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Abstract

This work concerns the convergence of adaptive algorithms, based on a posteriori
expansions of global errors, for numerical solution of differential equations, where the
goal is to compute a functional of the solution. An adaptive algorithm aims to min-
imise the number of degrees of freedom to make the error in the functional less than
a given tolerance. The number of degrees of freedom provides the convergence rate
of the adaptive algorithm as the tolerance tends to zero. Provided that the compu-
tational work is proportional to the degrees of freedom this gives an estimate of the
efficiency of the algorithm. The thesis consists of two papers, the first on the numerical
approximation of partial differential equations, and the second on weak approximation
of stochastic differential equations with barriers.

The first paper considers approximation of functionals of solutions to second order
elliptic partial differential equations in bounded domains of R

d, using isoparametric
d-linear quadrilateral finite elements. For an adaptive algorithm, an error expansion
with computable leading order term is derived. The computable error density, based
on the dual weighted residual error representation,

global error =
X

elements

error density · mesh size2+d,

using localised averages of second order difference quotients of the primal and dual finite
element solutions, is proved to converge uniformly as the mesh size tends to zero. The
proof splits the error into one part from elements with no edges on the initial mesh
and without hanging nodes, and the remaining part, with hanging nodes and edges on
the initial mesh, which is asymptotically negligible as the mesh size tends to zero. For
each element an error indicator is defined by the computed error density multiplying
the local mesh size to the power of 2 + d. It is proved, using the uniform convergence
of the error density, that the adaptive algorithm, based on successive subdivisions of
elements, reduces the maximal error indicator with a factor or stops with the error
asymptotically bounded by the tolerance using the optimal number of elements for an
adaptive isotropic mesh, up to a problem independent factor. Here the optimal number

of elements is proportional to the d/2 power of the L
d

d+2 quasi-norm of the error density,
whereas a uniform mesh requires a number of elements proportional to the d/2 power
of the larger L1 norm of the same error density to obtain the same accuracy. For
problems with multiple scales, in particular, these convergence rates may differ much,
even though the convergence order may be the same. Numerical experiments for an
elasticity problem with a crack and different variants of the averages show that the
algorithm is useful in practice also for relatively large tolerances, much larger than the
small tolerances needed to theoretically guarantee that the algorithm works well.

The second paper presents an adaptive algorithm for Monte Carlo Euler approx-
imation of the expected value E[g(X(τ), τ)] of a given function g depending on the
solution X of an Itô stochastic differential equation and on the first exit time τ from
a given domain. An error expansion with computable leading order term, for the ap-
proximation of E[g(X(T ))] with a fixed final time T > 0 in [Szepessy, Tempone and
Zouraris, Comm. Pure and Appl. Math., 54, 1169-1214, 2001] is extended to the case
with stopped diffusion. In the extension conditional probabilities are used to estimate
the first exit time error, and difference quotients are used to approximate the initial
data of the dual solutions. For the stopped diffusion problem the time discretisation
error is of order N−1/2 for a method with N uniform time steps. Numerical results
show that the adaptive algorithm improve the time discretisation error to the order
N−1 with N adaptive time steps.
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Chapter 1

Background

Differential equations are important in the formulation of mathematical models in many
areas of science and engineering. Such models may be used to get an understanding of
global properties of the system being modelled, from analytical solutions to the differen-
tial equations, from qualitative analysis of the dependence on model parameters, or from
approximate numerical solutions for particular parameter values. However, mathematical
models are also commonly used, not primarily to study global behaviour, but to predict
the values of one or several scalar quantities of particular importance for the application
at hand. Mathematically, such quantities correspond to functionals of the solutions to the
differential equations. When the underlying differential equations are solved numerically,
with finite computational resources, it is desirable to minimise the computational work for
a given accuracy in the functional values. In goal oriented adaptivity, for a fixed numer-
ical method of approximation, the degrees of freedom are adapted to both the differential
equation and the functional in an attempt to minimise the work needed to meet the error
tolerance in the goal functional. Both articles in this thesis aim at understanding of optimal
convergence rates for goal oriented adaptive algorithms; one adaptive algorithm is studied
in two different settings, namely that of deterministic elliptic partial differential equations
in bounded d-dimensional domains using isoparametric d-linear quadrilateral finite element
approximations, and that of Itô stochastic differential equations using the Euler Monte
Carlo method.

