
Intention Recognition in Human Machine

Collaborative Systems

DANIEL K. E. AARNO

Licentiate Thesis

Stockholm, Sweden 2007

TRITA CSC-A 2007:2
ISSN 1653-5723
ISRN KTH/CSC/A--07/02--SE
ISBN 978-91-7178-581-7

KTH School of Computer Science and Communication
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie licentiatexamen i datalogi den
23 mars, 2007 i sal D31, Kungl Tekniska högskolan, Lindstedtsv 17, Stockholm.

© Daniel K. E. Aarno, mars 2007

Tryck: Universitetsservice US AB

iii

Abstract

Robot systems have been used extensively during the last decades to provide automa-
tion solutions in a number of areas. The majority of the currently deployed automation
systems are limited in that the tasks they can solve are required to be repetitive and
predicable. One reason for this is the inability of today’s robot systems to understand
and reason about the world. Therefore the robotics and artificial intelligence research
communities have made significant research efforts to produce more intelligent machines.
Although significant progress has been made towards achieving robots that can interact
in a human environment there is currently no system that comes close to achieving the
reasoning capabilities of humans.

In order to reduce the complexity of the problem some researchers have proposed an
alternative to creating fully autonomous robots capable of operating in human environ-
ments. The proposed alternative is to allow fusion of human and machine capabilities.
For example, using teleoperation a human can operate at a remote site, which may not
be accessible for the operator for a number of reasons, by issuing commands to a remote
agent that will act as an extension of the operator’s body.

Segmentation and recognition of operator generated motions can be used to provide
appropriate assistance during task execution in teleoperative and human-machine collab-
orative settings. The assistance is usually provided in a virtual fixture framework where
the level of compliance can be altered online in order to improve the performance in terms
of execution time and overall precision.

Acquiring, representing and modeling human skills are key research areas in teleoper-
ation, programming-by-demonstration and human-machine collaborative settings. One of
the common approaches is to divide the task that the operator is executing into several
sub-tasks in order to provide manageable modeling.

This thesis is focused on two aspects of human-machine collaborative systems. Clas-

sification of an operator’s motion into a predefined state of a manipulation task and
assistance during a manipulation task based on virtual fixtures. The particular applica-
tions considered consists of manipulation tasks where a human operator controls a robotic
manipulator in a cooperative or teleoperative mode.

A method for online task tracking using adaptive virtual fixtures is presented. Rather
than executing a predefined plan, the operator has the ability to avoid unforeseen obstacles
and deviate from the model. To allow this, the probability of following a certain trajectory
(sub-task) is estimated and used to automatically adjusts the compliance of a virtual
fixture, thus providing an online decision of how to fixture the movement.

A layered hidden Markov model is used to model human skills. A gestem classifier
that classifies the operator’s motions into basic action-primitives, or gestemes, is evalu-
ated. The gestem classifiers are then used in a layered hidden Markov model to model a
simulated teleoperated task. The classification performance is evaluated with respect to
noise, number of gestemes, type of the hidden Markov model and the available number of
training sequences. The layered hidden Markov model is applied to data recorded during
the execution of a trajectory-tracking task in 2D and 3D with a robotic manipulator in
order to give qualitative as well as quantitative results for the proposed approach. The
results indicate that the layered hidden Markov model is suitable for modeling teleoper-
ative trajectory-tracking tasks and that the layered hidden Markov model is robust with
respect to misclassifications in the underlying gestem classifiers.

iv

Sammanfattning

Robotsystem har använts flitigt under de senaste årtiondena för att skapa automa-
tionslösningar i ett flertal områden. De flesta nuvarande automationslösningarna är be-
gränsade av att uppgifterna de kan lösa måste vara repetitiva och förutsägbara. En av
anledningarna till detta är att dagens robotsystem saknar förmåga att förstå och resonera
om omvärlden. På grund av detta har forskare inom robotik och artificiell intelligens
försökt att skapa intelligentare maskiner. Trots att stora framsteg har gjorts då det gäller
att skapa robotar som kan fungera och interagera i en mänsklig miljö så finns det för
nuvarande inget system som kommer i närheten av den mänskliga förmågan att resonera
om omvärlden.

