gn has
n = 2m nodes and the distance function dn(vi, vj).

Notations. An edge in Gn with weight at least one is called a large edge and a
node in the interval [v1, vm−1] is called a large node. An edge shorter than one is
called a small edge and a node in [vm, vn] is called a small node (Figure 2.5). A
small edge is connected to a small node.
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Figure 2.5: Left (a): The graph inducing the distance function in G16. (The figure
does not have correct scale.) Right (b): A cycle in a minimum cycle cover has no
“twist”.

Properties of the graphs

A more general family of graphs has distance function induced by nodes on a circle
but with any positive weight on the edges. In this section we prove some properties
for this more general family of graphs.

Definition 16 DG
n is the family of distance functions induced by an undirected

graph with n nodes arranged in a circle. Adjacent nodes are connected by edges
with positive weight, w(vi, vi+1) > 0, and there are no other edges in the graph. The
distances are the shortest path in the graph and clearly obey the triangle inequality.

Assumption 1 Each edge on the circle obeys w(vi, vi+1) < 1
2

∑n−1
j=0 w(vj , vj+1).

Definition 17 GG
n is the family of complete, directed graphs with n nodes and a

distance function in DG
n which obeys Assumption 1.

By the definition a graph in GG
n obeys the triangle inequality.

Lemma 9 The graph Gn is in GG
n if n ≥ 6.

Proof 9 The distance function in Gn is produced by nodes in a circle. A large edge
has weight w(vi, vi+1) < 1 + 2n/2/22n < 1 + 1/2n < 1 + 1/16, if n ≥ 4. If n ≥ 6

then 1/2
∑n−1

j=0 w(vj , vj+1) > 3/2 and the assumption holds.
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Lemma 10 The minimum TSP tour in a graph G ∈ GG
n has weight opt(G) =

∑n−1
i=0 w(vi, vi+1).

Proof 10 Any TSP tour in G can be mapped to a (not necessarily simple) tour on
the circle by replacing every edge with a path on the circle. Let T be the tour on
the circle corresponding to the minimum TSP tour. If T passes every edge at least
once, then passing every edge exactly once gives minimum weight and opt(G) =
∑n−1

i=0 w(vi, vi+1).
If T does not pass every edge, suppose that T does not pass the edge (vi, vi+1),

then all other edges must be passed to connect all nodes in G. Furthermore all edges
have to be passed at least twice to make T a tour. By the assumption w(vi, vi+1) <

1/2
∑n−1

j=0 w(vj , vj+1) and hence the weight of T is

> 2(

n−1
∑

j=0

w(vj , vj+1)−
1

2

n−1
∑

j=0

w(vj , vj+1)) =

n−1
∑

j=0

w(vj , vj+1)

But then T is not minimal which is a contradiction. Hence T passes every edge on
the circle exactly once.

Lemma 11 The minimum TSP tour in Gn ∈ G with n = 2m ≥ 6 has weight
opt(Gn) < n/2 + 1/16.

Proof 11 By Lemma 9 and 10 opt(Gn) =
∑n−1

i=0 w(vi, vi+1) =
∑m−1

i=0 (1 + ǫ2i) +
∑n−1

i=m δ = m + (2m − 1)ǫ + mδ < m + (2n/2 − 1)/22n + m/(8m22n) < n/2 + 1/16.
Since ǫ < 1/22n and δ < ǫ/8m.

Lemma 12 Two nodes vi and vj in a graph G ∈ GG
n obey d(vi, vj) = vj − vi if

vj − vi ≤ opt(G)/2.

Proof 12 There are two paths from vi to vi+1 on the circle and d(vi, vj) = vj − vi

or d(vi, vj) = vi − vj. Since vj − vi ≤ 1/2
∑n−1

j=0 w(vj , vj+1) < vi − vj then vj − vi

is the shortest path.

There is no “twist” in a cycle in the minimum cycle cover (Figure 2.5).

Lemma 13 The nodes in a cycle C = (v11 , v12 , ..., v1k
) in a minimum cycle cover

in a graph G ∈ GG
n , can always be written in clockwise order with the lowest index

first.

Proof 13 Suppose that the nodes in C can not be written in clockwise order. C
connects a subset of the nodes in G. Every cycle in G can be transformed to a (not
necessarily simple) tour, T , on the circle.

If all edges on the circle are in T at least once, then the weight is minimum if
they are in the tour exactly once and the nodes in C can be written in clockwise
order.
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If some edge is not in T . T must be a connected component on the circle. All
edges in T are in T at least twice to make it a tour. Minimum weight is obtained
when all edges are in the tour exactly twice and then the nodes can be written in
clockwise order.

Hereafter we will always assume that the nodes in a cycle are written in clockwise
order with the lowest index first. A minimum cycle cover is either a TSP tour or
has only short cycles.

v1j

v1(j+2)

v1i

v1(j+1)

v1j

v1(j+2)

v1i

v1(j+1)

Figure 2.6: Left (a): A cycle which is not in a minimum cycle cover. Right (b):
The same graph with reduced weight.

Lemma 14 A minimum cycle cover in a graph G ∈ GG
n with weight less than

opt(G) consists of cycles with 2 or 3 nodes.

Proof 14 Consider a cycle C = (v11 , v12 , ..., v1k
) in the minimum cycle cover (with

the nodes in clockwise order and with the lowest index first), with weight less than
the TSP tour, w(C) < opt(G), and with more than three nodes, 3 < k (Figure 2.6).
Select the largest edge, (v1i

, v1j
). Since w(C) < opt(G), the distance d(v1i

, v1j
)

is not induced by d[v1i
, v1j

]. Hence it must be induced by the edges in opposite
direction d[v1j

, v1i
]. Replace the edge (v1i

, v1j
) with (v1j

, v1(j+1)) and (v1(j+2), v1i
)

(Figure 2.6). Now C is divided into two cycles and the weight is reduced with
2w(v1(j+1), v1(j+2)). Hence a cycle can connect at most 3 nodes.

The next lemma shows that the cycles in a minimum cycle cover do not overlap
(Figure 2.7).
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Figure 2.7: In a minimum cycle cover cycles are not “overlapping”.

Lemma 15 The nodes in two cycles C1 = (v11 , v12 , ..., v1k
) and C2 = (v21 , v22 , ...

, v2m
) in a minimum cycle cover in a graph G ∈ GG

n can be written such that
v11 , v12 , ... , v1s

, v21 , v22 , ... , v2m
, v1(s+1), ..., v1k

are in clockwise order.

Proof 15 A cycle in G can be transformed to a tour on the circle. Let T1 and
T2 be the tours corresponding to C1 and C2. Both cycles have weight less than
∑n−1

j=0 w(vj , vj+1), otherwise one large cycle is minimal. Hence both tours are
passing the edges on a segment of the circle exactly twice. If the segments are
overlapping the weight of the cycles are not minimal. Hence in a minimum cycle
cover the cycles are not overlapping and then they can be written on the desired
form.

Later we will need the following lemma in a later proof.

Lemma 16 Any partitioning of the edges defining the distance function in Gn ∈ G
in two sets, E1 and E2, obey |∑ei∈E1

w(ei)−
∑

ei∈E2
w(ei)| ≥ ǫ/2

Proof 16 There are m large edges with weight larger than one. The total sum of
ǫ-weights is (2m − 1)ǫ < (2m − 1)/24m < 1/23m. The total sum of δ-weights is
mδ = mǫ/8m = ǫ/8 < 1/23+4m. We will try to construct two sets E1 and E2

with equal weight. Since the sum of ǫ- and δ-weights is less than 1/2n the large
edges must be equally distrubuted between the sets. The number of ǫ-weights in a
set is an m-bit binary number where a bit i is one if the edge vi is in the set. The
binary numbers for the sets are bitwise complementary and can never be equal. The
smallest difference is one. If we put all δ-edges in the smaller set the difference is
still ǫ(1− 1/8) > 7ǫ/8.
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To make the notation clear we define:

Definition 18 For the algorithm ATSP and the graph Gn = Gn,0, the subgraph
remaining after the first cycle cover is found is denoted by Gn,1 and the subgraph
remaining after the i:th iteration is denoted by Gn,i.

Lemma 17 If i < log3 m then the minimum cycle cover in the graph G2m,i consists
of cycles with two or three nodes.

Proof 17 If the minimum cycle cover has weight < opt(G) by Lemma 14 it consists
of short cycles. Hence a cycle cover consisting of one cycle must have weight opt(G).

Assume that all cycles in a minimum cycle cover in G2m,j with j < i connect
at most three nodes.

If the number of nodes is even then divide the edges between the nodes in two
sets; E1 is every second edge and E2 is the other edges. The sets is a partitioning
of the edges defining the distance function and by Lemma 16 the weight difference is
at least ǫ/2. Take the set with smaller weight, which is at most (opt(Gn)− ǫ/2)/2.
Compleeting these 2-cycles gives a cover with weight less than opt(Gn), and hence
the TSP-tour is not minimal.

If the number of nodes is odd then since i < log3 m and the assumption that all
previous cycles connect at most three nodes there are at least two small nodes.
Remove one small node and there is an even number of remaining nodes. By
the argument above there is a 2-cycle cover connecting the nodes with weight less
than opt(Gn) − ǫ/2. The largest possible distance between two small nodes is δ ·
m = ǫm/8m = ǫ/8. Connecting the removed node to the cycle containingits small
neighbour increases the weight of the cycle cover with at most ǫ/4. Hence the cycle
cover with small cycles has weight less than the TSP tour and the TSP tour is not
minimal.

In a minimum cycle cover with small cycles by Lemma 14 a cycle connects at
most three nodes. Hence the assumption that cycles in G2m,j are short holds. After
log3 m iterations there might be only one small node in the graph and the TSP-tour
might be minimal.

The minimum cycle covers

In this section we will show that the weight of the spanning cactus produced by
ATSP on Gn is heavy. First we show that when two or three cacti are connected
the weight grows with essentially the length of the shortest cactus. Then we show
how fast the weight grows with the length of the cactus. To do this we need a more
simple graph, GS

n .

By Lemma 15 cycles in a minimum cycle cover in a graph G ∈ GG
n never overlap.

Hence a cactus formed by the algorithm ATSP connects all nodes in an interval
[va, vb].
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Definition 19 After j iteration of ATSP on a graph G ∈ GG
n a cactus Ki is pro-

duced. Ki connects all nodes on the interval [va, vb]. The length of the cactus is
the length of the interval, l(Kj) = dn[va, vb].

When several cacti are connected we need a definition for which side they are
nearest neighbours on. We use the interval of connected nodes for each cactus for
the definition and use the knowledge from Lemma 14 that the cycles are short. The
definition is not well defined if all nodes in the graph are connected.

Definition 20 A cactus Ki,j is produced by j iterations of the algorithm ATSP on
a graph GG

n .
If Ki,j connects two subcacti, Kk,j−1 and Kl,j−1 and Kk,j−1 connects all node

in the interval [va, vb] and Kl,j−1 all node in the interval [vc, vd] then the subcacti
are connected in the given order if Ki,j connects all nodes in [va, vd].

If Ki,j connects three subcacti Kk,j−1, Kl,j−1 and Km,j−1 and Kk,j−1 connects
all nodes in [va, vb], Kl,j−1 connects [vc, vd] and Km,j−1 connects [ve, vf ] then the
subcacti are connected in the given order if Ki,j connects all nodes in the interval
[va, vf ].

To simplify some proofs we need a simple distance function.

Definition 21 The distance function, dS
n(vi, vj), is induced by an undirected graph

with n = 2m nodes arranged in a circle. Adjacent nodes are connected and there are
no other edges in the graph. The weight of an edge w(vi, vi+1) = 1 with 0 ≤ i < m
and w(vi, vi+1) = γ with m ≤ i < n and γ < 1

n22n+3 .

Definition 22 Let GS
n be a complete, directed graph with n = 2m nodes and the

distance function dS
n(vi, vj).

The simple distance function dS
n(vi, vj) is similar to dn(vi, vj) with the ǫ weights

removed. It is simple to see that the weight of a cactus KS in GS
n is less than the

weight of the same cactus K in Gn, w(K) ≥ w(KS). Also for this distance function
GS

n ∈ GG
n if n ≥ 6.

Definition 23 For a cactus, K, which connects nodes in [va, vb] in a graph G ∈ GG
n

and v is the node in the next iteration, δ(K) = min(d(v, va), d(v, vb)).

We would like the weight, w(K), of a cactus to grow with a constant fraction of
the length, l(K), in every iteration of ATSP. Unfortunately this is not the case for
example when the nodes in the next iteration are close to each other. By adding
the term δ(K) we get the desired behaviour.

Lemma 18 A cactus Ki,j+1 is produced by j + 1 iterations of the algorithm ATSP
in a graph GS

n . If Ki,j+1 only connects large nodes, only contains cycles with 2 or
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3 nodes and l(Ki,j+1) < opt(GS
n)/2 then it either connects two subcacti Ki,j and

Km,j or three subcacti Ki,j, Kk,j and Km,j in the given order and

w(Ki,j+1) + δ(Ki,j+1) ≥
w(Ki,j) + δ(Ki,j) + w(Km,j) + δ(Km,j) + min(l(Ki,j), l(Km,j)) + 2 (2.1)

or

w(Ki,j+1) + δ(Ki,j+1) ≥ w(Ki,j) + δ(Ki,j) + w(Kk,j) + δ(Kk,j) +

w(Km,j) + δ(Km,j) + 1.5l(Kk,j) + min(l(Ki,j), l(Km,j)) + 4 (2.2)

Proof 18 Since l(Ki,j+1) < opt(GG
n )/2 by Lemma 12 if p > q then d(vp, vq) =

d[vp, vq].
For a cactus Ki,j+1 there are two cases: the first case is when it connects two

subcacti Ki,j and Km,j in the given order. Assume that l(Ki,j) ≥ l(Km,j). The
cactus Ki,j+1 has weight

w(Ki,j+1) = w(Ki,j) + w(Km,j) + 2d(vi,j , vm,j)

and

w(Kn,j+1) + δ(Ki,j+1) = w(Ki,j) + w(Km,j) + 2d(vm,j , vi,j) + δ(Ki,j+1)

Assume that the cactus K connects nodes in the interval [va, vb] and v is the node
in the next iteration. Hereafter we denote the length of the interval la(K) = d[va, v]
and lb(K) = d[v, vb].

d(vi,j , vm,j) = lb(Ki,j) + la(Km,j) + 1

If the node in the next iteration vi,j+1 = vm,j then the distance δ(Ki,j+1) =
lb(Km,j) since l(Ki,j) ≥ l(Km,j).

