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Abstract 

To incorporate new technical advances into military domain and make those 
processes more efficient in accuracy, time and cost, a new concept of Network 
Centric Warfare has been introduced in the US military forces. In Sweden a 
similar concept has been studied under the name Network Based Defence 
(NBD).  Here we present one of the methodologies, called tactical plan 
recognition that is aimed to support NBD in future. 

Advances in sensor technology and modelling produce large sets of data for 
decision makers. To achieve decision superiority, decision makers have to act agile 
with proper, adequate and relevant information (data aggregates) available.  
Information fusion is a process aimed to support decision makers’ situation 
awareness. This involves a process of combining data and information from 
disparate sources with prior information or knowledge to obtain an improved 
state estimate about an agent or phenomena. Plan recognition is the term given to 
the process of inferring an agent’s intentions from a set of actions and is 
intended to support decision making.     

The aim of this work has been to introduce a methodology where prior 
(empirical) knowledge (e.g. behaviour, environment and organization) is 
represented and combined with sensor data to recognize plans/behaviours of 
an agent or group of agents. We call this methodology multi-agent plan recognition. 
It includes knowledge representation as well as imprecise and statistical 
inference issues.  

Successful plan recognition in large scale systems is heavily dependent on the 
data that is supplied. Therefore we introduce a bridge between the plan 
recognition and sensor management where results of our plan recognition are 
reused to the control of, give focus of attention to, the sensors that are supposed 
to acquire most important/relevant information. 

Here we combine different theoretical methods (Bayesian Networks, Unified 
Modeling Language and Plan Recognition) and apply them for tactical military 
situations for ground forces. The results achieved from several proof-of-
concept models show that it is possible to model and recognize behaviour of 
tank units.   

 

Keywords: Plan Recognition, Decision Making, Knowledge Representation, 
Information Fusion, Predictive Situation Awareness, Data Fusion. 
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Sammanfattning 

Ett nytt koncept som utnyttjar de nya tekniska möjligheterna har under namnet 
Nätverkscentrerad krigföring utvecklats i USA. I Sverige utvecklas detta koncept 
under namnet Nätverksbaserad försvar (NBF). Syftet med NBF är att effektivisera 
processer i den militära domänen bland annat med avseende på önskade 
effekter, kostnader och tid. 

Nya tekniska möjligheter av sensorteknologi producerar stora datamängder för 
beslutsfattare. För att beslutsfattare skall kunna handla tillräckligt snabbt och 
åstadkomma beslutsöverläge krävs det adekvat och relevant (automatiskt) 
förbehandlad information. 

Processen vars syfte är att stödja beslutsfattarens situationsmedvetenhet kallas 
informationsfusion.  Den kombinerar sensordata och a priori information från 
olika källor för att ge den bästa tillståndsuppskattningen. En del av 
informationsfusionen är planigenkänning. Den ger den bästa uppskattningen av 
en agents (opponentens) eller en grupp av agenters avsikter från en mängd 
observerade handlingsalternativ och är till för att stödja beslutsfattarens 
prediktiva situationsmedvetenhet. Planigenkänningsmetodiken som presenteras i 
denna avhandling inbegriper såväl kunskapsrepresentation av beteenden som 
oprecist och statistiskt resonerande. Denna metodik introducerar vi som 
multiagentplanigenkänning för beslutsfattande. 

För en effektiv planigenkänning som sker i storskaliga system krävs det att de 
viktigaste sensordata skall vara tillgängliga. Av denna anledning introducerar vi 
en brygga mellan planigenkänning och sensorstyrning där resultat från vår 
planigenkänning återanvänds för att ge fokus av uppmärksamhet för sensorresurser. 

Tekniker utvecklas och anpassas för att beskriva och förutsäga komplexa 
händelseförlopp, med exempel valda i militära insatsoperationer. Ett antal 
teoretiska metoder (bayesianska nät, Unified Modeling Language, och 
planigenkänning) anpassas och realiseras i avgränsade militära situationer. 

Nyckelord: Planigenkänning, beslutsfattande, kunskapsrepresentation, 
informationsfusion, prediktiv situationsmedvetenhet, datafusion. 
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Chapter 1  
Introduction 

1.1 Background 

To incorporate new technical advances into military domain and make those 
processes more efficient in accuracy, time and cost, a new concept of Network 
Centric Warfare has been introduced in the US military forces. In Sweden a 
similar concept has been studied under the name Network Based Defence 
(NBD).  Here we present one of the methodologies, called tactical plan 
recognition that is aimed to support NBD in future. 

Recently, the trend of military operations is moving to effect based operations 
(EBO). “Effects-based operations are coordinated sets of actions directed at 
shaping the behaviour of friends, foes, and neutrals in peace, crisis, and war.”, 
[2]. One of the main features of EBO is flexibility and the interoperability that 
includes cooperation and coordination between different defence forces, 
different defence alliances and even interoperability between defence structures 
and civil authorities. Still, behind those flashy terms there are significant 
historical connections. The first example is from the WW2; the German forces 
had flexible units called “Kampfgruppen” assembled depending on type of tasks 
[3]. The second example is the coordination between German air and ground 
forces on the operative level. A final example of the historical connections to 
EBO and NCW is the example of the coordination of air and ground troops 
using radio by the Israeli military forces in the Six Days War [4] on the tactical 
level. The natural question to ask is: What does become conceptually new in 
NCW? What do we gain by that new concept? The difference between the 
concepts used several decades ago and those proposed today (NCW) is the use 
of new technologies and new methodologies that minimize costs and maximize 
utility (effect) of the operations. In NCW processes such as cooperation, 
information exchange and fusion (combining) of information ought to occur 
more rapidly than before; in some cases in a fraction of seconds. That would 
lead to decision superiority.  

A key process is the information fusion process (IF). This is the process of 
combining data and information from disparate sources with a priori information 
or knowledge. Data and partial (imprecise) knowledge about different entities or 
phenomena are combined with previous information to gain new state estimates 
of interest (new information). 



 2

Current advances in sensor technology produce large sets of data and 
information. Particularly only in the period of 2002-2005 the amount of 
information has grown to levels never seen before in history [1]. Moreover, 
uncertain, contradictory and imprecise data presents a decision maker with high 
complexity and ambiguity. In worst case such data can cause confusion and 
overload. Decision makers, instead of making use of information, might be only 
concentrating on data interpretation and data processing. A plethora of 
hypothesis spaces that may depend on each other often leads to intractable 
problems. “At all levels, commanders are constantly forming decisions based on 
their current understanding of the world and their ability to forecast the 
outcome of actions being considered. This ability is forged through years of 
training, combat experience and a rigorous selection process. And yet, even 
experienced tacticians are only able to consider 2 or 3 possible courses of action 
for all but the simplest situations.” [5]. Additionally, military commanders 
(decision makers) often don’t have a good “feel” for the sensitivity of their own 
plans to variations or the unintended consequences associated with the 
expression of their decisions based on uncertain information. The process of 
recognizing opponent’s plans and its intentions could be a much harder process 
then mission planning.    

The aim of this work has been to introduce a multi-agent plan recognition 
methodology for future IF and NBD systems, where prior (empirical) 
knowledge of an agent [6], or a group of agents, is represented and combined 
with sensor data to recognize its plans/behaviours. The output of the plan 
recognition process is multi-hypothetical (statistical) qualified guesses of the 
agent’s (hostile force) or agents’ behaviours/plans. Those results should be a 
functional part of IFs predictive situation awareness (PSA) [5], [7]. Our methodology 
is supposed to aid/support decision makers, i.e., their PSA, by projection of 
current state, represented by the common operation picture, into a close future.  

To be able to model and use the prior knowledge about agents for plan 
recognition we have to perform a structured knowledge representation. This 
part is discussed in Chapter 2 and Chapter 3. In chapter two the focus is on 
higher ontological level whereas in Chapter 3 we discuss the applicability of the 
two different methods to model knowledge at different ontological levels: unified 
modelling language and (Dynamic) Bayesian Networks. The kernel of the thesis is 
Chapter 4, where we introduce multi-agent plan recognition for tactical plan 
recognition. Finally, bearing in mind that plan recognition is heavily dependent 
on input (sensor) data, we introduce in, Chapter 5, a bridge between plan 
recognition and information acquisition (IA). As a result of the bridge 
methodology we achieve improved (pro-active) IA that is focused on the most 
mission relevant acquisition tasks.         
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Chapter 2  
Knowledge representation, 
modelling of doctrines and 
information fusion     

In this chapter we focus on understanding doctrines and their representation in 
the object-oriented language Unified Modelling Language (UML). We present a 
conceptual model of one part of the information fusion process and describe 
the role doctrines should play in this process. The aim has been to supply 
information fusion processes with a priori knowledge, which in this case is 
knowledge about an agent or group of agents’ tactical behaviour. Models in 
Figure 2 and 6 are partly reused and modified from [8].   