För att förenkla problemet har vissa forskare föreslagit en alternativ lösning till helt
självständiga robotar som verkar i mänskliga miljöer. Alternativet är att kombinera män-
niskors och maskiners förmågor. Exempelvis så kan en person verka på en avlägsen plats,
som kanske inte är tillgänglig för personen i fråga på grund av olika orsaker, genom att
använda fjärrstyrning. Vid fjärrstyrning skickar operatören kommandon till en robot som
verkar som en förlängning av operatörens egen kropp.

Segmentering och identifiering av rörelser skapade av en operatör kan användas för
att tillhandahålla korrekt assistans vid fjärrstyrning eller samarbete mellan människa och
maskin. Assistansen sker ofta inom ramen för virtuella fixturer där eftergivenheten hos
fixturen kan justeras under exekveringen för att tillhandahålla ökad prestanda i form av
ökad precision och minskad tid för att utföra uppgiften.

Den här avhandlingen fokuserar på två aspekter av samarbete mellan människa och
maskin. Klassificering av en operatörs rörelser till ett på förhand specificerat tillstånd un-
der en manipuleringsuppgift och assistans under manipuleringsuppgiften baserat på vir-
tuella fixturer. Den specifika tillämpningen som behandlas är manipuleringsuppgifter där
en mänsklig operatör styr en robotmanipulator i ett fjärrstyrt eller samarbetande system.

En metod för att följa förloppet av en uppgift medan den utförs genom att använda
virtuella fixturer presenteras. Istället för att följa en på förhand specificerad plan så har
operatören möjlighet att undvika oväntade hinder och avvika från modellen. För att möj-
liggöra detta estimeras kontinuerligt sannolikheten att operatören följer en viss trajektorie
(deluppgift). Estimatet används sedan för att justera eftergivenheten hos den virtuella fix-
turen så att ett beslut om hur rörelsen ska fixeras kan tas medan uppgiften utförs.

En flerlagers dold Markovmodell (eng. layered hidden Markov model) används för att
modellera mänskliga färdigheter. En gestemklassificerare som klassificerar en operatörs
rörelser till olika grundläggande handlingsprimitiver, eller gestemer, evalueras. Gestem-
klassificerarna används sedan i en flerlagers dold Markovmodell för att modellera en simu-
lerad fjärrstyrd manipuleringsuppgift. Klassificeringsprestandan utvärderas med avseende
på brus, antalet gestemer, typen på den dolda Markovmodellen och antalet tillgängliga
träningssekvenser. Den flerlagers dolda Markovmodellen tillämpas sedan på data från en
trajektorieföljningsuppgift i 2D och 3D med en robotmanipulator för att ge både kvalitati-
va och kvantitativa resultat. Resultaten tyder på att den flerlagers dolda Markovmodellen
är väl lämpad för att modellera trajektorieföljningsuppgifter och att den flerlagers dolda
Markovmodellen är robust med avseende på felklassificeringar i de underliggande gestem-
klassificerarna.

v

Acknowledgments

First of all I would like to thank my supervisor Danica Kragić for providing me
with the opportunity to pursue this work. Thank you for all the proof reading,
editing, general support and keeping my spirit up by pushing, pulling or prodding
me when required.

A big thank you goes to all my friends at CAS and CVAP for providing a
pleasant working atmosphere and stimulating “coffee-break” discussions. I would
especially like to thank:
Staffan Ekvall for all the collaboration, office discussions and for providing a
pleasant working atmosphere by arranging soccer matches, video-game evenings,
and letting know about all your “get-rich-quick-schemes”.
Frank Lingelbach for all the discussions and MATLAB help. Thank you for all
the barbecues, parties and for helping me to maintain the Thursday-pizza tradition.
Andreas Hedström for never getting bored with all the pointless Linux and
programming discussions.
Patric Jensfelt also deserves a special thank’s for helping with all the hardware
and software and generally keeping the lab up and running.