2d(vi,j , vm,j) + δ(Ki,j+1) ≥
2(lb(Ki,j) + la(Km,j) + 1) + lb(Km,j) =

l(Km,j) + 2lb(Ki,j) + la(Km,j) + 2 ≥
l(Km,j) + 2δ(Ki,j) + δ(Km,j) + 2

If the node in the next iteration vi,j+1 = vi,j and if the distance δ(Ki,j+1) =
la(Ki,j) then

2d(vi,j , vm,j) + δ(Ki,j+1) ≥
2(lb(Ki,j) + la(Km,j) + 1) + la(Ki,j) =

l(Ki,j) + lb(Ki,j) + 2la(Km,j) + 2 ≥
l(Ki,j) + δ(Ki,j) + 2δ(Km,j) + 2
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If the distance δ(Ki,j+1) = lb(Ki,j) + 1 + l(Km,j) then

2d(vi,j , vm,j) + δ(Ki,j+1) ≥
2(lb(Ki,j) + la(Km,j) + 1) + lb(Ki,j) + 1 + l(Km,j) =

l(Km,j) + 3lb(Ki,j) + 2la(Km,j) + 3 ≥
l(Km,j) + 3δ(Ki,j) + 2δ(Km,j) + 3

Hence Inequality 2.1 holds.
The second case is when Ki,j+1 connects three subcacti, Ki,j, Kk,j and Km,j,

in the given order. Suppose l(Km,j) ≤ l(Ki,j). The cactus Ki,j+1 has weight:

w(Ki,j+1) = w(Ki,j) + w(Kk,j) + w(Km,j) + 2d(vi,j , vm,j)

and

w(Ki,j+1) + δ(Ki,j+1) = w(Ki,j) + w(Kk,j) + w(Km,j) + 2d(vi,j , vm,j) + δ(Ki,j+1)

The distance between the nodes in the next iterations is

d(vi,j , vm,j) = lb(Ki,j) + l(Kk,j) + la(Km,j) + 2

If the node in the next iteration vi,j+1 = vm,j then δ(Ki,j+1) = lb(Km,j) and

2d(vi,j , vm,j) + δ(Ki,j+1) ≥
2(lb(Ki,j) + l(Kk,j) + la(Km,j) + 2) + lb(Km,j) =

2l(Kk,j) + l(Km,j) + 2lb(Ki,j) + la(Km,j) + 4 ≥
2l(Kk,j) + l(Km,j) + 2δ(Ki,j) + δ(Km,j) + 4

If vi,j+1 = vi,j and if δ(Ki,j+1) = la(Ki,j) then

2d(vi,j , vm,j) + δ(Ki,j+1) ≥
2(lb(Ki,j) + l(Kk,j) + la(Km,j) + 2) + la(Ki,j) =

2l(Kk,j) + l(Ki,j) + lb(Ki,j) + 2la(Km,j) + 4 ≥
2l(Kk,j) + l(Ki,j) + δ(Ki,j) + 2δ(Km,j) + 4

Otherwise if δ(Ki,j+1) = lb(Ki,j) + l(Kk,j) + l(Km,j) + 2 then

2d(vi,j , vm,j) + δ(Ki,j+1) ≥
2(lb(Ki,j) + l(Kk,j) + la(Km,j) + 2) + lb(Ki,j) + l(Kk,j) + l(Km,j) + 2 =

3l(Kk,j) + l(Km,j) + 3lb(Ki,j) + lb(Km,j) + 6 ≥
3l(Kk,j) + l(Km,j) + 3δ(Ki,j) + δ(Km,j) + 6
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If the node in the next iteration vi,j+1 = vk,j then δ(Ki,j+1) ≥ δ(Kk,j) +
l(Km,j) + 1 and

2d(vi,j , vm,j) + δ(Ki,j+1) ≥
2(lb(Ki,j) + l(Kk,j) + la(Km,j) + 2) + δ(Kk,j) + l(Km,j) + 1 =

2l(Kk,j) + l(Km,j) + 2δ(Ki,j) + δ(Kk,j) + 2δ(Km,j) + 5

Hence Inequality 2.2 holds.

Next we show how the weight of a cactus, w(K), grows with the length, l(K).

Lemma 19 A cactus K is formed by j+1 iterations of ATSP in GS
n and has length

l(K). If K only connects large nodes, if l(K) ≤ opt(GS
n)/2 and if it has cycles of

length 2 and 3 it obeys w(K) + δ(K) ≥ l(K)(a log2 l(K) − bj). Where a = 1
4 and

b = 24
100 .

Proof 19 The proof is by induction. Since l(K) ≤ opt(GS
n)/2 by Lemma 12 if p > q

then d(vp, vq) = d[vp, vq] for all nodes vq and vp ∈ Ki,j+1. In the first iteration
j = 0 and single nodes are connected. There are two possible cases: first a 2-cycle.
By Lemma 15 a cycle in a minimum cycle cover connects nearest neighbours and
K = (vi, vi+1), w(K) = 2, l(K) = 1 and δ(K) = 0. Then

w(K) + δ(K) = 2

l(K)(a log2 l(K)− bj) = l(a log2 1− b · 0) = 0 < 2

The second case is when three nodes are connected. K = (vi, vi+1, vi+2), w(K) =
4, l(K) = 2 and δ(K) ≤ 1. Then

w(K) + δ(K) ≥ 4

l(K)(a log2 l(K)− bj) = 2(a log2 2− b · 0) = 2a = 1/2 < 4

Hence the lemma is true for j = 0.
Assume that the relation is true for all values up to some j. There are two

inductive steps. The first is when Ki,j+1 connects two subcacti Ki,j and Km,j in
that order. Assume that l(Ki,j) ≥ l(Km,j). Since an edge between two large nodes
in GS

n has length 1, l(Ki,j+1) = l(Ki,j) + 1 + l(Km,j). By Lemma 18 and by the
induction hypothesis

w(Ki,j+1) + δ(Ki,j+1) =

w(Ki,j) + δ(Ki,j) + w(Km,j) + δ(Km,j) + min(l(Ki,j), l(Km,j)) + 2 ≥
l(Ki,j+1)(a log2 l(Ki,j)− bj) + l(Km,j)(a log2 l(Km,j)− bj) + l(Km,j) + 2 (2.3)

Our aim is to show that this is greater than:

(l(Ki,j) + l(Km,j) + 1)(a log2(l(Ki,j) + l(Km,j) + 1)− b(j + 1))
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Expanding Sum 2.3 gives:

(l(Ki,j) + l(Km,j) + 1)(a log2(l(Ki,j) + l(Km,j) + 1)− b(j + 1))−
l(Ki,j)a(log2(l(Ki,j) + l(Km,j) + 1)− log2 l(Ki,j))−

l(Km,j)a(log2(l(Ki,j) + l(Km,j) + 1)− log2 l(Km,j))−
a log2(l(Ki,j) + l(Km,j) + 1) + l(Ki,j)b + l(Km,j)b + b(j + 1) + l(Km,j) + 2

Hence we need to show that:

l(Ki,j)a(log2(l(Ki,j) + l(Km,j) + 1)− log2 l(Ki,j)) +

l(Km,j)a(log2(l(Ki,j) + l(Km,j) + 1)− log2 l(Km,j)) +

a log2(l(Ki,j) + l(Km,j) + 1)−
l(Ki,j)b− l(Km,j)b− b(j + 1)− l(Km,j)− 2 ≤ 0 (2.4)

Let l(Km,j)t = l(Ki,j) for t ≥ 1. The first three terms in Equation 2.4 can be
simplified to:

l(Ki,j)a(log2(l(Ki,j) + l(Km,j) + 1)− log2 l(Ki,j)) =

l(Ki,j)a(log2(l(Ki,j) + l(Ki,j)/t + 1)− log2 l(Ki,j)) =

l(Ki,j)a(log2(1 + 1/t + 1/l(Ki,j)) + log2 l(Ki,j)− log2 l(Ki,j)) =

l(Ki,j)a(log2(1 + 1/t + 1/l(Ki,j))

l(Km,j)a(log2(l(Ki,j) + l(Km,j) + 1)− log2 l(Km,j)) =

l(Km,j)a(log2(l(Ki,j) + l(Km,j) + 1)/l(Km,j)) =

l(Km,j)a log2(t + 1 + 1/l(Km,j) =

l(Ki,j)/t · a log2(t + 1 + 1/l(Km,j))

a log2(l(Ki,j) + l(Km,j) + 1) ≤ a log2(3l(Ki,j)) = a log2(l(Ki,j)) + a log2 3

Inserted in Inequality 2.4 and since l(Km,j) ≥ 1, l(Ki,j) ≥ t, Inequality 2.4 is
implied by

l(Ki,j)a log2(1 + 1/t + 1/l(Ki,j)) + l(Ki,j)/t · a log2(t + 1 + 1/l(Km,j)) +

a log2(l(Ki,j)) + a log2 3− bl(Ki,j)− bl(Km,j)− b(j + 1)− l(Km,j)− 2 ≤
l(Ki,j)(a log2(1 + 2/t) + 1/t · a log2(t + 2) +

a log2(l(Ki,j))/l(Ki,j)− b− b/t− 1/t) + a log2 3− b(j + 1)− 2

The last three terms, independent of the length of the cactus, are

a log2 3− b(j + 1)− 2 < −1 ≤ 0
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Hence it is enough to show that

a log2(1 + 2/t) + (1/t) · a log2(t + 2) +

a log2(l(Ki,j))/l(Ki,j)− b− b/t− 1/t ≤ 0 (2.5)

Suppose x ≤ t ≤ x′ then the left hand side of Inequality 2.5 is less than

a log2(1 + 2/x) + (1/x)a log2(x + 2) + a log2 e/e− b− b/x′ − 1/x′ (2.6)

For different values of the variables x and x′ the Equation 2.6 is bounded from above
x x′ Expression 2.6 <
1 1.8 -0.003
1.8 2.8 -0.01

Suppose that e < x ≤ t ≤ x′ then since the function log2 t/t is decreasing for
t ≥ e the left hand side of Inequality 2.5 is less than

a log2(1 + 2/x) + 1/xa log2(x + 2) + a log2 x′/x′ − b− b/x′ − 1/x′ (2.7)

For different values of the variables x and x′ Expression 2.7 is bounded from above
x x′ Expression 2.7 <
2.8 4 -0.02
4 6 -0.01
6 12 -0.006
12 ∞ -0.05

The second inductive step is when Ki,j+1 connects three subcacti Ki,j, Kk,j and
Km,j in the given order. Suppose that l(Ki,j) ≥ l(Km,j). By Lemma 18 and by the
induction hypothesis:

w(Ki,j+1) + δ(Ki,j+1) ≥
w(Ki,j) + δ(Ki,j) + w(Kk,j) + δ(Kk,j)w(Km,j) + δ(Km,j) +

1.5l(Kk,j) + min(l(Ki,j), l(Km,j)) + 4 ≥
l(Ki,j)(a log2 l(Ki,j)− bj) + l(Kk,j)(a log2 l(Kk,j)− bj) +

l(Km,j)(a log2 l(Km,j)− bj) + 1.5l(Kk,j) + l(Km,j) + 4 (2.8)

We want to show that this is greater than:

(l(Ki,j) + l(Kk,j) + l(Km,j) + 2)(a log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2)− b(j + 1))

Expanding Sum 2.8 gives:

(l(Ki,j) + l(Kk,j) + l(Km,j) + 2)(a log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2)− b(j + 1))−
l(Ki,j)a(log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2)− log2 l(Ki,j))−
l(Kk,j)a(log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2)− log2 l(Kk,j))−

l(Km,j)a(log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2)− log2 l(Km,j))−
2a(log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2) +

l(Ki,j)b + l(Kk,j)b + l(Km,j)b + 2b(j + 1) + 1.5l(Kk,j) + l(Km,j) + 4
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Our goal is to prove that:

l(Ki,j)a(log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2) + log2 l(Ki,j)) +

l(Kk,j)a(log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2) + log2 l(Kk,j)) +

l(Km,j)a(log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2)− log2 l(Km,j)) +

2a(log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2)−
l(Ki,j)b− l(Kk,j)b− l(Km,j)b − 2b(j + 1)− 1.5l(Kk,j)− l(Km,j)− 4 ≤ 0 (2.9)