Adaptive and Non-Adaptive Algorithms Consider the problem of computing an ap-
proximate value of g(f) of a functional g : X → R for f ∈ F , where F is a subset of the
normed linear space X. Often a numerical method for this problem is on the form

gn(f) = φn(L1(f), . . . , Ln(f)), (1.1)

where Li : X → R are linear functionals and φn : X → R is linear or nonlinear. The
functionals can for example be function evaluations, Li(f) = f(xi). The method gn is
called non-adaptive if the functionals Li are the same for all f ∈ F . It is called adapt-

ive if the choice of functionals Li depends on f through the previously computed values
L1(f), . . . , Li−1(f).

In information based complexity theory there is a general result by Bakhvalov and Smo-
lyak comparing adaptive and non-adaptive methods for approximation of linear functionals,
g : X → R, on a normed linear function space, X. The result states that for any adaptive
method (1.1) using a fixed number of linear functionals Li to approximate the linear g,
defined on a symmetric convex subset F of X, there is a linear non-adaptive method whose

1



2 CHAPTER 1. BACKGROUND

maximal error, on F with the same number of linear functionals, is as small that of the
adaptive method. A more detailed formulation can be found the overview article [21] by
Novak.

How does the adaptive algorithms for computation of linear functionals of solutions
to differential equations which are considered here relate to the result of Bakhvalov and
Smolyak? The point of view is different in that a fixed method, for example a finite element
method of given order, is considered with the aim to construct an adaptive mesh refinement
algorithm for that method. Also, in contrast to keeping the number of steps in the algorithm
fixed, the aim here is to create an algorithm where the number of steps, as a function of
the the error tolerance is close to optimal as the tolerance tends to zero.

Consider a numerical method based on uniform discretisation of a d-dimensional domain
with element size h and with approximation error Θ(hp), as h → 0, using the notation that
f = Θ(g) if and only if f = O(g) and g = O(f). Making the error less than a tolerance TOL

requires Θ(TOL−d/p) elements. Assuming that the work is proportional to the number of
time steps the performance of the method can be expressed in terms of the tolerance,
as TOL → 0. This measure of the efficiency is natural to extend to adaptive algorithms as
illustrated in a simple setting in the next example.

Example: Numerical Integration The assumption of a convex domain of definition,
F , for the adaptive and non-adaptive methods in the result of Bakhvalov and Smolyak
mentioned above is important. To illustrate this and to show how convergence rates for
adaptive algorithms are measured here, consider the linear functional given by an integral

of a known function, g(f) =
∫ T

0
f(t) dt, and let the method of numerical integration be

the left point rule (forward Euler). Discretise the time interval [0, T ] into N subintervals
0 = t0 < t1 < · · · < tN = T with steps ∆tn := tn+1 − tn. With ḡ denoting the numerical
approximation of g(f) the global discretisation error becomes

g(f) − ḡ =

N−1
∑

n=0

ρn(∆tn)2 + higher order terms, (1.2)

where the error density function ρ is given by ρn := df
dt (tn)/2. As an example of a non-

adaptive method consider uniform ∆t. Using that the number of time steps is

N(∆t) =

∫ T

0

1

∆t(τ)
dτ, (1.3)

the number Nu of uniform steps to reach a given level of accuracy TOL is asymptotically
proportional to TOL−1 with the L1-norm of the function ρ in the proportionality constant,

Nu ≃ T

TOL
‖ρ‖L1(0,T ), (1.4)

provided that ρ has constant sign. When the number of steps in (1.3) is minimised with
the accuracy constraint that the leading order of (1.2) is TOL, the optimal distribution of
time steps is

ρn∆t2n = constant for all n.