I would also like to thank all my undergraduate study-buddies, and especially
the “magnificent seven” Gohde, Stefan, Styrsel, Tower, Wallin and Wincent

for making my years at MDH and KTH so much more fun and interesting.
My family also deserves acknowledgment for supporting me and providing me

with a stable base which I know I can always rely on if I need it.
Finally I would like to thank the Swedish tax payers for supporting this work

through Vetenskapsrådet.

Contents

Contents vi

List of Figures viii

1 Introduction 1

1.1 Human Machine Collaborative Systems 3
1.1.1 Humans Assisting Machines 3
1.1.2 Machines Assisting the Human 4

1.2 Outline . 5

2 Background and Related Work 9

2.1 Machine Learning and Classification 13
2.1.1 Markov Models . 13
2.1.2 Hidden Markov Models . 14
2.1.3 Structured Hidden Markov Models 25
2.1.4 Support Vector Machines . 28
2.1.5 K-Means Clustering . 30

2.2 Virtual Fixtures . 35
2.2.1 Virtual Fixture Control Law 37

2.3 Examples of Previous HMCS . 44

3 Adaptive Virtual Fixtures 53

3.1 Recognizing Sub-Tasks . 55
3.1.1 Retrieving Measurements . 55
3.1.2 Estimating the Motion Directions 55
3.1.3 Estimating Observation Probabilities Using SVMs 55
3.1.4 State Sequence Analysis Using Hidden Markov Models 56
3.1.5 Evaluation . 56

3.2 Fixturing of the Motion . 61
3.3 Experimental Evaluation . 62

3.3.1 Experiment 1: Trajectory following 63
3.3.2 Experiment 2: Changed Workspace 63
3.3.3 Experiment 3: Unexpected Obstacle 65

vi

vii

3.4 Discussion . 65

4 Layered HMM for Motion Intention Recognition 67

4.1 The Layered Hidden Markov Model 68
4.1.1 The Gestem HMM . 69
4.1.2 The Task HMM . 70

4.2 Experimental Evaluation with Synthetic Data 70
4.2.1 Experimental Evaluation . 71

4.3 Experimental Evaluation with a Robot System 78

5 Discussion and Future Work 85

Bibliography 89

List of Figures

1.1 Cooperative and teleoperative systems. 3

2.1 A Markov model of the weather . 15
2.2 A layered hidden Markov model . 26
2.3 Illustration of the structure of a HHMM. 28
2.4 A binary classification example. 29
2.5 Cluster centers obtained by k-means clustering. 32
2.6 Estimation of the number of clusters using the elbow criterion. The

actual number of clusters is 5. 33
2.7 Estimation of the number of clusters using the elbow criterion. The

actual number of clusters is 10. 33
2.8 Estimation of the number of clusters using the elbow criterion with too

short range. 34
2.9 Example of virtual fixtures. 36
2.10 Virtual fixture stiffness. 36
2.11 Example of an octree representation of a cubic space. 40
2.12 Curve following, off-path targeting and obstacle avoidance. 41
2.13 Optimal compliance selection. 41
2.14 Force vs error for three different force scaling methods. 43
2.15 Virtual tube spanning a safe volume around a reference curve. 45
2.16 Virtual cone designed to guide the end effector towards a reference point. 45
2.17 Combination of virtual tubes and cones designed to provide safe ap-

proach to a target point. 46
2.18 A sequential task that branches into one of two different paths. 47
2.19 Probability densities under the assumption of Gaussian independent sen-

sor values in a 2D sensor space. 48
2.20 Example of a gestem level HMM and a task level HMM. 48
2.21 Several gestem level HMMs combined to form a network that captures

a specific task. 48
2.22 Online HMM recognition for three continuous HMMs. 50
2.23 Sigmoid function used to transform the SVM distance measure into a

conditional probability. 51

viii

List of Figures ix

3.1 Overview of the system used for task training and task execution. . . . 54
3.2 A training trajectory and classification of a trajectory. 57
3.3 A matrix and normalized likelihood. 58
3.4 A matrix of the example task. 59
3.5 The Nest of birds magnetic tracking system. 60
3.6 Training trajectories and classification of trajectories. 60
3.7 Normalized likelihood and cluster centers. 60
3.8 Typical workspace for pick-and-place task with obstacles. 62
3.9 End effector position in example workspace. 64
3.10 Estimated probabilities for the experiments. 64