To make the term 1.5l(Kk,j) as small as possible let l(Kk,j) ≤ l(Km,j) . Let
tml(Km,j) = l(Ki,j) and tkl(Kk,j) = l(Km,j). The first four terms in Inequal-
ity 2.9 can be simplified to:

l(Ki,j)a(log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2)− log2 l(Ki,j)) =

l(Ki,j)a log2(1/tk + tm + 1 + 2/l(Ki,j))

l(Kk,j)a(log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2)− log2 l(Kk,j)) =

l(Kk,j)a log2(tk + tmtk + 1 + 2/l(Kk,j))

l(Km,j)a(log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2)− log2 l(Km,j)) =

l(Km,j)a log2(1/tm + 1/tmtk + 1 + 2/l(Km,j)

a log2(l(Ki,j) + l(Kk,j) + l(Km,j) + 2) =

a log2 l(Km,j)(1/tm + 1/tktm + 1 + 2) =

a log2 l(Km,j) + a log2 5

Inserted in Inequality 2.9:

l(Ki,j)a log2(1/tk + tm + 1 + 2/l(Ki,j)) +

l(Kk,j)a log2(tk + tmtk + 1 + 2/l(Kk,j)) +

l(Km,j)a log2(1/tm + 1/tmtk + 1 + 2/l(Km,j)) +

2a log2 l(Km,j) + 2a log2 5− l(Ki,j)b− l(Kk,j)b−
l(Km,j)b− 2b(j + 1)− 1.5l(Kk,j)− l(Km,j)− 5 ≤

l(Km,j)(1/tma log2(1/tk + tm + 1 + 2/l(Ki,j)) +

1/(tktm)a log2(tk + tmtk + 1 + 2/l(Kk,j)) +

a log2(1/tm + 1/tmtk + 1 + 2/l(Km,j)) +

2a log2 l(Km,j)/l(Km,j)

−b(1/tm + 1/tmtk + 1 + 2(j + 1)/l(Km,j)))−
1.5/(tktm)− 1/tm) + 2a log2 5− 4
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The last two terms, independent of the length of the cactus, are

2a log2 5− 4 < −2 < 0

Hence it is enough to show that

1/tma log2(1/tk + tm + 1 + 2/l(Ki,j)) +

1/(tktm)a log2(tk + tmtk + 1 + 2/l(Kk,j)) +

a log2(1/tm + 1/tmtk + 1 + 2/l(Km,j)) +

2a log2 l(Km,j)/l(Km,j)− b(1/tm + 1/tmtk + 1 + 2(j + 1)/l(Km,j)))−
1.5/(tktm)− 1/tm) ≤ 0 (2.10)

Since l(Kk,j) ≥ 1 the length l(Km,j) = tktml(Kk,j) ≥ tktm. The term (log2 x)/x ≤
(log2 e)/e for all x and for x ≥ e the function is decreasing. Hence for tktm ≥
e, (log2 l(Km,j)/l(Km,j) ≤ (log2 tktm)/tktm. Since l(K) ≤ 3j, j ≥ log3 l(K) ≥
log3 tktm ≥ 1

Assume that 1 = xm ≤ tm ≤ x′
m and 1 = xk ≤ tk < x′

k. Inequality 2.10 is less
than or equal to

1/xm(a log2(1/xk + xm + 1 + 2/xk)) +

1/(xkxm)(a log2(xk + xmxk + 3) +

a log2(1/xm + 1/xmxk + 1 + 2/xmxk) + 2a(log2 e)/e−
b(1/x′

m + 1/x′
mx′

k + 1 + 4/x′
mx′

k)− 1.5/(x′
kx′

m)− 1/x′
m (2.11)

For different values of the variables x the left hand side of Inequality 2.11 is bounded
from above.



2.4. RANDOM ASSUMPTION ON THE ALGORITHM 39

xm x′
m xk x′

k Expression 2.11 <
1 1.4 1 2 -0.08

2 4 -0.08
4 10 -0.1
10 ∞ -0.1

1.4 1.9 1 2 -0.03
2 4 -0.05
4 10 -0.08
10 ∞ -0.1

1.9 2.4 1 2 -0.04
2 5 -0.01
5 ∞ -0.02

2.4 3 1 2 -0.003
2 4 -0.03
4 10 -0.06
10 ∞ -0.1

3 3.5 1 2 -0.01
2 5 -0.01
5 ∞ -0.02

3.5 4 1 2 -0.008
2 5 -0.005
5 ∞ -0.02

When e ≤ xm the left hand side of Inequality 2.10 is less than or equal to

1/xm(a log2(1/xk + xm + 1 + 2/xk)) +

1/(xkxm)(a log2(xk + xmxk + 3) +

a log2(1/xm + 1/xmxk + 1 + 2/xmxk) +

2a(log2 xmxk)/xmxk −
b(1/x′

m + 1/x′
mx′

k + 1 + 2(log3 x′
kx′

m)/x′
mx′

k)− 1.5/(x′
kx′

m)− 1/x′
m (2.12)

The Expression 2.12 is bounded from above.
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xm x′
m xk x′

k Expression 2.12 <
4 4.3 1 2 -0.01

2 8 -0.04
8 ∞ -0.2

4.3 4.9 1 2 -0.008
2 15 -0.01
15 ∞ -0.3

4.9 5.7 1 2 -0.003
2 15 -0.02
15 ∞ -0.2

5.7 6.8 1 2 -0.001
2 15 -0.03
15 ∞ -0.2

6.8 8.5 1 2 -0.001
2 15 -0.04
15 ∞ -0.2

8.5 11 1 2 -0.01
2 15 -0.06
15 ∞ -0.2

11 18 1 2 -0.004
2 15 -0.07
15 ∞ -0.2

18 80 1 2 -0.007
2 15 -0.08
15 ∞ -0.2

80 ∞ 1 ∞ -0.15
Hence the inductive step is true for all cases.

Lemma 20 After (log3 m)/2 iterations of the algorithm ATSP in a graph Gn ∈ G
where n = 2m ≥ 18 the cycle covers form a set K of cacti. The set has weight at
least

w(K) ≥ opt(Gn)− 1

24
(
log2 m

4
− 1)− 2

Proof 20 By Lemma 11 the minimum TSP tour in Gn has weight opt(Gn) <
m + 1/16. Let the algorithm ATSP halt after (log3 m)/2 iterations. Then there are
several cacti in Gn. We will show a lower bound of the weight of these cacti. First
we show a lower bound for one cactus using the inequalities:

w(K) + δ(K) ≥ w(KS) + δ(KS) ≥ l(KS)a(log2 l(KS)− bj)

Then we sum the weights of all cacti in the graph after (log3 m)/2 iterations.
By Lemma 17 we know that the first log3 m iterations of the algorithm ATSP

on the graph Gn produces cycle covers with cycles of length two and three. Hence
our cacti have only short cycles.
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We know that w(K) ≥ w(KS) and will show a lower bound for the cacti with
the simple distance function. There are m large nodes in GS

n (and in Gn), after
j = (log3 m)/2 iterations there are several cacti connecting only large nodes and at
most two cacti connecting a mix of large and small nodes. The number of nodes in
a cactus, n(K) is at least n(K) ≥ 2j = 2(log3 m)/2 = 2(log3 2 log2 m)/2 = m(log3 2)/2 ≈
m0.32 and n(K) ≤ 3j = 3(log3 m)/2 =

√
m, so m(log3 2)/2 ≤ n(KS) ≤ √m.

If m ≥ 4 then
√

m < m/2 and by Lemma 19 w(KS)+δ(K) ≥ l(K)(a log2 l(K)−
bj). For a cactus with only large nodes in GS

n , l(K) = n(KS) − 1 and certainly
l(K) ≥ n(KS)/2. The weight of the cactus is w(KS)+ δ(KS) ≥ l(K)(a log2 l(K)−
bj) ≥ (n(KS)/2)(a log2(n(KS)/2) − bj). Let n(KS

i ) = m(log3 2)/2+di where 0 ≤
di ≤ 1/2− (log3 2)/2 ≈ 0.18. The weight of a cactus KS

i is

w(KS
i ) + δ(KS

i ) ≥ (mlog3 2+di/2)(a log2(m
log3 2+di/2)− bj) ≥

1

2
mlog3 2mdi(

1

4
((log3 2 + di) log2 m− log2 2)− 24

100
log3 m/2) ≥

1

2
(
1

4
log3 2 log2 m− 1

4
− 24

200
log2 m log3 2)mlog3 2mdi =

(log2 m log3 2
26

400
− 1

8
)mlog3 2mdi

If KS
i , ..., KS

r are the cacti with no small nodes, then the total weight is:

r
∑

i=1

w(KS
i )− δ(KS

i ) ≥

r
∑

i=1

(log2 m log3 2
26

400
− 1

8
)mlog3 2mdi −

r
∑

i=1

δ(KS
i ) ≥

(log2 m log3 2
26

400
− 1

8
)mlog3 2

r
∑

i=1

mdi − (m + 1/16)/2 (2.13)

Since a cactus connecting large and small nodes has n(K) <
√

m, the number of
nodes in cacti with only large nodes is

r
∑

i=1

mlog3 2+di = mlog3 2
r

∑

i=1

mdi ≥ m− 2
√

m

Inserted in Equation 2.13, if m ≥ 9:

≥ (log2 m log3 2
26

400
− 1

8
)(m− 2

√
m)− (m + 1/16)/2

≥ (opt(Gn)− 1)(log2 m log3 2
26

400
− 1

8
)(1− 2/

√
m)− (1 +

1

16m
)

≥ (opt(Gn)− 1)
1

8
(
1

4
log2 m− 1)

1

3
− 2
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The TSP tour

In the previous section we showed that the spanning cactus is heavy. Here we show
that the TSP tour is heavy as well. In the algorithm by Frieze et al. there is no
specification in which order the shortcuts are made. We assume that the TSP tour
is built by a depth-first search, which is an efficient and natural implementation to
make the shortcuts.

The level of a node l(v) is the number of iterations it has in the subgraph,
l(v) = max{i|v ∈ Gn,i}. In a TSP tour there is one edge to each node. We define
an function from the edges in the TSP tour to cycles in the spanning cactus. The
edge to the root of the cactus is not mapped to any cycle.

Definition 24 Map an edge (vj , vi) to the last cycle vi is in (vj , vi)→ C, vi ∈ C ∈
Gn,l(vi).

The next Lemma implies that the expected TSP tour in Ω(opt(Gn) · log n) – our
main result.

Lemma 21 A spanning cactus K is built by the algorithm ATSP on a graph Gn ∈
G. The node for the next subgraph is chosen randomly with equal probability for all
nodes in a cycle (row 11 in ATSP) and the TSP tour is built by a depth-first search
starting in the last node in the subgraph. If n = 2m ≥ 18 the expected length of the
TSP tour is at least

opt(Gn)− 1

768
(log2 n− 5)− 1

Proof 21 Let the algorithm halt after (log3 m)/2 iterations. Then there are several
unconnected cacti in the graph, denote the cacti K. By Lemma 17 we know that
the first log3 m iterations of the algorithm ATSP on the graph Gn produces cycle
covers with cycles with two or three nodes. Hence our cacti only have short cycles.

Definition 24 is a mapping from the edges in the TSP tour to the cycles, C,
in the cacti, K. Since there are several cacti there are several edges that are not
mapped to any cycle.

E[
∑

(vj ,vi)∈TSP tour

d(vj , vi)] ≥
∑

C

P [C in K]E[
∑

(vj ,vi)→C

d(vj , vi)] ≥

∑

C

P [C in K]w(C)/8 = 1/8
∑

C

P [C in K]w(C) = E[w(K)]/8 (2.14)

The weight of the cacti is by Lemma 20

w(K) ≥ opt(Gn)− 1

24
(
log2 m

4
− 1)− 2

If Equation 2.14 holds the expected value of the TSP tour is at least larger than

opt(Gn)− 1

768
(log2 n− 5)− 1

4
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Look at the 2-cycle (vi, vk), At iteration j the cycle connects two cacti Ki,j and
Kk,j. Suppose that they are connected in the given order. By Lemma 15 Ki,j

connects all nodes in the interval [va, vb] and Kk,j connects nodes [vc, vd].

Suppose that the node vk is selected for the next iteration and that l(vk) = j +1.
The probability that vk is in exactly one more iteration is at least 1/2. The edge to
vi in the TSP tour is the only edge mapping to the cycle. Since the node vk is in
exactly one more iteration there are two possibilities for the depth-first search at vk.
Either it chooses the edge (vk, vi) or it chooses an edge to a node in [vc, vd] before
it chooses the edge to vi. In both cases the weight is ≥ d[vi, vc].

Suppose that vi is selected for the next iteration and that l(vi) = j+1. Then the
edge to vk is mapped to the cycle and the added distance is at least d[vb, vk]. Hence
the expected value of the edge mapped to the cycle is ≥ 1/2(d[vc, vi]/2+d[vb, vk]/2) ≥
d[vi, vk]/4 = w(C)/8.

Look at a triangle (vi, vk, vl). At iteration j the nodes are roots two three cacti
Ki,j, Kk,j and Km,j. The cacti are connected in the given order and connects the
nodes [va, vb], [vc, vd] and [ve, vf ]. Suppose the cycle consists of the directed edges
(vi, vl), (vl, vk) and (vk, vi).

Suppose that vl is selected for the next iteration and that l(vl) = j+1. The edges
to vi and vk are mapped to the cycle. At vl the depth-first search either selects the
edge (vl, vk) or a node in [ve, vf ] before vk, in both cases the edge to vk is at least
d[vk, ve]. The only edge to vi is from vk hence the edge to vi is at least d[vi, vc]. By
equal probability vk is selected for the next iteration. Suppose that l(vk) = j + 1.
Then the edges to vi and vl are mapped to the cycle. The edge to vi is at least
d[vi, vc] and the edge to vl is at least d[vb, vl]. If vi is selected and l(vi) = j + 1 the
edge to vl is at least d[vb, vl] and the edge to vk is at least d[ve, vk]. The expected
value of the edges mapped to the cycle is ≥ 1/2((d[vk, ve] + d[vi, vc])/3 + (d[vi, vc] +
d[vb, vl])/3 + (d[vb, vl] + d[ve, vk])/3) ≥ d[vi, vl]/3 = w(C)/6.