With this choice the number Na of adaptive steps becomes proportional to TOL−1 with
the smaller L

1
2 -quasi-norm of the error density as the proportionality constant,

Na ≃ 1

TOL
‖ρ‖

L
1
2 (0,T )

. (1.5)
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Since the Euler method uses one function evaluation per step the asymptotical number of
steps (1.4) and (1.5) give the convergence rates of the Euler method using uniform and
optimal adaptive time steps respectively.

Take for example the integrand f(t) = 1/
√

t + ǫ for a small positive parameter ǫ ≪ T .
Since ρ(t) = −1

4(t+ǫ)3/4 the number of uniform steps becomes

Nu ≃ T/4

TOL

∫ T

0

dt

(t + ǫ)3/2
≈ T/4

TOL

1

ǫ1/2
,

while the number of adaptive time steps is smaller,

Na ≃ 1/4

TOL

(

∫ T

0

dt

(t + ǫ)3/4

)2

≈ 4
√

T

TOL
.

The smaller multiple of 1/TOL with an adaptive approach captures the multiple scales
introduced by ǫ ≪ T . In this example, the integrand can also be viewed as an approximation
of the singular 1/

√
t, in which case the parameter must be taken ǫ1/2 = o(TOL), so that

Na/Nu → 0 as TOL → 0.
If F = {f : ||f ′||

L
1
2

< M} for a constant M , then the integrand in the example

above is in F for some ǫ depending on M . Note that F is non-convex so that the result by
Bakhvalov and Smolyak does not apply to the problem of computing g(f) for f ∈ F . In this
class of integrands the choice of uniform steps in the non-adaptive method is motivated by
considering integrands fs(t) = 1/

√

|t − s| + ǫ with ǫ just large enough for fs to be in F for
all s ∈ [0, T ]. However, it is not always the case that optimal non-adaptive discretisations
for a fixed method are uniform, as is illustrated in the next example.

Example: Corner Singularity for an Elliptic Partial Differential Equation Let
u, in a domain Ω with a crack as in Figure 1.1, be the solution of the Laplace equation

Ω

0 Γ0

Figure 1.1: Domain with a crack

−∆u = 0, in Ω,

u = 0, on Γ0,

u = f, on ∂Ω \ Γ0,

and let g(f), viewed as a linear functional of the Dirichlet boundary values f , be given by
the integral of u,

(u, 1) =

∫

Ω

u dx.
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Even if the boundary conditions are taken from a class of smooth functions the solution u
will in general have a form like u(r, θ) =

√
rα(θ) + β(r, θ) in polar coordinates with smooth

α and β close to the tip of the crack; see for example the textbook [13] by Johnson. For a
given solution method of the boundary value problem, for example bilinear finite elements
on a grid with square elements and hanging nodes, the a priori information of the singularity
of the derivative of the exact solution can be used to construct non-uniform non-adaptive
meshes for this particular geometry. On the other hand, in applications where the domain
Ω varies adaptive methods allow the mesh to automatically adapt to the geometry without
the detailed a priori knowledge of the solution. This is the situation considered in Paper I.



Chapter 2

An Adaptive Algorithm

This chapter describes an adaptive algorithm for computing approximate solutions to prob-
lems which can abstractly be stated as:

compute the functional g(u)

where u solves an initial or boundary value problem (2.1)

for a differential equation in a d-dimensional domain Ω.

For a given method of numerical approximation of u, based on discretisation of the domain
Ω, the algorithm constructs the final discretisation by iterative refinements of an initial
mesh; the algorithm presupposes an expansion of the error in the scalar quantity g(u) of
the form

Global error =
∑

local error · weight + higher order error, (2.2)

depending on the approximation method and on the problem; compare (1.2) in the numerical
integration example. The leading order terms must be computable using information on
the current mesh. The weight describes the influence of changes in the differential equation
on the functional of its solution. The goal of the adaptive algorithm is to, for the given
approximation method, approximate g(u) using an adapted mesh with a minimal number
of intervals (elements) for error less than a given tolerance.