4.1 A two level layered hidden Markov model. 68
4.2 Typical simulated operator trajectories 71
4.3 Classification performance as a function of noise. 73
4.4 Classification performance as a function of noise. 73
4.5 Classification performance as a function of the number of gestemes. . . 74
4.6 Classification performance as a function of the number of gestemes. . . 74
4.7 Classification performance as a function of the number of training se-

quences. 76
4.8 Classification performance as a function of the number of training se-

quences. 76
4.9 Classification performance as a function of the number of symbols. . . . 77
4.10 Classification performance as a function of the number of symbols. . . . 77
4.11 Example trajectory of a task with 5 states and 4 gestemes. 78
4.12 Classification of the LHMM. 79
4.13 Classification of the LHMM. 79
4.14 The manipulator used for the experimental validation. 80
4.15 Representative trajectories for the two trajectory-tracking tasks. 81
4.16 Classification of the trained sequence. 83
4.17 Classification of a sequence not seen during training. 83

Chapter 1

Introduction

During the last decades robots have become a common commodity in the indus-
try. Robots have been extensively used in the areas of automotive production, for
foundry and forging, for packaging and palletizing as well as in metal fabrication
and production of plastics. Traditionally the requirements for successful deploy-
ment of robotic systems have been that they should deal with mass production
where the robot’s task is well defined and should be performed repeatedly without
the possibility of adapting to changes in the process. Robotics are continuously
make ways into new areas and are now being used for, among other things, do-
mestic tasks, surgery, surveillance and for disposal of bombs and other hazardous
materials.

One endeavor in the robotics research community is to try to equip robots
with some level of artificial intelligence in order to allow robots to be deployed
in a variety of settings where the current robots fails because of their inability to
understand the world and adapt to changes in their surrounding. This is a daunting
undertaking and even though progress is constantly made towards robots capable
of interacting in human environments there are presently no robotic systems that
come close to displaying the reasoning capabilities or ingenuity of humans when it
comes to detecting and handling unforeseen events. This has lead researchers in a
new direction seeking a collaboration between humans and robots in order to solve
tasks that are beyond the human or robot alone.

One area where collaboration between humans and robots has already begun to
bear fruit is in the manufacturing industry where large portion of the procedures
have been automated. However, many processes are too difficult to automate and
must rely on humans’ supervisory control and decision making; in areas such as
the identification of defective parts and process variations. When such skills are
required, humans still have to perform straining tasks. Therefore, human-machine
collaborative systems (HMCS) has been used to prevent ergonomic injuries and
operator wear, by allowing cooperation between a human and a robotic system in
a flexible way (Peshkin et al., 2001; Moore Jr. et al., 2003; Schraft et al., 2005).

1

2 CHAPTER 1. INTRODUCTION

An other area where robotics is currently emerging is for surgical procedures
(Taylor and Stoianovici, 2003). The application of robots to surgical procedures
range from “smart” tools to fully autonomous procedures carried out by a robot
after pre-operative planning by a surgeon, see (Dario et al., 2003) for a survey.

There are two areas where robots are expected to have the highest impact
in surgery. These areas are minimal invasive surgery (MIS) and microsurgery.
Microsurgical tasks are difficult for surgeons simply because of the scale at which the
surgeon must operate. The accuracy required to perform some of these procedures
require accurate positioning of a tool tip within 10 µm of a target. Achieving such
high accuracy is very difficult for a surgeon. A common example of a microsurgical
task that is beyond the existing manual techniques is the injection of anticoagulants
in a retinal vein (Riviere et al., 2003). Using active devices such as robots or active
tools it should be possible to perform surgery on these scales.

