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Abstract

In this thesis we present new results in two areas – cryptographic protocols
and lattice problems.

• We present a new protocol for electronic cash which is designed to func-
tion on hardware with limited computing power. The scheme has prov-
able security properties and low computational requirements, but it still
gives a fair amount of privacy. Another feature of the system is that
there is no master secret that could be used for counterfeiting money if
stolen.

• We introduce the notion of hierarchical group signatures. This is a
proper generalization of group signatures, which allows multiple group
managers organized in a tree with the signers as leaves. For a signer that
is a leaf of the subtree of a group manager, the group manager learns
which of its children that (perhaps indirectly) manages the signer. We
provide definitions for the new notion and construct a scheme that is
provably secure given the existence of a family of trapdoor permutations.
We also present a construction which is relatively practical, and prove its
security in the random oracle model under the strong RSA assumption
and the DDH assumption.

• We show a weakness in the specification for offline capable EMV pay-
ment cards. The weakness, which applies to cards without RSA capab-
ility, enables an attacker to duplicate a card and make transactions that
cannot be tied to the original card.

• We give a method for approximating any n-dimensional lattice with a
lattice Λ whose factor group Z

n/Λ has n − 1 cycles of equal length
with arbitrary precision. We also show that a direct consequence of this
is that the Shortest Vector Problem and the Closest Vector Problem
cannot be easier for this type of lattices than for general lattices.
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Sammanfattning

Vi presenterar nya resultat inom två områden inom kryptografi – krypto-
grafiska protokoll och gitterproblem.

• Vi beskriver ett nytt protokoll för elektroniska pengar. Protokollet är
avsett för enheter med liten beräkningskraft, är bevisbart säkert men ger
ändå användare ett visst mått av anonymitet. Dessutom har banken i
protokollet ingen hemlighet som kan stjälas och användas för att tillverka
pengar.

• Vi introducerar begreppet hierarkiska gruppsignaturer, vilket är en gene-
ralisering av gruppsignaturer. I ett system för hierariska gruppsignaturer
finns det flera gruppchefer organiserade i ett träd med gruppmedlem-
marna som löv. Givet en signatur från ett löv kan en gruppchef som
är rot i ett delträd där lövet ingår avgöra vilket av hans barn som sig-
naturen (eventuellt indirekt) tillhör. Vi ger definitioner för hierarkiska
gruppsignaturer och beskriver en konstruktion som är säker om det exi-
sterar en familj lönndörrspermutationer. Vi ger också en relativt praktisk
konstruktion som är bevisbart säker i slumporakelmodellen under starka
RSA-antagandet och DDH-antagandet.

• Vi beskriver en svaghet i specifikationen för EMV-kort avsedda för off-
line-betalningar. Svagheten gäller kort utan RSA-funktionalitet och ger
en angripare möjlighet att genomföra transaktioner som inte kan kopplas
till hans kort.

• Vi ger en metod för att med godtycklig noggrannhet approximera ett
n-dimensionellt gitter med ett gitter Λ sådant att kvotgruppen Z

n/Λ
har n − 1 cykler av lika längd. Vi visar vidare att en direkt konsekvens
av detta är att kortastevektor-problemet och närmstavektor-problemet
inte kan vara lättare för dessa gitter än för allmänna gitter.
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Chapter 1

Introduction

1.1 Confidentiality and Authenticity

When the word “cryptography” is mentioned, what first comes to mind is probably
sending secret messages. This is justified, as hiding information from eavesdroppers,
confidentiality, is the traditional reason to use cryptography. An analogy is to send a
message in a sealed envelope (or maybe in a locked safe, although it is debatable how
realistic such an analogy is). Sometimes we are not primarily interested in hiding
information, but rather in ensuring that information isn’t modified or counterfeited,
authenticity. By this we mean that the receiver can be convinced that sender is
who he claims to be, and that the message has not been altered on the way. The
analogy here is to sign a paper with the message on it. Since signatures are assumed
to be hard to forge, a signature identifies the sender.

In an environment where messages are mainly sent electronically, we need meth-
ods to achieve confidentiality and authenticity by digital means, and this is one
major part of what cryptographic research is about. The traditional approach is to
set up a key k and define a function E to encrypt and a function D to decrypt so
that Dk(Ek(m)) = m for any legal message m. We will call m the plaintext and the
encryption Ek(m) the ciphertext. Since we want the system to be secure, we want
it to be infeasible to compute any useful information about the plaintext from the
ciphertext, provided that the key k is unknown. We even want it to be infeasible
if certain side information is known, such as a subset of legal messages from which
m is drawn, or encryptions of other messages under the same key.

Consider the functions necessary to ensure that a message isn’t counterfeited
or modified. The usual approach is to define a function S to create a message
authentication code (MAC) and a function V to verify that a MAC is valid. The
function S takes as input a message m and a key k and returns a MAC. The
function V takes a key, a message and a MAC, and returns 1 if the MAC is valid
and 0 otherwise. It must hold that Vk(m,Sk(m)) = 1, and it should be infeasible
to compute a message m and a MAC s such that Vk(m, s) without knowledge of

1



2 CHAPTER 1. INTRODUCTION

k. Also here the attacker may have access to side information such as MACs on
messages of his choice.

1.2 Public Key Cryptography

Asymmetric Encryption Schemes

In the above definition, the same key is used for encryption and decryption. For a
long time, this was the only known way to perform cryptography. In the middle of
the 1970s, a major breakthrough was made when methods to perform asymmetric
cryptography were discovered. Asymmetric systems use two keys, the public key,
pk and the private key (sometimes called secret key), sk . The public key is used
to encrypt, and the private key to decrypt so that Dsk (Epk (m)) = m. The public
key can be published, since it is used only for encryption, but the private key must
be kept secret.

Let us now compare this with symmetric cryptosystems to see what the differ-
ences may mean in practice. Assume ten people work at the same company, and
that they want to be able to send encrypted messages to each other. First con-
sider a symmetric cryptosystem. One solution is to have a single common key that
everything is encrypted with, but there are several drawbacks with this approach.
Someone who gets hold of the key (for example by bribing one of the employees)
is able to read all messages sent. Also any employee can read any message, even
it wasn’t meant for him. If an employee quits, a new key has to be set up and
distributed in a secure manner. A second solution is to have one key between every
pair of employees. Then only the intended recipient can read his messages, and
if one employees sells (or accidently discloses) his keys, only the messages sent or
received by that employee can be read. However, the number of keys necessary
for such a system is high. Our ten employees need a total of 45 keys. Although
this number may not seem very high, we must take into account that agreeing on
a symmetric key is a cumbersome task. It is not advisable to the keys electronic-
ally, since they can be eavesdropped, and if a key is sent by mail, there is always
the risk that someone opens the envelope and gets the key. The only safe way is
to meet in person. Now consider a company with 1000 employees. Then a total
of 499, 500 keys are necessary! It is obvious that symmetric cryptosystems have
certain drawbacks.

Now let us consider using asymmetric cryptography to solve the problem. Each
of the ten employees generates a key pair consisting of a private and a public key.
The public keys are published, say in the company phone book. If Alice wants to
send a message to Bob, she looks up Bob in the phone book, encrypts using his
public key and sends the message. Bob uses his private key to decrypt, and no-
one else can read the message. If the company hires new employees, each of them
generates a key pair. No keys have to be exchanged under secure conditions.
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Digital Signatures

Also authenticity can be achieved by asymmetric means. When a MAC is used,
the same key is used for computing the MAC and and verifying it. Therefore only
the intended recipient can check the validity of the message. Furthermore, ability
to verify implies ability to compute a MAC, making it hard to use a signature
as proof in case of a dispute. Therefore, in many situations, it is desirable to
have a scheme in which it is possible to verify without being able to sign. Using
asymmetric techniques we can construct a scheme where the signing is performed
using the private key sk and the verification with the public key pk . Now it must
hold that Vpk (m,Ssk (m)) = 1. This is also what we expect from real-world signing
schemes – anyone can look at a signature and check whether it has been written
by the putative sender (by comparing it with other signatures written by the same
person), but no-one but the sender else should be able to produce such a signature.

A digital signature is in one sense more secure than a physical signature on
paper. When a paper with the message written on it is signed, it is hard to ensure
that the message is not altered afterwards. A forger may add new text to a signed
document or combine pages from two or more signed documents into a new docu-
ment. A secure digital signature scheme withstands attacks of this type, since the
signature is tied to the message and becomes invalid if the message is modified.

1.3 Building Cryptographic Protocols

Two of the most important building blocks for cryptographic functions are one-
way functions, i.e., functions that are easy to compute but hard to invert, trapdoor
functions, i.e., functions that are one-way functions with the additional property
that there is a secret which makes the function easy to invert. Take, for example,
multiplication. It is easy to multiply two numbers, but no method is known that
factors a numbers into its prime factors in reasonable time. It should be noted
that the existence of one-way and trapdoor functions is a classical open problem,
and a proof of their existence would be a major breakthrough. However, there are
functions that have been subject to intensive research for more than thirty years,
and no evidence contradicting the hypothesis that they are trapdoor functions have
been found. It is therefore reasonable to assume that they are indeed trapdoor
functions. From functions that are assumed to be trapdoor functions, it is possible
to build cryptographic primitives, e.g., encryption and signature schemes.

To achieve more complex tasks, such as setting up a secure channel between
parties who have not previously met or creating digital coins, we need to describe
how to combine primitives to get the functionality we need. The result is called a
protocol, and the protocol describes how the participants should act. A protocol
can be seen as a set of algorithms, one for each participant.

A protocol may be interactive or non-interactive. An interactive protocol is
used when the parties can send messages to each other in an interleaved manner.
An example may be a user logging on to a web-site. In a non-interactive protocol
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the sender creates the message on his own, and only then sends it to the receiver.
Encrypting and signing emails are a typical examples of non-interactive protocols.

1.4 Efficient vs. Practical Protocols

Naturally we want our protocols to be as efficient as possible. However, in different
contexts effiency may have different meanings. The common definition of an efficient
algorithm is that the execution time is bounded by a polynomial in the size of the
input. For example, the grade school algorithm for multiplication is polynomial
time, since the number of steps needed is less than 2n2, where n is the number of
digits of each factor.

An example of an algorithm that is not polynomial is factoring by exhaustive
search. To factor an n-bit number m we may need to check each number up to

√
m,

that is, 2n/2 different numbers. Even if we assume that we can check divisibility in
a single step, we still need an exponential number of steps before we are guaranteed
to have a result.

It is clear that this definition of efficient algorithms does not cover everything
we need from an algorithm to be usable in practice. If we design an algorithm
that runs in n30 steps, it would still be considered efficient according to the above
definition. However, the algorithm would be impossible to use in practice except
for extremely small inputs.

In this thesis we focus on protocols that are not only efficient in the above
meaning, but that are practical. Therefore the protocols must be specified in such
detail that it is possible to analyze their running time precisely and not only show
that it is bounded by some polynomial. Also, being practical is not a strict defini-
tion. In some cases, we want a protocol that can be executed on devices with little
computing power such as smart-cards or mobile phones. In other cases it is enough
if the protocol runs reasonably fast on a personal computer, and in still other cases
the protocol will run on a server with large storage capabilities.

1.5 Security of Cryptographic Primitives and Protocols

Obviously we want the cryptographic primitives we use to be secure. However, we
need to define precisely what we mean by security of a primitive. Let us consider
an encryption scheme. One definition of security is that the scheme is secure if
an attacker who sees a ciphertext cannot recover the plaintext. However, in some
scenarios this is not enough, since the attacker may have access to additional in-
formation. Maybe the attacker knows that the plaintext is either “yes” or “no”, and
maybe the attacker has seen encryptions of other plaintexts. Maybe the attacker
even has seen encryptions of “yes” and “no”. A good cryptosystem should remain
secure even under these circumstances. For example, to remain secure even if the
attacker knows encryptions of “yes” and “no”, the encryption must be probabilistic,
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so that when the same plaintext gives different ciphertexts when encrypted several
times.

Designing protocols that are as secure as the primitives used is not trivial. It
may very well be the case that a protocol turns out to be insecure although all
components used are secure. Also in the case of protocols, the term “secure” must
be properly defined. Take, for example, a scheme for electronic cash involving
customers, merchants and a bank. Naturally a customer should not be able to
counterfeit money, but what happens if a customer and a merhcant collaborates
to produce counterfeit money? Or maybe when two customers together try to
create a coin that appears to be valid to the merchant but which is rejected by the
bank? Obviously there are many subtle details when deciding what kind of security
we want from a protocol. Therefore it is important to make a clear definition of
security and to prove that the protocol fulfils those definition under some plausible
assumptions.

1.6 Anonymity

Assume the cash you withdraw had your name on it. What would that mean?
In most cases it wouldn’t mean anything. No-one would be interested in knowing
that it was you who bought that pack of chewing gum. You might feel a little
bit uncomfortable if you knew that a curious trainee working in the pharmacy can
keep track of what medicine you use. If the government can figure out your political
viewpoint by monitoring what newspapers you purchase and what events you buy
tickets to, you have reason to be really worried.

We often take anonymity for granted. If you purchase a newspaper with cash,
it is not possible to trace the purchase back to you by looking at the coins you paid
with. If you buy a couple of tokens for the metro, it is not possible to see if two
trips were paid by tokens purchased at the same time. The simple reason neither
coins nor metro tokens are traceable is that they don’t have a serial number. The
reason they don’t have a serial number is that their low value don’t make them
an interesting target for counterfeiter – the cost of producing a fake coin or metro
token probably exceeds its value.

Now you may argue that these transactions are not at all anonymous – if you
go and buy the newspaper in person, anyone can see what you bought. However,
the important point here is that it requires considerable resources to track a person
that way, and it is impossible to do in an automated way on a large scale.

When the physical coins and metro tokens are replaced with electronic coun-
terparts, the scenario is changed. The cost of copying an electronic coin, which
is nothing but a sequence of zeros and ones, is next to nothing. Therefore even
low-value coins need some kind of serial number to detect duplicates, and that po-
tentially makes them traceable. One of the challenges when designing protocols for
transactions that people assume to be anonymous is to make them anonymous also
when performed electronically.
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Before we can design anonymous protocols, we must decide what we mean by
anonymity. One definition of anonymity is that a transaction cannot be connected
to the identity of any involved party. This definition, however, is weaker than
the anonymity of real-world transactions, because it does not say anything about
connecting transactions. Assume, for example, that you use your electronic coins
first to buy a train ticket that is mailed to your home and then to buy a political
newsletter. If the coins are anonymous only in the above sense, the identity of the
buyer of the newsletter may still be revealed if the two purchases can be connected.
Clearly the latter kind of anonymity is preferable to the former.

If a protocol involves several parties, in the case of electronic coins a customer,
a merchant and the bank, we may settle for anonymity only towards the merchant
to make the protocol more efficient. In other words, the merchant cannot link two
purchases, but once the coin reaches the bank, the bank can see who withdrew the
coin. Another concept is revokable anonymity. Here some trusted third party (who
could, for example, be a judge) can extract the identity from a coin, but otherwise
the coin is anonymous towards both the bank and the vendor.

Although anonymity is desirable from the user’s point of view, protocols that
ensure anonymity tend to be less efficient than non-anonymous protocols. Also
from a legal point of view anonymity might be problematic. If electronic coins are
achieved through black-mailing or other illegal activities, anonymity works in favor
of the criminal.

In an anonymous scheme for electronic coins the bank cannot monitor the flow
of coins. It will detect irregularities only after a long period of time (if ever).
This may be one reason why the schemes for electronic cash that are in use are
non-anonymous.

1.7 Payment Systems

When making purchases, the most common ways to pay for the goods is either by
using cash or by using a payment card or check. Cash has the property that it
is anonymous and that it is possible to verify that it is valid by just looking at it
and without calling the bank. This offline property of cash is important, and very
desirable. It reduces communication costs, it makes the scheme more robust since
it doesn’t require the bank to be available, and it is fast. The merchant can deposit
the cash with his bank, use it as change, buy goods, pay salary etc. Unfortunately
cash also has the not so nice property that it can be stolen. A payment card or
check, on the other hand, is not itself a proof that the customer has the money to
pay. The issuer must be contacted to verify that the customer has the necessary
funds, but once the transaction is completed, it cannot be stolen like cash. Since
the merchant’s name is part of the payment, no-one else can get credited for the
transaction.

Digital payment systems try to mimic these properties. Systems for digital cash
try to keep the anonymity of the customer, possibly with a trusted party that can
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revoke the anonymity. However, since a digital coin is just a bit-string, it can be
copied and spent twice. The most common way to deal with this is to design the
system so that the identity of the owner is revealed if the same coin is spent twice.
Another solution is to make the system online, but then part of the motivation to
use coins is lost.

Systems for digital cash often require that the merchant deposits the cash with
the bank after the transaction rather than reuse it. However, digital cash may also
have the useful property that in cannot be stolen while at the merchant, since the
merchant’s name is part of the transaction.

If digital cash does not completely correspond to cash in the real world, payment
card transactions are easier to make purely electronic. In many cases this simply
means that the physical signature on the receipt is replaced by a digital signature
by the cardholder. Here, however, we can ask for more and make payment card
transactions anonymous towards the merchant.

The goal then is to design a system such that two transactions cannot be linked
by the merchants. The system will still be non-anonymous towards the issuer, since
it must be able to charge the correct account. A trivial way to achieve anonymity
towards the merchant is to give each cardholder not just one card number, but
several one-time numbers. The bank keeps a list of which number belongs to which
cardholder, and the cardholder makes sure each number is only used once. Provided
that the card numbers are generated randomly, such a system would be anonymous
towards the merchants.

1.8 Group Signatures

In this section we discuss a more general approach to the problem of creating an-
onymous credit cards. We use the concept of group signatures. In a group signature
scheme, there are group members and a group manager. Group members can sign
documents on behalf of the group, but the only information that someone other
than the group manager gets is that someone in the group signed the document.
The group manager, however, is able to determine the identity of a signer. As the
alert reader already has seen, this is exactly what we need to make payment cards
anonymous. The group members are the cardholders, and the issuer is the group
manager. When making a payment, the cardholder produces a group signature on
the transaction. The merchant verifies that the signature is produced by someone
in the group of cardholders, but does not get any additional information. When the
transaction is passed on to the card issuer, the issuer, who acts as group manager,
extracts the identity of the cardholder to debit the correct account.

The scheme described above with group signatures works for payment cards
when there is just one issuer, and every merchant sends all transactions directly to
that issuer. In reality this is not the case. There is not just one but several issuers
cooperating within a network. Rather than sending the transaction directly to the
issuer, the merchant sends it to the network, which routes it to the issuer. The ob-
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vious way to solve the problem is to set up a group signature scheme for each issuer.
With this solution we lose some anonymity, since the merchant learns the name of
the issuer, and in some cases this can give quite a lot of information. Therefore
we would like a variant of group signatures where there are group managers that
only get partial information about the identity of the signer. More specifically, in
the case of payment cards, we need a scheme such that the signature is anonymous
to the merchant, the network can see which issuer the card belongs to, and the
issuer sees the identity of the cardholder. Naturally this can be generalized so that
there are several intermediate group managers that get more and more detailed
information about the identity. In this thesis we describe such an extension of
group signatures. Because of the hierarchical way information about the identity
is revealed, we call the scheme hierarchical group signatures.

1.9 EMV Payment Cards

Still the majority of payment cards are equipped with a magnetic stripe where the
cardholder data is encoded. Although a convenient and cheap solution, it has its
security problems. The magnetic stripe can be copied and modified, making it
a good target for counterfeit and fraud. The transactions made with a magnetic
stripe are not digitally signed, making it possible to modify the transaction data
after the transaction took place.

One alternative to the magnetic stripe is smart-cards. A smart-card is a tiny
computer placed on a plastic card. As with any computer, it can store and process
data. It can also have some parts of its memory protected from direct access. This
is a very useful property to prevent copying and modification of cards.

Since the amount of money lost on fraud by the payment networks is growing,
there is an on-going program to switch to smart-cards. The switch is currently in
progress, with some issuers already issuing smart-cards, and some still using the
magnetic stripe.

With smart-cards, the security is increased considerably. A smart-card cannot
be copied or modified the same way a magnetic stripe can. It can hold secret data
used only internally by the card. Smart-cards can sign transactions, thus ensuring
they are sent to the payment network unmodified. Some smart-cards also contain
a private key for authentication purposes. Since the private key is accessible only
to the internal smart-card software, such a card cannot be duplicated. Cardholder
data on a smart-card may be digitally signed by the issuer, preventing it from being
modified as data on the magnetic stripe can.

With the magnetic stripe a cardholder can pay wherever his brand of card is
accepted. He doesn’t have to worry about who manufactured the terminal or which
bank will process the payment, since all magnetic stripe cards and all terminals work
according to the same standards. For the switch to smart-cards to be successful, the
same interoperability is necessary also for smart-cards. Therefore an international,
publicly available standard called EMV has been developed.
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Figure 1.1: A two-dimensional lattice

In this thesis we point out a vulnerability in some EMV cards. Although the
EMV standard builds on primitives in which no vulnerabilities are known, we show
that certain EMV card configurations are insecure. The vulnerability would allow
an attacker to use an EMV card to perform an unlimited number of offline transac-
tions. EMV does allow for offline transactions, but there is a limit on the maximum
number of consecutive offline transactions stored on the card. In Chapter 4 we show
how to perform the attack, and also, where it is possible, how to configure a card
to protect against the vulnerability.

1.10 Cryptography and Lattices

As we have seen, we need an underlying hard problem to design cryptosystems.
One family of such problems are lattice problems. A lattice is defined as the set
{λ1b1 + λ2b2 + · · ·+ λnbn} where λi are integers and bi ∈ Rn. Put differently,
a lattice is defined by n basis vectors in Rn. The lattice consists of points in Rn

(sometimes called lattice vectors) generated by adding combinations of the basis
vectors with integral coefficients.1 In Figure 1.1 a basis for a two-dimensional
lattice is shown together with the lattice points generated by the lattice.

The two most studied lattice problems are the shortest vector problem (SVP)
and the closest vector problem (CVP). In SVP, the task is to compute the shortest
non-zero vector in a lattice given a basis for the lattice. (The zero vector obviously
is the shortest vector for any lattice.) In Figure 1.2 the shortest vector in the two-
dimensional lattice is marked, and here we see that in general the shortest vector is
not one of the basis vectors, and that the shortest vector is never unique, since if v

1This definition only gives full-dimensional lattices.
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Figure 1.2: The shortest vector in the lattice

is a lattice vector, then so is −v. Computing a shortest vector in a two-dimensional
lattice is not difficult, but in lattices of higher dimension the general consensus is
that no algorithm which efficiently solves SVP exists.

Now, if we can’t expect to find the shortest vector in reasonable time, it is
natural to ask if we can find a vector which may not be the shortest, but which
isn’t too much longer than the shortest. It turns out that the answer to this question
depends on what one means by “not too much longer”. It is known that finding a
lattice vector that is up to a factor k longer than the shortest is essentially as hard
as finding the shortest vector for any constant k. On the other hand there is an
efficient algorithm that is known to always give a vector that is at most 2n/2 times as
long as the shortest vector, and that in practice often produces even better results.
It is still unknown precisely where the border lies between what can be computed
efficiently and what cannot.

Lattice problems have cryptographic applications. It is known that the crypto-
system NTRU would be insecure if short vectors could be found in a certain type
of lattices. Since the NTRU lattices are of very high dimension, it is believed to be
infeasible to find such short vectors. However, the NTRU lattices have a certain
structure that could potentially make them weaker. In this thesis we study this
structure and show that SVP isn’t easier in this type of lattices. Our approach is
to show that given an arbitrary lattice Λ1, it is possible to compute a lattice Λ2

which has the special structure and lies very close to Λ1. This is shown in Figure
1.3. Now we can conclude that if SVP were easy in Λ2, then it would be easy in
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Figure 1.3: Approximating a lattice with another lattice

Λ1 as well, since a solution to SVP in Λ2 can be translated into a solution in Λ1

as well. Therefore the special structure of Λ2 does not help when solving SVP.

1.11 Thesis Overview

The thesis is organized as follows. In Chapter 2 (also [68]) we describe a protocol
for electronic cash that is designed specifically to be as efficient as possible. In
Chapter 3 (also [70]) the protocol for hierchical signatures with proofs of security
can be found. Chapter 3 is joint work with Douglas Wikström. In Chapter 4 the
weakness of certain EMV payment cards is analyzed. In Chapter 5 (also [69]) we
give the full details of the lattice result.





Chapter 2

An Efficient Protocol for Electronic

Cash

2.1 Introduction

Today, a large and growing part of payments are made by electronic means, but
there is still much room for improvement. Credit cards may be suitable for large
amounts, but for small amounts the cost of using a credit card is too high. Also,
a credit card is closely tied to the person’s identity, and we may want a system
where the merchant learns less or even nothing about the identity of the customer.
These are the issues to be addressed by electronic cash. The purpose of electronic
cash is to give an alternate option for payment which provides some anonymity
to the customer, and possibly avoids the need for contacting the bank for every
transaction.

We present a system for electronic cash that is based on symmetric primitives.
The advantage of this is that we get a system where the coins are small and where
the cryptographic functions performed by the customer requires little processing
power.

Previous Work

A system for electronic cash is usually designed for a situation where the coin
is withdrawn from the bank by the customer, transferred from the customer to
the merchant (as means of payment) and later deposited by the merchant at the
bank. Sometimes it is desirable to have a system where the coins can be transferred
between customers in several steps before they are deposited at the bank.

The different security issues that need to be addressed include forgeability (cre-
ating a coin that the merchant accepts without performing the withdrawal protocol
with the bank first), double spending (making a copy of the coin and spending it
twice), and revealing of identity (ability for the bank and the merchant to see who
withdrew a coin used in a purchase).

13
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Previously published systems for electronic cash include the system presented by
Chaum, Fiat and Naor [19], which addresses the issues of anonymity and detection
of double spenders. Later systems [11, 12, 31, 55, 63] have made improvements. In
[31], it is shown how to make the communication between the merchant and the
customer more efficient. In [55], a proposal for how to make the coins divisible is
introduced. In [12], the possibility of later revoking the anonymity of the coins is
added, which may be desirable for legal reasons. Sander and Ta-Shma [63] present
a system where the bank does not have a secret key. Our system is based on the
ideas of that system. The similarities and differences between our system and the
system introduced by Sander and Ta-Shma is discussed in more detail in section
2.2.

All these systems use asymmetric encryption or non-interactive zero-knowledge
proofs ([8]) to achieve security. The use of asymmetric techniques such as RSA
appears to imply that a coin must include numbers of size at least 768 bits, and
probably at least 1024 bits. Since a coin often consists of several such numbers,
storing the coins on a smart card where the storage is limited is problematic. With
non-interactive zero-knowledge proofs, especially when based on general methods,
the coins get even larger.

We could of course use a handheld computer to store the coins. This would
however make the system less convenient to use and thus less likely to be accepted.
The cost of such devices would reduce the likelyhood that the system is widely
accepted. Therefore we want the emphasize the small coin size of the presented
system.

Privacy, Coin Sizes and Efficiency

As mentioned before, in the systems presented so far, anonymity is a major concern.
They ensure that neither the merchant nor the bank can identify the owner of a
coin. This is achieved either by the use of blind signatures or non-interactive
zero-knowledge proofs of knowledge. Both methods generate coins that are “large”
(meaning having a size such that a number n of the same size is hard to factor, or
that it is hard to find the discrete logarithm modulo n).

We propose a system that is significantly more efficient than the previously
published systems, and still provides full anonymity towards the merchant. The
system only uses symmetric encryption and computation of hash functions, thus
eliminating the need for costly operations like exponentiation. The emphasis is
on efficiency – the same functionality can easily be accomplished using public key
cryptography, but this would yield much larger coins.

To get some perspective we can compare the size of the coins in our system with
previously proposed systems. The system proposed by Ferguson in [31] needs five
RSA-sized number per coin, giving each coin a size of 5 · 1024 = 5120 bits, or 640
bytes. The system presented in [72] has reduced this to three numbers of 1024 bits,
giving each coin a size of 384 bytes. The systems of [19] and [55] need even more



2.1. INTRODUCTION 15

space for the coins. In comparison, in our system, only 25 bytes need to be stored
at the customer.

Our Solution

In this chapter we describe a simple and efficient system for electronic cash with
provable security properties. The system relies on symmetric encryption techno-
logies rather than asymmetric. This enhances performance, and the system still
gives a fair level of anonymity. Another advantage is that the bank does not have
a master secret that can be stolen and used for counterfeiting money. We present
two variants of the system, one that is completely offline and one that is online. In
the online variant, central databases are used to store information that otherwise
would be stored on the customer’s smart card.

Previously published systems focus on anonymity, both from the merchant and
from the bank. They make it impossible for both the merchant and the bank to
trace a payment. This untraceability may be desirable in certain cases, and it is
certainly in the customer’s interest. It is however far from certain that a bank
would want (or accept) that kind of anonymity. There are also law enforcement
aspects – if money is used in blackmailing, we would like to be able to trace the
money.

The system presented here is semi-anonymous. The merchant cannot trace a
payment. In fact, it cannot see whether or not two payments have been made by
the same customer. The bank, however, can see the identity of the customer when
the merchant deposits his money, just as it would with, for example, a credit card.
By sacrificing anonymity against the bank, we win a lot in coin size.

The technique used to avoid the need for a signature on every coin is the use
of hash trees as proposed by Merkle [49] and used by Sander and Ta-Shma [63].
The idea is that the bank keeps the coins it has issued in hash trees, where each
father is the hash value of the concatenated values its sons. Creating hash trees
is a one-way process – given the leaves it is easy to compute the root value, but
given only the root value it is infeasible to construct a matching tree (except for
the trivial tree consisting of only the root).

The roots of the trees are made public, and any coin which has a path leading
to a published root is regarded as valid. Since the paths are not secret, it is possible
to publish these paths, removing the need for the paths to be stored on the smart
card. Also, the correctness of these paths is defined by the fact that they lead to
a certified root. This means that the databases containing the paths do not need
to be in any way secure or authenticated. The merchant can himself verify the
outcome by comparing the root with the certified roots he has received from the
bank.

How does this system differ from an ordinary credit card system? When paying
with a credit card, the customer have to reveal his identity to the merchant, whereas
in the proposed system the customer remains anonymous to the merchant. In
the online version the purchase must be verified against a database, but unlike a
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credit card system, this database does not need to be authenticated. Also, the
communication does not have to be secure. A large merchant may even keep a
copy of the database locally, to speed up the processing. The offline version has
the obvious advantage that there is no need for an online connection to an external
database.

An implementation of the scheme is underway [75].

2.2 Overview of the System

The system uses hash trees to keep track of which coins should be considered valid.
In the online variant, the hash trees are distributed to local databases via not
necessarily secure lines. In the offline variant, only the bank keeps a copy of the
hash trees and the customers keep track of the path of every coin. Only the roots
need to be transmitted on an authenticated line.

All participants have agreed on a parameter k, which needs to be even. H is
a hash function. Ra(x) is a pseudorandom function with the key a. In practice
we can think of H as SHA-1. As pseudorandom function we can use a symmetric
cryptosystem (like AES) with a as the key.

The Participants

There are three participants – the customer, the merchant and the bank. The cus-
tomer is assumed to have a smart card or similar device with some, but limited,
storage and computational capabilities. The customer’s identity is id. The cus-
tomer’s smart card is assumed to have a secret, which we call a. The card also
contains a secret key used to identify the customer with some signature scheme.
The bank has the corresponding public key.

The bank does not have a master secret key. The bank only needs to be able to,
in an authenticated way, publish roots of the trees of hash values. The bank also
has a symmetric cryptosystem, whose encryption we call E, and whose decryption
is called D.

The merchant has no secret. The merchant has to get the root of the hash tree
the bank has published in a secure way, and it has to have access to a database which
contains the hash tree, although this access does not have to be authenticated.

The Protocol

The protocol consists of three steps – withdrawal, payment and deposition. In the
withdrawal phase, the customer receives coins from the bank and the bank charges
the customer’s bank account. In the payment phase, the customer transfers coins
to the merchant. In the deposition phase, the merchant deposits the money with
the bank, and the bank credits the amount to the merchant’s account.
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Customer Bank

s ∈R T
c := E(s, id)

c←−
zi := H(Ra(c, i))

〈zi〉−→
Allocates a position in the hash tree and sends
the path p ∈ {0, 1}n. LaterH(c, z1, z2, . . . , zk)
is inserted into the hash tree.

p←−
p

Figure 2.1: The withdrawal protocol

Withdrawal

When withdrawing money from his account, a secure channel is set up between
the customer and the bank. The customer first identifies himself to the bank in
some way (possibly using his private key). A withdrawal of a coin then proceeds as
follows

1. The bank generates a serial number, s, and sends c = E(s, id) to the customer.

2. The customer comutes zi = H(Ra(c, i)) for i = 1, . . . , k, and sends these
signed to the bank.

3. The banks allocates a position in the next hash tree, and sends the path to
this position (as a {0, 1}-string) to the customer. Later, when the bank actu-
ally builds the tree, the customer’s coin is inserted as a leaf in the allocated
position.

This is described in Figure 2.1. We call the pair (c, a) a coin.
After the protocol has finished, the customer has the coin represented by c, and

knows k values that hash to values in the hash tree. Also, this information is not
known to anyone but the customer.

Note that the use of a pseudo-random function is only to save space. The
same security would be achieved if the customer in step 2 generated k values, say
b1, b2, . . . , bk and sent H(bi) to the bank. In such a setup, the customer would need
to store the values k b1, b2, . . . , bk, whereas he in the current setup does not need
to store any extra information apart from c.

An alternative to having c as an encryption of (s, id) would be to have c as a
unique random number, and to have the bank store the pair (c, id) in a private
database. The current setup avoids the need for an extra database with sensitive
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information. Such a setup would, on the other hand, remove the need for a secret
key for the bank.

Payment

In the payment phase, the customer sends the public part of the coin c together
with the challenges 〈zi〉 and the path through the hash tree to the merchant. In
the online variant, the merchant turns to the database to get the necessary path.
In the offline variant, the user has the path and sends it to the merchant. All the
merchant needs to check is that one end of the path contains the hash value of c
and the challenges and that the other end contains the root it has received on a
secure channel. Together with the path, the merchant receives the zi’s.

The procedure is as follows. From the start the customer has a coin (c, a).

1. The customer sends c, 〈zi〉 and the path to the merchant.

2. The merchant verifies c and 〈zi〉 with the database. The merchant picks
numbers b1, . . . , bk at random from {0, 1} under the constraint that

∑

bi =
k/2.

3. The customer computes yi = Ra(c, i) for each i such that bi = 1 and sends
the result to the merchant.

4. The merchant accepts if H(yi) = zi for every yi. If this is the case, the
merchant stores these values.

Deposition

The merchant deposits the coin at the bank by sending the yi’s together with c. The
bank decrypts c and marks the coin as used in its database. Should the coin already
be marked as used, it checks which yi’s were used in the previous transaction. If
the same yi’s were used in that transaction, it is assumed that the merchant is
trying to deposit the same coin twice, and the merchant’s account is only credited
once. If the yi’s are different, the customer has tried to double spend his coin. It
is then easy for the bank to retrieve the identity of the double spender, since this
information is stored in the coin.