By symmetry the same arguments holds if the edges in the triangle changes
direction. Hence Equation 2.14 holds.

2.5 To Conclude

For the deterministic assumptions on the algorithm, the graphs, Gn, form a fam-
ily of asymmetric graphs for which the approximation algorithm for asymmetric
TSP by Frieze et al., with our specifications, shows a worst case behaviour. The
algorithm returns by Theorem 1 a TSP tour of weight greater than (opt(Gn) ·
log2 n)/(2 + o(1)). The analysis of the algorithm by Frieze et al. shows that the
algorithm gives a TSP tour with weight less than or equal to opt(Gn) · log2 n, hence
the analysis of the algorithm by Frieze et al. is tight up to a factor of 1/2.

The ratio α between edges in different directions is greater than n/2 and the
data dependent approximation algorithm by Frieze et al. is then proven to give an
approximation better than 3α/2 = 3n/4 or O(n). When we apply the data depend-
ent algorithm to Gn, there are two possible outcomes. The algorithm converts the
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asymmetric graph to a symmetric, uses the algorithm due to Christofides [7] and
in the end arbitrarily chooses the direction of the found TSP tour. The undirec-
ted TSP tour is around the circle. If the direction is chosen to be clockwise the
algorithm finds the optimum TSP tour of weight n. If the direction on the other
hand is chosen to be anti-clockwise the directed cycle has weight n log2 n which is
the same as for the original approximation algorithm. Thus with one choice as-
sumed to be bad the data dependent algorithm approximates the asymmetric TSP
tour within a factor of log2 n. The expected approximation is (log2 n)/2 over the
choice of orientation of the tour.

For the random assumption on the algorithm the graphs, Gn, are a family of
symmetric graphs for which the algorithm by Frieze et al., shows a worst case
behaviour. The algorithm returns by Theorem 2 a TSP tour with expected weight
Ω(opt(Gn) · log n).



Chapter 3

Complexity of the Directed

Spanning Cactus Problem

In this chapter we study the complexity of finding a spanning cactus in various
graphs. First we show that the task of determining if there is a directed spanning
cactus in a general unweighted digraph is NP-complete. The proof is a reduction
from One-In-Three 3SAT. Secondly we show that finding the minimum spanning
cactus in a directed, weighted complete graph with triangle inequality is polynomial
time equivalent to finding the minimum TSP tour in the same graph and that they
have the same hardness in approximation.

3.1 Introduction

In discrete mathematics, the cactus is a well-known graph structure and in undir-
ected graphs they have been carefully studied. Cacti in directed graphs, though,
have been much less studied.

Definition 25 A strongly connected, directed graph where each edge is contained
in at most (and thus, in exactly) one directed cycle is called a directed cactus.

Definition 26 A spanning, directed cactus for a directed graph G is a subgraph of
G that is a directed cactus and connects all vertices in G.

In undirected graphs finding the minimum cut in a graph is a well-known op-
timisation problem. Here a cactus is a useful and simple representation of the
minimum cuts in a graph (there can be many). Cacti for this purpose are used for
example by Fleischer in [11]. In 1994 Schaar [31] published a paper about Hamilto-
nian properties of directed graphs. He showed some results about graphs restricted
to be directed cacti.

We study the complexity of finding a spanning, directed cactus in different
types of graphs. First we show that the problem of finding a spanning cactus in a

45
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general, unweighted, directed graph is NP-complete and then show that finding the
minimum spanning cactus in a weighted, directed graph with triangle inequality is
polynomial time equivalent to finding the minimum travelling salesman tour in the
same graph.

Definition 27 The Spanning cactus problem (SCP) is the problem of deciding,
given a directed graph, if there is a spanning, directed cactus in the graph.

Theorem 3 SCP is NP-complete.

Corollary 1 In a directed, complete graph with general distance function the min-
imum spanning cactus is NP-hard to approximate within any factor.

Corollary 1 can be shown with the same arguments as Sahni and Gonzalez [30]
use to prove that it is impossible to approximate the minimum TSP tour within a
constant factor in a general graph. Suppose that we can approximate the minimum
spanning cactus within a factor r in a weighted complete graph then we can decide
if there is a spanning cactus in a general directed graph in the following way: Give
all edges weight 1, add edges of weight r2|V | to make the graph complete. If there
is a spanning cactus of weight less than r2|V | there is a spanning cactus in the
original graph, otherwise there is not. Since the original problem is NP-hard the
corollary follows.

The Travelling Salesman Problem (TSP) is one of the most famous and well-
studied combinatorial optimisation problems. We show that finding the minimum
spanning cactus in a general, weighted digraph and finding the minimum TSP
tour in the same graph are polynomial time equivalent problems. They also have
the same hardness of approximation. Therefore a minimum spanning cactus is
not directly useful for approximation algorithms of asymmetric TSP with triangle
inequality.

Theorem 4 Finding a spanning cactus of minimum total edge weight in an asym-
metric, weighted, complete graph where the weights obey the triangle inequality is
polynomial time equivalent to finding the minimum TSP tour in the same graph.
They also have the same hardness of approximation.

The well-known approximation algorithm for asymmetric TSP by Frieze, Gal-
biati and Maffioli [12] from 1982 builds a spanning cactus (which is not minimal)
and then transforms it to a TSP tour. Their algorithm gives an approximation
in log2 n. As a comparison the currently best approximation algorithm is by
Kaplan, Lewenstein, Shafrir and Sviridenko [21] and gives an approximation of
3/4 log3 n < 0.842 log2 n.

Notations and conventions

In a directed graph an edge from vertex A to vertex B is denoted AB, a path from
A to B to C is denoted ABC and a cycle from A to B to C and back to A is denoted
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ABCA. Considered cycles are always simple. When we study subgraphs (such as
gadgets) we use the term cactus branch.

Definition 28 Suppose there is a spanning cactus S in a directed graph G. In a
subgraph H ⊆ G the cactus branch of S induced by H is the set of edges {e : e ∈
S∩H}. When it is clear what S and H we consider, we use the term cactus branch.

Since a cactus is Eulerian the following well-known property of a directed cactus
directly follows:

Lemma 22 In a directed cactus every vertex has the same in- and out-degree.

3.2 Proof that SCP is NP-complete

We will first show that SCP is in NP and then reduce One-In-Three 3SAT

(which is an NP-complete problem [13, Problem LO4]) to SCP.
The definition of an NP-problem is that if the problem has a solution there

is a witness convincing a polynomial time verifier that the problem is solvable.
Our witness for SCP is the subgraph which we claim is a spanning cactus. The
following algorithm determines in polynomial time if a subgraph of a directed graph
is a spanning cactus.

Definition 29 Spanning cactus check, SCC(G, S), is the following algorithm: Given
a directed graph G and a subgraph S of G, if all three conditions below are true ac-
cept otherwise reject.

• The graph S is strongly connected.

• The graph S is spanning, i.e., every vertex of G is in S.

• The graph S is a cactus, i.e., the algorithm Cactus-check(S), defined below,
accepts.

Definition 30 Cactus-check(S), is the following algorithm: Given a directed, strongly
connected, graph S, accept if S is an empty graph or contains only one vertex. If
the graph is not Eulerian reject, otherwise construct an Euler tour and traverse the
edges in the given order. Push every visited vertex on a stack and mark the vertex
as visited. If a vertex is marked as visited and is on the stack, pop all vertices above
it (but not the vertex itself) from the stack. Continue until all vertices of the tour
have been visited. If there is a vertex marked as visited, which is not on the stack,
the test does not accept the graph as a cactus, otherwise it does.

If the graph S is a cactus the algorithm Cactus-check recursively removes drops
from S.

Definition 31 A simple cycle where every vertex, except at most one, has in- and
out-degree equal to one, d+(v) = d−(v) = 1, is called a drop.
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Lemma 23 A cactus is either one simple cycle or a graph containing at least two
drops.

Proof 22 (Proof) The proof is by induction over the numbers of simple cycles in
the cactus. If a cactus has one cycle the statement is trivial and if a cactus has
two simple cycles they are both drops. Suppose the lemma is true for a cactus with
k ≥ 2 cycles. To see that the lemma is true for a cactus with k + 1 cycles proceed
as follows: select an arbitrary cycle and remove it from the graph.

If the selected cycle is a drop, the remaining graph has by assumption at least
two drops. At most one drop was connected to the removed drop and therefore at
least one drop in the reduced graph is a drop in the original graph. Thus the original
graph has at least two drops; the removed one and at least one in the reduced graph.

If the selected cycle is not a drop it must be connected to at least two other
cycles. Removing the cycle then divides the graph into at least two strongly connec-
ted components. If a component is one cycle it is a drop in the original graph. If a
component has more than one cycle it has, by assumption, at least two drops. By
the same argument as above at least one of them is a drop in the original graph.
Thus every strongly connected component contributes with at least one drop in the
original graph.

The argument in the lemma above shows that we can view a cactus as a tree of
cycles where the drops are the leafs.

Lemma 24 Let S be a directed, strongly connected graph with at least one drop
and let S0 be S with the drop removed. Then Cactus-check(S) = Cactus-check(S0).

Proof 23 If S is not Eulerian then neither is S0 and Cactus-check rejects both.
Otherwise we can construct an Euler tour and traverse the nodes in the given order.
When the algorithm reaches a drop, all vertices in the drop are pushed onto the stack
and then all those vertices except the first one are immediately popped. Moreover
the vertices in the drop will not appear later in the Euler tour. Thus if the algorithm
rejects the graph S it will not reject because of any of the vertices in the drop and
thus also rejects S0. Similarly, if the algorithm accepts S it will also accept S0.

Lemma 25 Given a directed, strongly connected graph S the algorithm Cactus-
check(S) runs in polynomial time and accepts if and only if S is a cactus.

Proof 24 By Lemma 24 it is sufficient to consider S to be drop-free. A drop-free
cactus is by Lemma 23, an empty graph and by definition the algorithm accepts such
a graph.

An Euler tour can be found in time O(|E|) [8, Problem 22-3]. We prove that if
the graph is not a cactus the algorithm rejects and then that if the algorithm rejects
the graph is not a cactus. Let S be a drop-free graph which is not a cactus. The
first cycle the algorithm pops from the stack is not a drop; therefore some popped
vertex v in the cycle will appear later in the Euler tour. The algorithm might halt
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and reject before v occurs again, otherwise it will find v which is visited but not on
the stack, and reject.

If the algorithm rejects there is a visited vertex v which is not on the stack. The
first edge from v in the Euler tour is then in a cycle which is popped from the stack.
The Euler tour passes v twice and forms a cycle. This cycle is different from the
first one since it is not popped from the stack. Hence the first edge from v in the
Euler cycle is in two different cycles and the graph is not a cactus.

Lemma 26 The algorithm SCC(G, S) determines, in polynomial time, if a given
subgraph S of G is a cactus spanning G.

Proof 25 (Proof) A depth-first search from every vertex in S determines in poly-
nomial time if S is strongly connected. If every vertex in G is in S the subgraph
is spanning. The algorithm Cactus-check determines by Lemma 25 in polynomial
time if the graph S is a cactus. Thus if all three conditions are true the graph is a
spanning cactus.

By Lemma 26 a verifier can check if the subgraph is a spanning cactus in poly-
nomial time and the corollary trivially follows.

Corollary 2 SCP is in NP.

Reducing One-In-Three 3SAT to SCP

One-In-Three 3SAT is an NP-complete problem [13, Problem LO4]; by reducing
One-In-Three 3SAT to SCP we show that SCP is NP-complete as well.

Definition 32 One-In-Three 3SAT is the following decision problem: Given a
set U of variables and a collection C of clauses over U such that each clause c ∈ C
has |c| = 3, is there a truth assignment for U such that each clause in C has exactly
one true literal?

Theorem 5 One-In-Three 3SAT is NP-complete even if no clause contains a
negated literal [13, Problem LO4].

The structure of the reduction is similar to the one Johnson and Papadimitriou
use when they reduce Exact cover to Hamiltonian cycle [20] but there are more cases
to cover since a cactus has more degrees of freedom than a Hamiltonian cycle. The
variables and clauses from the One-In-Three 3SAT problem are represented by a
graph. If and only if the graph contains a spanning cactus, One-In-Three 3SAT

has a solution; furthermore the solution can be determined from the spanning cac-
tus. The reduction is made in three steps. First we will construct the corresponding
graph, then show that if there is a solution to One-In-Three 3SAT we can find
a spanning cactus in the graph, and thereafter prove that if there is a spanning
cactus in the graph we can find a solution to One-In-Three 3SAT.
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Each clause in One-In-Three 3SAT is represented by a so called clause-gadget
in the graph. A spanning cactus has three possible cactus branches in this gadget
which correspond to the three possible assignments of the variables in the clause.
Also each variable is represented by a gadget. There are two possibilities for the
spanning cactus in the variable-gadget which correspond to the two values of a
variable. To ensure consistency of the solution there are so called xor-gadget which
connects a variable-gadget to the clause-gadget where the variable occurs.

A clause with variables {x1, x2, x3} is represented by a gadget as in Figure 3.1.
Each variable corresponds to an edge in the gadget. If a variable-edge is in the
spanning cactus the variable is false, otherwise it is true. Each variable is repres-
ented by a gadget as in Figure 3.2. The value of the variable is represented by two
edges. Only one of the value-edges can be in the spanning cactus (Lemma 30) and,
intuitively; if the false-edge is in the spanning cactus the variable is false and if the
true-edge is in the spanning cactus the variable is true. All these gadgets are linked
after each other in a cycle (Figure 3.3).

x3

x2x1

A B

Figure 3.1: Clause-gadget.

false true

A B

Figure 3.2: Variable-gadget.