In MIS the challenge is to provide a natural operating environment for the
surgeon. With today’s systems the surgeon usually has poor haptic presences and
is limited with respect to the number of DOF of the endoscopic tools. A teleoperated
setting could be used here in order to provide the surgeon with motion and force
scaling or even help the surgeon prevent unintentional damage to surrounding tissue
by actively monitoring the positioning of the tool avoiding any forbidden regions
specified during preoperative planning. Using a teleoperative setting also provides
the possibility of enhanced ergonomics for the surgeon.

Learning human skills, using them in a HMCS or transferring them to robots di-
rectly has been a core objective for more than three decades in the area of artificial
intelligence, robotics and intelligent control. Application areas range from tele-
operation to programming-by-demonstration (PbD), human-machine collaborative
settings automated visual surveillance and multi-modal human-computer interac-
tion (Kaiser and Dillmann, 1996; Liang and Ouhyoung, 1998; Hundtofte et al.,
2002; Zöllner et al., 2002; Li and Okamura, 2003; Elgammal et al., 2003; Castellani
et al., 2004; Oliver et al., 2004; Kragić et al., 2005; Yu et al., 2005).

It has been widely recognized that the underlying system used for learning,
representing, modeling and transferring of skills has to deal with highly nonlinear
relationships between the stimuli and response. In addition such a system is strongly
dependent on the varying state of the environment and the user that performs them.

One idea that has received much attention lately is that if the intention of an
operator of a teleoperated system can be recognized online in real-time, it is possible
to improve the task execution by allowing the system to adapt to the operator’s
need by applying the correct control mode in the transfer step. To be able to
give the correct aid to the operator it is necessary for the HMCS to be able to
successfully interpret the operator’s intent, online and in real-time. For example,
medical robots increase the performance with their superior precision but are still
not capable of safe decision-making.

This chapter briefly describes the general concept of a HMCS and gives examples
of applications. It then describes the outline and contributions of this thesis.

1.1. HUMAN MACHINE COLLABORATIVE SYSTEMS 3

Figure 1.1. Cooperative (left) and teleoperative (right) systems.

1.1 Human Machine Collaborative Systems

In a human-machine collaborative system (HMCS) the machine is supposed to in-
crease the performance of the human operator by providing assistance. At the same
time the operator can increase the performance of the machine by allowing a much
wider range of tasks to be solved than in an autonomous system. Thus assistance
in a HMCS works both ways, the machine augments the operator’s capabilities
with its superior precession, repeatability and endurance. On the other hand the
operator helps the machine with difficult high-level decision making such as error
recovery and handling of task deviations.

In this thesis we focus on two specific aspects of HMCS. Recognition of the oper-
ator’s intent and assistance based on virtual fixtures. Although our methods are not
limited to such applications we concentrate on applications consisting of manipula-
tion tasks where a human operator controls a robotic manipulator in a cooperative
or teleoperated mode. The difference between cooperative and teleoperative mode
should be addressed at this point. In cooperative mode the robot and human are
physically linked. That is, both the human and robot are in direct contact to the
end-effector by, for example, holding the same workpiece or directly applying forces
to the end-effector by some other mechanism. In a teleoperated system there is no
such physical connection and the human can only control the master robot through
a slave device which may or may not have the same kinematics as the master, be
able to provide force feedback etc, as illustrated in figure 1.1.