Maintaining the Hash Tree

The idea of the hash tree is the idea presented by [63]. After a certain period of
time t, say one minute, the bank creates a hash tree where each leaf consists of
a coin c issued during that period and the corresponding challenges zi. The bank
forms the tree and publishes the root. It then gives the path to the customers that
have withdrawn coins during that last period.
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Customer Merchant Database
(c, a, p)

c,p,〈zi〉−→ c, p
p−→

Retrieves the hash
values 〈pj〉 along
the path p

〈pj〉←−
Verifies that the
path p is valid and
leads to a certified
root. Picks b =
(b1, b2, . . . , bk) ∈R
{0, 1}k so that
∑

bi = k/2
b←−

yi := Ra(c, i)
for bi = 1

〈yi〉−→
H(yi)

?
= zi

Figure 2.2: The payment protocol in the online variant

The next time period t, the bank creates a new tree in the same way, and publish
the root. It then joins these two trees and publish the root of that joined tree. The
merchants now only need to hold that new root, and they need to know how to
derive that the previous roots are secure from the new root. For this they only need
to know the path, and since this is no information that needs to kept authenticated,
it could reside in the (not authenticated) databases containing hash trees for coins.

After joining the first two trees, the bank starts building the next tree. After
time t, this tree is ready, and the bank publishes the root. At this moment, there
are two live roots for the merchants to trust.

Thus, after time 2t we join two trees into one. In the same way, after time 4t we
join two 2t-trees into one, after 8t we join two 4t-trees and so on. We see that after
time 2kt there is exactly one root (since we have just joined the two subtrees into
one tree). After time

(

2k − 1
)

t, we have k different trees, with k roots. However,
even if we set t = 10 seconds and want to have a system that will work for 100
years, there will never be more than 30 roots at any time.
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Comparison with Sander and Ta-Shma

The system presented by Sander and Ta-Shma [63] was the first system for electronic
cash to use hash trees for identification of coins. The maintenance of the hash trees
in our system is the same as proposed in their system.

The system of Sander and Ta-Shma is fully anonymous, and the identity of the
customer is reveiled only if he spends a coin twice. This is achieved by the use of
non-interactive zero-knowledge proofs. We, on the other hand, use pseudorandom
functions to hide the identity of the customer, and the anonymity is only anonymous
towards the merchant and not towards the bank.

In the system of Sander and Ta-Shma, there is no need for the bank to store the
hash trees after publishing the roots, since the customer stores the path himself.
This avoids having external interaction during the payment. On the other hand
every coin becomes larger, since the complete path needs to be stored.

2.3 Analysis of the System

For the analysis we want to prove two things. First we need to prove that for honest
participants, the system gives a fair result. Then we need to prove that the system
is secure. The first part follows directly from the construction of the system and
that D(E(s, id)) = (s, id) and that H and Ra are deterministic.

Proof of Security

The setting for the system is that the customer trusts the bank for anonymity and
for providing fair coins. Both the merchant and the customer trust the roots of the
hash trees. The bank does not need to trust anyone. The customer does not need
to trust the merchant and the merchant does not need to trust the customer. No
one needs to trust the hash trees provided by the third party database providers.

By neglible probability we mean a probability lower than 1/p(n) for any poly-
nomial p and large enough security parameter n. The relevant security parameters
are the number of challenges, the length of the customer’s private key, the length
of the bank’s private key and the output length of the hash function.

We start by giving definitions of the tools we need. Since these definitions are
standard definitions, we only give informal descriptions.

Definition 2.3.1 (Collision resistant hash function).
A keyed hash function Ha : A → {0, 1}n with key a is called collision resistant if
a polynomial time (in |a|) probabilistic Turing machine has negligible probability of
finding x, y ∈ A, x 6= y such that H(x) = H(y).

Definition 2.3.2 (Pseudorandom functions).
A function Ra : A → B, where a is a parameter, is called pseudorandom if it
indistinguishable from a uniformly distributed functions f : A → B to a Turing
machine that runs in time polynomial in |a|.
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Definition 2.3.3 (Semantic security).
We call a symmetric cryptosystem (E,D) semantically secure if no polynomial time
probabilistic Turing machine T can distinguish between E(m0) and E(m1) with non-
negligible probability, even if T is allowed to pick m0 and m1 itself.

Definition 2.3.4 (Detect identity). We say that two merchants can detect iden-
tity if they can play the following game and be successful with a probability non-
negligibly higher than 1/2.

Flip a coin and set the bit t to the result. If t = 0, let d1 = (c1, a) and d2 = (c2, a)
be two coins withdrawn by the same customer using the withdrawal protocol. If t =
1, let d1 = (c1, a1) and d2 = (c2, a2) be two coins withdrawn by different customers
using the withdrawal protocol. Let d1 and d2 be used by the respective owners in
the payment protocol with two (possibly equal) merchants. Given the information
in the payment protocol and the function Ra as a black box, the merchants (who are
allowed to cooperate) pick t′ ∈ {0, 1}. They are successful if t = t′.

It is possible to give a more general definition of anonymity. We can say that for
any values of n, m ≤ n and positive q1, . . . , qm such that

∑

qi = n it is infeasible
to decide whether n purchases were made by m distinct customers, where the i’th
customer made qi purchases. We omit the formal definition.

We prove the following on the security of the system, assuming that the hash
function H is collision resistant, the bank’s symmetric encryption system E is
semantically secure and the family of functions Ra is pseudorandom.

1. The customer cannot forge coins except for with negligible probability.

2. The customer cannot double spend a coin without detection, except for with
negligible probability of success.

3. No two merchants can detect identity (as described in definition 2.3.4).

We go through these theorems one by one.

Theorem 2.3.5 (Nonforgeability (1)). It is infeasible for a customer who has
withdrawn l coins to perform the payment protocol l+1 times without being detected
as a double spender.

Proof. Suppose we have a user U ∗ which with non-negligible probability can provide
hash trees so that he can answer the merchant’s questions in the payment protocol
l+ 1 times after withdrawing l coins, where the probability is taken over the input
to U∗ (the information U∗ gets during the interactions, from the hash trees and by
monitoring other customers interact with merchants). We want to use U ∗ to either
find a collision of H or compute Ra(x) without the knowledge of a.

We start by creating hash trees Ti with roots R while interacting with U ∗ and
other simulated customers. During this interaction we allow U ∗ to withdraw l coins.
After creating the interaction we give Ti and R to U∗. U∗ is allowed to exchange
Ti with his own T′

i after the interaction.
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We now interact with U∗ (playing the part of the merchant) l + 1 times using
the payment protocol. According to the assumption, U ∗ answers correctly each of
these times with non-negligible probability. Should U ∗ not answer correctly, we
restart. Since we have assumed that U ∗ will not be caught as a double spender,
we know that U∗ cannot provide us with the same c twice. Also, if U ∗ gives us a
value c which has never been issued by the bank, U ∗ has had to modify a hashtree
T into T′ so that H(c, 〈zi〉) becomes a leaf of T′. Since the root is unchanged, we
will find a collision of H by comparing the two trees. We omit the details.

This leaves us with the possibility that U ∗ has given us a c and a p which
already exists in the tree, but which belongs to another customer. He then has to
answer the queries correctly without the knowledge of a. We show that the ability
of answering queries without knowing a (that is, in effect stealing the coin) implies
the ability to compute Ra(x) for any x without knowledge of a.

If U∗ can use the coin c without prior knowledge of a he must solve the following
problem. Given c and zi, find yi such that H(yi) = zi. If we have such an oracle
we can run it on random input c and zi = H(yi), where either yi = Ra(c, i). The
oracle then outputs y′i that satisfies the requirements. If yi 6= y′i, we have found a
collision in the hash function. If yi = y′i U

∗ has succeeded to compute a value of
Ra which it has not seen before.

Theorem 2.3.6 (Double spending detection (2)). If a customer executes the
payment protocol twice with the same coin (c, a), the bank detects that the customer

has double-spent the coin with probability 1−
(

k
k/2

)−1
.

Proof. Assume a customer is performing the payment protocol twice with the same
coin c. Then, at deposition, the bank detects that the coin has been double spent,
and also finds the identity of the customer guilty of double spending.

The chance of “getting away” with double spending is the same as the chance of

getting exactly the same challenges twice. The chance of this happening is
(

k
k/2

)−1

if the challenges are chosen at random.

We can note that we can remove the probability
(

k
k/2

)−1
by not choosing the

challenges at random. This is discussed in 2.4.

Theorem 2.3.7 (Anonymity (3)). No two merchants can detect identity (as
described in definition 2.3.4).

Proof. Assume two merchants can play the game and succeed with probability non-
negligibly higher than 1/2. We use this as an oracle O, which interacts using the
payment protocol with two customers spending two coins (c1, a1) and (c2, a2). O
outputs 1 with probability p if the two payments were made by the same customer
and outputs 1 with probability q if the payments were made by different custom-
ers, where p − q is positive and non-negligible. More precisely, the input to O is
c1,
〈

y1
i

〉

, c2,
〈

y2
i

〉

where yji = Raj (c
j , i). The output bit is 1 with probability p if
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there exists an a such that y1
i = Ra(c

1, i) and y2
i = Ra(c

2, i) for every challenge yi.
Otherwise the output bit is 1 with probability q.

We want to use the oracle to violate the pseudorandomness of Ra. Assume we
have a family of functions F given as a black box and we want to decide whether it
is pseudorandom or random. We want to create an algorithm A (which uses O as
an oracle) that with non-negligible probability outputs 1 if F is pseudorandom and
0 otherwise.

Consider the following four distributions of coins, where a and b are two different
keys for the pseudorandom function, and B is a random function.

1. Both coins are withdrawn using Ra.

2. Both coins are withdrawn using B.

3. The first coin is withdrawn using Ra and the second coin using B.

4. The first coin is withdrawn using Ra and the second coin using Rb.

Let pi be the probability the oracle O outputs 1 on indata from distribution i. From
the assumption that O can detect identity it follows that p1 − p4 is non-negligible.
This implies that one of p1 − p2, p2 − p3 or p3− p4 is non-negligible. We show how
to implement A in each of these cases

• If p1 6= p2 we create both coins using F and use this as input to O.

• If p2 6= p3 we create one coin using F and the other using a random function
and execute O with this as input.

• If p3 6= p4 we create one coin using Ra and the other using F and use this as
input to O.

Since for at least one of these inequalities the difference is non-negligible, our al-
gorithm is able to distinguish the family of pseudorandom functions from random
functions, which was assumed to be infeasible. This is a contradiction which proves
the theorem.

2.4 Some Practical Details

Choosing the Challenges and Stealing of Coins

As we have seen, the way the challenges are chosen is very important for the de-
tection of double spendings. The simplest would be to choose the challenges at
random. The probability of the challenges being identical is then very low. One
could, however, imagine legal problems if the bank tries to prove in court that
two merchants have collaborated to perform fraud against the bank by both de-
positing the same coin. The merchants can of course argue that they happened to
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accidently pick the same random challenge (maybe due to bad (pseudo-) random
number generators).

With this setup, a merchant A could steal coins from merchantB. If A steals the
hard-disk containing the only copy of B’s coins, the theft would never be discovered
by the bank. Several practical precautions are of course possible, but we will see
that with a slight modification of the protocol, stealing coins is impossible.

One way of choosing challenges would be to have the challenge consist of a hash
value of, say, the merchant’s identity, the time, the amount and possibly other
parameters. The problem with this setup is that since k cannot be very large, it
would be possible for the customer to find a collision. He can then choose to spend
his coin where he has found the collision, and hence get exactly the same challenge.
The bank would not be able to decide whether it is the merchants or the customer
that is guilty of the fraud.

Since the only property of randomness we used is that we have low probability
of the same challenge, we could instead allocate a certain interval of challenges to
each merchant (or rather to each terminal accepting payments). We would then
have a counter in every terminal to ensure that no set of challenges is used twice. If
a terminal runs out of queries, it would notify the bank which would assign a new
interval. If we assume that we want each interval to consist of 10000 queries, and
we want 109 such intervals, k = 50 would be enough.

A feature of this setup is that a merchant A cannot steal a coin from another
merchant B, since this stolen coin has a challenge that does not correspond to a
valid challenge of A, and the bank detects that the coin has been stolen. The same
is true if a merchant eavesdrops a purchase or a deposition of a coin.

The Coin Databases

Another important part of the payment system is the coin databases. Since every
coin issued is to be stored in these databases, they need quite large storage capabil-
ities. We can note that the information in these databases is in no way sensitive. It
does not have to be authenticated or secure, and with the cost of storage medium
being low (and only getting lower), this is not such big a problem as it may seem.
On the other hand, smart card memory is expensive, so it is a good thing to save
smart card memory in favor of hard disk space.

For each coin only the hash value needs to be stored in the database. To further
reduce storage need we can design the system so that the coins are issued in a
distributed manner. For every entity with a certain number of customers (e.g.,
every city), the coins would be combined into a hash tree. These local hash trees
would be joined into national hash trees, which in turn would be joined on an
international level.

With this setup most databases can be designed to hold only information on
coins issued in the same city or country, and during the last period of time, say a
month. There would probably be a few complete databases that would be contacted
in case the coin could not be found in the local database, and these would need to
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contain every coin that has been issued. If we assume that a person spends 100
coins per day, one million customers would spend approximately 3× 109 coins per
month. Since every coin needs 160 bit in the database (assuming we use SHA-
1 as hash function) the total storage need would be 60 GB, which is far from
infeasible, especially as the security requirements of the database are low. The
central databases would need to hold more information.

Values of Coins

The system as described here assumes all coins have the same value. It is easy to
adopt the system to handle coins of different values. When the bank issues the
coin, it can simply add the value of the coin to the leaf in the database. The value
does not have to be added explicitly – it suffices to have the hash value stored in
the database include the value of the coin.

The Size of a Coin

We now calculate the size of a coin (c, a). The secret a is common to all coins, so the
size of it does not have to be counted. The variable c consists of the encryption of
a serial number s and the identity id. If we want the system to scale for world-wide
use, we need to reserve, say, 64 bits for the identity. We can then use 64 bits for
the serial number, and still be able to fit the coin in 128 bits. We only need the
serial number to be unique per customer. Using a symmetrical cryptosystem with
a key-length of 128 bits, we get an output of 128 bits.

In the online variant, we need to store the path in the hash tree. If we assume
that the system globally has 1010 users and every user uses 100 coins per day for
100 years, no path needs more than 60 bits. This gives a total coin size of less than
200 bits, or 25 bytes, which is a major improvement compared to the asymmetric
cash systems described in the introduction.

In the offline variant, the path needs to be stored by the customer. This is more
than can be stored on a smart card, which means we need some means of secondary
storage.

Assuming a tranfer rate of 9600 bps between the card and the terminal, the
most costly phase of the payment phase, transfer of the responses to the challenges,
requires less than half a second, assuming that 25 challenges have to be answered.

2.5 Conclusions

We have presented a system for electronic cash that is both practical and provably
secure. The privacy properties are such that banks are likely to accept the system,
and the system still protects the customer’s identity against the merchants. The
coins are small enough to fit on smart cards.





Chapter 3

Hierarchical Group Signatures

3.1 Introduction

Consider the notion of group signatures introduced by Chaum and van Heyst [21].
A group member can compute a signature that to an outsider reveals nothing about
the signer’s identity except that he is a member of the group. On the other hand
the group manager can always reveal the identity of the signer.

An application for group signatures is anonymous credit cards. The cardholder
wishes to preserve his privacy when he pays a merchant for goods, i.e., he is in-
terested in unlinkability of payments. The bank must obviously be able to extract
the identity of a cardholder from a payment or at least an identifier for an account,
to be able to debit the account. To avoid fraud, the bank, the merchant, and the
cardholder all require that a cardholder cannot pay for goods without holding a
valid card. To solve the problem using group signatures we let the bank be the
group manager and the cardholders be signers. A cardholder signs a transaction
and hands it to the merchant. The merchant then hands the signed transaction to
the bank, which debits the cardholder and credits the merchant. Since signatures
are unlinkable, the merchant learns nothing about the cardholder’s identity. The
bank on the other hand can always extract the cardholder’s identity from a valid
signature and debit the correct account.

The above scenario is somewhat simplified since normally there are many banks
that issue cards of the same brand and which are processed through the same
payment network. The payment network normally works as an administrator and
routes transactions to several independent banks. Thus, the merchant hands a
payment to the payment network which hands the payment to the issuing bank.
We could apply group signatures here as well by making the payment network act
as the group manager. The network would then send the extracted identity to the
issuing bank. Another option is to set up several independent group signatures
schemes, one for each issuer. In the first approach, the payment network learns the
identity of the customer, and in the second approach the merchant learns which

27
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bank issued the customer’s card. A better solution would reveal nothing except
what is absolutely necessary to each party. The merchant needs to be convinced
that the credit card is valid, the payment network must be able to route the payment
to the correct card issuer and the issuer must be able to determine the identity of
the cardholder.

A solution that comes to mind is to use ordinary group signatures with the
modification that the customer encrypts his identity with his bank’s public key.
Then we have the problem of showing to the merchant that this encryption contains
valid information. However, the customer cannot reveal the public key of the bank
to the merchant, making such a proof far from trivial.

In this chapter we introduce and investigate the notion of hierarchical group
signatures. These can be employed to solve the above problem. When using a
hierarchical group signature scheme there is not one single group manager. Instead
there are several group managers organized in a tree, i.e., each group manager either
manages a group of signers or a group of group managers. In the original notion
the group manager can always identify the signer of a message, but nobody else can
distinguish between signatures by different signers. The corresponding property for
hierarchical group signatures is more complicated. If a manager directly manages a
group of signers, it can identify all the signers that it manages, but the signatures
of all other signers are indistinguishable to it. This corresponds directly to the
original notion. If a manager manages a group of managers, it cannot identify the
signer, but it can identify the manager directly below it which (perhaps indirectly)
manages the signer. Thus, a manager that does not manage signers directly get
only partial information on the identity of the signer.

When we use hierarchical group signatures to construct anonymous credit cards
for the more realistic setting we let the payment network be the root manager
that manages a set of group managers, i.e., the issuing banks, and we let the
cardholders be signers. The credit card application also demonstrates what kind of
responsibility model is likely to be used with a hierarchical group signature scheme.
With a valid signature on a transaction, the merchant has a valid demand on the
payment network. If the payment network has a signature that can be shown to
belong to a certain bank, the network has a valid demand on that bank. Thus, it is
in the network’s interest to open the signatures it receives from merchants, and it is
in the issuing banks’ interest to open the signatures they receive from the network.

Previous Work

The concept of group signatures was first introduced by Chaum and van Heyst [21]
in 1991. This and the group signature schemes that followed [22, 14] all had the
property that the complexity of the scheme grows with the number of participants.
In [17] Camenisch and Stadler presented a system where the key does not grow
with the number of participants. This system, however, relies on a non-standard
number-theoretic assumption. The assumption was actually found to be incorrect
and modified in [4]. An efficient system whose security rests on the strong RSA as-
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sumption and the Diffie-Hellman decision assumption was presented by Camenisch
and Michels in 1998 [15]. This system was improved in [3].

In [7] Bellare et al. presented a scheme for group signatures based on general
methods. Our scheme based on general assumptions can be seen as a generalization
of their scheme.

In [4] the concepts of multi-group signatures and subgroup signatures are de-
scribed, and in [42] a system for hierarchical multi-groups is given. It may be
worthwhile to consider the differences between these concepts and hierarchical sig-
natures introduced here. Multi-group signature schemes allow a signer who is a
member of two groups to produce a signature that shows membership of either
both groups or just one of them. In hierarchical multi-groups a signer who is
a member of a supergroup with subgroups can produce a signature that reveals
membership either of the supergroup or of a subgroup of his choice. However, the
opening procedure is not hierarchical, e.g., there are no group managers for the
subgroups.

Subgroup signatures make it possible for an arbitrary number i of signers to pro-
duce a joint signature which can be verified to stem from i distinct group members.
None of these extensions contain the hierarchical property.

The connection between group signatures and anonymous payment systems is
quite natural and has been studied before. In [45] a system for electronic cash based
on group signatures is given by Lysyanskaya and Ramzan.

Group signatures, and especially hierarchical group signatures, should not be
confused with zero-knowledge sets as described in [50]. Zero-knowledge sets enables
a prover to commit to a set S. Given x he can then prove x ∈ S or x 6∈ S (whichever
is true) without disclosing anything else about S. For zero-knowledge sets the prover
has the necessary information to produce a proof of membership for any element
in the set. With group signatures on the other hand the set of members may be
public, and the signer proves that it belongs to this set.

Notation

We write [a, b] to denote the set {x ∈ Z | a ≤ x ≤ b}. We say that an element is
chosen “randomly” instead of the more cumbersome “independently and uniformly
at random”. If T is a tree we denote by L(T ) its set of leaves. We let φ denote
Euler’s φ function. By r ∈R S we mean that r is chosen randomly in S. Throughout
the chapter, κ denotes the security parameter. A function f : N → [0, 1] is said
to be negligible if for each c > 0 there exists a κ0 ∈ N such that f(κ) < κ−c for
κ0 < κ ∈ N. We say that a function f : N → [0, 1] is non-negligible whenever it is
not negligible. When we say that a number is k-bit, we implicitly mean that it has
a leading one (i.e., that it is in the interval [2k−1, 2k − 1]).

We sometimes do not explicitly state how a group given as input to an algorithm
is described, e.g., we write CHPg(Gq) to denote that the algorithm CHPg is given
a description of a group Gq of prime order q as input. Whenever we do that, Gq
is assumed to be the unique subgroup of order q of Z∗

p for a prime p = 2q + 1, so
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the obvious description of Gq is p. In Section 3.5 we consider the issue of existence
of such primes. We use QRN to denote the subgroup of squares in Z∗

N , i.e., the
quadratic residues. We write ∅ to denote both the empty set and the empty string.

We say that a distribution ensemble D = {Dκ} is efficiently sampleable if there
exists a polynomial time Turing machine TD that on input 1κ outputs a random
sample distributed according to Dκ.

All adversaries in this chapter are modeled as polynomial time Turing machines
with non-uniform auxiliary advice string. We denote the set of such adversaries by
PPT∗.

A public-key cryptosystem is said to be CCA2-secure if it is infeasible for an
attacker to determine which one of two messages of his choice that a given cryptotext
is the encryption of, even if the attacker has access to a decryption oracle both
before the choice is made and after the cryptotext is received [60]. The following
formalizes this property.

Let CS = (Kg, E,D) be a public key cryptosystem. Consider the following
experiment.

Experiment 1 (CCA2, Expcca2−b
CS,A (κ)).

(pk , sk)← Kg(1κ)

(m0,m1, state)← ADsk (·)(choose, pk )

c← Encsk (mb)

d← ADsk (·)(guess, state, pk)

The experiment returns 0 if the encryption oracle was queried on c, and d
otherwise. The advantage of an adversary is defined as

Advcca2
CS,A(κ) = |Pr[Expcca2−0

CS,A (κ) = 1]− Pr[Expcca2−1
CS,A (κ) = 1]| .

Definition 3.1.1 (CCA2-secure). The cryptosystem CS is said to be CCA2-sec-
ure if Advcca2

CS,A(κ) is negligible for any A ∈ PPT∗.

A signature scheme is said to be CMA-secure if it infeasible for an attacker
to output a message-signature pair even if given a signing oracle [36]. Formally
CMA-security is defined using the following experiment, where SS = (Kg, Sig,Vf)
is a signature scheme

Experiment 2 (CMA, Expcma
SS,A(κ)).

(pk , sk)← Kg(1κ)

(m, s)← ASig
sk

(·)(guess, pk)

If Vfpk (m, s) = 1 and A’s oracle was never queried on m return 1, else return 0.
The advantage of an adversary A is defined as Adv

cma

SS,A(κ) = Pr[Expcma
SS,A(κ) = 1].

Definition 3.1.2 (CMA-secure). The signature scheme SS is said to be CMA-
secure if Advcma

SS,A(κ) is negligible for any A ∈ PPT∗.
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Two ensembles {Xn}n∈N and {Yn}n∈N are statistically close if
∑

α |Pr[Xn =
α]− Pr[Yn = α]| is negligible.

Definition 3.1.3 (Trapdoor Permutation Family).
A trapdoor permutation family is a tuple of probabilistic polynomial time Turing
machines F = (Gen, Eval, Invert) such that:

1. Gen(1κ) outputs a pair (f, f−1) such that f is a permutation of {0, 1}κ.

2. Eval(1κ, f, x) is a deterministic algorithm which on input f , where (f, f−1) ∈
Gen(1κ), and x ∈ {0, 1}κ outputs y = f(x).

3. Invert(1κ, f−1, y) is a deterministic algorithm which on input f−1, where
(f, f−1) ∈ Gen(1κ), and y ∈ {0, 1}κ outputs some x = f−1(y).

4. For all κ, (f, f−1) ∈ Gen(1κ), and x ∈ {0, 1}κ we have f−1f(x) = x.

5. For all adversaries A ∈ PPT∗, the following is negligible

Pr[(f, f−1)← Gen(1κ), x← {0, 1}κ, A(f, f(x)) = f−1(y)] .

Definition 3.1.4 (Hard-Core Bit). Let B = {Bκ : {0, 1}κ → {0, 1}} be a col-
lection of functions such that there exists a polynomial time Turing machine that
outputs Bκ(x) on input (1κ, x), where x ∈ {0, 1}κ. Let F = (Gen,Eval, Invert) be a
trapdoor permutation family. B is a hard-core bit for F if the following is negligible
for all adversaries A ∈ PPT∗

∣

∣

∣

∣

Pr[(f, f−1)← Gen(1κ), x← {0, 1}κ, A(f, f(x)) = B(x)]− 1

2

∣

∣

∣

∣

.

Outline of Chapter

In Section 3.2 we formalize the notion of hierarchical group signatures and give
definitions of security. We also briefly discuss why it is not trivial to transform
a non-hierarchical group signature scheme into a hierarchical scheme. In Section
3.3 we introduce the concept of cross-indistinguishability, which we use in both
the general construction and the explicit construction. Our construction under
general assumptions is presented in Section 3.4 and in Section 3.5 we give the
explicit construction. The zero-knowledge proofs used in Section 3.5 can be found
in Section 3.6. Finally in Sections 3.7 and 3.8 we discuss possible modifications and
extensions of the current scheme.

Contributions

We introduce and formalize the notion of hierarchical group signatures. We give a
construction that is provably secure under the existence of a trapdoor permutation
family. As part of our investigations we introduce a new property of cryptosystems,
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which we call cross-indistinguishability. This property may be of independent in-
terest.

Then we consider how a practical hierarchical group signature scheme can be
constructed under specific complexity assumptions. We show that by a careful
selection of primitives one can construct a relatively practical hierarchical group
signature scheme that is provably secure under the DDH assumption and the strong
RSA assumption in the random oracle model. For reasonable security parameters
a few hundred exponentiations are required to produce a signature.

As part of the construction we show how to prove efficiently in zero-knowledge
that a committed value is a signature of an encrypted message. This technique may
be useful for other applications.

3.2 Hierarchical Group Signatures

In this section we discuss the notion of hierarchical group signatures. We begin by
describing the parties of a hierarchical group signature system. Then we proceed
by giving formal definitions.

Parties

There are two types of parties: signers denoted Sα for α in some index set I, and
group managers denoted Mα for indices α described below. The parties form a
tree T , where the signers are leaves and the group managers are inner nodes. The
indices of the group managers are formed as follows. If a group manager manages a
set of signers {Sα | α ∈ β ⊂ I} we denote it by Mβ. This corresponds to Mβ having
Sα for α ∈ β as children. If a group manager Mγ manages a set of group managers
{Mβ1, . . . ,Mβl} we denote it by Mγ where γ = {β1, . . . , βl}. This corresponds to
Mγ having Mβi for i = 1, . . . , l as children. Let Mρ denote the root group manager.
We assume that the root group manager is at depth 0 and that all leaves in the
tree are at the same depth. When there is no risk of confusion we write α instead
of Mα or Sα.

Note that standard group signatures correspond to having a single group man-
ager M[1,l] that manages all signers S1, . . . , Sl.

Definition of Security

The first thorough investigation of the fundamentals of group signatures was carried
out by Bellare et al. [7]. They give a definition of a group signature scheme, but
more importantly they argue that two properties of group signatures, full anonymity
and full traceability, imply any reasonable security requirements one can expect
from a group signature scheme.

We follow their definitional approach closely and develop definitions that are
proper generalizations of the original.
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Mρ

Mβ1

Sα1 Sα2

Mβ2

Sα3 Sα4 Sα5 Sα6

Mβ3

Sα7 Sα8 Sα9

Figure 3.1: A tree of group managers and signers, where ρ = {β1, . . . , β3}, β1 =
{α1, α2}, β2 = {α3, α4, α5, α6}, and β3 = {α7, α8, α9}.

The idea is that the managers and signers are organized in a tree T , and we
wish to associate with each node (or leaf) α a public value hpk (α) and a private
value hsk (α).

Definition 3.2.1 (Hierarchical Group Signature). A hierarchical group sig-
nature scheme HGS = (HKg,HSig,HVf,HOpen) consists of four polynomial-time
algorithms

1. The randomized key generation algorithm HKg takes as input (1κ, T ), where
T is a tree of size polynomially bounded in κ with all leaves at the same depth,
and outputs a pair of maps hpk , hsk : T → {0, 1}∗.

2. The randomized signature algorithm HSig takes as input a message m, a tree
T , a public map hpk , and a secret signing key hsk (α), and returns a signature
of m.

3. The deterministic signature verification algorithm HVf takes as input a tree
T , a public map hpk , a message m and a candidate signature σ of m and
returns either 1 or 0.

4. The deterministic opening algorithm HOpen takes as input a tree T , a public
map hpk , a secret opening key hsk (β), a message m, and a candidate signature
σ. It outputs an index α ∈ β or ⊥.

In the definition of HSig above, it is assumed that it is possible to verify in
polynomial time given the public tree gpk , a secret key gsk(α) and an index α′, if
α = α′. This is the case for the construction in [7]. We assume that hpk and hsk

map any input that is not a node of T to ⊥ and that HOpen(·, ·,⊥, ·, ·) = ⊥.
We need to define what we mean when we say that a hierarchical group sig-

nature scheme is secure. Here we generalize the definitions of [7]. We begin with
anonymity. Assume a message has been signed by either α(0) or α(1). Then any
group manager on the path leading from α(0) or α(1) to the first group manager
who is an ancestor of both α(0) and α(1), can determine who the signer is. In Figure
3.2 those group managers are marked with black. In the definition of anonymity we
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capture the property that an adversary that is not allowed to corrupt any of these
group managers cannot determine whether α(0) or α(1) signed the message, even if
the adversary itself is given the private keys of all signers and is allowed to select
α(0), α(1) and the message himself.

α(0) α(1)

Figure 3.2: Nodes in black represent group managers able to distinguish between
α(0) and α(1).

We define Experiment 3 to formalize these ideas. Throughout the experiment
the adversary has access to an HOpen(T, hpk , hsk (·), ·, ·) oracle. At the start of the
experiment the adversary is given the public keys of all parties and the private keys
of all signers. Then it can adaptively ask for the private keys of the group managers.
At some point it outputs the indices α(0) and α(1) of two leaves and a message m.
The HSig(·, T, hpk , hsk (·)) oracle computes the signature of m using the private key
hsk(α(b)) and hands it to the adversary. The adversary finally outputs a guess d
of the value of b. If the scheme is anonymous the probability that b = d should be
negligibly close to 1/2 when b is a randomly chosen bit. The labels corrupt, choose

and guess below distinguish between the phases of the experiment.

Experiment 3 (Hierarchical Anonymity, Expanon−b
HGS,A(κ, T )).

(hpk , hsk )← HKg(1κ, T ); sstate ← (hpk , hsk (L(T ))); C ← ∅; α← ∅;
While (α 6= ⊥) do

(sstate, α)← AHOpen(T,hpk ,hsk(·),·,·)(corrupt, sstate, hsk (α))

C ← C ∪ {α}
Done

(sstate, α
(0), α(1),m)← AHOpen(T,hpk ,hsk(·),·,·)(choose, sstate)

σ ← HSig(T, hpk , hsk(α(b)),m)

d← AHOpen(T,hpk ,hsk(·),·,·)(guess, sstate, σ)

Let B be the set of nodes on paths from α(0) and α(1) up to their first common

ancestor αt excluding α(0) and α(1) but including αt, i.e., the set of nodes α
(0)
l ,

α
(1)
l , l = t, . . . , δ − 1, such that

α(0) ∈ α(0)
δ−1 ∈ α

(0)
δ−2 ∈ . . . ∈ α

(0)
t+1 ∈ αt ∋ α

(1)
t+1 ∋ . . . ∋ α

(1)
δ−2 ∋ α

(1)
δ−1 ∋ α(1) .
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If B ∩ C 6= ∅ or if A asked its HOpen(T, hpk , hsk(·), ·, ·) oracle a question (α
(0)
l , m,

σ) or (α
(1)
l ,m, σ) return 0. Otherwise return d.

Consider the above experiment with a depth one tree T with root ρ. In that case
we may assume that hsk (ρ) is never handed to the adversary, since the adversary
fails in that case anyway. Similarly the HOpen(T, hpk , hsk(·), ·, ·) oracle reduces to
the Open oracle in [7]. Thus, our experiment reduces to the experiment for full
anonymity given in [7] where the adversary gets the secret keys of all signers, but
only the public key of the group manager.

Next we consider how the notion of full traceability can be defined in our setting.
Full traceability as defined in [7] is similar to security against chosen message attacks
(CMA-security) as defined by Goldwasser, Micali and Rivest [36] for signatures.
The only essential difference is that the group manager must always be able to open
a signature and identify the signer. In our setting this amounts to the following.
Given a signature deemed valid by the HVf algorithm, the root should always be
able to identify the child directly below of which the signer is a descendent. The
child should have the same ability for the subtree of which it is a root and so on
until the child itself is a signer.

Again we define an experiment consisting of two phases. To start with the
adversary is given the secret keys of all group managers. Then the adversary ad-
aptively chooses a set of signers to corrupt. Then in a second phase the adversary
guesses a message and signature pair. If the guess amounts to a signature deemed
valid by HVf and the signer cannot be traced, or if the signature is traced to a
non-corrupted signer, the adversary has succeeded and the experiment outputs 1.
Otherwise it outputs 0. Thus, the distribution of the experiment should be negli-
gibly close to 0 for all adversaries if the scheme is secure.

Experiment 4 (Hierarchical Traceability, Exptrace
HGS,A(κ, T )).

(hpk , hsk)← HKg(1κ, T ); sstate ← (hpk , hsk(T \L(T )); C ← ∅; α← ∅;
While (α 6= ⊥) do

(sstate, α)← AHSig(·,T,hpk,hsk(·))(choose, sstate, hsk(α))

C ← C ∪ {α}
Done

(m,σ)← AHSig(·,T,hpk ,hsk(·))(guess, sstate)

If HVf(T, hpk ,m, σ) = 0 return 0. Define α0 = ρ and αl = HOpen(T , hpk ,
hsk(αl−1), m, σ) for l = 1, . . . , δ. If αl = ⊥ for some 0 < l ≤ δ return 1. If
αδ 6∈ C and the HSig(·, T, hpk , hsk(·)) oracle did not get a question (m,αδ) return
1. Otherwise return 0.