Concrete formulations of the abstract (2.1) are for example

• the computation of g(u) where u solves an ordinary differential equation

du

dt
(t) = a(t, u(t)), 0 < t < T, (2.3)

u(0) = u0,

with flux a : [0, T ] × R
d → R

d and an approximate solution uh is obtained by any
p:th order numerical method using uh(0) = u0 and Ω = [0, T ] is discretised into
0 = t0 < t1 < · · · < tN = T .

• the computation of g(u) where u solves an elliptic partial differential equation in a
bounded open domain Ω ⊂ R

d and an approximate solution uh is obtained using a
given finite element method; see the example on page 3.

5



6 CHAPTER 2. AN ADAPTIVE ALGORITHM

Equidistribution of Errors Consider (2.1) in a domain of dimension d with a given
approximation method of order p. Assume that an asymptotic error expansion (2.2) on the
form

error ≃
∑

n

ρnhp+d
n

is known, where h is the local mesh size, of the non stretched element, and ρ is independent
of h. The number of elements that corresponds to a mesh with size h can be determined by

N(h) ≡
∫

Ω

dx

hd(x)
. (2.4)

If the sign of the error density varies a very small set of elements may give an error in the
functional that is close to zero due to cancellation of error contributions of opposite sign.
Thus the optimal mesh may consist of very few elements, but it seems difficult to exploit the
cancellation of errors when constructing the mesh. Disregarding the possible cancellation
by minimising the number of elements N in (2.4) under the constraint

N
∑

n=1

|ρn|hd+p
n =

∫

Ω

|ρ(x)|hpdx = TOL,

gives the optimum

|ρ|(h∗)d+p = constant (2.5)

with corresponding mesh size function

h∗ ≡ TOL
1
p

|ρ| 1
d+p

(∫

Ω

|ρ(x)| d
d+p dx

)− 1
p

. (2.6)

This condition is optimal only for density functions ρ with one sign. Moreover, in higher
dimension, d > 1, it is optimal only for meshes with non stretched elements, that is elements
such that each element is described by one element size h.

The adaptive refinement algorithm, described in a generic deterministic form in Al-
gorithm 1 below, is designed to approximate the optimal equidistribution of error contribu-
tions (2.5). With [k] denoting quantities on the k:th mesh in the refinement sequence, the
accepted mesh kstop ideally fulfils

ρ̂n[kstop](hn[kstop])d+p ≈ TOL

N [kstop]
, n = 1, 2, . . . , N [kstop],

where ρ̂n is a computable approximation of the unsigned error density, |ρ|. Thus, after
calculating ρ̂[k] from computed approximate primal and dual solutions on level k, the al-
gorithm refines all elements with error indicators r̄n[k] ≡ ρ̂n[k](hn[k])d+p > s1TOL/N [k],
where s1 ≈ 1 is a constant. The maximal error indicator may reduce slowly when most r̄n

are small, r̄n[k] ≤ s1TOL/N [k], leading to many refinements; to avoid this the refinements
stop when all r̄n[k] ≤ S1TOL/N [k] for a constant S1 > s1. In summary, the new element
sizes h[k + 1] are obtained from h[k] by:
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Algorithm 1: Refinement and stopping

forall intervals (elements) n = 1, 2, . . . , N [k] do
r̄n[k] ≡ ρ̂n[k](hn[k])d+p

if r̄n[k] > s1TOL/N [k] then
mark interval (element) n for division

end
end

if max1≤n≤N [k] r̄n[k] ≤ S1TOL/N [k] then
stop the refinements

else
divide every marked interval (element) into 2d sub intervals (elements)

end

The optimality condition (2.5) was obtained from the assumption of a limit error density, ρ,
and the adaptive algorithm constructed to approximate (2.5) using a computed approximate
error density ρ̂. This is meaningful if ρ̂ converges to |ρ| as TOL → 0. Thus for any
particular application the proof of this convergence is crucial for the theoretical analysis of
the algorithm. It is possible to analyse the important properties of stopping, accuracy and
efficiency of the algorithm in terms of convergence of ρ̂.