To ensure that a spanning cactus gives a variable the same value in all clauses
a variable-edge in an clause-gadget is connected to the true-edge in the variable-
gadget by an xor-gadget as in Figure 3.4. The xor-gadget has the property that
exactly one of the two edges it connects is in a spanning cactus (Lemmas 31 and 32).
The inner structure of the xor-gadget is as in Figure 3.5. ABCD is the “true-edge”
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Figure 3.3: The structure of the graph. Clause-gadgets (left) and variable-gadgets
(right) are linked together in a cycle. The variable-edges in the clause-gadgets are
connected to the true-edges in the variable-gadgets by xor-gadgets. (Most of the
xor-gadgets are omitted in the figure.)

in the variable-gadget and LKJI is the “variable-edge” in the clause-gadget. If
one variable occurs in several clauses the xor-gadgets are linked together in the
variable-gadget as in Figure 3.6. The figure shows two linked xor-gadgets but it
can be extended to arbitrarily many. In Figure 3.6 AF is the true-edge in the
variable-gadget, RO and VS are variable-edges in the clause-gadgets. In detail the
linked xor-gadgets look like Figure 3.7.

If there is a solution to an instance of One-In-Three 3SAT we want it to
be a spanning cactus in the constructed graph. We prove this by showing how
to construct a spanning cactus from a solution of an instance of One-In-Three

3SAT.

Lemma 27 Suppose that a graph is constructed from an instance of One-In-

Three 3SAT as described above. If there is a solution to the instance of One-In-

Three 3SAT then there is a spanning cactus in the constructed graph.

Proof 26 Suppose we have a satisfying assignment to an instance of One-In-

Three 3SAT. A spanning cactus can then be constructed as follows: In the variable-
gadgets let the value-edge with the same value as the variable be in the cactus. In the
clause-gadgets let the two false variables be in the cactus. The xor-gadgets connects
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false truetrue false

x3

x4

x5

x1
x4

x2x1 x1

Figure 3.4: The xor connection between variable-edges in the clause-gadgets and
true-edges in the variable-gadgets.

two “edges” where exactly one is in the cactus. We show which edges to choose in
every gadget and that this is a spanning cactus.

In a satisfying assignment of the variables in a clause two variables are false
and one is true. If a variable is false its variable-edge is in the spanning cactus
otherwise it is not. Figure 3.8 shows three cactus branches which include exactly
two of the three variable-edges in the clause-gadget. A variable is obviously true
or false. The corresponding edge in the variable-gadget is in the cactus branch and
we can find a cactus branch in the variable-gadget for each value of the variables
(Figure 3.9). In a satisfying assignment a variable has a unique value and thus the
xor-gadgets will only connect edges in the spanning cactus with edges that do not
belong to the spanning cactus. Figure 3.10 shows cactus branches in the xor-gadget
which includes exactly one of the two “edges” ABCD and LKJI.

The constructed subgraph is strongly connected: Choose two arbitrary vertices,
they are in two gadgets since the graph only consists of gadgets. All variable- and
clause-gadgets are connected and we can find a path between the vertices. If one
vertex is in a xor-gadget it is connected to a variable-gadget or a clause-gadget and
we can find a path to that vertex too.

One edge is in exactly one cycle: Let us first ignore the xor-gadgets and view the
edges they connect as atomic edges. An edge in a variable- or clause-gadget is then
in a cycle or in a path connecting the gadget to the rest of the graph. The cycles are
not connected to any other part of the graph and every edge in the cycle is in that
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K L

C D

E F G H

J

A

I

B

Figure 3.5: Xor-gadget. ABCD and LKJI are the edges which the xor-gadget
connects.

O R S V

FA

Figure 3.6: Linked xor-gadgets. If a variable occurs in two different clauses the
xor-gadgets are linked. AF is the true-edge in the variable-gadget, RO and VS are
variable-edges in the clause-gadgets.

cycle. The edges in the path is in the big cycle (Figure 3.3) but not in any other
cycle. When we add xor-gadgets they replace an edge in the variable-gadget or the
variable-edges in clause-gadgets, with a series of edges and diamonds (Figure 3.10).
But since exactly one of the “edges” the xor-gadget connects is in the cactus branch
in an xor-gadget never connects a variable- and a clause-gadget. Therefore no edge
is in more than one cycle.

Hence if there is a solution of an instance of One-In-Three 3SAT we can
construct a spanning cactus in the corresponding graph.

To complete the reduction, we prove that if there is a spanning cactus in our
constructed graph there is a solution to One-In-Three 3SAT.
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UTQP

NMLKJIHG

EDCB

O R S V

A F

Figure 3.7: Linked xor-gadgets (the same as Figure 3.6)

Lemma 28 Suppose that a graph is constructed from an instance of One-In-

Three 3SAT as above. If there is a spanning cactus in our constructed graph,
then there is a solution to the instance of One-In-Three 3SAT, furthermore the
solution can be found via the spanning cactus.

The proof proceeds by showing that any spanning cactus in the constructed
graph defines a satisfying assignment to the instance of One-In-Three 3SAT.
It is easy to see that the edges connecting the variable- and clause-gadgets are in
the spanning cactus (Figure 3.3) since the spanning cactus is strongly connected.
recall that some edges in the variable- and clause-gadgets are not really edges but
xor-gadgets. Presently we view them as atomic edges and prove in Lemmas 31
and 32 that our view holds. Suppose there is a spanning cactus in our constructed
graph. Then there is a cactus branch in every gadget. We will prove that every
cactus branch corresponds to an assignment and that the assignment is consistent.

In the clause-gadget exactly two of the three variable-edges should be in the
cactus branch, otherwise the cactus does not correspond to a satisfying assignment.
The following lemma proves this and that the cactus branches in Figure 3.8 are the
only possible cactus branches in the gadget.

Lemma 29 Suppose that the clause-gadget (Figure 3.1) is a subgraph in an arbit-
rary graph. Vertices A and B are connected to the rest of the graph but no other
vertices have any other edges than the ones in the figure. Any cactus branch cor-
responding to a spanning cactus includes exactly two of the edges x1, x2 and x3.

Proof 27 (Proof) The path is restricted in several ways. It follows the lower
horizontal edges to connect all vertices. If it traverses one vertical edge starting in
vi the cycle has to end in vi to make the in- and out-degree equal (Lemma 22). The
spanning cactus traverses exactly one of the vertical edges (otherwise one edge is
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Figure 3.8: Possible cactus branches in an clause-gadget.

contained in more than one cycle). For each vertical line there is exactly one way to
connect all vertices and to give all vertices an equal in- and out-degree (Figure 3.8).

A variable should, of course, have exactly one value. In other words, exactly
one of the value-edges should be in the cactus branch. The following lemma proves
this and Figure 3.9 shows the only possible cactus branches in the gadget.

Lemma 30 Suppose a variable-gadget (Figure 3.2) is a subgraph in an arbitrary
graph. Vertices A and B are connected to the rest of the graph but no other vertices
have any other edges than the ones in the figure. Any cactus branch corresponding
to a spanning cactus includes exactly one of the edges true and false.

Proof 28 (Proof) Since all vertices in a cactus have the same in- and out-degree
(Lemma 22) there are only two possible ways to traverse the gadget (Figure 3.9).

Recall that we introduced the xor-gadgets to ensure that the variable has the
same value in all clauses. Specially we want xor-gadget to force that exactly one
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BA

B

true

A

true

false

false

Figure 3.9: Possible cactus branches in a variable-gadget.

of the two edges it connects is in the spanning cactus. The following two lemmas
proves this and that the cactus branches in Figure 3.10 are the only possible ones.

Lemma 31 Suppose that the xor-gadget (Figure 3.5) is a subgraph in an arbitrary
graph. Vertices A, D, I and L are connected to the rest of the graph but no other
vertices have any other edges than the one in the figure. Any cactus branch corres-
ponding to a spanning cactus contains either the edges AB and CD but not JI and
LK or it contains JI and LK but not AB and CD.

Proof 29 (Proof) Since the spanning cactus is strongly connected the two dia-
monds (BEJFB and CGKHC) are in the spanning cactus. If the edge AB is in the
cactus so are the edges BCD (Figure 3.10) since every vertex in a cactus has the
same in- and out-degree (Lemma 22). For the same reason if the edge LI is in the
cactus so are KJI (Figure 3.10). Hence at least one of ABCD and LKJI are in the
spanning cactus.

Assume that ABCD and LKJI are in the cactus. Then the edges BC and KJ
are in the cactus and the diamonds and the edges BC and KJ form three different
cycles. The edges CG, GK, JF and FB are then contained in two cycles which
contradicts the definition of a cactus.

If one variable occurs in several clauses the xor-gadgets are linked together in
the variable-gadget (Figure 3.7). Even for linked xor-gadgets Lemma 31 holds.
More formally the Lemma can be extended to:

Lemma 32 In an arbitrary graph two (or more) xor-gadgets linked as in Figure 3.7
form a subgraph. Single vertices as A, F, O, R, S and V (and possibly more) are
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Figure 3.10: Cactus branches in a xor-gadget.

connected to the rest of the graph but no other vertices have any other edges than
the ones in the figure. Any cactus branch corresponding to a spanning cactus either
contains AB and EF or it contains RQ, PO, VU and TS (and possibly more).

Proof 30 (Proof) All diamonds are in the spanning cactus since it is strongly
connected. If the edge AB is in the cactus so are BCDEF (and possibly more) by
the same argument as in Lemma 31. In the same way; if the edge RQ is in the
cactus so are RQPO and if the edge VU is in the cactus so are VUTS (and possibly
more).

If the edges ABCDEF are in the cactus Lemma 31 proves that the edges RQ,
PO, VU and TS can not be in the cactus.

If the edges RQPO are in the cactus we want to show that it the edges VUTS
are in the cactus as well. If the edges RQPO are in the cactus the edges AB, BC,
CD can not be in the spanning cactus by Lemma 31. If the edge CD is not in the
cactus Lemma 31 shows that the edges VU and TS have to be in the cactus and that
the edge EF can not be in the cactus. The argument can by induction be extended
to arbitrary many xor-gadgets.

To conclude: If there is a spanning cactus in the graph every variable-gadget
gives a value to the corresponding variable (Lemma 30). The construction of the
xor-gadgets ensures that every variable has the same value in all clauses (Lemma 31).
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Since there is a spanning cactus every clause has a satisfying assignment (Lemma 29).
Thus we have a satisfying assignment of the instance of One-In-Three 3SAT and
have proven Lemma 28.

Proof of the Main Theorem

We have constructed a graph from an instance of One-In-Three 3SAT and shown
that if there is a satisfying assignment to the variables we can find a spanning cactus
in the graph (Lemma 27). If there is a spanning cactus in the graph Lemma 28
shows that we can find a satisfying assignment via the spanning cactus. Thus if
there is no satisfying assignment to the instance of One-In-Three 3SAT there
is no spanning cactus in the constructed graph and vice versa. The result can be
formalised to:

Theorem 6 Suppose that a graph is constructed from an instance of One-In-

Three 3SAT as described above. Then there is a spanning cactus in the constructed
graph if and only if there is a satisfying assignment of the variables in the instance
of One-In-Three 3SAT.

SCP is in NP (Lemma 2) and the reduction from One-In-Three 3SAT to
SCP can obviously be done in polynomial time. Since One-In-Three 3SAT is
known to be NP-complete [13, Problem LO4], Theorem 6 proves that SCP also is
NP-complete (Theorem 3) and we have shown our main result.

3.3 Asymmetric TSP and Spanning Directed Cactus

The Travelling Salesman Problem (TSP) is one of the most famous and well-studied
NP-problems. It was proven NP-complete already by Karp [22] and it is in fact
NP-complete for several special cases including Euclidean distance and Manhattan
distance [20]. This means that an efficient algorithm for TSP is highly unlikely;
hence it is interesting to investigate algorithms that compute approximate solu-
tions. However Sahni and Gonzalez [30] showed that in the case of general distance
functions it is NP-hard to find a tour even with weight within exponential factors
of the optimum. When the distance function is symmetric and constrained to sat-
isfy the triangle inequality the best known approximation algorithm is a factor
3/2-approximation algorithm due to Christofides [7]. To construct a TSP tour the
algorithm finds a minimum spanning tree in the graph and then makes a minimum
cost matching of vertices in the tree with odd degree. Together, the tree and the
matching is an Eulerian graph. The Euler tour can, with short-cuts, be reduced to
a TSP tour which obviously has weight less than or equal to the Euler tour.

The asymmetric case is much less understood. The twenty year old approxim-
ation algorithm, invented by Frieze, Galbiati and Maffioli [12], approximates the
TSP tour within a factor of log2 n. The algorithm repeatedly makes minimum cycle
covers of the graph and connects them to a spanning cactus (which is not minimal)
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and then transforms the spanning cactus to a TSP tour. Despite a lot of effort in
research during the last twenty years there are only some very recent algorithms
which improves the constant factor of the approximation. The currently best al-
gorithm is by Kaplan, Lewenstein, Shafrir and Sviridenko [21]. Their algorithm
decomposes multigraphs and gives an approximation of 3/4 log3 n < 0.842 log2 n.
There is only a miniscule lower bound: Papadimitriou and Vempala [27] recently
proved that it is NP-hard to approximate the minimum TSP tour within a factor
less than 220/219− ǫ, for any constant ǫ > 0. Hence, any algorithm approximating
the minimum TSP tour in an asymmetric graph within a factor independent of the
number of vertices n is of great interest to the community.