Consider the experiment above with a depth one tree. This corresponds to giving
the adversary the secret key of the group manager, and letting it adaptively choose
additional signing keys. Furthermore, the HSig(·, T, hpk , hsk(·)) oracle reduces to
the GSig oracle in [7]. This is precisely the setting of [7].
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The advantage of the adversary is defined in the natural way by

Advanon
HGS,A(κ, T ) = |Pr[Expanon−0

HGS,A(κ, T ) = 1]− Pr[Expanon−1
HGS,A(κ, T ) = 1]|

and

Adv
trace
HGS,A(κ, T ) = Exptrace

HGS,A(κ, T ) .

Definition 3.2.2 (Security of Hierarchical Group Signatures).
A hierarchical group signature scheme HGS = (HKg,HSig,HVf,HOpen) is secure
if for all trees T of polynomial size in κ with all leaves at the same depth, and all
A ∈ PPT∗, Advtrace

HGS,A(κ, T ) + Advanon
HGS,A(κ, T ) is negligible.

Remark 3.2.3. The reason the adversary is not given access to both the HOpen

and the HSig oracle in the experiments is that it is given sufficient private keys to
simulate the missing oracle by itself.

Remark 3.2.4. An ordinary signature scheme SS = (Kg, Sig,Vf), with key gen-
erator Kg, signature algorithm Sig, and verification algorithm Vf, can be viewed as
a hierarchical group signature scheme (Kg, Sig,Vf,HOpen) of depth 0 by defining
HOpen(σ) = ⊥. Then Advanon

HGS,A(κ, T ) = 0 and Definition 4 reduces to the defin-
ition of security against chosen message attacks as defined by Goldwasser, Micali,
and Rivest [36].

Alternative Definitions

Above we define a hierarchical group signature scheme such that the group man-
agers are organized in a tree where all leaves are at the same depth. Furthermore, a
group manager can by looking at a signature decide whether the signer belongs to
it or not without any interaction with other group managers. Several other variants
are possible. Below we discuss some of these variants informally.

Trees with leaves on different depths could be considered. Any such tree can
clearly be replaced by a tree with all leaves at the same depth by inserting dummy
group managers in between signers and their immediate parents until all signers
are at the same depth.

We could let group managers sign on behalf of its group. If this is needed a
signer that correspond to the group manager is added. Depending on if the parent
of the group manager should be able to distinguish between a signature of the group
manger itself and its children or not, the signer is added to the group manager’s
parent or itself.

We could consider a forest of trees, i.e. there could be several roots. Such a
scheme can be simulated in our definition by first joining the trees into a single tree
by adding a root and then disposing of the private root key.

The group managers could be organized in a directed acyclic graph (DAG), e.g.
two trees could share a common subtree. This would give alternative paths to some
signers. There may be situations where this is advantageous, but the semantics
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of such a scheme are complex and involves many subtle issues, e.g. should all
group managers (indirect and direct) of a signer get information on its identity, or
should the signer decide on a path from a root and only reveal information to group
managers along this path? Although we believe that the techniques we use for our
construction would be useful also for this type of scheme we do not investigate such
schemes further.

On Constructing Hierarchical Group Signatures

All known group signatures are based on the idea that the signer encrypts a secret of
some sort using the group manager’s public key, and then proves that the resulting
cryptotext is on this special form. The security of the cryptosystem used implies
anonymity, since no adversary can distinguish cryptotexts of two distinct messages
if they are encrypted using the same public key.

Suppose we wish to generalize this approach to construct a hierarchical group
signature scheme. In the hierarchical setting protecting the identity of the signer
implies protecting the identity of the group managers along the path of to the signer.
On the other hand these group managers (and nobody else) must be able to extract
partial knowledge on the identity on the identity of the signer. Thus, it seems that
hierarchical group signatures must somehow contain embedded cryptotexts. To
ensure anonymity, signatures with embedded cryptotexts corresponding to distinct
public keys must be indistinguishable, since otherwise the cryptotexts embedded
in a signature would reveal information on the identity of the signer. This type of
indistinguishability does not follow from the indistinguishability of a cryptosystem.
We say that a cryptosystem that has this property is cross-indistinguishable. This
property is investigated in detail in Section 3.3 below.

On the other hand, to ensure traceability, the signer must prove that a signature
contains the identity of the signer encrypted with public keys corresponding to
the path to the signer. In principle this is not a problem, since there is a non-
interactive zero-knowledge proof system for any language in NP, but the details
must be resolved. It is far from obvious how to construct a practical proof system.

3.3 Cross-Indistinguishability

It turns out that the cryptosystem we use must not only be indistinguishable
(semantically secure), but it must also have an incomparable security property
which we call cross-indistinguishability. We formalize cross-indistinguishability in
Definition 3.3.2 below, but first we recall the definition of indistinguishability of
a cryptosystem CS = (Kg, E,D), with key generator Kg, encryption algorithm E,
and decryption algorithm D, as defined by Goldwasser and Micali [34].
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Experiment 5 (Indistinguishability, Expind−b
CS,A(κ) (cf. [34])).

(pk , sk) ← Kg(1κ)

(m0,m1, sstate) ← A(pk )

d ← A(Epk (mb), sstate)

We let Advind
CS,A(κ) = |Pr[Expind−0

CS,A (κ) = 1]− Pr[Expind−1
CS,A (κ) = 1]|.

Definition 3.3.1. Let CS be a cryptosystem. We say that CS is indistinguishable
if for all A ∈ PPT∗, Advind

CS,A(κ) is negligible.

Informally, cross-indistinguishability boils down to the property that the ad-
versary cannot distinguish cryptotexts encrypted with distinct public keys.

Experiment 6 (Cross-Indistinguishability, Expcross−b
CS,A (κ)).

(pk 0, sk0) ← Kg(1κ), (pk 1, sk1)← Kg(1κ)

(m, sstate) ← A(pk 0, pk1)

d ← A(Epkb
(m), sstate)

Note that compared to the standard definition of indistinguishability of crypto-
texts, the roles played by public keys and messages are reversed. One could consider
a variant definition which captures both types of indistinguishabilities, but we think
it is more natural to think of cross-indistinguishability as an additional property.
We let Advcross

CS,A(κ) = |Pr[Expcross−0
CS,A (κ) = 1]− Pr[Expcross−1

CS,A (κ) = 1]|.
Definition 3.3.2. Let CS be a cryptosystem. We say that CS is cross-indistin-
guishable if for all A ∈ PPT∗, Advcross

CS,A(κ) is negligible.

The property of cross-indistinguishability is clearly useless if the cryptosystem is
not indistinguishable, since it allows the encryption function to be the identity map.
Thus, cross-indistinguishability does not imply indistinguishability. To see that the
other implication does not hold, note that if CS is an indistinguishable cryptosys-
tem, then so is the cryptosystem where the encryption and decryption functions
c = Epk (m) and Dsk (c) = m are replaced by (c, c′) = E′

pk (m) = (Epk (m), pk ) and
D′

sk (c, c′) = Dsk (c) = m respectively.
The lemma below characterizes the set of cryptosystems which are both indis-

tinguishable and cross-indistinguishable. Denote by Expind−Dind

CS,A (κ) Experiment 5,
but with the input Epkb

(m) replaced by an element distributed according to a dis-

tribution Dκ, where Dind = {Dκ}, and correspondingly for Expcross−Dind

CS,A (κ). We
use TD to denote the Turing machine that on input 1κ returns a sample distributed
according to Dκ.

Experiment 7 (Dind-Indistinguishability, Expind−Dind

CS,A (κ)).

(pk , sk) ← Kg(1κ)

(m0,m1, sstate) ← A(pk )

d ← (TD(1κ), sstate)
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Experiment 8 (Dind-Cross-Indistinguishability, Exp
cross−Dind

CS,A (κ)).

(pk 0, sk0) ← Kg(1κ), (pk 1, sk1)← Kg(1κ)

(m, sstate) ← A(pk 0, pk1)

d ← A(TD(1κ), sstate)

Lemma 3.3.3. Let CS be a cryptosystem which is both indistinguishable and cross-
indistinguishable. Then there exists an efficiently sampleable distribution Dind such
that for all A ∈ PPT∗

|Pr[Expind−b
CS,A (κ) = 1]− Pr[Exp

ind−Dind(κ)
CS,A (κ) = 1]| ,

is negligible for b ∈ {0, 1}. The reverse implication holds as well.

Proof. Suppose that a distribution Dind as in the lemma exists. The indistin-
guishability of CS then follows by a trivial hybrid argument. Suppose that CS is
not cross-indistinguishable. Then there exists an adversary A ∈ PPT∗ such that

|Pr[Expcross−0
CS,A (κ) = 1]− Pr[Expcross−1

CS,A (κ) = 1]|

is non-negligible which by a trivial hybrid argument implies that

|Pr[Expcross−b
CS,A (κ) = 1]− Pr[Expcross−Dind

CS,A (κ) = 1]|

is non-negligible for a fixed b ∈ {0, 1}, which we without loss assume to be 0.
Let A′ be the adversary in Experiment 5 defined as follows. On input pk it sets
pk0 = pk generates (pk 1, sk1) = Kg(1κ) and hands (pk 0, pk1) to A, which re-
turns (m, sstate). Then A′ returns (m,m, sstate). When handed (c, sstate) from
the experiment, where c is either is Epk0

(m) or a sample from Dκ, it returns the

output of A(c, sstate). By construction Expind−0
CS,A′(κ) is identically distributed to

Expcross−0
CS,A (κ), and Expind−Dind

CS,A′ (κ) is identically distributed to Expcross−Dind

CS,A (κ).
This is a contradiction, since it implies that

|Pr[Expind−0
CS,A′(κ) = 1]− Pr[Exp

ind−Dind

CS,A′ (κ) = 1]|

is non-negligible.
Suppose next that CS is indistinguishable and cross-indistinguishable. We define

our prospective distribution Dind as follows. To generate a sample from Dind,
generate a key pair (pk ′, sk ′) = Kg(1κ) and output an encryption Epk ′(m′), where
m′ = 0κ. This implies that Dind is efficiently sampleable. Assume that

|Pr[Expind−b
CS,A (κ) = 1]− Pr[Exp

ind−Dind

CS,A (κ) = 1]|

is non-negligible for b = 0 (then it is also non-negligible for b = 1, since CS is
indistinguishable). Let A′

0 be the adversary in Experiment 6 that does the following.
On input (pk 0, pk1) it hands pk 0 to A which returns (m0,m1). Then A′

0 returns
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m0, and is given Epkb (m0) for a randomly chosen b ∈ {0, 1} by the experiment. It
hands Epkb(m0) to A and returns the output of A. A′

1 is identical to A′
0 except

that it hands m′ to the experiment instead of m0. From the construction follows
that Expind−0

CS,A (κ) and Exp
ind−Dind

CS,A (κ) are identically distributed to Expcross−0
CS,A′

0
(κ)

and Expcross−1
CS,A′

1
(κ) respectively. Thus

|Pr[Expcross−0
CS,A′

0
(κ) = 1]− Pr[Expcross−1

CS,A′

1
(κ) = 1]|

is non-negligible. From the cross-indistinguishability of CS we have that

|Pr[Expcross−0
CS,A′

b
(κ) = 1]− Pr[Expcross−1

CS,A′

b
(κ) = 1]|

is negligible for b ∈ {0, 1}. A hybrid argument implies that

|Pr[Expcross−b
CS,A′

0
(κ) = 1]− Pr[Expcross−b

CS,A′

1
(κ) = 1]|

is non-negligible for some b ∈ {0, 1}. Without loss we assume b = 0. Denote by
A′′ the adversary in Experiment 5 defined as follows. Given input pk it hands
(pk ) to A. When A returns (m0,m1), it outputs (m0,m

′), and receives either
Epk(m0) or Epk(m

′), which it forwards to A. Finally, it returns the output of A.

Since, Expind−0
CS,A′′(κ) is identically distributed to Expcross−0

CS,A′

0
(κ) and Expind−1

CS,A′′(κ) is

identically distributed to Expcross−0
CS,A′

1
(κ), this contradicts the indistinguishability of

CS.

Note that Dind depends on CS but is independent of all stochastic variables in
the experiment. Below we show that the probabilistic cryptosystem of Goldwasser
and Micali [34] is cross-indistinguishable.

Remark 3.3.4. Several standard probabilistic cryptosystems can be made cross-in-
distinguishable by minor modifications. E.g. it is not hard to see that the ElGamal
[28] cryptosystem is cross-indistinguishable if the group in which it is employed is
fixed for each value of the security parameter.

3.4 A Construction under General Assumptions

In this section we show how hierarchical group signatures can be constructed under
general assumptions. Our focus is on feasibility and conceptual simplicity. We
prove the following theorem.

Theorem 3.4.1. If there exists a family of trapdoor permutations, then there exists
a secure hierarchical group signature scheme.

To prove the theorem we construct a hierarchical group signature scheme by
augmenting the group signature scheme of [7] with additional cryptotexts and a
non-interactive zero-knowledge proof.
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Assumptions and Primitives Used

Before we give our construction we review some constructions and results on which
our construction is based.

Group Signature Scheme

The first building block we need is a group signature scheme secure under the
assumption that trapdoor permutations exists. As shown by Bellare et al. such a
scheme exists.

Theorem 3.4.2 (cf. [7]). If there exists a family of trapdoor permutations, then
there exists a secure group signature scheme GS = (GKg,GSig,GVf,Open).

Public Key Cryptosystem

The probabilistic cryptosystem of Goldwasser and Micali [34] is indistinguishable,
but we are not aware of any proof of cross-indistinguishability. We prove that their
construction is also cross-indistinguishable, but first we recall their construction.

Their construction is based on the existence of non-approximable trapdoor
predicates. This concept can be captured in modern terminology as follows. A
family of trapdoor permutations is a triple of polynomial time algorithms F =
(Gen,Eval, Invert). The instance generator Gen(1κ) outputs a description f of a
permutation of {0, 1}κ and a trapdoor f−1. The evaluation algorithm Eval(1κ, f, x)
evaluates the permutation on input x ∈ {0, 1}κ. The the corresponding inversion
algorithm Invert(1κ, f−1, y) evaluates the inverse permutation on input y ∈ {0, 1}κ.
We abuse notation and write f(x) and f−1(y) for the evaluation of the permutation
and inverse permutation as described above. The last requirement on the family of
trapdoor permutations is that it must be infeasible for any A ∈ PPT∗ given f and
y = f(x), where x ∈ {0, 1}κ, to compute x = f−1(y). A hard-core bit for F is a
family of functions B = {Bκ : {0, 1}κ → {0, 1}} such that it is infeasible to compute
Bk(x), given only f and f(x) for a random x ∈ {0, 1}κ. Goldreich and Levin [33]
show how to construct a family of trapdoor permutations F with a hard-core bit B
from any family of trapdoor permutations.

The cryptosystem GM = (GMKg, E,D) of Goldwasser and Micali [34] using F
and B can be defined as follows (using modern terminology). The key generator
GMKg(1κ) simply outputs (pk , sk) = (f, f−1) = Gen(1κ). To compute a cryptotext
Epk (m) of a bit m ∈ {0, 1}, choose r ∈ {0, 1}κ, and output (f(r),B(r) ⊕m). To
decrypt a cryptotext (c, c′), compute Dsk (c, c′) = B(f−1(c)) ⊕ c′. To encrypt a
bit-string the encryption function is invoked with a fresh randomly chosen r for
each bit in the natural way. Goldwasser and Micali essentially show the following
theorem.

Theorem 3.4.3. If F is a trapdoor permutation family with hard-core bit B, then
GM is indistinguishable.
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We show that the GM cryptosystem is also cross-indistinguishable.

Lemma 3.4.4. If F is a trapdoor permutation family with hard-core bit B, then
GM is cross-indistinguishable.

Proof. Suppose that GM is not cross-indistinguishable. Let Uκ+1 be the uniform
and independent distribution over {0, 1}κ+1. Then for some adversary A ∈ PPT∗,

|Pr[Expind−b
CS,A (κ) = 1]− Pr[Exp

ind−Uκ+1

CS,A (κ) = 1]|

is non-negligible for a fixed b ∈ {0, 1}. Without loss we assume b = 0. Since
GM is a bitwise cryptosystem, we may without loss assume that m0 = 0 and
m1 = 1. Let m ∈ {0, 1} be randomly distributed, then a cryptotext Epk (m) =
(f(r),B(r) ⊕ m) is distributed according to Uκ+1, since f is a permutation and
B(r) ⊕m is uniformly and independently distributed. A trivial average argument
implies that |Pr[Expind−b

CS,A (κ) = 1] − Pr[Expind−1
CS,A (κ) = 1]| is non-negligible which

is a contradiction.

Non-Interactive Zero-Knowledge Proofs

Non-interactive zero-knowledge proofs (NIZK) were introduced by Blum, Feldman,
and Micali [8]. Several works have since refined and extended the notion in various
ways. Following [7] we employ the definition of adaptive zero-knowledge for NIZK
introduced by Feige, Lapidot, and Shamir [30] and we use the notion of simula-
tion soundness introduced by Sahai [62]. The notion of simulation soundness is
strengthened by De Santis et al. [64]. In contrast to [7], the NIZK we use must
be adaptive zero-knowledge for polynomially many statements, and not only for a
single statement. The requirement on simulation soundness is in fact unchanged
compared with [7], i.e. single statement simulation soundness suffices.

Definition 3.4.5 (NIPS). A triple (p(κ), P, V ) is an efficient adaptive non-inter-
active proof system (NIPS) for a language L ∈ NP with witness relation R if p(κ)
is a polynomial and P and V are probabilistic polynomial time machines such that

1. Completeness. (x,w) ∈ R and ξ ∈ {0, 1}p(κ) implies V (x, P (x,w, ξ), ξ) = 1.

2. Soundness. For all computable functions A, Prξ∈{0,1}p(κ) [A(ξ) = (x, π) ∧ x 6∈
L ∧ V (x, π, ξ) = 1] is negligible in κ.

We suppress p in our notation of a NIPS and simply write (P, V ).

Loosely speaking a non-interactive zero-knowledge proof system is a NIPS,
which is also zero-knowledge, but there are several flavors of zero-knowledge. We
need a NIZK which is adaptive zero-knowledge (for a single statement) in the sense
of Feige, Lapidot, and Shamir [30].



3.4. A CONSTRUCTION UNDER GENERAL ASSUMPTIONS 43

Experiment 9 (Adaptive Indistinguishability, Expadind−b
(P,V,S),A(κ) (cf. [30])).

ξ ← {0, 1}f(κ) if b = 0
(ξ, ssimstate)← S(1κ) if b = 1

sstate = ξ, t← ∅
While (t 6= ⊥) do

(sstate, t, w)←







A(choose, P (t, w, ξ)) if (t, w) ∈ R and b = 0
A(choose, S(t, ξ, ssimstate)) if (t, w) ∈ R and b = 1
A(choose,⊥) otherwise

Done

d← A(sstate)

The advantage in the experiment is defined

Advadind
(P,V,S),A(κ) = |Pr[Expadind−0

(P,V,S),A(κ) = 1]− Pr[Expadind−1
(P,V,S),A(κ) = 1]|

and the notion of adaptive zero-knowledge is given below.

Definition 3.4.6 (Adaptive Zero-Knowledge (cf. [30])).
A NIPS (P, V ) is adaptive zero-knowledge (NIZK) if there exists a polynomial time
Turing machine S such that Advadind

(P,V,S),A(κ) is negligible for all A ∈ PPT∗.

In cryptographic proofs one often performs hypothetic experiments where the
adversary is run with simulated NIZKs. If the experiment simulates NIZKs to the
adversary, the adversary could potentially gain the power to compute valid proofs
of false statements. For a simulation sound NIZK this is not possible.

Experiment 10 (Simulation Soundness, Expsims
(P,V,S),A(κ) (cf. [64])).

(ξ, ssimstate)← S(1κ)

(t, π) = AS(·,ξ,ssimstate)(ξ)

Let Q be the set of proofs returned by the S(·, ξ, ssimstate) oracle. Return 1 if π 6∈ Q,
t 6∈ L, and V (t, π, ξ) = 1, and 0 otherwise.

Definition 3.4.7 (Simulation Soundness (cf. [62, 64])). A NIZK (P, V ) with
polynomial time simulator S for a language L is unbounded simulation sound if
Advsims

(P,V,S),A(κ) = Expsims
(P,V,S),A(κ) is negligible for all A ∈ PPT∗.

De Santis et al. [64] extend the results in [30] and [62] and prove the following
result.

Theorem 3.4.8. If there exists a family of trapdoor permutations, then there exists
a simulation sound NIZK for any language in NP.

In the the rest of this chapter we abbreviate “efficient non-interactive adaptive
zero-knowledge unbounded simulation sound proof” by NIZK.
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Our Construction

We now describe our hierarchical group signature scheme HGS = (HKg, HSig, HVf,
HOpen). We let F = (Gen,Eval, Invert) denote a family of trapdoor permutations
with a hard-core bit B, and assume that a Goldwasser-Micali cryptosystem GM
has been constructed from this. We denote by GS = (GKg, GSig, GVf, Open) the
group signature scheme of Bellare et al. also constructed from F . However, we view
this as a hierarchical group signature scheme of depth 1 and use the corresponding
notation, i.e. the public and secret keys of the group manager Mρ are denoted by
hpk (ρ) and hsk (ρ) (not by gpk and gmsk etc. as in [7]). Below we also use F to
construct a NIZK for a language LHGS.

First keys to the GS group signature scheme are generated, where the signers
correspond to the signers in the hierarchical group signature scheme we are con-
structing. However, the root group manager is not given its usual secret opening
key gsk(ρ). Instead, each group manager (including the root) is given a key pair
(pkβ, skβ) of the GM cryptosystem. When a signer Sα signs a message m it first
forms a group signature σ of the message m. Suppose that the signer corresponds
to the path α0, . . . , αδ in the tree, i.e. α0 = ρ and αδ = α. Then the signer forms
a chain of cryptotexts C = (Epkα0

(pkα1
), . . . , Epkαδ−1

(pkαδ )). Finally, it forms a

NIZK π that the chain of cryptotexts C is formed in this way, and that the encryp-
ted path corresponds to the identity of the signer hidden in the group signature
σ. The hierarchical group signature consists of the triple (σ,C, π). Verification
of a signature corresponds to verifying the NIZK. Opening a signature using the
secret opening key of a group manager at depth l corresponds to decrypting the lth
cryptotext.

Algorithm 1 (Key Generation, HKg(1κ, T )). The key generation is defined as
follows.

1. Generate a random string ξ ∈ {0, 1}∗ sufficiently long for a NIZK based on
F of the language LHGS defined below.

2. For each node α in T , compute (pkα, skα) = GMKg(1κ).

3. Let I be the bijection mapping each list (pkα0
, . . . , pkαδ ) such that α0, . . . , αδ

is a path in T , where α0 = ρ and αδ ∈ L(T ) to αδ. Define I to map anything
else to ⊥. Denote by TGS the tree with root ρ and leaves L(T ).

4. Run (gpk , gsk) = GKg(1κ, TGS), and set (hpk (α), hsk (α)) = ((pkα, gpk (α)),
(skα, gsk(α))) for α ∈ L(T ).

5. Set (hpk (ρ), hsk (ρ)) = ((ξ, pk ρ, gpk (ρ)), skρ) and set (hpk (β), hsk (β)) = (pkβ,
skβ) for β 6∈ L(T ), β 6= ρ (note that hsk (ρ) does not contain gsk(ρ)).

6. Output (hpk , hsk).

The result of running the above algorithm is illustrated in Figure 3.3.
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((ξ, pkρ, gpk(ρ)), skρ)

(pkβ3
, skβ3)

((pkα7
, gpk (α7)), (skα7 , gsk(α7)))

Figure 3.3: The figure illustrates the public and secret keys along a path (the thick
edges) in the tree of keys corresponding to Figure 3.1. Each node contains a pair
of public and secret keys.

Algorithm 2 (Signing, HSig(m,T, hpk , hsk(α))). Let α0, . . . , αδ be the path to
the signer Sα, i.e. ρ = α0 and αδ = α.

1. Compute

σ = GSig(m,TGS , gpk , gsk(α))

and

C = (C0, . . . , Cδ−1) = (Epkα0
(pkα1

), . . . , Epkαδ−1
(pkαδ )) .

2. Compute a NIZK π of the language LHGS















(T, hpk ,m, σ, C)

∣

∣

∣

∣

∣

∣

∣

∣

∃pk0, . . . , pkδ−1 : α0 = ρ ,
Cl = Epk l

(pk l+1) for l = 0, . . . , δ − 1 ,
I(pk 0, . . . , pk δ−1) = α , and
σ = GSig(m,TGS , gpk , gsk(α))















.

3. Output (σ,C, π).

Remark 3.4.9. Above the complete tree of public keys hpk is given to the signing
algorithm, despite that only the public keys hpk (α0), . . . , hpk (αδ) along the path are
needed. This is for notational convenience.

Algorithm 3 (Verification, HVf(T, hpk ,m, (σ,C, π))). On input a signature (σ,
C, π) invoke the NIZK verifier V on input ((T, hpk ,m, σ, C, ), π) and return the
result.

Algorithm 4 (Opening, HOpen(T, gpk , gsk(β),m, (σ,C, π))). If HVf(T, hpk , m,
(σ,C, π)) = 0, then return ⊥. Otherwise compute pkα = Dskβ (Cl). If α ∈ β return
α and otherwise ⊥.
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Consider the construction HGS above, where GM is replaced by any indistin-
guishable cryptosystem CS. Is the result secure? The answer is no. The problem
is that the security of the cryptosystem CS does not imply that a cryptotext does
not reveal the public key used for encryption. An adversary could possibly identify
which key was used for encryption simply by looking at a cryptotext, and thereby
extract partial information on the identity of the signer. Fortunately, we have
shown that GM is cross-indistinguishable which solves the problem.

Remark 3.4.10. In Section 3.7 we describe an alternative construction that seems
better suited if we try to eliminate the trusted key generator, but which is harder to
analyze.

Remark 3.4.11. It is an interesting question whether we can instantiate the Gold-
wasser-Micali scheme using RSA in our setting. The problem is that for a given
security parameter the RSA permutations are defined for different moduli. This can
be solved as follows. We modify the Goldwasser-Micali encryption algorithm such
that it repeatedly chooses r until f(r) < 2κ. This implies that f(r) < N for all κ-bit
moduli N . The probability that r has this property is at least 1/4. Given that we
put a polynomial bound on the number of tried r, the encryption process fails with
negligible probability. The security of the modified scheme follows from the security
of the original since the original scheme uses an r with f(r) < 2κ with probability
at least 1/4.

Security Analysis

We prove the following lemma on the security of our construction, from which
Theorem 3.4.1 follows immediately.

Lemma 3.4.12. If F is a family of trapdoor permutations, then HGS is secure.

The proof of hierarchical anonymity is similar in structure to the proof of full
anonymity for the one level case given in [7], e.g. we need only single-statement
simulation soundness. In the proof of hierarchical traceability we cannot proceed as
in the proof of full traceability [7], since we cannot simulate answers of the signature
oracle without invoking the simulator of the NIZK a polynomial number of times.
This is why we must assume that the NIZK is adaptive zero-knowledge.

Proof. We prove the hierarchical anonymity and the hierarchical traceability of
HGS separately.

Proof of Hierarchical Anonymity. Suppose to the contrary that the ad-
versary A breaks hierarchical anonymity. Then we have Advanon

HGS,A(κ, T ) ≥ 1/κc

for some polynomial size tree T , constant c > 0 and κ in an infinite index set N .
We construct a machine A′ that runs A as a blackbox and breaks the hierarchical
anonymity (i.e. full anonymity [7]) of GS.

Definition of A′.
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The adversary A′ simulates the hierarchical anonymity experiment, Experiment
3, with HGS to A. It also plays the role of adversary in Experiment 3 with GS.

The key generation is simulated as follows. First the NIZK simulator S is
invoked to compute a reference string with a trapdoor (ξ, ssimstate). The string
ξ is used instead of a random string. Recall that TGS denotes the tree having ρ
(the root of T ) as root, and children L(T ). A′ first waits until it receives gpk

and (gsk(α))α∈L(T ). Then it simulates the remaining part of the key generation
honestly except that it uses these values, and it does not define gsk(ρ) at all. Thus,
the keys of all intermediate group managers are generated by A′.

In each iteration in the simulated experiment A may request gsk (α) for some
group manager Mα. The only such request A′ cannot answer honestly and correctly
is a request for gsk(ρ) which it answers by ⊥, but this is not a problem since the
experiment outputs 0 in this case anyway.

Queries to the HOpen(T, hpk , hsk(·), ·, ·) oracle are simulated in the following
way. Given a query on the form (β,m, (σ,C, π)), A′ first checks that β ∈ T and

HVf(T, hpk ,m, (σ,C, π)) = 1 .

If not it returns ⊥. If so it asks its Open(TGS , gpk , gsk(·), ·, ·) oracle the ques-
tion (β,m, σ), which replies by α ∈ L(T ). Let α0, . . . , αδ be its corresponding
path, i.e. α0 = ρ and αδ = α. Let β be on depth l. Then A′ instructs the
HOpen(T, hpk , hsk (·), ·, ·) oracle to return αl+1 to A. Note that the answers com-
puted in this way are not necessarily correct.

When A outputs (α(0), α(1),m), A′ outputs this as well. When A′ is given
a signature σ from its experiment, it computes δ samples C = (C0, . . . , Cδ−1)
distributed according to the distribution Dind guaranteed to exist by Lemma 3.3.3.
Then it invokes the simulator S on ((T, hpk ,m, σ, C), ssimstate) to form a proof π,
and hands (σ,C, π) to A.

Eventually A outputs a bit d, which A′ then returns as output.

Analysis of A′. We divide our analysis into three claims. Denote by Abc,o,p the
machine that on input κ simply simulates Experiment 3 withHGS to A and outputs
the result. Then clearly Abc,o,p(κ) is identically distributed to Expanon−b

HGS,A(κ) for

b ∈ {0, 1}. Denote by Abc,o the machine which is identical to Abc,o,p except for
the following two changes. Firstly, instead of generating ξ as a random string,
it invokes the NIZK simulator S, which returns (ξ, ssimstate). Secondly, to form
the NIZK π, it invokes the NIZK simulator S on input ((T, hpk ,m, σ, C), ssimstate).
Thus, except from the fact that the proof π is simulated, Abc,o simulates Experiment

3 with HGS to A. We also define Abc to be identical to Abc,o except that it simulates
the HOpen(T, hpk , hsk(·), ·, ·) oracle to A precisely as A′ does. Finally, we define
Ab to be identical to Abc except that the C0, . . . , Cδ in the challenge signature are
generated precisely as A′ does.

Thus, by construction Ab is identically distributed to Expanon−b
GS,A′ (κ). This gives

us a chain of distributions Abc,o,p, A
b
c,o, A

b
c, A

b starting with Expanon−b
HGS,A(κ) and end-
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ing with Expanon−b
GS,A′ (κ). In the following claims we show that the distance between

each pair of distributions is negligible.

Claim 2. There is a negligible function ǫ1(κ) in κ such that

|Pr[Abc,o,p(κ) = 1]− Pr[Abc,o(κ) = 1]| < ǫ1(κ) .

Proof. The proof follows from the adaptive zero-knowledge of the NIZK (P, V, S).
Consider the adaptive zero-knowledge adversary Aadzk in Experiment 9 which

we define as follows. It waits for ξ from the experiment. Then starts the simulation
of Ac,o except that it uses the ξ received from the experiment. Then it continues the
simulation of Ac,o until it is about to generate the NIZK π. Instead of generating the
NIZK, it requests a NIZK π of the statement (T, hpk ,m, σ, C) from its experiment.
It must also hand the experiment a witness of this statement, but this is easy since
the statement was generated honestly. Finally, it continues the simulation of Ac,o

until it halts.
It follows that Abc,o,p(κ) and Abc,o(κ) are identically distributed to the outcome

of the experiments Expadind−0
(P,V,S),Aadzk

(κ) and Expadind−1
(P,V,S),Aadzk

(κ) respectively. The
reader should note that if π is a simulated proof, then the “proved” statement is
always true. Thus, simulation soundness plays no role here. From the adaptive
zero-knowledge of the NIZK we have that there exists a negligible function ǫ1(κ)
such that

|Expadind−0
(P,V,S),Aadzk

(κ)−Expadind−1
(P,V,S),Aadzk

(κ)| < ǫ1(κ) ,

and the claim follows.

Claim 3. There is a negligible function ǫ2(κ) such that

|Pr[Abc,o(κ) = 1]− Pr[Abc(κ) = 1]| < ǫ2(κ) .

Proof. The proof of this claim is similar to the proof in [62] and follows from the
simulation soundness of the NIZK.

A query (β,m, (σ,C, π)) from A to the simulated Open(T, hpk , hsk(·), ·, ·) is
answered incorrectly precisely when π is a valid proof, i.e., V ((T, hpk ,m, σ, C),
π, ξ) = 1, but (T, hpk ,m, σ, C) 6∈ LHGS. Denote by Ebq(A

b
c) the event that A asks

such a query in the simulation by Abc, and correspondingly for Abc,o.
We construct an adversary Asims against simulation soundness, i.e. Experiment

10, as follows. It simulates Abc (or Abc,o). Whenever A asks a query (β,m, (σ,C, π)),

Asims interrupts the simulation of Abc (or Abc,o) and checks whether the query is
such that (T, hpk ,m, σ, C) ∈ LHGS. This is easily done using the keys to the
cryptosystems and the group signature scheme. If (T, hpk ,m, σ, C) 6∈ LHGS, then
Asims outputs ((T, hpk ,m, σ, C), π). From the simulation soundness we conclude
that there exists a negligible function ǫ(κ) such that

Pr[Ebq(A
b
c)] = Pr[Ebq(A

b
c,o)] = Expsims

(P,V,S),Asims
(κ) < ǫ(κ) .
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By construction (Abc(κ) | Ebq(Abc)) and (Abc,o(κ) | Ebq(Abc,o)) are identically distrib-
uted. The claim follows.

Claim 4. There is a negligible function ǫ3(κ) in κ such that

|Pr[Abc(κ) = 1]− Pr[Ab(κ) = 1]| < ǫ3(κ) .

Proof. The claim follows from the indistinguishability and cross-indistinguishability
of GM using Theorem 3.4.3, Lemma 3.4.4, and Lemma 3.3.3 by use of a standard
hybrid argument.

We define a sequence of hybrid machines Aind,l for l = 0, . . . , δ − 1 as fol-
lows. Aind,l simulates Abc until it has computed (C0, . . . , Cδ−1). Then it com-
putes l samples (C ′

0, . . . , C
′
l) distributed according to the Dind distribution guar-

anteed by Lemma 3.3.3. Finally, it replaces (C0, . . . , Cδ−1) in its simulation by
(C′

0, . . . , C
′
l , Cl+1, . . . , Cδ−1), and continues the simulation of Abc. By construction,

Aind,−1(κ) and Aind,δ−1(κ) are identically distributed to Abc(κ) and Ab(κ) respect-
ively.

Suppose that the claim is false, i.e. there exists a constant c and an infinite
index set N ′ such that

|Pr[Aind,−1 = 1]− Pr[Aind,δ−1 = 1]| ≥ κ−c

for κ ∈ N ′. A hybrid argument implies that there exists a fixed 0 ≤ l < δ − 1 such
that

|Pr[Aind,l−1 = 1]− Pr[Aind,l = 1]| ≥ κ−c/δ .

