
Alternative Variants of Zero-Knowledge Proofs

RAFAEL PASS

Licentiate Thesis
Stockholm, Sweden 2004

TRITA-NA-0440
ISSN 0348-2952
ISRN KTH/NA/R--04/40--SE
ISBN 91-7283-933-3

KTH Numerisk analys och datalogi
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till o�entlig granskning för avläggande av teknologie licentiatexamen måndagen den
17 jan 2005 i Kollegiesalen, Administrationsbyggnaden, Kungl Tekniska högskolan,
Valhallavägen 79, Stockholm.

c© Rafael Pass, Nov 2004

Tryck: Universitetsservice US AB

iii

Abstract

Zero-knowledge proofs are one of the most important cryptographic no-
tions. Since their introduction in the early 80's by Goldwasser, Micali and
Racko�, they have proven very useful in the design of cryptographic proto-
cols. Nevertheless, many limitations (in terms of e�ciency and robustness
under concurrent executability of protocols) have also been noticed. In order
to overcome these limitations two lines of research have been investigated in
the literature:

1. Models with some �limited� intervention of a trusted party (for example
during a set-up phase).

2. Weakenings of the notion of zero-knowledge.
In this thesis we attempt to further the understanding of the notion of

zero-knowledge proofs by addressing both the above lines of research. More
precisely,

1. Concerning the �rst line of research, we show that the de�nition of zero-
knowledge in certain popular models (namely the Common Reference
String and Random Oracle Models) captures a somewhat di�erent se-
mantics than the standard zero-knowledge de�nition. In particular, we
show that there exists a certain natural security property that is cap-
tured by the standard de�nition, but not by these new de�nitions. This
is the property of deniability, which intuitively means that an interaction
between two parties does not leave any �trace�. We then focus on inves-
tigating the possibility of obtaining deniable zero-knowledge protocols
in these models.

2. Concerning the second line of research, we propose a new and di�erent
weakening of the notion of zero-knowledge proofs. This weakening allows
us to a) overcome known impossibility results concerning the notion
of zero-knowledge, while b) providing an �almost� as strong security
guarantee.

Acknowledgments

I would like to express my deepest gratitude to Johan Håstad. Johan's clear view
on all aspects of theoretical computer science, ranging from philosophical consider-
ations to technical issues, have had a great impact on my research and development.
Furthermore, Johan has an amazing way of understanding �raw� ideas that I barely
can formulate and extracting the essence out of them. Perhaps most importantly,
Johan's exquisite intuition for what is �interesting� in research has allowed me to
gain a greater understanding of my area of research. It has been a privilege and a
pleasure to interact with him!

Other people that have directly in�uenced the research in this thesis include
Boaz Barak, Ran Canetti, Sha� Goldwasser, Gustav Hast, Silvio Micali, Tal Rabin,
Alon Rosen, Yael Tauman-Kalai, and Douglas Wikström. Alon Rosen deserves
special attention; my close collaborations with him has taught me a lot about
research in general, and Cryptography in particular. The general presentation of
many of the results in this thesis owes a lot to him.

I would also like to thank the Theory group at KTH, and in particular Lars
Engebretsen, Isaac Elias, Mikael Goldmann, Jonas Holmerin, Mårten Trolin, and
my room mates Gustav Hast, Anna Redz and Magnus Rosell. Furthermore, the
results in the thesis have also bene�ted from �non-technical� conversations with
friends. Thanks to Marcus Better, Crispin Dickson, Ulrik Dahlerus, Daniel Lovas,
and Andreas Röberg, for many insightful conversations about Cryptography, and
life in general.

Finally, thanks to my parents Julia and Natan, my sisters Esther Lou and
Ariella, and my beautiful Sandra, for supporting me and surviving my life in Zero-
knowledge.

v

Contents

Acknowledgments v

Contents vi

1 Introduction 1
1.1 Zero-Knowledge Proofs . 1
1.2 Concurrent Composition of Cryptographic Protocols 2
1.3 Limitations of zero-knowledge proofs 3
1.4 Ways to Overcome the Limitations 4
1.5 Brief Summary of Our results . 5
1.6 How to Read This Thesis . 6
1.7 Contributions . 7

2 Preliminaries 9
2.1 General . 9
2.2 Cryptographic Assumptions . 11
2.3 Cryptographic Primitives . 12
2.4 Models with Shared Objects . 20
2.5 ZK in the CRS/RO Model Implies WH and WI 25

I Results in the Plain Model 29

3 Simulatable Proofs 31
3.1 Introduction . 31
3.2 De�nitions of the New Notions . 37
3.3 A Concurrent General Composition Theorem 47
3.4 An E�cient Perfectly Simulatable Argument 52
3.5 A Two Round Simulatable Argument 55
3.6 A Characterization of the Round-complexity 63
3.7 Extensions . 65
3.8 Subsequent Work . 65
3.9 Open Problems . 66

vi

vii

3.10 Acknowledgments . 66

II Results in Shared Object Models 67

4 Deniable Zero-Knowledge 69
4.1 Introduction . 69
4.2 On Deniable Zero-Knowledge Proofs in the CRS Model 76
4.3 On Deniable Zero-knowledge Proofs in the RO Model 79
4.4 On Unreplayabable Zero-Knowledge Protocols 96
4.5 Acknowledgments . 101

Bibliography 103

A An Alternative De�nition of Witness Indistinguishability 109

Chapter 1

Introduction

Cryptography, Greek for �hidden writing�, is the science of how parties can commu-
nicate without trusting each other and/or the environment they are communicating
in. Traditionally the science of cryptography was primarily used by the military
and the secret services in order to achieve secure message transmission, but with the
recent explosion of electronic communication, cryptography is today the concern of
almost anyone.

The past three decades have witnessed an unprecedented progress in the �eld of
cryptography. In these years basic cryptographic notions such as encryption1 and
digital signatures2 have been put under rigorous treatment and numerous solutions
realizing these task have been proposed. Furthermore, during these years several
new and exciting cryptographic notions/applications have emerged.

1.1 Zero-Knowledge Proofs

One of the most basic and important examples of cryptographic notions is the one
of zero-knowledge interactive proof systems [38]. Loosely speaking, zero-knowledge
proofs are interactive protocols3 that enable one entity (called the prover) to con-
vince another entity (called the veri�er) of the validity of a mathematical statement,
without revealing anything beyond the assertion of the statement. For concrete-
ness, assume that a prover wants to convince a veri�er that a certain equation has
a solution. A naive way of doing this would be by simply giving the solution to
the veri�er. This approach, however, reveals information to the veri�er (namely
the solution to the equation). A zero-knowledge proof, on the other hand, would
convince the veri�er without revealing anything else.

This notion is formalized by requiring the existence of a simulator that can
e�ciently generate a transcript which is �indistinguishable� from the view of the

1Encryption allows users to conceal the content of messages from unauthorized users
2A digital signature takes the place of a handwritten signature in the electronic world.
3In interactive protocols the participating entities take turns in exchanging messages.

1

2 CHAPTER 1. INTRODUCTION

veri�er in a real execution with the prover. This, in particular, implies that any-
thing a veri�er can learn after having communicated with a prover, he could have
e�ciently generated by himself without the help of the prover.

The notion of zero-knowledge proofs has had an tremendous impact on the �eld
of cryptography, both directly and indirectly. We mention a few examples.
Identi�cation protocols One of the most commonly used cryptographic tools

is that of an identi�cation protocol.4 Identi�cation protocols allow users to
�prove� their identity to an authority. This is normally done by letting each
user posses a �secret� that is associated with its identity. In the identi�cation
process the user is asked to show that it indeed possess the secret using a
protocol. It is here important that the protocol does not reveal the actual
secret. (If the protocol would reveal the secret then an adversary, that listens
in on the conversation, could later falsely identify himself as the user). Zero-
knowledge proofs provide a natural solution to this problem.

Security de�nitions of other notions The notion of zero-knowledge can be
used in other contexts than that of interactive proofs. In fact, it formalizes in
a natural way a situation when a participant P in a cryptographic protocol is
not able to extract any useful information from the execution of the protocol.
Practically all security de�nitions of more complicated cryptographic notions
(such as coin-tossing over the phone, voting, electronic auctions, mental poker,
etc.) rely on the concept of zero-knowledge.

Constructions of secure protocol A very useful paradigm for constructing
cryptographic protocols is to �rst construct a protocol that is secure against
entities that follow the protocol, and thereafter �compiling� this protocol into a
new protocol that is secure also against cheating entities that deviate from the
protocol in order to extract information [36]. Arguably, the most important
application of zero-knowledge proof is in providing such a compilation.

1.2 Concurrent Composition of Cryptographic Protocols

The original setting in which cryptographic protocols were investigated consisted
of a single execution of the protocol at a time. That is, two parties execute a
single protocol once, without being able to communicate with the outside world. A
more realistic setting, especially in the time of the Internet, is one that allows the
concurrent execution of protocols [27, 25]. In the concurrent setting many protocols
are executed at the same time, involving multiple parties that may be talking with
the same (or many) other parties simultaneously.

The concurrent setting presents the new risk of a coordinated attack in which
an adversary controls many parties, interleaving the executions of the protocols
while trying to extract knowledge based on the existence of multiple concurrent

4Such protocols are for example used in log-in procedures by Internet banks.

1.3. LIMITATIONS OF ZERO-KNOWLEDGE PROOFS 3

executions. In particular, the adversary may use messages received in one of the
executions in order to cheat in a di�erent execution.

It would be most desirable to have cryptographic protocols that retain their
security properties even when executed concurrently. Unfortunately, it has been
observed that the construction of such protocol seems more problematic than in the
stand-alone setting. We start by outlining di�erent types of concurrent composition,
and thereafter return to discuss these limitation in Section 1.3.

Self-composition The simplest form of concurrent composition is that of con-
current self-composition. Roughly speaking, we say that a protocol is secure un-
der concurrent self-composition (or just concurrent composition) if the protocol
remains secure even if many simultaneous executions of that protocol are taking
place. Zero-knowledge proofs that have this property are called concurrent zero-
knowledge proofs.

General Composition A more general form of concurrent composition is that of
concurrent general composition. Whereas the notion of concurrent self-composition
only considers the security of a protocol when concurrently executed with many
instances of the same protocol, the notion of general composition considers the
security of a protocol that is concurrently executed with many other, possibly
di�erent, protocols. One important framework for addressing these security de-
mands is the framework for Universal Composability (UC for short) [12]. As the
name indicates the goal of the framework is the possibility to devise cryptographic
�subroutines� that can be composed in arbitrary ways possibly under concurrent
executions. It was recently shown that the notions of Universal Composability and
general composability are �essentially� equivalent [48].

1.3 Limitations of zero-knowledge proofs

Although the notion of zero-knowledge proofs has proved very useful in the design of
cryptographic protocols, many limitations are also known, both in the stand-alone
setting and in the concurrent setting.

The stand-alone setting It was early shown that two communication rounds
(i.e., one message sent from the veri�er to the prover, followed by one message from
the prover to the veri�er) are not su�cient in order to implement zero-knowledge
proofs [37]. Furthermore it was shown that a certain type of zero-knowledge proofs
called black-box zero-knowledge proofs5 necessite four communication rounds. Even
though there exist non black-box zero-knowledge protocols (which all use more than

5As will be explained in more detail later, the notion of black-box zero-knowledge requires
the existence of a simulator which only uses the veri�er V as a black-box in order to perform the
simulation.

4 CHAPTER 1. INTRODUCTION

four communication rounds) [1] all currently known practical protocols are black-
box zero-knowledge.

The concurrent setting In all currently known concurrent zero-knowledge pro-
tocols a heavy price has to be paid in terms of the number of communications
rounds. Whereas the number of communication rounds in stand-alone secure zero-
knowledge protocols is constant (and, in particular, independent of the required
level of security), the number of messages in the known concurrent zero-knowledge
protocols is required to grow as a function of the level of security [59, 47, 57].
Furthermore, severe lower bounds on the number of communications rounds have
been shown for black-box zero-knowledge proofs [16]. We nevertheless mention that
the question of whether there exists a (non black-box) concurrent zero-knowledge
protocol, that only uses a constant number of communication rounds, is still open.

Finally, concerning universal composable protocols, it is known that universally
composable zero-knowledge proofs can not be obtained in the standard model [12].

1.4 Ways to Overcome the Limitations

In order to overcome the above-mentioned limitations/problems two lines of re-
search have been investigated in literature.
• Resorting to models with �stronger� set-up assumptions. The most
popular strengthening of the plain model is the assumption of a shared object.
Other strengthenings include physical assumptions such as timing (c.f. [25]).
• Weakening the notion of zero-knowledge.

Shared Object Models One important vein of research attempts to overcome
limitations of zero-knowledge proofs by assuming that the protocol participants
have access to a shared object with certi�ed properties. Such an object can be
viewed as a very limited intervention by a trusted third party.

It has been shown that e�cient, or powerful, protocols can be constructed in
such settings. Two of the most popular of these models are the Common Reference
String Model [9], and the Random Oracle Model [6]. The Common Reference String
Model relates to a setting where all parties have access to string that has been ideally
chosen from the uniform distribution, while the Random Oracle Model relates to a
setting where all parties have access to an ideal random function.

In both the above models it can be shown that non-interactive (i.e., a single
message is sent by the prover to the veri�er) zero-knowledge proofs can be obtained.
Whereas the former model has mostly been used in order to obtain e�cient (or
practical) protocols, the latter has primarily been used to show strong results in
the framework for universal composability. In particular, the existence of UC zero-
knowledge has been shown in the CRS model [12].

1.5. BRIEF SUMMARY OF OUR RESULTS 5

Weakenings of zero-knowledge Another vein of research attempts to provide
weakenings of the notion of zero-knowledge proofs. Although this investigation
started in the late 80's, surprisingly only very few meaningful weakenings of the
notion of zero-knowledge have appeared in the literature. An important notion
surging from this research is the notion of witness indistinguishable proofs [31].
Intuitively an interactive proof is witness indistinguishable if the proof does not
leak any information about what �witness� the prover uses in the proof. Recall
the example of a prover that wants to convince a veri�er that a speci�c equation
has a solution. A witness indistinguishable proof does not reveal what solution
the prover has found to the equation. (Note, however, that if there only exists
one solution to the equation, this solution can be entirely revealed). An important
aspect of witness indistinguishable proofs is that the witness indistinguishability
property holds also when multiple witness indistinguishable proofs are concurrently
executed. In particular, this allows for the construction of e�cient �concurrent�
witness indistinguishable proofs using only a constant number of communication
rounds.

1.5 Brief Summary of Our results

In this thesis we address both the above mentioned research directions.

Shared Object Models We take a critical look at the de�nition of zero-knowledge
in the Common Reference String (CRS) and the Random Oracle (RO) Model. Our
results show that there exists a speci�c natural security property that is not cap-
tured by these de�nition, although it is captured by the standard zero-knowledge
de�nition. This is the property of deniability. Deniability means that the tran-
script of the interaction should not leave any traces of the fact that the interaction
took place. Note that deniability is not merely an academic concern, but rather
re�ects an important issue of integrity for many real-life applications. For example,
it might not be desirable that a shop owner obtains a written evidence of the fact
that a certain customer bought something in his shop.

The issue of deniability also addresses some fundamental de�nitional issues in
the framework for Universal Composability. In particular, it shows that the notion
of UC zero-knowledge does not capture the concern for deniability.

We next investigate the possibility of obtaining zero-knowledge proofs in these
models, that do satisfy deniability. Our results are di�erent for the CRS and the
RO models.

Concerning the CRS model, our results are negative in nature. In fact, we show
that known impossibility for zero-knowledge in the standard model (i.e., with-
out shared objects) also hold for the CRS model with respect to deniable
zero-knowledge proofs.

6 CHAPTER 1. INTRODUCTION

Concerning the RO model, on the other hand, we obtain both negative and positive
results. In fact, we are able to determine the exact number of communication
rounds needed in order to implement deniable zero-knowledge proofs in RO
model. More speci�cally, we show that two-rounds are both necessary and
su�cient to implement deniable zero-knowledge protocols in the RO model.
We furthermore show that two-rounds are su�cient in order to implement a
protocol that also is secure under concurrent composition.

Relaxing zero-knowledge We propose a generalization of zero-knowledge proofs
called simulatable proofs. This notion encompasses in a natural way both the no-
tion of zero-knowledge and the notion of witness indistinguishability. Whereas zero-
knowledge proofs require the existence of a polynomial-time simulator, we say that
an interactive proof is T (·)-simulatable if there exist a simulator, for the protocol,
with running time T (·). It can be seen that the notion of witness indistinguishabil-
ity, in fact, is equivalent to simulation by an unbounded machine.

We then propose to investigate the notion of quasi-polynomial time simulat-
able proofs (this is trivially a weakening of zero-knowledge and a strengthening
of witness indistinguishability). We show that such proof systems can replace the
use of zero-knowledge proofs in many applications. Nevertheless this relaxation
allows us to overcome most of the impossibility results known for zero-knowledge
proofs. In particular, it provides a straight-forward way of dealing with issues of
concurrency. As an example, we mention that we are able to construct a two-round
quasi-polynomial time simulatable protocol that is secure under concurrent execu-
tions (note that two-rounds are not su�cient to implement even stand-alone secure
zero-knowledge protocols).

Our presentation also contains various di�erent protocols solving di�erent prob-
lems related to the notion of quasi-polynomial time simulations, and their applica-
tion to protocol composition. We �nish our investigation by providing a complete
classi�cation of the number of communication rounds needed in order to implement
quasi-polynomial time simulatable protocols in two di�erent setting.6

1.6 How to Read This Thesis

Chapter 2 contains general de�nitions and preliminaries. Most of these de�nitions
are quite standard, but in some cases we provide generalizations of the standard
de�nitions. This chapter also contains two new lemmas concerning zero-knowledge
protocols in models with shared objects. Chapter 3 contains our results on relax-
ations of the notion of zero-knowledge. In Chapter 4 we investigate the notion of
zero-knowledge in models with shared objects.

6The two settings referred to here are interactive proof with computational soundness (a.k.a
arguments) and interactive proofs with unconditional soundness.

1.7. CONTRIBUTIONS 7

1.7 Contributions

This work in this thesis is based on the following two papers:
• R. Pass, On Deniability in the Common Reference String and Random Or-
acle Models, In Advances in Cryptology - CRYPTO 2003, Lecture Notes in
Computer Science 2729, pages 195�210, 2003
• R. Pass, Simulation in Quasi-Polynomial Time and Its Application to Protocol
Composition, In Advances in Cryptology - EUROCRYPT 2003, Lecture Notes
in Computer Science 2656, pages 160�176, 2003

Chapter 2

Preliminaries

2.1 General

2.1.1 Basic notation
We let N denote the set of all integers. For any integer m ∈ N , denote by [m]
the set {1, 2, . . . ,m}. For any x ∈ {0, 1}∗, we let |x| denote the size of x (i.e., the
number of bits used in order to write it). For two machines M,A, we let MA(x)
denote the output of machine M on input x and given oracle access to A. The term
negligible is used for denoting functions that are (asymptotically) smaller than one
over any polynomial. More precisely, a function ν(·) from non-negative integers to
reals is called negligible if for every constant c > 0 and all su�ciently large n, it
holds that ν(n) < n−c.

2.1.2 Probabilistic notation
Denote by x

r← X the process of uniformly choosing an element x in a set X. If
B(·) is an event depending on the choice of x

r← X, then Prx←X [B(x)] denotes the
probability that B(x) holds when x is chosen with probability 1/|X|. Namely,

Prx←X [B(x)] =
∑

x

1
|X|
· χ(B(x))

where χ is an indicator function so that χ(B) = 1 if event B holds, and equals zero
otherwise. We denote by Un the uniform distribution over the set {0, 1}n.

2.1.3 Witness Relations
We recall the de�nition of a witness relation for an NP language [32].
De�nition 1 (Witness relation) A witness relation for a language L ∈ NP is a
binary relation RL that is polynomially bounded, polynomial time recognizable and

9

10 CHAPTER 2. PRELIMINARIES

characterizes L by

L = {x : ∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL. We will also
let RL(x) denote the set of witnesses for the membership x ∈ L, i.e.,

RL(x) = {y : (x, y) ∈ L}

In the following, we assume a �xed witness relation RL for each language L ∈ NP.

2.1.4 Indistinguishability

We de�ne indistinguishability for non-uniform machines. This notion of indistin-
guishability is sometimes called indistinguishability by circuits.

Let S ⊆ {0, 1}∗ be a set of strings. A probability ensemble indexed by S is
a sequence of random variables indexed by S. Namely, any X = {Xw}w∈S is a
random variable indexed by S.

De�nition 2 (T (·)-indistinguishability) Two ensembles X = {Xw}w∈S and
Y = {Yw}w∈S are said to be indistinguishable in time T (·) if for every probabilistic
algorithm D with running time T (·) in the length of its second input, there ex-
ists a negligible function ν(·) so that for every w ∈ S, and every auxiliary input
z ∈ {0, 1}∗:

|Pr [D(Xw, w, z) = 1]− Pr [D(Yw, w, z) = 1]| < ν(|w|)

The algorithm D is referred to as the distinguisher.
In general we will most often be interested in ensembles that are indistinguish-

able for polynomial time. We call such ensembles computationally indistinguishable,
or simple indistinguishable.

De�nition 3 (Computational indistinguishability) Two ensembles X = {Xw}w∈S

and Y = {Yw}w∈S are said to be computationally indistinguishable if X, Y are p(·)-
indistinguishable for every polynomial p(·).

We next de�ne statistical closeness, by removing the bound on the running time
of the distinguisher.

De�nition 4 (Statistical Closeness) Two ensembles X = {Xw}w∈S and Y =
{Yw}w∈S are said to be statistically close if X, Y are f(·)-indistinguishable for every
function f(·).

2.2. CRYPTOGRAPHIC ASSUMPTIONS 11

Strong indistinguishability We also de�ne a stronger version of super-polynomial
time indistinguishability. Whereas the de�nition of T (·)-indistinguishability only
requires that the distinguishing gap is negligible, the stronger de�nition requires
the gap to be at most 1/T (·).
De�nition 5 (Strong T (·)-indistinguishability) Two ensembles X = {Xw}w∈S

and Y = {Yw}w∈S are said to be strongly indistinguishable in time T (·) if for every
probabilistic algorithm D with running time T (·) in the length of its second input,
every w ∈ S, and every auxiliary input z ∈ {0, 1}∗:

|Pr [D(Xw, w, z) = 1]− Pr [D(Yw, w, z) = 1]| < 1/T (|w|)

Note that if two ensembles X, Y are strongly f(n)-indistinguishable for every
function f(n), then X and Y are identical.

2.2 Cryptographic Assumptions

2.2.1 One-way Functions
Intuitively one-way functions are functions that are easy to compute, but hard to
invert. Here �easy� means, achievable in polynomial time, and �hard� normally
means not achievable in polynomial time. In the following we will sometimes rely
on slightly stronger assumptions than the most commonly used. Namely we as-
sume the existence of one-way functions where inverting the function is hard for
subexponential time.1
De�nition 6 (One-wayness for time T (·)) A function f : {0, 1}∗ → {0, 1}∗ is
called one-way for time T (·) if the following two conditions hold:

• Easy to compute: There exist a (deterministic) polynomial-time algorithm A
such that on input x, A outputs f(x).

• Hard to invert: For every probabilistic algorithm A′ with running time bounded
by T (n), all su�ciently large n's, every auxiliary input z ∈ {0, 1}∗,

Pr[A′(f(Un), z) ∈ f−1(f(Un))] <
1

poly(T (n))

where Un is a random variable uniformly distributed in {0, 1}n.

De�nition 7 (One-wayness) A function f : {0, 1}∗ → {0, 1}∗ is called one-way
if there f is one-way for time p(n) for every polynomial p(n).

De�nition 8 (One-wayness for subexponential circuits) A function f : {0, 1}∗ →
{0, 1}∗ is called one-way for subexponential circuits if there exist a κ such that f is
one-way for time 2nκ

.

1We note that this assumptions is, nevertheless, very plausible and has for example been used
to construct resettable zero-knowledge in [14].

12 CHAPTER 2. PRELIMINARIES

2.2.2 Hard-core Predicates
A predicate b is a called a hard-core of a function f if it is infeasible to predict b(x),
given only f(x), signi�cantly better than using a random guess.
De�nition 9 (Hard-core for time T (·)) A polynomial-time computable predicate
b : {0, 1}∗ → {0, 1} is called a hard-core for time T (·) of a function f if for every
probabilistic algorithm A′ with running time bounded by T (n), all su�ciently large
n's, and every auxiliary input z ∈ {0, 1}∗,

Pr[A′(f(Un), z) = B(Un)] <
1
2

+
1

poly(T (n))

where Un is a random variable uniformly distributed in {0, 1}n.

The standard notion of hard-core predicates is de�ned for polynomial-time al-
gorithms.
De�nition 10 (Hard-core) A polynomial-time-computable predicate b : {0, 1}∗ →
{0, 1} is called a hard-core of a function f if there b is a hard-core for time p(n) of
f , for every polynomial p(n).

In the following we will employ hard-core predicates with subexponential-time
security.
De�nition 11 (Hard-core for subexponential circuits) A polynomial-time-computable
predicate b : {0, 1}∗ → {0, 1} is called a hard-core for subexponential circuits of a
function f if there exist a κ such that b is a hard-core for time 2nκ

, for f .

Goldreich and Levin [68] have shown that a simple hard-core predicate can
be constructed assuming the existence of one-way functions. We note that the
Goldreich-Levin predicate is also a hard-core predicate for subexponential circuits
of a function that is one-way for subexponential circuits.
Theorem 1 (Goldreich-Levin) If there exist a function f : {0, 1}∗ → {0, 1}∗
that is one-way for subexponential circuits, then there exist a pair f ′,b′, where
f ′ : {0, 1}∗ → {0, 1}∗ is a one-way function for subexponential circuits, and b′ :
{0, 1}∗ → {0, 1} is a hard-core predicate for subexponential circuits, for f ′. Fur-
thermore, if f is one-to-one, then f ′ is so as well.

2.3 Cryptographic Primitives

2.3.1 Interactive Proofs
We use the standard de�nitions of interactive proofs (and interactive Turing ma-
chines) [38, 32] and arguments [10]. Given a pair of interactive Turing machines, P
and V , we denote by 〈P (y), V (z)〉(x) the random variable representing the (local)

2.3. CRYPTOGRAPHIC PRIMITIVES 13

output of V when interacting with machine P on common input x, when the ran-
dom input to each machine is uniformly and independently chosen, and P (resp.
V) has auxiliary input y (resp. z).

De�nition 12 (Interactive Proof System) A pair of interactive machines (P, V)
is called an interactive proof system for a language L if machine V is polynomial-
time and the following two conditions hold with respect to some negligible function
ν(·):

• Completeness: For every x ∈ L there exists a (witness) string y such that for
every auxiliary input z ∈ {0, 1}∗

Pr[〈P (y), V (z)〉(x) = 1] ≥ 1− ν(|x|)

• Soundness: For every x /∈ L, every interactive machine B and every y, z ∈
{0, 1}∗

Pr[(〈B(y), V (z)〉(x) = 1] ≤ ν(|x|)

In case that the soundness condition is required to hold only with respect to a compu-
tationally bounded prover, the pair (P, V) is called an interactive argument system.

De�nition 12 can be relaxed to require only soundness error that is bounded
away from 1 − ν(|x|). This is so, since the soundness error can always be made
negligible by su�ciently many parallel repetitions of the protocol. However, in
the case of interactive arguments, we do not know whether this condition can be
relaxed. In particular, in this case parallel repetitions do not necessarily reduce the
soundness error (cf. [5]).

Interactive proofs with e�cient provers For cryptographic application it is
necessary that the prover strategy is e�cient.

De�nition 13 (E�cient Provers) Let (P, V) be an interactive proof (argument)
system for the language L ∈ NP with the witness relation RL. We say that (P, V)
has an e�cient prover if P is a probabilistic polynomial-time algorithm and the
completeness condition of De�nition 12 holds for every x ∈ L, every y ∈ RL(x),
and every z ∈ {0, 1}∗.

Arthur-Merlin Protocols In many application of interactive proofs it is de-
sirable that the veri�er only sends random messages. We call such interactive
proofs/arguments public-coin or Arthur-Merlin[2]

14 CHAPTER 2. PRELIMINARIES

2.3.2 Zero-knowledge
Loosely speaking, an interactive proof is said to be zero-knowledge (ZK) if it yields
nothing beyond the validity of the assertion being proved. This is formalized by
requiring that the output of every (possibly malicious) veri�er interacting with
the honest prover P and be simulated by a probabilistic expected polynomial-time
machine S (a.k.a. the simulator). The idea behind this de�nition is that whatever
V ∗ might have learned from interacting with P , he could have learned by himself
(by running the simulator S).