2.1 Knowledge representation and 
doctrines 

Within the project Information Fusion at the Swedish Defence Research 
Agency (FOI) we performed a study of knowledge representation of doctrines. 
One role of doctrines in the information fusion process is to prune the 
hypothesis space generated from sensor information. Another role is to 
recognise plausible types of behaviours, plans, and connect them to prediction 
of hostile force state.    

The benefit of use of doctrine models is to supply information fusion processes 
with a priori knowledge, which in this case is knowledge about the agent’s 
(enemy’s) tactical behaviour and organisation. Doctrines are only one part of a 
larger a priori knowledge base which the information fusion process uses to 
combine with dynamic (sensor) information.  

There are two kinds of doctrines. One is descriptive and the other is 
prescriptive. The descriptive doctrine is more theoretical than the prescriptive 
where methods and rules are specified.  We see prescriptive doctrine as more 
convenient starting point when modelling doctrines. Doctrine is also divided 
into a hierarchy of levels from strategic to combat level. The higher in doctrinal 
levels we are the harder it is to present knowledge for computers. After a 
historical review considering the strategic and the operational level the focus of 
our study [9], [10] was the tactical and the combat technique level with a 
specialization on ground troops, armoured vehicles and to some extent infantry, 
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on platoon and company level up to battalion level, see Figure 1.  Additionally, 
bearing in mind that this is a methodology project and must be based on 
publicly available literature we used mainly Swedish doctrine publications, see 
[3], [11].            

 

 

Figure 1. Focus in doctrine study   

Our goal considering doctrines is to understand and represent doctrines in a 
structured manner with regard to uncertainty and information fusion process 
requirements.  

2.2 Doctrine  

Doctrine is a collection of knowledge about a military organisation. It gives advice on how 
military tasks should be solved; see [12].  

Doctrine is divided into the following levels: strategic - , operational - , tactical - 
and combat technique. The fact and the trend is that doctrine levels overlap 
more and more with each other. Operational level is about coordination of 
operations between different types of units, e. g. combined action of navy and 
aircraft forces. On the tactical level one studies the single battle as well as 
coordination and effects of using different military units; see also [3]. On the 
combat technical level one studies how technology is used in battle and basic 
unit behaviours.  

Strate
gic

Operational 

Tactical  

Air F. Ground Forces Navy

            Combat technical   

                          Tank units  
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2.3 Doctrine as a priori source of 
knowledge for Information Fusion 

Changing doctrines takes time and therefore doctrines are assumed to be”rigid” 
for longer time intervals, see [12]. Therefore we find the use of the doctrine as 
prior in IF motivated.  However, due to linguistic vagueness it is hard to model 
doctrines. We find doctrines at (combat) tactical level as less linguistically vague 
than doctrines on operational level. Due to increased uncertainty, when 
modelling doctrines for information fusion processes, the first step should be to 
make models for tactical behaviour before and after the battle.  Moreover, there 
are many unpredictable factors that can play a decisive role in warfare. An 
important observation made during this study (and confirmed by history) is that 
uncertainty increases dramatically as soon as the first shot is fired. Therefore it 
would be difficult to make battle models which give a precise prediction of the 
enemy’s course of action, i.e. the plan that is most likely. 

In general terms, we understand information fusion as the process of combining 
information and inference to obtain improved state representation, estimation 
and prediction, see also [13]. In military applications, the main challenge is to 
represent knowledge about the enemy in a dynamic and uncertain environment, 
i.e. in the fog of war. Doctrine knowledge should be a building block, part of a 
priori knowledge about the opponent, in a future information fusion system. An 
example how doctrine can be used is presented in by Matheus, Kokar and 
Baclawski in [14] where the doctrine description (knowledge) is conceptually 
seen as the specialisation of a situation object. The collected data/information 
can be anything from sensor information and terrain description to knowledge 
about tactical behaviour of the enemy given the knowledge about his doctrines 
and current observations see [15]. Some examples of what the world state can 
contain are:  agent’s position, type of agents, their plans and prediction of their 
state such as position. 

The role of doctrines in the information fusion process is to: 

1) Prune the hypothesis space generated from the sensor information and 
obtains more certain information 

2) Recognise types of behaviours i.e., certain plan alternatives, and connect them 
to prediction of the state.  

In order to achieve the goal of using doctrine knowledge in the information 
fusion process it is necessary to represent the knowledge in a structured and 
intelligible way, both for application engineers and computers. Keywords are 
knowledge representation and ontology; knowledge representation is “the 
science of designing computer systems to perform tasks that normally involves 
human intelligence” [16]; ontology stands for a specific perspective, or an 
assumption, about the target application area to be represented. The reason why 
ontologies are becoming so popular has to do with what they promise, “a shared 
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and common understanding of some domain that can be communicated among 
people and application systems” [17].  

There are different ways of expressing this knowledge. One way of representing 
knowledge is a textual description. Another way is a combination of textual 
representation and some formal computer language, e. g.  UML, XML etc. In 
this thesis we use UML (Unified Modelling Language, see [18]) to describe 
different types of doctrines and their interrelationships. Software engineers use 
UML as standard when describing ontologies, see [19]. Moreover, UML 
provides easily understandable graphical representations of classes, sequences 
and use cases. Additionally, UML is more appropriate for software developers. 
The most known type of UML representation is the class-diagram 
representation. 

2.4 Plan and Doctrine  

To be able to automatically recognize behaviour, current plan or activity, we 
need models that explain a planning process including organization, rules of 
engagement and environment interaction, in a structured, generic and a flexible 
manner.  In this chapter, we see the planning process from (hostile) agent’s 
point of view, i.e. we consider this kind of problem in AI as the agent planning 
problem under uncertainty; see [6]. 

Agents plan and perform different tasks in an environment. There are also 
different hierarchies of agents in the information fusion process, like battalion, 
company, platoon etc. We used as our basis a generic model of command and 
control presented in [8]. We added some interesting aspects and subtracted 
other details which were of less interest for this kind of study, see Figure 2.  
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Figure 2. Planning, doctrine and environment   

 

As we see in Figure 2, environment rules and doctrine rules are subsets of more 
general rules in an agent planning problem.  Utility-based rules represent all 
rules that are not described in manuals but are (frequently) used. We say that 
utility-based rules are more specific for a particular situation, i.e. they are explicit 
and do not oblige fully to follow organizational (doctrine) restrictions. 
Additionally, some military or paramilitary organisations lack known doctrine 
rules. On the other hand doctrine rules are more general and a subset of 
doctrine rules is expected to be applied considering key factors such as 
environment, type of opponent, resources and superior goals. Plan and task are 
assigned to the role which can be for example a commander of a military unit. 
In order to solve the task and execute the plan a role has to use resources. The 
role can be part of a larger plan and be subordinated to a resource, e.g. platoon 
member is subordinate to platoon.  
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2.5 Representation doctrines on combat 
tactical level           

Our approach of knowledge modelling is bottom up. Here we use tank units to 
exemplify some of the doctrine rules at the combat tactical level.  

Each single agent is constrained by its doctrines and (current) surrounding 
environment. Depending on environment it is more likely that an agent will use 
certain doctrines. Physical conditions such as top speed of the agent, visibility, 
cover, weather, carrying and maneuverability in certain type of a terrain restricts 
the agent and thereby our hypothesis space on what the agent is doing is 
pruned. E.g., the hypothesis, “tank (agent) is on the hill” could not be so likely 
due to slopes around the hill that are higher than a certain number of degrees, 
see Figure 3. Here we show some physical restriction on a tank agent. The slope 
higher than 30o is hard to overcome for a tank.  From Figure 3 we can derive a 
number of physical rules when modelling a representation of a tank agent.  

 

             

Figure 3. Passable terrain for tanks (source: [20])   

 

Doctrines are used as the common understanding and working basis to 
coordinate actions within a group of agents. Such doctrines could be seen as 
guidelines or in some case even recipes on how to accomplish or deal with a 
certain type of task. Different kinds of ground troops have different mobility, 
different types of technical equipment and different formations (see Figure 4 
and Figure 5). We see formation as a subset of behavioural (doctrinal) spatial 
patterns that can be modelled.  

  

 

 

 

 

Figure 4. Battle Line  
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Figure 5. Battle Triangle  

 

Both (spatial) patterns “Battle Line” and “Battle Triangle”, differently 
constrained by the terrain, give a support for the hypothesis, plan alternative, 
attack. In Figure 6 we see a tank platoon model in UML where textual 
knowledge from [11] has been an important source. Some attributes of interest 
(aspects of interest) are presented. 
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Figure 6. UML model of a platoon 
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As we see one platoon consists of tree or four groups, one platoon commander 
and one deputy commander. The platoon has an attribute formation with 
possible values column, battle column, battle triangle, battle line. Platoon is an 
organisation. The subset of an organisation is a class of technical artefact which 
contains attributes that correspond to the technical equipment of the platoon in 
this case. 