Consider the adversary Aind for the indistinguishability experiment (Experiment

5) run with GM defined as follows. It chooses β
(b)
δ randomly from L(T ). Let

β0, . . . , βδ be the corresponding path, i.e. ρ = β0 and βδ = β
(b)
δ . Then it simulates

Aind,l−1 except that the keys (pkβl , skβl) are not generated. Instead it defines pkβl
to be the public key it received from Experiment 5. Then it hands (βl, βl) to its
experiment. The experiment returns a sample C ′

l .
If A requests the secret key skβl , the simulation can not be continued and Aind

outputs 0. Similarly, if A outputs (α(0), α(1)), where α(b) 6= β(b), then Aind outputs
0. Since β(b) is randomly chosen, we have Pr[α(b) = β(b)] = 1/|L(T )|.

If neither of the two events above occur, Aind continues the simulation until
the list of elements (C ′

0, . . . , C
′
l−1, Cl, . . . , Cδ−1) has been computed. It interrupts

the simulation and replaces Cl by the challenge C ′
l it received from Experiment 5.

Then it continues the simulation. We have that

|Pr[Expind−b
GM,Aind

(κ) = 1]− Pr[Exp
ind−Dind

GM,Aind
(κ) = 1]|

≥ |Pr[Aind,l−1 = 1 ∧ α(b) = β(b)]− Pr[Aind,l = 1 ∧ α(b) = β(b)]|
= (1/|L(T )|)|Pr[Aind,l−1 = 1]− Pr[Aind,l = 1]| ≥ 1/(|L(T )|δκc) .
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The inequality follows by construction, the equality follows by independence of the
events Aind,l = 1 and α(b) = β(b). In view of Theorem 3.4.3, Lemma 3.4.4, and
Lemma 3.3.3 this contradicts either the indistinguishability or the cross-indistin-
guishability of GM. Thus, the claim is true.

Claim 5. The hierarchical anonymity of GS is broken.

Proof. From Claim 2, Claim 3, and Claim 4 follows that

|Pr[Abc,o,p(κ) = 1]− Pr[Ab(κ) = 1]| < ǫ1(κ) + ǫ2(κ) + ǫ3(κ) ,

which gives

|Pr[Expanon−0
GS,A′ (κ) = 1]− Pr[Expanon−1

GS,A′ (κ) = 1]|
≥ |Pr[Expanon−0

HGS,A(κ) = 1]− Pr[Expanon−1
HGS,A(κ) = 1]| −

2(ǫ1(κ) + ǫ2(κ) + ǫ3(κ)) .

The assumption about A implies that the hierarchical anonymity is broken.

Proof of Hierarchical Traceability. Suppose to the contrary that A breaks
the hierarchical traceability of HGS. Then Advtrace

HGS,A(κ, T ) ≥ 1/κc for some poly-
nomial size tree T , constant c > 0 and κ in an infinite index set N . We construct a
machine A′ that runs A as a blackbox and breaks the hierarchical traceability (i.e.
full traceability [7]) of GS.

Definition of A′. The adversary A′ simulates the hierarchical traceability exper-
iment, Experiment 4, with HGS to A. It also plays the role of the adversary in
Experiment 4 with GS.

The key generation is simulated as follows. First the NIZK simulator is invoked
to compute a reference string with a trapdoor (ξ, ssimstate). The string ξ is used
instead of a random string. Recall that TGS denotes the tree having ρ (the root of T )
as root, and children L(T ). A′ first waits until it receives the keys (gpk (ρ), gsk (ρ))
of the root, and the public keys of all signers (gpk (α))α∈L(T ) from its experiment.
Then it simulates the key generation honestly except that it uses the received
values, and it does not define gsk (α) for any α ∈ L(T ) at all. Thus, the keys of all
intermediate group managers are generated by A′.

In each iteration in the experiment simulated to A, it may request gsk(α) for
some signer Sα. When this happens A′ requests gsk(α) from its experiment, and
hands (skα, gsk(α)) to A.

When A queries its HSig(·, T, hpk , hsk(·)) oracle on (m,α) the reply is computed
as follows. First A′ queries its GSig(·, TGS , gpk , gsk(·)) oracle on (m,α). The answer
is a GS signature σ. Then A′ computes C = (C0, . . . , Cδ−1) as defined by HSig.
Finally, it invokes the NIZK simulator S on input ((T, hpk ,m, σ, C), ξ, ssimstate) to
get a simulated proof π, and hands (σ,C, π) to A.
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At some point A outputs a message signature pair (m, (σ,C, π)). Then A′

outputs (m,σ). This concludes the definition of A′.

Analysis of A′. We divide our analysis into several claims. Denote by Aπ,p the ma-
chine that simulates Experiment 4 with HGS to A and outputs 1 if the experiment
outputs 1 and the output (m, (σ,C, π)) of A satisfies (T, hpk ,m, σ, C) ∈ LHGS.

Denote by Aπ the machine that is identical to Aπ,p except that it simulates the
answers from the HSig(·, T, hpk , hsk(·)) oracle to A precisely as A′ does.

Claim 6. There is a negligible function ǫ1(κ) in κ such that

Pr[Exptrace
HGS,A(κ) = 1] ≤ Pr[Aπ,p(κ) = 1] + ǫ1(κ) .

Proof. The claim follows from the soundness of the NIZK. Denote by Eπ,p the
event that the output (m, (σ,C, π)) of A in the experiment satisfies (T , hpk , m, σ,
C) ∈ LHGS. From the soundness of the NIZK follows that Pr[Eπ,p] is negligible.
By definition we have that Pr[Aπ,p(κ) = 1] = Pr[Exptrace

HGS,A(κ) = 1 ∧ Eπ,p]. The
claim follows.

Claim 7. There is a negligible function ǫ2(κ) in κ such that

|Pr[Aπ(κ) = 1]− Pr[Aπ,p(κ) = 1]| < ǫ2(κ) .

Proof. The claim follows from the adaptive zero-knowledge of the NIZK. We con-
struct an adversary Aadzk against the adaptive zero-knowledge, Experiment 9, as
follows.

It simulates Aπ except for the following two modifications. Firstly, it uses the
random string ξ from the experiment instead of generating its own. Secondly, in-
stead of invoking the simulator S on input ((T, hpk ,m, σ, C), ξ, ssimstate) to produce
a NIZK π it requests a NIZK of (T , hpk , m, σ, C) from its experiment. To do this
it must also hand a witness to the experiment, but this is not a problem since it
has generated all keys.

It follows that

|Pr[Aπ,p(κ) = 1]− Pr[Aπ(κ) = 1]|
= |Pr[Expadzk−0

(P,V,S),Aadzk
(κ) = 1]− Pr[Expadzk−1

(P,V,S),Aadzk
(κ) = 1]| < ǫ2(κ) ,

for some negligible function ǫ2(κ).

Claim 8. Pr[Aπ(κ) = 1] ≤ Pr[Exptrace
GS,A′(κ) = 1].

Proof. All inputs to A in the simulation of Aπ are identically distributed to the cor-
responding inputs in Experiment 4. The only difference in how the output of Aπ and
the experiment are defined is that Aπ outputs 1 if the output (m, (σ,C, π)) of A sat-
isfies (T, hpk ,m, σ, C) ∈ LHGS, and the experiment outputs 1 if GVf(∅, gpk ,m, σ) =
1, but the former requirement implies the latter. Thus, the claim follows.
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Claim 9. The hierarchical traceability of GS is broken.

Proof. From Claim 6 and Claim 7 Claim 8 follows that

Pr[Exptrace
HGS,A(κ) = 1] ≤ Pr[Aπ,p(κ) = 1] + ǫ1(κ) ≤

Pr[Aπ(κ) = 1] + ǫ1(κ) + ǫ2(κ) ≤ Pr[Exptrace
GS,A′(κ) = 1] + ǫ1(κ) + ǫ2(κ) .

The claim now follows from the assumption that HGS is broken by A.

Conclusion of Proof. If HGS is not hierarchically anonymous, then by Claim
5 neither is GS. If HGS is not hierarchically traceable, then by Claim 9 neither is
GS. This concludes the proof.

3.5 A Construction under the DDH Assumption and the

Strong RSA Assumption

In this section we show how to construct hierarchical group signatures under the
DDH assumption and the strong RSA assumption. In contrast to the previous
section our focus here is on practicality. We give an explicit construction where the
details of all subprotocols are completely specified. Then we prove the security of
our construction in the random oracle model. By now it is known that the random
oracle hypothesis is not literally true [18]. However, all known counter-examples are
contrived, and for practical protocols a security proof in the random oracle model
is often considered to be enough.

Review of Some Notions and Primitives

Before we give our construction we need to review some notions and primitives on
which our construction is based. Readers familiar with these primitives can safely
browse this section, but should observe that our notation differs slightly from the
standard at some points because of name collisions.

Cunningham Chains

Let q0 and q1 be primes such that q0 = 2q1 + 1. Then there is a unique subgroup
Gq1 ⊂ Z∗

q0 of order q1. Let g1 be a generator of Gq1 . The discrete logarithm of an
element z ∈ Gq1 in the basis g1 is defined as the (unique) r ∈ Zq1 such that z = gr1.
This is usually written logg1 z = r.

The primes q0 and q1 above are clearly of a special form. In fact q1 is called a
Sophie Germain prime. One can demand that q1 is of the same form as q0 and so
on. This leads to the following definition.

Definition 3.5.1 (Cunningham Chain). A sequence q0, . . . , qk−1 of primes is
called a Cunningham Chain1 of length k if qi = 2qi+1 + 1 for i = 0, . . . , k − 2.

1This is a chain of the second kind. A chain of the first kind satisfies qi = 2qi+1 − 1.
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Throughout this chapter q0, . . . , q3 are chosen to form a Cunningham Chain of
length 4 and we denote by Gqi the unique subgroup of order qi of Z∗

qi−1
. We also pick

a generator gi of Gqi . Thus, the groups are set up such that Z∗
ql
≈ Gql+1

×{−1, 1},
〈gl+1〉 = Gql+1

≈ Zql+1
.

Before we start using Cunningham chains for cryptography we are obliged to
ask if they exist at all. Unfortunately, there exists no proof that there are infinitely
many Cunningham chains of any length, not even of length 2 which correspond
to the Sophie Germain primes. However, one can apply a heuristic argument and
assume that a randomly chosen integer n is prime with “probability” 1/ logn. If we
also assume that the event that (n− 1)/2 is prime is independent of the event that
n is prime for every prime we should find a Cunningham chain of length k with
probability close to 1/ logk n. We stress that one must be careful with this type of
heuristic argument since there exist counter examples [46], but the argument seems
reasonable in our setting and agrees with computational experiments. In practice
it is not hard to find Cunningham chains of length 4 for primes of the size used
in current cryptography (cf. [58], [59]). Young and Yung [74] have also published
some heuristic tricks for finding length-3 Cunningham chains. We let CunnGenk
denote the algorithm that on input 1κ outputs a κ-bit Cunningham chain of length
k. Note that the existence of 2-Cunningham chains is implicitly assumed in many
papers, e.g. [25].

Although we describe our scheme for Cunningham chains because they are well-
known, the scheme also works for a sequence of primes q0, q1, q2, q3 such that qi =
aiqi+1 + 1 for positive numbers ai. Chains of this type have the advantage that
they are easier to generate. The existence of such chains follows from the following
formal assumption:

Assumption 1. There exists a constant c and a probabilistic polynomial Turing
machine that given a κ-bit number n as input with overwhelming probability outputs
a logc κ-bit number a such that an+ 1 is prime.

We generalize the notation Gn to denote the cyclic subgroup of order n of Z∗
an+1,

where a is the smallest number such that an+ 1 is prime.

Decision Diffie-Hellman Problem

The Decision Diffie-Hellman problem in a group Gn is defined as the problem of
distinguishing the distributions (gα, gβ , gγ) and (gα, gβ , gαβ), where α, β, γ ∈ Zn
are randomly distributed.

Experiment 11 (Decision Diffie-Hellman, Expddh−b
Gn,A

(κ)).

g ← Gn, α, β, γ ← Zn, (D1, D2, D3)← (gα, gβ , g(bγ+(1−b)αβ))

d← A(g,D1, D2, D3)

The advantage of the adversary is

Advddh
Gn,A(κ) = |Pr[Expddh−0

Gn,A
(κ) = 1]− Pr[Expddh−1

Gn,A
(κ) = 1]| .



54 CHAPTER 3. HIERARCHICAL GROUP SIGNATURES

Assumption 2 (Decision Diffie-Hellman Assumption over Gn). For all A ∈
PPT∗ the advantage A = {Aκ}, Adv

ddh
Gn,A(κ) is negligible.

The ElGamal cryptosystem

We review the ElGamal [28] cryptosystem employed in Gq. We write ElgKg(Gq , g)
for the algorithm that generates a random private key x ∈ Zq, computes a public
key (g, y), where y = gx, and outputs ((g, y), x). Encryption of a message m ∈ Gq
using the public key (g, y) is given by E(g,y)(m, r) = (gr, yrm) for r ∈R Zq, and
decryption of a cryptotext on the form (u, v) = (gr, yrm) using the private key x
is given by Dx(u, v) = u−xv = m.

The RSA cryptosystem

The key generation for the RSA cryptosystem [61] consists of generating primes p
and q of the same size and computing N = pq. The parameters e and d are chosen
so that gcd(e, d) = 1 (mod φ(n)), where φ(n) = (p − 1)(q − 1). The public key
is (e, n) and the private key is d. If we choose p and q so that p = 2p′ + 1 and
q = 2q′ +1 where p′, q′ are primes, we ensure that the order of the group QRN , the
quadratic residues modulo N , is p′q′. Throughout the chapter we write members
of QRN using bold font (e.g., g,y).

The Strong RSA Assumption

The Strong RSA Assumption y the assumption says that it is hard to compute any
non-trivial root in ZN where N is an RSA modulus, even if allowed to select which
root to compute. This differs from the standard RSA assumption, where the root
to compute is predetermined. Like the standard RSA assumption the strong RSA
assumption implies that factoring is hard.

Assumption 3 (Strong RSA Assumption). For any adversary A ∈ PPT∗ the
following holds: ∀c > 0, ∃κ0, such that for κ > κ0 we have:

Pr[(P,Q)← csRSA(1κ),σ ← Z∗
PQ, (m, e)← A(PQ,σ),me = σ, e > 1] <

1

κc
.

The Chaum van Heijst Pfitzmann Hash Function

We write CHPg(Gq, δ) for the algorithm that takes as input the representation of
a group Gq and δ ∈ N and outputs a list (h1, . . . , hδ) ∈ Gδq of randomly chosen
elements. We employ the Chaum van Heijst Pfitzmann hash function [20] defined

as HCHP : Zq → Gq, H
CHP : (z1, . . . , zδ) 7→

∏δ
l=1 h

zl
l . They prove that this map is

one-way and collision free if the discrete logarithm problem is hard in Gq. We abuse
notation and use HCHP to denote both the map and its representation (h1, . . . , hδ).

Lemma 3.5.2 (cf. [20]). The hash function HCHP is one-way and collision-free
if the discrete logarithm problem is hard in Gq.
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The Shamir Hash Function

We write HSh
(N,g)(x) for the algorithm that computes gx mod N , where N is a

composite number, g ∈ QRN and x ∈ Z. The idea to use this as a hash function
was proposed by Shamir. When (N,g) are clear from the context we may leave
them out. We let HSh denote both the map and the pair (N,g). We have the
following security result for HSh:

Lemma 3.5.3. The hash function HSh is collision-free if the factoring problem is
hard.

Proof. Assume that HSh is not collision-free, and that HSh
(N,g)(x1) = HSh

(N,g)(x2)

where x1 6= x2. Then gx1−x2 = 1, meaning that x1 − x2 is a multiple of the order
of QRN . This information is enough to factor N as shown in [53].

The Cramer-Shoup Cryptosystem

We review the Cramer-Shoup cryptosystem [24] over Gq employed with a collision
free one-way function H . We denote their cryptosystem by CS cs

H = (CSKgcs, Ecs,
Dcs).

The key generation algorithm CSKgcs(Gq, q) generates random ḡ1, ḡ2 ∈ Gq and
x̄1, x̄2, ȳ1, ȳ2, z̄ ∈ Zq, computes c̄ = ḡx̄1

1 ḡx̄2
2 , d̄ = ḡȳ11 ḡ

ȳ2
2 , and h̄ = ḡz̄1 and outputs

(ḡ1, ḡ2, c̄, d̄, h̄, x̄1, x̄2, ȳ1, ȳ2, z̄). Encryption of a message m ∈ Gq using the public
key Y = (ḡ1, ḡ2, c̄, d̄, h̄) is given by

Ecs
Y (m, r) = (u, µ, v, ν) = (ḡr1 , ḡ

r
2, h̄

rm, c̄rd̄rH(u,µ,v))

for a randomly chosen r ∈ Zq. Note that (u, v) is an ElGamal encryption of the
message m, so decryption of a cryptotext (u, µ, v, ν) using the private key X =
(x̄1, x̄2, ȳ1, ȳ2, z̄) is given by Dcs

X(u, µ, v, ν) = Dz̄(u, v) = m for valid cryptotexts. A
cryptotext is considered valid if the predicate

T cs
X (u, µ, v, ν) = (ux̄1+x̄2H(u,µ,v)µȳ1+ȳ2H(u,µ,v) = ν)

is satisfied. We let T cs
X (u, µ, v, ν) = 1 if it is satisfied and 0 otherwise. An invalid

cryptotext decrypts to ⊥.
Cramer and Shoup [24] prove that their cryptosystem is CCA2-secure under

standard assumptions.

Lemma 3.5.4 (cf. [24]). The cryptosystem CScs
H is CCA2-secure under the DDH

assumption in Gq if H is collision free.

Cramer-Shoup RSA Signatures

We review the signature scheme by Cramer and Shoup [25]. We denote their con-
struction by SScs

H1,H2
= (SSKgcs, Sigcs, Vfcs), and review the algorithms it consists

of below. Here H1 and H2 are hash functions.
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We write csRSA for the algorithm that on input 1κ generates two random κ/2-
bit primes P = 2P ′ + 1 and Q = 2Q′ + 1, where P ′ and Q′ are also prime, and
returns (P,Q). Thus, csRSA generates a κ-bit RSA modulus N = PQ.

Algorithm 5 (Key Generation, SSKgcs(1κ)).

1. Run (P,Q) = csRSA(1κ) and set P ′ = (P−1)/2, Q′ = (Q−1)/2 and N = PQ.

2. Choose h, z ∈ QRN randomly.

3. Choose a random (κ+ 1)-bit prime e′ such that e′ ≡ 1 (mod 4).

4. Output (N, e′,h, z, P ′Q′).

Algorithm 6 (Signing, Sigcs(m,H1, H2, N,h, z, e
′, P ′Q′)).

1. Choose a random (κ + 1)-bit prime e such that e ≡ 3 mod 4 and a random
σ′ ∈ QRN .

2. Compute z′ = (σ′)e
′

h−H1(m), σ =
(

zhH2(z′)
)1/e

and output (e,σ,σ′).

Algorithm 7 (Verification, Vfcs(H1, H2, N,h, z, e
′,m, (e,σ,σ′)).).

1. Verify that e is an odd number of length between (κ + 1) bits and
(

3
2κ− 4

)

bits that is distinct from e′.

2. Compute z′ = (σ′)e
′

h−H1(m) and verify that z = σeh−H2(z′). If so output 1,
otherwise output 0.

We have modified the scheme slightly by making e′ always equal to 1 modulo 4
and the primes generated at signing, e, equal to 3 modulo 4. This makes it easier
to prove later in zero-knowledge that e 6= e′. In the original scheme H1 and H2 are
equal, but in our setting they will be different. This does not affect the security
proof in any way.

Also in our description the exponent e is longer than the modulus, but in the
original description e is shorter than P ′ and Q′. Below we argue why the security
proof still holds.

The above signature scheme can proven secure under the Strong RSA Assump-
tion defined below. Informally the assumption says that it is hard to compute any
non-trivial root in ZN where N is an RSA modulus, even if allowed to select which
root to compute. This differs from the standard RSA assumption, where the root
to compute is predetermined. Like the standard RSA assumption the strong RSA
assumption implies that factoring is hard.

Lemma 3.5.5. The signature scheme SScs
H1,H2

is CMA-secure under the strong
RSA assumption if H1 and H2 are collision-free one-way functions.



3.5. A CONSTRUCTION UNDER THE DDH ASSUMPTION AND THE

STRONG RSA ASSUMPTION 57

Proof. We assume familiarity with [25]. When the length of the exponent is between
κ+ 1 bits and 3

2κ− 4 bits, the proof of [25] holds except for how a Type III forger
is used to break the strong RSA assumption, where a Type III forger is defined as
a forger that outputs a signature (using our notation) (e,σ,σ′) such that e 6= ei
for all signatures ei it has seen previously. The output from the Type III forger is
used to form the equation σe

′

= zt where z is the number we wish to compute a
root of and t is known. Then the fact that gcd(e, t, 2P ′Q′) = 1 is used, which in the
original setting holds because e is odd and smaller than P ′ and Q′. In our setting
it may or may not hold. If the forger outputs an e such that it does hold, then the
original proof goes throgh. If it does not hold, then gcd(e, 2P ′Q′) is either P ′, Q′,
or P ′Q′ since e is odd. In all of these cases we have enough information to factor
N .

Proofs of Knowledge

We use a relatively complex proof of knowledge in our construction, but we postpone
a careful description of the properties we need for Section 3.6. We define some
notation used in the description of our construction.

Given a three-move public coin interactive proof (P, V ) for a language L, we can
use the Fiat-Shamir heuristic to construct a non-interactive variant in the random
oracle model, by simply replacing the message sent by the verifier by the output
of the random oracle. We write π = PO(m,·)(x,w) to denote the transcript of such
a protocol execution, where x ∈ L is the common input, w is a witness for x,
and P interacts with the random oracle O(m, ·). We write V O(m,·)(x, π) for the
verification.

Our Construction

We are now ready to describe our construction. The basic idea is similar to the
construction under general assumptions. A signer encrypts a path from the root
to its leaf using the public keys along the path. Then it proves that it knows a
SScs

HCHP,HSh signature on the list of public keys it used. Thus, a private key of a
signer is simply a SScs

HCHP,HSh signature on the public keys along its path. We denote
our construction by HGS = (HKg,HSig,HVf,HOpen), and define algorithms HKg,
HSig, HVf, and HOpen below.

Key Generation

The key generation phase proceeds as follows. Each group manager is given an
ElGamal key pair, and each signer is given an RSA signature of the public keys of
the group managers on the path from the root to the signer.

Algorithm 8 (Key Generation, HKg(1κ, T )).

1. Run (q0, . . . , q3) = CunnGen4(1
κ) to generate a Cunningham chain of length

4, and choose gi ∈ Gqi randomly for i = 1, 2, 3.
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2. Let δ be the depth of the tree T , and run

HCHP = (h1, . . . , hδ) = CHPg(Gq2 , δ)

to generate a collision free one-way function.

3. Run (X,Y ) = CSKgcs(Gq3 , q3) to generate keys for a Cramer-Shoup crypto-
system over Gq3 .

4. Run (N,h, z, e, t) = SSKgcs(1κ) and randomly choose g ∈ QRN to gener-
ate keys for a Cramer-Shoup RSA signature scheme employed with the hash
functions HCHP and HSh

(N,g).

5. Choose a prime on the form aN + 1 and let GN be the unique subgroup of
order N of Z∗

aN+1. Choose gN , yN randomly in GN .

6. For each node β in T , generate keys

(hpk (β), hsk (β)) = (yβ , xβ) = ElgKg(Gq3 , g3)

for an ElGamal cryptosystem over Gq3 .

7. For each leaf α let α0, . . . , αδ with α0 = ρ and αδ = α be the path from the
root to α, compute

(eα,σα,σ
′
α) = Sigcs((yα1 , . . . , yαδ ), H

CHP, HSh, N,h, z, e′, t)

and redefine hsk(α) = (eα,σα,σ
′
α).

8. Let ρ be the root of T . Choose y ∈ QRN randomly. Choose xi ∈ Zqi ran-
domly and compute yi = gxii for i = 1, 2, 3. Set the three security paramet-
ers κ1, κ2, κ3 = Θ(κ). Redefine the public key hpk (ρ) of the root ρ to be
(hpk (ρ), q0, H

CHP, N, e, g1, y1, g2, y2, g3, y3,g,y, gN , yN , κ1, κ2, κ3) and output
hpk , hsk .

Remark 3.5.6. The three security parameters κ1, κ2 and κ3 are used in the proof
of knowledge. For details, see section 3.6.

Computing, Verifying and Opening a Signature

Any leaf α can be associated with a path α0, . . . , αδ where ρ = α0 and αδ = α
from the root to the leaf in the natural way. The signer encrypts its path using
the public keys of the group managers along this path, i.e., the signer computes
a list (Eyα0

(yα1), . . . , Eyαδ−1
(yαδ )). Note the particular way in which the pub-

lic keys are chained. It also commits to the SScs
HCHP,HSh signature of the message

(yα1 , . . . , yαδ ) it was given by the key generator. Then it computes a Schnorr-like
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(yρ, (· · · )), xρ

y{{1,2},{3,4}}, x{{1,2},{3,4}}

y{1,2}, x{1,2}

(e1,σ1,σ
′
1)

(e2,σ2,σ
′
2)

y{3,4}, x{3,4}

(e3,σ3,σ
′
3)

(e4,σ4,σ
′
4)

y{{5,6},{7,8}}, x{{5,6},{7,8}}

y{5,6}, x{5,6}

(e5,σ5,σ
′
5)

(e6,σ6,σ
′
6)

y{7,8}, x{7,8}

(e7,σ7,σ
′
7)

(e8,σ8,σ
′
8)

Figure 3.4: The output of HKg for a four-level tree. The common group parameters
(key size, generators etc.) have been abbreviated by (· · · ).

“proof of knowledge” in the random oracle model that the cryptotexts and com-
mitments are indeed formed as described. The message to be signed is included in
the input to the hash function (the random oracle) similarly to Schnorr signatures.
Thus, the signer actually proves that it possesses an SS cs

HCHP,HSh signature of the
list of public keys it uses to encrypt the public keys along its path. Hierarchical
anonymity follows since only the holders of the secret keys corresponding to yαl can
open any part of the signature. Hierarchical traceability follows since the signer
cannot forge a SScs

HCHP,HSh signature corresponding to a path different from its own.

Algorithm 9 (Signing, HSig(m,T, hpk , hsk(α))).
Let α0, . . . , αδ with ρ = α0 and αδ = α be the path to the signer Sα.

1. Choose r0, . . . , rδ ∈ Zq3 randomly and compute (ul, vl) = E(yαl ,g3)
(yαl+1

, rl),

for l = 0, . . . , δ − 1, and Cδ = Ecs
Y (yαδ , rδ). This is the list of cryptotexts.

2. Choose r, s, r′, s′, t ∈ [0, 2κ3N − 1] randomly and set (u,v) = (gsyr ,grσα),
(u′,v′) = (gs

′

yr
′

,gr
′

σ′
α), and C = geαyt. This is a commitment of the

signature (eα,σα,σ
′
α).

3. Denote by RHGS the binary relation consisting of pairs (X,W ), where

X =
(

(ul, vl)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C

)

∈
(Gq3 ×Gq3 )δ ×G4

q3 ×QR2
N ×QR2

N ×QRN

W =
(

(τ0, . . . , τδ−1), (τ, ζ, τ
′, ζ′, ψ, ε)

)

∈
Zδq3 × [0, 2κ3N − 1]5 × [2κ, 2κ+1 − 1]
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such that

γ0 = yα0
(

(ul, vl) = E(γl,g)(γl+1, τl)
)δ−1

l=0
Cδ = Ecs

Y (γδ, τδ)

and

u = gζyτ , u′ = gζ
′

yτ ,
C = gεyψ

Vfcs(HCHP, HSh, N,h, z, e′,
(γ1, . . . , γδ),

(ε,v/yτ ,v′/yτ
′

)) = 1

.

In Section 3.6 we construct an honest verifier public coin zero-knowledge proof
of knowledge (P, V ) for this relation. The signer computes a non-interactive
proof π = PO(m,·)(X,W ) in the random oracle model.

4. Output the signature
(

(ul, vl)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, π

)

.

Remark 3.5.7. Note that we switch the order of the components in the ElGamal
cryptosystem so that, for example, D−xρ(u0, v0) = yα1 in order to simplify the
construction of the proof of knowledge.

The construction of the proof of knowledge is involved and postponed until
Section 3.6. The verification algorithm consists simply of verifying the proof of
knowledge contained in a signature.

Algorithm 10 (Verification, HVf(T, hpk ,m, σ)).
On input a candidate signature σ = (c, π) =

((

(ul, vl)
δ−1
l=0 , Cδ, (u,v), (u′,v′),

C
)

, π
)

return the result of V O(m,·)(c, π).

To open a signature a group manager on depth l simply decrypts the lth com-
ponent of the chain of cryptotexts contained in the signature.

Algorithm 11 (Open, HOpen(T, hpk , hsk(β),m, σ)).
On input σ =

(

(ul, vl)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, π

)

proceed as follows. If HVf(T ,
hpk ,m, σ) = ⊥, return ⊥. Otherwise compute yα = D−xβ(ul, vl). If α ∈ β return
α and otherwise ⊥.

In our construction we require that cryptotexts encrypted with distinct public
keys are indistinguishable, since otherwise the cryptotexts themselves leak inform-
ation on the identity of the signer. This property, which we call cross-indistin-
guishability, is formalized and characterized in Section 3.3. Note that semantic
security does not imply cross-indistinguishability. It is not hard to see that El-
Gamal is cross-indistinguishable if we fix a group for each security parameter such
that all cryptotexts cryptotexts for a security parameter are formed over this group.

It may seem that we have picked arbitrary primitives and then deferred the
problem of forming the proof of knowledge needed. This is not the case. The
primitives are carefully selected and slightly modified to allow a reasonably practical
proof of knowledge.
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Security Analysis

We analyze the security of our construction in the random oracle model, and prove
that its security follows from the DDH assumption and the strong RSA assumption.

Theorem 3.5.8. The hierarchical signature scheme HGS is secure under the DDH
assumption and the strong RSA assumption in the random oracle model. Further-
more, hierarchical traceability holds under the strong RSA assumption.

Proof. The proof proceeds by contradiction. Assume that the signature scheme
SScs

HCHP,HSh is secure. Then we show that if there exists an adversary A which
breaks HGS, there exists another adversary which executes A as a blackbox and
breaks either the Cunningham chain DDH assumption, the security of CScs

HCHP or
the security of SScs

HCHP,HSh . In view of Corollary 3.5.5 and Lemma 3.5.4 this gives
a contradiction.

Breaking HGS means either breaking the hierarchical anonymity, i.e., succeed-
ing in Experiment 3, or hierarchical traceability, i.e., succeeding in Experiment 4.
The adversary A′ simulates to A that it participates in one of these experiments,
i.e., it simulates the random oracle O, the HKg oracle, the HOpen oracle, and the
HSig oracle. We consider the details of the simulation of each experiment below,
starting with the case where A breaks hierarchical anonymity.

Hierarchical Anonymity. Suppose that the attacker A breaks hierarchical an-
onymity. Then we have Advanon

HGS,A(κ, T ) ≥ 1/κc for some polynomial size tree T ,
constant c > 0 and sufficiently large κ.

Definition of A′. As an intermediate step we define a machine A′ that runs A as
a blackbox. A′ is the basis of the adversaries we construct. A′ takes as input a
single bit b and outputs a single bit. However, A′ itself also plays the role of the
adversary in a DDH experiment, a CCA2 experiment, and a CMA experiment, i.e.,
it plays the adversary in Experiment 11 over Gq3 , Experiment 1 with CScs

HCHP , and
Experiment 2 with SScs

HCHP,HSh . We reach a contradiction by proving that A′ is too
successful in at least one of these experiments.

We now describe how A′ simulates the oracles to A. The HKg(·) oracle is
simulated as follows. A′ first waits until it receives (g3, D1, D2, D3) in the DDH
experiment. Step 1 is simulated honestly, except that A′ uses the value of g3 received
from its oracle instead of generating it randomly. Step 2 is simulated honestly. Then
A′ waits until it receives a CScs

HCHP public key Y in the CCA2 experiment. In Step
3 it takes Y to be the public key, and X is never defined. Then A′ waits until it
receives a SScs

HCHP,HSh public key (N,h, z, e′) in the CMA experiment. In Step 4 it
uses these values, and t is never defined. Step 5 is simulated honestly. Next A′

chooses two leaves β
(0)
δ and β

(1)
δ randomly. Intuitively, this is the two leavesA′ guess

that A will later ask to be challenged on. Let β
(0)
δ , . . ., β

(0)
t and β

(1)
δ , . . ., β

(1)
t be

the paths to their common ancestor β
(0)
t = β

(1)
t . Step 6 is then simulated honestly

except that for β
(0)
l , β

(1)
l , for l = t, . . . , δ, the public keys are instead defined using
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(D1, D2, D3) as follows

y
β

(0)
l

= D
x
β
(0)
l

1 , y
β

(1)
l

= D
x
β
(1)
l

1 .

A′ simulates Step 7 by requesting the Sigcs(·, (H,N,h, z, e′), t) oracle in the CMA
experiment to sign the message (yα1 , . . ., yαδ) for each α. Then A′ uses the answer, a
SScs signature (eα,σα,σ

′
α), to define hsk(α) properly. Step 8 is simulated honestly.

In each iteration of Experiment 3 A may ask for the private key of any inner

node α. If α = β
(0)
l or β

(1)
l for some l = t, . . . , δ, then A′ is unable to satisfy the

request of A properly, since it does not know logg3 yα. Instead of continuing the
simulation, A′ outputs a random bit d ∈ {0, 1} and halts. Otherwise it hands xα
to A.

The HOpen(T, hpk , hsk(·), ·, ·) oracle is simulated as follows given a query (α,
m, σ), where α is on depth l. If HVf(T, hpk ,m, σ) = 0, return ⊥. Otherwise
assume that the signature is on the form σ =

(

(ul, vl)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, π

)

.
A′ hands Cδ to its Dcs

X(·) oracle in the CCA2 experiment. If the answer is not
on the form yαδ for some αδ ∈ L(T ), then the HOpen(T, hpk , hsk (·), ·, ·) oracle is
instructed to return ⊥. This is probably an incorrect reply, which reveals to A that
it is simulated. Intuitively this can only happen if A somehow is able to manufacture
a SScs signature. Suppose now that yαδ is on the expected form. Then there is
a path ρ = α0, . . . , αδ corresponding to αδ. If α = αl for some 0 ≤ l ≤ δ, then
the HOpen(T, hpk , hsk(·), ·, ·) oracle is instructed to return αl+1 to A. Otherwise
it returns ⊥. Also in this case the reply may be incorrect if A can manufacture
a SScs signature. In the analysis below we show that if incorrect replies are a
non-negligible event we reach a contradiction.

At some point A outputs (sstate, α
(0), α(1),m). If α(0) 6= β

(0)
δ or α(1) 6= β

(1)
δ ,

then A′ guessed incorrectly the challenge indices chosen by A. It outputs a random
bit d ∈ {0, 1} and halts in this case. Thus, we assume from this point on that

α(0) = β
(0)
δ and α(1) = β

(1)
δ .

The single query m to the HSig(T, hpk , hsk(α(b), ·) oracle is simulated as follows.