The notion of ZK was introduced by Goldwasser, Micali and Racko� [38]. To
make ZK robust in the context of (sequential) protocol composition, Goldreich and
Oren [37] suggested to augment the de�nition so that the above requirement holds
also with respect to all z ∈ {0, 1}∗, where both V ∗ and S are allowed to obtain z
as auxiliary input.
De�nition 14 (Zero-knowledge) Let (P, V) be an interactive proof (argument)
system for the language L ∈ NP with the witness relation RL. We say that (P, V)
is zero-knowledge, if for every probabilistic polynomial-time interactive machine V ∗

there exists a probabilistic expected polynomial-time algorithm S (called the simu-
lator) such that the following two ensembles are computationally indistinguishable
(when the distinguishing gap is a function in |x|)

• {(〈P (y), V ∗(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary y ∈ RL(x)

• {S(x, z)}z∈{0,1}∗,x∈L

That is, for every probabilistic algorithm D running in time polynomial in the length
of its �rst input, every polynomial p, all su�ciently long x ∈ L, all y ∈ RL(x) and
all auxiliary inputs z, z′ ∈ {0, 1}∗ it holds that

|Pr[D(x, z′, (〈P (y), V ∗(z)〉(x))) = 1]− Pr[D(x, z′, S(x, z)) = 1]| < 1
p(|x|)

One might also consider a weaker variant of ZK called honest veri�er zero-knowledge
proofs. As the name suggests a protocol is honest veri�er zero-knowledge (HVZK)
if the above condition holds for the honest veri�er V ∗ = V (and not necessarily for
veri�ers V ∗ that do not follow the protocol).

Statistical and Perfect Zero-knowledge A variant of ZK that we will use in
this thesis is one in which the output of the simulator is statistically close, or even
identically distributed to the output of the veri�er in a real interaction.
De�nition 15 (Statistical/Perfect zero-knowledge) Let (P, V) be an interac-
tive proof (argument) system for the language L ∈ NP with the witness relation RL.
We say that (P, V) is statistical zero-knowledge, if for every probabilistic polynomial-
time interactive machine V ∗ there exists a probabilistic expected polynomial-time
algorithm S such that the following two ensembles are statistically close

2.3. CRYPTOGRAPHIC PRIMITIVES 15

• {(〈P (y), V ∗(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary y ∈ RL(x)

• {S(x, z)}z∈{0,1}∗,x∈L

We say that (P, V) is perfect zero-knowledge if the above ensembles are identically
distributed.

Black-box zero-knowledge One can consider a �well-behaved� variant of ZK
proofs called black-box zero-knowledge. Loosely speaking, an interactive proof is
black-box zero-knowledge if there exists a simulator S that uses the veri�er V ∗ as
a black-box in order to perform the simulation.
De�nition 16 (Black-box zero-knowledge) Let (P, V) be an interactive proof
(argument) system for the language L ∈ NP with the witness relation RL. We say
that (P, V) is black-box zero-knowledge, if there for every polynomial p(n) exists a
probabilistic expected polynomial time oracle machine S such that for every prob-
abilistic polynomial-time interactive machine V ∗ that uses at most p(n) random
coins, the following two ensembles are computationally indistinguishable (when the
distinguishing gap is a function in |x|)

• {(〈P (y), V ∗(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary y ∈ RL(x)

• {SV ∗
(x, z)}z∈{0,1}∗,x∈L

At �rst sight the de�nition of black-box ZK might seem very restrictive: the
simulator is supposed to act as the prover, except that the simulator does not have
the witness! Note, however that the simulator has an important advantage that
the prover does not have, namely that it can rewind and restart the veri�er.

Most known ZK protocols (with the exception of [1]) and all practical zero-
knowledge protocols are black-box ZK.

Sequential Composition of Zero-knowledge Proofs The standard de�nition
of ZK only guarantees security in the stand-alone setting, i.e., when only consid-
ering a single execution of the protocol in isolation. Nevertheless, Goldreich and
Oren [37] have shown that De�nition 16 is closed under sequential composition,
that is sequential repetitions of a ZK protocol results in a new protocol that still
remains ZK.

Concurrent Self-Composition of Zero-knowledge Proofs In asynchronous
settings, such as the Internet, it has been noticed that the zero-knowledge prop-
erty does not imply security under concurrent executions. Dwork, Naor and Sahai
[25] introduced the concept of concurrent zero-knowledge, i.e zero knowledge proto-
cols that retain their zero-knowledge property even when an adversary is allowed
to interact in many concurrent execution of the same protocol. Since security is
only guaranteed to hold when considering many concurrent execution of the same
protocol, this kind of composition is called concurrent self -composition.

16 CHAPTER 2. PRELIMINARIES

The de�nition of concurrent zero-knowledge follows the de�nition of ZK (See
De�nition 16), yet it requires the existence of a simulator for every �concurrent�
veri�er V ∗. A concurrent veri�er V ∗ is allowed to communicate with multiple
provers at the same time and can schedule the messages in the di�erent executions
in an arbitrary way.

Dwork et al. proposed a protocol, based on timing assumptions, achieving
concurrent ZK. Various protocols have later been presented based on di�erent
set-up assumptions [65] [21] [14].

On the other hand, considering the standard model, without any set-up assump-
tions, Canetti et al [16] have recently shown that protocols for black-box concurrent
ZK for non-trivial languages require Ω(log n

log log n) number of communication rounds
(building on the works of [47] [60]). Richardson and Kilian [59] constructed the
�rst concurrent zero-knowledge argument in the standard model. Their protocol,
being black-box concurrent zero-knowledge, uses O(nε) number of rounds. Kilian
and Petrank later showed that the round complexity of that protocol could be re-
duced to only a poly-logarithmic number of rounds. Finally, Prabhakaran, Rosen
and Sahai [57] achieved a round complexity of Õ(log n).

Recently, Barak [1] presented the �rst ZK argument having non black-box
simulators under reasonable assumptions.2 Barak's protocol preserves the zero-
knowledge property under concurrent executions where the number of protocols run
is bounded by an a-priori speci�ed polynomial in the security parameter. Neverthe-
less, the question whether there exists a constant-round concurrent zero-knowledge
argument (with remains secure under unbounded concurrent composition) still re-
mains open.

Universally Composable Zero-knowledge Recently, an even more realistic
setting was considered in the framework for Universal Composability (UC) [12].
The UC setting considers the security of a protocol when it is �plugged-in� into ar-
bitrary other protocol executions. Loosely speaking, while the notion of concurrent
zero-knowledge only guarantees the zero-knowledge property of the protocol when
many executions of the same protocol are simultaneously executed, universally com-
posable zero-knowledge guarantees security even when the veri�er is simultaneously
participating in other protocol executions. We omit a formal de�nition of UC ZK
and refer the reader to [12].

Although a very powerful notion, the existence of UC ZK in the standard model
(without set-up assumptions) has been ruled out [12]. Nevertheless, Canetti and
Fischlin have shown that UC ZK can be constructed in the Common Reference
String model [13].

2Actually, Hada and Tanaka [42] had previously shown the existence of a three round non
black-box zero-knowledge protocol under very strong assumptions (that the authors themselves
quali�ed as unreasonable).

2.3. CRYPTOGRAPHIC PRIMITIVES 17

2.3.3 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit
itself to a value while keeping it secret from the receiver (this property is called
hiding). Furthermore, the commitment is binding, and thus in a later stage when
the commitment is opened, it is guaranteed that the �opening� can yield only a
single value determined in the committing phase. Commitment schemes come in
two di�erent �avors, perfectly-binding and perfectly-hiding. We sketch the properties
of each one of these �avors. Full de�nitions can be found in [32].

Perfectly-binding: In perfectly binding commitments, the binding property
holds against unbounded adversaries, while the hiding property only holds
against computationally bounded (non-uniform) adversaries. Loosely speak-
ing, the perfectly-binding property asserts that the transcript of the interac-
tion fully determines the value committed to by the sender. The computational-
hiding property guarantees that the commitments to any two di�erent values
are computationally indistinguishable.

Perfectly-hiding: In perfectly-hiding commitments, the hiding property holds
against unbounded adversaries, while the binding property only holds against
computationally bounded (non-uniform) adversaries. Loosely speaking, the
perfectly-hiding property asserts that commitments to any two di�erent val-
ues are identically distributed. The computational-binding property guaran-
tees that no (non-uniform) polynomial time machine is able to open a given
commitment in two di�erent ways.

We mention that in some applications it is often convenient to relax the perfectly-
binding or the perfectly-hiding properties to only statistical binding or hiding.
Loosely speaking, the statistical binding property asserts that with overwhelming
probability (instead of probability 1) over the over the coin-tosses of the receiver,
the transcript of the interaction fully determines the committed value. The sta-
tistical hiding property asserts that that commitments to any two di�erent values
are statistically close (i.e. have negligible statistical di�erence instead of being
identically distributed).

Non-interactive perfectly-binding commitment schemes can be constructed us-
ing any 1�1 one-way function (see Section 4.4.1 of [32]). Allowing some mini-
mal interaction (in which the receiver �rst sends a single message), statistically-
binding commitment schemes can be obtained from any one-way function [50, 43].
Perfectly-hiding commitment schemes can be constructed from any one-way per-
mutation [52]. However, constant-round schemes are only known to exist under
stronger assumptions; speci�cally, assuming the existence of a collection of certi�ed
clawfree functions [34] (see also [32], Section 4.8.2.3). Constant-round statistically-
hiding commitments can be constructed under the potentially weaker assumption
of of collision-resistant hash functions [53, 22].

18 CHAPTER 2. PRELIMINARIES

2.3.4 Proofs of Knowledge
Informally an interactive proof is a proof of knowledge if the prover convinces the
veri�er not only of the validity of a statement, but also that it possesses a witness
for the statement. This notion is formalized by the introduction of an machine E,
called an extractor. As the name suggests, the extractor E is supposed to extract
a witness from any malicious prover that succeeds in convincing an honest veri�er.
More formally,
De�nition 17 (Proof of knowledge) Let (P, V) be an interactive proof system
for the language L. We say that (P, V) is a proof of knowledge for the witness rela-
tion RL for the language L it there for every polynomial p(n) exists a probabilistic
expected polynomial-time machine E (called extractor) and a negligible function
ν(n) such that for every probabilistic polynomial-time machine P ∗ which uses at
most p(n) random coins, every x ∈ {0, 1}n, every auxiliary input z to P ∗,

Pr[〈P ∗(z), V 〉(x) = 1] < Pr[EP∗
(x, z) ∈ RL(x)] + ν(n)

In the following we will also be needing a restricted form of proofs of knowledge,
namely special-sound proofs. Such protocols are of special interest to us since many
e�cient protocol (such as [41, 63]) actually are of this type.
De�nition 18 (Special soundness) Let Π is a three round interactive proof for
the language L ∈ NP, with witness relation RL. We say that the protocol Π is
special sound if there exist a probabilistic polynomial-time extractor machine E,
such that for all x ∈ L and all pairs of accepting transcripts for proving x, T1 =
(a, b1, c1), T2 = (a, b2, c2), where b1 6= b2, E(T1, T2) ∈ RL(x).

It can be seen that if an interactive proof is special sound it is also a proof of
knowledge. [21]

2.3.5 Witness Indistinguishability
The notion Witness Indistinguishability (WI) was introduced by Feige and Shamir
in [29] as a weaker alternative to zero-knowledge. It has later proved to be an
excellent tool to achieve zero-knowledge [28], [30], [59], [1]. Intuitively an interactive
proof of an NP relation, in which the prover uses one of several secret witnesses
is witness indistinguishable if the veri�er can not tell what witness the prover has
used. We further say that an interactive proof is witness independent if the veri�er's
view is equally distributed independently of what witness the prover has used. More
formally (following [32]),
De�nition 19 (Witness Indistinguishability) Let (P, V) be an interactive proof
for the language L ∈ NP, and RL be a �xed witness relation for L. We say that
(P, V) is witness indistinguishable for RL if for every probabilistic polynomial-time
algorithm V ∗ and every two sequences W 1 = {w1

x}x∈L and W 2 = {w2
x}x∈L, such

2.3. CRYPTOGRAPHIC PRIMITIVES 19

that w1
x, w2

x ∈ RL(x), the following two ensembles are computationally indistin-
guishable (when the distinguishing gap is a function in |x|):

• {〈P (w1
x), V ∗(z)〉(x)}x∈L,z∈{0,1}∗

• {〈P (w2
x), V ∗(z)〉(x)}x∈L,z∈{0,1}∗

That is, for every probabilistic algorithm D running in time polynomial in the length
of its �rst input, every polynomial p, all su�ciently long x ∈ L, and all auxiliary
inputs z, z′ ∈ {0, 1}∗ it holds that

|Pr[D(x, z′, 〈P (w1
x), V ∗(z)〉(x))) = 1]

−Pr[D(x, z′, 〈P (w2
x), V ∗(z)〉(x))) = 1]| < 1

p(|x|)

We further say that (P, V) is witness independent for RL if the above ensembles are
identically distributed.

Zaps Zaps are two-round WI public-coin proofs where the �rst message can be
�xed once and for all [66]. Dwork and Naor showed that zaps for languages in NP
can be constructed based on trap-door permutations [66]. Their construction relies
on the existence of non-interactive ZK proofs in the Common Reference String
Model (See De�nition 23) and can be outlined as follows:

Suppose there exists a non-interactive ZK proof for the language L using a CRS
string of length l. Then the following protocol is a WI proof of x ∈ L.

A ZAP - the two-round WI proof of Dwork and Naor

V → P : Sends a random k-bit string ρ = b1...bk which is interpreted as
B1...Bm, where Bi denotes the i'th block of l consecutive bits.

P → V : The prover chooses and sends a random l-bit string C = c1...cl.
For j = 1 to m the prover also sends a non-interactive ZK proof that
x ∈ L using Bj ⊕ C as CRS string.

2.3.6 Witness Hiding
Witness Hiding (WH) interactive proofs were introduced by Feige and Shamir in
[29]. Intuitively an interactive proof for an NP relation is witness hiding if a veri�er
interacting with the prover can not compute any new witnesses that he did not know
before the interaction. In order to de�ne this notion formally we start by de�ning
hard instance ensembles (following [32]):

20 CHAPTER 2. PRELIMINARIES

De�nition 20 (Hard instance ensembles) Let L ∈ NP, RL be a witness re-
lation for L and X = {Xn}n∈N a probability ensemble such that Xn ranges over
L ∩ {0, 1}n. We say that X is hard for RL if for every expected polynomial time
probabilistic witness �nding algorithm F, all z ∈ {0, 1}poly(n), the probability

Pr[F (Xn, z) ∈ RL(Xn)]

is negligible (as a function of n).

Witness hiding can now be de�ned, using hard-instance subsets:

De�nition 21 (Witness Hiding) Let (P,V) be an interactive proof for a lan-
guage L ∈ NP, RL a witness relation for L, and let X = {Xn}n∈N be a hard-
instance ensemble for RL. We say that (P,V) is witness hiding for the relation RL

under the instance ensemble X if for every probabilistic polynomial time algorithm
V ∗ and all z ∈ {0, 1}∗ the probability:

Pr[〈P (Yn), V ∗(z)〉(Xn) ∈ RL(Xn)]

is negligible (as a function of n), where Yn is arbitrarily distributed over RL(Xn).
We simply say that (P, V) is witness hiding for RL if it is witness hiding under

all hard-instance ensembles X for RL.

2.4 Models with Shared Objects

In order to overcome limitations in the standard (plain) model several models with
various extra set-up assumptions have been suggested.

The most popular3 way of circumventing impossibility results in the plain model
is to extend the model by introducing a shared object having some certi�ed prop-
erties. Two important examples of such models are the Common Reference String
(CRS) model [9], and the Random Oracle (RO) model [6]. The Common Reference
String Model relates to a setting where all parties have access to string that has
been ideally chosen from the uniform distribution, while the Random Oracle Model
relates to a setting where all parties have access to an ideal random function.

In both the above models it can be shown that non-interactive (i.e., a single
message is sent by the prover to the veri�er) zero-knowledge proofs can be obtained.
Whereas the latter model has mostly been used in order to obtain e�cient (or
practical) protocols, the former has primarily been used to show strong results in
the framework for universal composability. In particular the existence of UC ZK
has been shown in the CRS model [12].

3Di�erent set-up assumptions include timing assumptions [25, 65], and the Public-Key mod-
els [14, 21].

2.4. MODELS WITH SHARED OBJECTS 21

2.4.1 The Common Reference String Model

The Common Reference String (CRS) Model was �rst introduced by Blum, Feldman
and Micali in order to construct non-interactive zero-knowledge proofs [9]. It has
recently become a popular model, used to construct protocols preserving security
also in the concurrent setting. Most notably, it has be used in order to provide
strong positive results in the framework for Universal Composability (e.g. [12] [13]
[17]). In the CRS model, a random string is chosen at start-up and is then made
available to all parties.

De�nition 22 (Interactive proof in the CRS model) A pair of interactive ma-
chines, (P, V), is called an interactive proof system in the CRS model, for a language
L ∈ NP, if the machine V is polynomial-time and the following two conditions hold

• Completeness: For every x ∈ L there exists a (witness) string y such that for
every auxiliary input z ∈ {0, 1}∗

Pr[(〈P (y), V (z)〉(x, r) = 1] ≥ 1− ν(|x|)

where r is a random variable uniformly distributed in {0, 1}poly(|x|)

• Soundness: For every x /∈ L, every interactive machine B and every y, z ∈
{0, 1}∗

Pr[〈B(y), V (z)〉(x, r) = 1] ≤ ν(|x|)

where r is a random variable uniformly distributed in {0, 1}poly(|x|)

Interactive arguments are de�ned in analogy with interactive proofs, with the
only di�erence that the soundness condition only needs to hold against polynomially
bounded adversaries B.

De�nition 23 (Zero-knowledge in the CRS model) Let (P, V) be an inter-
active proof (argument) system in the CRS model for the language L ∈ NP with
the witness relation RL. We say that (P, V) is zero-knowledge in the CRS model if
there for every probabilistic polynomial-time interactive machine V ∗ exists an ex-
pected polynomial-time algorithm S (called the simulator) such that the following
two ensembles are computationally indistinguishable (when the distinguishing gap
is a function in |x|)

• {(r, 〈P (y), V ∗(z)〉(x, r))}z∈{0,1}∗,x∈L for arbitrary y ∈ RL(x)

• {S(x, z)}z∈{0,1}∗,x∈L

where r is a random variable uniformly distributed in {0, 1}poly(|x|).
That is, for every probabilistic algorithm D running in time polynomial in the length

22 CHAPTER 2. PRELIMINARIES

of its �rst input, every polynomial p, all su�ciently long x ∈ L, all y ∈ RL(x) and
all auxiliary inputs z, z′ ∈ {0, 1}∗ it holds that

|Pr[D(x, z′, (r, 〈P (y), V ∗(z)〉(x, r))) = 1]− Pr[D(x, z′, S(x, z)) = 1]| < 1
p(|x|)

where r is a random variable uniformly distributed in {0, 1}poly(|x|).

On the Power of the Simulator in the CRS Model We note that in Def-
inition 23 the simulator is allowed to choose the CRS string. In fact, this is an
important part of all known simulation techniques in the CRS model. The simu-
lator normally chooses the CRS in a particular way, building in some �trap-door�
information in it. This trap-door information will thereafter allow the simulator to
�emulate� the honest prover without actually possessing a witness to the statement
to be proved. (Note that the real prover or veri�er are clearly not allowed to choose
the CRS. This would completely jeopardize the security of the protocol).

2.4.2 The Random Oracle Model

In the Random Oracle (RO) model, a random function RO : {0, 1}poly(n) →
{0, 1}poly(n) is selected at startup, and is thereafter made accessible to all parties
through oracle calls. The model was formally introduced by Bellare and Rogaway
in 1993 [6] in order to bridge the gap between provably secure and practical cryp-
tography.4 The RO model attempt to �ll this space by providing a framework for
the construction of practical, yet provably secure protocols. Since its introduction
the RO model has indeed been successfully used to formally analyze the security of
many practical protocols.

Note, however, that in the �real� world truly random functions unfortunately do
not exist. Bellare and Rogaway therefore suggest, as a heuristic step, to implement
the RO using a hashfunction. This last step has meet serious criticism (for example
it has been shown that there exists encryption schemes that are provably secure in
the RO model, yet are insecure for every instantiation of the RO with hashfunction
[15]).

Interactive proofs in the RO model are de�ned in analogy with interactive proofs
in the CRS model:

De�nition 24 (Interactive proof in the RO model) A pair of interactive ma-
chines, (P, V), is called an interactive proof system in the RO model, for a language
L ∈ NP, if the machine V is polynomial-time and the following two conditions hold

4The methodology of characterizing hashfunctions as random functions had, however, already
been used for a long time as a heuristic and can be traced back to the Fiat-Shamir signature
scheme from 1986 [31].

2.4. MODELS WITH SHARED OBJECTS 23

• Completeness: For every x ∈ L there exists a (witness) string y such that for
every auxiliary input z ∈ {0, 1}∗

Pr[〈PRO(y), V RO(z)〉({x}) = 1] ≥ 1− ν(|x|)

where RO is a random variable uniformly distributed in {0, 1}poly(|x|) →
{0, 1}poly(|x|)

• Soundness: For every x /∈ L, every interactive machine B and every y, z ∈
{0, 1}∗

Pr[〈BRO(y), V RO(z)〉({x}) = 1] ≤ ν(|x|)

where RO is a random variable uniformly distributed in {0, 1}poly(|x|) → {0, 1}poly(|x|)

Informally we say that an interactive proof (P, V) in the RO model for the lan-
guage L ∈ NP, with witness relation RL, is zero-knowledge in the RO model if there
for every probabilistic polynomial-time veri�er V ∗ exists an expected polynomial
time probabilistic simulator algorithm S such that the following two ensembles are
computationally indistinguishable (when the distinguishing gap is a function in |x|):
• {(RO, 〈PRO(yx), V ∗RO(z)〉(x))}x∈L,z∈{0,1}∗ for arbitrary yx ∈ RL(x)

• {S(x, z)}x∈L,z∈{0,1}∗

where RO is a random variable uniformly distributed in {0, 1}poly(|x|) → {0, 1}poly(|x|)

In analogy with the zero-knowledge de�nition in the CRS model, the simulator
is allowed to choose the random oracle, and has for this purpose a special �ll out
function. We refer the reader to [6] for a more formal de�nition.

The simulation of the random oracle gives the simulator two extra advantages
(in comparison to the plain-model simulator):
• The simulator can see for what values parties ask the random oracle,
• The simulator chooses in what way to answer the queries to the random oracle.

2.4.3 Cryptographic Primitives with Shared Objects

We will in the following use the meta-phrase shared object, meaning either a CRS
string or a random oracle. The shared object R is thus a random oracle of length
either 1poly(n) → {0, 1} or {0, 1}poly(n) → {0, 1}poly(n).

In this section, we extend the notions of WI, WH and proofs of knowledge,
to models with shared objects by providing all parties with access to the shared
object.

24 CHAPTER 2. PRELIMINARIES

De�nition 25 (Witness Indistinguishability with Shared Objects) Let (P, V)
be an interactive proof in a model with shared objects for the language L ∈ NP,
and RL be a �xed witness relation for L. We say that (P, V) is witness indistin-
guishable for RL if for every probabilistic polynomial-time algorithm V ∗ and every
two sequences W 1 = {w1

x}x∈L and W 2 = {w2
x}x∈L, such that w1

x, w2
x ∈ RL(x),

the following two ensembles are computationally indistinguishable (when the distin-
guishing gap is a function in |x|):

• {〈PR(w1
x), V ∗R(z)〉(x)}x∈L,z∈{0,1}∗

• {〈PR(w2
x), V ∗R(z)〉(x)}x∈L,z∈{0,1}∗

where R is a random variable uniformly distributed in either 1poly(n) → {0, 1} or
{0, 1}poly(n) → {0, 1}poly(n). That is, for every probabilistic algorithm D running in
time polynomial in the length of its �rst input, every polynomial p, all su�ciently
long x ∈ L, and all auxiliary inputs z, z′ ∈ {0, 1}∗ it holds that

|Pr[DR(x, z′, 〈PR(w1
x), V ∗R(z)〉(x))) = 1]

−Pr[DR(x, z′, 〈PR(w2
x), V ∗R(z)〉(x))) = 1]| < 1

p(|x|)

where R is a random variable uniformly distributed in either 1poly(n) → {0, 1} or
{0, 1}poly(n) → {0, 1}poly(n)

We note that in the case of interactive proofs in models with shared object
model, the de�nition can in fact be slightly weakened, by not giving the distin-
guisher access to the shared object (See Appendix A).

De�nition 26 (Witness Hiding with Shared Objects) Let (P, V) be an in-
teractive proof in a model with shared objects for a language L ∈ NP, RL a witness
relation for L, and let X = {Xn}n∈N be a hard-instance ensemble for RL. We say
that (P,V) is witness hiding for the relation RL under the instance ensemble X if for
every probabilistic polynomial-time algorithm V ∗ and all z ∈ {0, 1}∗ the probability:

Pr[〈PR(Yn), V ∗R(z)〉(Xn) ∈ RL(Xn)]

is negligible (as a function of n), where Yn is arbitrarily distributed over RL(Xn),
and R is a random variable uniformly distributed in either 1poly(n) → {0, 1} or
{0, 1}poly(n) → {0, 1}poly(n).

De�nition 27 (Proof of Knowledge with Shared Objects) Let (P, V) be an
interactive proof system in a model with shared objects for the language L. We say
that (P, V) is a proof of knowledge for the witness relation RL for the language
L it there for every polynomial p(n) exists a probabilistic expected polynomial-time
machine E (called extractor) and a negligible function ν(n) such that for every

2.5. ZK IN THE CRS/RO MODEL IMPLIES WH AND WI 25

probabilistic polynomial-time machine P ∗ which uses at most p(n) random coins,
such that for every P ∗, every x ∈ {0, 1}n, every auxiliary input z to P ∗,

Pr[〈P ∗R(z), V R〉(x) = 1] < Pr[EP∗R

(x, z) ∈ RL(x)] + ν(n)

where R is a random variable uniformly distributed in either 1poly(n) → {0, 1} or
{0, 1}poly(n) → {0, 1}poly(n).

Remark 1 We note that we have used a strict de�nition of proofs of knowledge.
In our de�nition the extractor is not allowed to change the shared object, i.e., the
CRS string of the random oracle. Other, more relaxed, de�nitions (see for example
[61]) have been used in the context of non-interactive proofs. In these de�nitions,
as opposed to our treatment, the extractor is allowed �emulate� the shared object for
the prover during the extraction process.

2.5 ZK in the CRS/RO Model Implies WH and WI

In this section, we show two lemmas concerning the WH and WI properties of
zero-knowledge proofs (or arguments), in the CRS and RO models.
Lemma 1 Suppose that (P, V) is a zero-knowledge proof (argument), in the CRS/RO
model, for the language L. Then, for all witness relations RL for L, (P, V) is wit-
ness hiding in the CRS/RO model.

Proof Let R be the shared object in the model, i.e. a random variable uniformly
distributed in either 1poly(n) → {0, 1} or {0, 1}poly(n) → {0, 1}poly(n). Suppose, for
contradiction, that there exists a witness relation RL for L such that (P, V) is not
WH for RL. That is, there exists a hard instance probability ensemble {Xn}n∈N,
for RL, for which an adversary A can extract a witnesses, after having interacted
with a prover using (P, V), with non-negligible probability. In other words, there
exists a PPT machine V ∗ and a non-negligible function p such that for in�nitely
many n there exists a z′ ∈ {0, 1}poly(n) such that

Pr[〈PR(Y R
n), V ∗R(z′)〉(XR

n) ∈ RL(XR
n)] > p(n)

where Yn is arbitrarily distributed over RL(XR
n).

The zero-knowledge property of (P, V) yields the existence of a simulator S,
such that for all x ∈ L, and all z ∈ {0, 1}∗, and arbitrary yx ∈ RL(x) the following
distributions are indistinguishable
• (R, 〈PR(yx), V ∗R(z)〉(x)))

• S(z, x)

This, in particular, means that the following distributions also are indistinguishable:
• (R, 〈PR(Yn, V ∗R(z′)〉(Xn)))

26 CHAPTER 2. PRELIMINARIES

• S(z′, Xn)

Since, by our assumptions, V ∗ succeeds in �nding a witness for elements from the
hard-instance ensemble Xn with non-negligible probability, it follows that S will
able to do the same thing (without the help of the prover). This thus contradicts
the hard-instance property of Xn.

Remark 2 We note that a corresponding lemma was proved for the plain model
(i.e., that ZK in the plain model, without shared objects, implies WH) in [29].

Lemma 2 Let the language L ∈ NP, RL be a witness relation for L, and (P, V)
be a zero-knowledge proof (argument) in the CRS/RO model for L with e�cient
prover for RL. Then (P, V) is witness indistinguishable for RL in the CRS/RO
model.