2.6 Conclusions 

The way of executing actions or plans is strongly related to the kind of 
environment where military forces, agents, are acting. Information on passable 
roads and terrain which gives better cover is important in the information 
fusion process in order to minimize the number of hypotheses generated by 
sensor data. Information about hostile formations, terrain and information from 
other sources gives us a clue to hostile force plans.     
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Chapter 3  
Generic representation of 
Military Organisation and 
Military Behaviour  

3.1 Knowledge representation of military 
units  

The importance of developing generic models in command and control (C2) is 
increasing due to issues of co-ordination, co-operation, training, decision 
support etc. When modelling warfare, a plethora of factors has to be considered, 
[21]. In such complex problems the increasing need for classification of 
knowledge arises. We found it important to perform such a classification in a 
generic manner. The class models could then be reused with some modification 
and should be easy to update. Consequently, the modeling expert can 
concentrate on one part of the model at a time. In other words, one generic 
model of a military organisation and military behaviour can be reused for 
modelling different doctrines and for different purposes by using a well-known 
modelling technique.  

In this Chapter we present a study of modelling military organisation and 
military behaviour in a generic manner, using two different knowledge 
representation techniques: the UML and Bayesian Networks, [22], (BN). The 
class diagram that is provided by UML is suited for representing military 
organisations whose structure is well-known, since military units and their 
interrelations can be represented as classes and interrelations between the 
classes.  On the other hand, it is a much harder task to represent military 
organisations that are not well-known or military behaviour because of the 
uncertainty associated with them. Different behaviours are triggered in different 
environments using different doctrines, and the outcomes of the behaviours are 
uncertain. Due to complexity, time constraints and war friction, causal relations 
between different factors, which play an important role in warfare, may be 
uncertain. The purpose of this chapter is to highlight the need of interaction 
between UML and BN. Despite the fact that these techniques are very different 
and are used for different purposes, we propose an approach having generic 
UML modelling of military organisation and military behaviour as a first step 
towards modelling with BN. 
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3.2 UML doctrine models 

Doctrines provide hints about how military tasks will be carried out. This means 
that some of the military behaviours can be classified. Given information about 
environment, force balance, opponent’s position and other rules that have 
influence on military behaviour we can say that some behaviours are more 
probable to occur in some situations. UML has a very good expressive power 
for classification. Class diagrams in UML give very good overview but we 
cannot say anything about the probability that a given class, in this case a class 
describing a particular behaviour, will occur. E. g. we found it difficult to 
express how using UML a class representing frontal attack behaviour of some 
hostile military unit is likely to occur given the information that we are close to 
the enemy and the fact that visibility is good. In some cases certain classes are 
irrelevant and in other cases they are important.  

To describe a class model in UML we first identify interesting classes. After 
performing this step we describe relations between them. Consequently, we 
make a generic structure that can be used for implementation for different 
purposes. Relations between attributes of different classes cannot be 
represented in UML class diagrams. Instead, in a UML class diagram we specify 
relations between different classes. On the other hand, the advantage is that the 
principle of encapsulation makes it possible to build implementations that have 
parts which are more autonomous, objects in UML. In BN, instead of attributes 
we have variables.  

Figure 6 shows a UML model of a platoon. The Platoon has an attribute 
Formation with four possible values: “Lead”, “Battle Line”, “Stepped Formation” 
and “Battle Triangle”.  This variable, attribute in UML, will be represented in 
our BN model with corresponding values. In the similar manner as in Figure 6 
we show in Figure 7 a company model. This model also represents the relation 
between company class and platoon class hence obtaining a hierarchical 
representation.            

Company

- Formation:  

Platoon

- Formation:  

Command 
platoon

Physical 
Resource

Technical Artefact

- Command vehicle:  vehicle type
- Logistics&Maintenance:  non weapon

Resource

Organisation

1

1

3

1

     

Figure 7: Company description with UML  
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It is not enough when modelling military doctrines to describe relations between 
different units, their roles, which resources they are part of, and which resources 
are put to their disposal.  Military behaviour is however an important part of 
doctrines that is not part of the model. In concrete situations there is a list of 
the military behaviours/plans to be executed, see Figure 2.  

Part of the model in Figure 2 is also the environment, which plays an important 
role when making plans. It is regarded by military commanders both as 
opportunity and as restriction to execution of their plans. Information about the 
opponent is also important when making own plans. However, representation 
of some “generic” opponent is not performed in our UML diagrams, although it 
was modelled with our BN model of a particular hostile tank company.       

3.3 Bayesian Networks (BN) 

In general, when modelling warfare, we have to deal with uncertainties. 
Prediction, fusion of the uncertain information, war friction, enemy courses of 
action etc., are examples of where a high degree of uncertainty is involved. 
Management of uncertainty is an issue related to uncertain, contradictory and 
incomplete information. Approaches to uncertainty management can be 
grouped, roughly, into three groups:  

1. numerical (quantitative) approaches 

2. non-numerical (qualitative) approaches 

3. Hybrid approaches 

BN are a hybrid approach that is both quantitative but has also qualitative 
meaning, see [23]. In our thesis we use both aspects of BN. However, in this 
section we focus primarily on BN expressiveness as qualitative method. BN is a 
statistical modeling method used to represent uncertain causal relations between 
different statistical variables. By using BN methodology it is possible to deal 
with uncertainty in a uniform and scientifically correct manner. The 
methodology has several potential areas of application within the IF and 
intelligence domain, for instance hypothesis management [24], [25], [26]; 
detecting threatening behaviours by insiders [27], antiterrorism risk management 
[28] or probabilistic assessment of homeland terrorist threats [29]. In Chapter 4, 
we use BN as key methodology for tactical plan recognition.   

The graphical representation of BN is different from that of UML and uses 
nodes and arcs representation. The BN is thus a suitably labelled directed graph.  
Only one kind of relation between variables is described. This kind of relation is 
also called “influence relation” or “uncertain causal relation”.  

Each node represents a variable that can be either discrete or continuous. 
Variables and their states are represented by conditional probability distributions 
also called subjective probabilities. Bayesian Networks are also called belief 
networks since they describe our belief about the state of the variables. An 
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advantage of the BN is that our knowledge is implemented in a piecewise 
manner. We only have to “explain” how a particular node depends on its 
parents.   

 According to [22] the formal definition of BN is:  

• A set of variables and a set of directed edges connecting variables  

• Each variable has a finite set of mutually exclusive states  

• The variables together with the directed edges form directed acyclic 
graph (DAG) with variables as nodes 

• To each variable A with parents B1 .. Bn there is attached a conditional 
probability table P(A| B1 .. Bn) 

 Mathematically expressed the BN defines a joint probability distribution over 
stochastic variables X:      

))(|()..(
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1 ii
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Where n is the number of the nodes in the network and Xi represents a 
stochastic variable no. i of the BN. The characteristic feature of a distribution 
defined by a BN is that the distribution of a variable Xi is conditioned only on 
its immediate (local) ancestors values, i. e. its parents par(Xi ). 

When we describe a time-dependent BN we speak about Dynamic Bayesian 
Networks (DBN). A DBN consists of several layers of BN with the same 
structure. The additional influences in DBN are the variables of the previous 
step(s) that make influence in variables for future step(s). Note that the term 
“dynamic” means that we are modelling a dynamic system, not that the network 
changes over time [30]. The variable values change over time but the network 
topology remains same. 

3.4 A Hostile Company Bayesian Network 
Model Example 

In military applications the issue is how to recognise certain military behaviours 
of the enemy.  
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Figure 8.  A BN Company Behaviour and Organization Model  

 

Using the movement pattern, speed, distance, visibility, maneuverability distance 
to presumptive target etc., it might be possible to fuse the acquired knowledge 
about the enemy and use it in plan recognition. The advantage would be that 
military commanders, having better knowledge about the enemy’s intentions, 
will be able to act earlier. The ability to act preventively increases as well. 
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As the first step in making a company BN, see Figure 8, we make a BN of a 
single hostile platoon. We specify variables in the graphical diagram, see Figure 
8. After that, the causal relationships between variables are specified. Finally, we 
define conditional probabilities to “explain” how a certain variable’s values 
depends on its parents values. E. g. we previously mentioned the variable 
Formation, see Section 3. 1, that may have the following values:  Lead, Battle 
line, Stepped Formation and Battle Triangle. We define a conditional probability 
distribution over all possible combinations of these values and connect it to the 
platoon behaviour node.  

After building a platoon model for plan recognition we define a company model 
that consists of three platoons. In this case we intended to define a platoon class 
with three instances. But modelling with classical BN does not support this kind 
of approach. Instead we had to perform a cut and paste process and when we 
wanted to change the model of a platoon we had to change it in all the three 
instances.  