To simplify the exposition we write αl instead of α
(b)
l as in Experiment 3. A′ chooses

rl, r
′
l ∈ Zq3 and τ, ζ, τ ′, ζ′, ψ ∈ [0, 2κ3N − 1] randomly and computes

(ul, vl) = (yrlαlD
xαlr

′

l

3 , yαl+1
grl3 D

r′l
2 ), for l = 0, . . . , δ − 1 ,

Cδ = Ecs
Y (yαδ , r) , and

(u,v) =
(

gζ ,gτ
)

, (u′,v′) =
(

gζ
′

,gτ
′

)

, C = gψ .

To construct the proof π, A′ simply invokes the simulator for the proof of knowledge.
If (D1, D2, D3) is a DDH triple we have (D

xαl
1 , D2, D

xαl
3 ) = (yαl , g

f
3 , y

f
αl) for

some f . If on the other hand (D1, D2, D3) is not a DDH triple, then we have that

(D
xαl
1 , D2, D

xαl
3 ) = (yαl , g

f
3 , g

f ′

3 y
f
αl

) for some random f ′ ∈ Zq3 . It follows that if
(D1, D2, D3) is a DDH triple, the ElGamal cryptotexts are identically distributed
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to the corresponding parts of a signature returned by the Sigcs(T , hpk , hsk(α(b)),
·) oracle in Experiment 3, and otherwise they are encryptions of random elements.
Note that when (D1, D2, D3) is not a DDH triple there are no a priori guarantees
for how the output of the simulator of the proof of knowledge is distributed.

A′ simulates A until it halts with output d ∈ {0, 1}. Then A′ halts with output
d. This concludes the definition of the adversary A′.

Analysis of the behavior of A′. We must now analyze the output of A′ and reach a
contradiction. We divide our analysis into a number of claims.

Denote by d′b the output of A′ on input b. Let Enoask denote the event that

A never asks for x
α

(0)
l

or x
α

(1)
l

. Let Eguess denote the event that α(0) = β
(0)
δ ,

α(1) = β
(1)
δ , i.e., that A′ guesses the challenge leaves correctly. Let Eddh denote the

event that (D1, D2, D3) is a DDH triple.

Claim 2. Pr[Expanon−b
HGS,A(κ, T ) = 1 | Enoask ∧ Eguess] = Pr[Expanon−b

HGS,A(κ, T ) = 1].

Proof. The variables β(0) and β(1) are independent from Expanon−b
HGS,A(κ, T ). Thus,

Pr[Expanon−b
HGS,A(κ, T ) = 1 | Eguess] = Pr[Expanon−b

HGS,A(κ, T ) = 1] .

Experiment 3 is defined such that it returns 0 if the event Enoask occurs. This
implies that

Pr[Expanon−b
HGS,A(κ, T ) = 1 | Enoask] = 0 .

Thus
Pr[Expanon−b

HGS,A(κ, T ) = 1 | Enoask] = Pr[Expanon−b
HGS,A(κ, T ) = 1] .

The claim follows.

Claim 3. There exists a negligible function ǫ(κ), such that for b ∈ {0, 1}

|Pr[d′b = 1 | Enoask ∧Eguess ∧ Eddh]

−Pr[Expanon−b
HGS,A(κ, T ) = 1 | Enoask ∧ Eguess]| < ǫ(κ) .

Proof. The only part of how A′ simulates the experiment to A that is not identic-
ally distributed to the corresponding part in Experiment 3 is the simulation of the
HOpen(T, hpk , hsk (·), ·, ·) oracle. Differently phrased, the only way that A can dis-
tinguish between being simulated by A′ and actually run in Experiment 3 is by
asking the HOpen(T, hpk , hsk (·), ·, ·) oracle a question that it fails to answer cor-
rectly. We show that the oracle answers all questions correctly with overwhelming
probability.

Let p(κ) denote the running time of A. Then it follows that A asks the sim-
ulated HOpen(T , hpk , hsk (·), ·, ·) oracle at most p(κ) queries (α,m, σ) such that
HVf(T, hpk ,m, σ) = 1. Denote by Tl the machine that simulates A′ until l − 1
queries have been answered by the simulated HOpen(T, hpk , hsk(·), ·, ·) oracle, and
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then halts outputting the lth query. We say that a query is difficult if it is answered
incorrectly by A′.

We must show for l = 0, . . . , p(k) that Tl outputs a difficult query with negligible
probability.

The statement is clearly true for T0, since its output is empty. Suppose now
that the statement is true for Tl for l < s, but false for Ts. Then the distribution of
the output of Ts is indistinguishable from the distribution of the sth query A asks
its HOpen(T, hpk , hsk (·), ·, ·) oracle. This follows from the union bound, since the
lth question is incorrectly answered with negligible probability for l < s. Thus, Ts
outputs a difficult query (α,m, σ) with probability κ−c1 for some constant c1 (and
large enough κ).

Intuitively, it is clear that we can extract a signature from Ts. Formally, we
invoke Lemma 3.6.4 (in some sense a weak “Forking Lemma” [57]) and conclude that
there exists a polynomial Turing machine T ′

s that runs Ts as a black-box (simulating
the random oracle) and outputs with probability 1/(kc1p(κ))3 a message (γ1, . . .,
γδ) and a SScs signature (ε,σ,σ′) such that

Vfcs(H,N,h, z, e′, (γ1, . . . , γδ), (ε,σ,σ
′)) = 1 ,

with the added property that the query was difficult.

A query is difficult precisely when A′ has not asked its Sigcs(·, (H,N,h, z, e′),
t) oracle the query (γ1, . . . , γδ). This implies that T ′

s breaks the CMA-security of
SScs, which is a contradiction.

Thus, we conclude that A asks a difficult query with negligible probability.

Claim 4. There exists a negligible function ǫ(κ)′ such that

|Pr[d′0 = 1 | Eguess ∧ Enoask ∧Eddh]

−Pr[d′1 = 1 | Eguess ∧ Enoask ∧ Eddh]| < ǫ′(κ) .

Proof. Suppose that the claim is false, i.e., that the left side of the equation is
greater or equal to κ−c2 for some constant c2. The only part of the simulation of
A′ that differs between the two cases is how Cδ is formed. This implies that we can
break the security of CScs

HCHP as follows.

Let A′′ be the adversary that is identical to A′ except for the following modi-
fications. It receives no input, it simulates the DDH experiment by handing itself
a random tuple (g3, D1, D2, D3) ∈ Gq3 , and it simulates the CMA experiment to
itself honestly. The CCA2 experiment is not simulated, i.e., A′′ plays the role of
the adversary in a CCA2 experiment. When A′ would construct Cδ as described
above, A′′ instead requests an encryption of y

α
(0)
δ

or y
α

(1)
δ

from the CCA2 exper-

iment. The experiment hands back a CScs
HCHP cryptotext C ′

δ = Ecs
Y (y

α
(b)
δ

) for a

randomly chosen b ∈ {0, 1}. Instead of generating Cδ by itself, A′′ continues with
Cδ = C′

δ. Let d′′b = Expcca−b
CScs

HCHP
,A′′(κ). By construction d′′b is identically distributed
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to the conditioned variable (d′b | Eddh). Thus

|Pr[Expcca−0
CScs

HCHP
,A′′(κ) = 1]− Pr[Expcca−1

CScs

HCHP
,A′′(κ) = 1]|

= |Pr[d′′0 = 1 | Eguess ∧ Enoask] + Pr[d′′0 = 1 | Eguess ∨ Enoask]

−(Pr[d′′1 = 1 | Eguess ∧Enoask] + Pr[d′′1 = 1 | Eguess ∨ Enoask])|
= |Pr[d′′0 = 1 | Eguess ∨ Enoask]− Pr[d′′1 = 1 | Eguess ∨ Enoask]|
= |Pr[d′0 = 1 | Eguess ∧ Enoask ∧ Eddh]− Pr[d′1 = 1 | Eguess ∧ Enoask ∧ Eddh]|
≥ κ−c2

where the next to last equality follows from the fact that A′ outputs a random bit
when the event Eguess ∨ Enoask takes place. The resulting inequality contradicts
Lemma 3.5.4 and Lemma 3.5.2.

Claim 5. There exists a b ∈ {0, 1} and a constant c3 > 0 such that

κ−c3 ≤ |Pr[d′b = 1 | Eddh]− Pr[d′b = 1 | Eddh]| .
Proof. Write pb0,b1 = Pr[d′b0 = 1 | Enoask ∧ Eguess ∧ Eb1ddh], where we understand

Eb1ddh to be Eddh or Eddh depending on if b1 = 0 or 1. Without loss we assume that
ǫ(κ) = ǫ′(κ). Then we have

κ−c ≤ |Pr[Expanon−0
HGS,A(κ, T ) = 1]− Pr[Expanon−1

HGS,A(κ, T ) = 1]|
= |Pr[Expanon−0

HGS,A(κ, T ) = 1 | Enoask ∧ Eguess]

−Pr[Expanon−1
HGS,A(κ, T ) = 1 | Enoask ∧ Eguess]|

≤ |Pr[d′0 = 1 | Enoask ∧ Eguess ∧ Eddh]

−Pr[d′1 = 1 | Enoask ∧ Eguess ∧ Eddh]|+ 2ǫ(κ)

≤ |p0,1 − p1,1|+ 2ǫ(κ) ≤ |p0,1 − p0,0|+ |p0,0 − p1,1|+ 2ǫ(κ)

≤ |p0,1 − p0,0|+ |p1,0 − p1,1|+ 3ǫ(κ)

from which it follows that there exists a fixed b0 ∈ {0, 1} and c3 such that the claim
holds. The first inequality holds by assumption, the equality follows from Claim
2, the second inequality follows from Claim 3, and the last inequality follows from
Claim 4.

Claim 6. The DDH assumption is broken.

Proof. Let A′′′ be identical to A′ except from the following modifications. The
input b is fixed to the value guaranteed to exist by Claim 5, so it takes no input.
It simulates the CCA2 experiment and the CMA experiment to itself. It does not
simulate the DDH experiment, i.e., A′′′ plays the role of the adversary in a DDH
experiment. Then we have

|Expddh−0
Gq3 ,A

′′′(κ)−Expddh−1
Gq3 ,A

′′′(κ)| = |Pr[d′b = 1 | Eddh]− Pr[d′b = 1 | Eddh]| .

Combined with Claim 5 this contradicts the DDH assumption over Gq3 .
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We now turn to the case when A breaks the hierarchical traceability and describe
how A′ is implemented in this case.

Hierarchical Traceability. Suppose that A breaks hierarchical traceability.
Then

Advtrace
HGS,A(κ, T ) ≥ 1/kc

for some polynomial size tree T , constant c > 0 and sufficiently large k. We
construct a machine A′ that runs A as a blackbox and breaks the security of SS cs.

Definition of A′. A′ takes no input, but it plays the role of the adversary in the
CMA experiment.

A′ simulates the HKg oracle to A as follows. Steps 1, 2 and 3 are simulated
honestly. Then it waits until it receives a public key (N,h,x, e′) in the CMA
experiment. In Step 4, (N,h,x, e′) is used instead of generating a SScs key pair,
i.e., the private key t is never defined. Step 5 and Step 6 are simulated honestly.
Step 7 is not performed at all. Step 8 is simulated honestly.

In each iteration in the loop of the experiment simulated to A, A may re-
quest hsk(α). Given such a request A′ requests from its own signature oracle
Sigcs(·, H,N,h, z, e′, t) a signature (eα,σα,σ

′
α) of the message (yα1 , . . . , yαδ ), where

ρ = α0, α1, . . . , αδ = α is the path corresponding to α.
Queries to the HSig oracle are simulated as follows. The first step is simulated

honestly. In Step 2 (u,v), (u′,v′) and C are replaced by (gζ ,gτ ), (gζ
′

,gτ
′

) and
gψ respectively. In Step 3, the simulator of the proof of knowledge is invoked to
construct π. The resulting signature is identically distributed to the reply of the
Sigcs oracle in Experiment 4.

At some point A halts with output (m,σ), where the signature is given by
σ =

(

(ul, vl)
δ−1
l=0 , Cδ, (u,v), (u′,v′), C, π

)

. Then A′ computes HVf(T, hpk ,m, σ).
If the result is 0, it outputs ⊥.

Suppose that the running time of A′ is bounded by p(κ) for a polynomial κ. We
invoke Lemma 3.6.4 (in some sense a weak “Forking Lemma” [57]) and conclude that
there exists a polynomial Turing machine T ′ that runs A′ as a black-box (simulating
the random oracle) and outputs with probability 1/(kcp(κ))3 a message (γ1, . . .,
γδ) and a SScs signature (ε,σ,σ′) such that

Vfcs(H,N,h, z, e′, (γ1, . . . , γδ), (ε,σ,σ
′)) = 1 .

Claim 7. The security of SScs is broken.

Proof. Consider the list γ = (γ1, . . . , γδ). A succeeds in Experiment 4 whenever
γ does not correspond to a path in T , or γ corresponds to a path, but γδ 6∈ C.
In the first case A′ clearly succeeds as well since it never asks its Sigcs oracle to
sign any message that is not a list of public keys corresponding to a path in T .
In the second case A′ succeeds since by construction, if γδ 6∈ C it never asked its
Sigcs oracle to sign the message γ. Thus, A′ succeeds whenever A succeeds, and we
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have Exptrace
SScs(κ, ∅) ≥ Exptrace

HGS,A(κ, T ) ≥ 1/κc which contradicts Lemma 3.5.5 and
Lemma 3.5.2.

Conclusion of Proof. If Advanon
HGS,A(κ, T ) is not negligible, Claim 6 gives a

contradiction, and if Advtrace
HGS,A(κ, T ) is not negligible Claim 7 gives a contradiction.

Thus, the theorem is true.

As noted above, hierarchical anonymity as defined here is a proper generalization
of full anonymity as defined in [7], and our scheme can be used as an ordinary (non-
hierarchical) group signature scheme by setting the depth of the tree equal to two.
Thus our scheme is fully anonymous.

The definition of full anonymity is stronger than previously considered anonym-
ity definitions, since the adversary is allowed to use an Open oracle during the at-
tack. In our case we can handle it since we use a CCA2-secure encryption scheme,
and thus reach a contradiction if the adversary is able to form a signature on his
own that we cannot answer.

It is shown in [7] that it is necessary to use a CCA2-secure cryptosystem to
form a group signature scheme. Still we only use a CCA2-secure cryptosystem for
the leaves. This apparent contradiction is resolved by noting that since the public
keys yα are distinct, and we may identify the leaves with their paths in the tree,
any query to the HOpen(T, hpk , hsk(·), ·, ·) oracle for intermediate levels of the tree
can be answered using a single query to the decryption oracle for the cryptosystem
used to encrypt leaves.

3.6 Construction of the Proof of Knowledge

We give honest verifier zero-knowledge public coin proofs of knowledge for a number
of subprotocols which combined gives the proof of knowledge we need to apply
the Fiat-Shamir heuristic to get a signature scheme in the random oracle model.
Our protocols are based on a variety of proof techniques including, e.g., proofs of
knowledge of exponents, double decker exponentiation, equality of exponents over
distinct groups, interval proofs, and equality of exponents over an RSA modulus.

We divide the exposition into a number of subsections. First we describe proofs
of knowledge over the groups Gqi . Then we give a proof of equality of exponents
over distinct groups. This is followed by the proofs over an RSA modulus ZN .
Finally, the combined protocol is described.

The protocol can be seen as consisting of three steps. In the first step a value
ν is shown to be a commitment to the hash of the encrypted public keys along
the chain. In the second step it is shown that this value (which is in Gq3) is equal
(over Z) to a value in ZN hidden in a commitment C′. Finally in the third step
the Cramer-Shoup signature the prover has committed to is shown to be a valid
signature of the value committed to in C′. This is shown schematically in Figure
3.5.
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Chained cryptotexts

(ul, vl)
δ−1
l=0

Signature commitment
((u,v), (u′,v′),C)

ν

C′

ν = Commit(

H(Dec((ul, vl)
δ−1
l=0 )))

Open(ν) =
Open(C′)

Vf(Open(C′),
Dec((u,v),

(u′,v′),C) = 1

Figure 3.5: Schematic overview of the proof of knowledge. The functions Commit

and Open represent creation and opening of commitments.

Although we focus on efficiency, in some cases we have chosen to divide the
protocol into subprotocols for clarity, thus sacrificing some efficiency. Since the by
far most time-consuming part of the protocol is the proofs of exponential relations,
where to our knowledge the best current method is based on cut-and-choose, saving
a few exponentiations in other parts of the protocol yields little in terms of overall
performance.

Before we start we recall some definitions.
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Review of Some Notions

We assume familiarity with the notion of interactive proofs (IP) introduced by Gold-
wasser, Micali and Rackoff [35], and public-coin IPs called Arthur-Merlin games in-
troduced by Babai [5]. The notion of zero-knowledge was introduced by Goldwasser,
Micali and Rackoff [35]. Statistical special zero-knowledge and special soundness is
defined below.

Let viewVP (x) denote the view of the verifier V (including its random string)
when interacting with the prover P on common input x. Note that the view of
the verifier V in a three-move protocol can be written (r, x, α, c, d), where r is the
random input of V , x is the common input, α is the first message sent by P , c is
the random challenge from a set C sent by V , and d is final message sent by P .

Definition 3.6.1 (Statistical Special Honest Verifier Zero-Knowledge).
Let (P, V ) be a three-move IP for a language L. We say that (P, V ) is statistical
special honest verifier zero-knowledge proof (HVZKP) if there exists a probabil-
istic polynomial time algorithm S such that the ensembles {S(x, c)}x∈L,c∈C and
{viewVP (x)}x∈L,c∈C are statistically close as functions of |x|.

The term special is used since the simulator S is not allowed to pick the challenge
c itself, but must be able to compute a valid view when given c together with x as
input.

Suppose the challenge c = (c1, . . . , ck) is randomly chosen from a product set
C1 × C2 × · · · × Ck for some constant k and that |Ci| ≥ 2κ for i = 1, . . . , k where
κ is the security parameter. Then the following slight generalization of special
soundness makes sense. We get the standard definition of special-sound if k = 1.

Definition 3.6.2 (Special Soundness). A three-move IP (P, V ) for a binary rela-
tion R is C1×C2×· · ·×Ck-special-sound if there exists a polynomial time algorithm
that given two accepting outcomes of the view (r, x, α, c, d) and (r, x, α, c′, d′) with
ci 6= c′i for all i = 1, . . . , k, outputs a witness w such that (x,w) ∈ R.

We use a generalized definition of Σ-protocol along the lines suggested by
Cramer, Damgård, and Schoenmakers [23].

Definition 3.6.3 (Σ-Protocol). A C1×C2×· · ·×Ck-Σ-protocol is a three-move
interactive proof (P, V ) that is both statistical special honest verifier zero-knowledge
and C1 × C2 × · · · × Ck-special-sound for some product set.

Observation 1. Let (Pl, Vl) be a C1 × C2 × · · · × Ck-Σ-protocol for a language
Ll for l = 1, . . . , k(κ), where k(κ) is polynomial. Then the parallel composition
(P, V ) of the protocols where a single challenge in C is used for all protocols is a
C-Σ-protocol.

Observation 2. Let (Pl, Vl) be a Cl-Σ-protocol for a language Ll for l = 1, . . .,
k, where k is constant. Then the parallel composition (P, V ) of the protocols is a
C1 × C2 × · · · × Ck-Σ-protocol.
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It essentially follows from the “Forking Lemma” of Pointcheval and Stern [57]
that a Σ-protocol is a proof of knowledge in the sense of [6]. One must only
generalize the lemma slightly to hold also for the generalized special soundness as
we define it above. However, we only need the following lemma in the proof of
Theorem 3.5.8.

Lemma 3.6.4. Let (P, V ) be a C1 × C2 × · · · × Ck-Σ-protocol for a language L.
Let L′ ⊂ L. If AO is a probabilistic random oracle machine running in polynomial
time T such that

Pr[AO = (m,α, c, d) ∧ α ∈ L′ ∧ V O(m,·)(α, c, d) = 1] ≥ p

where the probability is taken over the random choices of AO and the random oracle,
and 1/p is polynomial, then there exists a polynomial time machine A′ running A as
a blackbox (and simulating the random oracle), that outputs (α,w) ∈ RL such that
α ∈ L′ with probability at least (p/4T )3 − ǫ(κ), where ǫ(κ) is a negligible function.

Proof. Let C = C1×C2×· · ·×Ck. First note that V O(m,·)(α, c, d) = 1 implies that
O(m,α) = c. The machine A asks at most T queries to O. Thus, we may identify
O with a list of random answers (r1, . . . , rT ), where ri ∈ C. Set r = (r0, . . . , rT )
and write Ar = (mr, αr, cr, dr) to denote the output of A on internal randomness
r0 ∈ {0, 1}T and using the oracle O defined by (r1, . . . , rT ). Without loss we assume
that A has queried O on (mr, αr) at some point.

We define A′
j as follows, where j is defined below. It chooses r ∈ {0, 1}T ×

CT and r′ ∈ {0, 1}T × CT randomly under the restriction (r0, r1, . . . , rj−1) =
(r′0, r

′
1, . . . , r

′
j−1) and executes A twice, the first time with r as random oracle and

the second time with r′ as random oracle. Then it invokes the extractor guaranteed
by the Σ-protocol on (αr, cr, dr) and (αr′ , cr′ , dr′) and outputs the result. Note that
the extractor outputs a correct result only if mr = mr′ , αr = αr′ and cr 6= cr′ . We
now show that this happens with non-negligible probability.

Denote by Er the event αr ∈ L′ ∧ V O(mr,·)(αr, cr, dr) = 1. Then we have

Pr[Er] =
∑T

l=1 Pr[Er ∧ cr = rl], which implies that there exists a j (used in the
algorithm above) such that Pr[Er ∧ cr = rj ] ≥ p/T .

Define

F = {(t0, . . . , tj−1) | Pr[Er ∧ cr = rj | (r0, . . . , rj−1) = (t0, . . . , tj−1)] ≥ p/(2T )}

and let rj = (r0, r1, . . . , rj−1). Then Pr[rj ∈ F ] ≥ p/(2T ) by an average argument,
and we have from independence that

Pr[(Er ∧ cr = rj) ∧ (Er′ ∧ cr′ = r′j)]

≥ Pr[(Er ∧ cr = rj) ∧ (Er′ ∧ cr′ = r′j) | rj ∈ F ] Pr[rj ∈ F ]

= Pr[Er ∧ cr = rj | r ∈ F ] Pr[Er′ ∧ cr′ = r′j) | rj ∈ F ] Pr[rj ∈ F ]

≥
( p

4T

)3
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Denote by E the event (Er∧cr = rj)∧(Er′ ∧cr′ = r′j). Denote by Es the event that
∀l ∈ [1, k] : rj,l 6= r′j,l. This corresponds to fulfilling the hypothesis of the extractor
guaranteed by the special soundness. Denote by Eu the event that all rl and r′l for
l = 1, . . . , T are unique. The event Eu ensures that answer to the j’th query is used
as challenge c, which in turn means that M must have decided on a m and α at
that point. Given that the event E occurs this implies (mr, αr) = (mr′ , αr′). We

clearly have Pr[rj,l = r′j,l] = 1/|Cl|, thus Pr[Es] ≤
∑k
l=1 1/|Cl| by the union bound.

We also have Pr[rl = r′l] = 1/|C| and the union bound gives Pr[Eu] ≤ T 2/|C|. A

final application of the union bound gives Pr[Es ∨Eu] ≤
∑k
l=1 1/|Cl|+ T 2/|C|.

We have

Pr[E] = Pr[E ∧ Es ∧ Eu] + Pr
[

E ∧
(

Es ∨ Eu
)]

≤ Pr[E ∧ Es ∧ Eu] +
k
∑

l=1

1/|Cl|+ T 2/|C|

≤ Pr[E ∧ Es ∧ Eu] + k/2κ + T 2/2kκ .

It now follows that

Pr[E ∧Es ∧Eu] ≥ Pr[E]−
(

k/2κ + T 2/2kκ
)

≥ (p/4T )3 −
(

k/2κ + T 2/2kκ
)

which concludes the proof, since if the event E ∧ Es ∧ Eu occurs the extractor is
guaranteed to succeed.

Proofs of Knowledge in Groups of Known Prime Order

The goal of this section is to provide subprotocols that can be used to prove know-
ledge of γ1, . . . , γδ and τ0, . . . , τδ−1 satisfying the relations that are defined exclus-
ively over Gq1 , Gq2 , and Gq3 in Step 3 in Algorithm 9. Relations involving elements
over ZN are handled in Section 3.6 and Section 3.6. Most of the ideas we use in
this section have appeared in various forms in the literature.

In some protocols we use the security parameters κ1, κ2 and κ3. Where used
the completeness depends on κ1, the soundness depends on κ2 and the amount of
information disclosed depends on κ3.

We begin our program by considering a problem related to that of proving
that a list of cryptotexts is chained properly. To simplify the exposition the DDH
assumption and strong RSA assumption are implicitly assumed in the formulation
of the lemmas, and the bases in the common input are assumed to be chosen at
random. In the application of the protocols this is the case.

Protocol 1 (Chained Cryptotexts).

Common Input: y0, g, y ∈ Gq and
(

(ul, vl) , (µl, νl)
)δ−1

l=0
∈ G4δ

q

Private Input: rl, sl, tl ∈ Zq for l = 0, . . . , δ− 1 and yl ∈ Gq for l = 1, . . . , δ such
that (ul, vl) = E(yl,g) (yl+1, rl) = (yrll , g

rlyl+1) and (µl, νl) = (gslytl , yslyl+1).
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1. The prover chooses al ∈ Zq randomly and computes

A1,l = galµrll , A2,l = yalνrll (3.1)

for l = 0, . . . , δ − 1.

2. The prover chooses bl, el, fl, hl, il, jl ∈ Zq randomly and computes

B0 = ye00 , (3.2)

for l = 0, . . . , δ − 1

B1,l = gblµell , B2,l = yblνell (3.3)

B3,l = gelyil , B4,l = gilyjl , (3.4)

and for l = 0, . . . , δ − 2

B5,l = gflyhl , B6,l = yfl (3.5)

and hands B0,
(

A1,l, A2,l, B1,l, B2,l, B3,l, B4,l

)δ−1

l=0
,
(

B5,l, B6,l

)δ−2

l=0
to the veri-

fier.

3. The verifier chooses c ∈ Zq randomly and hands c to the prover.

4. The prover computes

d1,l = cal + bl, d2,l = crl + el, (3.6)

d3,l = −csl + il, d4,l = −ctl + jl (3.7)

for l = 0, . . . , δ − 1 and for l = 0, . . . , δ − 2

d5,l = c (al + slrl) + fl, d6,l = ctlrl + hl (3.8)

and hands (d1,l, d2,l, d3,l, d4,l)
δ−1
l=0 , (d5,l, d6,l)

δ−2
l=0 to the verifier.

5. The verifier checks that

uc0B0 = y
d2,0
0 , (3.9)

for l = 0, . . . , δ − 1 that

Ac1,lB1,l = gd1,lµ
d2,l
l , Ac2,lB2,l = yd1,lν

d2,l
l (3.10)

(vl/νl)
cB3,l = gd2,lyd3,l , B4,l = µcl g

d3,lyd4,l . (3.11)

and finally for l = 0, . . . , δ − 2 that

Ac1,lB5,l = gd5,lyd6,l , (A2,l/ul+1)
cB6,l = yd5,l , (3.12)
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Figure 3.6: Overview of Protocol 1.

Intuitively the proof works by first showing that (ul, vl) encrypt the key that is
committed to in (µl, νl) and then by showing that key in the commitment (µl, νl) is
the encryption key used for the encryption in (ul+1, vl+1). This concept is depicted
in Figure 3.6.

The idea here is that the prover first computes two Pedersen commitments in
the bases g, µl and y, νl respectively. Then B1,l and B2,l are used to show that the
prover can open the commitments. With B3,l and B4,l the prover shows that vl
encrypts what is hidden in the commitment νl and that the exponent of g in µl is
the same as the exponent of y in νl.With B5,l the prover shows that it can open
A1,l also in the base g, y. With B6,l it finally shows that it can open A2,l/ul as a
power of y, which implies that A2,l and ul contain yl to the same power and hence
that yl is the key used in the encryption (ul, vl). The detailed proof follows.

Lemma 3.6.5. Protocol 1 is a Zq3 -Σ-protocol.

Proof. We prove special soundness first. Suppose we have a list
(

A1,l, A2,l, B1,l,

B2,l, B3,l, B4,l

)δ−1

l=0
,
(

B5,l, B6,l

)δ−2

l=0
, c and (d1,l, d2,l, d3,l, d4,l)

δ−1
l=0 , (d5,l, d6,l)

δ−2
l=0

that satisfy the Equations (3.1)-(3.5), and c′ 6= c and (d′1,l, d
′
2,l, d

′
3,l, d

′
4,l)

δ−2
l=0 ,

(d′5,l, d
′
6,l)

δ−1
l=0 that satisfies the same equations. We solve the equation systems

corresponding to Equations (3.6)-(3.8) to extract λl, αl, ρl, ωl, ζl, and τl such that

u0 = yρ00

A1,l = gαlµρll , A2,l = yαlνρll ,

A1,l = gωlyλl , A2,l/ul+1 = yωl

vl/νl = gρly−ζl , µl = gζlyτl .

From this we can compute ζ∗l = (ωl − αl)/ρl and τ∗l = λl/ρl such that µl = gζ
∗

l yτ
∗

l

since
(

g(wl−αl)yλl
)1/ρl

=

(

A1,l

gαl

)1/ρl

= µl .

We have νl = yζ
∗

l γl+1 for some γl+1, i.e., (µl, νl) = (yτ
∗

l gζ
∗

l , yζ
∗

l γl+1). This implies
that ul+1 = A2,ly

−ωl = yαlνρll y
−ωl = yαlyζ

∗

l ρlγρll+1 = yαl+ζ
∗

l ρl−ωlγρll+1 = γρll+1.
Define γ∗l+1 by vl = gρlγ∗l+1, i.e., (ul, vl) = E(γl,g)(γ

∗
l+1, ρl). What remains is to
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argue that ζ∗l = ζl, τ
∗
l = τl, and γ∗l+1 = γl+1 to connect the “links in the chain”.

The first two equalities follow from gζlyτl = µl = gζ
∗

l yτ
∗

l , since otherwise we could
use the extractor to extract the discrete logarithm (ζl−ζ∗l )/(τl−τ∗l ) = logg y, which

is a contradiction. The last equality follows from ul = gρl , vl/νl = gρly−ζl , and
µl = gζlyτl . Thus, the protocol is special-sound.

Simulation is straightforward. Choose al ∈ Zq randomly and set (A1,l, A2,l) =
E(g,y)(ul, al). Then choose (d1,l, d2,l, d3,l, d4,l, d5,l, d6,l), where di,l ∈ Zq, and c ∈ Zq
randomly and define B0,

(

A1,l, A2,l, B1,l, B2,l, B3,l, B4,l, B5,l, B6,l

)

by solving
Equations (3.9)-(3.11). It is easy to see that the resulting simulation is perfectly
distributed. Thus, the protocol is special honest verifier perfect zero-knowledge.

Next we consider the problem of proving that the values yα ∈ Gq3 and gyα2 ∈ Gq2
committed to in two commitments (µ, ν) = (yt3g

s
3, y

s
3yα) and (µ′, ν′) = (yt

′

2 g
s′

2 ,
ys

′

2 g
yα
2 ) respectively satisfy an exponential relation. Stadler [66] studied a simpler

problem, namely, given Ey3(m) and gm2 , prove that an exponential relation holds
between the cleartext and the exponent. Although we consider a more complex
problem, our protocol is based on his ideas. Note that proving that our relation
holds is equivalent to proving knowledge of s, t ∈ Zq2 and s′, t′ ∈ Zq3 such that

(θ, ω, φ) = ((µ′)ν
−1

, (ν′)ν
−1

, µ−1) is on the form (yt
′

2 g
s′

2 , y
s′

2 g
ys3
2 , yt3g

s
3). For clarity we

state this observation as a protocol.

Protocol 2 (Exponential Relation Between Committed Values).
Common Input: g2, y2, µ

′, ν′ ∈ Gq2 and g3, y3, µ, ν ∈ Gq3 .
Private Input: t′, s′ ∈ Zq2 such that (µ′, ν′) = (yt

′

2 g
s′

2 , y
s′

2 g
yα
2 ) and t, s ∈ Zq3 such

that (µ, ν) = (yt3g
s
3, y

s
3yα).

1. Invoke Protocol 3 on common input g2, y2, θ, ω ∈ Gq2 and g3, y3, φ ∈ Gq3 ,

where (θ, ω, φ) =
(

(µ′)ν
−1

, (ν′)ν
−1

, µ−1
)

, and private input −t,−s ∈ Zq3 and

t′ν−1, s′ν−1 ∈ Zq2 . .

We now give the double-decker exponentiation protocol called from within the
protocol above. Here κ2 is a security parameter that determines the soundness of
the protocol.

Protocol 3 (Double-Decker Exponentiation).
Common Input: g2, y2, θ, ω ∈ Gq2 and g3, y3, φ ∈ Gq3 .
Private Input: t′, s′ ∈ Zq2 and t, s ∈ Zq3 such that (θ, ω, φ) = (yt

′

2 g
s′

2 , ys
′

2 g
ys3
2 ,

yt3g
s
3).

1. The prover chooses el, fl ∈ Zq3 and e′l, f
′
l ∈ Zq2 randomly for l = 1, . . . , κ2,

computes F1,l = y
e′l
2 g

f ′

l

2 , F2,l = y
f ′

l

2 g
y
fl
3

2 , and Al = yel3 g
fl
3 . Then it hands

(F1,l, F2,l, Al)
κ2

l=1 to the verifier.

2. The verifier chooses b = (b1, . . . , bκ2) ∈ {0, 1}κ2 randomly and hands b to the
prover.
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3. The prover computes d1,l = el − blt, d2,l = fl − bls, d3,l = f ′
l − bly

d2,l
3 s′, and

d4,l = e′l − bly
d2,l
3 t′, and hands (d1,l, d2,l, d3,l, d4,l)

κ2

l=1 to the verifier.

4. The verifier checks for l = 1, . . . , κ2 that

θbly
d2,l
3 y

d4,l
2 g

d3,l
2 = F1,l, y

d3,l
2 (ωblg

(1−bl)
2 )y

d2,l
3 = F2,l, (3.13)

φbly
d1,l
3 g

d2,l
3 = Al . (3.14)

Since Protocol 2 only calls Protocol 3, we only need to consider Protocol 3:

Lemma 3.6.6. Protocol 3 is a {0, 1}κ2-Σ-protocol with soundness 1− 2κ2 .

Proof. We prove special soundness first. Suppose that we are given the outputs
from two executions (F1,l, F2,l, Al)

κ2

l=1, b, (d1,l, d2,l)
κ2

l=1 and b′, (d′1,l, d
′
2,l)

κ2

l=1 with
b 6= b′ that satisfy Equations (3.13)-(3.14). Thus, for some l, bl 6= b′l.

Let (ε, τ) and (ψ, ζ) ∈ Zq3 be solutions to the equation systems

{

d1,l = el − blt
d′1,l = el − b′lt

}

and

{

d2,l = fl − bls
d′2,l = fl − b′ls

}

,

This implies that φ = yτgζ .
Consider next the equation system

{

d3,l = f ′
l − bly

d2,l
3 s′

d′3,l = f ′
l − b′ly

d′2,l
3 s′

}

.