Proof Let R be the shared object in the model, i.e. a random variable uniformly
distributed in either 1poly(n) → {0, 1} or {0, 1}poly(n) → {0, 1}poly(n). Suppose,
for contradiction, that (P, V) is not WI for RL in a model with shared objects.
That is there exists a PPT machine V ∗, a PPT distinguisher D and a polynomial
p(n) such that for in�nitely many n there exists an x ∈ L ∩ {0, 1}n, two witnesses
w1, w2 ∈ RL(x), and auxiliary inputs z, z′ ∈ {0, 1}∗ such that D(z′) distinguishes
between the following distributions with distinguishing gap p(n):
• {〈PR(w1), V ∗R(z)〉)}

• {〈PR(w2), V ∗R(z)〉)}

i.e.
|Pr[DR(x, z′, 〈PR(w1), V ∗R(z)〉(x))) = 1]

−Pr[DR(x, z′, 〈PR(w2), V ∗R(z)〉(x))) = 1]| > p(|x|)

That is,
1

#UR

∑
σ∈UR

|Pr[Dσ(x, z′, 〈Pσ(w1), V ∗σ(z)〉(x))) = 1]

−Pr[Dσ(x, z′, 〈Pσ(w2), V ∗σ(z)〉(x))) = 1]| > p(|x|)

where UR is either the set of functions 1poly(n) → {0, 1} or {0, 1}poly(n) → {0, 1}poly(n).
It was shown in [28] how a bias test can be used to show the existence of a PPT

machine V ∗, a PPT distinguisher D̃ and a polynomial p′ such that for in�nitely
many n there exists an x ∈ L∩{0, 1}n, two witnesses w1, w2 ∈ RL(x) and auxiliary
inputs z̃, z̃′ ∈ {0, 1}∗ such that

| 1
#UR

∑
σ∈UR

(Pr[D̃σ(x, z̃′, 〈Pσ(w1), V ∗σ(z̃)〉(x))) = 1]

−Pr[D̃σ(x, z̃′, 〈Pσ(w2), V ∗σ(z̃)〉(x))) = 1])| > p′(|x|)

2.5. ZK IN THE CRS/RO MODEL IMPLIES WH AND WI 27

(Roughly, D̃ simulates the behavior of D but inverts D's output when feed a shared
object σ such that Pr[Dσ(x, z′, 〈Pσ(w1), V ∗σ(z)〉(x))) = 1] < Pr[Dσ(x, z′, 〈Pσ(w2), V ∗σ(z)〉(x))) =
1] , to prevent a cancellation e�ect. In order for D̃ to know when to invert, D̃ starts
by estimating the above probabilities by sampling. It is thus essential that the aux-
iliary input z̃′ given to D′ contains the witnesses w1, w2, and the auxiliary inputs
z, z′, and that the prover strategy P is e�cient.) We can now rewrite the inequality
as follows,

|Pr[D̃R1(x, z̃′, 〈PR1(w1), V ∗R1(z̃)〉(x))) = 1]
−Pr[D̃R2(x, z̃′, 〈PR2(w2), V ∗R2(z̃)〉(x))) = 1]| > p′(|x|)

where R1, R2 is are random variables distributed in the same way as R.
Now let S = (S1, S2) be the zero-knowledge simulator for (P, V), such that

S1(x, y) denotes the simulation of the shared object, and S2(x, y) the simulation of
the output of the veri�er, on common input x and auxiliary input z. Consider the
following expression:
|Pr[D̃R1(x, z̃′, 〈PR1(w1), V ∗R1(z̃)〉(x))) = 1]− Pr[D̃S1(x,z̃)(x, z̃′, S2(x, z̃)]|

+|Pr[D̃S1(x,z̃)(x, z̃′, S2(x, z̃)]− Pr[D̃R2(x, z̃′, 〈PR2(w2), V ∗R2(z̃)〉(x))) = 1]|

It follows from the fact that S is a zero-knowledge simulator that the expression is
negligible (since both the �rst and the second terms are negligible). On the other
hand, by the triangle inequality, the expression is larger or equal to

|Pr[z̃R1(x, z̃′, 〈PR1(w1), V ∗R1(z̃)〉(x))) = 1]
−Pr[z̃R2(x, z̃′, 〈PR2(w2), V ∗R2(z̃)〉(x))) = 1]| > p′(|x|)

The lemma follows by contradiction.

Remark 3 The corresponding lemma was proved for the plain model in [29], and
for non-interactive proofs in the CRS model in [28].

We note that the proof of the fact that ZK implies WH in models with shared
object is a straight-forward adaptation of the proof of this fact for the plain model
[29]. Interestingly, concerningWI, on the other hand, such a simple adaptation can
no longer be done. This was shown in [28] already for the case of non-interactive
ZK in the CRS model. We mention that reason for this problem stems from the
fact that the de�nition of ZK in models with shared object allows the simulator to
�choose� the shared object, when performing the simulation.

More precisely, the notion ofWI in the models with shared object considers the
output of a veri�er after interacting with provers that use di�erent witnesses, but
the same shared object. In order for the proof that ZK implies WI in the plain
model to go through, we would need to require that the zero-knowledge simulator
could produce a valid simulation for �almost� every randomly chosen shared object.

28 CHAPTER 2. PRELIMINARIES

To sum up, although the above lemmas show positive results concerning the
security properties of zero-knowledge protocols in models with shared objects, the
non-triviality of the proof of Lemma 2, by itself, shows that special care has to be
taken in such models. In Chapter 4 we turn to a more in-depth analysis of problems
related to the above issue.

Part I

Results in the Plain Model

29

Chapter 3

Simulatable Proofs

Abstract

We propose the study of T (n)-simulatable proofs, i.e., interactive proofs
that have the property that the view of a veri�er in an interaction with a
prover can be simulated (without the help of the prover) in time T (n). We
show that this notion encompassed both the notion of zero-knowledge (i.e.
polynomial-time simulatability) and the notion of witness indistinguishability
(which we show to be equivalent to simulatability by an unbounded machine).

We next turn to investigate the possibility of T (n)-simulatable proofs
between the �extremes� of zero-knowledge and witness indistinguishability. In
our treatment we focus on quasi-polynomial time simulatable proofs (which
thus is a weakening of zero-knowledge proofs, but a strengthening of witness
indistinguishable proofs). We show that protocols satisfying this notion can
be constructed in settings where the standard zero-knowledge de�nition is too
restrictive. Speci�cally, we provide constant-round protocols (proven secure
under super-polynomial hardness assumptions) for a speci�c type of quasi-
polynomial time simulatable arguments and show that such arguments can
be used in advanced (concurrent) composition operations, without any set-up
assumptions.

Finally, we provide a complete classi�cation of the round-complexity of
quasi-polynomial time simulatable proofs and arguments (interestingly such
a classi�cation is not known for zero-knowledge proofs).

3.1 Introduction

The notion of zero-knowledge de�nes in a very natural way the property that a
participant of a protocol is not able to extract any information from a protocol
execution. The de�nition of zero-knowledge is captured through the simulation
paradigm. Namely, an interactive proof is said to be zero-knowledge if there exist
a, so called, simulator that can simulate the behavior of every, possibly malicious,
veri�er, that is communicating with a prover. The idea behind the simulation

31

32 CHAPTER 3. SIMULATABLE PROOFS

paradigm is as follows: Assuming that a malicious veri�er succeeds in doing some-
thing after having interacted with a prover, then by running the simulator, he could
have done it himself, without any interaction with a prover.

Limitations of zero-knowledge proofs Although the notion of zero-knowledge
has proven very successful in the design of increasingly complex cryptographic tasks,
many severe limitations are known:

1. The impossibility of non-trivial 2-round zero-knowledge arguments. (straight-
forward extension, from proofs to arguments, of the result of [37])

2. The impossibility of non-trivial 3-round black-box zero-knowledge arguments.
[35]

3. The impossibility of non-trivial constant-round concurrent black-box zero-
knowledge arguments. [16]

4. The impossibility of non-trivial constant-round black-box zero-knowledge ar-
guments with strict polynomial-time simulators. [4]

Limitations of the �simulation paradigm� Shortly after the conception of
zero-knowledge proofs, the simulation paradigm and the notion of zero-knowledge
was used to formalize the security requirements for general protocols [36]. More
speci�cally, the de�nition of secure two-party and multi-party computation relies
on the simulation paradigm and consequently inherits some of the limitations of the
notion of zero-knowledge. Furthermore, recently several severe impossibility results
have been showed concerning the concurrent composability of secure two-party and
multi-party protocols [48, 49].

New ideas We note that although the notion of zero-knowledge in itself is very
beautiful, zero-knowledge is most often used as the �means� to prove the secu-
rity of protocols, rather than the end-goal.1 It might thus be conceivable that
the notion of zero-knowledge can be relaxed in such a way that it is both �good�
enough for applications, yet that it allows for the construction of protocols that by-
pass the above-mentioned limitations of zero-knowledge (in terms of e�ciency and
concurrent composability). A �rst step in this direction was taken by Feige and
Shamir, by de�ning the notion of witness indistinguishability. In this chapter we
suggest a di�erent relaxation of the zero-knowledge de�nition. Our notion is a strict
strengthening of the notion of witness indistinguishability, yet it allows us to con-
struct round-e�cient protocols in the plain model without any set-up assumptions
on which advanced (concurrent) composition operations can be performed. In par-
ticular, we able to construct protocols that compose concurrently with themselves
and other protocols.

1In some rare cases this is not true, like for example Deniable authentication [50].

3.1. INTRODUCTION 33

3.1.1 Simulatable proofs
We propose to study a generalization of zero-knowledge proof, called T (·)-simulatable
proofs. Whereas the standard de�nition of zero-knowledge requires the existence
of a polynomial-time simulator, a T (·)-simulatable proof requires the existence of
a simulator with running time bounded by T (·). We show that the notion of T (n)-
simulatable proofs, not only generalizes the notion of zero-knowledge proofs, but it
also encompasses the notion of witness indistinguishability. In fact, an interactive
proof is witness indistinguishable if and only if it is simulatable by an unbounded
machine.

We note that the notion of T (·)-simulatability is interesting also between the
�extremes� (of zero-knowledge and witness indistinguishability), i.e., when T (n)
is a (sub-exponential) super-polynomial function. In fact, the notion of T (·)-
simulatability provides a natural way of quantifying how much �knowledge� an
interactive protocol �leaks�.

In this chapter we investigate the possibility of obtaining quasi-polynomial time
simulatable proofs and arguments in settings where the notion of zero-knowledge
is too restrictive. In order to motivate the new de�nition we start by mentioning
some of the features of T (n)-simulatable proofs in general, and quasi-polynomial
time proofs in particular.
A strengthening of WI Clearly, since quasi-polynomial time simulatable argu-

ments are also exponential-time simulatable, quasi-polynomial time simula-
tion is a strictly stronger requirement than WI.

Can be used to replace ZK In many applications of zero-knowledge proof,
these proofs systems can be replaced by T (n)-simulatable proofs, provided
one is willing to make quantitatively stronger hardness assumptions. More
speci�cally, since our notion builds on the simulation paradigm the �logic�
behind zero-knowledge also holds for T (·)-simulatable proofs: Assume that
an adversary receives a proof of a statement and then attempts to break a
certain primitive P (which might be related to the statement proved). If the
proof that the adversary receives is zero-knowledge it is su�cient to assume
that the primitive is hard to break for polynomial-time, in order to make sure
that the adversary still won't be able to break it after receiving the proof.
This is so since if there would exist an adversary that succeeds in breaking P
after receiving the proof, then there exist a polynomial-time simulator who
would also succeed (without receiving the proof), contradicting the underlying
hardness assumption on the primitive P .
Now, assume that the adversary instead receives a T (n)-simulatable proof.
Using the same argument, it is su�cient to make the quantitatively stronger
assumption that the underlying primitive P is hard for time T (n), in order
to make sure that the adversary won't be able to break it after receiving
the proof. Note that in the case of quasi-polynomial time simulatable proofs
(i.e., when T (n) = npoly(log n)) it is su�cient to assume that the underlying

34 CHAPTER 3. SIMULATABLE PROOFS

primitive is hard for quasi-polynomial time. Since most natural problems that
we believe are hard (on the average) for polynomial time are also believed hard
for quasi-polynomial time, this assumption seems rather mild.

De�nition extends to general protocol security Whereas the de�nition of
witness indistinguishability only relates to interactive proofs (where there is
a witness), the notion of T (·)-simulatability applies also to other de�nitions
that rely on the simulation paradigm, such as for example the de�nition of
secure computation. Since most de�nitions of protocol security actually rely
on the simulation paradigm, the feature that our relaxation directly extends
to these de�nition is of great importance.

Guarantee security in the On-line/O�-line Model In many settings it seems
reasonable to assume that parties are given a certain on-line time and a cer-
tain, longer, o�-line time. Such an on-line/o�-line model can be modeled
by letting parties run in polynomial time while being on-line, and time T (n)
o�-line.
A certain type of T (n)-simulatable protocols (which we call strongly T (n)-
simulatable protocols) have the property of being zero-knowledge in the on-
line/o�-line model. Roughly speaking, we say that an interactive proof is
strongly T (n)- simulatable if it is T (n)-simulatable and the output of the sim-
ulator is indistinguishable in time T (n) from the output of the veri�er in a
real interaction (whereas T (n)-simulatability only requires that these distri-
butions are polynomial-time indistinguishable). In other words, strong T (n)-
simulatability means that there exist an o�-line simulator (with running time
T (n)) for every on-line adversary such that the output of of the simulator is
indistinguishable in time T (n) (i.e., o�-line) from the output of the adversary
after interaction with a real on-line prover. Strongly T (n)-simulatable proto-
cols thus guarantee that anything that a veri�er can compute after interaction
with a prover, he could have computed by himself o�-line.

Allow for Advanced Composition We show that it su�ces to relax the zero-
knowledge de�nition to quasi-polynomial time simulatability to obtain pro-
tocols on which advanced protocol composition operations can be performed,
similar to those guaranteed by the notion of Universal Composability. The
key to this is the possibility of constructing quasi-polynomial time simulat-
able protocols that are proven secure using black-box techniques, but without
the use of rewind, i.e. straight-line simulatable protocols.

3.1.2 A Caveat
In the following we show that the relaxed notion of quasi-polynomial time sim-
ulatability is �easier� to achieve than that of zero-knowledge. More speci�cally,
we show how to construct e�cient constant-round protocols that compose concur-

3.1. INTRODUCTION 35

rently, whereas it is unknown (or even impossible in certain settings) to construct
such protocols achieving the standard zero-knowledge de�nition.

It is nevertheless worthwhile to note that the relaxed de�nition can not be used
in all settings where the standard zero-knowledge de�nition is used. Recently the
concern for deniability of zero-knowledge protocols, i.e., the fact that the transcript
of a protocol execution does not yield any evidence of the interaction, was addressed
in [55] (see Chapter 4). It was formally shown the zero-knowledge de�nitions in
the Common Reference String (and Random Oracle) models do not satisfy denia-
bility. (Furthermore it is shown that known black-box impossibility results for the
plain model without set-up assumptions, e.g. [35] [16], also hold for the Common
Reference String model when considering deniable protocols). Concerning quasi-
polynomial time simulatable proofs, we note that since the running time of the
simulator is longer than the allowed running time of the veri�er, the simulator can
not be run by the veri�er. Quasi-polynomial time simulatable proofs therefore do
not guarantee deniability.

3.1.3 Our Results
Our main contributions can be summarized as follows:
• We formally de�ne the notion of T (n)-simulatable proofs and show that it
encompasses the notion of WI. Our characterization of WI in terms of a
simulation-based de�nition sheds new light on the notion of WI, and might
lead to alternative constructions of WI proofs. Furthermore, whereas the
notion of WI is only de�ned for NP-languages, our simulation-based char-
acterization of WI can also be applied to languages outside of NP.
• We show the robustness of the notion of T (n)-simulatability by demonstrating
a sequential composition lemma.
• We identify a certain class of T (n)-simulatable protocols that can be used
in advanced composition operations. The power of such protocols is demon-
strated in a composition theorem. More precisely, we formally show that
straight-line concurrent T (n)-simulatability (i.e., concurrent T (n)-simulatability
without the use of rewinding) is a su�cient requirement for a general type of
asynchronous protocol composition.
• We construct two di�erent protocols:

� On the practical side, we construct an e�cient 4-round straight-line con-
current npoly(logn)-perfectly simulatable argument for NP, under the as-
sumption of one-to-one one-way functions secure against subexponential
circuits, and perfectly hiding commitments. In analogy with the de�ni-
tion of perfect zero-knowledge, perfect simulation here means that the
simulator's output has the same distribution as the veri�er's output in a
real interaction with a prover. Firstly, since the protocol is straight-line

36 CHAPTER 3. SIMULATABLE PROOFS

concurrent npoly(logn)-simulatable it can be used with our composition
theorem. Secondly, since the protocol is perfectly simulatable it is also
strongly simulatable, which implies that it is concurrent zero-knowledge
in the on-line/o�-line model mentioned above. We also mention that
the protocol can be constructed through an e�cient generic transforma-
tion from so called Σ-protocols (i.e., 3-round special-sound public-coin
honest-veri�er perfect zero-knowledge proofs).

� On the theoretical side, we construct a 2-round argument for NP that is
straight-line concurrent black-box strict-npoly(logn)-simulatable2, under
the assumption that one-to-one one-way functions secure against subex-
ponential circuits exists, and the existence of zaps [66] . We have thus
shown that all impossibility results regarding zero-knowledge, mentioned
in section 3.1 no longer hold in our relaxed setting.

• Finally, we give a complete characterization of the round-complexity of quasi-
polynomial time simulatable proofs and arguments.3 More speci�cally, under
cryptographic assumptions, we show that 2 rounds are necessary and su�cient
for quasi-polynomial time simulatable arguments, while 3 rounds are neces-
sary and su�cient for quasi-polynomial time simulatable proofs. Interestingly,
the exact round-complexity of (non black-box) zero-knowledge proofs is still
unknown.

3.1.4 Related Research
Resource-bounded Provers Recently, Dwork and Stockmeyer [65], investi-
gated the possibility of 2-round zero-knowledge protocols in a model where the
prover has bounded resources. Their approach is orthogonal to ours; whereas
they consider weaker adversaries, we consider a weakening of the notion of zero-
knowledge.

On a high-level, the intuition behind, and the structure of, our 2-round protocol
is similar to that of [65]. However, since the security de�nitions are quite di�erent,
the techniques used to instantiate the intuition behind the protocol, are very di�er-
ent. Indeed, the results of Dwork and Stockmeyer are quite limited in the setting
where the prover's running time is bounded, while we are able to prove security
under standard type assumptions. We note, however, that this is due to the fact
that the de�nition used in [65] is more restrictive than ours.

The Timing model Our on-line/o�-line model is similar to the timing model
introduced by Dwork, Naor and Sahai [25] in the context of concurrent zero-
knowledge. We mention that the concurrent zero-knowledge protocol presented
in [25] relies on both time-out and delay mechanism, whereas our protocol only

2In this section we emphasize that our protocols are simulatable in strict npoly(logn)-time, as
opposed to expected time. In the rest of the paper we do not emphasize this fact.

3We emphasize that this is not simply a black-box characterization (c.f. [35]).

3.2. DEFINITIONS OF THE NEW NOTIONS 37

relies on time-outs, which drastically improves the e�ciency. The on-line/o�-line
model, however, relies on stronger assumptions than the timing model as it explic-
itly bounds the on-line running time of malicious parties, whereas the timing model
only considers the running time of the honest parties.

Complexity leveraging Canetti et al have, in [14], used the technique of com-
plexity leveraging. The proof of security of our 2-round protocol relies on the same
technique.

Straight-line simulatability The application of straight-line simulatability (i.e.
black-box simulatability without the use of rewinding) to protocol composition was
demonstrated in [12]. Using our relaxed de�nition we are able to obtain similar
e�ects, but without resorting to set-up assumptions, such as a Common Reference
String.

3.1.5 Outline
In section 3.2 we formally de�ne the new notions. Section 3.3 shows how straight-
line concurrent T (n)-simulatable arguments can be used in advanced composition
operations. In section 3.4 and 3.5 two constructions of straight-line concurrent
quasi-polynomial time simulatable arguments are given. Finally, in section 3.6, we
give a complete characterization of the round-complexity of quasi-polynomial time
simulatable proofs and arguments.

3.2 De�nitions of the New Notions

As argued in the introduction, for many applications, it is often su�cient to use in-
teractive proofs (or arguments) that can be simulatable within some super-polynomial
time T (n).

3.2.1 T (n)-simulatable proofs
We start by de�ning T (n)-simulatable interactive proofs and thereafter provide
some justi�cations for the de�nition. In order to obtain a notion that is robust
under composition we restrict our attention to T (n)-simulatable proofs, where T (n)
is a class of function that is closed under composition with any polynomial.
De�nition 28 Let T (n) be a class of functions that is closed under composition
with any polynomial. We say that an interactive proof (or argument) (P, V) for
the language L ∈ NP, with the witness relation RL, is T (n)-simulatable if there for
every PPT machine V ∗ exists a probabilistic simulator S with running time bounded
by T (n) such that the following two ensembles are computationally indistinguishable
(when the distinguishing gap is a function in n = |x|)

38 CHAPTER 3. SIMULATABLE PROOFS

• {(〈P (y), V ∗(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary y ∈ RL(x)

• {S(x, z)}z∈{0,1}∗,x∈L

That is, for every probabilistic algorithm D running in time polynomial in the length
of its �rst input, every polynomial p, all su�ciently long x ∈ L, all y ∈ RL(x) and
all auxiliary inputs z, z′ ∈ {0, 1}∗ it holds that

|Pr[D(x, z′, (〈P (y), V ∗(z)〉(x))) = 1]− Pr[D(x, z′, S(x, z)) = 1]| < 1
p(|x|)

Remark 4 The standard de�nition of zero-knowledge can be simpli�ed to only pro-
vide the distinguisher with the auxiliary input z of the veri�er (instead of providing
it with its own auxiliary input z′ (see [32] pages 214-215 for a proof of this fact).
We note that the proof of [32] no longer holds for T (n)-simulatable proofs.

Essentially, the above de�nition is the same as the de�nition of zero-knowledge
proofs, with the only exception that the simulator is allowed to run in time T (n)
instead of in polynomial time. Note that the output of the simulator is only required
to be polynomial-time indistinguishable from a real execution, i.e. the distinguisher,
as well as the distinguishing gap is only is polynomial. This feature makes the
de�nition less robust than the de�nition of zero-knowledge. In particular, as we
will see in the next section, standard �hybrid�-arguments [69] can no longer be used
with the above de�nition. Looking ahead, in section 3.2.2 we therefore introduce
a stronger notion called strongly T (n)-simulatable proofs, for which the simulator's
output is required to be strongly T (n)-indistinguishable from a real execution.

Nevertheless, although standard proof techniques can not be applied when using
de�nition 28, we argue that it is still a natural relaxation of ZK:

1. Since we want to be protected against a veri�er that attempts to extracts in-
formation that it will later try to use in a di�erent protocol execution where
the actual parties are only probabilistic polynomial-time machine, it seems
natural to only require that the simulator's output is polynomial-time indis-
tinguishable from a real executions.

2. Although a standard hybrid argument can not be used to show that De�nition
28 is closed under sequential composition, we are able to show that this is
the case for interactive proofs with e�cient prover (which anyway are the
interesting ones in cryptographic applications). In order to make the proof of
this fact go through we need to rely on a slightly more re�ned argument than
the one used to show that the notion of ZK proofs is closed under sequential
composition (see [37]).

3. We show that the notion of T (n)-simulatability also encompasses the notion
of WI, namely a interactive proof is WI if and only if there exists a function
f(n) such that the interactive proof is f(n)-simulatable.

3.2. DEFINITIONS OF THE NEW NOTIONS 39

A Sequential Composition Lemma We show the robustness of De�nition 28
by proving that the de�nition is closed under sequential composition, with respect to
interactive proofs with e�cient provers. Looking ahead, the proof of the sequential
composition lemma will be used to facilitate the proof of concurrent security for
one of our protocols.

Lemma 3 (Sequential Composition Lemma) Let T (n) be a class of functions
that is closed under composition with any polynomial, and let (P, V) be a T (n)-
simulatable interactive proof, with e�cient prover, for the language L ∈ NP. Let
Q(n) be a polynomial, and let (PQ, VQ) be an interactive proof that on common
input x ∈ {0, 1}n proceeds in Q(n) phases, each on them consisting of executing the
interactive proof (P, V) on common input x (each time with independent random
coins). Then (PQ, VQ) is a T (n)-simulatable interactive proof.

Proof: We start by noting that it follows directly from the construction that
(PQ, VQ) is both sound and complete. Let us therefore turn to the T (n)-simulatability
property. On a high level the proof follows the structure of the sequential compo-
sition lemma for ZK proofs of Goldreich and Oren [37]. We start by �partitioning�
the malicious veri�er V ∗Q into Q(n) phases, each of which is the execution of a ver-
i�er for a �stand-alone� interactive proof (P, V), called V ∗. The new stand-alone
veri�er V ∗ will communicate Q(n) times with a real prover P , and we wish to
show that V ∗ does not �learn� anything from these Q(n) interactions. Towards this
goal, we use the simulator S for V ∗ (which is guaranteed by the T (n)-simulatable
property of (P, V)) and thereafter show that the output of Q(n) execution of the
simulator is indistinguishable of Q(n) executions between a real prover and V ∗. It
is only at the last step of the proof that our proof di�ers from the proof of Goldreich
and Oren. Whereas in the case of zero-knowledge proofs, the indistinguishability
of Q(n) executions of the simulator and Q(n) real executions follows using a stan-
dard hybrid argument, the same does not hold in our case. The reason for this is
that the argument of [37] relies on the fact that the distinguisher can incorporate
(many) copies of the simulator. In the case of T (n)-simulatable proofs this is no
longer the case since the simulator might run in super-polynomial time, whereas
the distinguisher is only allowed to run in polynomial time. In order to overcome
this issue, we instead rely on a careful orderings of the hybrid and on the fact that
the (P, V) is an interactive proof with an e�cient prover. We now proceed to a
formal proof.

We rely on the following claim originally due to Goldreich and Oren [37], which
shows that the execution of a �sequential� veri�er V ∗Q can be partitioned into many
sequential executions of a stand-alone veri�er V ∗.
Claim 1 (Claim 4.3.11.1 in [32]) There exists a probabilistic polynomial-time
machine V ∗ such that for every common input x ∈ {0, 1}n and every auxiliary
input z it holds that

〈PQ, V ∗Q(z)〉(x) = ZQ(n)

40 CHAPTER 3. SIMULATABLE PROOFS

where Z0 = z and Zi+1 = 〈P, V ∗(Z1)〉(x) for i = 0, ..., Q(n) − 1. Namely ZQ(n) is
a random variable describing the output of V ∗ after Q(n) successive interactions
with P .

Let M be the simulator for the stand-alone veri�er V ∗. We de�ne the simulator
MQ as a machine that on input x, z proceeds in Q(n) phases. In the i'th phase MQ

computes zi = M(x, zi−1). After Q(n) phases MQ stops and outputs zQ(n). Note
that the running time of MQ is Q(n)T (n) ∈ T (n).

It remains to show that the output of the simulator MQ is indistinguishable
from the output of the veri�er VQ in a real interaction with a prover.
Claim 2 For every probabilistic machine D with running time polynomial in its
�rst input, every polynomial p(·), all su�ciently long x ∈ L and all z, z′ ∈ {0, 1}∗,
we have

|Pr[D(x, z′, 〈PQ, V ∗Q(z)〉(x) = 1]− |Pr[D(x, z′,MQ(x, z) = 1] < 1/p(|x|)

Proof Sketch: In order to prove the claim we de�ne Q(n)+1 hybrids, H0, ...,HQ(n).
The j'th hybrid Hj is de�ned as the output of the following experiment:
• Let z0 = z

• Run the simulator MQ for j phases, i.e., for i = 1 to j let zi = M(x, zi−1).
• Thereafter let the honest prover communicate with the malicious veri�er for
the remaining Q(n)−j phases, i.e., for i = j to Q(n) let zi = 〈P, V ∗(zi−1)〉(x).
• Output zQ(n).
The claim consists of proving that hybrids H0 and HQ(n) are computationally

indistinguishable. Assume for contradiction that this is not the case. By a standard
argument this implies that there are two consecutive hybrids distributions Hk,
Hk+1 that are distinguishable. Using an averaging argument it follows that there
exists a z′k−1 such that the output of the following two experiments H ′k, H ′k+1 are
distinguishable.
• H ′k is de�ned as follows:

1. let zk = 〈P, V ∗(z′k−1)〉(x)

2. for i = k + 1 to Q(n) let zi = 〈P, V ∗(zi−1)〉(x).(x).
3. Output zQ(n).

• H ′k+1 is de�ned as follows:
1. let zk+1 = M(z′k−1, x)

2. for i = k + 1 to Q(n) let zi = 〈P, V ∗(zi−1)〉(x).
3. Output zQ(n).