3.5 Discussion 

The structure of BNs explains the model in a qualitative way, see [24].  Also, the 
results may be used for comparing hypotheses instead of expressing how 
probable they are. DBN are used in this implementation to represent our 
knowledge that is built-up in a piecewise manner. By using this kind of 
approach we obtain a better overview. The knowledge is transparent and the 
black box concept is avoided. Our model is still incomplete in the sense that we 
do not incorporate the association and identification problems. 

However, BN seems to be a reasonable choice for representing uncertain 
military behaviour as well as uncertain military organizations, since this method 
combines uncertainty and a priori knowledge in a homogeneous way. We can 
compare those models and facilitate the verifying process. As result we get a 
more reliable BN and the modelling time decreases. 

The important issue is how to build a BN from the UML class diagram. As a 
first step we create a BN representing a military unit, a company model in our 
case. The structure of the UML military unit and planning model facilitated the 
work of modelling (D)BN representing a hostile company but no formalism has 
yet been applied.  

When we implemented the BN we realised that we cannot use the principle of 
reuse/generalisation more than copy and paste of the BN fragments. Therefore 
we need a structured framework/ontology of Bayesian network fragments for 
representing opponent behaviours. An interesting approach is presented in [31] 
and this is probable basis for further work on this problem.  
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Chapter 4  
Multi-Agent Plan Recognition 

4.1 Introduction to Plan Recognition  

Plan recognition is the term generally given to the process of inferring an agent’s 
intentions from its actions, see also [32, 33]. The representation that plan 
recognition offers is a rich and highly interrelated description that explains an 
aspect of agent’s/agents’ state and predicts goals and future actions of the 
agents.      

Recognition of plans can be classified in different ways. One of these ways are 
intended and keyhole recognition, see [33]. Intended plan recognition is one of the 
classifications where an agent deliberately structures its actions to make his 
intentions clear to other, friendly agents; e.g. coordination of agents by plan 
recognition [34]. Here, we deal with hostile agents that try to hide their plans as 
long as possible (keyhole recognition).  

We see plan recognition as the process of deriving hypotheses about agent’s 
actions.  

The 1990’s advance in probabilistic methods in AI initiated research in 
stochastic plan recognition [39], [40], [41]. Previous approaches took only one 
hypothesis as the guess on agents plans [35], [36], [37], [38]. Such unilateral 
approaches may not produce reliable results in applications where several types 
of uncertainties exist. To achieve improved reliability a user should be offered 
more than one hypothesis by plan recognition. Employing probabilistic 
methods in AI has made it possible for plan recognition to support quantitative 
decision making and handle the problem of grounding belief in sensed 
experience, see [32].  

Our application area is in the military domain for ground forces. “Battle space is 
an abstract notion that includes not only the physical geography of a conflict but 
also the plans, goals, resources and activities of all combatants prior to, and 
during, a battle and during the activities leading to the battle” [42]. Our plan 
recognition model deals with: 

• Knowledge representation in statistical manner 
• Uncertain observations  
• Imprecise prior 
• Terrain representation           
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Here we represent our prior knowledge in a statistical manner by using DBN 
[30].  Due to fog of the war and sensor capabilities, observations are assumed to 
be uncertain. This uncertainty is represented by our observation model.  
Moreover, there exists uncertainty if the outcomes of actions of the agent reflect 
its true intent (war frictions). Knowledge about agents is imprecise and suffers 
from linguistic vagueness. We found valuable the concept of using fuzzy set 
theory [43] where we model imprecise knowledge and combine it with sensor 
data making it situation (context) dependent. The result from fuzzy membership 
functions is entered into a DBN. Final problem that we deal with here is the 
terrain representation. It can be difficult to represent terrain for plan recognition 
in a tractable manner. Instead of representation of each terrain part with a 
Bayesian node (as in [39]) we use fuzzy membership functions to translate 
terrain data to contextual (relevant) information for plan recognition. This 
enables reusability and a generic approach for plan recognition. 

Here, we show how our knowledge about an agent (opponent) or group of 
agents can be represented and their plans recognised by using combination of 
fuzzy membership functions and DBN. In order to focus on plan recognition, 
in this work we do not deal with the classical identification and association 
problems that are primary functions on level one of the JDL model. The 
stochastic nature of plans is derived from the fact that we do not have full 
knowledge about the enemy and his actions. This implies that military 
commanders should not only pay attention to the plan with the highest 
probability but to all plans that have a significant probability to be in use. The 
automatic process of plan recognition is performed for each new observation. 
The process is on-line and involves many agents (units) acting together. Thus 
we introduce on-line multi-agent stochastic plan recognition. However, in [44] we used 
the word “policy” instead of the word “plan” because we followed notation of 
the [39]. 

In military applications the issue is how to recognise certain military behaviours 
of the opponent. Using the movement pattern, speed, weather, terrain, distance 
to presumptive target (expected driving time), etc., it might be possible to fuse 
the acquired knowledge about the enemy and use it in plan recognition. The 
advantage would be that military commanders having better knowledge about 
the enemy’s intentions will be able to act earlier. The ability to act preventively 
increases as well. In this chapter we claim that by using our knowledge about 
hostile force doctrines and fusing this knowledge with sensor information we 
can recognise certain military behaviours of the hostile force. Our aim is to 
demonstrate the statement above in a proof-of-concept model.  More concrete, we 
have implemented a hostile company multi-agent model, on three decision 
levels. This work uses a DBN model to represent our beliefs about hostile force 
units.   
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4.2 Soft computing method for plan 
recognition: DBN and Fuzzy 
membership functions  

On-line multi-agent stochastic plan recognition, introduced in [44], aims to 
detect which plans an agent or group of agents are executing by observing the 
agents' actions and by using a priori knowledge about the agents in a noisy 
environment. Methodology for plan recognition belongs to weak/soft 
computing in computer science [45].   

Soft computing is a type of calculations that is “tolerant” (unlike conventional 
computing) to incompleteness, uncertainty and approximation. We see our 
generic model for plan recognition as a soft computing method that combines 
Bayesian statistics and fuzzy membership functions. The latter has responsibility 
to connect observation data to DBN by entering context relevant evidence. 

Plan recognition can be viewed as a classification problem: which plan is being 
executed?. Therefore techniques as neural networks could be applied. However, 
the use of symbolic methods is preferred where we can use abstract 
representation of intentions. Moreover, (fortunately) wars do not occur very 
often and the subjective knowledge becomes a more informative source than 
historical data, so symbolic representation is probably more suitable. 

Here, we propose use of DBN as the base for plan recognition reasoning 
(inference). There are several reasons to use DBN. One of them is that it 
represents uncertainty in a structured and piecewise manner. By representing 
knowledge with a BN we can define large probability distributions. The second 
reason is that BN provides a transparent knowledge representation model. This 
implies that we are able to modify a part of the DBN, changing a direction or 
changing a local distribution, without being forced to change all nodes. This 
facilitates knowledge reuse. Finally, the DBN provides a qualitative knowledge 
representation [25]. 

Doctrine (behaviour) knowledge is usually described in textual (free format) 
form. Linguistic impreciseness provides the elasticity to conserve a family of 
models capable of capturing the essence of the problem. However, 
representation of imprecise knowledge in a computer understandable manner 
may turn out to be a difficult process. Therefore when modeling a priori 
knowledge from textual documents it is hard to describe all aspects of 
knowledge properties.  

Fuzzy membership functions have turned out to be a useful method to 
transform sensor data to classes based on incomplete, empirical knowledge even 
in other applications [46]. The parameter space in fuzzy set theory is vague 
which enables context based representation. To represent (empirical) 
behavioural a priori knowledge that is imprecise we use a family of fuzzy 
membership functions also in our plan recognition model. In fuzzy logic we are 
imprecise and can express even to which degree an attribute has its property, i.e. 
belongs to certain class.  Those functions that express such degree are called 
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fuzzy membership functions. E.g. a person either is long or not in “crisp” logic 
but in fuzzy set theory it can belong to the class long to certain degree. More 
advanced representations of fuzzy membership functions deal with problems 
where an attribute has more than one property. Such fuzzy functions are 
designated as family of fuzzy membership functions, i.e. an attribute property 
can belong at same time in various degrees to related classes. We see fuzzy 
membership functions as a tool to translate sensor data to evidence for DBN. 
This translation of context independent (sensor) data to context dependent data 
(information) with respect to incompleteness is the main advantage of fuzzy 
membership functions, for our purpose. Corresponding classes are represented 
as states in DBN’s nodes.  

4.3 Description of plan recognition model 

We want to answer by plan recognition the question what an agent or group of 
agents is doing. In Figure 9, plan node (Pn) (hypothesis node) represents our 
belief about what a certain agent on decision level n is doing. The hypothesis 
space is spanned by a priori knowledge about the agent. This space contains 
discrete plan alternatives specific for decision level n. By abstraction level, n, we 
mean the level of discernment interesting for the current user (military 
commander) and/or the decision level in the opponent’s structure.   