Stopping of Algorithm 1 Assume the convergence of ρ̂ where this positive approximate
error density is bounded away from zero by a lower bound δ which tends to 0 with TOL as

δ = TOLγ , (2.7)

for a positive parameter γ which depends on the application. Then the change in the density
ρ̂(K)[k] in an element K on refinement level k from its value on the parent element on a
previous level, p(K, k) can be bounded; it follows from the convergence assumption and (2.7)
and an additional assumption (2.12) on the initial mesh size that there exist functions ĉ
and Ĉ, close to 1 for sufficiently refined meshes, such that

ĉ(K) ≤ ρ̂(K)[p(K, k)]

ρ̂(K)[k]
≤ Ĉ(K), (2.8a)

ĉ(K) ≤ ρ̂(K)[k − 1]

ρ̂(K)[k]
≤ Ĉ(K). (2.8b)

The lower bound on the qoutients here can be used, together with the refinement and
stopping criteria in Algorithm 1, to prove the following theorem, which shows that the slow
reduction of the maximal error indicator is avoided for S1 chosen suitably larger than s1.

Theorem (Stopping). With the adaptive refinement and stopping strategy in Algorithm 1,

assume that ĉ satisfies (2.8a)–(2.8b), for the elements or time steps corresponding to the

maximal error indicator on each refinement level, and that

S1 ≥ 2d

ĉ
s1, 1 >

ĉ−1

2d+p
.

Then each refinement level either decreases the maximal error indicator with the factor

max
1≤n≤N [k+1]

r̄n[k + 1] ≤ ĉ−1

2d+p
max

1≤n≤N [k]
r̄n[k], (2.9)

or stops the algorithm.
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Accuracy of Algorithm 1 By construction the adaptive algorithm guarantees that the
estimate of the global error is bounded by a given error tolerance, TOL. Is also the true
global error bounded by TOL asymptotically? The stopping criterion in Algorithm 1 gives
an upper bound of the error indicators, which together with the assumed convergence of ρ̂
leads to an asymptotical bound of the global error of the kind

lim sup
TOL→0+

(

TOL−1
∣

∣g(u) − g(uh)
∣

∣

)

≤ S1,

where u is the exact solution and uh the computed approximation. See Theorem 3.2 in
Paper I for a precise formulation for the dual weighted residual finite element algorithm
considered there for second order elliptic partial differential equations.

Efficiency of Algorithm 1 The goal of the adaptive algorithm is to determine a mesh
with a minimal number of elements or time steps, N , for the specified accuracy. The
optimality condition (2.6) in the equation (2.4) for N gives the optimal number of adaptive
elements

Nopt =

∫

Ω

dx

(h∗(x))d
=

1

TOL
d
p

(∫

Ω

|ρ[k](x)| d
d+p dx

)
d+p

p

=
1

TOL
d
p

‖ρ‖
d
p

L
d

d+p
. (2.10)

With a uniform mesh, constant mesh size h, the number of elements, N uni, to achieve
∑N

i=1 |ρi|hd+p = TOL becomes instead

Nuni =

∫

Ω

dx

hd(x)
=

∫

Ω
dx

TOL
d
p

(∫

Ω

|ρ[k](x)|dx

)
d
p

=

∫

Ω
dx

TOL
d
p

‖ρ‖
d
p

L1 . (2.11)

Since, by Jensen’s inequality, ‖f‖
L

d
d+p

≤ (
∫

Ω
dx)

p
d ‖f‖L1 , the asymptotic constant multiply-

ing 1/TOLd/p in the convergence order is smaller for the adaptive method than the uniform
element size method. For problems with multiple scale solutions the difference may be
significant; compare the integration example in Chapter 1.