3.2. DEFINITIONS OF THE NEW NOTIONS 41

Since Step 2 is de�ned in exactly the same way in both experiments, and since
this step is e�ciently computable given a witness w ∈ RL(x) (this follows from the
e�cient prover condition) it follows that following distributions are distinguishable
(by a distinguisher that receives as auxiliary input the value z′k−1, a witness w ∈
RL(x), and the auxiliary input needed to distinguish H ′k and H ′k+1)
• M(z′k−1, x)

• 〈P, V ∗(z′k−1)〉(x)

which contradict the stand-alone T (n)-simulatability property of (P, V).

Witness Indistinguishability and T (n)-Simulatability We show that the
de�nition of T (n)-simulatable proofs not only generalizes the notion of ZK, it also
encompasses the notion of WI. Namely, an interactive proof is WI if and only if
it is f(n)-simulatable for some function f(n) (note that in particular f(n) can be
exponential).
Theorem 2 Let (P, V) be an interactive proof (or argument) (P, V) for the lan-
guage L ∈ NP, with the witness relation RL. Then there exists a function f(n)
such that (P, V) is f(n)-simulatable if and only if (P, V) is WI for RL.

Proof: We show each implication separately.
Claim 3 If (P, V) is f(n)-simulatable, then (P, V) is WI.

Proof: We wish to show that for every malicious veri�er V ∗, all su�ciently large
instances x ∈ L, every witness pair w1, w2 ∈ RL(x) and every auxiliary input z to
V ∗, the following distributions are computationally indistinguishable:
• 〈P (x,w1), V ∗(x, z)〉

• 〈P (x,w2), V ∗(x, z)〉

Since (P, V) is f(n)-simulatable, there exist a simulator S such that the output
of S(x, z) is computationally indistinguishable from both 〈P (x,w1), V ∗(x, z)〉 and
〈P (x, w2), V ∗(x, z)〉. It follows using a standard hybrid argument that the distri-
butions 〈P (x,w1), V ∗(x, z)〉 and 〈P (x,w2), V ∗(x, z)〉 are computationally indistin-
guishable. For completeness, we provide a formal proof.4

Suppose, for contradiction, that there exists a PPT machine V ∗, a PPT dis-
tinguisher D and a non-negligible function p(n) such that for in�nitely many n

4 Although in this particular instance, we are actually able to rely on �standard� hybrid
arguments, in general such techniques can not always be used with T (n)-simulatable proofs (as
was seen when demonstrating the sequential composition lemma). We therefore prefer to be extra
careful and spell out the actual proof.

42 CHAPTER 3. SIMULATABLE PROOFS

there exists an x ∈ L∩ {0, 1}n, two witnesses w1, w2 ∈ RL(x), and auxiliary inputs
z, z′ ∈ {0, 1}∗ such that D(z′) distinguishes between the following distributions
with distinguishing gap p(n):
• {〈P (w1), V ∗(z)〉)}

• {〈P (w2), V ∗(z)〉)}

i.e.
|Pr[D(x, z′, 〈P (w1), V ∗(z)〉(x))) = 1]

−Pr[D(x, z′, 〈P (w2), V ∗(z)〉(x))) = 1]| > p(|x|)

Let S be the f(n)-simulator for (P, V). Now, consider the following expression:
|Pr[D(x, z′, 〈P (w1), V ∗(z)〉(x))) = 1]− Pr[D(x, z′, S(x, z)]|

+|Pr[D(x, z′, S(x, z)]− Pr[D(x, z′, 〈P (w2), V ∗(z)〉(x))) = 1]|

It follows from the fact that S is a simulator that the expression is negligible (since
both the �rst and the second terms are negligible). On the other hand, by the
triangle inequality, the expression is larger or equal to

|Pr[D(x, z′, 〈P (w1), V ∗(z)〉(x))) = 1]
−Pr[D(x, z′, 〈P (w2), V ∗(z)〉(x))) = 1]| > p(|x|)

The claim follows by contradiction.

Claim 4 If (P, V) is WI, then (P, V) is f(n)-simulatable.

Proof: We show that there exists a black-box simulator S such that for every mali-
cious V ∗, all su�ciently large instances x ∈ L, every w ∈ RL(x) and every auxiliary
input z to V ∗, the following distributions are computationally indistinguishable:
• 〈P (x, w), V ∗(x, z)〉

• 〈SV ∗(x,z)(x, z)〉

The simulator S simply �nds a witness w′ such that w′ ∈ RL(x) (since L is in NP ,
this can be done in time 2poly(n)) and thereafter plays the role of the honest prover
using this witness. It follows from the WI property of (P, V) that the output of
the simulator is indistinguishable from the output of V ∗ in a real execution with
a prover (since the simulator actually acts identically to the honest prover, except
for the fact that it might use a di�erent witness).

Remark 5 We note that for the case of interactive proofs with e�cient provers the
above proof actually shows equivalence between WI and 2poly(n)-simulatability.

3.2. DEFINITIONS OF THE NEW NOTIONS 43

3.2.2 Strongly T (n)-simulatable proofs
As we have seen when proving the sequential composition lemma (see Lemma 3)
standard hybrid arguments can not be used with the notion of T (n)-simulatability.
The reason for this is that in hybrid arguments one constructs a distinguisher that
itself needs to execute the simulator. Since De�nition 28 only requires that the
output of the simulator is indistinguishable by a polynomial-time distinguisher, the
distinguisher might not be able to execute the simulator (recall that the simulator
might have a super-polynomial running time). In order to remedy this problem, we
therefore introduce a more robust notion, called strong T (n)-simulatability. The
de�nition of strong T (n)-simulatability requires the output of the simulator to be
strongly T (n)-indistinguishable (instead of only polynomial-time indistinguishable
as in De�nition 28). To make the de�nition even stronger we furthermore allow
the veri�er to run in time T (n). Looking ahead, this extra strengthening will allow
us to prove a concurrent composition theorem for a certain type of strongly T (n)-
simulatable proof (namely straight-line simulatable proofs, see Lemma 5).
De�nition 29 (Strong T (n)-simulatability) Let T (n) be a class of functions
that is closed under composition with any polynomial. We say that an interactive
proof (or argument) (P, V) for the language L ∈ NP, with the witness relation RL,
is strongly T (n)-simulatable if there for every probabilistic machine V ∗ with running
time bounded by T (n) exists a probabilistic simulator S with running time bounded
by T (n) such that the following two ensembles are strongly T (n)-indistinguishable
(when the distinguishing gap is a function in n = |x|)

• {(〈P (y), V ∗(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary y ∈ RL(x)

• {S(x, z)}z∈{0,1}∗,x∈L

That is, for every probabilistic algorithm D running in time T (·) in the length of
its �rst input, all su�ciently long x ∈ L, all y ∈ RL(x) and all auxiliary inputs
z, z′ ∈ {0, 1}∗ it holds that

|Pr[D(x, z′, (〈P (y), V ∗(z)〉(x))) = 1]− Pr[D(x, z′, S(x, z)) = 1]| < 1
(T (|x|))

Remark 6 Note that since T (n) is a class of functions that is closed under com-
position with any polynomial, the running time of the distinguisher (as well as the
distinguishing gap) can be a poly(f(n)), where f(n) is the running time of the
simulator.

Sequential Composition of Strongly Simulatable Proofs Whereas we had
to restrict our attention to proofs with e�cient provers in order to prove a se-
quential composition lemma for T (n)-simulatable proofs, for the case of strongly
T (n)-simulatable proofs this is no longer needed. In fact, the proof of the sequential
composition lemma for ZK of Goldreich and Oren [37] can be used unchanged.

44 CHAPTER 3. SIMULATABLE PROOFS

Lemma 4 (Sequential Composition Lemma for Strong T (n)-Simulatability)
Let T (n) be a class of functions that is closed under composition with any polyno-
mial, and let (P, V) be a strongly T (n)-simulatable interactive proof for the language
L ∈ NP. Let Q(n) be a polynomial, and let (PQ, VQ) be an interactive proof that
on common input x ∈ {0, 1}n proceeds in Q(n) phases, each on them consisting
of executing the interactive proof (P, V) on common input x (each time with inde-
pendent random coins). Then (PQ, VQ) is a strongly T (n)-simulatable interactive
proof.

Proof: The proof of Goldreich and Oren [37] directly extends to yield the lemma.

Perfect T (n)-simulatability In analogy with the notion of perfect ZK, we can
further strengthen the notion of T (n)-simulatability to require that the output of
the simulator is identically distributed to the output of the real execution. In
out treatment, we furthermore let the veri�er be a computationally unbounded
machine.
De�nition 30 (Perfect T (n)-simulatability) Let T (n) be a class of functions
that is closed under composition with any polynomial. We say that an interactive
proof (or argument) (P, V) for the language L ∈ NP, with the witness relation RL,
is perfectly T (n)-simulatable if (P, V) satis�es De�nition 28 and the two ensem-
bles de�ned in De�nition 28 (the simulated execution and the real execution) are
identically distributed for every (computationally unbounded) machine V ∗.

We note that, trivially, perfect T (n)-simulatability implies strong T (n)-simulatability.

Security in the On-line/O�-line model We mention that although the main
motivation behind the notion of strong T (n)-simulatability is to obtain a �better-
behaved� variant of T (n)-simulatability, the de�nition itself also has direct appli-
cations.

In fact, in many natural situations it seems reasonable to assume that par-
ties have certain �on-line� running time, but a longer �o�-line� time.5 One way
of formalizing such an on-line/o�-line model would be by modeling the parties
as polynomial time machine during on-line communications, while machines with
running time T (n) when o�-line.

We note that in such a setting, strongly T (n)-simulatable arguments are in fact
zero-knowledge. In particular, strong T (n)-simulatability, means that the a veri-
�er does not learn anything that it could not have learned by itself when being
o�-line. Note that the notion of simply T (n)-simulatability is not necessary to
guarantee zero-knowledge in the on-line/o�-line model. This follows from the fact

5In real-life protocol executions parties that do not respond withing a speci�ed time would be
�timed-out�.

3.2. DEFINITIONS OF THE NEW NOTIONS 45

that T (n)-simulatability only guarantees that the output of the simulator is indis-
tinguishable from the real execution, by an on-line distinguisher (and not by an
o�-line distinguisher).

3.2.3 Straight-line Simulation
In the concurrent setting it is often helpful to be able to perform simulation without
rewinding, i.e. a so called straight-line simulation. Towards the goal of obtaining
a de�nition which is robust also in the concurrent setting we restrict De�nition 28
to straight-line simulators:
De�nition 31 Let T (n) be a class of functions that is closed under composition
with any polynomial. We say that an interactive argument (proof) (P, V) for the
language L ∈ NP, with the witness relation RL, is straight-line T (n)-simulatable
if there for every PPT machine V ∗ exists a probabilistic simulator S with running
time bounded by T (n) such that the following two ensembles are computationally
indistinguishable (when the distinguishing gap is a function in n = |x|)

• {(〈P (y), V ∗(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary y ∈ RL(x)

• {(〈S, V ∗(z)〉(x))}z∈{0,1}∗,x∈L

We note that the above de�nition is very restrictive. In fact, the simulator is
supposed to act a cheating prover, with its only advantage being the possibility of
running in time T (n), instead of in polynomial time. Trivially, there therefore do
not exist any straight-line T (n)-simulatable proofs for non-trivial languages (this
should be contrasted with straight-line simulatable interactive arguments, which we
show do exist).

3.2.4 Concurrent Composition
In analogy with the notion of concurrent zero-knowledge, we further restrict De�-
nition 31 to guarantee security under concurrent executions:
De�nition 32 Let T (n) be a class of functions that is closed under composition
with any polynomial. We say that an interactive argument (proof) (P, V) for the
language L ∈ NP, with the witness relation RL, is straight-line concurrent T (n)-
simulatable if there for every PPT oracle machine A that is not allowed to restart or
rewind the oracle it has access to, and every polynomial g(n), there exists a proba-
bilistic simulator S(i, x) with running time bounded by T (n) such that the following
two ensembles are computationally indistinguishable (when the distinguishing gap
is a function in n = |x|)

• {AP (x1,y1),P (x2,y2),..P (xg(n),yg(n))(z, x1, x2, .., xg(n))}z∈{0,1}∗,x1,x2,..,xg(n)∈L for ar-
bitrary yi ∈ RL(xi)

• {AS(1,x1),S(2,x2),..S(g(n),xg(n))(z, x1, x2, .., xg(n))}z∈{0,1}∗,x1,x2,..,xg(n)∈L

46 CHAPTER 3. SIMULATABLE PROOFS

Looking ahead, in section 3.3 we formally show that the notion of straight-line
concurrent T (n)-simulatability is very robust in the concurrent setting. More pre-
cisely, we show that protocols satisfying this notion not only retain their security
properties when simultaneously executing multiple sessions of the same protocol
(i.e. self-composition), but also if the protocols are concurrently composed with a
large class of other protocols (i.e., general composition).6

A Concurrent (Self)-Composition Lemma Whereas we could only show that
the notion of T (n)-simulatability is closed under sequential composition, we are able
to give a concurrent composition lemma for straight-line strongly T (n)-simulatable
proofs.
Lemma 5 (Concurrent Self-Composition Lemma) Let T (n) be a class of func-
tions that is closed under composition with any polynomial, and let (P, V) be an in-
teractive proof (argument) with e�cient provers. If (P, V) is straight-line strongly
T (n)-simulatable (or perfectly simulatable), then it is also straight-line concurrent
T (n)-strongly simulatable (or perfectly simulatable).

Proof of Lemma 5 Let S be the straight-line simulator for (P, V). Construct the
straight-line concurrent simulator S′(i, x) = S(x). Clearly, since the running time
of S is bounded by T (n), so is the running time of S′. We continue by showing
the output of the simulator is correctly distributed, i.e., that for every PPT oracle
machine A that is not allowed to restart or rewind the oracle it has access to, every
polynomial g(n), every x1, x2, .., xg(n) ∈ L, every yi ∈ RL(xi), and every z ∈ {0, 1}∗
the following distributions are strongly T (n)-indistinguishable:

1. real = {AP (x1,y1),P (x2,y2),..P (xg(n),yg(n))(z, x1, x2, .., xg(n))}

2. simulated = {AS′(1,x1),S
′(2,x2),..S

′(g(n),xg(n))(z, x1, x2, .., xg(n))}

Since both the prover strategy P , and the simulator S′ have a running time that is
bounded by T (n), it follows using a standard hybrid argument that the ensembles
real and simulated are strongly T (n)-indistinguishable. For completeness we
provide a sketch.

Construct the hybrid distributions H0, ...,Hg(n), where
• Hi = {AP (x1,y1),...,P (xi,yi),S

′(i+1,xi+1,...S′(g(n),xg(n))(z, x1, x2, .., xg(n))}

In other words, Hi is the output distribution of the adversary A having access to
the real prover for sessions 1 to i, and access to the simulator for the remaining
sessions. Note that H0 is identically distributed to the distribution real, while
Hg(n) is identically distributed to the distribution simulated.

6We note that this is, for example, not true for concurrent zero-knowledge proofs. Such proofs
only retain the zero-knowledge under concurrent self-composition, i.e., when concurrently running
multiple executions of the same protocol. In fact, it is the straight-line simulatability that lets us
achieve this strong property.

3.3. A CONCURRENT GENERAL COMPOSITION THEOREM 47

Suppose, for contradiction that the distributions real and simulated are distin-
guishable, i.e. that H0 and Hg(n) are distinguishable. Using the triangle inequality,
it follows that there exists an index j such that the distributions Hj and Hj+1

are distinguishable. We show that this contradicts the stand-alone strong T (n)-
simulatability of (P, V), by constructing a stand-alone adversary A′. A′ gets the
witnesses y1, ..., yi−1, and z as its auxiliary input. A′ incorporates A and proceeds
as follows:
• A′ internally emulates messages that are part of session 1 to i − 1 for A by
playing the role of the honest prover P . Note that since A′ gets the witnesses
y1, ..., yi−1 as part of its auxiliary input it can perform this task in polynomial
time.
• A′ internally emulates messages that are part of session i + 1 to g(n) for A
by running the simulator S′ to generate the interaction. Note that since A′

is allowed to run in time poly(T (n)) it can indeed run the simulator S′.
• A′ externally forwards messages that are part of session i.

Note that the output of A′ after interaction with an honest prover is identically
distributed to Hj . Likewise, the output of A′ after interaction with the simulator
S is identically distributed to Hj+1. But by our assumptions these distributions
are distinguishable, which contradicts the fact that S is a straight-line simulator
for (P, V).

Remark 7 1. We note that the same proof can not be applied in the case of
simply simulatable proofs, as the stand-alone veri�er constructed in the hybrid
argument has a running time of poly(T (n)).

2. It is interesting to note that the notions of straight-line strong T (n)-simulatability
is strictly stronger than the notion of straight-line concurrent T (n)-simulatability.
In fact, the protocol in section 3.5 constitutes an evidence of this fact. See
remark 11.

3.3 A Concurrent General Composition Theorem

In this section we formally show that the notion of straight-line concurrent T (n)-
simulatability not only provides security under self-composition (such as the notion
of concurrent ZK); it also provides security in under a more general type of com-
position operation.7 We formalize this feature through a composition theorem,
which loosely speaking states that for a large class of natural protocols the secu-
rity of these protocols is not a�ected when concurrently executed with multiple
straight-line concurrent T (n)-simulatable arguments. In other words, we show that

7Note that since the notion of straight-line strong T (n) is strictly stronger, the same result
hold also for this notion.

48 CHAPTER 3. SIMULATABLE PROOFS

straight-line concurrent T (n)-simulatable protocols not only retain their security
properties when concurrently composed with themselves, but also when concur-
rently composed with a large class of other protocols.

We start by presenting the problem that we wish to address more carefully and
thereafter turn to show the composition theorem.

The Problem of Concurrent General Composition Suppose that we have
a cryptographic system (which we call an environment) that an adversary is trying
to break. Suppose further that we are able to prove (or just strongly believe) that
a stand-alone adversary is not be able to break the system; we say that such a
system constitutes a hard environment. We would now like to identify a class of, so
called �safe� protocols, which have the property that an adversary that is allowed
to participate in (possibly many) safe protocol, will still not be able to break any
hard environment. We separate three di�erent �attack� scenarios:

1. Sequential/Sequential The attack proceeds in two stages. In the �rst stage
the attacker is allowed sequential access to the �safe� protocols. When the
�rst stage is completed the attacker then attempts to break the environment.
It can be seen that in this scenario zero-knowledge proofs are �safe� (since the
zero-knowledge property is closed under sequential composition [37]).

2. Concurrent/Sequential Also here the attack proceeds in two stages. In the
�rst stage the attacker is allowed concurrent access to the �safe� protocols.
When the �rst stage is completed the attacker then attempts to break the
environment. Note that in the second stage only one protocol execution is
taking place, namely the attacker is communicating with the environment. In
this scenario concurrent zero-knowledge proofs constitute �safe� protocols.

3. Concurrent/Concurrent The most powerful attack scenario proceeds as
follows. The attacker is allowed concurrent access to the �safe� protocols, and
is at the same time allowed to communicate with the environment in order
to attempt to break it.

In this section we attempt to identify a notion of �safe� protocols for the third,
and most demanding, setting. Note that the notion of concurrent zero-knowledge
is not su�cient to guarantee security in this scenario. This follows from the fact
that the notion of concurrent zero-knowledge only guarantees security when there
are many executions of the same protocol, while in our scenario the attacker might
simultaneously participate in (at least) two di�erent protocols, the �safe� protocols,
and the protocol it is executing with the environment (which might be any arbitrary
protocol).

On the impossibility of �safe� protocol In fact, it can be shown that the
problem can not be resolved in its most general form. More precisely, it can be
seen that there do not exist any proof of knowledge protocols that are �safe� for

3.3. A CONCURRENT GENERAL COMPOSITION THEOREM 49

any hard environment (according to the most demanding attack). We provide a
sketch.

Assume that there exists a �safe� proof of knowledge for a hard-instance lan-
guage. Now, consider the environment consisting of the veri�er of the �safe� protocol
for a randomly generated (hard) instance. Clearly, a stand-alone adversary (that
does not have the witness for this instance) will not be able to break such an envi-
ronment. However, a so called man-in-the-middle adversary, that is simultaneously
participating as a veri�er in a di�erent execution of the same interactive proof will,
by simply forwarding messages between the environment and the prover it is com-
municating with, succeed in breaking the environment, which thus contradicts that
the interactive proof was �safe� for any environment.

We conclude that it is impossible to �nd protocols that are �safe� for every
environment. Nevertheless, it might still be possible to �nd protocols that are
�safe� for a restricted class of environments.

�Safe� protocols for restricted environments Recently a solution to this
problem was proposed by Canetti and Fischlin [13]. They show how to construct
a zero-knowledge protocol in the Common Reference String (CRS) model, which
is �safe� against any environment that is unrelated to the CRS string used by
the �safe� protocols. In this section, we, instead, show an alternative solution
to this problem, without resorting to set-up assumptions, such as that of a CRS
string. More precisely, we identify a class of protocols that are �safe� against any
environments that is hard for adversaries with running time T (n).8 In fact, we
show that straight-line concurrent T (n)-simulatable arguments are �safe� for any
environment that is hard for time T (n).

The Composition Theorem
We start by formally de�ning the notion of an environment. We see an environment
as a system that an adversary is trying to break. The environment outputs 1 if
the adversary succeeds and 0 otherwise. Intuitively, we say that an environment
is hard if an adversary can not make the environment output 1, i.e., break the
environment. More formally,
De�nition 33 We say that an interactive PPT machine E, called environment,
is hard for the language L, the generator GenL, and T (n)-adversaries, if for all in-
teractive probabilistic machine A with running time bounded by T (n), every z ∈
{0, 1}poly(n)

Pr[x← GenL, 〈A(z), E〉(x) = 1]

is negligible as a function of n, where GenL is a sampling machine that chooses an
element x ∈ L ∩ {0, 1}n according to some distribution.

8For simplicity, think of T (n) as being quasi-polynomial. This means means that instead of
guaranteeing security against all environments (i.e. environments hard for polynomial-time), we
guarantee security only against environment hard for quasi-polynomial time.

50 CHAPTER 3. SIMULATABLE PROOFS

Our composition theorem states that a PPT adversary, that is allowed concur-
rent access to di�erent provers, communicating only using straight-line concurrent
T (n)-simulatable interactive arguments will not be able to break any environment
that is hard for T (n)-adversaries (even if the adversary has simultaneous access to
both the provers and the environment).

More formally,
Theorem 3 Let T (n) ⊆ nω(1) be a class of functions that is closed under com-
position with any polynomial, and let (P, V) be a straight-line concurrent T (n)-
simulatable interactive argument for the language L. Let p(n) be a polynomial,
GenL′p(n) be a generator for (L∩{0, 1}n)p(n), i.e., GenL′p(n) is a sampling machine
that chooses an element (x1, x2, ..xp(n)) ∈ (L ∩ {0, 1}n)p(n) according to some dis-

tribution. Then, for every environment E that is hard for the language Lp(n), the
generator GenLp(n) and T (n)-adversaries, and every PPT oracle machine A (called
the adversary), that can not restart or rewind the oracle it gets access to, and every
auxiliary input z ∈ {0, 1}poly(n), the following expression is negligible (as a function
of n).

Pr[x̄ = (x1, x2, .., xp(n))← GenLp(n), yi ∈ RL(xi),

〈AP (x1,y1),P (x2,y2),..P (xg(n),yg(n))(z), E〉(x̄) = 1]

Intuitively, the theorem follows from the fact that a straight-line simulator is a
�cheating� prover running in time T (n). If an adversary would succeed in breaking
a speci�c environment, then an adversary with access a straight-line simulator
running in time T (n), instead of the real provers, would succeed as well. More
formally,
Proof of Theorem 3 Let Π, T (n), L, p(n), GenLp(n) , E, and A be de�ned as in
the theorem. Assume, for contradiction, that for in�nitely many n, there exist a
z ∈ {0, 1}poly(n) such that

Pr[x̄ = (x1, x2, .., xp(n))← GenLp(n), 〈AP (x1),P (x2),..,P (xp(n))(z), E〉(x̄) = 1]

is non-negligible, i.e., the adversary A succeeds in breaking the environment, when
receiving proofs of the statements x1, .., xn. Let S(i, x) be the straight-line concur-
rent simulator for p(n) concurrent sessions of Π. It follows from the fact that E is
a hard for T (n)-adversaries (and since the class T (n) is closed under composition
with any polynomial) that the following expression is negligible,
Pr[x̄ = (x1, x2, .., xp(n))← GenLp(n), 〈AS(1,x1),S(2,x2),..,S(p(n),xp(n))(z), E〉(x̄) = 1]

In other words, the adversary A does not succeed in breaking the environment
when receiving simulated proofs, instead of real proofs. Thus, intuitively this fact
contradicts the straight-line concurrent T (n)-simulatability of the interactive proof
(P, V). In order to formalize this intuition we need to show that for in�nitely many
n there exist instances x1, ..., xp(n) for which A succeeds in breaking the environment

3.3. A CONCURRENT GENERAL COMPOSITION THEOREM 51

with non-negligible probability when receiving real proofs of these instances, but
fails (i.e. only succeeds with negligible probability) when receiving simulated proofs.
We call such instances good.

We start by showing that the existence of good instances for in�nitely many n
contradicts the fact that S is a straight-line concurrent T (n)-simulator for (P, V).
Towards this goal, we de�ne a new (concurrent) malicious veri�er A′ which is ob-
tained by combining the machine A and E, and outputting what E would have
output. Note that since both A and E are polynomial-time, A′ is so as well.
By our assumptions it follows that for in�nitely many n there exists instances
x̄ = x1, ..., xp(n) for which the following holds:
• A(x̄) outputs 1 with non-negligible probability after receiving real proofs of
the statements x1, ..., xp(n)

• A(x̄) output 1 only with negligible probability when receiving simulated proofs
of the same statements.

We conclude that S is not a valid straight-line concurrent simulator for (P, V),
which contradicts our assumptions.

It thus only remains to show that there exist good instances for in�nitely many
n. Assume, for contradiction, that this is not the case. Since for in�nitely many n
it holds that, with non-negligible probability the, instance x̄ = (x1, x2, .., xp(n)) ←
GenLp(n) has the property that

Pr[〈AP (x1),P (x2),..,P (xp(n))(z), E〉(x̄) = 1]

is non-negligible, it must also hold that for in�nitely many n with non-negligible
probability the instance x̄ = (x1, x2, .., xp(n))← GenLp(n) has the property that

Pr[〈AS(1,x1),S(2,x2),..,S(p(n),xp(n))(z), E〉(x̄) = 1]

is non-negligible, which contradicts the fact that E is hard for T (n)-adversaries.

Remark 8 We note that since the environment is a polynomial time machine, it
is su�cient that the arguments that the adversary is allowed to participate in are
simply simulatable and not strongly simulatable, i.e., that the simulator's output is
only required to be polynomial time indistinguishable from a real interaction (instead
of T (n)-indistinguishable).

The theorem shows that straight-line T (n)-simulation is a su�cient condition
for security when integrating a sub-protocol in an environment that is hard for
T (n)-adversaries. This yields an e�cient way of constructing protocols with strong
security properties by the use of telescopic composition of protocols, i.e., using
protocols that are successively harder and harder. Indeed, the key to the theorem
is the fact that the interactive arguments, that the adversary is receiving, are easy
for �break� in time T (n) (since they are straight-line T (n)-simulatable) while the
environment is hard for T (n)-adversaries.

52 CHAPTER 3. SIMULATABLE PROOFS

3.4 An E�cient Perfectly Simulatable Argument

In this section we show how to construct an e�cient protocol satisfying the re-
quirements needed for the composition theorem. More precisely, we construct a
constant-round straight-line npoly(logn)-perfectly simulatable argument. The pro-
tocol is thus also zero-knowledge in the on-line/o�-line model (see section 3.2.2).
We also mention that the protocol can be constructed through an e�cient trans-
formation from any 3-round special-sound public-coin honest-veri�er perfect zero-
knowledge (HVPZK) argument.

On a high-level, the protocol builds on the Feige-Lapidot-Shamir construction
[28]: The protocol consists of a WI proof (argument) of knowledge of the fact that
either the prover has a witness to the statement to be proved, or it has a, so called,
�fake� witness to some other (bogus) statement. This is done is such a way that it is
hard for a (possibly malicious) prover to �nd the �fake� witness, but the simulator
can (using its extra power) �nd such a witness.

Our instantiation of the above paradigm is as follows: The veri�er starts by
sending a random image c = f(r) through a one-way function f with subexponential
security. The prover thereafter proves that he either has a witness to the statement
x (to be proved) or that he has a pre-image to c (for the function f). The size of
c is chosen in such a way that a polynomial time malicious prover will not be able
to �nd a pre-image to c, but one can can be found in quasi-polynomial time by
performing an exhaustive search. Now, intuitively, the soundness of the protocol
follows from the proof of knowledge property. The simulator, on the other hand, is
able to �nd a pre-image and can thus use it as a �fake� witness. We proceed to a
more formal description of the protocol and thereafter discuss how to implement it
e�ciently.