Given a certain plan alternative the knowledge what we are expected to see, i.e. 
which states we are expected to observe is encoded. That is the reason why we 
say that plans or certain behaviours cause state change (Sn). E.g. it is possible to 
represent support, knowledge, to the hypothesis “agent is angry” if this agent is 
screaming and throwing things around, i.e. causes change of state. A tactical 
military example could be that alternative attack causes certain (generic) changes 
in (agent’s) state such as regrouping into certain patterns.  
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Abbreviations list  
Abbreviation Explanation  
N Abstraction/decision level 
Pn Plan node containing (discrete) alternatives (attack, march, …) 
Sn State node (terrain,  visibility, doctrinal nodes such as formation) 
On Observation node contains observations of state nodes 
FBn Force balance node with states “Stronger” or “Weaker” 
AOM Agent observation model that partly models of agent’s 

observation’s capability   
 

Figure 9.  Generic Plan Recognition Model 

In DBN we use conditional probabilities. Our a priori knowledge is the 
knowledge what is the most probable state given plan alternatives 
P(State|Plans). For tactical plan recognition purpose we use knowledge about 
temporal, spatial and pattern properties. Doctrine manuals, terrain properties, 
weather conditions, formations, and expected time to impact are nodes 
supposed to be represented in DBN and are classed as State and State-Plan a 
priori knowledge.  

Force Balance node (FBn) takes capabilities between opponents into account. Its 
states are {Stronger, Weaker}; it is a greater probability that an agent will attack 
if it is stronger than if it is weaker. Expected losses and how much an agent 
would gain by executing certain plans is a trade-off that has been modelled.  

An agent plans are also under strong influence of discovery. To trigger attack 
behaviour the agent (opponent) has first to discover our forces.  Therefore in 
our implementation we also build a limited model that represents hostile force 
ability to observe us and we call it enemy (agent) observation model (AOM). In 
our implemented model we assume that the discovery probability depends only 
on the distance from the enemy to our forces and visibility.     

Some states are easier to observe than some other states. With our state-
observation relation we model the degree of trust in observations given states.  

  Sn   Pn  FBn   On 

 AOM 
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P(Observations|States). Observations can be positions but also aggregated 
containing patterns. As an example, we can state that one type of unit formation 
has lower probability to occur when maneuverability is bad, see also “The 
Movement-Analysis Challenge Problem” in [42]. Fuzzy functions take as input 
enemy’s tank positions, position of our forces and terrain data. The outputs of 
those functions are the probability distributions over the variables Cover, 
Distance, Tank Plan, (Platoon) and Tank Maneuverability. This operation is 
performed for each tank. The uncertainty about the observations takes into 
account how the information of the pixels representing the terrain of interest 
should be weighted. In our example we used a simple approximation of the 
rectangular distribution over each position. More advanced representations of 
fuzzy membership functions deal with problems where an attribute has more 
than one related property that depends on each other. Such fuzzy functions are 
designated as family of fuzzy membership functions, i.e. an attribute property 
can belong at same time in various degrees to related classes. E.g. an attribute 
called “tank platoon’s formation type” can belong to classes: “marching 
formation”, “stepped formation” and “battle line formation” depending on 
formation angle. 

 

 
 

Figure 10. Formation fuzzy function 

 

In Figure 10, we see a family of fuzzy membership functions of attribute tank 
platoon formation. To the left we see a fuzzy function representing formation 
type “marching formation”. In the middle we see a fuzzy function of “stepped 
formation” and on the right we see a fuzzy function of “battle line formation”. 
Formation angle relative to its moving direction is calculated by using 
observations of tank positions. For each angle we obtain a distribution of 
membership degrees of belonging to a certain formation. This distribution is 
entered to a Bayesian node Formation and it is interpreted as subjective 
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probability distribution of states, i.e. each state corresponds to a fuzzy 
membership function. 

4.4 Simplified representation of the 
implemented DBN for plan recognition 

We have implemented a hostile company model, a multi-agent model, in 
MATLAB using K. Murphy’s BN package [47]. The DBN representation of a 
hostile company’s organization is visualised in Figure 11 and a simplified DBN 
model description is represented in Figure 12.    

Our implemented model of a hostile tank company is hierarchical, 
corresponding to a hierarchical plan structure. The company consists of three 
tank platoons, each platoon containing three tanks. For each level there is a 
certain set of plans that are influenced by the higher level plans. The simplest 
plans, the atoms, consist only of a set of actions. In this example the simplest plan 
is the tank (group) plan. More complex plans consist of other plans, also 
referred to as sub-plans, or a mixture of sub-plans and actions. Higher level plans 
influence lower level plans down to their action atoms. The plan hierarchy with 
its decision levels, is represented by the DBN. Plan for each agent (hostile unit) 
is represented as a DBN node. The simplest plan is on tank (group) level, n = 0.   

Tank i’s plan variable, πn = 0,i=1..3, has the following discrete states: 

πo,i  = <agent i is moving in the direction of our own force, agent i is moving in the 
direction opposite to our own force, agent i is moving in neutral direction> 

On the next level we have the plan of the tank platoon i at level n = 1: 

πn=1,i  := <attack, defence, reconnaissance, march> 

Finally on the top level we have the plan of the tank company at level n = 2: 

πn=2,i  := <frontal attack, frontal attack and flange attack, defence, delay battle, march> 

In Figure 11 we show a Bayesian network representing the plan hierarchy model 
of a hostile company. 
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Figure 11. Plan hierarchy (Company organization model)  

 

An additional reason for using this modelling approach is that this model 
follows military hierarchy; commanders give orders to their subordinates who 
are superior at the next level. Moreover, a DBN with a proper description offers 
flexibility beyond hierarchical modeling in a consistent manner. 

 

 

Figure 12. Company Model: simplified version  

 

In Figure 12 the multi-agent plan hierarchy consists of the plan of the company 
at the top level, the platoon plans at the next level and the tank plans. Our DBN 
modelling approach is that the company plan causes change in platoon plans 
and platoon plans cause change in group (tank) plans. One of the key variables 
that reveal agent plans is their formation, the spatial pattern they form. It is 

π 1,3  π 1,2 
π 1,1  

π 0,2 π 0,3  π 0,1 … …

π 2,1 

Company plan  Company Formation    Discovered 

 Platoon one plan 

 Tank one action  Tank two action Tank three action

Platoon 
Formation 

 Observed 
Platoon 

Formation

Platoon 
model  

. . .  . . .  

Maneuverability 

 Previous Comp. 

Previous Plt.



 27

represented as a Bayesian node in the network. According to doctrine manuals, 
when the enemy has the intention to attack it usually attacks in battle line 
formation. When transporting to a certain destination the enemy transports in 
“march formation”. There are many reasons why the enemy may not use a 
certain type of formation. One of the factors that have influence on building a 
formation is the current terrain. When the platoon maneuverability is bad the 
enemy will not have the opportunity to attack in battle line and the probability 
of the formation type battle triangle increases. The probability that the enemy is 
performing reconnaissance increases when he is moving in a stepped formation.    

According to our model, the variable Observed Formation, grey node in Figure 12, 
depends on the actual formation. Due to environment, uncertain observations 
and possible agent’s coordination problems we are not always able to observe its 
formation pattern. It is the rule rather than the exception that the enemy’s 
formations do not follow the same geometrical properties as described in the 
doctrine manuals. Therefore we implemented a fuzzy function in MATLAB that 
takes the estimates of the tank positions as inputs and as output returns the 
distribution of the observed formation’s values. The result is entered as soft 
evidence in the variable Observed Formation. By Bayes rule it has influence, 
backwards, on the value Formation.  

To achieve tactical superiority on the battlefield, tanks maneuver very often. 
That implies for our modeling approach, that we do not connect nodes 
representing tank plans over time, see the nodes Previous company and platoon 
plans. We connect platoon plans and company plan over time because of higher 
inertia than inertia of tank plans (actions). If the whole company is attacking at 
one time step there is a significant probability that the company will continue to 
execute its plan alternative attack in the next time step. 

4.5 Scenarios, simulation and results 

We have visualized the movement of a simulated hostile company unit. The 
hostile company unit consists of three platoons. Each platoon consists of three 
tanks. We use a scenario for this simulation. In the beginning of the scenario, 
the tanks are marching in a neutral direction. The company is not spread over a 
vast area and the distance to our forces is initially large. Fuzzy membership 
functions take as input agent’s (enemy’s tank) positions, position of our forces 
and terrain data. The outputs of those functions are the probability distributions 
over the variables Cover, Distance, Tank Policy, (Platoon) Formation, Company 
Formation and Tank Maneuverability. This operation is performed for each agent 
(tank). The uncertainty about the observations takes into account how the 
information of the pixels of interest should be weighted. In our example we 
used a simple approximation of the rectangular distribution over each position.  