Note that bly
d2,l
3 is zero if bl = 0 and non-zero otherwise. Thus, the system is

solvable. Let (ψ′, ζ′) be a solution and assume without loss that b′l = 0. Then we
have

F2,l = y
d3,l
2 ωy

d2,l
3 = y

ψ′−y
d2,l
3 ζ′

2 ωy
d2,l
3 = y

ψ′−yψ−ζ
3 ζ′

2 ωy
ψ−ζ
3

F2,l = y
d′3,l
2 g

y
d′2,l
3

2 = yψ
′

2 g
y
d′2,l
3

2 = yψ
′

2 g
yψ3
2

Solving for ω gives ω = yζ
′

2 g
yζ3
2 . Finally, let (ε′, τ ′) be the solution to

{

d4,l = e′l − bly
d2,l
3 t′

d′4,l = e′l − b′ly
d2,l′
3 t′

}

.

Then we have

F1,l = θy
d2,l
3 y

d4,l
2 g

d3,l
2 = θy

d2,l
3 y

ε′−y
d2,l
3 τ ′

2 g
ψ′−y

d2,l
3 ζ′

2

F1,l = y
d′4,l
2 g

d′3,l
2 = yε

′

2 g
ψ′

2
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Solving for θ gives θ = yτ
′

2 g
ζ′

2 . We conclude that the protocol is special-sound.
The simulator is defined as follows. For l = 1, . . . , κ2 choose bl ∈ {0, 1} and

d1,l, d2,l ∈ Zq3 and d3,l, d4,l ∈ Zq2 randomly and define (F1,l, F1,l, Al) by Equations
(3.13)-(3.14). We conclude that the protocol is special honest verifier perfect zero-
knowledge.

Our next protocol shows that the cleartext of an ElGamal encryption is the value
hidden in a commitment. Since the protocol is used in conjunction with Cramer-
Shoup cryptotexts, we use a notation that is consistent with the Cramer-Shoup
cryptosystem.

Protocol 4 (Equality of Committed and Encrypted Cleartexts).
Common Input: g3, y3, u

′, v′, ḡ1, h̄, u, v ∈ Gq3 .
Private Input: t′, s′, r such that (u′, v′) = (gt

′

3 y
s′

3 , g
s′

3 m) and (u, v) = (ḡr1, h̄
rm).

1. The prover chooses a, e, f ∈ Zq3 randomly, computes A1 = ga3y
e
3, A2 = ge3h̄

f ,

A3 = ḡf1 , and hands (A1, A2, A3) to the verifier.

2. The verifier chooses c ∈ Zq3 randomly and hands it to the verifier.

3. The prover computes d1 = ct′ + a, d2 = cs′ + e, d3 = −cr + f and hands
(d1, d2, d3) to the verifier.

4. The verifier checks that

(u′)cA1 = gd13 yd23 , (v′/v)cA2 = gd23 h̄d3 , ucA3 = ḡd31 . (3.15)

Lemma 3.6.7. Protocol 4 is a Zq3 -Σ-protocol.

Proof. Consider special soundness. Given (A1, A2, A3), (c, d1, d2, d3), and (c′, d′1,
d′2, d

′
3), with c 6= c′, that satisfy the check above, we can solve the corresponding

equation systems to find τ ′, ζ′, τ ∈ Zq3 such that

(u′, v′/v, u) = (gτ
′

3 y
ζ′

3 , g
ζ′

3 h̄
τ , ḡτ1 ) .

This implies that the cryptotext and commitment holds the same value v/h̄τ as
prescribed. Thus, thus the protocol is special-sound.

The simulator chooses c, d1, d2, d3 ∈ Zq3 and defines A1, A2, A3 by Equation
(3.15). It is easy to see that the protocol is special honest verifier perfect zero-
knowledge.

Our next protocol shows that a Cramer-Shoup cryptotext is valid. We define
it for an arbitrary hash function, although we will later instantiate it with a HCHP

hash function.

Protocol 5 (Validity of Cramer-Shoup Cryptotext).
Common Input: H : G3

q3 → Zq3 , ḡ1, ḡ2, u, µ, v, ν ∈ Gq3 , and c̄, d̄ ∈ Gq3 .
Private Input: r ∈ Zq3 such that (u, µ, v, ν) = (ḡr1 , ḡ

r
2, v, c̄

rd̄rH(u,µ,v)).
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1. The prover randomly selects a ∈ Zq3 and computes B1 = ḡa1 , B2 = ḡa2 , B3 =
(

c̄d̄H(u,µ,v)
)a

and hands (B1, B2, B3) to the verifier.

2. The verifier randomly selects c ∈ Zq3 and hands it to the prover.

3. The prover computes d = cr + a and hands d to the verifier.

4. The verifier checks that ucB1 = ḡd1 , µ
cB2 = ḡd2 and νcB3 =

(

c̄d̄H(u,µ,v)
)d

.

Lemma 3.6.8. Protocol 5 is a Zq3 -Σ-protocol.

Proof. It can easily be verified that the protocol never fails on valid input.
Assuming the output of two executions B1, B2, B3, c, d and B1, B2, B3, c

′, d′ for
c 6= c′ both satisfying the verification of Step 4, we can compute ρ = (d−d′)/(c−c′)
such that (u, µ, ν) = (ḡρ1 , ḡ

ρ
2 , c̄

ρd̄ρH(u,µ,v)). Thus, the protocol is special-sound.
The simulator chooses c, d ∈ Zq3 randomly and defines B1, B2, and B3 by the

equations in Step 4. It follows that the protocol is special honest verifier perfect
zero-knowledge.

The next protocol combines the protocols above and provides a solution to the
goal of this section, i.e., proving the relations in Step 3 in Algorithm 9 involving
only elements from Gq1 , Gq2 , and Gq3 .

Protocol 6 (Commitment to Hash of Chained Keys).
Common Input: g3, y3, yα0 ∈ Gq3 , g2, y2 ∈ Gq2 , g1, y1 ∈ Gq1 , HCHP = (h1, . . .,
hδ) ∈ Gδq2 , (ul, vl)

δ−1
l=0 ∈ G2δ

q3 , (µ′′, ν′′) ∈ G2
q1 , ḡ1, ḡ2, c̄, d̄, h̄ ∈ Gq3 , Cδ = (ū, µ̄, v̄, ν̄) ∈

G4
q3 .

Private Input: r0, . . . , rδ ∈ Zq3 , r, yα1 , . . . , yαδ ∈ Gq3 satisfying the equations in
Step 3 in Algorithm 9, and s′′, t′′ ∈ Zq2 such that

(µ′′, ν′′) = (yt
′′

1 g
s′′

1 , ys
′′

1 g
HCHP(yα1 ,...,yαδ )

1 ) .

1. The prover chooses yαδ+1
∈ Gq3 and rδ ∈ Zq3 randomly, computes (uδ, vδ) =

Eyαδ
(

yαδ+1
, rδ
)

, and hands (uδ, vδ) to the verifier.

2. The prover chooses sl, tl ∈ Zq2 , computes commitments

(µl, νl) =
(

gsl3 y
tl
3 , y

sl
3 yαl+1

)

for l = 0, . . . , δ − 1, and hands (µl, νl)
δ−1
l=0 to the verifier.

3. The prover chooses s′l, t
′
l ∈ Zq3 randomly, computes commitments (µ′

l, ν
′
l) =

(y
t′l
2 g

s′l
2 , y

s′l
2 h

yαl+1

l+1 ) for l = 0, . . . , δ − 1, and hands (µ′
l, ν

′
l)
δ
l=1 to the verifier.

4. The prover and verifier computes (µ′, ν′) =
(

∏δ−1
l=0 µ

′
l,

∏δ−1
l=0 ν

′
l

)

. The prover

computes s′ =
∑δ−1
l=0 s

′
l and t′ =

∑δ−1
l=0 t

′
l.
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5. Invoke the following protocols in parallel:

a) Protocol 1 on public input yα0 , g3, y3,
(

(ul, vl), (µl, νl)
)δ−1

l=0
, and private

input (rl, sl, tl)
δ−1
l=0 to show that the chain is a valid chain of encrypted

keys.

b) Protocol 2 for l = 0, . . . , δ − 1 on public input g3, y3, µl, νl ∈ Gq3 and
g2, y2, hl, µ

′
l, ν

′
l ∈ Gq2 , and private input sl, tl ∈ Zq3 and s′l, t

′
l ∈ Zq2 .

c) Protocol 2 on public input g2, y2, µ
′, ν′ ∈ Gq2 and g1, y1, g1, µ

′′, ν′′ ∈ Gq1 ,
and private input s′, t′ ∈ Zq2 and s′′, t′′ ∈ Zq1 . These two protocols show
that (µ′′, ν′′) is a commitment of the hash value of the public keys in the
commitments (µl, νl).

d) Protocol 4 on common input g3, y3, µδ, νδ ∈ Gq3 , ḡ1, h̄ ∈ Gq3 , ū, v̄ ∈ Gq3 ,
and private input tδ, sδ, r ∈ Zq3 to show that the CScs

HCHP encryption is
an encryption of the value committed to in (µδ, νδ).

e) Protocol 5 on common input ḡ1, ḡ2, c̄, d̄, h̄ ∈ Gq3 , Cδ = (ū, µ̄, v̄, ν̄) ∈ G4
q3 ,

and private input r ∈ Zq3 to show that the CScs
HCHP encryption is correctly

formed.

Lemma 3.6.9. Protocol 6 is a {0, 1}κ2 × Zq3-Σ-protocol.

Proof. From Lemma 3.6.5, Lemmas 3.6.6, 3.6.7, 3.6.8 and Observations 1 and 2 it
follows that Step 5 may be considered a single combined {0, 1}κ2 ×Zq3 -Σ-protocol.
However, we must show that the extracted values satisfy additional equations.

From the combined protocols we can extract τl, ζl, ψl ∈ Zq3 , γl ∈ Gq3 , ζ′l , ψ′
l, ζ

′,
ψ′ ∈ Zq2 , ζ

′′, ψ′′ ∈ Zq1 , ψ
∗
δ , ζ

∗
δ , τ ∈ Zq3 , Γ ∈ Gq2 such that for l = 0, . . . , δ − 1

(ul, vl) = E(γl,g3)(γl+1, τl) = (γτll , g
τl
3 γl+1)

(µl, νl) = (yψl3 gζl3 , y
ζl
3 γl)

(µ′
l, ν

′
l) = (y

ψ′

l

2 g
ζ′l
2 , y

ζ′l
2 h

γl
l )

(µ′, ν′) = (yψ
′

2 gζ
′

2 , y
ζ′

2 Γ)

(µ′′, ν′′) = (yψ
′′

1 gζ
′′

1 , yζ
′′

1 gΓ
1 )

(ū, v̄) = (ḡτ1 , h̄
τγ∗δ ) .

If
∏δ
l=1 h

γl
l 6= Γ, then either ψ′ 6= ∑δ

l=1 ψ
′
l or ζ ′ 6= ∑δ

l=1 ζ
′
l . In either case this

implies that we can extract logg2 y2, which is a contradiction. Under Lemma 3.6.7
it must hold that γδ = γ∗δ . Thus, the protocol is special-sound.

To simulate the proof the simulator chooses uδ, vδ, µl, νl ∈ Gq3 , µ
′
l, ν

′
l ∈ Gq2

randomly instead of as defined in the protocol. It is easy to see that these ele-
ments are identically distributed to the corresponding elements in an execution
of the protocol. The simulator invokes the simulator for the combined proof of
knowledge of Step 5. It follows that the protocol is special honest verifier perfect
zero-knowledge.
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Proof of Equality of Exponents Over Distinct Groups

In several of our subprotocols, we need to prove relations over an RSA modulus.
These proofs differ slightly from proofs over a group of prime order. When per-
forming proofs over an RSA modulus the order of the multiplicative group is not
known, and therefore we cannot reduce the exponents.

One way to get around this problem is illustrated in the example below, where
we prove knowledge of how to open a Pedersen commitment. Here κ1, κ2 and κ3

are three security parameters. The completeness depends on κ1, the soundness
depends on κ2 and the amount of information disclosed depends on κ3.

Zero-knowledge proofs over such moduli have been studied by Fujisaki and
Okamoto [32]. Here we use techniques that are similar, although not identical
to theirs. In [32] the equivalent to a Pedersen commitment over a composite mod-
ulus such as ZN is studied. To commit to a number s the prover computes gsyr

where r is drawn from [0, 2κ3N − 1] for a security parameter κ3. The following two
lemmas are proven.

Lemma 3.6.10 (cf. [32]). There exists a polynomial-time algorithm that takes
as input a composite number N and r1, s1, r2, s2, r1 6= r2 and s1 6= s2, such that
gr1ys1 = gr2ys2 that with high probability outputs the factorization of N .

Lemma 3.6.11 (cf. [32]). If κ3 = Θ(logN), then gsyr statistically reveals no
information about s.

First consider the problem of proving equality of exponents over distinct groups.
This is used as a bridge between the two parts of our protocol. Two Pedersen
commitments are given: one over Gq denoted C and one over ZN denoted C. The
task is to prove that the committed values are equal when interpreted over the
integers. This problem has been studied by Boudot and Traoré [10] as well as by
Camenisch and Michels [16] and we follow their example.

Protocol 7 (Equality of Exponents Over Distinct Groups).
Common Input: g,y,C ∈ QRN and g, y, C ∈ Gq, where q < N .
Private Input: e ∈ [0, q − 1], s ∈ [0, 2κ3N − 1], and s′ ∈ Zq. such that C = geys

and C = geys
′

.

1. The prover chooses a ∈ [0, 2κ1+κ2+κ3q − 1], b ∈ [0, 2κ1+κ2+κ3N − 1] and b′ ∈
[0, 2κ1+κ2+κ3q − 1] randomly, computes A = gayb, A = gayb

′

, and hands
(A, A) to the verifier.

2. The verifier chooses c ∈ [0, 2κ2 − 1] and hands it to the prover.

3. The prover computes

d1 = a+ ce mod 2κ1+κ2+κ3q, (3.16)

d2 = b+ cs mod 2κ1+κ2+κ3N, (3.17)

d3 = b′ + cs′ mod 2κ1+κ2+κ3q (3.18)
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and hands (d1, d2, d3) to the verifier.

4. The verifier checks that gd1yd2 = CcA (in ZN ) and gd1yd3 = CcA (in Gq).

Lemma 3.6.12. Protocol 7 is a [0, 2κ2−1]-Σ-protocol with completeness 1−3·2−κ2 .

Proof. If the prover is honest the verifier accepts if there is no reduction in the
computation of d1, d2 or d3. By the union bound this happens with probability not
more than 3 · 2−κ1, which gives a completeness of 1− 3 · 2−κ2 .

To prove that the protocol is special-sound, assume we have A, A, c, d1, d2, d3

as well as c′ 6= c, d′1, d
′
2, d

′
3, each list satisfying the equations of Step 4. Then by

solving the equations system consisting of Equations (3.16) to (3.18) over Z we get

ε =
d1−d

′

1

c−c′ , ζ =
d2−d

′

2

c−c′ and ζ′ =
d3−d

′

3

c−c′ .
We now show that ε and ζ ′ are integers. In [32] the following lemma is proven:

Lemma 3.6.13 (cf. [32]). Let P ∗ be an oracle that on input N,g,y outputs u,µ
and two lists (c, d1, d2), (c′, d′1, d

′
2) satisfying the equations of Step 4 with (c− c′) ∤

(d1−d′1) or (c− c′) ∤ (d2−d′2). Then there exists a polynomial-time machine which
on input C, N and access to P ∗ outputs z, e such that ze = C and e > 1.

From the above Lemma it follows that ζ, τ are integers since otherwise a prover
that is able to construct such proofs can easily be made into the oracle of Lemma
3.6.13 and hence used to break the strong RSA assumption.

A prover able to construct a proof such that the extracted value ζ ′ is a non-
integer can also compute logg y, so we conclude that also β is an integer and hence

C = gεyζ , C = gεyζ
′

, which concludes the extraction.
The protocol can be simulated by choosing the challenge c ∈ [0, 2κ2 − 1], and

the prover’s response d1, d2 ∈ [0, 2κ1+κ2+κ3q − 1], d3 ∈ [0, 2κ1+κ2+κ3N − 1]. Then
A and A are computed according to the equations of Step 4. This gives the same
distribution as an execution of the protocol.

Zero-knowledge proofs over an RSA modulus

Sometimes it is more convenient to keep the committed number in the base rather
than in the exponent. In this case a commitment to a number z can be computed
as (grys,grz) where r, s are chosen at random from [0, 2κ3N − 1].

Protocol 8 (Commitment over ZN ).
Common Input: g,y,u,v ∈ QRN .
Private Input: s, t ∈ [0, 2κ3N − 1], r ∈ QRN such that (u,v) = (gsyt,gtr).

1. The prover randomly chooses a, b ∈ [0, 2κ1+κ2+κ3N − 1], computes µ = gayb,
and hands µ to the verifier.

2. The verifier chooses c ∈ [0, 2κ2 − 1] randomly and hands it to the prover.
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3. The prover computes

d1 = cs+ a mod 2κ1+κ2+κ3N ,

d2 = ct+ b mod 2κ1+κ2+κ3N

and hands (d1, d2) to the verifier.

4. The verifier checks that ucµ = gd1yd2 .

Lemma 3.6.14. Protocol 8 is a [0, 2κ2−1]-Σ-protocol with completeness 1−2·2−κ1 .

Proof. It is easy to check that the verifier accepts when there is no reduction modulo
2κ1+κ2+κ3N in the computation of d1 or d2. Therefore we want to compute the
probability of such a reduction to occur. There are at most 2κ2+κ3N values of
a (corresponding to ct = 2κ2+κ3N) for which a reduction occurs for d1. With
2κ1+κ2+κ3N possible values of a the probability for such a reduction to occur is

bounded by 2κ2+κ3N
2κ1+κ2+κ3N

= 2−κ1 . Since the same reasoning holds for d2 the union
bound gives an upper bound of 2 · 2−κ1 for a reduction to occur in one of the two
computations. Hence the completeness is at least 1− 2 · 2−κ1 .

For the extraction of s, t and r to prove special soundness, assume that we
have two lists (µ, c, d1, d2) and (µ, c′, d′1, d

′
2) where c 6= c′ which both satisfy the

equations in Step 4. By solving the equations in Step 3 (over Z) we get ζ =
d′1−d1
c′−c

and τ =
d′2−d2
c′−c . By Lemma 3.6.13 it follows that ζ and τ are integers. We now

have that the value of r can now be computed as vg−τ .
The protocol can be simulated by choosing d1, d2 ∈ [0, 2κ1+κ2+κ3N − 1] and

c ∈ [0, 2κ2 − 1] at random and computing µ = gd1yd2u−c. This gives a distribution
of µ, c, d1, d2 equal to that of an execution.

It is possible to write the protocol without the reduction in the computations of
d1 and d2. Then we get perfect completeness, but since d1 and d2 are not uniformly
distributed our simulation will not yield the exact distribution of an execution. It
seems that we are forced to choose between perfect zero-knowledge and perfect
completeness. It our description we choose perfect zero-knowledge. By choosing κ1

large enough, say κ1 = 64, we can in practice ignore the risk of failure with only a
minor increase in running time.

Next we give a protocol that shows that two committed values are equal. The
idea of the proof is to show that their ratio is one. The protocol is not a proof of
knowledge of the committed value nor of the exponents of the commitments, only
of the difference between the exponents. Note that we parametrize the protocol on
z to allow for different sizes of the exponents. The different sizes appear when the
protocol is applied to products of commitments.

Protocol 9 (Equality of Committed Values over ZN).
Common Input: g,y,∈ QRN and (u,v), (u′,v′) ∈ QR2

N .
Private Input: r ∈ QRN such that (u,v) = (gsyt,gtr), (u′,v′) = (gs

′

yt
′

,gt
′

r)
for some s, t, s′, t′ ∈ [−2κ3z + 1, 2κ3z − 1].
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1. The prover chooses a, b at random from [0, 2κ1+κ2+κ3z − 1], computes µ =
(gayb) and hands µ to the verifier.

2. The verifier randomly selects c ∈ [0, 2κ2 − 1] and hands it to the prover.

3. The prover computes d1 = c(s−s′)+a mod 2κ1+κ2+κ3z and d2 = c(t− t′)+b
mod 2κ1+κ2+κ3z and hands (d1, d2) to the verifier.

4. The verifier checks that (u/u′)cµ = gd1yd2 .

Lemma 3.6.15. Protocol 9 is a [0, 2κ2−1]-Σ-protocol with completeness 1−2·2−κ1 .

Proof. An honest prover fails to convince the verifier if there is a reduction in the
computation of d1 or d2. For d1 this happens either if c(s− s′) + a > 2κ1+κ2z − 1
or c(s− s′) + a < 0. The first case can happen only if c(s− s′) > 0, and then with
probability at most 2−κ1. The second case can happen only if c(s − s′) < 0, and
also then with probability at most 2−κ1. The same reasoning holds for d2, giving
by the union bound a probability of at most 2 · 2−κ1 for a reduction to happen.
Therefore the completeness is 1− 2 · 2−κ1 .

To show special soundness assume that we have (a, b), c and (d1, d2) satisfying
the equations of Step 4 as well as c′ 6= c and d′1, d

′
2 satisfying the same equations. By

solving the equations of Step 3 we get ζ, τ satisfying the equations u/u′ = gζyτ and
v/v′ = gτ . By Lemma 3.6.13 ζ and τ are integers. This shows that (u/u′,v/v′)
is a commitment of the value 1, and hence that (u,v) and (u′,v′) commit to the
same value.

For the simulation choose d1, d2 at random from [0, 2κ1+κ2+κ3z− 1] and c from
[0, 2κ2 − 1]. Compute µ,ν to satisfy the equations from Step 4. The distribution
we get this way is equal to the distribution from an honest execution.

The above protocol can also be used to prove that a pair u,v is a commitment to
a public value w. For clarity we state this as a protocol, also this time parametrized
on z:

Protocol 10 (Committed Value over ZN).
Common Input: g,y,u,v,w ∈ QRN .
Private Input: s, t ∈ [−2κ3z + 1, 2κ3z − 1] such that (u,v) = (gsyt,gtw).

1. Invoke protocol 9 on public input g,y, (u,v), (1,w) and private exponents
s, t, 1, 1.

Lemma 3.6.16. Protocol 10 is a [0, 2κ2−1]-Σ-protocol with completeness 1−2·2−κ1 .

Proof. Follows directly from Lemma 3.6.15.

In Protocol 2 we showed how to prove that two committed values have an
exponential relation. We need to be able to do this also over ZN . Also in this
case we use a protocol for double-decker expontial relations similar to Protocol
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3 as base to construct the following protocol. Once again we use the fact that
proving (u, v) = (gs

′

Ny
t′

N , y
s′

Ng
r
N), (u,v) = (gsyt,ysr) is equivalent to proving that

(θ, ω,φ) = (uv−1

, vv
−1

,u−1) is on the form (yf
′

N g
e′

N , y
e′

Ng
ye

N ,yfge).

Protocol 11 (Exponential Relations over ZN).
Common Input: g,y,h ∈ QRN , (u,v), (u′,v′) ∈ QR2

N , and gN , yN ∈ GN .
Private Input: s, t, s′, t′ ∈ [0, 2κ3N − 1] such that (u,v) = (gsyt,gtr) and
(u′,v′) = (gs

′

yt
′

,ys
′

hr).

1. The prover generates s′′, t′′ ∈ ZN , computes (u, v) = (gs
′′

N yt
′′

N , g
t′′

N y
r
N ) and

hands (u, v) to the verifier.

2. The following two protocols are executed in parallel:

a) Protocol 12 on common input g,y,φ ∈ QRN and gN , yN , θ, ω ∈ GN
where (θ, ω,φ) = (uv−1

, vv
−1

, u−1) and private input t′′v−1, s′′v−1 ∈
ZN and −t,−s ∈ [0, 2κ3N − 1].

b) Protocol 7 on common input y,h,v′ ∈ QRN , gN , yN , v ∈ GN and private
input r, t′, t′′.

The idea behind the above protocol is that the value r first is “lifted” to GN .
The relation is then shown between an element in GN and an element in ZN , as
shown in Figure 3.7.

GN

� �
ZN

= =
z

z
z

z
z

z
z

z

ZN

Figure 3.7: Structure of Protocol 11

Lemma 3.6.17. Protocol 11 is a {0, 1}κ2-Σ-protocol with completeness 1− (2κ2 +
3)2−κ1.

Proof. Follows from Lemma 3.6.12 and Lemma 3.6.18 by using the union bound
for the completeness.

Protocol 12 (Double-Decker Exponentiation over ZN ).
Common Input: g,y,φ ∈ QRN and gN , yN , θ, ω ∈ GN .
Private Input: t, s ∈ [0, 2κ3N − 1] and t′, s′ ∈ ZN such that (θ, ω,φ) = (yt

′

Ng
s′

N ,

ys
′

Ng
ys

N , ytgs).
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1. The prover chooses el, fl ∈ [0, 2κ1+κ3N − 1] and e′l, f
′
l ∈ ZN randomly for

l = 1, . . . , κ2. Then it computes F1,l = y
e′l
Ng

f ′

l

N , F2,l = y
f ′

l

N g
yfl

N , Al = yelgfl

and hands (F1,l, F2,l,Al)
κ2

l=1 to the verifier.

2. The verifier randomly chooses b = (b1, . . . , bκ2) ∈ {0, 1}κ2 and hands b to the
prover.

3. The prover computes

d1,l = el − blt mod 2κ1+κ3N ,

d2,l = fl − bls mod 2κ1+κ3N ,

d3,l = f ′
l − blyd2,ls′ mod N ,

d4,l = e′l − blyd2,l t′ mod N

and hands (d1,l, d2,l, d3,l, d4,l)
κ2

l=1 to the verifier.

4. The verifier checks for l = 1, . . . , κ2 that

θbly
d2,l

y
d4,l
N g

d3,l
N = F1,l ,

y
d3,l
N (ωblg1−bl

N )y
d2,l

= F2,l ,

φ
blyd1,lgd2,l = Al .

Lemma 3.6.18. Protocol 12 is a {0, 1}κ2-Σ-protocol with completeness 1−2κ22
−κ1 .

Proof. If there is no reduction in the computations of d1,l and d2,l the verifier will
accept if the prover is honest. The probability of a reduction in one computation
is 2−κ1 . By the union bound this gives that the probability for a reduction in one
of the 2κ2 computation is at most 2κ22

−κ1 , giving a completeness of’ 1− 2κ22
−κ1.

Now we prove special soundness by describing the extraction. For this we follow
the proof of Lemma 3.6.6, taking into account that the multiplicative order of ZN
is unknown.

Suppose that we are given two outputs (F1,l, F2,l, Al)
κ2

l=1, b, (d1,l, d2,l)
κ2

l=1 and
b′, (d′1,l, d

′
2,l)

κ2

l=1 with b 6= b′ that satisfy the equations of Step 4. Thus, for some l,
bl 6= b′l.

Let (ε, τ) and (ψ, ζ) be solutions to the equation systems

{

d1,l = el − blt
d′1,l = el − b′lt

}

and

{

d2,l = fl − bls
d′2,l = fl − b′ls

}

,

i.e., τ =
d1,l−d

′

1,l

bl−b′l
and ζ =

d2,l−d
′

2,l

bl−b′l
. Since |bl − b′l| = 1 this gives integral values of

τ, ζ when the system is solved over Z. We now have that φ = yτgζ .
Consider next the equation system

{

d3,l = f ′
l − blyd2,ls′

d′3,l = f ′
l − b′lyd

′

2,ls′

}

.
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Note that bly
d2,l is zero if bl = 0 and non-zero otherwise, and that the inverse of y

over ZN can be found in polynomial time. Thus, the system is solvable. Let (ψ′, ζ′)
be a solution and assume without loss that b′l = 0. Then we have

F2,l = y
d3,l
N ωy

d2,l
= yψ

′−y
d2,lζ′

N ωy
d2,l

= yψ
′−yψ−ζζ′

N ωyψ−ζ

F2,l = y
d′3,l
N gy

d′2,l

N = yψ
′

N g
y
d′2,l

N = yψ
′

N g
yψ

N

Solving for ω gives ω = yζ
′

Ng
yζ

N . Finally, let (ε′, τ ′) be the solution to

{

d4,l = e′l − blyd2,lt′
d′4,l = e′l − b′lyd2,l′ t′

}

.

Then we have

F1,l = θy
d2,l

y
d4,l
N g

d3,l
N = θy

d2,l
yε

′−y
d2,lτ ′

N gψ
′−y

d2,lζ′

N

F1,l = y
d′4,l
N g

d′3,l
N = yε

′

Ng
ψ′

N

Solving for θ gives θ = yτ
′

N g
ζ′

N . We conclude that the protocol is special-sound.

Protocol 13 (Knowledge of a Root of a Committed Value over ZN).
Common Input: g,y,u,v,u′,v′,C ∈ QRN .
Private Input: s, t, s′, t′, s′′, e ∈ [0, 2κ3N − 1] and r ∈ QRN such that (u,v) =
(gsyt,gtr), (u′,v′) = (gs

′

yt
′

,gt
′

re) and C = gs
′′

ye.

1. The prover chooses a, b, f, h, i, j ∈ [0, 2κ1+κ2+κ3N−1] randomly and computes

A1 = gaybue (3.19)

A2 = gbve (3.20)

B1 = gfyhui (3.21)

B2 = ghvi (3.22)

B3 = gjyi . (3.23)

Then it hands A1,A2,B1,B2,B3 to the verifier. The following protocols are
executed in parallel with the protocol below:

a) Protocol 9 parameterized with z = (2κ2N)
2
+2κ1+κ2+κ3N on public input

g, y, (A1,A2), (u′,v′) and private input re where the secret exponents
are (se+ a, te+ b) and (s′, t′).

b) Protocol 8 on public input g,y, (u,v) and private input s, t, r.

c) Protocol 8 on public input g,y, (u′,v′) and private input s′, t′, re.

2. The verifier chooses c ∈ [0, 2κ2 − 1] randomly and hands it to the prover.
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3. The prover computes

d1 = ca+ f mod 2κ1+κ2+κ3N (3.24)

d2 = cb+ h mod 2κ1+κ2+κ3N (3.25)

d3 = ce+ i mod 2κ1+κ2+κ3N (3.26)

d4 = cs′′ + j mod 2κ1+κ2+κ3N . (3.27)

4. The verifier checks that

A1
c ·B1 = gd1yd2ud3 (3.28)

A2
c ·B2 = gd1yd2vd3 (3.29)

Cc ·B3 = gd4yd3 . (3.30)

Lemma 3.6.19. Protocol 13 is a [0, 2κ2 − 1]-Σ-protocol with completeness 1− 10 ·
2−κ1.

Proof. The verifier rejects if one of the three subprotocols fail or there is an overflow
in the computation of d1, d2, d3 or d4. Each of the subprotocols has a probability
of failure of 2 · 2−κ1, and the probability for an overflow for each di is 2−κ1 . The
union bound then gives a completeness of at least 1− 10 · 2−κ1 .

Extraction of s, t, s′, t′, r follows from Lemmas 3.6.14 and 3.6.15. Extraction of
s′′ and e, assuming two lists (A1, A2, B1, B2, B3, c, d1, d2, d3, d4) and (A1, A2,
B1, B2, B3, c′, d′1, d

′
2, d

′
3, d

′
4) satisfying equations in Step 4, c 6= c′, is by solving

equations in Step 3 to get ζ, ε such that C = gζyε. By Lemma 3.6.13. ζ and ǫ are
integers. Thus the protocol is special-sound.

We now show that the protocol is zero-knowledge. The protocol can be sim-
ulated by choosing randomly a, b, a′, b′ ∈ [0, 2κ1+κ2+κ3N ] and setting A1 = gayb,
A2 = ga

′

yb
′

. Then we pick at random d1, d2, d3, d4 ∈ [0, 2κ1+κ2+κ3N − 1] and
c ∈ [0, 2κ2 − 1]. B1,B2,B3 can then be computed from the equations in Step 4.
This distribution is equal to the distribution from an honest execution of the pro-
tocols. The subprotocols can be simulated using the same c according to Lemmas
3.6.14 and 3.6.15.

Protocol 14 (Equality of Exponents of Committed Values over ZN ).
Common Input: g,y,h,u,v,C ∈ QRN
Private Input: r, s, t, w ∈ [0, 2κ3N − 1] such that (u,v) = (grys,gshw) and
C = gwyt.

1. The prover chooses a, b, e, f ∈ [0, 2κ1+κ2+κ3N − 1], sets (µ,ν) = (gayb,gbhe)
and B = geyf and hands (µ,ν),B to the verifier.

2. The verifier randomly chooses c ∈ [0, 2κ2 − 1] and hands it to the prover.
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3. The prover computes

d1 = cr + a mod 2κ1+κ2+κ3N ,

d2 = cs+ b mod 2κ1+κ2+κ3N ,

d3 = ct+ e mod 2κ1+κ2+κ3N ,

d4 = cw + f mod 2κ1+κ2+κ3N

and hands (d1, d2, d3, d4) to the verifier.

4. The verifier checks that ucµ = gd1yd2 , vcν = gd2hd4 and CcB = gd4yd3

Lemma 3.6.20. Protocol 14 is a [0, 2κ2−1]-Σ-protocol with completeness 1−4·2−κ1 .

Proof. An honest verifier will convince the verifier except possibly when there is
a reduction in the computation of d1, d2, d3, or d4. Since the probability of a
reduction in the computation of any of these values is 2−κ1 , the union bound gives
a completeness of at least 1− 4 · 2−κ1 .

Now we show that the protocol is special-sound. Assume we have two lists (µ,ν),
B, c, d1, d2, d3, d4 and (µ,ν), B, c′, d′1, d

′
2, d

′
3, d

′
4 with c 6= c′ both satisfying the

equations of Step 4. Then we can compute ρ, ζ, τ, ω such that (u,v) = (gρyζ ,gζhω)
and C = gωyτ . By Lemma 3.6.13 ρ, ζ, τ, ω are all integers.

The simulator first chooses d1, d2, d3, d4 from [0, 2κ1+κ2+κ3 − 1] and c from
[0, 2κ2 − 1]. Then µ, ν and C are computed by solving the equations of Step 4.
This gives a distribution equal to that of an honest execution.

The following is a protocol (parameterized on k and l) to show that a committed
value can be written as ka+ l for some a.

Protocol 15 (A Committed Value Can Be Written as ka+ l over ZN ).
Common Input: g,y,C ∈ QRN .
Private Input: a, t ∈ [0, 2κ3N − 1] such that C = gka+lyt.

1. The prover selects e, f, h ∈ [0, 2κ1+κ2+κ3N − 1], i ∈ [0, 2κ1+κ2+κ3kN − 1] at
random, computes

A = gaye (3.31)

B1 = gfyh (3.32)

B2 = yi (3.33)

and hands (A,B1,B2) to the verifier. Both prover and verifier computes
C′ = glAk/C.

2. The verifier randomly chooses c ∈ [0, 2κ2 − 1] and hands it to the prover.
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3. The prover computes

d1 = ca+ f mod 2κ1+κ2+κ3N (3.34)

d2 = ce+ h mod 2κ1+κ2+κ3N (3.35)

d3 = c(ek − t) + i mod 2κ1+κ2+κ3kN (3.36)

and hands (d1, d2, d3) to the verifier.