The Protocol Let f be function that is one-way for time 2nκ . Furthermore,
assume that f has an e�ciently recognizable range (i.e., given an input y it is
�easy� to check whether there exist a value x such that f(x) = y; note that, for
example, permutations have this property). Let the witness relation RL′ , where
(x, y) ∈ RL′ if f(x) = y, characterize the language L′.

Let the language L ∈ NP, and k = 1
κ + 1. Consider the following protocol for

proving that x ∈ L:

3.4. AN EFFICIENT PERFECTLY SIMULATABLE ARGUMENT 53

Protocol Π - A 4 Round Perfectly Simulatable Argument for NP

Common Input: an instance x of a language L with witness relation RL,
1n: security parameter.

Stage 1:

V uniformly chooses r ∈ {0, 1}logkn.
V → P: c = f(r).

Stage 2:

P checks whether the value c is in the range of f . If it is not, P halts,
outputting reject.

P ↔ V: a witness independent argument of knowledge of the state-
ment
either there exists a value r′ s.t c = f(r′)
or x ∈ L

The argument of knowledge is with respect to the witness relation
RL∨L′(c, x) = {(r′, w)|r′ ∈ RL′(c) ∨ w ∈ RL(x)}.

We start by showing that Π is stand-alone perfectly quasi-polynomial time sim-
ulatable.
Proposition 1 The protocol Π is a straight-line nO(logkn)-perfectly simulatable ar-
gument of knowledge.

Proof of Proposition 1 Completeness follows from the completeness of the wit-
ness independent argument used in Stage 2.

Soundness/Proof of knowledge We continue to show that Π is an proof of
knowledge; this directly implies that the protocol is sound.

The claim follows from the fact that the argument system used in Stage 2
is an proof of knowledge, and the fact that a PPT adversary only �nds a pre-
image to c (for f) with negligible probability. More formally, we construct an
extractor machine E for every malicious prover P ∗ for the protocol Π. E internally
incorporates P ∗ and proceeds as follows. E generates the �rst veri�er message c
honestly and feeds it to P ∗. It then invokes the extractor E′ for the argument
system in stage 2 of protocol Π. E �nally outputs whatever E′ outputs. By the
proof of knowledge property of the argument system in stage 2, it follows that with
probability negligibly close to the success probability of P ∗, the output of E will
either be a witness to the statement proved, or the pre-image of c.

54 CHAPTER 3. SIMULATABLE PROOFS

Since f is a one-way for subexponential circuits, probabilistic non-uniform ad-
versaries with running time bounded by 2(logkn)

κ

= nlogκn only have a negligible
probability of �nding a pre-image to c. Thus, E (which only has a polynomial
running time) will only output a pre-image to c with negligible probability.9 We
conclude that E outputs a witness to the statement proved with probability negli-
gibly close to the success probability of the malicious prover.

Zero-knowledge Let us turn to zero-knowledge. Consider a straight-line simu-
lator S that proceeds as the honest prover until the witness independent argument
in stage 2 of the protocol is reached, i.e., S receives the values c and checks that
c indeed has a pre-image. S thereafter performs an exhaustive search to �nd a
pre-image r of the value c for the function f (i.e., a value r′ such that f(r) = c). To
perform this task S tries all possible values r′′ ∈ {0, 1}logkn and checks if f(r′′) = c.
This thus takes time poly(2logkn), since the time it takes to evaluate the function
f is a polynomial in n. After having found a value r′ such that f(r′) = c, S uses r′

as a witness in the witness independent argument (instead of using a real witness
to the statement x, as the honest prover would do).

Clearly the running time of S is bounded by nO(logkn). We proceed to show that
the output of the simulator is identically distributed to the output of the veri�er
in a real execution with an honest prover. Note that the only di�erence between a
real execution and a simulated execution is in the choice of witness used in stage
2 of the protocol. It thus follows from the witness independence property of the
argument system in stage 2 that the output of the simulated execution is identically
distributed to the output of the real execution.

Remark 9 1. Note that the above proof relies on the fact that Witness Indepen-
dence is de�ned for unbounded veri�ers.

2. Also note that in order to construct this, and the subsequent protocols in
this chapter which rely on subexponential hardness assumption, the �hardness�
constant κ of the one-way function needs to be known.

Concurrent simulatability follows directly, since the protocol is strongly simu-
latable.
Proposition 2 The protocol Π is a straight-line concurrent nO(logkn)-perfectly sim-
ulatable argument.

Proof of Proposition 2 Follows directly by combining Proposition 1 and Lemma
5.

9To prove this formally, consider a di�erent extractor E′′ that gets the values c as input
instead of generating it honestly. If E′′ is fed an honestly generated value c, the output of E
will be identical to the output of E′′. This means that if E succeeds in �nding a pre-image to
the values c with non-negligible probability, then E′′ inverts the one-way function f with non-
negligible probability.

3.5. A TWO ROUND SIMULATABLE ARGUMENT 55

We mention that constant-round witness independent arguments of knowledge
can be constructed based on the existence of constant-round perfectly hiding com-
mitments (consider for example Blum's proof for the Hamiltonian Cycle problem
[8], using perfectly hiding commitments). We thus obtain the following theorem.
Theorem 4 Assume the existence of one-way functions secure for subexponential
circuits, with e�cient recognizable range, and the existence of constant-round per-
fectly hiding commitments. Then there exist a constant-round interactive argument
of knowledge that is straight-line concurrent npoly(logn)-perfectly simulatable.

Remark 10 1. We note that if we use 2-round perfectly hiding commitments
(such commitment schemes exist under the assumption of claw-free collections
[34]), then the resulting protocol uses only 4 communication rounds.

2. Using a standard �trick� the e�ciently recognizable range condition on the
function f can be removed by letting the veri�er perform a zero-knowledge
(witness hiding) proof showing that the value c has a pre-image. This solution,
however, requires a higher round-complexity.

E�cient Implementation In this section we show how to give an e�cient in-
stantiation of the protocol. In fact, we show how to implement a 4-round version
of our protocol, through an e�cient transformation from any 3-round (or 4-round)
special-sound public-coin honest veri�er perfect zero-knowledge (HVPZK) proof.
Assume that we have a 3-round special-sound public-coin HVPZK argument for
the language L. Choose the function f and thus the language L′ with witness re-
lations and RL′ such that there exist an e�cient 3-round special-sound public-coin
HVPZK proof for the language L with witness relation R′L (examples of such proto-
cols are the Guillou-Quisquater scheme [41] for the RSA function, and the Schnorr
scheme [63] for the discrete logarithm).

Now, to implement the witness independent proof we start by noting that
HVPZK arguments are witness independent [19]. We can thereafter combine the
argument system for L and the argument system for L′ using the e�cient OR-
transformation of [19] yielding a special-sound public-coin HVPZK proof for L∨L′

with the witness relation RL∨L′ .10

3.5 A Two Round Simulatable Argument

In this section we construct a 2-round straight-line concurrent npoly(logn)-simulatable
argument for NP. The protocol shows that all the impossibility results regarding
the zero-knowledge de�nitions mentioned in section 3.1 can be overcome if relaxing

10Since the transformation in [19] uses that the second messages of the two protocols have
the same length, we need to run several parallel versions of the protocol for L′. The resulting
argument then uses less communication than the argument for L plus the (parallelized) argument
for L′.

56 CHAPTER 3. SIMULATABLE PROOFS

the de�nition to allow the simulator to run in quasi-polynomial time instead of
polynomial time.

On a high level, the idea behind the protocol is very similar to the protocol
described in section 3.4 with the main di�erence that a zap (i.e., a two-round
WI proof) is used instead of a three-round witness indistinguishable argument of
knowledge. Since the �compressed� protocol, using a zap, no longer is a proof of
knowledge, we rely on the complexity leveraging technique of [14] to ensure the
soundness of the protocol. This is done by the use of, so called, �extractable� non-
interactive commitments. We start by de�ning extractable commitments and show
how such commitment schemes can be constructed. We thereafter present the full
protocol.

3.5.1 Extractable Commitments under General Assumptions

Roughly speaking, we say that a commitment scheme is T (n)-extractable, if the
value committed to can be extracted in time T (n) (although the commitment
scheme is hiding for polynomial time). For simplicity we only state a de�nition
for non-interactive perfectly-binding commitment schemes.

De�nition 34 We say that a non-interactive perfectly-binding commitment scheme
Com is T (n)-extractable if there exists a probabilistic extractor machine E, with
running time bounded by T (n), such that for all messages c = Com(x; r), E(c) =
(x, r) with overwhelming probability.

We show how to construct a non-interactive npoly(logn)-extractable commitment
scheme, based on the existence of one-to-one one-way functions secure for subexpo-
nential circuits. More speci�cally, we construct a npoly(logn)-extractable bit commit-
ment scheme using a modi�ed version of Blum's commitments scheme [8]. The idea
behind the construction is to create commitments that are �large� enough to guar-
antee the hiding property against polynomial time adversaries, but �small� enough
for a quasi-polynomial time adversary to be able to perform an exhaustive search
and thus extracting the committed value. We obtain such commitment schemes by
�scaling� down the security parameter in Blum's commitment scheme.

The Construction Let f : {0, 1}∗ → {0, 1}∗ be a function, and let b : {0, 1}∗ →
{0, 1} be a predicate.

3.5. A TWO ROUND SIMULATABLE ARGUMENT 57

Protocol Com - A Non-interactive Extractable Commitment
Scheme

Commit Phase:

• To commit to bit v ∈ {0, 1}, the sender uniformly selects s ∈
{0, 1}logkn and sends the pair (f(s), b(s)⊕ v).

Reveal Phase:

• The sender reveals v and s.
• The receiver accepts if f(s) = α and b(s)⊕ v = β where (α, β) is
the receiver's view of the commit phase.

Proposition 3 Let f : {0, 1}∗ → {0, 1}∗ be a one-to-one function that is one-way
for subexponential circuits, and let b : {0, 1}∗ → {0, 1} be a hard-core predicate for
subexponential circuits for f , i.e., there exists a κ such that b is a hardcore for
probabilistic non-uniform adversaries with running time bounded by 2nκ

. Then for

k = 1
κ + 1, the protocol Com constitutes a nO(logkn)-extractable bit-commitment

scheme.

Proof of Proposition 3We start by showing that the protocol indeed constitutes
a bit-commitment scheme. The hiding property follows from the fact that b is
a hard-core predicate for subexponential circuits. That is, since s is a string of
length logkn, all probabilistic non-uniform adversaries with running time bounded
by 2(logkn)κ

= 2log1+κn = nlogκn have negligible probability of predicting b(s) given
f(s) with probability that is non-negligibly higher than 1

2 . (In fact every nlogκn

adversary has a probability smaller than 1
2 +nlogκn of predicting b(s).) Since nlogκn

is asymptotically greater than any polynomial, this thus also holds for PPT non-
uniform adversaries.

The binding property follows trivially from the one-to-one property of f .
Now, let us turn to extractability. We show how to construct an extractor

machine E, with running time bounded by nO(logkn). Upon receiving a value c =
(α, β), E proceeds as follows:
• E performs an exhaustive search to �nd the pre-image s of α for the function

f (i.e., a values s such that α = f(s)). To perform this task E tries all
possible values s′ ∈ {0, 1}logkn and checks if f(s′) = α. This thus takes time
poly(2logkn), since the time it takes to evaluate the function f is a polynomial
in n.
• E thereafter computes the bit v = β ⊕ b(s).

58 CHAPTER 3. SIMULATABLE PROOFS

Clearly, the running time of E is bounded by nlogkn. Furthermore, since f is a one-
to-one function there only exists one possible decommitment for every commitment
c. Thus, the value extracted by E will be the correct value with probability 1.

3.5.2 The Protocol
Having constructed extractable commitments, we are now ready to present the
two-round protocol.

Suppose that f : {0, 1}n → {0, 1}n is a one-to-one one-way function secure
against adversaries running in time 2nκ . Let Com be a commitment scheme ex-
tractable in time nlogk′n and let k = 1

κ + 2k′

κ . Consider the following protocol:

Protocol Π - A 2 Round Quasi-Poly Simulatable Argument for
NP

Common Input: an instance x of a language L with witness relation RL,
1n: security parameter.

Stage 1:

V uniformly chooses r ∈ {0, 1}logkn, B ∈ {0, 1}poly(n)

V → P: b = f(r), B

Stage 2:

P → V: c1 = Com(0n), c2 = Com(w), a zap using B as randomness,
showing the statement

either there exists r′ s.t c1 = Com(r′) and b = f(r′)
or there exists w s.t. c2 = Com(w) and w ∈ RL(x))

We start by showing that Π is an interactive argument that is stand-alone
straight-line simulatable.
Proposition 4 The protocol Π is an interactive argument that is straight-line

nO(logkn)-simulatable.

Proof of Proposition 4 Completeness follows directly from the completeness of
the zap.

Soundness To prove soundness of the protocol we rely on the complexity leverag-
ing technique of [14]. Assume, for contradiction, that there exist a malicious prover

3.5. A TWO ROUND SIMULATABLE ARGUMENT 59

P ∗ that succeeds in convincing the honest veri�er of a false statement x with non-
negligible probability. Assume further (this assumption is currently unjusti�ed, but
will soon be removed) that the prover only succeeds in constructing accepting zap
proofs for true statements. This means that with non-negligible probability it holds
that

1. either c1 = Com(r′) and b = f(r′)

2. or c2 = Com(w) and (x,w) ∈ RL

Since the statement x is false (i.e., x /∈ L) the �rst condition must be ful�lled with
non-negligible probability. Now, since the commitment scheme Com is nO(logk′n)-
extractable, the value r′ can be extracted in time nO(logk′n). By combining the
malicious prover and the extractor for Com we can thus construct a machine
A (with running time bounded by nO(logk′n)) which on input a value b = f(r),
for a randomly chosen r ∈ {0, 1}logkn, succeeds in outputting f−1(b) with non-
negligible probability, contradicting the fact that f is one-way for subexponential
circuits (since f is one-way for subexponential circuits, f is hard to invert for time
2(logkn)κ

= nlog2k′n > nO(logk′n) for inputs of the size of |r| (i.e., logkn)).
Recall that in order to reach contradiction we made the unjusti�ed assumption

that P ∗ never succeeds in constructing accepting zaps of false statements. In real-
ity, P ∗ might, however, be able to construct an accepting zap of a false statement.
Fortunately, due to the soundness of the zap, this only happens with negligible prob-
ability. We conclude that the above argument thus still holds with overwhelming
probability.

Zero-knowledge Let us turn to zero-knowledge. Consider a straight-line simu-
lator S that upon receiving V ∗'s �rst message (b, B) performs an exhaustive search
to �nd a value r′ such that f(r′) = b. (Note that since f is one-to-one, there
exists such a value exists for every value b ∈ {0, 1}logkn.) S thereafter computes
c1 = Com(r′), c2 = Com(0n) and thereafter produces an accepting zap proof with
respect to B (using r′ as witness).

It follows using the same argument as in the proof of Proposition 1 that the
running time of S is bounded by nlogkn. It remains to show that the output of the
simulator is indistinguishable from the output of the veri�er V ∗ in a real execution
with an honest prover. Towards this goal, we de�ne the following experiments.
• Simulated execution Let E0 denote the output of the veri�er V ∗(z) after
interacting with the straight-line simulator S. i.e.,

E0 = 〈S, V ∗(z)〉(x)

• Simulated execution with commitment to real witness Let S′ be a
hybrid simulator which gets the witness w to the statement x. S′ proceeds

60 CHAPTER 3. SIMULATABLE PROOFS

exactly as S, but instead of letting c2 = Com(0n), S′ lets c2 = Com(w).
(Note that S′ still uses the witness r′ when constructing the zap proof.) Let
E1 denote the output of the veri�er V ∗(z) after interacting with the straight-
line simulator S′, i.e.,

E1 = 〈S′(w), V ∗(z)〉(x)

• Real execution with commitment to �fake� witness Let S′′ be a hybrid
simulator that proceeds exactly as S′, but instead of using the �fake� witness
r′ when constructing the zap proof (as S′ does), S′′ uses the real witness. Note
that the only di�erence between S′′ and a real prover is that S′′ commits to
both the real and the �fake� witness, while the prover only commits to the
real witness. Let E2 denote the output of the veri�er V ∗(z) after interacting
with the straight-line simulator S′′, i.e.,

E1 = 〈S′′(w), V ∗(z)〉(x)

• Real execution Let E0 denote the output of the veri�er V ∗(z) in a real
execution with the prover, i.e.,

E0 = 〈P (w), V ∗(z)〉(x)

We proceed to show that the outputs of each of these experiments are indistin-
guishable for every large enough x ∈ L, y ∈ RL(x) and every z ∈ {0, 1}∗. Without
loss of generality we restrict our attention to only deterministic veri�ers.
Claim 5 E0 is indistinguishable from E1

Proof Note that the only di�erence between the view of V ∗ in the executions
that generate these distributions is the value that c2 is a commitment to. Thus
intuitively it follows from the hiding property of Com that these distributions are
indistinguishable. In order to make this argument formal, we, however, need to
make a slightly more re�ned argument. In fact, note that since the running times
of S and S′ are quasi-polynomial, a naive argument would result in machine that
violates the hiding property of the commitment scheme in quasi-polynomial time
(which would not be enough for our goal, since we actually need a commitment
scheme that is extractable in less time than the running time of the simulator). We
show how to use the fact that the commitment scheme is hiding for non-uniform
adversaries to circumvent this problem. Namely, since the machine V ∗ is deter-
ministic, the �rst message (b, B) sent by V ∗ is �xed. Let r̃′ be a value such that
f(r̃′) = b, and let S̃ be a machine, which gets r̃′ and w as auxiliary input, and
proceeds just as S, except that instead of performing an exhaustive search to �nd
the value r′, S̃ just lets r′ = r̃′. Note that the output of S̃ in interaction with
V ∗(z, x) is identically distributed to the output of S in the same interaction. How-
ever, while the running time of S is super-polynomial, S̃ runs in polynomial time.
We use the same method to obtain a polynomial-time variant S̃′ of S′, and can now

3.5. A TWO ROUND SIMULATABLE ARGUMENT 61

rely on the hiding property of Com to conclude that distributions E0 and E1 are
indistinguishable.

Claim 6 E1 is indistinguishable from E2

Proof Note that the only di�erence in the executions that generate these distri-
butions is the choice of the witness used when constructing the zap. It thus follows
from the witness indistinguishability property of the zap that the these distributions
are indistinguishable.

Claim 7 E2 is indistinguishable from E3

Proof Note that the only di�erence between the view of V ∗ in the executions
that generate these distributions is the value that c1 is a commitment to. It thus
follows, using the same argument as in the proof of Claim 6 (which relies on the
hiding property of the commitment scheme) that the distributions E2 and E3 are
indistinguishable.

We conclude, by the triangle inequality, that the distributions E0 (the simulated
execution) and E3 (the real execution) are indistinguishable.

Remark 11 We note that in the soundness proof of the protocol we actually show a
stronger property, namely that a a witness to the statement proved can be extracted
in time quasi-polynomial time. This fact shows that the protocol is not strongly
quasi-polynomial time simulatable.

We continue by showing that Π is straight-line concurrent nO(logkn)-simulatable:
Lemma 6 The protocol Π is straight-line concurrent nO(logkn)-simulatable.

Proof of Lemma 6 Let S be the straight-line (stand-alone) simulator for Π (guar-
anteed by Proposition 4). We show that S′(i, x) = S(x) is a straight-line concurrent
simulator for Π.

We start by noting that since the protocol Π only consists of two rounds we
only need to consider two di�erent schedulings: parallel repetitions and sequential
repetitions. In order words, a concurrent scheduling is always a sequential repetition
of parallel repetitions of the protocol Π.

Dealing with Parallel Repetitions For simplicity, we start by considering only
parallel repetitions. Let g(n) be a polynomial, P be the honest prover, and let Apara

be a probabilistic polynomial-time adversary that only uses a parallel scheduling. It
follows using a hybrid argument, which relies on the stand-alone T (n)-simulatability
of (P, V), that S′(i, x) is a straight-line simulator for the adversary Apara, i.e., that
the following ensembles are indistinguishable:

62 CHAPTER 3. SIMULATABLE PROOFS

• {AP (x1,y1),P (x2,y2),..P (xg(n),yg(n))
para (z, x1, x2, .., xg(n))}z∈{0,1}∗,x1,x2,..,xg(n)∈L for ar-

bitrary yi ∈ RL(xi)

• {AS(x1),S(x2),..S(xg(n))
para (z, x1, x2, .., xg(n))}z∈{0,1}∗,x1,x2,..,xg(n)∈L

More precisely, de�ne the hybrid distribution

Hi = A
P (x1,y1),...,P (xi,yi),S(xi+1),...,S(xg(n))
para (z, x1, x2, ..., xg(n))

Assume, for contradiction, that H0 (i.e. the output of Apara in the real execution)
is distinguishable from Hg(n) (i.e., the output of Apara in the simulated execution).
Without loss of generality we restrict our attention to a deterministic adversary
Apara. This means that for each set of instances x̄ = (x1, ..., xg(n)) and auxiliary
input z, the message (b1, B1), .., (bg(n), Bg(n)) sent by Apara(z, x̄) is determined. For
each such message there is thus a string r̄ = (r1, ..., rg(n) such that for 1 ≤ i ≤ g(n),
bi = f(ri). Now consider a polynomial-time simulator S′ which receives the string
r̄ as auxiliary input and proceeds just as S, but instead of performing an exhaustive
search to �nd a pre-image, S′ simply uses the value obtained as auxiliary input in
order to perform it simulation. It follows that

Hi = A
P (x1,y1),...,P (xi,yi),S

′(xi+1,r̄),...,S′(xg(n),r̄)
para (z, x1, x2, ..., xg(n))

By our assumption that H0 and Hg(n) are distinguishable, it follows using the
triangle inequality that there must exist an index j such that such that the distribu-
tions Hj and Hj+1 are distinguishable. Since both P and S′ are polynomial-time,
we thus contradict the stand-alone T (n)-simulatability of (P, V).

Dealing with the Full Scheduling Let us now turn to the �full� scheduling,
which might contain sequential repetitions of the parallel repetitions. Since the
prover strategy P for Π is e�cient, we can use the same argument as in the proof
of the sequential composition lemma (i.e., Lemma 3) to show that the straight-line
simulator S′ also works for adversaries A that receive (many) sequential repetitions
of parallel repetitions of proofs using Π.

Finally, note that clearly the simulator S′(i, x) runs in time nO(logkn).
We thus obtain the following theorem:
Theorem 5 Assume the existence of a one-to-one function f : {0, 1}n → {0, 1}n
that is one-way functions for subexponential circuits, and the existence of zaps.
Then, there exists a two round interactive argument that is straight-line concurrent
npoly(logn)-simulatable.

Remark 12 1. Zaps can be constructed based on the existence of non-interactive
zero-knowledge proofs in the Common Reference String model, which in turn
can be based on the existence of trapdoor permutations [66].

3.6. A CHARACTERIZATION OF THE ROUND-COMPLEXITY 63

2. We mention that since the protocol is not strongly quasi-polynomial time sim-
ulatable (see Remark 11) it is not zero-knowledge in the on-line/o�-line model.
However, it does satisfy the requirements needed for the composition theorem
in section 3.3.

3.6 A Characterization of the Round-complexity

In this section we give a complete characterization of the round-complexity of quasi-
polynomial time simulatable protocols.11 It can be summarized as follows: Unless
NP ∈ DTIME(npoly(logn)),
• Two rounds are su�cient and necessary for quasi-polynomial time simulatable
interactive arguments for NP (assuming the existence of one-to-one one-way
functions secure for subexponential circuits, and the existence of zaps).
• Three rounds are su�cient and necessary for quasi-polynomial time simulat-
able interactive proofs for NP (assuming the existence of one-way functions).

3.6.1 On the Round-complexity of Simulatable Arguments

We show the impossibility of one-round npoly(logn)-simulatable proofs for languages
that are not decidable in quasi-polynomial time. This, in particular, means that
the protocol in section 3.5.2 is round-optimal.
Theorem 6 Assume there exists a one-round interactive proof for the language L
that is npoly(logn)-simulatable. Then L is decidable in quasi-polynomial time.

Proof of Theorem 6 Assume that there exist a npoly(logn)-time simulator S for
an interactive argument for the language L. Let D be a machine that �rst runs S
and thereafter runs the honest veri�er strategy on the output of S. We show that
D decides the language L:
Claim 8 When x ∈ L, D outputs 1 with probability at least 1/2.

Proof of Claim 8 Assume, for contradiction, that D outputs 1 with probability
smaller than 1/2. This would imply that the honest veri�er strategy distinguishes
between the output of the honest prover and the simulator. The claim follows by
contradiction.

Claim 9 When x /∈ L, D outputs 1 with negligible probability.

11Interestingly the round-complexity of zero-knowledge protocols with negligible soundness
error is still unknown. In fact, it is still unknown whether there exist 3-round zero-knowledge
proofs/arguments for NP.

64 CHAPTER 3. SIMULATABLE PROOFS

Proof of Claim 9 Assume, for contradiction, that S convinces the honest veri�er
with non-negligible probability. This means that for a non-negligible part of random
tapes r ,the machine S with random tape �xed to r will convince the honest veri�er
with non-negligible probability. Let zr denote the output of S when run with the
random tape r. Using an averaging argument, it follows that there exist an r′ such
that the honest veri�er accepts zr′ with non-negligible probability.

Now consider the non-uniform cheating prover P ∗ that simply outputs its aux-
iliary input. Then P ∗(zr) will convince the honest veri�er with non-negligible
probability, which contradicts the soundness of the interactive argument.

Since the running time of S is bounded by npoly(logn), we conclude that L is
decidable in quasi-polynomial time.

Remark 13 We note that the proof of theorem 6 makes use of the fact that the
soundness of the argument system holds against non-uniform adversaries. Recent
results by Barak and Pass [3] show that if the soundness condition of the interac-
tive argument is weakened to hold only against uniform adversaries, then one-round
quasi-polynomial time simulatable arguments can be constructed under certain gen-
eral (although non-standard) complexity theoretic assumptions.

3.6.2 On the Round-complexity of Simulatable Proofs
Changing perspective and considering proofs instead of arguments, we show the
impossibility of two-round npoly(logn)-simulatable proofs for languages that are not
decidable in quasi-polynomial time:
Theorem 7 Assume there exist a two-round interactive proof for the language L
that is npoly(logn)-simulatable. Then, L is decidable in quasi-polynomial time.

Proof of Theorem 6 Recall the proof of the impossibility result for non-trivial
two-round auxiliary-input zero-knowledge of Goldreich-Oren [37]. They show how
that the simulator S for the cheating veri�er that simply forwards its auxiliary input
as its message, can be used to decide the language. More precisely, on input an
instance x and a honestly generated �rst veri�er message, S outputs a message that
will be accepted by the honest veri�er if x ∈ L (by the zero-knowledge property),
while it will be rejected with high probability if x /∈ L (by the soundness). S,
combined with the honest veri�er thus decide the language L. We note that the
same transformation can be used also in the case of quasi-polynomial simulatable
proofs. Since in this setting the simulator S runs in quasi-polynomial time, the
deciding machine obtained will also run in quasi-polynomial time.

Remark 14 We note that the above proof actually gives a stronger result than
stated. Namely, it shows the impossibility of �non-trivial� two-round interactive
arguments that are sound for quasi-polynomial time.

3.7. EXTENSIONS 65

We mention that the lower bound can be matched. Consider the 3-round in-
teractive proof consisting of log2n parallel repetitions of the graph hamiltonicity
protocol of [7]. The protocol has both negligible soundness error, and is simulatable
in quasi-polynomial time, by simple rewinding (see [14] for a proof).
Theorem 8 Assume the existence of one-way functions. Then, there exists a 3-
round npoly(logn) simulatable proof for NP.

3.7 Extensions

If assuming one-to-one one-way functions secure for exponential-sized circuits (in-
stead of assuming security for sub-exponential sized circuits as we do), then our
protocols can be modi�ed in a straight-forward way to become nω(1)-simulatable.
In fact, if assuming provers that are computationally bounded below a speci�c
polynomial f(n), then our protocols can be modi�ed to become simulatable in time
g(n), where g(n) > f(n) is another polynomial. It would be interesting to extend
this analysis to exact security.

3.8 Subsequent Work

One-message Weak Zero-Knowledge Barak and Pass show that if weakening
the soundness condition of interactive arguments to hold only for uniform machines,
then there exists a one-message (i.e., non-interactive) quasi-polynomial time sim-
ulatable argument system for NP, under certain general (although non-standard)
complexity theoretic assumptions [3]. Their protocol can be seen as a derandomized
version of our two-round protocol.

Universal Composability with Super-polynomial Time Simulators Re-
cent work by Prabhakaran and Sahai extend our notions to the framework for
Universal Composability [58]. In particular, Prabhakaran and Sahai show how to
obtain universally composable protocols with super-polynomial time simulators,
under certain (new and non-standard) assumptions. We mention that both the
security de�nitions and the techniques used to instantiate them rely (and extend)
on our work.