In order to construct such an algorithm it is natural to try to generalise the ideas
used by Christofides [7]. In particular, it seems fruitful to search for structures
similar to that of a spanning tree in asymmetric graphs. One such structure is
the spanning cactus. We observe however, that finding the minimum spanning
cactus and the minimum TSP tour in an asymmetric weighted complete graph
are polynomial time equivalent problems. They also have the same hardness of
approximation. Therefore it can not be easier to find a minimum spanning cactus
than a minimum TSP tour.

Proof 31 (Proof of Theorem 4) The TSP tour is a spanning cactus and there-
fore the weight of the minimum spanning cactus is less than or equal to the TSP
tour’s weight.

If we have a minimum spanning cactus it is possible to transform it into a TSP
tour in the following way: Start in an arbitrary vertex, traverse the spanning cactus
in the order of an Euler tour. If an edge goes to an already visited vertex replace the
edge to the vertex and the next edge in the Euler tour with the edge short-cutting
them. If the new edge goes to a visited vertex repeat until an unvisited vertex is
found or to the end of the Euler tour. The triangle inequality guarantees that the
weight of the short-cut edge is less than or equal to the combined weight of the
original edges. The found TSP tour therefore has a weight less than or equal to the
minimum spanning cactus weight.

Secondly, we prove that TSP can be approximated within c if and only if the size
of the spanning cactus can be approximated within c. Every TSP tour is a spanning
cactus and hence a c-approximation algorithm for TSP approximates the minimum
spanning cactus within the same ratio. Conversely, a c-approximation algorithm
for the minimum spanning cactus can be used to construct a c-approximate TSP
tour by the construction outlined in the previous paragraph.





Chapter 4

Symmetric Representation of

Asymmetric Graphs with an

Application to Asymmetric TSP

This chapter is based on joint work with Lars Engebretsen, and my contribution is
approximately 50%.

An instance of the Asymmetric TSP with triangle inequality can be transformed
into an instance of the Symmetric TSP in a certain related bipartite graph. We
show, that, in spite of the fact that the edge weights in this bipartite graph do
not obey the triangle inequality, the weights of minimum TSP tours in the two
corresponding instances are within constant factors of each other. The symmetric
bipartite realization of instances of Asymmetric TSP therefore open up new pos-
sibilities to construct both stronger approximation algorithms for the problem as
well as stronger approximation hardness results.

4.1 Introduction

A directed graph can be represented in a natural way by an undirected bipartite
graph as follows: Every vertex in the directed graph is represented by two copies of
the vertex—one “source” copy and one “sink” copy; every arc (u, v) in the directed
graph is represented as an undirected edge between the “source” copy of u and the
“destination” copy of v in the bipartite graph. Under the above transformation,
certain structures in the bipartite graph correspond to related structures in the
asymmetric graph: For instance, a perfect matching in the bipartite graph corres-
ponds to a cycle cover in the directed graph. This is the main idea underlying the
polynomial time algorithm that computes a minimum-weight cycle cover of a direc-
ted graph—this algorithm in fact computes a minimum-weight maximal matching
in the corresponding bipartite graph.
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This note considers similar relations between other structures in asymmetric and
corresponding bipartite graphs. As an example, we consider Hamiltonian cycles and
Eulerian subgraphs of directed graphs and prove that they correspond to subgraphs
with certain structure in the corresponding bipartite graph. Although this com-
binatorial problem has an interest of its own, we believe that our main result is a
characterization of the Asymmetric TSP with triangle inequality that has potential
applications in the field of approximation algorithms and approximation hardness.

TSP with triangle inequality, i.e., instances of TSP where the distances between
the cities satisfy the triangle inequality, is a classical combinatorial optimization
problem. The decision version of this special case was shown to be NP-complete
already in Karp’s original 1972 paper on NP-completeness [22], which means that
we have little hope of computing exact solutions in polynomial time. Christofides [7]
famous algorithm from 1976 finds a TSP tour with cost within a factor of 3/2 from
the cost of an optimum tour for distance functions that are symmetric. The so
called Asymmetric TSP with triangle equality is, however, far less understood—it
is in fact one of the most notorious open problems with respect to approximability.
Frieze, Galbiati and Maffioli [12] constructed an algorithm in 1982 that approxim-
ates the optimum within log2 n, where n is the number of cities. Today, more than
20 years later, the best known algorithm [21] still guarantees only a logarithmic
approximation ratio and the strongest known approximation hardness result [27]
states that it is NP-hard to approximate the optimum within a factor of 1 + ǫ
for some ǫ which is roughly 10−2. Obviously, any new insight into the structure
of the asymmetric TSP with triangle inequality is of considerable interest to the
community.

In this note, we present an alternate view of asymmetry in TSP instances.
Specifically, we construct from an instance of the asymmetric TSP an instance of
the symmetric TSP in a certain bipartite graph and then prove, that, when the
distance function in the original asymmetric TSP instance obeys triangle inequality,
the cost of the optimum tours in the two instances are within constant factors from
each other. This implies that in order to construct a constant-factor approximation
algorithm for the asymmetric TSP with triangle inequality, it is enough to construct
such an algorithm for the symmetric bipartite graphs mentioned above. Alas, the
metric in those bipartite graphs do not obey the triangle inequality. TSP with
general, symmetric, distance functions that do not obey the triangle inequality
cannot be approximated even within exponential factors. However, “our” bipartite
graphs have a special structure and we believe that they could potentially provide
an alternate way to attack the problem of devising algorithms for the asymmetric
TSP with triangle inequality.

The currently strongest polynomial time approximation algorithms for asym-
metric TSP with triangle inequality all use the idea of subtour patching, which
essentially amounts to computing a sequence of cycle covers of the weighted direc-
ted graph describing the instance and then using these covers to form an Eulerian
subgraph of the given instance. It seems, however, that it is difficult to use this
approach to push the approximation ratio to o(log n). The bipartite symmetric
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Figure 4.1: Left: An asymmetric graph G. Right: The bipartite realization B(G).

version of the problem may be more susceptible to other algorithmic techniques
that give better approximation ratios. We have not been able to successfully use
the approach ourselves, but we hope that this note will enable other researchers to
continue our efforts.

4.2 Bipartite Realization of Asymmetric Graphs

Intuitively, the bipartite realization of a directed graph G contains two copies of
every vertex in G, one “source vertex” and one “destination vertex”. An arc (u, v)
in G is then represented as an undirected edge from the source vertex corresponding
to u to the destination vertex corresponding to v (Fig. 4.1).

Definition 33 Given an asymmetric unweighted graph G with vertex set V and arc
set A ⊆ V × V , the bipartite realization of G, denoted by B(G), is defined as the
graph with vertex set {sv : v ∈ V }∪{tv : v ∈ V } and edge set {{su, tv} : (u, v) ∈ A}.

For a weighted asymmetric graph G, the bipartite realization is defined as above
with the addition that the weight of the edge {su, tv} in B(G) is defined as the weight
of the arc (u, v) in G.

By definition, G and B(G) always have the same weight. Doing the construction
described in Definition 33 “backwards”, one can construct an asymmetric graph on,
say, n vertices from a given bipartite graph on 2n vertices if the bipartition has well-
defined “source” and “destination” sides that contain n vertices each. Formally:
If GB is a symmetric bipartite graph where the two sides in the bipartition have
the same size and there is a designated “source” side, there is a unique asymmetric
graph G such that B(G) = GB.



64 CHAPTER 4. REPRESENTATION OF ASYMMETRIC GRAPHS

It is easy to see that self-loops in an asymmetric graph translates to edges of
the form {sv, tv} in the bipartite realization and that Definition 33 also works for
multigraphs: the bipartite realization of an asymmetric multigraph is a symmetric
bipartite multigraph. In the rest of this paper, however, we only consider simple
graphs. Consequently, there are no edges of the form {sv, tv} in the bipartite graphs
we consider.

The bipartite realization described in Definition 33 can be applied not only
to entire graphs but also to subgraphs. Given an asymmetric graph G and some
subgraph H of G, the bipartite realization of H , denoted by B(H), is a subgraph of
B(G). The remainder of this note considers relationships between H and B(H). In
particular, we prove results of the form “if H has a certain structure with respect
to G, then B(H) has a certain structure with respect to B(G)” and vice versa. As
an application, we use these relationships to prove that if G is an instance of the
asymmetric TSP with triangle inequality, the cost of a minimum TSP tour in G and
the cost of a minimum TSP tour in B(G)—which is a symmetric instance without
triangle inequality—are within constant factors of each other.

We first study connectivity. It is easy to see that the bipartite realization of a
connected asymmetric graph need not be connected: Consider the graph with vertex
set {u, v} and arc set {(u, v)}. However, the bipartite realization of a connected
asymmetric graph has another property:

Definition 34 Let G be an asymmetric graph with vertex set V . The bipartite
realization B(G) is overlapping if it holds that there is, for every non-empty proper
subset F of vertices in B(G) such that |F ∩ {sv, tv}| 6= 1 for all v ∈ V , at least one
edge in B(G) that connects a vertex in F with a vertex outside F .

Lemma 33 The bipartite realization of a connected asymmetric graph is overlap-
ping. Conversely, a bipartite realization that is overlapping corresponds to a con-
nected asymmetric graph.

Proof 32 It can be seen that the requirement on F stated in Definition 34—for
every subset F of vertices in B(G) such that |F ∩ {sv, tv}| 6= 1 for all v ∈ V —can
be equivalently stated: for every subset F of vertices in B(G) that can be written as
{{su, tu} : u ∈ U} for some nonempty U ⊂ V .

Let G be an asymmetric graph. If the graph G is connected then for every
nonempty set U ⊂ V there is either an arc (u, v) for some u ∈ U and some
v ∈ V \U or an arc (v, u) for some u ∈ U and some v ∈ V \U . Hence, there is an
edge connecting a vertex in the corresponding set FU = {{su, tu} : u ∈ U} with a
vertex outside FU . To conclude, B(G) is overlapping in this case.

Conversely, if B(G) is overlapping, then for every nonempty set U ⊂ V it holds
that there is at least one edge between a vertex in the set FU = {{su, tu} : u ∈ U}
and a vertex outside FU . This implies that there is, for every nonempty set U ⊂ V
an arc from/to a vertex in U to/from a vertex in V \ U , i.e., that G is connected.

For the special case when the asymmetric graph is a Hamiltonian cycle, the bipartite
realization has even more structure.
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Lemma 34 Let G be an asymmetric graph and H be a Hamiltonian cycle in G.
Then B(H) is an overlapping bipartite perfect matching in B(G). Conversely, any
overlapping perfect matching in B(G) is the bipartite realization of a Hamiltonian
cycle in G (Fig. 4.2).

Proof 33 A Hamiltonian cycle has in-degree one and out-degree one at every ver-
tex. Therefore, it follows from the construction in Definition 33 that B(H) has
degree one at every vertex, i.e., it is a matching. Since a Hamiltonian cycle visits
every node, the matching is perfect. Finally, since a cycle is connected, Lemma 33
implies that the matching is overlapping.

Conversely, let H ′ be an overlapping perfect matching in B(G) and consider
the following walk in G: From an arbitrary vertex v, walk to a vertex w such that
{sv, tw} is an edge in H ′; Repeat until the walk returns to a visited vertex. Since H ′

is a perfect matching, there is, for every v, a unique w such that {sv, tw} is an edge
in H ′. Therefore the walk is well-defined. By the pigeon hole principle, the walk
eventually returns to a visited vertex. We claim that it has then visited all vertices.

Let V denote the vertex set of G and suppose that the walk returns having visited
some set U ⊆ V of vertices in G. Let FU ⊆ H ′ be the set of edges are incident to
any of the vertices {su : u ∈ U} ∪ {tu : u ∈ U}. Now, there can be no edge {su, tv}
such that u ∈ U and v /∈ U since this would imply that the walk must have visited
v /∈ U . Similarly, there can be no edge {sv, tu} such that u ∈ U and v /∈ U . Hence,
there are no edges connecting a vertex in FU with a vertex outside FU . Since H ′ is
overlapping, Definition 34 implies that either FU = ∅ or else FU = H ′. Since U is
non-empty, however, also FU must be non-empty. So the only remaining possibility
is that FU = H ′, which, in turn, implies that U = V .

We have seen above that a Hamiltonian cycle in G corresponds to a perfect
matching in B(G). We now investigate what a Hamiltonian cycle in B(G) corres-
ponds to in G.

Lemma 35 Let G be an asymmetric graph. A Hamiltonian cycle in B(G) is the
bipartite realization of an Eulerian subgraph of G. Moreover, every vertex in this
subgraph has in-degree two and out-degree two (Fig. 4.3).

Proof 34 Let H be such that B(H) is a Hamiltonian cycle in B(G). Since a
Hamiltonian cycle is connected and visits every vertex, B(H) is overlapping; hence
Lemma 33 shows that H is connected. Since every vertex in B(H) has degree two,
Definition 33 implies that H has in-degree two and out-degree two at every vertex.
Thus H is Eulerian.

The reverse of Lemma 35 does, in fact, not hold—a counter-example is shown in
Fig. 4.4. However, it can be seen that for every Eulerian subgraph H of G with the
additional property that every vertex has in-degree two and out-degree two, B(H)
is a cycle cover of B(G), i.e., a subgraph of B(G) where every vertex has degree
two, that is overlapping.
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Figure 4.2: Left: An asymmetric Hamiltonian cycle H . Right: The bipartite
realization B(H)—an overlapping perfect matching.
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Figure 4.3: Left: An asymmetric Eulerian graph H with in-degree two and out-
degree two at every vertex. Right: The bipartite realization B(H)—a Hamiltonian
cycle.
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Figure 4.4: Left: An asymmetric Eulerian graph G with in-degree two and out-
degree two at every vertex. Right: The bipartite realization B(G)—an overlapping
cycle cover.