From the refinement criterion in Algorithm 1, a lower bound of the error indicators
follows for the refined parent error indicator. This, together with the assumption that
upper bound of the ratios of the error density (2.8a)–(2.8b) holds for all elements on the
final mesh, and an assumption

hK [1] = Θ(TOLs), (2.12)

on the initial mesh size to guarantee that, for sufficiently small TOL, all elements on the
initial mesh are refined, can be used to show that Algorithm 1 generates a mesh which is
optimal, (2.10), up to a multiplicative constant independent of the data,

(TOL
d
p N) ≤ C ‖Ĉρ̂‖

d
p

L
d

d+p
≤ C

(

max
x∈D

Ĉ(x)
d
p

)

‖ρ̂‖
d
p

L
d

d+p
, (2.13)

with C ≤ ( 2d+p

s1
)

d
p . See Theorem 3.5 in Paper I for a precise formulation in a specific case.

Earlier Works on Algorithm 1 The results presented in this thesis follow previous
work on the same adaptive algorithm in other precise settings of (2.1). For an ordinary
differential equation(2.3), an error expansion (2.2) is derived by a variational principle in [17]
and the convergence properties of the adaptive algorithm are studied in [18].
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The works [24, 19] treat the weak approximation of an Itô Stochastic differential equation
of the form

dXk(t) = ak(t,X(t))dt +

ℓ0
∑

ℓ=1

bℓ
k(t,X(t))dW ℓ(t), t > 0, (2.14)

where k = 1, . . . , d, and (X(t;ω)) is a stochastic process in R
d, with independent one

dimensional Wiener processes W ℓ(t;ω), ℓ = 1, . . . , ℓ0. The functions a(t, x) ∈ R
d and

bℓ(t, x) ∈ R
d, ℓ = 1, . . . , ℓ0, are given drift and diffusion fluxes.

Weak approximation of the stochastic differential equation by the Euler Monte Carlo
method approximates the expected value E[g(X(T ))] of a functional of the solution with
a sample average of g(X(T )), where X(tn) are identically distributed samples of a discrete
time approximations of X(tn) in the times 0 = t0 < t1 < · · · < tN = T using the Euler
method,

X(tn+1) − X(tn) = a(tn,X(tn))∆tn +

ℓ0
∑

ℓ=1

bℓ(tn,X(tn))∆W ℓ
n, (2.15)

for ∆tn ≡ tn+1 − tn, ∆W ℓ
n ≡ W ℓ(tn+1) − W ℓ(tn), n = 0, 1, 2, . . . , N − 1. The aim of the

adaptive algorithm is to, for a given error tolerance, obtain

∣

∣

∣

∣

∣

∣

E[g(X(T ))] − 1

M

M
∑

j=1

g(X(T ;ωj))

∣

∣

∣

∣

∣

∣

≤ TOL (2.16)

with a probability close to one, and doing this with minimal computational work, propor-
tional to the total number of stochastic time steps Nωj

for the M realisations.
The error in (2.16) splits naturally into two parts,

E[g(X(T ))] − 1

M

M
∑

j=1

g(X(T ;ωj))

=
(

E[g(X(T )) − g(X(T ))]
)

+



E[g(X(T ))] − 1

M

M
∑

j=1

g(X(T ))



, (2.17)

corresponding to time discretisation error and statistical error.
Talay and Tubaro derived a priori estimates of the error (2.16) in [25]. This is modified to

an error expansion with a posteriori computable leading order term in [24] using computable
stochastic flows and discrete dual backward problems. In [19] convergence of algorithms
based on the error expansion is analysed in terms of stopping, accuracy and efficiency using
both stochastic and deterministic time steps in the control of the time discretisation error.
With stochastic adaptive time steps Algorithm 1 controls the refinements and the stopping
in the computation of each sample path. In those time steps that are marked for refinement
the sample value of the Wiener processes in the mid points are simulated using Brownian
bridges

W l

(

tn + tn+1

2

)

=
1

2

(

W l(tn) + W l(tn+1)
)

+ zl
n, (2.18)

where zl
n are independent normally distributed random variables with mean 0 and variance

(tn+1 − tn)/4, independent also of previous W l(tj).
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The statistical error, governed by the Central Limit Theorem, is asymptotically bounded
by c0σ/

√
M where σ is the sample average of the standard deviation of g(X(T )) and c0 is

a positive constant for a confidence interval.
Paper II extends the earlier work on stochastic differential equations to stopped diffusion

problems; see Section 3.4.