1.1.1 Humans Assisting Machines

Humans’ ability to perceive and reason about the world is far superior to what the
robotics community has achieved so far. Especially when it comes to dealing with
error recovery, unexpected situations and decision making under uncertainty, hu-
man beings achieve much better results than any intelligent robot system presented
to date. Thus by allowing human interference during the execution of autonomous
tasks it is possible to solve tasks that autonomous robots cannot deal with on their
own. The simplest form of assistance can be to switch the autonomous system
to manual control when an error is detected that the autonomous system does

4 CHAPTER 1. INTRODUCTION

not know how to handle. Thus during normal operation the system works in au-
tonomous mode, but once an error the system is unable to handle is detected, the
execution of the autonomous plan is suspended and human assistance is requested.
This can also work the other way around, that is, a human operator monitors the
autonomous system and intervenes by assuming manual control if the autonomous
system is about to perform an undesired, possibly dangerous, action.

More intelligent cooperation can be achieved by having the human operator
and the robot share control. This means that some degrees of freedom (DOF)
are controlled by the robot and some by a human operator. A typical example
is shared position/force control where the robot’s control system controls contact
forces while the human operator controls the position and orientation of the end
effector (Bruyninckx and Schutter, 1997).

Another way humans can assist machines is by providing high-level commands,
i.e. specifying an operational plan, that the robot carries out autonomously. An
example would be that the operator specifies the action sequence, goto table;

pick up cup; goto kitchen; put cup in dish washer Which is then carried
out autonomously by the agent. Thus the high level plan is performed by the
human that has the capabilities to reason about the world and realize that there
is a dirty cup on the table that need to be brought to the dish washer. The robot
can then carry out this plan autonomously, given that it knows how to perform the
required actions.

1.1.2 Machines Assisting the Human

Machines can be used to assist humans with their superior precession and en-
durance. For example force scaling can be used to amplify contact forces at the
tool-point of a tool simultaneously operated by the human and the robot. Using
force scaling it is possible for the human operator to produce less contact forces and
improve the execution of the task by receiving better feedback. The forces can be
scaled differently along different dimensions depending on the task so that for ex-
ample forces perpendicular to a surface are amplified less then forces in the surface
plane. Motion scaling is also possible in the event of a teleoperated setting. That
is, the motion induced by the human at the slave device is scaled at the tool-point.
The motion can be scaled up or down depending on the task. Motion scaling allows
humans to perform tasks at scales where normal human capabilities are insufficient,
such as micro-surgical tasks. Motion and force scaling can be combined to improve
the human’s performance by providing more suitable feedback than during direct
execution of the task.

To provide smooth and safe control in medical collaborative settings, a careful
teleoperative design has to be provided. If the intent of the operator can be un-
derstood the performance can be increased by applying the correct type of force
scaling and control modes (Li and Okamura, 2003).

Another way in which machines can assist humans is by tremor reduction. The
operator’s input can be filtered to remove small random motions that occur due to

1.2. OUTLINE 5

tremor, before the motion commands are sent to the tool. Robots can also be used
to effectively remove the weight and inertia of heavy objects being manipulated. By
examining the forces produced by a human operator, on an object simultaneously
held by the robot and human, the robot can act in such way that the inertia and
weight of the manipulated object is effectively “removed” from the viewpoint of the
human operator.

Robots can also be used for flexible fixturing (holding) of workpieces during
assembly like tasks, effectively providing “extra hands” for the operator, with the
additional advantage of being free from tremor and not suffering from fatigue.

1.2 Outline

In this thesis we present work on two aspects of HMCS, i) classification of an
operator’s motion into a predefined state of a manipulation task and ii) assistance
during a manipulation task based on virtual fixtures. The particular applications
considered consists of manipulation tasks where a human operator controls a robotic
manipulator in a cooperative or teleoperative mode.

The contributions of this work is the proposed LHMM structure for motion
intention recognition and the associated evaluation (chapter 4) and the proposed
method of using the probability that the operator is executing a certain state to
adjust the compliance of a virtual fixture (chapter 3). This thesis is organized in
the following way.

Chapter 2

Chapter 2 briefly introduces the two problems of intention recognition and assis-
tance. It goes on to provide a theoretical foundation for the various methods applied
used in this thesis. This chapter is concluded by providing examples of previous
work in the area of HMCS that is directly related to to the work presented in this
thesis.