4. The verifier checks that AcB1 = gd1yd2 and (C′)cB2 = yd3 .

Lemma 3.6.21. Protocol 15 is an [0, 2κ2 − 1]-Σ-protocol with completeness 1− 3 ·
2−κ2.

Proof. The prover succeeds to convince the verifier unless there is an overflow in
one of the computations of di. By the union bound, this probability is at most
3 · 2κ2 , giving a completeness of 1− 3 · 2−κ2.

For the extraction assume we have two lists A, B1, B2, c, d1, d2, d3 and A,
B1, B2, c′, d′1, d

′
2, d

′
3, c 6= c′, satisfying the equations of Step 4. From this we can

compute α, ε, θ such that A = gαyε and C′ = yθ . By Lemma 3.6.13 α, ε and θ
are all integers. If we set τ = kε − θ it holds that C = gεyτ . This concludes the
extraction.

The verifier’s view can be simulated by randomly choosing v ∈ ZN and set-
ting A = gv. Then c ∈ [0, 2κ2 − 1] is chosen at random together with d1, d2 ∈
[0, 2κ1+κ2N − 1], d3 ∈ [0, 2κ1+κ2N2 − 1]. Finally B1,B2 are computed from the
equations in Step 4. This gives a distribution equal to that of an honest execution
of the protocol.

We also need the protocol that a committed value lies in an interval by Boudot.
Instead of giving the complete protocol, we only give the interface and refer the
reader to [9] for complete details.

Protocol Head 16 (A Committed Number Lies in an Interval).
Common Input: g,y,C ∈ QRN and a, b ∈ Z.
Private Input: s ∈ [a, b] and r ∈ [0, 2κ3N − 1] such that C = gsyr.

Lemma 3.6.22 (cf. [9]). Protocol 16 is a {0, 1}κ2-Σ-protocol with perfect com-
pleteness.

From these building blocks we can now present the proof that a committed
signature is valid.

Protocol 17 (Validity of Committed Signature from Hash).
Common Input: g,y,h, z,u,v,u′,v′,C,C′ ∈ QRN , N,H

Sh, e′ ∈ [2κ, 2κ+1 − 1].
Private Input: r, s, r′, s′, t, t′ ∈ [0, 2κ3N − 1], e ∈ [2κ, 2κ+1 − 1], and wα ∈ Zq2
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such that

(u,v) = (gsyr ,grσ)

(u′,v′) = (gs
′

yr
′

,gr
′

σ′)

C = ytge

C′ = yt
′

gwα

and the signature is valid, i.e., Vfcs(id, HSh, N,h, z, e′, wα, (e,σ,σ
′)) = 1.

1. Let z′ denote (σ′)e
′

h−wα . The prover chooses ζ, τ , ζ ′, τ ′, ζ′′, τ ′′, ζ′′′, τ ′′′,
ζ′′′′, τ ′′′′ ∈ [0, 2κ3N − 1] and sets

(µ,ν) = (gζyτ ,gτh−wα) ,

(µ′,ν ′) = (gζ
′

yτ
′

,gτ
′

z′) ,

(µ′′,ν ′′) = (gζ
′′

yτ
′′

,gτ
′′

σe) ,

(µ′′′,ν ′′′) = (gζ
′′′

yτ
′′′

,yζ
′′′

HSh
(N,g)(z

′)) ,

(µ′′′′,ν ′′′′) = (gζ
′′′′

yτ
′′′′

,yζ
′′′′

h−HSh

(N,g)(z
′)) .

Then it hands (µ,ν), (µ′,ν ′), (µ′′,ν′′), (µ′′′,ν′′′), and (µ′′′′,ν′′′′) to the
verifier.

2. The following protocols are run in parallel (using a common challenge c ∈
[0, 2κ2 − 1]):

a) Protocol 8 on the public input g,y, (u,v) and private input s, r,σ to
show that the prover knows how to open the commitment (u,v).

b) Protocol 8 on the public input g,y, (u′,v′) and private input s′, r′,σ′ to
show that the prover knows how to open the commitment (u′,v′).

c) Protocol 14 on public input g,y,h, (µ,ν), (C′)−1 and private input ζ, τ ,
t′, wα to show that (µ,ν) is a commitment of h−wα .

d) Protocol 9 with z = N +N2κ+1 on public input g, y, (µ′, ν ′), (µ(u′)e
′

,
ν(v′)e

′

) and private input ζ ′, τ ′, ζ + se′, τ + re′ to show that (µ′,ν ′) is
a commitment of z′.

e) Protocol 13 on public input g,y, (u,v), (µ′′,ν ′′),C and private exponents
s, r, ζ′′, τ ′′, t. This shows that (µ′′,ν′′) hides the value hidden in (u,v)
to the power of the value hidden in C.

f) Protocol 11 on public input g,y,g, (µ′,ν ′), (µ′′′,ν′′′), gN , yN and ζ ′, τ ′,
ζ′′′, τ ′′′ as private input to show that (µ′′′,ν′′′) is a commitment of a
Shamir hash of z′.

g) Protocol 11 on public input g,y,h−1, (µ′′′,ν′′′), (µ′′′′,ν′′′′), gN , yN and
private input ζ ′′′, τ ′′′, ζ′′′′, τ ′′′′ to show that (µ′′′′,ν′′′′) commits to h to
the power of HSh(z′).
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h) Protocol 10 with z = 2N on public input g,y, (µ′′µ′′′′,ν′′ν′′′′), z with
private input ζ ′′ + ζ′′′′, τ ′′ + τ ′′′′ to finally show that the signature is
valid.

i) Protocol 15 with k = 4 and l = 3 on public input g,y,C and private
input e, t to prove that e is odd and different from e′.

j) Protocol 16 on public input g,y,C, 2κ, 2κ+1 − 1. and private input e, t
to prove that e belongs to the correct interval.

Lemma 3.6.23. Protocol 17 is [0, 2κ2−1]-Σ-protocol with completeness 1− (4κ2 +
24)2−κ2.

Proof. By using the union bound on the probability of failure of the subprotocols,
we get a completeness of at least 1− (4κ2 + 24)2−κ2.

We now describe the extraction to show that the protocol is special-sound.
By Lemmas 3.6.14, 3.6.20, and 3.6.19 we can extract ρ, ζ, ρ′, ζ′, τ, τ ′, ε such that
u = gρyζ , u′ = gρ

′

yζ
′

, C = gτyε, and C′ = gτ
′

yω from Steps 2a, 2b, 2c, and 2e.
Now also ς, ς ′ such that v = gζς and v′ = gζ

′

ς ′ can be computed.
It now remains to be shown that (ε,σ,σ′) is a valid signature of ω. We do that

by checking that the two steps of Algorithm 7 holds. Steps 2i and 2j ensure that
Step 1 of the verification algorithm for Cramer-Shoup signatures holds. From Steps
2c and 2d and Lemmas 3.6.20 and 3.6.15 it follows that (µ′,ν′) is a commitment of
z′ = (σ′)e

′

h−ω. Step 2e and Lemma 3.6.19 give that (µ′′,ν′′) is a commitment of

hε, and Steps 2f, 2g with Lemma 3.6.17 shows that (µ′′′′,ν′′′′) commits to hH
Sh(z′).

Finally Step 2g shows that the equality of Step 2 of Algorithm 7 holds. Hence
(ε,σ,σ′) is valid signature of ω.

Since all subprotocols are Σ-protocols, the constructed protocol can also be
simulated. Also all protocols are either of type [0, 2κ2 − 1]-Σ or {0, 1}κ2-Σ. Since
there is a natural bijection between [0, 2κ2 − 1] and {0, 1}κ2, the resulting protocol
is a [0, 2κ2 − 1]-Σ-protocol.

Final Protocol

We are finally ready to give the complete proof of a correct signature corresponding
to the proof in Step 3 of Algorithm 9. The common input consists of a chain of
cryptotexts and commitments of a SScs signature of the public keys corresponding
to the path of the signer in the tree.

Protocol 18 (Valid HGS Signature).
Common Input:

• g,y,h, z ∈ QRN

• e′ ∈ [2κ, 2κ+1 − 1]
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• (ul, vl)
δ−1
l=0 ∈ G2δ

q3

• Cδ ∈ G4
q3

• (u,v) ∈ QR2
N

• (u′,v′) ∈ QR2
N

• C ∈ QRN

• H = (h1, . . . , hδ) ∈ Gδq2
• g1, y1 ∈ Gq1
• g2, y2 ∈ Gq2
• g3, y3 ∈ Gq3
• yα0 ∈ Gq3
• Y ∈ G5

q3 .

Private Input:

• (τ0, . . . , τδ) ∈ Zδ+1
q3

• (γ1, . . . , γδ) ∈ Gδq3
• ε ∈ [2κ/2, 2κ/2+1 − 1],

• (τ, ζ, τ ′, ζ′, ψ) ∈ [0, 2κ3N − 1]6

such that

γ0 = yα0

(ul, vl) = E(γl,g3)(γl+1, τl) for l = 0, . . . , δ − 1

Cδ = Ecs
Y (γδ, τδ)

u = gζyτ

u′ = gζ
′

yτ
′

C = gεyψ

and Vfcs(H,HSh
(g,N), N,h, z, e, (γ1, . . . , γδ), (ε,v/y

τ ,v′/yτ
′

)) = 1.

1. The prover randomly selects s, t ∈ Zq2 , t
′ ∈ [0, 2κ3N−1] and computes (µ, ν) =

(gt1y
s
1, y

t
1g
H(γ1,...,γδ)
1 ), C′ = gH(γ1,...,γδ)yt

′

. The prover hands (µ, nu) and C′

to the verifier.
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2. The following protocols are executed in parallel

a) Protocol 6 on public input g3, y3, yα0 , g2, y2, g1, y1, H, (ul, vl)
δ−1
l=0 , (µ, ν),

Y , Cδ and private input τ0, . . . , τl, γ1, . . . , γδ, s, t.

b) Protocol 7 on public input g,y,C′, g1, y1, ν and private input H(γ1, . . .,
γδ), t, t

′.

c) Protocol 17 on public input g,y, (u,v), (u′,v′),C,C′ and private input
τ, ζ, τ ′, ζ′, ψ, s, ε.

Lemma 3.6.24. Protocol 18 is a [0, 2κ2 − 1] × Zq2 -Σ-protocol with completeness
1− (4κ2 + 27)2−κ2.

Proof. Since the completeness of Steps 2a, 2b, 2c are 1, 1− 3 · 2−κ2 and.1− (4κ2 +
24)2−κ2 respectively, the union bound gives a completeness of at least 1 − (4κ2 +
27)2−κ2 for the constructed protocol.

Extraction of τ0, . . . , τδ and γ1, . . . , γδ with the necessary properties follows from
Lemma 3.6.9, from which is also follows that ν is a commitment of H(γ1, . . ., γδ).
Extraction of τ, ζ, τ ′, ζ′, ε, ψ follows from Lemma 3.6.23. By Lemma 3.6.23 we can
also extract ξ such that

Vfcs(id, HSh
(g,N), N,h, z, e, ξ, (ε,v/y

τ ,v′/yτ
′

)) = 1

and C′ is a commitment of ξ.
Finally from Step 2b and Lemma 3.6.12 it follows that C′ and ν are commit-

ments of the same number, i.e., ξ = H(γ1, . . . , γδ). This implies that

Vfcs(H,HSh
(g,N), N,h, z, e, (γ1, . . . , γδ), (ε,v/y

τ ,v′/yτ
′

)) = 1 .

Therefore we can conclude that the protocol is special-sound.
The protocol can be simulated since it is constructed from subprotocols that

can be simulated.

3.7 An Alternative Construction

In this section we sketch an alternative provably secure construction. Let SS =
(Kg, Sig,Vf) be a signature scheme. For each group manager Mα (or signer Sα),
(spkα, sskα) ← Kg(1κ), and (pkα, skα) ← GMKg(1κ) are generated. Then for
each child α of β ∈ T , σβ(α) = Sigsskβ

(pkα, spkα) is computed. Finally, for each
α ∈ T \{ρ} set hpk (α) = (spkα, pkα, σβ(α)), where α ∈ β, and hsk (α) = (skα). For
the root ρ we set hpk (ρ) = (spk ρ, pkρ) and hsk(ρ) = (ssk ρ, skρ).

Consider a signer Sα corresponding to a path α0, . . . , αδ, where α0 = ρ and
αδ = α. To sign a message m the signer computes

C = (C0, . . . , Cδ) = (Epk0
(σα0 (α1)), . . . , Epkδ−1

(σαδ−1
(αδ)), Epkδ

(Sigsskα
(m))) ,
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and provides a NIZK π that C is formed as above with pk 0 = pkρ and α0 = ρ. The
signature consists of the pair (C, π).

To verify a signature (C, π) the verifier simply checks the NIZK π. To open a
signature, a group manager Mβ on depth l first verifies the signature. If it is not
valid, it returns ⊥. Otherwise it computes σ = Dskβ (Cl). If σ is equal to σβ(α) for
some α ∈ β, then it returns α and otherwise ⊥.

This construction is a strict generalization of the construction in [7] except that
we require that the cryptosystem used is cross-indistinguishable. The construction
is provably secure under the existence of a family of trapdoor permutations. How-
ever, as part of the proof we must essentially redo the analysis of the CCA2-secure
cryptosystem of Sahai [62], and the group signature scheme of Bellare et al. [7],
which makes the proof more complex than the proof for the construction we detail
in this chapter.

A potential advantage of this scheme is that key generation need not be per-
formed centrally. Each group manager Mβ could also be given the secret signature
key sskβ which allows it to generate (spkα, pkα) and (sskα, skα) for a child Mα or
Sα by itself. Thus, a group manager could issue keys without interacting with any
other group manager. However, as we will see in the next section, it is far from
obvious how to define the security of such a scheme.

3.8 Eliminating the Trusted Key Generator

We have defined hierarchical group signatures using a trusted key generator. This is
a natural first step when trying to understand a new notion, but there are situations
where one would like a (hierarchical) group signature scheme without a trusted
party.

If there exists a set of parties of which the majority is trusted, general multiparty
techniques can be used to replace the trusted key generator by the secure evaluation
of a function. However, this introduces a trust hierarchy that is inconsistent with
the hierarchy of the group managers and signers.

Consider now the security of the construction when there is no trusted key
generator. In this case hierarchical anonymity and hierarchical traceability (full
anonymity and full traceability) do not suffice to ensure security. The problem is
that the experiments only consider the advantage of an adversary when all keys
are generated honestly. Thus, all bets are off if this is not the case. It is however
not clear what a definition of security for (hierarchical) group signatures without a
trusted key generator should look like.

The adversary should probably have the power to choose its keys adaptively,
based on the keys and signatures of honest parties. There are many subtle issues.
For example, without a trusted key generator the default for hierarchical group
signatures is that not only trees but general acyclic graphs of group managers are
allowed. Is this what we want? If only trees are supposed to be allowed, certificates
must embed additional information that restricts how a certificate chain may look
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and the NIZK must consider this as well. Other interesting questions are: Is there a
well defined tree? Do all participants know what the tree look like? Who generates
the common random string used by the NIZKs?

We believe that the alternative construction described above is well suited to a
setting without a trusted key generator. However, without a rigorous definition of
security we cannot claim anything, and currently there exists as far as we know not
even a rigorous definition of security for group signatures without a trusted party,
even less so for hierarchical group signatures.

3.9 Conclusion

We have introduced and formalized the notion of hierarchical group signatures and
given two constructions. The first construction is provably secure under general
assumptions, whereas the second is provably secure under the DDH assumption,
the strong RSA assumption and the 4-Cunningham chain assumption in the random
oracle model.

Although the latter construction is practical, i.e., it can be implemented and
run on modern workstations, it is still relatively slow. Thus, an interesting open
problem is to find more efficient constructions of hierarchical group signatures.



Chapter 4

On the Security of Non-RSA EMV

Payment Cards

4.1 Introduction

A large part of today’s electronic purchases are made with different kinds of pay-
ment cards. The majority of the cards used today have a magnetic stripe where
the card data is stored. Over the last years, card skimming, where the content of
the magnetic stripe is copied, has become a major problem. The countermeasure
is to move from the magnetic stripe to smart-cards where the data is stored on
a chip instead. To make sure also smart-card based payment cards will have the
same global acceptance as the magnetic stripe, Europay, MasterCard and Visa have
together developed the EMV specification.

The preparations for moving from payment cards based on magnetic stripe to
smart-card based cards have been going on for more than ten years. Some card
issuers have already converted their card base to EMV smart-cards, and more are
about to make the switch.

The base for EMV smart-cards is the EMV specifications [29], which define the
protocol between the card and the terminal. Payment organizations, in particular
Visa and MasterCard, have developed their own extensions to the EMV specifica-
tions [48, 47, 73].

In this chapter we will examine a potential problem in the configuration of an
EMV card. In particular we will show how to avoid this problem with a card
based on Visa’s VSDC specification, and that it cannot be avoided when using
MasterCard’s M/Chip specification.

EMV specifies two possible security levels for cards, Static Data Authentication
(SDA) and Dynamic Data Authentication (DDA). The difference lies in that DDA
cards must support RSA, whereas an SDA card does not. The issue we discuss in
this chapter relates only to SDA cards.

95
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4.2 Smart-cards

A smart-card is a tiny computer with its own CPU and storage. The data stored
on the card cannot be read or written directly but only through certain functions.
This means that a smart-card may have keys that can be used for encryption but
cannot be read in clear. Another possilibity is to have a PIN that must be entered
before certain functions can be used. More information about smart-cards can be
found in [38].

The fact that the data on the card can only be accessed through predefined
functions means that we can define data to be public when it can be accessed in
clear and private when it is used only for internal processing by the card. When
analyzing protocols involving smart-cards, a reasonable security model is to assume
the data can only be accessed and modified using the predefined functions. The
weakness analyzed in this chapter follows that security model.

4.3 The EMV Specification

The EMV specification describes in detail the data flow between the card and the
terminal during a transaction. The outcome of an execution the protocol is one of
the following

1. Transaction is approved offline.

2. Transaction is denied offline.

3. Transaction is sent to the issuer for online authorization1

Since most transaction are either approved offline or sent online, we will consider
only these two cases here. The principle is that a transaction can be approved
offline only if both the card and the terminal agrees on it, but is sent online if at
least one of them requests it.

Both Visa and MasterCard have written their own extensions to EMV. Here
they define which of the public EMV parameters that can be used, and also what
the internal behavior of the card should be. Visa calls their application VSDC
[73]. MasterCard has published two separate documents, one giving the external
interface in the form of minimum requirements [47] and one defining the internal
behavior by describing the application M/Chip [48]. However, also MasterCard is
moving towards a unified document giving both internal and external details.

The Participants

The main participants in an EMV transaction are

1In this case the protocol also defines the behavior if no response is received from the issuer,

but this will not be discussed here.
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Payment net Issuing bankAcquiring bankTerminalCard

Figure 4.1: Data flow of an EMV transaction

• the card. The card is held by a customer (the cardholder) and contains
information (both secret and public) set by the issuer. The card is identified
by its card number.

• the terminal. The terminal is located at a merchant and is able to interact
with cards. The terminal has internal settings defining when to allow offline
transactions and when to require transactions to be processed online.

• the acquirer. The acquirer receives data from the terminal. In this principal
description, the acquirer does nothing but forwarding the information to the
issuer.

• the issuer. The issuer issues cards to his customers and processes transactions
where his cards are involved.

• the payment organization. The payment organization is responsible for for-
warding information between issuers and acquirers, and also for issuing public
key certificates to the issuers.

In figure 4.1 a schematic overview is given.

Cryptographic Authentication

There are two different forms of authentication in EMV transactions, authentication
between the card and the terminal and authentication between the card and the
issuer.

Card-Terminal Authentication

In the very beginning of a transaction, the terminal verifies the authenticity of the
card. This can be done either with Static Data Authentication or with Dynamic
Data Authentication. In the first case, the card has a (static) signature on some
subset of its parameters which is verified by the terminal. In the second case, the
terminal verifies that the card also knows a private key by letting it sign a random
nonce.
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Card-Issuer Authentication

During a transaction, the card may generate one or two MACs. These MACs are
generated with a symmetric key known only to the issuer and the card. Therefore
the MAC can only be verified by the issuer and not by the terminal or the acquirer.

Card Configuration

SDA and DDA.

EMV gives the option of using low-cost cards without RSA capabilities as well as
more expensive RSA enabled cards. Cards without RSA capabilities support only
Static Data Authentication (SDA) whereas cards with RSA support can handle also
Dynamic Data Authentication (DDA).

For both SDA and DDA, the issuer receives a certificate from the payment
organization. The issuer certificate and the issuer public key, IPK, are stored
publicly on the card. For SDA, the issuer signs a set of card parameters of his
choice with his private key and places the signature on the card. The signature is
called Signed Static Application Data, SSAD. In the case of DDA the card is given
its own RSA key pair. The card private key is stored internally on the card, but
the card public key is signed by the issuer. (Even if the card supports DDA, an
SDA signature is usually still put on the card.)

Card parameters.

Apart from the keys and certificates mentioned above, several parameters describing
under which circumstances to allow offline transactions are stored on the card. In
this thesis we are only interested in one parameter, namely Lower Consecutive
Offline Limit (LCOL). The LCOL gives the number of transactions that can be
performed offline, i.e., without contacting the issuer.

Also the parameters Application Transaction Counter (ATC) and Last Online
Application Transaction Counter (LATC) are stored on the card. The ATC con-
tains the number of transaction the card has performed and the LATC holds the
index of latest transaction that executed online. They are both initialized to zero.

Symmetric keys.

When a card is issued, the issuer generates a symmetric key that is stored on the
card and used to generate MACs transaction messages.2 The key is also stored by
issuer, but not disclosed to the merchants or the acquirers.

2Up to three other symmetric keys are also stored on the card, but since they play no role to

our result, we ignore them.
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The Protocol

The following is an overview of the protocol used for deciding the result of the
transaction. Here we only describe the case of an SDA card.

Card Terminal

IPK,SSAD,LCOL / / VerIPK(SSAD)

ATC,LATC / /
ATC− LATC

?
≤ LCOL

Decision requesto o

Final decision / /

1. The terminal reads all public data from the card.

2. The terminal receives transaction data, including the amount and currency
of the transaction.

3. The terminal uses the public key of the payment organization to verify that
the issuer certificate is valid and then uses the issuer public key (IPK) to
verify that the SDA signature is valid (SSAD). If any of these steps fail, the
processing is terminated.

4. The terminal reads the ATC and the LATC off the card and computes the
number of offline transactions as LATC − ATC. It compares this value the
Lower Consecutive Offline Limit (LCOL) read in step 2 and proceeds as
follows:

• If the number of offline transactions is lower than LCOL, the terminal
makes a request for an offline transaction to the card.

• If the number of offline transactions is equal to or higher than LCOL,
the temrinal makes a request for an online transaction to the card.

• If the LCOL is not present, the terminal makes a request for an offline
transaction to the card.

5. After receiving the terminal’s decision, the card may perform additional in-
ternal risk analysis before it makes the final decision. However, if the terminal
requested an online transaction the card may not override the decision to make
the transaction offline.



100CHAPTER 4. ON THE SECURITY OF NON-RSA EMV PAYMENT CARDS

• If the card receives a request for an online transaction, it creates a MAC
over transaction data and returns to the terminal. This data is sent to
the issuer who verifies the authenticity of the MAC.

• If the card receives a request for an offline transaction, then depending
on the result of the internal analysis, it either approves the transaction
offline or requests an online authorization. In both cases a MAC is
created.

4.4 The Problem

In this section we will describe the potential problem, and also how to avoid it
where possible.

Making a Pure Online Card

In many cases, it is desirable to have a card that can only function online. There
are two ways to achieve this:

• Set the LCOL to zero. This way the terminal will always make a transaction
go online.

• Make the internal risk analysis of the card such that it always makes the
decision to go online, regardless of what the terminal’s decision is.

The most obvious reason to make a card online-only is to make sure the card-
holder does not spend money he does not have. However, for an SDA card there is
also another reason. Since the MAC cannot be verified offline, someone might copy
the card, keeping the original SDA signature, but replace the symmetric key. Then
a terminal would accept the card (since the SDA signature is valid), and when (and
if) the issuer detects that the MAC is invalid, it is already too late.

The essence of the attack described here is to copy the card and modify the
copy in such a way that it will allow offline transactions.

Copying an SDA Card

If we assume that the hardware is secure, the adversary can copy all the public data
on a card, but not the internal data. Also, when the card is copied, he can modify
data that has not been signed by the issuer, but if he changes the data included
in the SDA signature the card will not be accepted. When a card is copied the
adversary can change the internal behavior of the card by replacing the original
program code by his own.
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Making an Online Card Work Offline

As mentioned above, there are two ways to make a card online-only. Here we will
discuss different attack scenarios depending on what method is used.

If the LCOL parameter is set to zero, then it may either be signed or not be
signed with the SDA signature. If it is not signed, the adversary can simply copy
the card and modify the LCOL to contain a non-zero value. The card will be
accepted offline, since the SDA signature is still valid. He will not be able to copy
the symmetric key, so the copy cannot be used online, but as long as the card only
is used offline, it will work. In case the LCOL is signed, it cannot be changed and
the attack does not work.

If the LCOL is not present on the card, but the internal risk analysis of the card
is used to make all transaction go online, then the attack is a little bit different.
When the adversary copies the card, he replaces the card application with an ap-
plication that always accepts to make the transaction offline. Also here he cannot
copy the symmtric key, but he will be able to use the card offline.

Note that for any of these attacks, the adversary only needs access to the card
for a few seconds so that he can read all the public data. Since the commands for
doing this are standardized, any card-reader could be used for this.

Copying an Offline-enabled Card

If the card has LCOL non-zero, but not in the SDA signature, the adversary can of
course use a similar method to get an arbitrary number of offline transactions (with
invalid MACs, making it impossible to tie the transaction to the card). However,
even if LCOL is signed, the adversary can issue an attack similar to those described
above. He can copy all the parameters on the card, but modify the card application
to that it always responds that no offline transactions have been performed prior
to the current. That way the terminal will always accept to make the transaction
offline (since the number of offline transactions is lower than the LCOL) and the
issuer will not be able to detect that the MAC is invalid.

Protecting Against the Attack

As we can see, the only way to make the card secure against the proposed attack
is to set the LCOL to zero and include it in the SDA signature. In other words,
there is no way of making a secure offline SDA card.3

However, the specifications for M/Chip [48] (used for MasterCard) don’t allow
the use of LCOL, leaving only card-based risk analysis for making a card online-
only. As we have seen, such an approach is always susceptible to the attack by
modifying the application. (The M/Chip specifications do define the LCOL, but
only as private parameter used internally by the card.)

3This attack does not work for DDA cards.
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It can be noted that inclusion of LCOL in the data signed with SDA is not in
the published recommendations. One step for reducing the potential threat is to
update the recommendations to include the LCOL and also note that it should be
set to zero.

4.5 Conclusions and Recommendations

We have demonstrated how EMV cards with a certain configuration can be at-
tacked, and we have also pointed out how to configure a card correctly to avoid
this attack. We have seen that cards based on M/Chip cannot be configured in the
proposed way, and are therefore always susceptible to the attack. Here the only
solution is to move to (more expensive) DDA cards.

One possibility to solve the problem is the change the EMV specification so that
a terminal always goes online when a non-DDA EMV card is used. Although the
consequence is that issuers using low-cost card cannot benefit from the advantages
of offline transaction, from a security perspective this approach would be the most
efficient.



Chapter 5

Lattices With Many Cycles Are

Dense

5.1 Introduction

The interest in the computational complexity of lattice problems started in the
beginning of the 1980s, when van Emde Boas published the first NP-completeness
result for lattice problems [71]. Several hardness results for different variants of
this problems and for different subsets of lattices have followed. One such way
of classifying lattices is according to the cycle structure of Abelian group Zn/Λ,
which is the main focus of this chapter. Previous results on the complexity of
lattice problems that either explicitly or implicitly consider lattices with a certain
cycle structure include [1, 13, 56, 67].

The group Zn/Λ is finite if Λ ⊆ Zn and full-dimensional. One way to visu-
alize this group is to divide Zn into the parallelepipeds spanned by a basis and
consider two points equivalent if they lie in the same position in their respective
parellelepipeds. In Figure 5.1 one such equivalence class of points is shown. Note
how this can be considered a generalization of reduction modulo an integer over
Z. It is easy to see that Zn/Λ is a group under addition, and since addition is
commutative, the group is abelian. As with any abelian group, it is isomorphic to
the cartesian product of cyclic groups. By writing the cycle lengths in increasing
order so that the length of cycle i divides the length of cycle i+ 1, we get a unique
representation. For example, instead of writing Z3 × Z5 we write Z15, and instead
of Z2 × Z3 × Z3 we write Z3 × Z6.

There are two reasons to study the hardness of certain lattice problems in dif-
ferent subclasses of lattices rather than for general lattices. The first reason is
purely theoretical – it gives us a better understanding of how the computational
complexity of lattice problems behaves if we restrict ourselves to certain lattice
classes. The second reason is more practical – most hardness results are worst-case
results for general lattices. The lattices that appear in many applications may have
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Figure 5.1: Points that are equivalent modulo a lattice

certain structural properties. It would be desired to have results that show that
these properties cannot be used to solve lattice problem more efficiently.

The first result on the cycle structure was published by Paz and Schnorr [56].
In their paper it is shown that any lattice can be approximated arbitrarily well by
a lattice with one cycle. In other words, the lattices with one cycle form a hard
core. On the other hand, the lattices Cai and Nerurkar [13] prove to be hard in
the improved version of Ajtai [1] have up to n/c cycles. Although the results are
different in nature (the latter is not an NP-hardness result), it is interesting to note
that they give hardness results for lattices with different cycle structure. This gives
rise to the question of the role of the cycle structure in the complexity of lattice
problems.

The influence of the cycle structure on the hardness of lattice problems has
practical implications. For some crypto systems (e.g., NTRU [37]) there are attacks
based on finding short vectors in certain lattices. The lattices used in some of these
attacks have a cycle structure that differs from the cycle structure of the lattices
that previously have been shown to be NP-hard.

Since a lattice with n cycles always can be transformed into a lattice with fewer
cycles by a simple rescaling, the maximum number of cycles that is meaningful to
analyze is n − 1. Trolin showed that the exact version SVP under the max-norm
is NP-complete for n-dimensional lattices with n− 1 cycles of equal length [67].

In this chapter we investigate the importance of the cycle structure further.
Our main result is a polynomial-time transformation that with arbitrary precision
approximates any n-dimensional lattice with a lattice that has n−1 cycles of equal
length, showing that these lattices form a hard core. A consequence of this is that
short vectors and close vectors cannot be computed more efficiently in this class
of lattices than in general lattices, except possibly for a polynomial factor. As our
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transformation only changes the size of the coordinates of the basis vectors and not
the dimension of the lattice, the transformation is rather tight.

5.2 Background

Lattices

A lattice is a discrete additive subgroup Λ ⊆ Rn. A lattice Λ can be defined by its
basis, a set of independent vectors {b1,b2, . . . ,bm}, bi ∈ Rn, such that u ∈ Λ if
and only if there exist integers t1, t2, . . . , tm such that u =

∑m
i=1 tibi. If m = n the

lattice is said to be full-dimensional. Only lattices that are subsets of Qn (and often
Zn) are considered in this chapter. For each vector v ∈ Rn and p ≥ 1 the ℓp-norm

is defined as ‖v‖p = p
√
∑n
i=1 |vi|

p. The ℓ∞-norm, also called the maximum norm,
is defined as ‖v‖∞ = maxni=1 |vi|. When no index is given, ‖v‖ = ‖v‖2.

A basis matrix of a lattice is a matrix whose rows form a basis of the lattice.
The determinant of a lattice is the absolute value of the determinant of a basis
matrix. For lattices that are not full-dimensional, the determinant is defined as
det(Λ) =

√

det (BBT ). It is not difficult to see that the determinant is independent
of the choice of basis.

Basis Representations

In different situations different bases may be suitable. Two such representations
are the Hermite Normal Form and LLL-reduced bases.

A basis {b1,b2, . . . ,bn} is said to be on Hermite Normal Form (HNF) if the
basis matrix is upper triangular, and bii > bji ≥ 0 for j < i. The Hermite Normal
Form can be computed efficiently [39]. In [51] Micciancio gives some results on the
use of HNF in cryptographic applications.

An LLL-reduced basis is defined as follows. Every lattice basis {b1,b2, . . . ,

bm} has an associated orthogonal basis
{

b̂1, b̂2, . . . , b̂m

}

defined by

b̂i = bi −
i−1
∑

j=1

µijb̂i

where µij =
〈

bi, b̂j

〉

/
∥

∥

∥b̂j

∥

∥

∥

2

for i > j. Extending the definition, we let µii = 1

and µij = 0 for i < j. It holds that
∏m
i=1

∥

∥

∥b̂i

∥

∥

∥ = det(Λ). A lattice basis is called

LLL-reduced (after Lenstra, Lenstra and Lovász) with δ, 1/4 ≤ δ < 1, if |µij | ≤ 1/2

for 1 ≤ j < i ≤ m and δ
∥

∥

∥b̂i−1

∥

∥

∥

2

≤
∥

∥

∥b̂i

∥

∥

∥

2

+ µ2
i,i−1

∥

∥

∥b̂i−1

∥

∥

∥

2

for i = 2, . . . ,m. An

LLL-reduced basis can be found in polynomial time [44].
The two most studied lattice problems are the closest vector problem, CVP,

and the shortest vector problem, SVP. The input to the closest vector problem is
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a lattice Λ, y ∈ Rn and d > 0. The problem is to determine whether or not there
exists x ∈ Λ such that ‖y − x‖ < d. SVP is the homogeneous variant of the same
problem, where we want to determine whether or not there exists x ∈ Λ such that
0 < ‖x‖ < d. As a matter of fact, these are both families of problems, since every
norm gives a different problem.

It is known that CVP is NP-complete for any ℓp-norm (including the max-

norm, ℓ∞) [71] and that it is NP-hard to approximate within n
cp

log logn for some
constants cp [27]. It is also known that SVP is NP-complete in the ℓ∞-norm
[43] and under randomized reductions also for any ℓp-norm [2]. Khot has recently
shown that SVP is NP-hard to approximate within any constant factor in ℓp-norm
under randomized reductions [41], improving previous results [52, 40]. Dinur has
improved the bound for ℓ∞-norm to n1/ log log n [26].

The Cycle Structure

In this chapter we focus on the role of the cycle structure of a lattice in the com-
plexity of lattice problems. The cycle structure is defined as the algebraic structure
of the group Zn/Λ for a full-dimensional lattice Λ.

Definition 5.2.1 (Cycle Structure). A lattice Λ is said to have the cycle struc-
ture k1 × k2 × · · · × km, if the additive factor group Zn/Λ ∼ Zk1 ×Zk2 × · · · × Zkm
and ki divides ki+1 for i = 1, 2, . . . ,m− 1.

Cycles of length one are called trivial. In the cases where it is not clear from
the context we specify whether non-trivial cycles should be considered. A lattice
with only one non-trivial cycle is called cyclic. Depending on context, it may be
more convenient to number the cycle lengths in increasing or decreasing order.