Lemma 36 Let G be an asymmetric graph and H be an Eulerian subgraph of G
with in-degree two and out-degree two at every vertex. Then B(H) is an overlap-
ping cycle cover of B(G). Conversely, any overlapping cycle cover of B(G) is the
bipartite realization of an Eulerian subgraph of G with in-degree two and out-degree
two at every vertex (Fig. 4.4).

Proof 35 By Definition 33 every vertex in B(H) has degree two, hence B(H)
is a cycle cover. Since H is connected, it follows from Lemma 33 that B(H) is
overlapping.

Conversely, let H ′ be an overlapping cycle cover of B(G) and let H be such that
B(H) = H ′. Since every vertex in H ′ has degree two, it follows that every vertex
in H has in-degree two and out-degree two. Since H ′ is overlapping, Lemma 33
implies that H is connected.

We remark that Lemma 33 shows that it is critical that the cycle cover H ′ in the
proof above is overlapping for the corresponding asymmetric subgraph H to be
connected.

4.3 Application to Asymmetric TSP

Theorem 7 Let G be a complete, weighted, asymmetric graph and suppose that the
weights satisfy the triangle inequality. Denote by w(TA) the weight of a minimal
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Figure 4.5: Left: An extended, asymmetric TSP tour H . Right: The bipartite
realization B(H)—a Hamiltonian cycle.
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TSP tour in G and by w(TB) the weight of a minimal TSP tour in B(G). Then
it holds that w(TA) ≤ w(TB) ≤ 3w(TA), or, equivalently, that 1

3w(TB) ≤ w(TA) ≤
w(TB).

Proof 36 To see that w(TA) ≤ w(TB), note that the minimum TSP tour in B(G)
is a Hamiltonian cycle; by Lemma 35 the corresponding subgraph in G is Eulerian
and has the same weight. An Eulerian graph can be converted to a TSP tour by
shortcuts. Since the edge weights in G obey the triangle inequality the constructed
TSP tour has weight less than or equal to the weight of the minimum TSP tour in
B(G). Hence there exists a TSP tour in G with weight at most w(TB).

To see that 3w(TA) ≥ w(TB), consider an arbitrary minimum TSP tour in G.
Denote by V the vertex set of G and let σ: V → V denote the successor of a vertex
in the TSP tour, i.e., the TSP tour contains the arcs ∪v∈V (v, σ(v)). Let H denote
the subgraph of G that contains the edges

(

⋃

v∈V

(

v, σ(v)
)

)

∪
(

⋃

v∈V

(

v, σ(σ(v))
)

)

.

In words, H contains the TSP tour plus “jumps” of length two in the tour (see
Fig. 4.5). Since the edge weights in G satisfy the triangle inequality, the weight
of (v, σ(σ(v))) is at most the weight of (v, σ(v)) plus the weight of (σ(v), σ(σ(v)));
therefore the weight of H is at most 3w(TA). Since H is Eulerian with in-degree two
and out-degree two at every vertex, Lemma 36 shows that B(H) is an overlapping
cycle cover of B(G). We now prove that this cycle cover consists of only one cycle,
thereby establishing that a minimum TSP tour in B(G) has weight at most 3w(TA).

Since (v, σ(v)) is an arc in the considered minimum TSP tour in G, it fol-
lows from the construction of H described above that the edges {sv, tσ(σ(v))} and
{tσ(σ(v)), sσ(v)} form a path of length two in B(H). Since σ defines a permutation
of the vertices in G, the path

⋃

v∈V

(

{sv, tσ(σ(v))} ∪ {tσ(σ(v)), sσ(v)}
)

is a cycle in B(H). This cycle has length 2|V | and contains all vertices of B(G).

Intuitively, the second part of the proof above defines a walk in B(H) that corres-
ponds to a “walk” in H that alternates between following a “long” edge forwards
and a “short” edge backwards as indicated in Fig. 4.5.





Chapter 5

Finding a Perfect 2-Matching

without 6-Factors in a Bipartite

Graph is NP-complete

In a symmetric bipartite graph all cycles has even length and the shortest cycle
has length four. For an arbitrary symmetric graph there is a polynomial time
algorithm that finds the minimum cycle cover by matching. In 1999 Hartvigsen [16]
give a polynomial time algorithm which finds square-free 2-matchings in bipartite
graphs. For arbitrary graphs Papadimitriou has shown that it is NP-complete
to find a perfect 2-matching without cycles of length five or less [9]. It has been
conjectured [15] that finding a 2-matching without cycles of length six or less in a
bipartite graph is NP-hard but no proof has been published. Here we give a proof
and hence close the gap for bipartite graphs.

Theorem 8 To determine if a graph has a perfect 2-matching with no polygon of
size five or less is NP-complete [9].

Definition 35 B6 is the following decision problem: Given a symmetric bipartite
graph, is there a perfect 2-matching such that there are no cycles of length six or
less in the matching?

We will show the following:

Theorem 9 B6 is NP-complete.

Corollary 3 For any k ≥ 6 Bk is NP-complete.
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5.1 Proof of NP-completeness

B6

The problem B6 is obviously in NP. One-In-Three 3SAT is an NP-complete
problem [13, Problem LO4]; by reducing One-In-Three 3SAT to B6 we show
that B6 is NP-complete as well.

Definition 36 One-In-Three 3SAT is the following decision problem: Given a
set U of variables and a collection C of clauses over U such that each clause c ∈ C
has |c| = 3, is there a truth assignment for U such that each clause in C has exactly
one true literal?

Theorem 10 One-In-Three 3SAT is NP-complete even if no clause contains a
negated literal [13, Problem LO4].

Given an instance of One-In-Three 3SAT with an consistent assignment to
the variables we can construct an instance of B6 in the following way:

For every variable xi ∈ U we there is a variable gadget (Figure 5.1). There are
two possible 2-matchings in the variable gadget; one containing the edge etrue and
the other containing the edge efalse. If the variable is true the edge etrue is in the
matching, and contrary if the variable is false the edge efalse is in the matching.

In every gadget the vertices are filled or not filled. Since no edge connect vertices
of the same “colour” the graphs are bipartite.

etrue

efalse

Figure 5.1: The variable gadget.

For every clause c = {xi, xj , xk} ∈ C there is a clause gadget (Figure 5.2). We
associate each variable in the clause with an edge in the clause gadget. If a variable
xi is true the edge xi is not in the perfect 2-matching and otherwise it is in the
matching. Since this three edges connects one vertex it is obvious that exactly one
of them is true in any perfect 2-matching.
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xk

xj
xi

Figure 5.2: The clause gadget.

To give a variable xi a consistent value in every clauses we need an xor gadget
(Figure 5.3). The edges e′true and e′′true replaces the edge etrue in the variable
gadget and the edges x′

i and x′′
i replaces the edge xi in the clause gadget. A perfect

2-matching without cycles of length six or less contains either the edges e′true and
e′′true or the edges x′ and x′′. If a variable is in several clauses the xor gadgets are
linked after one other.

e′true

x′ x′′

e′′true

Figure 5.3: The xor gadget.

To make sure that every variable xi in a clause can be true. Figure 5.4, 5.5
and 5.6 show the three possible perfect 2-matchings without cycles of length six
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or shorter in the clause gadget. Remember that an edge xi is one side in the xor
gadget which consists of five edges, therefore the cycle with the edges xj and xk in
Figure 5.4 has length larger than six.

xk

xj
xi

Figure 5.4: A perfect 2-matching excluding the edge xi.

xk

xj
xi

Figure 5.5: A perfect 2-matching with no cycles of length six and excluding the
edge xj .

The constructed graph contains a perfect 2-matching without cycles of length
six or shorter.

Suppose there is a perfect 2-matching without cycles of length six or shorter
in the constructed graph. We will show that there is a consistent solution to the
instance of One-In-Three 3SAT and that we can extract the solution.
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xk

xj
xi

Figure 5.6: A perfect 2-matching with no cycles of length six and excluding the
edge xk.

For every variable gadget set the corresponding variable, xi to true if the edge
etrue is in the matching and otherwise to false. The xor gadget makes sure that
the edges xi in the clause gadgets are not in the matching. For every clause gadget
there is no other 2-matchings then the ones shown in Figure 5.4, 5.5 and 5.6. Hence
all clauses have exactly one true literal and we have a consistent assignment to the
instance of One-In-Three 3SAT.

It is shown that there is a solution to B6 if and only if there is a solution to the
instance of One-In-Three 3SAT.

Bk

For any k ≥ 6 the gadgets can be slightly modified to show that the problem is
NP-complete as well. If k is even the problem Bk is similar to Bk−1 since there is
no cycles of odd length in a bipartite graph. Hence assume that k is even.

In the variable gadget add vertices until there are k + 2 vertices in the graph
and the cycles are allowed in the matching.

The xor gadget need not to be modified since cycles of length six is not allowed
for any k ≥ 6 and the graph has the required property for any k ≥ 6.

In the clause gadget let the left-most vertical line be divided by k − 4 vertices.
In Figure 5.2 the line is divided by two vertices. Let the right-most vertical line be
divided by at least k − 10 vertices. In Figure 5.2 the edge is not divided by any
vertices. Then all cycles in Figure 5.4- 5.6 are allowed in the matching.





Chapter 6

Properties of the Cicular

Betweenness Problem

Chor and Sudan write about betweenness when the points are on a line [6]. We
consider a slightly modified problem when the points are on a circle and show that
this version of the problem is NP-hard as well.

Definition 37 The Circular Betweenness problem: A set U of n points, a set C
of m orders with three points in each order. Find an permutation of the points on
a circle such that as many orders as possible have their points in clock-wise order.

When a point a is said to be between the points b and c on the circle we mean
in clock-wise direction.

6.1 The Betweenness problem is NP-complete

The problem is obviously in NP.

Reduction from 3-SAT to Circular Betweenness

In 1998 Chor and Sudan showed that if the points are ordered on a line the problem
is NP-complete. They reduce Max 3-SAT to that problem. In this section we
use some of the ideas by Chor et. al when we reduce Max 3-SAT to Circular
Betweenness.

Definition 38 The Maximum 3-SAT problem: A set U of n variables, a set C
of m clauses with three literals, where a literal is a variable or a negated variable.
Find a true assignment of the variables such that as many clauses as possible are
satisfied by the assignment.

Suppose we have an instance of Max 3-SAT with n variables and m clauses.
Define two points T and F on the circle. For every variable xi construct a point
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F

p1

p2

T

qi1

qi2

qi3

p3

Figure 6.1: A clause ci = (x1, x2, x3) with the assignment x1 and x2 are true and
x3 is false represented as points on the circle.

pi and for every clause ci = {xa, xb, xc} construct three variable points qia, qib, qic

and six extra points ri1, ri2, ri3, si1, si2, si3.
If a variables xi is true we want the point pi to be between T and F and if

xi is false we want pi to be between F and T (Figure 6.1). To give a variable a
consistent value in every clause we construct for clause ci two orders (T, qia, pa) and
(F, qia, pa) (or (T, qia, pa) and (F, pa, qia)if the variable xa is negated). For every
clause ci = {xa, xb, xc} construct also the following orders: (qa, qb, qc), (qa, r1, qb),
(qb, r2, qc), (qc, r3, qa), (r1, s1, r2), (r2, s2, r3), (r3, s3, r1), (T, s1, F ), (T, s2, F ) and
(T, s3, F ). For every variable there is one point on the circle and for every clause
there are nine points and 16 orders. In total there is 2 + n + 9m points and 16m
orders.

Lemma 37 If there is a satisfying assignment to Max 3-SAT. Then there is a
satisfying assignment to the constructed instance of Circular Betweenness.

Proof 37 If a variable xi is true put the point pi between T and F on the circle
and if the variable xi is false put the point pi between F and T . For every clause
ci = {xa, xb, xc}, if a variable xa is not negated put qia on the same side of T and F
as pa and if the variable xa is negated put qia on the opposite side of T and F as pa.
Between F and T and between T and F put first all points of the type qia and then
all points of the type pa. The points then obey the orders of the form (T, qia, pa).
Permute the points qia, qib and qic such that they obey the order (qia, qib, qic), this
can be done since at least two q’s are on the same side of F and T and only occur
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Figure 6.2: The true and false side of the circle.

in one order. Since the clause ci is satisfied at least one variable xa is true and
by the construction one of the points qia is on the true side of the circle. For the
remaining orders; put the points rij and sij on the true side if it is possible. Since
at least one point qia is on the true side two points rik and ril is on the true side.
With two ri-variables on the true side all three si-variables can be on the true side
and all orders of the form (T, si, F ) is satisfied. Hence all orders are satisfied.

Lemma 38 Suppose there is an satisfying order of the points in the constructed
instance of Circular Betweenness. Then there is an satisfying instance of Max
3-SAT.

Proof 38 If a point pi is one the true side of the circle assign the variables xi to
true and false otherwise. Look at a clause ci. Since all orders of the type (T, p, q) is
satisfied the position of the qji-variables are consistent with the variable xi. Suppose
no variable qi is on the true side of the circle. Then at most one r-variable is on
the true side and at most two s-variables is on the true side. Then one of the orders
(T, si, F ) is not satisfied and we have a contradiction. Hence at least one of the
variables qij is on the true side and the clause is satisfied.