Applications of Quasi-polynomial Time Simulatable Arguments

1. Pass and Rosen use the notion of quasi-polynomial time simulatable argu-
ments, and in particular one of the protocols constructed in this chapter, as
a tool to prove security according to standard de�nitions of polynomial-time
simulatability. More precisely, straight-line concurrent quasi-polynomial time
simulatable arguments are used as a component to obtain a constant-round
protocol for bounded-concurrent secure two-party computation [56].

66 CHAPTER 3. SIMULATABLE PROOFS

2. di Crescenzo, Persiano and Visconti rely on the notion of straight-line T (n)-
simulatability, and on protocols very similar to ours in order to obtain Re-
settable Zero Knowledge protocols with Concurrent Soundness in the Bare
Public-Key Model [20]. We note that the use of these protocols is a crucial
(and main) part of their construction.

3.9 Open Problems

In this work we have taken a initial step towards understanding the potential of
using super-polynomial time simulation as a relaxation of the standard notion of
security. Our focus has been on zero-knowledge interactive proofs. An interesting
open problem is to extend our techniques also to other cryptographic problems. A
prime candidate would be notion of non-malleability: It is possible to obtain an
e�cient protocol for the tasks of non-malleable zero-knowledge and non-malleable
commitments, using a relaxed security de�nition where the simulator is allowed to
be a super-polynomial (quasi-polynomial) machine?

3.10 Acknowledgments

I wish to thank Johan Håstad for his invaluable help and comments. Special thanks
to Boaz Barak for suggesting the use of complexity leveraging in a way similar to
[14] to obtain two-round protocols. I am also very grateful to Sha� Goldwasser,
Alon Rosen and Yael Tauman-Kalai for helpful comments. Finally, I would like to
thank the anonymous EuroCrypt referees.

Part II

Results in Shared Object Models

67

Chapter 4

Deniable Zero-Knowledge

Abstract

We revisit the de�nitions of zero-knowledge in the Common Reference
String (CRS) model and the Random Oracle (RO) model. We argue that
even though these de�nitions syntactically mimic the standard zero-knowledge
de�nition, they loose some of its spirit. In particular, we show that there exist
a speci�c natural security property that is not captured by these de�nitions.
This is the property of deniability. We formally de�ne the notion of deniable
zero-knowledge in these models and investigate the possibility of achieving it.
Our results are di�erent for the two models:

• Concerning the CRS model, we rule out the possibility of achieving deni-
able zero-knowledge protocols in �natural� settings where such protocols
cannot already be achieved in plain model.

• In the RO model, on the other hand, we construct an e�cient 2-round
deniable zero-knowledge argument of knowledge, that preserves both
the zero-knowledge property and the proof of knowledge property under
concurrent executions (concurrent zero-knowledge and concurrent proof-
of knowledge).

4.1 Introduction

Zero-knowledge proofs, i.e., interactive proofs that yield no other knowledge than
the validity of the assertion proved, were introduced by Goldwasser, Micali and
Racko� [38] in 1982. Intuitively, the veri�er of a zero-knowledge proof should not
be able to do anything it could not have done before the interaction. Knowledge,
thus, in this context means the ability to perform a task. The intuition is formalized
through a simulation de�nition: We say that a protocol is zero-knowledge if there
exists a simulator (that does not have access to a prover) that can simulate a
malicious veri�er's output after interaction with a prover. The existence of such a
simulator implies that if an adversary succeeds in a task after having communicated

69

70 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

with a prover, then the adversary could just as well have reached the same results
without the help of the prover, by �rst running the simulator. This feature has
made zero-knowledge a very powerful and useful tool for proving the security of
cryptographic protocols.

For some applications, such as signature schemes [31] [64], voting systems, non-
interactive zero-knowledge [9] [37], concurrent zero-knowledge [25], [16] etc., it how-
ever seems hard, or is even impossible, to achieve e�cient and secure schemes in the
standard model. Stronger models, such as the Common Reference String (CRS)
model [9], where a random string is accessible to the players, or the Random Or-
acle (RO) model [6], where a random function is accessible through oracle calls to
the players, were therefore introduced to handle even those applications. Recently
the CRS model has been extensively used in interactive settings to obtain secure
protocols in the framework for Universal Composability (e.g. [12] [13] [17]).

We note that an important part of the intuition behind zero-knowledge is lost in
these two models in a multi-party scenario, if the CRS string or the random oracle
may be reused. An easy way of seeing this is simply by noting that non-interactive
zero-knowledge proofs are possible in both these model. A player having received a
non-interactive proof of an assertion, it could not have proved before the interaction,
can de�nitely do something new: it can simply send the same proof to someone
else. This fact may seem a bit counter-intuitive since the intuition tells us that the
simulation paradigm should take care of this. We note, however, that the simulator
is much �stronger� in these models than in the plain model. As it is, the simulator
is allowed to choose the CRS string, or random oracle, and this fact jeopardizes the
zero-knowledge intuition. In fact, one could say that the zero-knowledge de�nition
in these models only guarantees that the veri�er does not learn anything, provided
that he was able to choose the CRS or random oracle. Since the veri�er clearly
does not have the position to do so (in the standard formulations of the CRS and
RO models), we conclude that the zero-knowledge property in these model only
guarantees that the veri�er will not be able to do anything that is unrelated to the
CRS or random oracle, it could not have done before.

In the non-interactive setting, this problem has lead to the de�nition of non-
malleable non-interactive zero-knowledge [62], and very recently robust non-interactive
zero-knowledge [23]. In this paper we examine the problem in the more general in-
teractive setting.

Deniable Zero-knowledge. In many applications of interactive protocols (e.g.
undeniable signatures [18], or deniable authentication [25]) it is essential that the
transcript of the interaction does not yield any evidence of the interaction. We
say that such protocols are deniable. We use the standard simulation paradigm to
formalize this notion:
De�nition 35 [Informal meta-de�nition] A protocol is deniable if it is zero-knowledge
and the zero-knowledge simulator can be run by the veri�er.1

1Strictly speaking, the simulator is an algorithm and can therefore always be run by the

4.1. INTRODUCTION 71

The standard de�nition of zero-knowledge in the plain model certainly satis�es
deniability, however this is no longer the case with the de�nitions of zero-knowledge
in the CRS/RO models. This stems from the fact that in the real world the shared
object in the model, i.e., the CRS string or the random oracle, is �xed once and
for all at start-up. When proving security, however, the simulator in these models
is allowed to choose (or program) this shared object in anyway it pleases as long
as it �looks� ok. Thus, even though there exists a simulator for a protocol, there
is no guarantee that a player can actually simulate a transcript using a certain
prede�ned shared object. Non-interactive proofs of a statement x are trivially
proofs of an interaction with a party that can prove the assertion of the statement
x, or else the soundness condition of the proof would be broken.

Indeed, the idea behind the simulation paradigm, and the reason for its widespread
applicability, is that a veri�er should be able to run the simulator by himself instead
of interacting with a prover. The standard de�nitions of zero-knowledge in the CRS
and RO models have not retained this spirit (since the simulator in these model is
allowed to choose the shared object, which evidently the veri�er is not allowed to
do), but only syntactically mimic the original zero-knowledge de�nition.

In the following we give formal de�nitions of deniable zero-knowledge in the CRS
(see section 4.2) and RO (see section 4.3) models and investigate the possibility of
achieving protocols satisfying the de�nitions.

When Does Deniability Matter. For some applications zero-knowledge and
deniability is the goal (e.g. deniable authentication [25]). For these applications
the standard de�nitions of zero-knowledge in the CRS/RO models clearly are not
su�cient, since they do not guarantee deniability.2

The issue of deniability also arises when a zero-knowledge protocol is used as
a sub-protocol in a larger context where the CRS string or random oracle may
be reused. In such a scenario it is no longer clear what security properties are
guaranteed by the standard de�nitions of zero-knowledge in the CRS/RO models.
More technically, general protocol composition becomes problematic since the sim-
ulator cannot be run when a speci�c CRS string or random oracle already has been
selected.

Nevertheless, we mention that when �plugging-in� zero-knowledge protocols in
the CRS/RO models into certain speci�c protocols, the standard de�nitions (that
do not guarantee deniability) can in some cases be su�cient. For example in the
construction of encryption schemes secure against chosen-ciphertext attacks [53],
zero-knowledge protocols that do not satisfy deniability have been successfully used
as sub-protocols.3 (Looking ahead, the notion �unreplayability� introduced in sec-
veri�er. What we mean here is that the output of the veri�er when running this simulator
algorithm should be �correctly� distributed.

2We mention that it was pointed out in an early version of [24] that a the concurrent zero-
knowledge protocol in the CRS model of [21] is not su�cient for the task of deniable authentication.

3We mention that in the more complicated case of encryption schemes secure against adaptive
chosen-cipher text attacks, the standard de�nition of zero-knowledge in the CRS model is not

72 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

tion 4.1.1 is another example where zero-knowledge de�nitions that do not satisfy
deniability can be su�cient).

Implications on the Framework for Universal Composability. Recently,
Canetti introduced a new framework for the construction of cryptographic proto-
cols, called the framework for Universal Composability (UC) [12]. The framework
for UC suggest the following paradigm for the design of cryptographic protocols.

1. Design an �idealized� functionality, F .
2. Construct a protocol Π and prove that it implements the idealized function-

ality F .
3. Design more complicated protocol using calls to idealized functionalities F1,F2,
4. Finally substitute calls to the idealized functionalities F1,F2, ..., with proto-

cols Π1,Π2, ... that implement them and rely on a general composition theorem
to show that the resulting protocol is as secure as the protocol which relied
on the idealized functionalities.

In short, the UC framework allows for a modular design of cryptographic protocols,
which facilitates the design of secure solutions for more complicated application,
e.g. [13] [17]. Furthermore, protocols proven secure in the UC framework enjoy
the property of remaining secure even when concurrently executed with any other,
arbitrary, protocol.

The �ideal� zero-knowledge functionality was �rst de�ned in [12] and has later
been used in several subsequent works. Due to the impossibility of implementing
the ideal zero-knowledge functionality in the plain model [12], the functionality was
implemented in the CRS model [13, 23]. We note that the implementation of [23]
is non-interactive, i.e., only a single message is send. Their protocol is, thus, not
deniable and therefore constitutes an evidence that in the framework for UC, the
ideal zero-knowledge functionality does not capture the concerns for deniability.

The example given shows the non-triviality of the task of de�ning ideal function-
alities in the UC framework. At a �rst glance it seemed like the de�nition given of
the ideal zero-knowledge functionality would satisfy deniability. Closer inspection
of the framework shows, however, that the concern for transferability/deniability is
not taken into account in the framework for UC when introducing shared objects,
such as the CRS string. This can be seen as follows: The UC framework only
guarantees security if a CRS string is not reused. A transferability/deniability at-
tack, however, relies on the fact that an honest-party reuses a CRS that has been
used in a di�erent execution. In other words, such attacks are not ruled-out by the
composition theorem of [12], since they involve honest-parties deviating from their
prescribed protocols by reusing a CRS string.
su�cient, but needs to be strengthened to guarantee simulation-soundness. [62]

4.1. INTRODUCTION 73

4.1.1 Results Concerning the CRS Model
There could have been hope that the CRS model might be used to implement
deniable ZK protocols in settings where the plain model is not su�cient. We show
that in natural settings, where the usage of the CRS model seems meaningful, the
demand for deniability makes the CRS model collapse down to the plain model:
• We show that known black-box impossibility result concerning ZK in the
plain model also hold in the CRS model, with respect to deniable ZK. That
is, we show the impossibility of non-trivial black-box deniable ZK arguments
in the CRS model with either of the following extra requirements:
� straight-line simulatability (i.e., non-rewinding simulatability)
� non-interactive
� constant-round concurrent ZK
� three-round
� constant-round strict polynomial-time simulatable
� constant-round public-coin

Achieving a Weaker Form of Deniability. Although our results rule out the
possibility of �interesting� deniable ZK protocols in many natural settings, we show
that a limited form of deniability can be achieved in the CRS model by restricting
the communication to a certain class of pre-speci�ed protocols where the CRS string
may be reused. Very loosely speaking, we say that a class of protocols is closed
under unreplayability if an adversary cannot prove anything using a protocol in the
class, after having interacted with a prover using a protocol in the class, that it
could not have done before interacting with the prover. We show that a natural
class of protocols is closed under unreplayability in the CRS model : If C is a class of
interactive proofs (or arguments) of knowledge that are zero-knowledge in the CRS
model, then C is closed under unreplayability. This result shows that restricting
the communication to only zero-knowledge arguments of knowledge eliminates the
concern for deniability in the CRS model.

4.1.2 Results Concerning the RO Model
While the results in the CRS model were mostly negative in nature, the situation
in the RO model is rather di�erent. Indeed we are able to construct �interesting�
deniable ZK protocols.

More precisely, we show that 2 rounds are necessary and su�cient to construct
deniable ZK arguments for NP in the RO model. In fact, we construct an e�cient
2-round deniable ZK argument for NP in the RO model that is both straight-line
simulatable and witness extractable. This implies that both simulation of polyno-
mially many concurrent executions (concurrent zero-knowledge) and simultaneous

74 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

extraction of polynomially many witnesses under concurrent executions (concur-
rent proof of knowledge) can be performed. As far as we know it was previously
unknown how to simultaneously extract witnesses from polynomially many proofs
in the RO model (let alone the question of deniability).

4.1.3 Other Models

We mention brie�y that there are other models that are stronger than the plain
model, such as the timing model of [25], or the on-line/o�-line model of [54], that
do not su�er from problems with deniability. We also note that in a public-key
model, methods similar to those of designated veri�ers [44] can be used to success-
fully implement non-trivial ZK protocols that are deniable. Indeed, the method
of designated veri�er shows how to convert ZK protocols that are not deniable
into ZK protocols in a stronger model (namely the public-key model) that satisfy
deniability.

4.1.4 Technical Contribution

Although this chapter is mostly conceptual in nature, we believe that some of the
techniques used in the proofs might be of independent interest.

Straight-line Extractable Commitments We de�ne and construct straight-
line extractable commitment schemes in the RO model. Such commitment schemes
have the property that the value committed to can be extracted in polynomial time
if given access to a list of all the queries to the random oracle made by the committer.
We present very e�cient (practical) constructions of both statistically binding and
statistically hiding non-interactive straight-line extractable commitments in the RO
model.

Straight-line Witness Extractable Proofs Using straight-line extractable com-
mitments we construct e�cient non-interactive ZK arguments in the RO model
which have the property that a witness to the statement proved can be extracted
in polynomial time if given access to a list of all the queries made to the random
oracle by the prover. We say that such a proof is straight-line witness extractable.

We mention that the straight-line extraction feature implies two strong proper-
ties that were (as far as we know) previously unattained in the RO model:
• Simultaneous extraction of polynomially many witnesses. Previous
methods to extract witnesses in the RO model [64] relied on rewinding and
could therefore not be used to extract witnesses under concurrent executions.
• Tight security reductions for non-interactive proofs of knowledge.
Standard extraction techniques for non-interactive proofs of knowledge in the

4.1. INTRODUCTION 75

RO model [64] result in �loose� security reductions (see [39] for a discussion).4
Using straight-line extraction, on the other hand, we obtain proofs of knowl-
edges with a linear (and thus optimal) security reduction.

4.1.5 Related Work
Criticism of the RO Model Since truly random functions which short descrip-
tions do not exist, Bellare and Rogaway suggest, as a heuristic step, to instantiate
the RO, in schemes proven secure in the RO model, with a hashfunction [6]. In
recent years, this heuristic step has meet serious criticism. In particular it has been
shown that there exists encryption schemes that are provably secure in the RO
model, yet are insecure for every instantiation of the RO with hashfunction [15].
Other examples of such separation results include [40, 51]

Although all these �counter-examples� are quite arti�cial, they indicate that
security proofs for �natural� protocols in the RO model can not �easily� be turned
into proofs in the standard model (without a RO). We do not take a stand in the
on-going debate (see for example [45]) on whether the RO model could/should be
used as a heuristic in order to obtain practical protocol. We merely point out
that, even if we believe that the RO heuristic works for some class of �natural�
protocols the security guarantees obtained from proofs in the random oracle model
are weaker than those guaranteed by the security de�nitions in the standard model.
In particular, commonly used protocols in the RO model are not deniable. (Our
work shows that there, on the other hand, do exist protocols in the RO model that
are deniable.)

The Non-programmable RO Model In a recent work (done independently
of ours), Nielsen shows the existence of an e�cient scheme for the task of non-
committing encryption in the RO, while such schemes do not exist if the simulator
is not allowed to program, or choose, the RO [51]. We note that the de�nition of
the non-programmable RO model of Nielsen bears resemblance to our de�nition of
deniable ZK in the RO model. However, whereas Nielsen simply introduces this
model an an intermediary step in order to show a separation between the RO model
and the standard model, we provide a strong justi�cation for why it is interesting
to investigate schemes that are proven secure without programming the RO.

4.1.6 Overview
In Section 4.2 we present our results concerning the possibility of deniable ZK
protocols in the CRS model. Section 4.3 contains our results on the RO model.
Finally, in Section 4.4 we de�ne the notion of unreplayability, discuss the possibility
of achieving it and compare it to the notion of deniability.

4Roughly, in order to break the underlying assumption the �cheating prover� has to be run
O(q) times, where q is the running time of the cheating prover, thus resulting in a total running
time of O(q2).

76 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

4.2 On Deniable Zero-Knowledge Proofs in the CRS Model

In this section we investigate the possibility of obtaining deniable ZK protocols
in the CRS model. We start by formally de�ning the notion of deniable ZK in
the CRS model. Recall that in order to obtain a deniable zero-knowledge protocol
we require that a real-world veri�er should be able to perform a simulation which
produces a transcript that is indistinguishable from the real transcript, even if the
distinguisher gets access to the actual Common Reference String. More formally,
De�nition 36 We say that an interactive proof (P, V) for the language L ∈ NP,
with the witness relation RL, is deniable zero-knowledge in the CRS model if there for
every PPT machine V ∗ exists a probabilistic expected polynomial time simulator S
such that the following two ensembles are computationally indistinguishable (when
the distinguishing gap is a function in |x|)

• {(r, 〈P (yx), V ∗(z)〉(x, r))}z∈{0,1}∗,x∈L for arbitrary yx ∈ RL(x)

• {(r, S(x, z, r)}z∈{0,1}∗,x∈L

where r is a random variable uniformly distributed in {0, 1}poly(|x|).
That is, for every probabilistic algorithm D running in time polynomial in the length
of its �rst input, every polynomial p, all su�ciently long x ∈ L, all yx ∈ RL(x) and
all auxiliary inputs z, z′ ∈ {0, 1}∗ it holds that

|Pr[D(x, z′, r, 〈P (yx), V ∗(z)〉(x, r))) = 1]

−Pr[D(x, z′, r, S(x, z, r)) = 1]| < 1
p(|x|)

where r is a random variable uniformly distributed in {0, 1}poly(|x|).

Remark 15 We note that, in analogy with the standard de�nition of ZK in the
CRS model, De�nition 36, is not necessarily closed under sequential composition.

Note that the di�erence between the standard ZK de�nition (see De�nition 23)
and De�nition 36 is that whereas in the standard de�nition of ZK in the CRS model
the simulator is allowed to choose (or program) the CRS string, the de�nition of
deniable ZK requires the simulator to succeed for almost every randomly generated
CRS string, without obtaining any trapdoor information about the string.

Black-box deniable zero-knowledge We also provide black-box de�nition, i.e.,
a de�nition which requires the existence of a simulator that uses the veri�er as a
black-box.
De�nition 37 We say that an interactive proof (P, V) for the language L ∈ NP,
with the witness relation RL, is black-box deniable zero-knowledge in the CRS model

4.2. ON DENIABLE ZERO-KNOWLEDGE PROOFS IN THE CRS MODEL 77

if there for every polynomial p(n) exists a probabilistic expected polynomial time
oracle machine S such that for every probabilistic polynomial-time interactive ma-
chine V ∗ that uses at most p(n) random coins, the following two ensembles are
computationally indistinguishable (when the distinguishing gap is a function in |x|)

• {(r, 〈P (yx), V ∗(z)〉(x, r))}z∈{0,1}∗,x∈L for arbitrary yx ∈ RL(x)

• {(r, SV ∗(x, z, r)}z∈{0,1}∗,x∈L

where r is a random variable uniformly distributed in {0, 1}poly(|x|).

4.2.1 On the Impossibility of �Non-trivial� Deniable ZK
Protocols

We show that known black-box impossibility result concerning ZK in the plain
model also hold in the CRS model with respect to deniable ZK. That is we show
that for known settings where it seems interesting to resort to the CRS model the
demand for deniability makes the CRS model collapse down to the plain model.

We start by showing the impossibility of deniable ZK proofs that are proven
secure using black-box technique without the use of rewinding.
Theorem 9 Assume there exists a straight-line (i.e., non-rewinding) black-box
simulatable deniable zero-knowledge proof (or argument) for the language L in the
CRS model. Then L ∈ BPP.

Proof Assume that there exist a straight-line black-box simulator S for the honest
veri�er of Π running in expected time p(n). Let S′ be a machine that runs S
for 10p(n) steps and the aborts if S has not output anything. It follows, by the
Markov's inequality, that S aborts with probability less than 1/10. Now, consider
the machine D that on input x uniformly chooses a CRS string r and thereafter
runs S′(x, r) against the honest veri�er V ∗ (on input x and r). We show that D
decides the language L:
• if x ∈ L, unless S′ aborts, the simulator's output is indistinguishable from
an interaction between the honest prover and the honest veri�er. D there-
fore outputs 1 with high probability. (by the union bound the probability
can be bounded from below by at most negligible probability less than the
completeness bound of Π −1/10).

• if x /∈ L then, by the soundness of the interactive proof S′ will only succeed
in convincing the honest veri�er with small probability.

Thus L is in BPP
We note that Theorem 9 has important implications for the framework for Universal
Composability. More speci�cally, since UC protocols require straight-line black-box
simulation [12], Theorem 9 rules out the possibility of constructing deniable UC ZK
protocols in the CRS model.

78 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

As a sanity check to the de�nition we also note the impossibility of non-interactive
ZK arguments for non-trivial languages,

Theorem 10 Assume there exists a non-interactive deniable zero-knowledge argu-
ment for the language L in the CRS model. Then L ∈ BPP.

Proof Follows directly from Theorem 9 since non-interactive arguments need to
be black-box straight-line simulatable.
Indeed, non-interactive proofs in the CRS model are the most obvious violation of
deniability, since they can be passed on.

Goldreich-Krawczyk Reductions

In 1990, Goldreich and Krawczyk [35] presented the �rst black-box lower bounds for
zero-knowledge proofs. More precisely, they show that non-trivial languages (i.e.,
languages L such that L /∈ BPP) cannot have black-box ZK arguments that either
have less than four communication rounds, or are constant-round and public-coin.

The method of Goldreich-Krawczyk has later been used to show black-box im-
possibility results for constant-round concurrent ZK [16] and for constant-round
zero-knowledge arguments that are simulatable in strict polynomial-time (as op-
posed to expected polynomial-time) [4].

On a high-level, the Goldreich-Krawczyk method is a constructive reduction
from a probabilistic polynomial-time machine deciding the language L to a simula-
tor of the zero-knowledge argument. That is, the existence of a simulator implies the
existence of a probabilistic polynomial-time machine deciding the language, which
in turn implies that the language is in BPP. Since the reduction is black-box and
constructive, the same reduction can be used for protocols that are deniable zero-
knowledge in the CRS model. We construct a machine deciding the language, by
simply �rst choosing a random string and thereafter running the deciding machine
obtained in the Goldreich-Krawczyk reduction, feeding it the random string as a
CRS string. Careful examination of the proofs of [35], [16], and [4] thus gives:

Theorem 11 Let Π be a interactive argument for the language L in the CRS model.
If one of the following conditions are ful�lled, then L ∈ BPP.

• Π is constant-round black-box concurrent deniable ZK

• Π is constant-round public-coin black-box deniable ZK

• Π is 3-round black-box deniable ZK

• Π is black-box deniable ZK with a strict polynomial-time simulator.

4.3. ON DENIABLE ZERO-KNOWLEDGE PROOFS IN THE RO MODEL 79

4.2.2 Conclusions and Directions for Future Research

We have shown that for currently known settings, the CRS model cannot be used to
implement deniable black-box zero-knowledge protocols for languages in NP, that
cannot already be implemented in the plain model. Looking ahead, in section 4.1.1
we, nevertheless, show that a limited form of deniability (called unreplayability) can
be achieved by restricting the communication of honest-parties to a certain class of
protocols.

Concerning the framework for Universal Composability [12], we have shown that
the ideal ZK functionality (de�ned in [12] and [13]) does not capture the concerns
for deniability. Our results furthermore rule out the possibility of constructing UC
ZK protocols which are deniable (i.e., have property that when implemented with
a real CRS, the UC simulator actually can be executed by the veri�er).

We note, on the other hand, that if instead resorting to a public-key model,
methods similar to those of designated veri�er [44] could possibly be used to achieve
universally composable deniable zero-knowledge.

Open Problems

An interesting open problem is to �nd a type of deniable zero-knowledge protocol
that can be achieved in the CRS but not in the plain model. Since most of our
results only apply in the black-box setting, a direction would be to investigate the
non-black-box setting.

4.3 On Deniable Zero-knowledge Proofs in the RO Model

As in the CRS model, in order to obtain deniable ZK proofs and arguments in
the RO model, we resort to a weaker simulation model, where the simulator should
produce a distribution which is indistinguishable from a real execution, even when
the distinguisher gets access to the actual random oracle. More formally,

De�nition 38 We say that an interactive proof (P, V) for the language L ∈ NP,
with witness relation RL, is deniable zero-knowledge in the RO model if for every
PPT veri�er V ∗ there exists an expected polynomial time probabilistic simulator S
such that the following two ensembles are computationally indistinguishable (when
the distinguishing gap is a function in |x|):

• {(RO, 〈PRO(yx), V ∗RO(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary yx ∈ RL(x)

• {RO,SRO(z, x))}z∈{0,1}∗,x∈L

where RO : {0, 1}poly(|x|) → {0, 1}poly(|x|) is a uniformly distributed random vari-
able.
That is, for every probabilistic algorithm D running in time polynomial in the length

80 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

of its �rst input, every polynomial p, all su�ciently long x ∈ L, all yx ∈ RL(x) and
all auxiliary inputs z, z′ ∈ {0, 1}∗ it holds that

|Pr[DRO(x, z′, 〈PRO(yx), V ∗RO(z)〉(x))) = 1]

−Pr[DRO(x, z′, SRO(x, z)) = 1]| < 1
p(|x|)

where RO : {0, 1}poly(|x|) → {0, 1}poly(|x|) is a uniformly distributed random vari-
able.

Note that according to the standard ZK de�nition in the RO model (see De�-
nition 24), the ZK simulator has two advantages over a plain model ZK simulator.
Namely,
• The simulator can see what values parties query the oracle on.
• The simulator can answer these queries in whatever way it chooses, as long
as the answers �look� random.

The de�nition of deniable ZK in the RO model restricts the power of the simulator
and only allows it to see on what values the parties query the oracle (thus out
of the two advantages only the �rst remains). This is due to the fact that in the
de�nition of deniable ZK in the RO model the distinguisher is given access to the
random oracle and can thus verify if the simulator has answered the oracle queries
in accordance to the pre-speci�ed oracle. We, however, use this �rst advantage in a
novel fashion, and show that it alone is an extremely powerful. More speci�cally, we
employ the random oracle to construct commitment schemes where the simulator,
gaining access to all oracle calls, will be able to extract the committed values,
without rewinding the committer.

Lower bounds As a sanity check to the de�nition we start by showing the im-
possibility of non-interactive deniable ZK arguments for non-trivial languages.
Theorem 12 Assume there exists a one-round deniable zero-knowledge argument
for the language L ∈ NP in the RO model. Then, L ∈ BPP.

Proof Let RL be a witness relation for the language L ∈ NP. Suppose that there
exists a one-round deniable zero-knowledge argument for L in the RO model. Then
there exists a simulator S for the honest veri�er such that for large enough x the
following ensembles are indistinguishable by a distinguisher having access to RO:
• {PRO(x, yx)}x∈L for arbitrary yx ∈ RL(x)

• {SRO(x)}x∈L

4.3. ON DENIABLE ZERO-KNOWLEDGE PROOFS IN THE RO MODEL 81

where RO is a random variable uniformly distributed in {0, 1}poly(|x|) → {0, 1}poly(|x|).

Using the same argument as in the proof of Theorem 9, it follows the language
L can be decided by S with the same soundness bound as that of Π's and with a
completeness bound that is only negligibly di�erent. It remains to show that S,
which is an expected polynomial time machine can be turned into a strict poly-
nomial time machine that decides the language. This follows using a standard
argument by applying Markov's inequality and the union bound, which concludes
so L ∈ BPP.