In time step two observations about current positions and direction of the 
enemy arrive, see Figure 13. We performed the computation of plans for the 
company and the platoons on-line and the results for this step are documented 
in Table 1. 
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Figure 13. The Enemy Company is Approaching (Red boxes symbols) 

Table 1. Company, platoon plans and values   

Most probable and least probable plans (a snapshot of 
situation showed in Figure 13)   

 Most probable states 
(Probability %) 

Least probable  

(Probability %) 

Company 
Plan 

March (47 %)   

Flange attack (21 %) 

Defence (3 %)   

Platoon One 
Plan  

March (80 %)   Defence (5 %) 

Platoon Two 
Plan  

March (70 %)   Defence (7 %) Attack (8 %) 

Platoon Three 
Plan 

Attack (90 %) Defence (0.5 %) March (1 %) 

 

The probability that the enemy company has discovered us is 33 %. The most 
probable state of platoon three, according to Table 1, is attack. The explanation 
is that this platoon is approaching in the direction towards us. However, the 
most probable state of the company plan is march. This is achieved by weighting 
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with other nodes including the two other platoon plans. It is usually difficult to 
infer intentions of a single tank if this unit is not put in a greater context such as 
platoon or company.  

After some time observations are received. The enemy begins to approach and 
then passes by.  The movement and formation pattern indicates that enemy has 
not discovered us although the distance is short.  Thus, the most probable 
hypothesis is that the hostile force is performing march (with probability 98 %). 
The most probable platoon two plan is march and is 97 % in this case. But for 
platoon three there is a probability of 44 % that the platoon will attack us and 
only 27 % probability that this platoon is marching. The probability that the 
enemy company has discovered us in this time step (time step = 6) is only 7 %.  

4.6 Contributions 

In this work we extended the case of the single agent [39] to the on-line multi-
agent stochastic plan recognition problem using a network structure. By using 
knowledge of agents’ interrelations we can create a plan structure that is 
compatible with that of a hostile military organisation. Using this approach we 
make use of existing knowledge about the military organisation and thereby 
strongly reduce the size of the hypothesis space. In this way we are able to bring 
down the problem complexity to a level that is tractable. Also, by using 
statistical models in plan recognition we are able to deal with uncertainty in a 
consistent way. For the information fusion purpose, we show with our plan 
recognition model that it is possible to integrate the pre-processed uncertain 
dynamical sensor data such as the enemy position and combine this knowledge 
with terrain data and uncertain a priori knowledge such as the doctrine 
knowledge to infer multi-agent plans in a robust and statistically sound manner.  
 
 
    
      
 
 
 
 
 





 31

Chapter 5  
Plan Recognition and Sensor 
Management   

In Chapter 4, we described plan recognition and here we present a bridge 
between plan recognition and the information acquisition process (IA) [48] that 
feed an IF process and thereby plan recognition with sensor data. Research 
work presented in this chapter is a result of cooperation with Ronnie Johansson 
whose main field of study is information acquisition for IF.  

Plan recognition requires relevant and timely information to produce useful 
results. Sensor resources that are part of IA are typically limited.  IA supplies IF 
with sensor data and cannot satisfy all information needs in all cases. To date 
(state) uncertainty in sensor observations has been a most important control 
parameter when controlling sensors and collecting data. Such, control does not 
take tactical importance, a kind of high-level information, into account. Here, 
we reuse high-level information obtained from plan recognition for focusing 
sensor resources on the most relevant tasks.  By focusing sensor resources on 
the most relevant tasks we achieve improved predictive situation awareness. 

 

 

 

Figure 14. Sensor Management and Plan Recognition  

 

Plan recognition produces plan estimates that are in IA used to prioritize sensor 
tasks, see Figure 14. Sensor management does its best given the guidelines it 
receives from plan recognition. New observations are made by the sensors 
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which are fed back to the plan recognition process through multi-sensor data 
fusion and aggregation processes. 

The main purpose of our cooperative research work, presented here, is to 
connect high-level information, in our case the outcome of plan recognition, to 
the control of the sensors that are intended to acquire most important 
information. Here, we introduce [49] and explore parts (aspects) of a 
framework, in an implementation [50], for expressing transition from 
information need to sensor control.  

5.1 Framework for bridging the gap 
between high level information need 
and information acquisition 

The general structure of the framework, depicted in Figure 15, involves two 
types of entities: space and function. The four space entities: task origin, task, service 
and resource are containers of structured information. The structure of 
information of each space entity should suit the intersecting function entities: 
task creation and management, allocation scheme, and service management and resource 
allocation.  

 

 

Figure 15. The Framework 

 

The framework prescribes that information need (contained within the task 
origin space) is formulated as information tasks with assigned properties (e.g., 
priority or time horizon depending on what properties the system is designed to 
handle). Such tasks belong to the task space in our framework. The 
materialization of tasks to satisfy a certain information need could be the 
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responsibility of the task creation and management function. The service space 
contains services that the sensors in the resource space (independently or 
jointly) can perform. The allocation scheme describes how tasks are connected 
to feasible services, i.e. services that are suitable for handling the tasks.  

Plan recognition here belongs to “Fused information” box in the task origin 
space. Plan recognition produces estimates of agents’ plans acting in the 
environment. We label this "high-level" information since it is interpretative and 
tries to provide an explanation. In contrast, "low-level" information typically 
originates directly from sensors and simply estimates observable properties of 
the environment (such as position, feature, etc.).  

Plan recognition’s results are in our framework used to prioritize sensor tasks. 
This is performed in the “Task creation/management” step of the framework. 
To automatically assign the priority of a task (e.g. monitoring/tracking an 
(hostile) agent) we use plan recognition results, estimates, with its 
variance/sensitivity. Additional advantage of our framework concept is that in 
such prioritization we do not need to take into account available resources at the 
“Task creation/management” step. Available resources are encapsulated by 
services that are an interface to sensor tasks. In the allocation scheme we take 
into account resources but via services. At this step we reprioritize sensor tasks 
concerning availability of services (joint or individual sensor resources 
capabilities). We propose bridging the gap between plan recognition, i.e. high-
level information, and information acquisition as a stepwise process cued by our 
framework description.  

However, the prioritization of tasks should not ultimately depend only on 
estimated plans. It should depend on information uncertainty as well. We 
propose an approach of measuring how sensitive inferred information is to 
changes of underlying information. In other words, we pose an issue: is the 
underlying information considering its uncertainty reliable and sufficient to infer 
robust a conclusion? If large changes in uncertainty have little effect on threat 
level then we can say that even large uncertainty is acceptable in this case.  

On the other hand, there are cases where large dispersion in inferred results is 
obtained from information with low uncertainty. Consequently, we say that this 
kind of underlying information which for small changes causes significant 
changes in result is more sensitive. To measure sensitivity, we propose to use a 
method that samples and estimates the standard deviation of inferred plans. If it 
turns out that the estimations of plans for a particular unit is very sensitive to 
uncertainty of data for a unit in a particular situation then information about this 
unit should get higher priority.  

Finally, we state that prioritization of tasks is conditioned on both activity 
(subsequently expected impact; further discussed in [51]) and information 
sensitivity. The solution to automatic task prioritization can be obtained by 
using some soft computing method, e.g., Fuzzy membership functions or  BN, 
see [49]. 
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5.2 Realisation of a Bridge between High-
Level Information Need and Sensor 
Management 

 

In this chapter we discuss an implementation of the framework. The bridge 
between sensor management and plan recognition presented here is that we 
reuse plan recognition estimates to prioritize sensor tasks.  

Our aim was to demonstrate that our implementation gives reasonable results in 
a scenario, see Figure 16. Furthermore, interesting results are obtained in more 
complex scenarios. Here we consider an extensive geographic environment 
including two consumers (actors) located in the middle of the view (a1 and a2).  

 

           

 

Figure 16. Decision Support Context 

 

The purpose of plan recognition is here to support some information consumers’ 
decision making. They perform plan recognition based on information about 
agent states. In the scenario there are nine (hostile) agents, i.e., platoons. Groups 
of three platoons belong to a company. There are two companies near the north 
perimeter (labelled CN1 and CN2 respectively) and one in the far south of the 
view (CS). There are two types of resources modeled. One type is the UAV 
observer which can travel quickly but can only give state estimates from a 
distance (to ensure its own security). The other one is the ground soldier who is 
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limited in speed but who can hide himself close to the road and make 
comparatively precise state estimates of a passing vehicle. The IA has duties 
such as collecting measurements to track hostile agents, and to configure and 
engage sensors in tasks. The objectives of the consumers are to know as much 
as possible about plan recognition estimates of the hostile agents.  