Lemma 39 If there is no satisfying assignment to Max 3-SAT. Then for every not
satisfied clause at most 15 of the 16 constructed orders are satisfied.

Proof 39 All clauses can not be true by Lemma 37 and 38. Suppose the clause ci

is not satisfied. By Lemma 38 all clauses can not be true and at least one of the
orders is not satisfied. For example put one qij on the true side of the circle. Then
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one order of the type (T, pj, qij) is false but all the rest can be true and 15 orders
are satisfied.

Lemma 40 A satisfiable instance of Max 3-SAT with m clauses is NP-hard to
approximate within 7

8m [17].

Lemma 41 For an satisfiable instance of Circular Betweenness with m orders it
is NP-hard to approximate within 127

128m.

Proof 40 By Lemma 40 it is NP-hard to approximate more than 7
8m clauses.

From every clause we construct 16 orders and can satisfy all if the clause is satis-
fiable and at most 15 if the clause is not satisfiable. Hence we can satisfy at most

a fraction of
7
816m+ 1

815m

16m = 127
128 .

6.2 Approximation algorithms

Put the points arbitrary on a circle. The ordering is said to be in clock-wise
direction. If less than half of the orders is satisfied put the points in counter-
clock-wise direction. Since every order is satisfied for one of the orderings at least
half of the orders are satisfied. Hence the algorithm is in linear time and gives a
1/2-approximation.

6.3 Find permutation

Definition 39 For a fix permutation of points on the circle and a black-box which
gives an order of three points. How many orders do we need to decide the permuta-
tion?

Theorem 11 At least O(n log n) orders is needed.

Proof 41 There are n! possible permutations. Each order eliminate half of them
and we need at least n log n orders.



Chapter 7

Conclusions

In Chapter 2 we construct two families, H and G, of worst case graphs for the
approximation algorithm by Frieze et al. for asymmetric TSP. With deterministic
assumptions on the algorithm, it shows a worst case performance for graphs in the
family H. The algorithm returns for a graph Gn ∈ H by Theorem 1 a TSP tour
of weight greater than (opt(Gn) · log2 n)/(2 + o(1)). The analysis of the algorithm
by Frieze et al. shows that the algorithm gives a TSP tour with weight less than or
equal to opt(Gn) · log2 n, hence the analysis of the algorithm by Frieze et al. is tight
up to a factor of 1/2. The ratio α between edges in different directions is greater
than n/2 and the data dependent approximation algorithm by Frieze et al. is then
proven to give an approximation better than 3α/2 = 3n/4 or O(n).

With random assumption on the algorithm, it shows a worst case performance
for the family G of symmetric graphs. The algorithm returns by Theorem 2 a TSP
tour with expected weight

opt(Gn)− 1

768
(log2 n− 5)− 1

What kind of algorithm might give a better approximation of the TSP tour on
the worst case graphs? The reason that the spanning cactus in the algorithm by
Frieze et al. is heavy is that many cycle covers are produced and that the cycles
are connected simultaneously. One efficient heuristic in practice is to build one
cycle cover and then patch the cycles together [18]. It is difficult to find a smart
way of connecting the cycles and it is easy to construct graphs where the algorithm
preforms poorly. In the algorithm by Frieze et al. the cycles connects few nodes
(at most three) during the first log3 m iterations. Larger cycles or some other
subgraph would be useful. However finding the minimum cycle cover with large
cycles is difficult since finding a minimum cycle cover with cycles of length at least
three is NP-hard [32].

The new algorithm by Bläser is a development of the algorithm by Frieze et al.
and uses partial cycle covers. In their recent algorithm Kaplan et al. [21] introduce

81
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some new ideas. Basically, they compute a fractional cycle cover with certain 2-
cycle constraints and then use such covers to extract cycle covers with few 2-cycles
for the underlying graph. An interesting question is to investigate if the family of
graphs defined in this paper—or any other class of graphs—give an approximation
ratio Ω(log n) for these new algorithms.

The question by Karp [23] as to whether there is a polynomial time heuristic
for which the approximation ratio of asymmetric TSP is bounded by a constant is
still open.

In order to construct an algorithm for asymmetric TSP it is natural to try
to generalise the ideas used by Christofides [7]. In particular, it seems fruitful
to search for structures similar to that of a spanning tree in asymmetric graphs.
One such structure is the spanning cactus. A spanning cactus is also produced by
the algorithm by Frieze et al.. In Chapter 3 we observe however, that finding the
minimum spanning cactus and the minimum TSP tour in an asymmetric weighted
complete graph are polynomial time equivalent problems. They also have the same
hardness of approximation. Therefore it can not be easier to find a minimum
spanning cactus than a minimum TSP tour. By reducing One-In-Three 3SAT

we also show that determining if a general graph has a spanning cactus is NP-
complete. An interesting field for using spanning cacti is for TSP with multiple
salesmen, especially when the underlying graph is not Hamiltonian.

Definition 40 k-Travelling Salesman Problem (k-TSP) is the following: given a
graph G and a start vertex v0, decide if there are k subtours each containing v0,
such that every other vertex in the graph is in exactly one tour.

A k-TSP tour is obviously a spanning cactus since it consists of k disjoint cycles
which start in the same vertex. It remains to be seen if cacti can be used in an
approximation algorithm for k-TSP.

An instance of the Asymmetric TSP can be transformed into an instance of
the Symmetric TSP in a certain related bipartite graph. In Chapter 4 we show,
that, in spite of the fact that the edge weights in this bipartite graph do not obey
the triangle inequality, the weights of minimum TSP tours in the two correspond-
ing instances are within constant factors of each other. The symmetric bipartite
realization of instances of Asymmetric TSP therefore open up new possibilities
to construct both stronger approximation algorithms for the problem as well as
stronger approximation hardness results.

Theorem 12 Let G be a complete, weighted, asymmetric graph and suppose that
the weights satisfy the triangle inequality. Denote by w(TA) the weight of a minimal
TSP tour in G and by w(TB) the weight of a minimal TSP tour in B(G). Then
it holds that w(TA) ≤ w(TB) ≤ 3w(TA), or, equivalently, that 1

3w(TB) ≤ w(TA) ≤
w(TB).

Apart from the results presented in this chapter, it is, of course, possible to
formulate, and prove, several other lemmas that relate structures in directed graphs
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to structures in the corresponding bipartite realizations. We have, however, been
unable to completely characterise the kind of Eulerian subgraphs of directed graphs
that correspond to Hamiltonian cycles in the bipartite realisation. It seems that
some kind of “locality” property is needed here—the Eulerian subgraph constructed
in the proof of Theorem 7 is very “local” in the sense that it consists of a TSP tour
augmented with edges that make very short jumps along the direction of the tour.

An algorithmic application, or, for that matter, a proof of approximation hard-
ness, probably requires some additional results that describe the structure of the
bipartite realization of a complete graph where the edge weights obey the triangle
inequality. We have not been able to find any simple relation between weights of
different edges in the bipartite realization other than the direct implication of the
triangle inequality: that w({su, tv}) + w({sv, tw}) ≤ w({su, tw}).

When approximating asymmetric TSP Frieze et al. use cycle covers. In Chapter 4
we investigate connections between asymmetric and bipartite graphs and are hence
interested also in cycle covers in bipartite graphs. In a symmetric bipartite graph
all cycles have even length and the shortest cycle has length four. It has been
conjectured [15] that finding a 2-matching without cycles of length six or less in
a bipartite graph is NP-hard but as far as we know no proof has been published.
We give a proof by reducing One-In-Three 3SAT and hence close the gap for
bipartite graphs.

Chor and Sudan write about betweenness when the points are on a line [6]. In
Chapter 6 we consider a slightly modified problem when the points are on a circle
and show that this version of the problem is NP-hard as well.





Bibliography

[1] David Applegate, Robert Bixby, Vasek Chvátal, and William Cook. Concorde
home, 2006. Website, <http://ww.tsp.gatech.edu/concorde/index.html>.

[2] Norbert Ascheuer, Matteo Fischetti, and Martin Grötschel. A polyhedral study
of the asymmetric traveling salesman problem with time windows. Networks,
36(2):69–79, 2000.

[3] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto
Marchetti-Spaccamela, and Marco Protasi. Complexity and Approximation.
Combinatorial Optimization Problems and their Approximability Properties.
Springer-Verlag, Berlin, 1999.

[4] Egon Balas. The prize collecting traveling salesman problem and its applica-
tions. In Gutin and Punnen, editors, The Traveling Salesman Problem and its
Variations, pages 663–696. Kluwer Academic Publishers, 2002.

[5] Markus Bläser. A new approximation algorithm for the asymmetric tsp with
triangle inequality. In Proceedings of 14th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 639–647. SIAM, 2003.

[6] Benny Chor and Madhu Sudan. A geometric approach to betweenness. SIAM
Journal on Discrete Mathematics, 11(4):511–523, 1998.

[7] Nicos Christofides. Worst-case analysis of a new heuristic for the traveling
salesman problem. Technical Report CS-93-13, Graduate School of Industrial
Administration, Carnegie Mellon University, Pittsburgh, 1976.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. the MIT Press, 2001.

[9] Gerard Cornue’jols and William Pulleyblank. A matching problem with side
conditions. Discrete Mathematics, 29:135–159, 1980.

[10] Lars Engebretsen. Approximate Constraint Satisfaction. Högskoletryckeriet,
Stockholm, 2000. Doctoral Thesis.

85



86 BIBLIOGRAPHY

[11] Lisa Fleischer. Building chain and cactus representations of all minimum cuts
from hao-orlin in the same asymptotic run time. Journal of Algorithms, pages
51–72, 1999.

[12] Alan M. Frieze, Giulia Galbiati, and Francesco Maffioli. On the worst-case per-
formance of some algorithms for the asymmetric traveling salesman problem.
Networks, 12:23–39, 1982.

[13] Michael R. Garey and David S. Johnson. Computers and Intractability: a
guide to the theory of NP-completeness. W. H. Freeman and Company, San
Fransisco, 1979.

[14] L. Gouveia and S. Voß. A classification of formulations for the (time depend-
ent) traveling salesman problem. European Journal of Operationnal Research,
83:69–82, 1995.

[15] David Hartvigsen. Finding maximum square-free 2-matchings in bipartite
graphs. Journal of Combinatorial Theory Series B. To appear.

[16] David Hartvigsen. The square-free 2-factor problem in bipartite graphs. In
Proceedings of Integer Programming and Combinatorial Optimization, pages
234–241. Springer-Verlag, 1999.

[17] Johan Håstad. Some optimal inapproximability results. In Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing, pages 1–10,
El Paso, Texas, May 1997. ACM.

[18] David S. Johnson, Gregory Gutin, Lyle A. McGeoch, Anders Yeo, Weixiong
Zhang, and Alexei Zverovitch. Experimental analysis of heuristics for the
atsp. In Gutin and Punnen, editors, The Traveling Salesman Problem and its
Variations, pages 445–487. Kluwer Academic Publishers, 2002.

[19] David S. Johnson and Lyle A. McGeoch. Experimental analysis of heuristics
for the stsp. In Gutin and Punnen, editors, The Traveling Salesman Problem
and its Variations, pages 369–443. Kluwer Academic Publishers, 2002.

[20] David S. Johnson and Christos H. Papadimitriou. Computational complex-
ity. In Eugene L. Lawler, Jan K. Lenstra, Alexander H. G. Rinnoy Kan, and
David B. Shmoys, editors, The Traveling Salesman Problem, chapter 3, pages
37–85. John Wiley & Sons, New York, 1985.

[21] Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Ap-
proximation algorithms for asymmetric tsp by decomposing directed regular
multigraphs. In Proceedings of 44th Annual IEEE Symposium on Foundations
of Computer Science, pages 56–65. IEEE Computer Society, 2003.



87

[22] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of Computer Computa-
tions, pages 85–103. Plenum Press, New York, 1972.

[23] Richard M. Karp. The fast approximate solution of hard combinatorial prob-
lems. In Proceedings 6th South Eastern Conference on Combinatorics, Graph
Theory and Computing, pages 15–21. Utilitas Mathematica, Winnipeg, 1975.

[24] S. R. Kosaraju, J. K. Park, and C. Stein. Long tours and short superstrings.
In Proceedings of 35th Annual IEEE Symposium on Foundations of Computer
Science, pages 166–177. IEEE Computer Society, 1994.

[25] Anna Palbom. Worst case preformance of an approximation algorithm for
asymmetric tsp. In Proceedings of 21ST Annual Symposium on Theoretical
Aspects of Computer Science, pages 465–476. Springer-Verlag, 2004.

[26] Anna Palbom. Complexity of the directed spanning cactus problem. Discrete
Applied Mathematics, 146:81–91, 2005.

[27] Christos H. Papadimitriou and Santosh Vempala. On the approximability
of the traveling salesman problem. Manuscript, <http://www.cs.berkeley.

edu/~christos/tsp.ps>, 2002.

[28] Abraham P. Punnen. The traveling salesman problem: Applications, formula-
tions and variations. In Gutin and Punnen, editors, The Traveling Salesman
Problem and its Variations, pages 1–28. Kluwer Academic Publishers, 2002.

[29] Shmuel Safra and Oded Schwartz. On the complexity of approximating
tsp with neighborhoods and related problems. Computional Complexity,
14(4):281–307, 2005.

[30] Sartaj K. Sahni and Teofilo Gonzalez. P-complete approximation problems.
Journal of the Assoc. Comput. Mach, 23, 3:555–565, 1976.

[31] Günter Schaar. Remarks on hamiltonian properties of powers of digraphs.
Discrete Applied Mathematics, 51:181–186, 1994.

[32] Leslie G. Vailiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189–201, 1979.