Upper bounds On the positive side we show that 2 rounds are necessary to
construct e�cient and �robust� deniable ZK protocols for NP. In fact we con-
struct a protocol that is both concurrent zero-knowledge and concurrent proof of
knowledge. We furthermore show that the protocol can be constructed through
an e�cient transformation from any special-sound honest-veri�er zero-knowledge
(HVZK) public-coin proof. We start by brie�y outlining the construction, and
thereafter proceed to a more formal treatment.

Outline of the Construction of 2-round Deniable ZK Arguments

On a very high level the protocol follows the paradigm of Feige-Shamir [30]. The
veri�er start by sending a �challenge� and a WH argument of knowledge of the
answer to the challenge, to the prover. The prover thereafter shows using a WI
argument of knowledge that either it possesses a witness for the statement it wishes
to prove or that it possesses the answer to the challenge.

The di�culty in constructing such a protocol lies in the fact that each of these
two steps must be implemented in a single message.5 We outline the construction
of these proof systems below.

Extractable Commitments Our main technical ingredient is the notion of
straight-line extractable commitments in the RO model (see section 4.3.1). On a
high level, these are commitments where the value committed to can be extracted
in polynomial-time without the use of rewinding techniques. We construct such
commitment schemes by letting the committer use the random oracle to commit.
It follows from the random properties of the oracle that the committer, in order to
succeed in opening a commitment, must have applied the oracle on it. This means
that by simply observing all the random oracle queries made by committer, the
committed values can be extracted without rewinding the committer.

5It is actually su�cient that the �rst step is implemented using a single message. The second
step could conceivable be implemented using 2 rounds (see [54]). Nevertheless, our construction
implements both steps using one-round solutions.

82 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

One-round witness extractable proofs Having established the powerful tool
of straight-line extractable commitments, in section 4.3.2 we construct a one-round
straight-line witness extractable ZK argument for NP in the RO model. Straight-
line witness extraction means that a witness to the statement proved can be ex-
tracted without rewinding the prover. On a high-level, we do this by implementing
the commitment scheme in the GMW protocol [36] with a straight-line extractable
commitment scheme and thereafter applying the Fiat-Shamir transformation [31]
[6] to �collapse� down the GMW protocol to a one-round (i.e., non-interactive)
zero-knowledge argument in the RO model (see Lemma 5).

Finally, Lemma 1 and Lemma 2 can be applied to show that the one-round ZK
protocol obtained is both WH and WI in the RO model.

In order to obtain an e�cient protocol, in Lemma 10, we show how to transform
any special-sound HVZK public-coin proof (so called Σ-protocols) into a one-round,
WH and WI, straight-line witness extractable argument in the RO model. Essen-
tially, this is done by �rst transforming the Σ-proof into a cut-and-choose proof, and
thereafter applying the same transformation as was done for the GMW protocol.

Putting it all together In section 4.3.3 we �nally put everything together to
obtain the 2-round deniable ZK argument for NP (see Theorem 13). In order
to obtain an e�cient protocol, we here rely on the OR transformation of [19] to
implement the second message of the protocol.

We mention that some technical problems related to the malleability [24] of the
commitments arise in the security proof. Nevertheless, since we have access to a
random oracle these problems can be resolved in a rather straightforward manner.

4.3.1 Straight-line Extractable Commitments
We construct e�cient commitment schemes with strong properties, which are proven
secure without allowing the simulator to �choose� (or program) the random oracle.
We start by de�ning the notion of straight-line extractable commitments schemes
in the RO model. For simplicity we only state the de�nition for non-interactive
commitment schemes.
De�nition 39 Let a (C,R) be a non-interactive commitment scheme for strings
of length n. We say that (C,R) is straight-line extractable in the RO model if there
exists a polynomial time (deterministic) extractor machine E such that for every
PPT malicious committer C∗ and every auxiliary input z to C∗, the following holds:

• Let c denote the output of C∗RO(z) during the commit phase, and let l be a
list of all the random oracle queries performed by C∗(z) during and before the
commit phase, including their answers.

• If C∗RO(z) succeeds in decommitting to x with non-negligible probability dur-
ing the reveal phase, then E(c, l) = x with overwhelming probability (over the
choice of RO).

4.3. ON DENIABLE ZERO-KNOWLEDGE PROOFS IN THE RO MODEL 83

Remark 16 Note that the extractor E is not given access to the random oracle,
but instead receives both a list of the queries to the random oracle, as well as the
answers to those queries.

When having access to a random oracle it is easy to construct e�cient commit-
ment schemes that are straight-line extractable. Let l be a super-logarithmic poly-
nomially bounded function, i.e., ω(log(n)) ≤ l(n) ≤ poly(n), and RO : {0, 1}2n →
{0, 1}l(n) be a random oracle. Consider the following commitment scheme:

Protocol Com - A Non-interactive Extractable Commitment
Scheme

Commit Phase:

• To commit to value v ∈ {0, 1}n, the sender uniformly selects
s ∈ {0, 1}n and sends the value c = RO(v, s).

Reveal Phase:

• The sender reveals v and s.
• The receiver accepts if c = RO(v, s) where c is the receiver's view
of the commit phase.

Lemma 7 SLCom is a straight-line extractable non-interactive commitment scheme
in the RO model.

Proof

Computational Hiding The computational hiding property follows from the
random properties of the the random oracle. Note that an adversary will only be
able to distinguish commitments to two values if he is able to query the random
oracle on a value that maps to the commitment. However, an adversary using T (n)
oracle queries only has a probability of (at most) T (n)

2l(n) of �nding such a value. We
conclude that a polynomially bounded adversary only has a negligible probability
of distinguishing between two commitment.

Computational Binding In order to break the computational binding property
of the commitment scheme an adversary needs to �nd a collision in the RO. An
adversary using T (n) oracle queries will fail in doing so with the following proba-

84 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

bility:

(1− 1
2l(n) − 1

)(1− 1
2l(n) − 2

)..(1− 1
2l(n) − (T (n)− 1)

) >

(1− 1
2l(n) − T (n)

)T (n) ≈ 1− T (n)
2l(n) − T (n)

> 1− 2−l(n)/2

which is negligible if T (n) is a polynomial.

Straight-line Extraction Upon receiving the value c and the list l the extractor
E proceeds as follows. E goes through the list l = {(xi, ri), ci}i=1..poly(n) and checks
if there is an index i such that ci = c. If so it returns xi, and otherwise nothing. We
show that if there exist a committer C∗ that succeeds in revealing to a value x with
non-negligible probability, then except with negligible probability, he must have
applied the RO to the value x during the commit phase. In fact, a cheating that
has not applied the RO random oracle on the value committed to, has a probability
of at most T (n)

2l(n) , where T (n) is the number of oracle calls during the decommit
phase, of decommitting.

We note that SLCom can be used either as a statistically binding or a statisti-
cally hiding commitment scheme, depending on the parameter l.

Lemma 8 If l(n) = 4n then SLCom is a statistically binding non-interactive com-
mitment scheme in the RO model.

Proof The probability that all the 22n di�erent random oracle queries yield di�er-
ent answers is:

(1− 1
24n − 1

)(1− 1
24n − 2

)..(1− 1
24n − (22n − 1)

) >

(1− 1
24n − 22n

)2
2n

≈ 1− 22n

24n − 22n
> 1− 2−n

Thus, except with negligible probability (over the choice of RO) the commitment
scheme is perfectly binding.

Lemma 9 If l(n) = n/8 then SLCom is a statistically hiding non-interactive com-
mitment scheme in the RO model.

Proof We want to show that if r0, r1 are random variables uniformly distributed
in {0, 1}n, then for all x1, x2 ∈ {0, 1}n, ∆(x1, x2) =

1
2

∑
c∈{0,1}n/8

|Pr[r ∈R {0, 1}n, RO(x1, r) = c]− Pr[r ∈R {0, 1}n, RO(x2, r) = c]|

4.3. ON DENIABLE ZERO-KNOWLEDGE PROOFS IN THE RO MODEL 85

is negligible with overwhelming probability (over the choice of RO). Consider the
random variable Xx

c = Pr[r ∈R {0, 1}n, RO(x, r) = c]. (It is a random variable
since RO is a random variable). We start by computing the variant of Xx

c : Let Xx
c,r

denote the random variable such that Xx
c,r = 1, if RO(x, r) = c, and 0 otherwise.

Then Xx
c = 1

2n

∑
r Xx

c,r. Thus

V (Xx
c) = (

1
2n

)2V (
∑

r

Xx
c,r) =

1
22n

∑
i

V (Xx
c,r)

since Xx
c,r are independent for di�erent r. Now

V (Xx
c,r) = E((Xx

c,r)
2)− E(Xx

c,r)
2 = E(Xx

c,r)− E(Xx
c,r)

2 = 2−n/8 − 2−n/4

which gives that
V (Xx

c) = 2−n(2−n/8 − 2−n/4) < 2−9n/8

We can now apply Chebyshev's Inequality, yielding
Pr(|Xx

c − E(Xx
c)| > 2−n/4) < 2n/2V (Xx

c) < 2−5n/8

Now the probability that for none of the c ∈ {0, 1}n/8, |Xx
c − E(Xx

c)| > 2−n/4 is

(1− 2−5n/8)2
n/8
≈ 1− 2−n/2

Thus with overwhelming probability, since none of the terms in the sum for ∆(x1, x2)
will be greater than 2−n/4,

∆(x1, x2) < 2n/82−n/4 = 2−n/8

which concludes the proposition.

Extractable Commitments with Oracle Restricted to a Pre�x.
In the sequel we will construct a 2-party protocol where both parties use a com-
mitment schemes. A problem that often arises in such scenarios is that one of
the parties might be able to construct a commitment to a value that depends on
the value committed to by the other party. When this is the case, we say that a
party is able to maul a commitment that he is receiving. Commitment schemes
for which this kind of attack is not possible are called non-malleable [24]. In order
to obtain multiple commitments that are non-malleable with respect to each other
we generalize the notion of straight-line extractability. We say that a commitment
scheme in the RO model is straight-line extractable with oracle restricted to the
pre�x s if the commitment scheme is straight-line extractable and there exists an
extractor that succeeds in extracting witnesses using only oracle queries that begin
with the pre�x s. We will in the following let di�erent parties use di�erent pre�xes

86 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

allowing for individual extraction of the committed values, and thus assuring the
non-malleability of the commitments.

We note that SLCom can be changed in a straight-forward manner to become
straight-line extractable with oracle restricted to the pre�x s, by simply concate-
nating the string s to the oracle queries, i.e., RO(s, x, r) becomes a commitment to
the string x, where RO : {0, 1}2n+|s| → {0, 1}l(n).

4.3.2 Straight-line Witness Extractable Proofs

All previously known proofs of knowledge in the RO model (e.g. [64]) relied on
rewinding and could therefore not be applied to simultaneously extract polynomi-
ally many witnesses. We introduce a stronger notion of proofs of knowledge in the
RO model, namely proofs where witnesses can be extracted without rewinding the
prover. More formally,

De�nition 40 We say that an interactive proof (P, V) for the language L ∈ NP,
with the witness relation RL, is straight-line witness extractable in the RO model if
there exists a PPT witness extractor machine E such that for every PPT machine
P ∗, every x ∈ L and every auxiliary input y ∈ {0, 1}poly(|x|), the following holds:
Let view denote the view of V in the interaction (P ∗RO(x, y), V (x)), and let l be
a list of all oracle queries posed by P ∗RO(x, y) and V (x), including the answers to
the queries. Then, except with non-negligible probability (over the random coins of
P, V and RO), it holds that if 〈P ∗(x, y), V (x)〉 = 1 then E(view, l) ∈ RL(x)

We show two constructions to achieve e�cient straight-line witness extractable
arguments in the RO model. First, we show how the GMW [36] protocol for
proving the existence of a 3 coloring to a graph directly can be turned into a
straight-line witness extractable, WH and WI, one-round argument in the RO
model, by applying the Fiat-Shamir transformation [31] to �collapse� it down to
one round, and using straight-line extractable commitments. Secondly, we show
how to transform any three-round special-sound HVZK public-coin proof into a
straight-line witness extractable, WH and WI, one-round argument. The second
construction is of interest as it allows us to construct e�cient protocols without
going through Cook's transformation.

An Argument System for Graph-3-Coloring.

We recall the three-round zero-knowledge protocol of GMW (Goldreich, Micali,
Wigderson) [36]:

4.3. ON DENIABLE ZERO-KNOWLEDGE PROOFS IN THE RO MODEL 87

Protocol Π (GMW's Graph 3-coloring proof)

Common Input: a directed graph G = (VG, EG), with n = |VG|

Auxiliary input to the prover: a 3-coloring of G, c0, c1, .., cn ∈ {1, 2, 3}.

P uniformly chooses a permutation π over 1,2,3.
P → V: Commits to π(c0), π(c1), .., π(cn) using any statistically binding

commitment scheme.
V → P: Uniformly selects an edge (i, j) ∈ E.
P → V: Reveals ci, cj . V checks that ci and cj are di�erent colors.

As is shown in [6], the protocol can be �collapsed� down to a one-round ZK
argument, Π′, in the RO model by running t = 2n ∗ |EG| parallel versions of the
protocol and applying the RO to all the t �rst messages, to �simulate� the honest
veri�er. This transformation is called the Fiat-Shamir transformation [31].

Protocol Π′ - �Collapsing� Π into a one-round protocol

P → V: a′ = a′1, a
′
2, .., a

′
t, c′ = c′1, c

′
2, .., c

′
t.

V checks that for all 1 ≤ i ≤ t, (a′i, RO(a′)i, c
′
i) is an accepting execution

of the protocol Π, where RO(a′)i signi�es the i'th part of the random
oracle's reply, such that each part has the appropriate size of the
veri�ers challenge in protocol Π.

Since Π′ is zero-knowledge in the RO model it follows, by Lemma 1 and 2,
that Π′ is also WH and WI. Now, if the commitment scheme chosen has the
property of being straight-line extractable, the resulting protocol is straight-line
witness extractable.
Proposition 5 If the protocol Π′ is instantiated with a straight-line extractable
commitment scheme, then the resulting protocol is straight-line witness extractable,
WH and WI in the RO model.

Proof It only remains to show that Π′ is straight-line witness extractable. Let E
be the straight-line extractor to the commitments scheme used. We construct an
extractor E′ for the protocol Π′. E′ proceeds as follows, on input a view v and a
list l of oracle queries.

88 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

• E′ uses E to extract all the values committed to in the view v (i.e., all the
graph colorings committed to by the prover). Formally, for each commitment
in the view v, E′ feeds the view of the commitment as well as the list l to E.
If E fails in extracting a value, E′ uses the color �1� for that vertex.

• If the honest veri�er V would reject the view v, E′ halts, outputting nothing.
Otherwise, E returns the �rst correct graph coloring that it �nds. If none are
found it outputs fail.

We show that E′ is a valid straight-line extractor for the protocol Π′. Assume,
for contradiction, that there exists a polynomial p(n) such that for in�nitely many
n there exists values x ∈ {0, 1}n ∩ L and y ∈ {0, 1}poly(n) for which

Pr[(P ∗RO(x, y), V RO(x)) = 1 ∧ E(view, l) /∈ RL(x)] > p(n)

where view denotes the view of V in the interaction (P ∗RO(x, y), V RO(x)), and l is
a list of all oracle queries posed by P ∗RO(x, y), including their answers.

Now, consider the malicious prover P ∗∗ that proceeds just as P ∗, except that
before outputting the proof, P ∗∗ checks if E succeeds in extracting the witness
(note that since the protocol is non-interactive E only needs P ∗∗'s oracle calls to
perform its extraction). If E succeeds in the extraction then P ∗∗ outputs ⊥ and
otherwise it outputs what P ∗ would have output. It follows that:
• Pr[E(view′, l′) ∈ RL(x)] = 0, where view′ denotes the view of V in the
interaction (P ∗∗RO(x, y), V RO(x)), and l′ is a list of all oracle queries posed
by P ∗∗RO(x, y), including their answers.

• Pr[(P ∗∗RO(x, y), V RO(x)) = 1 > p(n)

Using an argument of Goldreich and Krawczyk [34] it can be seen that there thus
exists a prover P ′∗∗RO for the �non-collapsed� protocol (i.e. a parallelized version of
the 3-round GMW protocol), such that with probability O(p(n)/T (n)), where T (n)
is a bound on the number of oracle queries posed by the prover, P ′∗∗RO succeeds in
convincing the honest veri�er, without E′ being able to extract the graph coloring.
(Roughly, P ′∗RO is constructed as follows. P ′∗RO picks a random number i between
1 and T (n), and thereafter runs P ∗∗RO. When P ∗∗RO queries the oracle the i'th
time, P ∗∗RO externally forwards the query to the outside veri�er, instead of query-
ing the random oracle. It can be seen that with probability O(1/T (n)), P ′∗∗RO

picks the �challenge� that is used in the proof output by P ∗∗RO.) This means that,
with a certain polynomial probability, P ′∗∗RO is able to convince the honest veri�er
of the 3-round protocol. Furthermore it holds that E always fails in extracting a
witness from P ′∗∗RO. Also note that it follows from the extractability property of
the commitment scheme that, except with negligible probability, P ′∗∗RO will only
be able to open up the commitments sent in the �rst round to the values extracted
by E. This means that, except with negligible probability, the probability that the

4.3. ON DENIABLE ZERO-KNOWLEDGE PROOFS IN THE RO MODEL 89

honest veri�er of the 3-round protocol accepts the proof is

(1− 1
|EG|

)2n|EG| ≈ 1
e2n

<
1

22n

for large n, which contradict the fact that P ′∗∗RO succeeds with polynomial prob-
ability.

Remark 17 We note that the above protocol has a soundness error of 2−n. If we
only care about having a negligible soundness error, it is actually enough to only
consider ω(logn) parallel repetitions of the protocol of GMW.

A Transformation from HVZK Protocols.

Suppose Π = (a, b, c) is a three round special-sound HVZK public-coin proof for the
language L ∈ NP. In order to achieve a one-round witness extractable, WH and
WI argument for L we transform the protocol Π into a cut-and-choose protocol Π′

and thereafter use the same transformation as was done in the case of the proof of
Graph-3-Coloring. Consider the following protocol:

Protocol Π′ : A cut and choose variant of Π

P → V: a, two di�erent random numbers b0, b1 ∈ B, commitments to c0,
and c1 where ci is the answer to the query bi with a as �rst message
in the protocol Π

V → P: chooses q randomly from {0, 1}

P → V: Decommits to cq

V checks that (a, bq, cq) is a consistent execution of the protocol Π.

Now, let Π′′ be the protocol obtained after applying the Fiat-Shamir transfor-
mation on Π′, i.e., running 2n versions of the protocol in parallel, and simulating
the veri�er's challenge by applying the random oracle to the �rst message:

90 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

Protocol Π′′ : A �collapsed� version of Π′

P → V: a′ = a′1, a
′
2, .., a

′
t, c′ = c′1, c

′
2, .., c

′
t

V checks that for all 1 ≤ i ≤ 2n, (a′i, RO(a′)i, c
′
i) is an accepting execution

of the protocol Π′, where RO(a′)i signi�es the i'th bit of the random
oracle's reply.

Lemma 10 If the protocol Π′′ is instantiated with a straight-line extractable com-
mitment scheme, then the resulting protocol is a straight-line witness extractable,
WH and WI argument for L in the RO model.

Proof Completeness of the protocol Π′ follows directly from the completeness of
Π. Secondly, the special soundness condition tells us that answers to two di�erent
queries b1 and b2 to the same �rst message a, yields a witness to the assertion
being proved. Therefore, the protocol Π′ has the same form as the GMW graph
3-coloring proof, in the sense that the �rst message contains a commitment to a
witness of the statement proved. The same proof as in Section 4.3.2 can thus be
used to show that Π′′ is a witness extractable, WH and WI, one-round argument
for the language L. (Since Π′ has soundness error 1/2 only 2n parallel repetitions
are su�cient to get a non-interactive proof with soundness error 2−n.)

Remark 18 1. We note that if we only care about obtaining a proof with negligi-
ble soundness error, it is enough to consider only ω(logn) parallel repetitions,
instead of 2n.

2. Note that our transformation actually turns the 3-round HVZK protocol into
a, so called, �cut-and-choose� protocol. It is an interesting open question to
�nd a transformation that does not entrain a similar overhead.

Witness Extraction by an Oracle Restricted to a Pre�x.
As with the commitments schemes, the above mentioned protocols can easily be
turned into arguments that are witness extractable by an oracle restricted to a cer-
tain pre�x, by using commitment schemes that are straight-line witness extractable
by an oracle restricted to the pre�x.

4.3.3 Deniable Concurrent Zero-knowledge Proof of Knowledge
In this section we use the witness extractable,WH andWI, one-round arguments in
a way similar to the Feige-Shamir construction [30] to construct a 2-round straight-
line simulatable deniable ZK argument of knowledge for NP in the RO model.

4.3. ON DENIABLE ZERO-KNOWLEDGE PROOFS IN THE RO MODEL 91

Since the protocol is straight-line simulatable it is also deniable concurrent zero-
knowledge:
Theorem 13 Assume the existence of one-way functions. Then, there exists a
two-round deniable concurrent zero-knowledge argument for languages in NP in
the RO model. Furthermore the argument is both straight-line witness extractable,
and straight-line simulatable.

Proof Let f : {0, 1}n → {0, 1}poly(n) be a one-way function, and let the witness
relation RL′ , where (x, y) ∈ RL′ if f(x) = y, characterize the language L′. Let
RO : {0, 1}poly(n) → {0, 1}poly(n) be a random oracle, and the language L ∈ NP.
Consider the following protocol for proving that x ∈ L:

Protocol SLZK - A Two-round Straight-line Simulatable ZK Ar-
gument

Common Input: an instance x, security parameter 1n.
V chooses a random number r ∈ {0, 1}n.
V → P: c = f(r), a one-round WH WH, straight-line witness extractable,

by oracle restricted to pre�x �0�, argument of the statement
�∃r′ s.t c = f(r′)� for the witness relation RL′ .

P → V: a one-round WI, straight-line witness extractable, by oracle re-
stricted to pre�x �1�, argument of the statement
�∃r′ s.t c = f(r′) ∨ x ∈ L� for the witness relation RL∨L′(c, x) =
{(r′, w)|r′ ∈ RL′(c) ∨ w ∈ RL(x)}.

Completeness of the protocol is clear.

Soundness In order to prove soundness, we start by noting that the prover sends
an argument that is straight-line witness extractable by oracle restricted to pre�x
�1�. But since the honest veri�er has not used the oracle with pre�x �1�, a witness
can be extracted using only the prover's oracle queries. If a malicious prover suc-
ceeds in convincing the honest veri�er, he must thus have either an r′ s.t c = f(r′)
or a witness for x ∈ L. We will show that the prover needs to have a witness for
x: Let the probability ensemble U be uniform on {0, 1}n, and let X = f(U) be a
probability ensemble for the language L′. Then since f is a one-way function, X
is a hard instance ensemble. Now, if the prover, after having received the veri�er's

92 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

�rst message was able to a �nd a witness to a randomly chosen instance in the hard-
instance ensemble X, this would violate the witness hiding property of the veri�er's
message. The claim that the prover must have a witness for x follows. The protocol
is thus straight-line witness extractable for the statement x ∈ L. Soundness follows
automatically.

Zero-knowledge We show that the protocol is straight-line simulatable. We
construct a simulator that proceeds as follows. The simulator simply extracts r from
the veri�er's �rst message and then uses it as a �fake� witness to send its proof. If the
simulator fails in extracting the witness from a proof that the honest veri�er would
had accepted, it outputs fail. We proceed to show that the simulators output is
indistinguishable from the honest prover's. Towards this goal we de�ne a hybrid
simulator S′ which receives the real witness. S′ proceeds just as S, but instead of
sending a proof using the fake witness S′ uses the real witness. It follows from the
witness indistinguishability property of the second message that the output of S
and S′ are indistinguishable. Now, note that the only di�erence between S′ and
the honest prover is that S′ outputs fail sometimes, while the honest prover would
complete a proof. Recall that S′ only outputs fail when the extraction failed for a
proof that the honest veri�er would accept. It follows from the de�nition of straight-
line witness extractability that the extraction only fails with negligible probability.
We conclude the output of the honest prover and S′ are indistinguishable, which in
turn means that the output of the honest prover and S are indistinguishable.

Remark 19 1. We note that since the protocol is straight-line witness extractable
it is also witness extractable under concurrent executions, i.e., witnesses to
all concurrent executions can be simultaneously extracted. Indeed, this fea-
ture is of great importance in, for example, identi�cation schemes. We note
that it was previously unknown how to simultaneously extract witnesses from
polynomially many proofs in the RO model.

2. Note that even though we have access to a random oracle we need to rely on the
existence of one-way functions since our protocol uses the one-way function
in a non-black box way (by applying Cook's transformation on the function).

E�cient implementation We show how to give an e�cient instantiation of the
protocol SLZK. Let f : {0, 1}n → {0, 1}poly(n) be a one-way function, and let Π′ be
a special-sound HVZK public-coin argument for proving the knowledge of a pre-
image to f . Such argument systems exists for every one-way function, by reducing
the one-way function to an instance of the graph hamiltonicity problem, using
Cook's theorem, and thereafter using Blum's protocol [7]. We emphasize, however,
that if a speci�c one-way function is used, the HVZK argument can be tailored for
the function to get an e�cient implementation. Examples of such protocols are the
Guillou-Quisquater scheme [41] for the RSA function, and the Schnorr scheme [63]
for the discrete logarithm.

4.3. ON DENIABLE ZERO-KNOWLEDGE PROOFS IN THE RO MODEL 93

To implement the �rst message of the protocol, we use the transformation de-
scribed in Section 4.3.2 to turn Π′, i.e., the special-sound HVZK zero-knowledge
argument for L′, into the needed one-round argument for L′.
The second message is implemented as follows: Assuming that we have a special-
sound HVZK public-coin argument for L, we can use the e�cient OR transforma-
tion in [19] to yield a special-sound HVZK public-coin argument for L ∨ L′ and
the witness relation RL∨L′ .6 We can thereafter apply the transformation in section
4.3.2. (Note that although the protocol is constructed through a quite e�cient
transformation from any special-sound HVZK argument, the transformation turns
the HVZK protocol into a �cut-and-choose� protocol, which induces a blow up in
communication complexity.)

4.3.4 An e�cient 4-round proof
In this section we show the existence of a 4-round concurrent zero-knowledge proof
in the RO which is more e�cient considering communication complexity than the 2-
round protocol described in Section 4.3.3. In fact, we show a transformation from
any public-coin HVZK proofs to a concurrent ZK proof in the RO, which only
induces a small additive overhead in communication complexity. We furthermore
note that whereas the transformation in Section 4.3.3 turned the HVZK proof into
an argument, the transformation of this section does not do so.
Theorem 14 Assume there exists a three-round HVZK public-coin zero-knowledge
proof Π = (a, b, c) for the language L ∈ NP. Then there exists a four-round con-
current deniable zero-knowledge proof Π′ for the L in the RO model. Furthermore,
the protocol Π′ uses only an extra communication complexity of 2|b|.

Proof Sketch: Suppose Π = (a, b, c) is a three-round honest-veri�er public-coin
zero-knowledge proof (or argument) for the language L:

Protocol Π:
P → V: a
V → P: a random value b ∈ B
P → V: c
where B ∈ {0, 1}poly(n)

We construct a four-round protocol Π′ that proceeds in two phases:
• In phase one, the prover and the veri�er perform a coin-tossing, using straight-
line witness extractable commitments (the use of straight-line extractable
commitments makes it possible for the simulator to �force� the outcome of
the coin-tossing to any value).

6The resulting argument uses less communication than the argument for L plus the argument
for L′.

94 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

• In phase two, the prover and the veri�er execute the protocol Π using the
outcome of the coin-tossing as the veri�er's challenge. It is thus essential
the that outcome of the coin-tossing only is revealed at the moment that the
veri�er is supposed to send its challenge.

More precisely,

Protocol Π′ - transforming Π into a concurrent ZK proof

V → P: Commits to random number r1 ∈ B, using a statistically hiding
straight-line extractable commitment scheme.

P → V: a the �rst message in protocol Π, a random value r2 ∈ B

V → P: decommits to r1

P → V: c, such that (a, r1 ⊕ r2, c) would be an accepting execution of
protocol Π

We give a brief sketch of the security of the protocol. Completeness of the
protocol is easy to show. Soundness follows from the fact that: 1. the coin-tossing
scheme is unconditionally secure against a cheating prover, since the veri�er uses a
statistically hiding commitment scheme, 2. the protocol Π is sound. A formal proof
proceeds by transforming a cheating prover P ′∗ for Π′ into one for Π, P ∗. Roughly,
P ∗ is constructed by internally incorporating P ′∗ and proceeding as follows:

• Start by feeding P ′∗ a commitment to random value.

• Upon receiving back (a, r2) from P ′∗, send a to the outside veri�er.