To achieve purposeful IA, task management prioritizes (orders) tasks. We 
introduce the notion of threat and the idea that the higher threat posed by an 
enemy unit the higher the priority of the corresponding task it should be. The 
threat calculation integrates estimated plans (ep). We introduce threat weights 
(wj) whose magnitude is dependent on the danger (threat) corresponding to each 
plan alternative xj. The probability for a plan alternative xj is p(xj | obs) given 
observations.  E.g. the weight corresponding to a plan alternative attack has 
greater magnitude than a weight for alternative march.   

Hence, 

)|( obsxpwep jj

j
∑ ⋅=

 

is a summarized threat value of the plan distribution. The threat estimate (T) 
becomes: 

T = ep  

We cannot be entirely satisfied with this calculation of threat estimation for task 
prioritization. It does not fully reflect the sensitivity caused by the uncertainty 
properties such as position of the enemy units. Ideally, we want to find the 
expected threat and threat variance of each enemy unit given estimated 
properties and uncertainties. In general, the expected threat and threat variance 
cannot be calculated analytically. We would therefore like to approximate these 
properties using Monte Carlo simulation. However, our current position 
uncertainty model is simply an uncertainty radius (ur) that grows with time when 
no observations are made. The model is unfortunately at present ignorant of 
terrain characteristics and sampling from it is computationally costly. A possibly 
feasible approach would be to let a terrain-aware particle filter [52] represent the 
position uncertainty. Sampling from the particles would yield more accurate 
estimates of expected threat and variance. 

For prioritization of tasks, additional factors can be considered. The expected 
impact (ei) of the enemy unit attacking one of our units or essential resources 
could be explicitly represented. The priority could also depend on the time 
duration (td) before a particular enemy unit can engage in an operation against 
our resources; longer duration gives lower threat. We also motivate the use of td 
due to sensors limited velocity that may result in a considerable difference in 
time delay for different observations.  

Hence in principle, the task priority becomes: 

Priority  = T + ur  + ei + td 
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Finally, focus of attention for IA is maintained by the allocation scheme which has 
to consider both task priorities and the availability of services.  

In Figure 17, we illustrate how our implementation changes its focus of 
attention to the three companies CS, CN1, and CN2, by changing tasks for 
sensors. The calculated task priority of the three companies varies during 35 
simulation time steps. Initially, CS (the solid line in Fig. 17) is the greatest and it 
increases as long as the company has not been observed. The UAV sensor is 
accordingly allocated to CS. It is moving north along the road in the beginning 
of the scenario (while the companies in Rn remain stationary). After a short 
while (about time step 7), before the UAV has a chance to observe CS, CS is 
spotted by one of the ground observers in region. Since the uncertainty of the 
whereabouts of CS has been lowered, the priority decreases. At this point 
priorities of CN1 and CN2 (the dashed lines) exceed that of CS and the UAV 
starts to look for CN2 instead. 

 

                  

 Figure 17.  Task priorities and focus of attention 

 

Around time step 20, the UAV observes CN2, but also CN1 which is in the 
vicinity. The threat levels of both CN1 and CN2 drop rapidly and CS has once 
again the highest threat level. The UAV changes its selected target back to CS as 
expected. This result suggests that the automatic management of sensors 
presented in this article agrees with an intuitive sensor control.   

In this section, we introduce a definition of plan estimate loss. It is a quantitative 
measure of how well plan recognition estimates a particular, critical, plan 
alternative given a sensor configuration and a control method. In our realization 
we do not use different control methods we are able to vary the number of 
(start) sensor configurations.  In our implementation the results of plan 
recognition are depend on a limited number of sensors(i) and tracking is 
performed by some sensor resource method Mr(i). In order to quantify how 
critical each plan alternative is we define the following penalty loss function. It 
assigns penalty measure Pen(xj) over plan space (χ) for each plan alternative (xj). 
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Then we calculate I(Mr(i), xj), see Eq. 1, which is the area between plan estimate 
for the case of unlimited number of sensors p∞(xj) and for the case of limited 
number of sensors pi(xj) in relevant surrounding. Finally, we define plan estimate 
loss during a time period: [t_start, t_end] as in Eq. 2: 

 

dtxpxpxiMI
endt

startt

r jijj |)()(|)),((
_

_
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   Eq. (1)              

∑
∈

⋅=
χxj
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    Eq.(2)                  

 

In our experiment, we vary the number of sensors in region north. These 
sensors are of type “Markus” (ground troop soldier) and are assumed to observe 
objects (agents). We focus on one of the enemy companies in the north and 
estimate the probability that this agent (company) will attack the consumer (our 
force). We perform four simulations of 160 time steps. Each of them returns 
the probability for attack given a varying number of sensors. In the first 
simulation we assume that we are able to observe the enemy at all time steps. 
This is equivalent to using an infinite or sufficient amount number of sensors in 
the simulation.  The attacking probability estimate for an infinite number of 
sensors is used as a reference when comparing to other attacking probability 
estimates with a limited number of sensors (observations).   

In Figure 18, all attacking probabilities are equal while the enemy company is 
not moving. In other words, estimated position is the real position. The CN2 
starts moving and we observe first divergence of the plan estimate for unlimited 
number of sensors (red line in Figure 18). In the case of three sensors we get a 
result that underestimates the attacking probability in a time interval (blue line), 
in other words the lack of (important) information in this case delays discovery 
of threat.   
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Figure 18. Attacking probability estimate over time given sensor configurations 
with one, three and infinitely many sensors 

 

This work on bridge was a contribution that shows how high-level information 
(predictive state) can be used for a proactive multi-objective control in large-scale 
environments.  
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Chapter 6  
Further Development  

Our plan recognition models should be more flexible for partial changes. 
Additionally, considering that experts (knowledge and sensor estimate) could 
have significantly different opinions, a Robust Bayesian approach [53] could be 
considered as a further development. The result of the robust Bayesian 
recognition (recognition of plans according to different experts) could be a 
family of plan recognition estimates instead of one estimate distribution per agent.  

To achieve better flexibility we propose research about suitability of Multi-entity 
Bayesian Networks (MEBN) for plan recognition. It is an extension of standard 
BN in their ability to encode repeated, parameterized argument structures called 
MEBN Fragments, [31]. In that manner we improve reusability and achieve 
better flexibility of plan recognition. 

Furthermore, we propose an approach that takes agents’ (simulated) capabilities 
into account. A agent based simulation that supports plan recognition with situation 
based knowledge, where CPTs are changed on-line, is one of the most probable 
future developments. 

  





 41

Bibliography 

[1]  © Network Inference 2004, “The Evolution of Integration Technology 
Towards an Enterprise Semantic Web”, White House Conference 2004, 
SEMANTIC TECHNOLOGY SERIES, 2004, 
www.topquadrant.com/documents/sept8egov2004/ Jeff%20Pollock-Semantic-
Tech-Evolution.ppt 

[2] E. A. Smith, “Effects Based Operations: Applying Network Centric Warfare 
in Peace, Crisis, and War”, ISBN: 1893723089, DoD-Ccrp, US, 2002. 

[3] Marco Smedberg, ”Om stridens Grunder”, ISBN 91-7125-028-X, Page One 
Publishing AB, Stockholm, Sweden, 1994. 

[4] Marco Smedberg, ”Militär Ledning”, M7743-858001, Historiska Media, 
Lund 2001. 

[5] P. W. Phister, T. Busch, and I. G. Plonisch, “Joint synthetic battlespace: 
Cornerstone for predictive battlespace awareness”, In Proc. of the 8th Intl C2 
Research and Technology Symposium, 2003. 

[6] S. J. Russell, P. Norvig, ”Artificial Intelligence”, ISBN 0-13-103805-2, 
Prentice-Hall, New Jersey 1995.  

[7] R. A. Piccerillo and D. A. Brumbaugh, “Predictive battlespace awareness: 
Linking intelligence, surveillance and reconnaissance operations to effects based 
operations”, In Proc. of the C2 Research and Technology Symposium, San Diego, US, 
2004. 

[8] Klas Wallenius, “A Generic Model of Management and Command and 
Control”, In 7th International Command and Control Research and Technology 
Symposium, Quebec City, QC, Canada, September 16-20, 2002. 

[9] R. Suzić, “Knowledge representation, modelling of doctrines and 
information fusion”, In Proceedings of the CIMI conference, Enköping, Sweden, May 
20-22, 2003.  

[10] R. Suzić, ”Kunskapsrepresentation av doktriner och taktiskt uppträdande”, 
Technical Report FOI-R--0865-SE, Swedish Defence Research Agency, 
Stockholm, Sweden, June 2003. (In Swedish) 

[11] ”BrigR A Strvplut Fu (förhandsutgåva)”, M7741-122740, ATK, Sweden 
2002. (In Swedish) 

[12] K. Pallin, ”Militärstrategisk doktrin”, Bilaga 1 till 19 400:740754, Sweden, 
2002. 