There are other ways to look upon the cycle structure that may be useful in
certain situations. One is to consider the Smith Normal Form [65] of a basis matrix,
and another to examine the set of modular equations whose solutions are precisely
the lattice points.

Definition 5.2.2 (Smith Normal Form). Let B be an integral square matrix.
The Smith Normal Form, SNF, of B is the diagonal matrix S are such that S =
UBV, with U and V integral and | det(U)| = | det(V)| = 1 and diagonal elements
si of S such that si+1/si all are integers.

Such a diagonal matrix exists for every integral square matrix, see, e.g., [54].
The following theorem from [56] shows the relation between the Smith Normal Form
and the cycle structure.

Theorem 5.2.3. Let Λ be an n-dimensional lattice, and let B be a basis matrix
of Λ. Let S be the Smith Normal Form of B. Let the diagonal elements of S be
s1, s2, . . . , sn. Then the cycle structure of Λ is s1 × s2 × · · · × sn.
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We also give a theorem showing a connection between the subdeterminants of
a lattice and its Smith Normal Form. An i-minor of B is an i× i matrix formed by
taking i rows and i columns of B.

Theorem 5.2.4. Let B be an integral square matrix. Then the diagonal elements
of the Smith Normal Form, s1, s2, . . . , sn can be computed as

si =
di
di−1

where di is gcd of the determinants of all i-minors of B, and d0 = 1.

Although this method of computing the Smith Normal Form and hence the
cycle structure is quite inefficient (we need consider all the i-minors, not only the
principal), it turns out to be useful in certain proofs in this chapter. There are
other, more efficient methods to compute the Smith Normal Form [39].

Another way to describe the number of cycles of a lattice is to use a different
representation of the lattice, namely as a set of modular equations. Every lattice
can be described in this way.

Theorem 5.2.5. Let Λ ⊆ Zn be a lattice. Then there exist n-dimensional vectors
a1,a2, . . ., am and integers b1, b2, . . . , bm, bi > 1, such that

Λ = {x : 〈a1,x〉 ≡ 0 mod b1 ∧ 〈a2,x〉 ≡ 0 mod b2 ∧ . . . ∧ 〈am,x〉 ≡ 0 mod bm} .

The essence of this theorem is that any lattice can be expressed as a system of
modular linear equations whose solutions form the lattice.

The connection to the cycle structure is that the number of nontrivial cycles is
m, and the length of cycle i is bi, provided that the system of equations has been
reduced to minimize the number of equations and that the gcd of the coefficients
and the modulus is 1 in each equation.

In the transformations we approximate lattices in Zn with lattices in Qn. The
standard definition of cycle structure cannot be applied to general lattices in Qn.
Since multiplication by a constant does not affect lattice problems such as SVP and
CVP, we will define the cycle structure of a lattice Λ ⊂ Qn as the cycle structure
of kΛ, where k is the smallest integer such that kΛ ⊆ Zn.

We now state three simple lemmas on the cycle structure. They follow directly
from Theorem 5.2.3.

Lemma 5.2.6. Let Λ ⊆ Zn be a lattice with cycle structure k1 × k2 × · · · × km.
Then det(Λ) =

∏m
i=1 ki.

Lemma 5.2.7. Let Λ ⊆ Zn be a lattice with cycle structure k1× k2× · · · × kn (not
necessarily all nontrivial). Then the lattice t · Λ has cycle structure t · k1 × t · k2 ×
· · · × t · kn
Lemma 5.2.8. Let Λ ⊆ Zn be a lattice with cycle structure k1 × k2 × · · · × kn,
k1 ≥ k2 ≥ · · · ≥ kn. Then the lattice 1

kn
·Λ has cycle structure k1

kn
× k2

kn
× · · ·× kn

kn
.
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Because of the divisibility requirement, the lattice 1
kn

Λ in Lemma 5.2.8 is in Zn.
Should kn be greater than one, we can always remove it as shown in the theorem.
Hence we can assume without loss of generality that the number of cycles is less
than n.

Previous Results on the Cycle Structure

In [56] the following theorem is proved.

Theorem 5.2.9. Let Λ ⊆ Zn be a lattice. Then for every ε > 0 we can efficiently
construct a linear transformation σΛ,ε : Λ → Zn such that σΛ,ε(Λ) is a lattice and
for some integer k

1. ∀u ∈ Λ : ‖u− σΛ,ε(u)/k‖ ≤ ε‖u‖

2. σΛ,ε(Λ) is cyclic.

This theorem implies that if we can solve a lattice problem for cyclic lattices,
we can get an approximative solution for the same problem for any with arbitrary
precision. In other words, the cyclic lattices form a hard core.

In his celebrated paper [1], Ajtai showed how to generate lattices with a connec-
tion between the average case and the worst case of variants of SVP. The lattices
in the constructions in Cai’s and Nerurkar’s improved version of Ajtai’s result [13]
have n/c cycles. Although this result is not an NP-hardness result, it raises the
question of whether the hardness of lattice problems does or does not in general de-
crease with a higher number of cycles. In [67] it is shown that SVP in the maximum
norm is NP-complete for lattices with n − 1 cycles, giving further evidence that
hardness results of lattice problems extend to many cycle structures. The result of
the current chapter gives the main result of [67] as a consequence.

5.3 The Approximation

Let Λ ⊆ Zn be an arbitrary lattice. To adapt this into a lattice with n− 1 cycles
that is arbitrarily close to the original lattice we go through the following five steps:

1. Inflate the lattice by a factor k and perturb to achieve a lattice with Hermite
Normal Form of a certain form.

2. Reduce the sublattice spanned by the first n−1 vectors of the Hermite Normal
Form using the LLL algorithm.

3. Factor the partly reduced basis matrix into two matrices, where the second
has its determinant equal to one.

4. Perform modifications to the first matrix to give it n−1 cycles of equal length.
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5. Multiply the two matrices to get a basis for an (n − 1)-cyclic lattice that is
close to the original lattice.

In Sections 5.3 to 5.3 these steps are described in detail. It is also shown
that the modifications have the desired effect on the cycle structure. In Section
5.3 we analyze the disturbance from the perturbation and show that it does not
move a lattice vector more than a small multiple of the original length. All the
transformations are linear, and extend through linearity to any point in Rn.

Acquiring a Lattice with a Good Hermite Normal Form

For the modification to work we need the lattice to have a Hermite Normal Form of
a certain form. In this section we describe how we efficiently can modify a general
lattice slightly to get the Hermite Normal Form we need.

Let Λ ⊆ Zn be a lattice, and let H be its basis in Hermite Normal Form. For
the coming steps, we need the basis of the lattice to be of the following form:

B =















1 0 · · · 0 a1

0 1 · · · 0 a2

...
...

. . .
...

...
0 0 · · · 1 an−1

0 0 · · · 0 d















(5.1)

where d = det(Λ) and 0 ≤ ai < d. We show how to perturb Λ so that we get a
lattice whose Hermite Normal Form as is in equation (5.1). The method we use is
based on the following theorem.

Lemma 5.3.1. Let H be a matrix on Hermite Normal Form, i.e.,

H =



















h11 h12 h13 . . . h1(n−1) h1n

0 h22 h23 . . . h2(n−1) h2n

0 0 h33 . . . h3(n−1) h3n

...
...

...
. . .

...
...

0 0 0 . . . h(n−1)(n−1) h(n−1)n

0 0 0 . . . 0 hnn



















.

Then the matrix τ(H) given by

τ(H) =



















h11 h12 h13 . . . h1(n−1) h1n

1 h22 h23 . . . h2(n−1) h2n

0 1 h33 . . . h3(n−1) h3n

...
...

...
. . .

...
...

0 0 0 . . . h(n−1)(n−1) h(n−1)n

0 0 0 . . . 1 hnn



















(5.2)
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has a Hermite Normal Form as in equation (5.1). The transformation can be com-
puted in time polynomial in the size of the input data.

Proof. We show how to transform the matrix τ(H) into the Hermite Normal Form
using row operations. We begin by placing the topmost vector at the bottom. This
gives a matrix that is upper triangular except for the last row. Since all elements
on the diagonal are one, we can cancel the n− 1 first elements of the last row. We
then cancel all non-diagonal elements except for the right-most column, which gives
a matrix on HNF. Since the determinant is preserved, the bottom right entry must
be det(H).

We also define the transformation when the input is a vector as

τΛ,k

(

n
∑

i=1

tiui

)

=

n
∑

i=1

tiu
′
i (5.3)

where u1,u2, . . . ,un are the rows of U and u′
1,u

′
2, . . . ,u

′
n are the rows of τ(kU).

As the reader may have noticed, this step actually implies the result from [56],
although we not only achieve a cyclic lattice, but a lattice whose Hermite Normal
Form is as defined above.

Factoring the Basis

Now that we have a basis with the Hermite Normal Form we need, we proceed by
finding a more orthogonal basis and factoring the basis matrix.

Let the operation ρ(B) be defined as follows: First the LLL-reduction is applied
to the first n − 1 vectors of B using δ = 3/4, keeping the last vector unchanged.
Let us call this intermediate step ρ′. Assuming that the input is a basis matrix B

of the form (5.1), this gives a matrix of the form

ρ′(B) =















b11 b12 · · · b1(n−1) b1n
b21 b22 · · · b2(n−1) b2n
...

...
. . .

...
...

b(n−1)1 b(n−1)2 · · · b(n−1)(n−1) b(n−1)n

0 0 · · · 0 d















. (5.4)

From the LLL-reduced basis the (n−1)’th vector is placed first, keeping the internal
order of the other vectors. The complete transformation is called ρ. The matrix
ρ(B) can be factored into



















1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 d



















·



















b(n−1)1 b(n−1)2 · · · b(n−1)n

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
b(n−2)1 b(n−2)2 · · · b(n−2)n

0 0 · · · 1



















(5.5)
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Since the determinant of the right factor is 1, the cycle structure of the product only
depends on the left factor. This follows since, as pointed out in [56], unimodular
transformations do not change the cycle structure.

Modifying the Cycle Structure

Let Bl be the left factor in the basis factorization (5.5) and Br the right factor.
We create a new lattice Λ′ by inflating the lattice spanned by Bl by a factor dn−2.
Put differently, the matrix dn−2 ·Bl is a basis matrix of Λ′. By Lemma 5.2.7, this
lattice has n− 1 cycles of length dn−2 and one cycle of length dn−1.

By modifying the lattice Λ′ slightly, we get a new lattice that has n− 1 cycles
of length dn−1. We call the new lattice Λ′′. The modification is defined by the
function γ′:

γ′n(d) =



























dn−2 dn−3 dn−4 · · · d2 d 1 0
0 dn−2 dn−3 · · · d3 d2 d 0
0 0 dn−2 · · · d4 d3 d2 0
...

...
...

. . .
...

...
...

...
0 0 0 · · · dn−2 dn−3 dn−4 0
0 0 0 · · · 0 dn−2 dn−3 0
0 0 0 · · · 0 0 dn−2 0
0 0 0 · · · 0 0 0 dn−1



























.

Theorem 5.3.2. The lattice Λ′′ with basis matrix γ′n (det (Bl)) has n−1 nontrivial
cycles, each of which has length dn−1.

Proof. Set C = γ′ (Bl). We describe why this lattice has the cycle structure men-
tioned above by examining the quotient

k1 =
mn

mn−1

where mn = | det(C)| = d(n−1)(n−1) and mn−1 is the gcd of all (n − 1)-minors of
C. We know that k1 is the length of the longest cycle.

We determine mn−1 by systematically examining the (n− 1)-minors of C. Let
Ci,j be the (n−1)×(n−1)-matrix where the i’th row and the j’th column of C have
been removed. First consider Ci,j , where i < j. These matrices are triangular with
one or more zeroes on the diagonal. Therefore, the determinants of these matrices
are all zero. The matrices Ci,i are also triangular, but with non-zero elements on
the diagonal. For i < n, det

(

Ci,i
)

= d(n−2)(n−1)+1, and det (Cn,n) = d(n−2)(n−1).

Next we consider det
(

Ci,j
)

where n > i > j. These matrices are block-triangular,
as below.

Ci,j =









Dj−1 · · ·
0 Li−j · ·
0 0 Dn−i−1 ·
0 0 0 dn−1








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where Dk is the k × k triangular matrix

Dk =



















dn−2 dn−3 dn−4 · · · dn−k dn−k−1

0 dn−2 dn−3 · · · dn−k+1 dn−k

0 0 dn−2 · · · dn−k+2 dn−k+1

...
...

...
. . .

...
...

0 0 0 · · · dn−2 dn−3

0 0 0 · · · 0 dn−2



















and Lk is the k × k matrix

Lk =























dn−3 dn−4 dn−5 · · · dn−k dn−k−1 dn−k−2

dn−2 dn−3 dn−4 · · · dn−k+1 dn−k dn−k−1

0 dn−2 dn−3 · · · dn−k+2 dn−k+1 dn−k

0 0 dn−2 · · · dn−k+3 dn−k+2 dn−k+1

...
...

...
. . .

...
...

...
0 0 0 · · · dn−2 dn−3 dn−4

0 0 0 · · · 0 dn−2 dn−3























.

To compute det (Lk), we notice that the last two columns are linearly dependent,
since the leftmost column multiplied by d gives the (k − 1)’th column. This means
that det (Lk) = 0, and that det

(

Ci,j
)

= 0 for i < j < n.

What remains to be checked is det
(

Cn,j
)

for j = 1, 2, . . . , n−1. These matrices,
where we have removed the last row, have only zeroes in their right-most column
and hence the determinant is 0.

Combining these results, we see that d(n−2)(n−1) is a factor of all the (n − 1)-
minors. Also, there are (n− 1)-minors whose determinant is precisely d(n−2)(n−1).
Hence we have that mn−1 = d(n−2)(n−1), and consequently k1 = dn−1. Since gcd
of all 1-minors (in other words, all the elements) is 1, m1 = 1. This means that
we have n− 1 cycles whose product is d(n−1)(n−1) (the determinant) and that the
longest one has length dn−1. Because of the divisibility requirement on the lengths
of the cycles, the only possibility is that there are (n−1) cycles of length dn−1.

Returning to the Original Representation

Returning to the original representation is just a matter of multiplying by Br. Since
this does not change the cycle structure (Br is unimodular), we still have a lattice
with the required cycle structure.

We denote the transformation described in Sections 5.3 to 5.3 by γ. More
precisely,

γ(B) = γ′n (det (Bl)) ·Br

where Bl and Br are the left and right factors of ρ(B) as in (5.5) and n is the
dimension of the lattice.
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We also define the transformation when applied to a vector v =
∑n

i=1 tibi in a
lattice Λ where b1,b2, . . . ,bn is a basis. The transformation is then defined as

γΛ(v) =

n
∑

i=1

tib
′
i

where b′
1,b

′
2, . . . ,b

′
n are the rows of γ(B).

Since LLL-reduction can be performed in polynomial time ρ can be computed
in polynomial time. It is obvious that also γ ′ and the factorization in Bl and Br

require at most polynomial time. Hence γ can be computed in time polynomial in
the size of the input data.

Completing the Approximation

Now we have the necessary steps to complete the approximation. Let Λ ⊆ Zn be
a lattice. Our goal is to prove that for any ε > 0 there exist a transformation σΛ,ε

and an integer k such that

1. ∀u ∈ Zn : ‖u− σΛ,ε(u)/k‖ ≤ ε‖u‖.

2. σΛ,ε(Λ) has n− 1 non-trivial cycles of equal length.

The transformations we use are τΛ,k and γΛ as described above. Since the
displacement for these transformations (as we will see) depends on the determinant,
we need to find an appropriate k that makes the determinant large enough. In the
final approximation we will begin by applying τ and then apply γ. This composed
transformation is called σΛ,ε(u) and can be computed in polynomial time since
both τ and γ can be computed in polynomial time.

We bound the displacement introduced by the two transformations τ and γ
described above.

Lemma 5.3.3. Let Λ be a lattice and let τΛ,k be defined as in (5.3). Then ∀u ∈
Zn :

∥

∥u− 1
k τΛ,k(u)

∥

∥ ≤ 1
k2n‖u‖.

Proof. The proof of this lemma follows the proof in [56] closely. Let B be the basis
matrix on HNF of the lattice Λ, let b1,b2, . . . ,bn be its rows and bij its elements.
Assume u =

∑n
i=1 tibi. We first show that

|ti| ≤ ‖u‖2i−1 (5.6)

for any ℓp-norm (including ℓ∞). Since B is upper-triangular,
∑j

i=1 |ti| |bij | ≥ |uj|.
Dividing with |bjj | and using the property of the HNF that bij ≤ bjj for i < j we
get

|tj | ≤
∑j−1

i=1 |ti| |bij |+ |uj|
|bjj |

≤
j−1
∑

i=1

|ti|+ ‖u‖ .
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Induction (on j) gives (5.6).

We can now compute the actual displacement for a vector u =
∑n

i=1 tibi as

∥

∥

∥

∥

u− 1

k
τΛ,k(u)

∥

∥

∥

∥

=
1

k

∥

∥

∥

∥

∥

n
∑

i=2

tiei−1

∥

∥

∥

∥

∥

≤ 1

k

n
∑

i=2

2i−1‖u‖

≤ 1

k
2n‖u‖ (5.7)

where ei are the unit vectors.

We need some bounds on the basis (5.4) before we can complete the proof. We
give these bounds as two lemmas. The first lemma shows that the coordinates of a
vector are bounded in a way similar to Lemma 5.3.3, and the second that the basis
vectors are bounded.

Lemma 5.3.4. Let B be the basis matrix of Λ given on the form (5.4), let b1, b2,
. . ., bn be its rows. Assume u =

∑n
i=1 tibi. Then

|ti| ≤ 2
3
2n−i‖u‖ (5.8)

for i < n and for any ℓp-norm (including ℓ∞).

Proof. Since the first n−1 rows of B are LLL-reduced, there is an orthogonal basis
b̂i given by b̂i = bi −

∑i−1
j=1 µij b̂j, or bi =

∑i
j=1 µijb̂j, where |µij | ≤ 1/2 except

for µii = 1. We can rewrite u as

u =

n
∑

i=1

tibi

=

n
∑

i=1

ti





i
∑

j=1

µij b̂j





=
n
∑

i=1

b̂i





n
∑

j=i

tjµji





=
n
∑

i=1

t̂ib̂i

where

t̂i =

n
∑

j=i

tjµji .
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Assume that the lemma is not true, and let i be the largest index such that |ti| >
2

3
2n−i‖u‖. Then

∣

∣t̂i
∣

∣ =
n
∑

j=i

µjitj

≥ |ti| −

∣

∣

∣

∣

∣

∣

n
∑

j=i+1

µjitj

∣

∣

∣

∣

∣

∣

> 2
3
2n−i‖u‖ − 1

2
‖u‖

n
∑

j=i+1

2
3
2n−j

≥ 2
n
2 ‖u‖



2n−i − 1

2

n−i−1
∑

j=0

2j





≥ 2
n
2 ‖u‖

However, since u =
∑n
i=1 t̂ib̂i, the vectors b̂i are pairwise orthogonal and

∥

∥

∥
b̂i

∥

∥

∥
≥

2−
i−1
2 , this would imply that ‖u‖ > ‖u‖. As this is a contradiction, the assumption

must be false. This proves the lemma.

Lemma 5.3.5. Let B be a basis matrix of the form (5.1), and let bi be the row
vectors of the matrix ρ(B). Then it holds that

‖bi‖ ≤ n2
n2

8
4
√
d2n

for i = 2, 3, . . . , n− 1.

The idea of the proof is that in an LLL-reduced basis B the length of every
vector except the last one has an upper bound of the order

√

det(B). We then
need to renumber the vectors since the can only afford the first vector to remain
unbounded in order to bound γ(B). It is essential that the bound is o(det(B))
because of the displacement of γ. The full proof is as follows.

Proof. If we are able to prove that the condition holds for b′
1,b

′
2, . . ., b′

n−2, where
b′

i are the row vectors of ρ′(B), the lemma obviously follows by renumbering.

We are interested in the (n− 1)-dimensional lattice S ⊂ Zn spanned by b′
1, b′

2,
. . ., b′

n−1. A basis (in fact the basis given in (5.1)) of the (n−1)-dimensional lattice
is

C =











1 0 · · · 0 a1

0 1 · · · 0 a2

...
...

. . .
...

...
0 0 · · · 1 an−1











(5.9)
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with 0 ≤ ai < d.

The determinant for this not full-dimensional lattice is given by

det(S) =
√

det (CCT ) .

Let G = CCT . It holds that

G =











1 0 · · · 0 a1

0 1 · · · 0 a2

...
...

. . .
...

...
0 0 · · · 1 an−1

























1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
a1 a2 · · · an−1















=

=



















1 + a2
1 a1a2 a1a3 · · · a1an−2 a1an−1

a2a1 1 + a2
2 a2a3 · · · a2an−2 a2an−1

a3a1 a3a2 1 + a2
3 · · · a3an−2 a3an−1

...
...

...
. . .

...
...

an−2a1 an−2a2 an−2a3 · · · 1 + a2
n−2 an−2an−1

an−1a1 an−1a2 an−1a3 · · · an−1an−2 1 + a2
n−1



















=

= aaT + In−1

where In−1 is the (n− 1)-dimensional unit matrix. Since

G · a =
(

aaT + In−1

)

a = aaTa + a = a
(

aTa + 1
)

= a

(

1 +

n−1
∑

i=1

a2
i

)

the vector a is an eigenvector of G with eigenvalue λ1 = 1 +
∑n−1
i=1 a

2
i . Now let

v1,v2, . . . ,vn−2 be n− 2 linearly independent vectors orthogonal to a. Then

G · vi =
(

aaT + In−1

)

vi = a ·
(

aTvi

)

+ vi = a · 0 + vi = vi

which shows that v1,v2, . . . ,vn−2 also are eigenvectors of G with eigenvalues λi =
1, i = 2, 3, . . . , n− 1. From this it follows that

det(G) =

n−1
∏

i=1

λi = 1 +

n−1
∑

i=1

a2
i

which gives an upper bound for the determinant of S as

det(S) =
√

det (CCT ) =
√

det(G) =

√

√

√

√1 +

n−1
∑

i=1

a2
i ≤ d

√
n .
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Our next step is to prove an upper bound for
∥

∥

∥b̂′
i

∥

∥

∥, i < n−1, where b̂′
i are the

vectors of the corresponding orthogonal system. Using a contradiction argument,
we show that

∥

∥

∥b̂′
i

∥

∥

∥ < 2
n2

8

√
detS .

Assume this is not the case, i.e., that there exists an index j ∈ {1, 2, . . . , n − 2}
such that

∥

∥

∥b̂′
j

∥

∥

∥ ≥ 2
n2

8

√
detS .

Since the basis is LLL-reduced with δ = 3/4,

1

2

∥

∥

∥
b̂′

i−1

∥

∥

∥

2

≤
∥

∥

∥
b̂′

i

∥

∥

∥

2

and
n−1
∏

i=1

∥

∥

∥b̂′
i

∥

∥

∥ = det(S) (5.10)

Since
∥

∥

∥
b̂′

1

∥

∥

∥
= ‖b′

1‖ ≥ 1, it holds that
∥

∥

∥
b̂′

i

∥

∥

∥
≥ 2−

i−1
2 for i = 1, 2, . . . , j − 1 and

∥

∥

∥b̂′
i

∥

∥

∥ ≥ 2
n2

8

√

det(S)2−
i−j
2 for i = j, j + 1, . . . , n− 1. Using equation (5.10) we can

compute the determinant as

det(S) =
n−1
∏

i=1

∥

∥

∥
b̂′

i

∥

∥

∥
≥

j−1
∏

i=1

2−
i−1
2 ·

n−1
∏

i=j

2
n2

8

√

det(S)2−
i−j
2 =

2−
(j−2)(j−1)

4 (det(S))
n−j

2 2
n2

8 n−j2−
(n−j)(n−j−1)

2 .

For det(S) large enough this is a decreasing function, so it takes its minimum over
j when j = n− 2 as

2−
(n−4)(n−3)

4 det(S)2
n2

8 22−
2·1
2 > 2−

n2

4 det(S)2
n2

4 = det(S)

which gives the contradiction det(S) > det(S). Hence the assumption must be

incorrect and ‖b̂′
i‖ < 2

n2

8

√
detS ≤ 2

n2

8
4
√
d2n for i = 1, 2, . . . , n− 2.

Since we have the relation that b′
k = b̂′

k +
∑k−1

i=1 µij b̂
′
i and |µij | ≤ 1/2, it holds

that

‖bk‖ =

∥

∥

∥

∥

∥

b̂′
k +

k−1
∑

i=1

µij b̂′
i

∥

∥

∥

∥

∥

≤
∥

∥

∥
b̂′

k

∥

∥

∥
+
k−1
∑

i=1

∥

∥

∥
µij b̂′

i

∥

∥

∥

≤ 2
n2

8
4
√
d2n+

1

2
n2

n2

8
4
√
d2n

≤ n2
n2

8
4
√
d2n .
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from which the lemma follows.

Now we have the necessary tools to find a bound for the transformation γΛ.

Lemma 5.3.6. Let Λ be an n-dimensional lattice and let γΛ be as defined in Section
5.3. Then ∀u ∈ Zn

∥

∥

∥

∥

u− 1

det(Λ)n−2
γΛ(u)

∥

∥

∥

∥

≤ n9/42
3
2n+n2

8

√

det(Λ)
‖u‖

for det(Λ) = Ω
(

2n
2
)

.

Proof. Let bi be the vectors of the partly LLL-reduced basis in (5.4) and let b′
i =

γΛ (bi) be the vectors of the modified basis. If we let the lattice determinant be d,
using Lemma 5.3.4 we get a displacement for the vector u =

∑n
i=1 tibi of (remember

the last two basis vectors are not modified in the transformation)

∥

∥

∥

∥

u− 1

dn−2
γΛ(u)

∥

∥

∥

∥

=
1

dn−2

∥

∥

∥

∥

∥

∥

n−2
∑

i=1

ti



dn−3bi+1 + o
(

dn−3
)

n−2
∑

j=i+2

bj





∥

∥

∥

∥

∥

∥

≤ 1

d
2

3
2n‖u‖

n−1
∑

i=2

‖bi‖+ o
(

d−1
)

2
3
2n

n−2
∑

i=2

‖bi‖ . (5.11)

To show that this displacement remains bounded, we use Lemma 5.3.5 to get
an upper bound for ‖bi‖. Inequality (5.11) can be written as

∥

∥

∥

∥

u− 1

dn−2
γΛ,ε(u)

∥

∥

∥

∥

≤ 1

d
2

3
2n‖u‖

n−1
∑

i=2

‖bi‖+ o
(

d−1
)

2
3
2n

n−2
∑

i=2

‖bi‖

≤ 1

d
2

3
2n‖u‖n · n2

n2

8
4
√
d2n

=
n9/42

3
2n+n2

8√
d

‖u‖ (5.12)

for d large enough, which proves the lemma.

We combine these two lemmas in order to show a bound for the composed
transformation σΛ,ε.

Theorem 5.3.7. Let Λ be an n-dimensional lattice. For every choice of ε > 0
there exist integers k and s, at most of size polynomial in log

(

ε−1
)

and n, such
that the transformation σΛ,ε = γτs(Λ) ◦ τΛ,s generates a lattice with n− 1 cycles of
equal length and for any vector u

∥

∥

∥

∥

u− 1

k
σΛ,ε(u)

∥

∥

∥

∥

≤ ε‖u‖
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Proof. Let d = det(Λ). According to the triangle inequality, the displacement for u

is at most the sum of the displacement for τ and γ. According to Lemma 5.3.3 τs
gives a displacement of at most 1

s2
n‖u‖ whereas according to Lemma 5.3.6 γ gives

a displacement of at most n9/42
3
2n+n2

8

√

det(Λ′)‖u‖ where Λ′ is the lattice τs(Λ).
Since det(Λ′) = Ω (dsn) the total displacement is

∥

∥

∥

∥

u− 1

(dsn)n−2
σΛ,ε(u)

∥

∥

∥

∥

≤ 1

s
2n‖u‖+ n22

3
2n+n2

8

4
√
n

√

Ω (dsn)
‖u‖

By picking s = O
(

2nε−1
)

and k = (dsn)n−2 we fulfill the approximation require-
ments.

The requirements on the cycle structure follow from the construction of the
transformations.

5.4 Applications to CVP and SVP

In this section we will outline how the transformation can be used to find a solution
to CVP and SVP, should these problems be easier to solve in lattices with many
cycles.

In CVP our goal, given a lattice Λ ⊆ Zn and a point y ∈ Zn, is to find x ∈ Λ
such that ‖x−y‖p is minimized in some ℓp-norm. If (a slightly perturbed) x remains
the lattice point closest to (a slightly perturbed) y after the transformation, we can
reduce the instance of CVP to an instance of CVP in a lattice with many cycles.
The following theorem shows how to choose the transformation parameters. The
proof is given in the full version.

Theorem 5.4.1. Let Λ ⊆ Zn, and let y ∈ Zn. Let x ∈ Λ and z ∈ Λ. Assume that
all coordinates are in the interval 0, . . . ,det(Λ)− 1. It holds that if

‖x− y‖p < ‖z− y‖p

then
∥

∥

∥

∥

1

k
σΛ,ε(x)− 1

k
σΛ,ε(y)

∥

∥

∥

∥

p

<

∥

∥

∥

∥

1

k
σΛ,ε(z) −

1

k
σΛ,ε(y)

∥

∥

∥

∥

p

for

0 < ε <
1

2pn1+1/p det(Λ)p+1

if p <∞ and

0 < ε <
1

2 det(Λ)

if p =∞ and k is polynomial in ε−1.
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Proof. The influence of the transformation on the distance between x and y is

∣

∣

∣

∣

∣

‖x− y‖p −
∥

∥

∥

∥

1

k
σΛ,ε(x) − 1

k
σΛ,ε(y)

∥

∥

∥

∥

p

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

‖x− y‖p −
∥

∥

∥

∥

1

k
σΛ,ε(x− y)

∥

∥

∥

∥

p

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∥

∥

∥

∥

(x− y)− 1

k
σΛ,ε(x− y)

∥

∥

∥

∥

p

∣

∣

∣

∣

∣

≤ ε‖x− y‖p .

In the same way we can compute
∣

∣

∣‖z− y‖p −
∥

∥

1
kσΛ,ε(z)− 1

kσΛ,ε(y)
∥

∥

p

∣

∣

∣ ≤ ε‖z−y‖p.
Using this we get

∥

∥

∥

∥

1

k
σ(z) − 1

k
σ(y)

∥

∥

∥

∥

−
∥

∥

∥

∥

1

k
σ(x) − 1

k
σ(y)

∥

∥

∥

∥

≥

(‖z− y‖ − ‖x− y‖)− ε(‖z− y‖+ ‖x− y‖) .
We want to pick ε to ensure this expression is greater than 0. For p <∞ we have
a lower bound for the first part of the expression as

‖z− y‖ − ‖x− y‖ ≥ p
√

n · det(Λ)p − 1− p
√

n · det(Λ)p − 2 ≥ 1

p
(n det(Λ)p)

1/p−1

and an upper bound for the second part as

‖z− y‖ + ‖x− y‖ ≤ 2 p
√
n det(Λ)

we have the necessary condition fulfilled if we pick

0 < ε <
1

p

1

n · det(Λ)p
1

2 p
√
n det(Λ)

If, on the other hand, p =∞, we have ‖z−y‖−‖x−y‖ ≥ 1 and ‖z−y‖+‖x−y‖ ≤
2 det(Λ) so the condition holds if

0 < ε <
1

2 det(Λ)
.

The following two lemmas show how to use Theorem 5.4.1 to reduce CVP to a
lattice with n− 1 cycles. The first lemma follows directly from the fact that every
lattice repeats itself in cubes with side det(Λ).

Lemma 5.4.2. Let (Λ ⊆ Zn,y ∈ Zn) be an instance of CVP. Then for any
u ∈ Zn x ∈ Λ is a solution if and only if x− det(Λ) ·u is a solution of the instance
(Λ,y − det(Λ) · u).
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Lemma 5.4.3. Let (Λ ⊆ Zn,y ∈ Zn) be an instance of CVP such that 0 ≤ yi <
det(Λ). Then x ∈ Λ is a solution if and only if 1

kσΛ,ε(x) is a solution of the instance
(

1
kσε(Λ), 1

kσΛ,ε(y)
)

for k and ε−1 polynomial in det(Λ) and n.

Proof. The lemma follows directly from Theorem 5.4.1. Using the two lemmas, we
can construct the reduction by first reducing the target vector modulo det(Λ) and
then apply the transformation with the appropriate value of ε.

Obviously the same technique can be used to achieve a similar result for SVP.
The following lemma follows directly from the above lemmas.

Lemma 5.4.4. Let Λ ⊆ Zn be an instance of SVP. Then x ∈ Λ is a solution if
and only if 1

kσΛ,ε(x) is a solution of the instance 1
kσε(Λ) for k and ε−1 polynomial

in det(Λ) and n.

From this we can conclude that the inapproximability results for SVP and CVP

from [41] and [27] hold also for lattices with n− 1 cycles.

Theorem 5.4.5. SVP in ℓp-norm is NP-hard to approximate within any constant
factor for n-dimensional lattices with n− 1 non-trivial cycles of equal length.

Theorem 5.4.6. There exist constants cp such that CVP is NP-hard to approx-

imate within n
cp

log logn in ℓp-norm for n-dimensional lattices with n − 1 non-trivial
cycles of equal length.

5.5 Conclusions

We have constructed a transformation that given an n-dimensional lattice of any
cycle structure produces a lattice with n − 1 cycles that is arbitrarily close to the
original lattice. This closes the question of whether SVP and CVP can be easier to
solve in lattices with many cycles. Using the presented result, such a solution would
give a solution for the general case that is at most a polynomial factor slower in
running time. Also the known inapproximability results for SVP and CVP extend
to lattices with n− 1 cycles.

By previous results, we know that any lattice can be approximated arbitrarily
well by a cyclic lattice, and hence that SVP and CVP cannot be easier to solve in
cyclic lattices than in general lattices, except possibly for a polynomial factor. We
now have the two extremes, for one cycle and for n− 1 cycles.

From the results by Ajtai and the improvement by others we have a hardness
result also for lattices with n/c cycles. Together with our result this gives evidence
for the general hypothesis that the cycle structure have little importance in deciding
the hardness of SVP and CVP in a certain lattice.

Although it does seem likely that also lattices with m non-trivial cycles form a
hard core for 2 ≤ m ≤ n−2, we don’t have a proof for this. The current proof does
not easily extend to these cycle structures. Since our method relies on inflating
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the lattice by a factor dt to get a lattice with determinant dnt+1 and then making
changes to achieve m cycles, the length of each cycle is d(nt+1)/m. Naturally t must
be chosen so that (nt+ 1)/m is an integer. In our case, we achieve this by setting
t = n− 2 and m = n− 1. Since the value of t would depend on m and for certain
relations between m and n no such t exists at all, our method cannot directly be
generalized to create any cycle structure where the non-trivial cycles have equal
length.

Even if a transformation into m cycles of equal length for 1 ≤ m ≤ n− 1 were
found it would still be an open question whether other cycle structures, where the
cycles have different lengths, remain easy. Still the current result seems to be a
strong indication that the cycle structure does not play an important role for the
computational complexity of lattice problems.
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