• When receiving back a challenge b from the outside veri�er, open up the
commitment sent to P ′∗ to a value r1 such that b = r1⊕r2. Note that since the
protocol uses a statistically hiding commitment scheme, with overwhelming
probability there exist a way of opening the commitment to any value.

Note that the machine P ∗ needs to run in exponential time in order to �equivocate�
the commitment. Furthermore, note that the views of P ′∗ in a real execution
(with the honest veri�er) and in the �emulated� execution by P ∗ is statistically
close. It thus follows that that P ∗ succeeds in convincing the honest veri�er of the
protocol Π with roughly the same probability as P ′∗ succeeds in Π′, contradicting
the (unconditional) soundness of Π.

4.3. ON DENIABLE ZERO-KNOWLEDGE PROOFS IN THE RO MODEL 95

Zero-knowledge Since Π is HVZK there exists a simulator S that is able to
simulate a transcript of an honest prover with veri�er messages that look random.
We construct a simulator S′ for the protocol Π′ that proceeds as follows.
• S′ �rst runs S to produce a transcript (a, b, c)

• S′ then starts communicating with the malicious veri�er. Using the straight-
line extractability property of the commitment scheme used by the veri�er,
S′ is able to performs a coin-tossing such that the veri�er's challenge equals
b, and can thus start by sending the message a and answer the challenge send
by the veri�er, using c.

Note that output of the simulator S′ will be identical to that of S if the malicious
veri�er V ∗ does not abort the protocol. On the other hand, if V ∗ does abort
the protocol, then S′ acts as the honest prover (and also aborts). We show that
V ∗ abort with (roughly) the same probability in the simulated and in the real
execution. In fact, this follows from the fact that the �rst message (sent by the
prover) in simulated execution is indistinguishable from the �rst message sent in
the real execution (due to the HVZK property of Π). (Note that if Π was statistical
HVZK, then these distributions would be statistically close).

We �nally note that the simulator S′ is straight-line and the protocol Π′ is thus
concurrent deniable ZK in the RO model.

Overhead In Section 4.3.1 we showed the existence of straight-line witness ex-
tractable statistically hiding commitment schemes, in the RO model, where the
commit phase use the same communication complexity as the strings committed
to, and reveal phase uses the twice the communication complexity. If using such
a commitment scheme, the overall communication complexity of the protocol is
|b| + (|a| + |b|) + (2|b|) + |c| = (|a| + |b| + |c|) + 2|b|. Thus, Π′ only uses an extra
communication complexity of 2|b|.

Remark 20 Note that if Π is a statistical HVZK proof, then the resulting protocol
Π′ is a statistical deniable ZK proof in the RO model.

Remark 21 Interestingly the above protocol does not rely on any other assumption
than the random oracle. This is in contrast with the 2-round protocol of Section
4.3.3 which relies on the existence of one-way functions.

Open problems
The most urgent open problem is to �nd a more e�cient construction of one-
round witness extractable arguments that do not rely on cut-and-choose techniques.
Secondly, our 2-round protocol relies on the existence of one-way functions, while
our 4-round protocol does not. We wonder if it is possible to construct 2-round
straight-line simulatable deniable ZK protocols without any further assumptions
than the random oracle.

96 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

4.4 On Unreplayabable Zero-Knowledge Protocols

In many settings it is reasonable to assume that honest parties only communicate
using a certain class of pre-speci�ed protocol. In this section we investigate the
possibility of constructing ZK protocols, in shared object models, that retain the
spirit of �standard� ZK proofs, under the above assumption on the behavior of
honest parties. In other words, we investigate the possibility of ZK protocols in
shared object models that have the property that a veri�er of a ZK proof will not
be able to do anything it could not have before the interaction, using a certain class
of protocols.

More precisely, we say that a class C of protocols is closed under unreplayability
if an adversary, that has interacted with a prover using a protocol in C and the
shared object R, will not be able to prove any statement x using a protocol in C
with the shared object R, unless he could not have already done so without the help
of the prover. Note that the adversary is allowed to interact with a prover showing
the statement x, but is not necessarily restricted to provers showing x. The only
restriction on the communication of the adversary is that in both interactions only
protocols in C are used.

Note that the de�nition of unreplayability does not necessarily imply that a
veri�er of an unreplayable proof system will not �learn� anything from the protocol
execution (which is what the notion of deniable ZK satis�es). Rather, it means that
the veri�er will not be able to �convey� this information using a �valid� protocol.
Unreplayability therefore only achieves our goals of deniability in a limited way (an
example of this is given in section 4.4.3).

4.4.1 De�nition of Unreplayability and Some Consequences
Since unreplayability is a notion related to witness hiding, we use a similar de�-
nition. We, thus, start by generalizing the notion of a hard instance ensemble for
a relation RL, to the notion of a hard instance ensemble for an interactive proof
(P,V):
De�nition 41 Let (P,V) be an interactive proof for the language L ∈ NP and
X = {Xn}n∈N a probability ensemble such that Xn ranges over L ∩ {0, 1}n. We
say that X is hard for (P, V) if for every expected polynomial time probabilistic
algorithm F, all z ∈ {0, 1}poly(n), the probability

Pr[〈F (Xn, z), V (Xn)〉 = accept]

is negligible (as a function of n).

Unreplayability can now be de�ned in analogy with witness hiding:
De�nition 42 Suppose R is a random variable uniformly distributed in either
1poly(n) → {0, 1} or {0, 1}poly(n) → {0, 1}poly(n), C = {(Π1, L1), (Π2, L2), ..} is
a class of tuples of zero-knowledge proof (or argument) protocols, in the CRS or

4.4. ON UNREPLAYABABLE ZERO-KNOWLEDGE PROTOCOLS 97

random oracle model, and languages. A replay attack against the class C and the
protocol Π, for the language L, where (Π, L) ∈ C, using R as shared object, is a
PPT oracle machine A such that for all x ∈ Li, every z ∈ {0, 1}∗, and the oracle
OR, AR,OR(x, z)→ P ∗x , where P ∗x is the code for a polynomial-sized circuit (which
will act as a cheating prover). The oracle OR is de�ned as follows:
For all (Π′, L′) ∈ C, A can ask OR to prove any statement y using the protocol Π′

initiated with R as shared object. If y ∈ L′ then OR follows the protocol Π′, and if
not it just answers �not in the language�. Secondly, OR can only be invoked once,
and may not be rewound.

Remark 22 1. The oracle OR may only be invoked once since the notion of ZK
is not necessarily closed under sequential composition in the CRS, or random
oracle model.

2. We do not allow the adversary simultaneous access to the oracle and the ver-
i�er, since then a man-in-the-middle attacker would always succeed in such a
scenario.

De�nition 43 Let R and C and OR be as in the previous de�nition. We say that
a replay attack A succeeds on the class C using R as shared object, if there exists a
hard instance ensemble {Xn}n∈N for the interactive proof Π such that for in�nitely
many n there exists a z ∈ {0, 1}poly(n) such that

Pr[AR,OR(Xn, z)→ P ∗RXn
, 〈P ∗RXn

, V R(Xn)〉 = accept]

is non-negligible, where V is a PPT honest veri�er following the protocol Π.

De�nition 44 A class of tuples of zero-knowledge proof (or argument) protocols
and languages C is closed under replayability if it resists all replay attacks against
the class C and every protocol Π and language L such that (Π, L) ∈ C.

De�nition 45 We say that a zero-knowledge proof (or argument) Π for the lan-
guage L is unreplayable, if the class C = {(Π, L)} is closed under unreplayability.

Remark 23 We note that all proofs for languages in BPP are trivially unre-
playable, since those protocol do not have any hard instance ensembles.

We end this section by noting a relationship between hard instance ensembles
for witness relations, and hard instance ensembles for interactive proofs.
Lemma 11 Suppose that {Xn}n∈N is a hard instance ensemble for the interactive
proof (or argument) (P, V), for the language L ∈ NP, with e�cient prover for the
witness relation RL for L. Then {Xn}n∈N is a hard instance ensemble for RL.

98 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

Proof Let RL be a witness relation for language L ∈ NP, (P, V) an interactive
proof for L, with e�cient prover for the witness relation RL, and X = {Xn}n∈N

a hard instance ensemble for the interactive proof (P, V). Suppose that X is not
a hard instance ensemble for RL, i.e. there exists an expected polynomial time
probabilistic witness �nding algorithm F , such that for in�nitely many n, there
exists a z ∈ {0, 1}poly(n) such that

Pr[F (Xn, z) ∈ RL(Xn)]

is non-negligible (as a function of n). It follows from the e�cient prover condition of
the interactive proof (P, V), that for in�nitely many n there exists a z ∈ {0, 1}poly(n)

such that
Pr[〈P (F (Xn, z)), V 〉(Xn) = accept]

is non-negligible (as a function of n). Since P is a polynomial-time machine (due
to the e�cient prover condition), and since F is expected polynomial-time, their
composition is thus an expected polynomial-time machine, which contradicts that
X is a hard instance ensemble for (P, V).

4.4.2 On the Existence of Unreplayable Zero-knowledge
Following our intuition, non-interactive zero-knowledge arguments for NP are not
unreplayable unless they do not contain any hard-instance ensembles:
Theorem 15 Let Π be a one-round proof (or argument) for the language L in a
model with shared objects. If Π is unreplayable, then there does not exist any hard
instance ensembles for Π.

Proof Suppose, for contradiction that there exists an unreplayable proof Π for
the language L, which has the hard-instance ensemble X. Now, considering the
following replay attack A for X: A, when asked to prove an instance x, simply asks
the oracle for a proof of x. Upon receiving back the proof π from O, A outputs
the code of a circuit P ∗x that simply outputs π. Note that P ∗x will thus succeed in
producing an accepting proof of x with the same probability as the honest prover.
It follows that the replay attack A succeeds on the protocol Π and the ensemble A,
which contradicts the unreplayability property of Π.

There is, however, a natural class of zero-knowledge protocols that is closed
under unreplayability:
Theorem 16 Let C = (Π1, L1), (Π2, L2), .. be a class of tuples of zero-knowledge
proofs (or arguments) with e�cient provers, in a model with shared objects, and
languages, such that, for all i, Πi is a proof system for Li. If, for all i, Πi is a proof
(or argument) of knowledge in a model with shared objects, then C is unreplayable.

Proof Assume that C is a class of arguments of knowledge, as speci�ed in the
theorem. Assume further that there exists a replay attack on the class C and the

4.4. ON UNREPLAYABABLE ZERO-KNOWLEDGE PROTOCOLS 99

argument Π for the language L, where (Π, L) ∈ C, i.e there exists an adversary A,
and a hard instance subset X = {Xn}n∈N for Π such that for in�nitely many n
there exists a z ∈ {0, 1}poly(n) such that

Pr[AR,OR(Xn, z)→ P ∗RXn
, 〈P ∗RXn

, V R(Xn)〉 = accept]

is non-negligible, where R and V are de�ned as in De�nition 43. Since P ∗x communi-
cates with V by means of a proof of knowledge, there exists an expected polynomial
time probabilistic extractor machine E, and a witness relation RL for L such that for
all x ∈ L: Pr[E(P ∗Rx , x) ∈ RL(x)] is non-negligible if Pr[〈P ∗Rx , V R(x)〉 = accept] is
non-negligible. This means that for in�nitely many n there exists a z ∈ {0, 1}poly(n)

such that
Pr[AR,OR(Xn, z)→ P ∗RXn

, E(P ∗RXn
, x) ∈ RL(x)]

is non-negligible. But since A communicates with O by means of a ZK protocol in
a model with shared objects, there exists a PPT simulator machine S such that for
in�nitely many n there exists a z ∈ {0, 1}poly(n) such that

Pr[S(Xn, z)→ (σ, P ∗σXn
), E(P ∗σXn

, Xn) ∈ RL(x)]

is non-negligible, which shows that X is not a hard instance ensemble for RL. This
in turn contradicts the fact that X is a hard instance ensemble for the argument
with e�cient prover Π, by using lemma 11.

Remark 24 Since we have assumed a �xed witness relation RL for each language
L ∈ NP, it is implicit in the statement of the theorem that both the proof of
knowledge and the e�cient prover refer to the same witness relation.

The conclusion of this section is, thus, that if honest-parties only communicate
using arguments of knowledge that are zero knowledge in a model with shared
objects, then the intuitive interpretation of zero-knowledge is preserved. When
proving security of a �xed protocol this property is often su�cient. Nevertheless, in
other, more complicated settings, where we want to guarantee security without any
restrictions on the protocols, we need to resort fully deniable protocols, satisfying
meta-de�nition 35.

4.4.3 Deniability is Stronger than Unreplayability
It could be tempting to believe that unreplayability for a protocol is a su�cient
requirement for the protocol to be deniable. We show that deniability is a strictly
stronger requirement.

Below we show the existence of a protocol that is unreplayable, but provably
not deniable. In fact, a transcript of an interaction yields a proof of the assertion:

100 CHAPTER 4. DENIABLE ZERO-KNOWLEDGE

Protocol Σ

Common Input: a directed graph G = (VG, EG), with n = |VG|

Auxiliary input to the prover: a 3-coloring of G, c0, c1, .., cn ∈ {1, 2, 3}.

P → V: Commits to n = V · E colorings of G using an equivocal bit-
commitment scheme, Com′.

V → P: (a1, b1), (a2, b2), .., (an, bn) where ai, bi are the indexes of two ran-
dom adjacent vertices, for 1 ≤ i ≤ n.

P → V: For 1 ≤ i ≤ n, P opens up the commitments for vertices ai, bi.
V checks that the vertices in each pair have di�erent colors.

The bit-commitment scheme used is de�ned as follows:

Protocol Com′ - A Non-interactive Equivocal (and Extractable)
Commitment Scheme

Commit Phase:

• To commit to value v ∈ {0, 1}, the sender uniformly selects s ∈
{0, 1}n and sends the value c = RO(r) + v.

Reveal Phase:

• The sender reveals v and s.
• The receiver accepts if c = RO(s) + v where c is the receiver's
view of the commit phase.

It can be seen that the bit-commitment scheme Com′ indeed is computationally
hiding and binding, and that a simulator (that is allowed to chooses the random
oracle) can open up the commitments both ways (i.e to both a 0 and a 1). In fact,
this means that the protocol Σ, which clearly is complete, also is ZK, since the
simulator can just commit to a random coloring and thereafter open it up in such
a way that the veri�er will accept. We also note that Σ is a proof of knowledge (by
simple rewinding). See [21] for proofs of the ZK and proof of knowledge properties
for a very similar protocol (the protocol of [21] is essentially the same as Σ, except
for the particular commitment scheme used).

4.5. ACKNOWLEDGMENTS 101

Now since Σ is both ZK in the RO model, and a proof of knowledge in the RO
model, it is also unreplayable. However, consider the malicious veri�er V ∗ that,
instead of randomly choosing the vertices to be opened up, applies the random
oracle, RO to x and the commitments sent by P in the �rst round of the protocol.
The transcript of the protocol is then a non-interactive (ZK) argument (NIZK) in
the random oracle model. The veri�er can therefore clearly show something that
it could not before, which certainly contradicts our intuition of a zero-knowledge
proof. (More formally, suppose, of contradiction, that Σ is deniable ZK. Let S be
the simulator for the above-mentioned veri�er V ∗. It follows, from the ZK property,
that for instances x ∈ L, S outputs an accepting NIZK argument. On the other
hand, for instance x /∈ L, the output of S will only be an accepting NIZK with
negligible probability (by the soundness of the NIZK protocol [6]). S can thus be
used to decide the language L, i.e., NP = BPP .)

4.5 Acknowledgments

First, I wish to thank Johan Håstad for his invaluable help and comments. I am also
very grateful to Ran Canetti for long and helpful discussions. Thanks also to Sha�
Goldwasser, Tal Rabin, Alon Rosen, Victor Shoup and the anonymous referees for
helpful comments.

Bibliography

[1] B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS,
pages 106�115, 2001.

[2] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, and
a hierarchy of complexity classes. JCSS, Vol. 36, pages 254�276, 1988.

[3] B. Barak and R. Pass. On the Possibility of One-Message Weak Zero-Knowledge.
In 1st TCC, pages 121�132, 2004.

[4] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction.
In 34th STOC, pages 484�493, 2002.

[5] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the
Error in Computationally Sound Protocols? In 38th FOCS, pages 374�383,
1997.

[6] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for
Designing E�cient Protocols. In 1st ACM Conf. on Computer and Communi-
cations Security, pages 62�73, 1993.

[7] M. Blum. How to prove a Theorem So No One Else Can Claim It. Proc. of the
International Congress of Mathematicians, Berkeley, California, USA, pages
1444�1451, 1986.

[8] M. Blum. Coin Flipping by Telephone. In Crypto81, ECE Report 82-04, ECE
Dept., UCSB, pages 11�15, 1982

[9] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and Its
Applications. In 20th STOC, pages 103�112, 1988

[10] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowl-
edge. JCSS, Vol. 37, No. 2, pages 156�189, 1988. Preliminary version by Bras-
sard and Crépeau in 27th FOCS, 1986.

[11] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143�202, 2000.

103

104 BIBLIOGRAPHY

[12] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 34th STOC, pages 494�503, 2002.

[13] R. Canetti and M. Fischlin. Universally Composable Commitments. In
Crypto2001, Springer LNCS 2139, pages 19�40, 2001.

[14] R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable Zero-
Knowledge. In 32nd STOC, pages 235�244, 2000.

[15] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology,
Revisited. In 30th STOC, pages 209�218, 1998

[16] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-
Knowledge Requires (almost) Logarithmically Many Rounds. SIAM Jour. on
Computing, Vol. 32(1), pages 1�47, 2002.

[17] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable
Two-Party and Multi-Party Computation. In 34th STOC, pages 494�503,2002.

[18] D. Chaum and H. van Antwerpen. Undeniable Signatures. In Crypto89,
Springer LNCS 435, pages. 212�216, 1989.

[19] R. Cramer, I. Damgård and B. Schoenmakers. Proofs of Partial Knowledge and
Simpli�ed Design of Witness Hiding Protocols. In Crypto94, Springer LNCS 839,
pages. 174�187, 1994.

[20] G. di Crescenzo, G. Persiano and I. Visconti Constant-Round Resettable
Zero Knowledge with Concurrent Soundness in the Bare Public-Key Model.
In Crypto04, Springer LNCS 3152, pages. 237�253, 2004.

[21] I. Damgård. E�cient Concurrent Zero-Knowledge in the Auxiliary String
Model. In EuroCrypt2000, LNCS 1807, pages 418�430, 2000.

[22] I. Damgård, T. Pedersen and B. P�tzmann. On the Existence of Statisti-
cally Hiding Bit Commitment Schemes and Fail-Stop Signatures. In Crypto93,
Springer-Verlag LNCS Vol. 773, pages 250�265, 1993.

[23] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust
Non-interactive Zero Knowledge. In Crypto2001, Springer LNCS 2139, pages
566�598, 2001.

[24] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Jour.
on Computing, Vol. 30(2), pages 391�437, 2000.

[25] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC,
pages 409�418, 1998.

[26] C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for
Timing Constraints. In Crypto98, Springer LNCS 1462 , pages 442�457, 1998.

105

[27] U. Feige. Ph.D. thesis, Alternative Models for Zero Knowledge Interactive
Proofs. Weizmann Institute of Science, 1990.

[28] U. Feige, D. Lapidot and A. Shamir. Multiple Noninteractive Zero Knowledge
Proofs under General Assumptions. Siam Jour. on Computing 1999, Vol. 29(1),
pages 1�28.

[29] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Pro-
tocols. In 22nd STOC, pages 416�426, 1990.

[30] U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two Rounds.
In Crypto89, Springer LNCS 435, pages. 526�544, 1989.

[31] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identi-
�cation and Signature Problems. In Crypto86, Springer LNCS 263, pages 181�
187, 1987

[32] O. Goldreich. Foundations of Cryptography � Basic Tools. Cambridge Univer-
sity Press, 2001.

[33] O. Goldreich. Zero-knowledge twenty years after their invention. Weizmann
Institute, 2002.

[34] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-
Knowledge Proof Systems for NP. Jour. of Cryptology, Vol. 9, No. 2, pages
167�189, 1996.

[35] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM Jour. on Computing, Vol. 25(1), pages 169�192, 1996.

[36] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But
Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems.
JACM, Vol. 38(1), pp. 691�729, 1991.

[37] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-Knowledge Proof
Systems. Jour. of Cryptology, Vol. 7, No. 1, pages 1�32, 1994.

[38] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of In-
teractive Proof Systems. SIAM Jour. on Computing, Vol. 18(1), pp. 186�208,
1989.

[39] E. Goh and S. Jarecki. A Signature Scheme as Secure as the Di�e-Hellman
Problem. In EuroCrypt2003, Springer LNCS 2656, pages 401�415, 2003.

[40] S. Goldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir
Paradigm In 44th FOCS, pages 102�112, 2003.

106 BIBLIOGRAPHY

[41] L.C. Guillou and J. Quisquater. A Practical Zero-Knowledge Protocol Fit-
ted to Security Microprocessor Minimizing Both Transmission and Memory. In
EuroCrypt88, Springer LNCS 330, pages 123�128, 1988.

[42] S. Hada and T. Tanaka. On the Existence of 3-Round Zero-Knowledge Proto-
cols. In Crypto98, Springer LNCS 1462, pages 408�423, 1998.

[43] J. Håstad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudo-
random Generator from any One-Way Function. SIAM Jour. on Computing,
Vol. 28 (4), pages 1364�1396, 1999.

[44] M. Jakobsson, K. Sako and R. Impagliazzo. Designated Veri�er Proofs and
Their Applications. In EuroCrypt96, Springer LNCS 1070, pages 143�154.

[45] N. Koblitz and A. Menezes. Another Look at �Provable Security�. ePrint
Archive, 2004/152, 2004.

[46] J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-
logarithmic Rounds. In 33rd STOC, pages 560�569, 2001.

[47] J. Kilian, E. Petrank and C. Racko�. Lower Bounds for Zero-Knowledge on
the Internet. In 39th FOCS, pages 484�492, 1998.

[48] Y. Lindell. General Composition and Universal Composability in Secure Multi-
Party Computation. In 44th FOCS, pages 394�403, 2003

[49] Y. Lindell. Lower Bounds for Concurrent Self Composition. In 1st TCC,
Springer LNCS 2951, pages 203�222, 2004.

[50] M. Naor. Bit Commitment using Pseudorandomness. Jour. of Cryptology,
Vol. 4, pages 151�158, 1991.

[51] J. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-Committing Encryption Case. In Crypto2002, Springer LNCS
2442, pages 111�126, 2002.

[52] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Perfect Zero-Knowledge
Arguments for NP Using any One-Way Permutation. Jour. of Cryptology,
Vol. 11, pages 87�108, 1998.

[53] M. Naor and M. Yung. Universal One-Way Hash Functions and their Crypto-
graphic Applications. In 21st STOC, pages 33�43, 1989.

[54] R. Pass. Simulation in Quasi-polynomial Time and its Application to Protocol
Composition. In EuroCrypt2003, Springer LNCS 2656, pages 160�176, 2003.

[55] R. Pass. On Deniability in the Common Reference String and Random Oracle
Models. In Crypto 2003, Springer LNCS 2729, pages 216�337, 2003.

107

[56] R. Pass and A. Rosen. Bounded-Concurrent Two-Party Computation in Con-
stant Number of Rounds. In 44th FOCS, pages 404�413, 2003

[57] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge with
Logarithmic Round Complexity. In 43rd FOCS, pages 366�375, 2002.

[58] M. Prabhakaran and A. Sahai. New Notions of Security: Achieving Universal
Composability without Trusted Setup In 36th STOC, pages 242�251, 2004.

[59] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-
Knowledge Proofs. In EuroCrypt99, Springer LNCS 1592, pages 415�431, 1999.

[60] A. Rosen. A note on the round-complexity of Concurrent Zero-Knowledge. In
Crypto2000, Springer LNCS 1880, pages 451�468, 2000.

[61] C. Racko� and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In Crypto91, Springer LNCS 576, pages 433�
444, 1991.

[62] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive
Chosen-Ciphertext Security. In 40th FOCS, pages 543�553, 1999.

[63] C.P. Schnorr. E�cient Identi�cation and Signatures for Smart Cards. In
Crypto89, Springer LNCS 435, pages 235�251, 1989.

[64] J. Stern and D. Pointcheval. Security Arguments for Digital Signatures and
Blind Signatures. Jour. of Cryptology, Vol. 13, No. 3, pages 361�396, 2000.

[65] C. Dwork and L. J. Stockmeyer. 2-round zero knowledge and proof auditors.
In 34th STOC, pages 322�331, 2002.

[66] C. Dwork and M. Naor. Zaps and Their Applications. In 40th FOCS, pages
283�293, 2000.

[67] C. Dwork and M. Naor, Pricing via Processing or Combatting Junk Mail. In
Crypto92, Springer LNCS 740, pages 139�147, 1992.

[68] O. Goldreich, L. A. Levin. A Hard-Core Predicate for all One-Way Functions.
In 21st STOC, pages 25�32, 1989.

[69] S. Goldwasser, S. Micali. Probabilistic Encryption. JCSS 28(2), pages 270�299,
1984.

Appendix A

An Alternative De�nition of Witness

Indistinguishability

We note that the de�nition of WI in models with shared objects can be slightly
weakened in the context of interactive proofs. Recall that De�nition 25 requires
that the outputs of the prover using two di�erent witnesses are indistinguishable,
by a distinguisher that has access that the shared object. We show that it is actually
su�cient to only consider distinguishers that do not have access to the shared
object.

Consider the following alternative de�nition, where the distinguisher does not
have access to the shared object:

De�nition 46 (WI with Shared Objects - Alternative de�nition) Let (P,V)
be an interactive proof in a model with shared objects for the language L ∈ NP, and
RL be a �xed witness relation for L. We say that (P,V) is witness indistinguish-
able for RL if for every PPT machine V ∗ and every two sequences W 1 = {w1

x}x∈L

and W 2 = {w2
x}x∈L, such that w1

x, w2
x ∈ RL(x), the following two ensembles are

computationally indistinguishable (when the distinguishing gap is a function in |x|):

• {〈PR(w1
x), V ∗R(z)〉(x)}x∈L,z∈{0,1}∗

• {〈PR(w2
x), V ∗R(z)〉(x)}x∈L,z∈{0,1}∗

where R is a random variable uniformly distributed in either 1poly(n) → {0, 1} or
{0, 1}poly(n) → {0, 1}poly(n). That is, for every probabilistic algorithm D running in
time polynomial in the length of its �rst input, every polynomial p, all su�ciently
long x ∈ L, and all auxiliary inputs z, z′ ∈ {0, 1}∗ it holds that

|Pr[D(x, z′, 〈PR(w1
x), V ∗R(z)〉(x))) = 1]

−Pr[D(x, z′, 〈PR(w2
x), V ∗R(z)〉(x))) = 1]| < 1

p(|x|)

109

110
APPENDIX A. AN ALTERNATIVE DEFINITION OF WITNESS

INDISTINGUISHABILITY

where R is a random variable uniformly distributed in either 1poly(n) → {0, 1} or
{0, 1}poly(n) → {0, 1}poly(n)

Lemma 12 If Π is a WI proof (or argument) in a model with shared objects,
according to the alternative de�nition, then Π isWI in a model with shared objects,
according to the standard de�nition.

Proof We show that the distinguisher does not need to have access to the shared
object, as the malicious veri�er (which obviously has access to the shared object)
can perform the distinguisher's operations. More formally, suppose, for contra-
diction, that Π is WI according to the alternative de�nition, but not according
the standard de�nition, i.e there exists a PPT machine V ∗, a PPT distinguisher
D, and a positive polynomial p, such that for in�nitely many n, there exists an
x ∈ L ∩ {0, 1}n, two witnesses w1, w2 ∈ RL(x) and auxiliary inputs z, z′ ∈ {0, 1}∗
such that

|Pr[DR(x, z′, 〈PR(w1
x), V ∗R(z)〉(x))) = 1]

−Pr[DR(x, z′, 〈PR(w2
x), V ∗R(z)〉(x))) = 1]| > p(|x|)

where R is a random variable uniformly distributed in either 1poly(n) → {0, 1} or
{0, 1}poly(n) → {0, 1}poly(n). We construct a new distinguisher D′ which does not
have access to the shared object, and a new veri�er V ′∗.
• D′ is de�ned as follows: D′(x∗, z∗, out) = out,
• V ′∗ proceeds as follows. V ′∗ �rst acts as V ∗ and thereafter internally executes

DR(x, z′, out′), where out′ is V ∗(z)'s output. In order for V ∗ to be able to
execute DR(x, z′, out′) and V ∗(z), V ′∗ receives z∗ = (z, z′) as auxiliary input.

It follows that
|Pr[D′(x, ·, 〈PR(w1

x), V ′∗R(z∗)〉(x))) = 1]
−Pr[D′(x, ·, 〈PR(w2

x), V ′∗R(z∗)〉(x))) = 1]| > p(|x|)

which contradict that Π is WI according to the alternative de�nition.