Chapter 3

Summary of Papers

3.1 An Adaptive Dual Weighted Residual Finite Element

Algorithm

Consider an adaptive finite element algorithm to approximate linear functionals

g(u) = (u, F ) ≡
∫

Ω

uF dx

of multi scale solutions, u : Ω → R, of the second order elliptic partial differential equation

−div(a∇u) = f (3.1)

in a given open bounded domain Ω ⊂ R
d with Dirichlet boundary condition u|∂Ω = 0. The

weak form of (3.1) is

(a∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω),

where the Sobolev space H1
0 (Ω) is the Hilbert space of functions on Ω, vanishing on ∂Ω,

such that the first derivatives are in L2(Ω). The finite element approximate solution, uh,
solves the corresponding discrete variational form,

(a∇uh,∇v) = (f, v), ∀v ∈ Vh, (3.2)

where Vh is a finite dimensional subspace of H1
0 (Ω); see for example [4] by Brenner and

Scott. For the purpose of Paper I, Vh is the set of continuous piecewise isoparametric bilinear
quadrilateral functions in H1

0 (Ω), using an adaptive quadrilateral mesh with hanging nodes.
In the dual weighted residual method, see [2] by Becker and Rannacher, a dual function
ϕ ∈ H1

0 (Ω) defined by
(a∇v,∇ϕ) = (v, F ), ∀v ∈ H1

0 (Ω),

is introduced to describe the sensitivity of the functional value on the fluctuations in the
solution to the partial differential equation. From the definition of the dual, the error in
the functional value is

(u − uh, F ) = (a∇(u − uh),∇ϕ) = (R(uh),−ϕ),

with the residual R(v) = −div(a∇v)−f , defined as a distribution on H−1(Ω) for v ∈ H1
0 (Ω).

By this and the orthogonality (3.2) applied to πϕ ∈ Vh, where πϕ is the nodal interpolant
on Vh, the error in the functional has the dual weighted residual representation

(u − uh, F ) = (R(uh), πϕ − ϕ) . (3.3)

11
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Taking inspiration from [9], by Eriksson et.al., and [2] Paper I contains a derivation
of a computable approximation

∑

K ρ̄Khd+2
K of (3.3) for adaptive meshes with at most

one hanging node per edge where the refinements of the initial elements are obtained by
successive division of elements into 2d, so that the transformation of each initial element
to the reference tensor element maps the corresponding sub mesh to a tensor hanging node
mesh.

The new difficulty when elliptic partial differential equations are considered instead of
ordinary differential equations is the analysis of the convergence of the error density.

In contrast to the common aproach to derive an a posteriori error estimate, the aim here
is to derive a uniformly convergent error density with computable leading order term and
formulate an adaptive algorithm with proved convergence rates. The works [1] by Babuška
and Vogelius, [8] by Dörfler, and [20] by Morin, Nochetto and Siebert study the convergence
of adaptive algorithms for finite element approximations of partial differential equations.

There are also recent work on the convergence rates of adaptive algorithms for numer-
ical solution of elliptic partial differential equations, in terms of the computational work.
DeVore [6] shows the efficiency of adaptive approximation of functions, including wavelet
expansions. In [5] Cohen, Dahmen and DeVore uses an adaptive N -term wavelet-based
approximation algorithm and proves that it produces a solution which is asymptotically
optimal in the energy norm error for linear coercive elliptic problems. In [3] by Binev,
Dahmen and DeVore and [23] by Stevenson, the ideas in [20] are extended to prove optimal
energy norm error estimates using piecewise linear elements for the Poisson equation.