 42

[13] David L. Hall and James Llinas, editors, Handbook of Multisensor Data Fusion, 
chapter 2 Revisions to the (JDL) Data Fusion model by Alan N. Steinberg and 
Christopher L. Bowman, CRC Press,  2001. 

[14] C. J. Matheus, M. M. Kokar, and K. Baclawski, “A Core Ontology for 
Situation Awareness”. In Proceedings of the Sixth International Conference on 
Information Fusion, pages 545 –552, 2003. 

[15] J. Cantwell, J. Schubert, P. Svensson, “Informationsfusion”, FOA-R—00-
01632-505—SE, Sweden, 2000. 

[16] J. F. Sowa, “Knowledge Representation”, ISBN, 0-534-94965-7, Brooks 
Cole Publishers Co, US,  2000. 

[17] M. Eklöf, P. Hörling, P. Svan, R. Suzić, C. H. Yi,” Information and 
Knowledge Management for Network Based Intelligence (NBI)”, Swedish 
Defence Research Agency (FOI), User Report, FOI-R--1417--SE, Stockholm, 
Sweden, 2004. 

[18] H. E. Eriksson and M. Penker, ”UML Toolkit”,  ISBN 0-471-19161-2, 
John Wiley & Sons, US, 1998.  

[19] M. Kokar, C. J. Matheus, Kenneth Baclawski, J. A. Letkowski, M. Hinman, 
J. Salerno, “Use Cases for Ontologies in Information Fusion”, In proceedings 
Fusion 2004, Stockholm, Sweden. 

[20] ”Pansarkännedom steg 1, 2”, Försvarsmedia, M7734-452543, Sweden, 
1991. 

[21] R. Suzić, “Generic Representation of Military Organisation and Military 
Behaviour: UML and Bayesian Networks”, In Proceedings of the NATO RTO 
Symposium on C3I and M&S Interoperability, Antalya, Turkey, 2003. 

[22]  F. V. Jensen, “An introduction to Bayesian Networks”, UCL press, 
London, ISBN: 1-85728-332-5, 1996. 

[23] J. Doyle and Richmond , “Background to Qualitative Decision Theory”, AI 
Magazine, American Association for Artificial Intelligence, US, 1999.  

[24] K. B. Laskey, S.M. Mahoney and  E. Wright “Hypothesis Management  in 
Situation-Specific Network Construction”, Proc. Seventeenth Conference on 
Uncertainty in Artificial Intelligence, 2001. 

[25] E. K. Jones, N. Dennis and D. Hunter, “Hypothesis Management  for 
Information Fusion”, In IEEE Aerospace and Electronic Systems, ISSN 0885-
8985, Vol. 18, No. 6, June 2003.  

[26] G. Laskey, K. Laskey “Combat Identification with Bayesian Networks”, 
Proc. Command and Control Research and Technology Symposium 2002. 

[27] K.B. Laskey, D. Barbara, T. Shackleford, E. Wright, J. Fitzgerald, Detecting 
Threatening Behavior Using Bayesian Networks, In Proceedings of the Conference on 
Behavioral Representation in Modeling and Simulation, 2004. 



 

 

43

 [28] L. D. Hudson, B.S. Ware, S.M. Mahoney, K.B. Laskey, “An application of 
Bayesian networks to antiterrorism risk management for military planners”, 
Technical Report, Department of Systems Engineering and Operations 
Research, George Mason University. 

[29] K. B. Laskey , T. Levitt, “Multisource Fusion for Probabilistic Detection 
and Opportunistic Assessment of Terrorist Threats”, presented at Aerosense 
2002. 

[30] Kevin P. Murphy, “Dynamic Bayesian Networks: Representation, Inference 
and Learning”, University of California, Berkeley, 2002, US. 

[31]  K.B. Laskey, “MEBN:  First-Order Bayesian Logic for Open-World 
Probabilistic Reasoning”, http://ite.gmu.edu/~klaskey/publications.html, 
George Mason University Department of Systems Engineering and Operations 
Research, US, 2004. 

[32]  H. A. Kautz,  “Research Statement: Efficient Real-World Knowledge 
Representation and Reasoning”, www.cs.washington.edu/homes/kautz/kautz-
research-statement.pdf 

[33] P. Cohen, C. Perrault and J. Allen, “Beyond Question Answering”, In 
Knowledge Representation and Natural Language processing. W. Lehnart and 
M. Ringle, Ed., Lawrence Erlbaum Associates, 1981. 

[34] M. J. Huber and E. H. Durfee and M. P. Wellman, "The Automated 
Mapping of Plans for Plan Recognition," Proceedings of the Tenth Conference 
on Uncertainty in Artificial Intelligence (UAI), Seattle, Washington, July, 1994, 
pgs 344-351.  

[35] Van-T. Vu, F. Brémond and M. Thonnant, “ Video surveillance: human 
behaviour representation and on-line recognition”, The Sixth International 
Conference onKnowledge-Based Intelligent Information  & Engineering Systems 
(KES'2002), Podere d'Ombriano, Crema, Italy, 16, 17 & 18 September 2002. 

[36] D. Fu, E. Remolina, J. Eilbert, “A CBR Approach to Asymmetric Plan 
Detection, Workshop on Link Analysis for Detecting Complex Behavior”, 
(LinkKDD2003) August 27, 2003. 

[37] F. Mulder, F. Voorbraak, “A formal description of tactical plan 
recognition”, Journal of Information Fusion 4(1): 47-61 (2003) 

[38] A. R. Pearce, C. A. Heinze, and S. Goss, “Enabling perception for plan 
recognition in multi-agent air-mission simulations”. Proc. Fourth International 
Conference on Multi-Agent Systems (ICMASS2000), pp 427-428, 2000. 

[39]  Bui, H. H., Venkatesh, S., and West, G. “Policy recognition in the Abstract 
Hidden Markov Model”, Journal of Artificial Intelligence Research, 17: 451-499, 
2002. 

[40] S. Saria and S. Mahadevan, ”Probabilistic Plan Recognition in Multiagent 
Systems”, International Conference on AI and Planning Systems (ICAPS), 2004. 



 44

[41] R. P. Goldman, C. W. Geib and Christopher A. Miller, “A New Model of 
Plan Recognition”, In Proc. Fifteenth Conference on Uncertainty in Artificial Intelligence, 
1999.  

[42] P. Cohen, R. Schrag, E. Jones, A. Pease, A. Lin, B. Starr, D. Gunning and 
M. Burke, “The DARPA High-Performance Knowledge Bases Project”, AI 
Magazine, Winter 1998, p. 30. 

[43] L. Zadeh, “Fuzzy sets”, Information and Control, 8:338–353, 1965. 

[44] R. Suzić, “Representation and Recognition of Uncertain Enemy Policies 
Using Statistical Models”, In Proceedings of the NATO RTO Symposium on Military 
Data and Information Fusion, Prague, Czech Republic, 2003.  

[45] F.O. Karray, C. de Silva, “Soft Comupting amd Intelligent Systems 
Design”, ISBN 0-321-11617-8, Pearson Education Limited, GB, 2004. 

[46] S. Mulgund, G. Rinkus, C. Illgen, & J. Friskie, “OLIPSA: On-Line 
Intelligent Processor for Situation Assessment”, Second Annual Symposium and 
Exhibition on Situational Awareness in the Tactical Air Environment, Patuxent River, 
MD, US, 1997. 

[47] K.P. Murphy, “Bayes Net Toolbox for Matlab” , Last updated on 29 May 
2003, http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html  

[48] L. R. M. Johansson, “Information Acquisition in Data Fusion Systems”, 
TRITA-NA-0328, ISSN 0348-2952, ISRN KTH/NA/R--03/28--SE, ISBN 91-
7283-655-5, CVAP283, November 2003. 

[49] L. R. M. Johansson and R. Suzić, “Bridging the Gap between Information 
Need and Information Acquisition”, Proceedings of the 7th International Conference on 
Information Fusion, ISIF, Fusion, 2004. 

[50] R. Suzić and R. Johansson, “Realisation of a Bridge between High-Level 
Information Need and Sensor Management Using a Common DBN”, In 
proceedings of 2004 IEEE International Conference on Information Reuse and Integration 
(IEEE IRI-2004), November, 2004. 

[51] Stefan Arnborg and Joel Brynielsson, “Bayesian games for threat prediction 
and situation analysis”, In Proceedings of the 7th International Conference on Information 
Fusion. International Society of Information Fusion, 2004. 

[52] M. Arulampalam, S. Maskell, N. Gordon and T. Clapp, “A Tutorial on 
Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking”, IEEE 
Transactions on signal processing, Vol. 50, No. 2, February 2002.  

[53] D. Rios Insua and F. Ruggeri (Eds.) Robust Bayesian Analysis (Lecture Notes in 
Statistics), volume 152. Springer-Verlag, 2000. 

 

 



 

 

45

 