3.2 Paper I: Convergence Rates for an Adaptive Dual Weighted

Residual Finite Element Algorithm

This paper establishes basic convergence rates for a dual weighted residual finite element al-
gorithm using isoparametric d-linear quadrilateral finite element approximation to function-
als of solutions second order elliptic partial differential equations in open bounded domains
of R

d.

Section 2 describes an expansion of the error in the functional, based on (3.3), which is
shown in Theorem 2.1 to be uniformly convergent as the mesh size tends to zero for smooth
primal and dual solutions. The computable error density using localised averages of second
order difference quotients of the primal and dual solutions, gives the leading order term of
the error expansion; see Corollary 2.2.

The hanging node constraint implies that the refinement step in Algorithm 1 on page 7
must be modified to include a recursive marking of all neighbours that would otherwise
violate the constraint. With that modification, the algorithm is analysed Section 3 following
the outline in Chapter 2.

Section 4 presents numerical results for a simplified elasticity problem related to a prob-
lem with round corner of small radius introducing a small scale in the solution. The results
show that the adaptive algorithm is more efficient for this problem than uniform refinements.

Paper I has entry [16] in the bibliography.

3.3 An Adaptive Algorithm for the Stopped Diffusion Problem

Here the objective is to compute adaptive approximations of an expected value

E[g(X(τ), τ)] (3.4)
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of a given function, g : D × [0, T ] → R, where the stochastic process X solves a stochastic
differential equation (2.14) and τ is the first exit time

τ := inf{0 < t : (X(t), t) 6∈ D × (0, T )}

from a given open domain D × (0, T ) ⊂ R
d × (0, T ). These so called barrier problems have

applications in physics and finance, for example when pricing barrier options.
The expected value (3.4) is approximated by a sample average of g(X(τ), τ), where

(X, τ) is an Euler approximation (2.15) of (X, τ) using stochastic adaptive time steps. Like
in (2.17) the global error using M realizations, splits into two parts

E[g(X(τ), τ)] − 1

M

M
∑

j=1

g(X(τ ;ωj), τ)

=
(

E[g(X(τ), τ) − g(X(τ), τ)]
)

+



E[g(X(τ), τ)] − 1

M

M
∑

j=1

g(X(τ ;ωj), τ)



,

corresponding to time discretisation error and statistical error.
The main difficulty introduced by the barrier is that the continuous path may exit D

even though a discrete approximate solution does not cross the boundary of D. The hitting
of the boundary causes the time discretisation error for the Monte Carlo Euler method with
N uniform time steps to be of order N−1/2 instead of N−1 without stopping boundary in
R

d × [0, T ); see [10] by Gobet.
In Mannella [14] and Jansons and Lythe [12] the order N−1, using N uniform time steps

is recovered by deciding in each time step whether the continuous path exits a half space
domain by simulating a stochastic outcome. In [11] Gobet proves the convergence rate
N−1 for a similar method, under suitable assumptions including smooth boundary. These
methods are efficient when the exit probabilities can be computed accurately, for example
when the domain is a half space or has a smooth boundary which can be approximated by
tangent planes, but not for a boundary with corners.

3.4 Paper II: Adaptive Monte Carlo Algorithms for Stopped

Diffusion

This paper, inspired by Petersen and Buchmann [22], uses an alternative approach to the
uniform time step methods of [14], [12] and [11]. The time steps are chosen adaptively for
each sample path, decreasing close to the barrier. The advantage of this method is that
the exit probability need not be computed accurately, which is difficult for complicated
domains D. Section 2 contains a derivation of an expansion of the error with computable
leading order term, which is an extension of the corresponding error expansion in [24]
for the approximation of E[g(X(T ))] for fixed T and D = R

d. The extension uses a
conditional probability to estimate the first exit time and it initialises the dual solutions
on the barrier with difference approximations of partial derivatives. Section 3 presents an
adaptive algorithm based on the estimates in Section 2. Numerical results presented in
Section 4 show that the algorithm recovers the time discretisation error of order N−1, for
N adaptive time steps.
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