Chapter 3

It has been demonstrated in a number of robotic areas how the use of virtual fixtures
improves task performance both in terms of execution time and overall precision.
However, the fixtures are typically inflexible, resulting in a degraded performance in
cases of unexpected obstacles or incorrect fixture models. In chapter 3, we propose
the use of adaptive virtual fixtures that can cope with the above problems.

A teleoperative or human-machine collaborative setting is assumed, with the
core idea of dividing the task that the operator is executing into several sub-tasks.
The operator may remain in each of these sub-tasks as long as necessary and switch
freely between them. Hence, rather than executing a predefined plan, the operator
has the ability to avoid unforeseen obstacles and deviate from the model. In our
system, the probability that the user is following a certain trajectory (sub-task)

6 CHAPTER 1. INTRODUCTION

is estimated and used to automatically adjusts the compliance. Thus, an online
decision of how to fixture the movement is provided.

Chapter 4

In chapter 4 we consider the use of a Layered Hidden Markov Model (LHMM) to
model human skills. We evaluate a gestem classifier that classifies motions into basic
action-primitives, or gestemes. The gestem classifiers are then used in a LHMM to
model a simulated teleoperated task. We investigate the classification performance
with respect to noise, number of gestemes, type of HMM and the available number
of training sequences. We also apply the LHMM to data recorded during the
execution of a trajectory-tracking task in 2D and 3D with a robotic manipulator in
order to give qualitative as well as quantitative results for the proposed approach.

Chapter 5

This chapter summarizes the thesis and provides a discussion on possible improve-
ments and future work.

The work presented in this thesis has been presented at international conferences
and has been published in the following articles.

D. Aarno and D. Kragić Layered HMM for Motion Intention Recognition In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp 5130 - 5135, 2006.

S. Ekvall, D. Aarno and D. Kragić Online Task Recognition and Real-Time
Adaptive Assistance for Computer-Aided Machine Control In IEEE Trans-
actions on Robotics, 22:pp 1029 - 1033, 2006.

D. Aarno, S. Ekvall and D. Kragić Adaptive Virtual Fixtures for Machine As-
sisted Teleoperation Tasks In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, pp 897 - 903, 2005.

In addition a number of publications not covered in this thesis have been produced
during the scope of these studies.

D. Aarno, J. Sommerfeld, D. Kragić, N. Pugeault, S. Kalkan, F. Wörgötter,
D. Kraft and N. Krüger Model-independent grasping initializing object-model
learning in a cognitive architecture In IEEE International Conference on
Robotics and Automation, Workshop: “From features to actions - Unifying
perspectives in computational and robot vision”, 2007 [to appear].

P. Jensfelt, S. Ekvall, D. Kragić and D. Aarno Augmenting SLAM with Object
Detection in a Service Robot Framework In Proceedings of the 15th IEEE
International Symposium on Robot and Human Interactive Communication,
pp 741 - 746, 2006.

1.2. OUTLINE 7

S. Ekvall, D. Aarno and D. Kragić Task Learning Using Graphical Program-
ming and Human Demonstrations In Proceedings of the IEEE International
Symposium on Robot and Human Interactive Communication pp 398 - 403,
2006.

P. Jensfelt, S. Ekvall, D. Kragić and D. Aarno Integrating SLAM and Object
Detection for Service Robot Tasks In IEEE/RSJ International Conference
on Intelligent Robots and Systems, Workshop: “Mobile Manipulators: Basic
Techniques, New Trends and Applications”, 2005.

D. Aarno, F. Lingelbach and D. Kragić, Constrained Path Planning and Task-
Consistent Path Adaptation for Mobile Manipulators In Proceedings of the
International Conference on Advanced Robotics pp 268 - 273, 2005.

D. Kragić, S. Ekvall, P. Jensfelt and D. Aarno Sensor Integration and Task
Planning for Mobile Manipulation In IEEE/RSJ International Conference
on Intelligent Robots and Systems, Workshop: “Issues and Approaches to
Task Level Control”, 2004.

Chapter 2

Background and Related Work

The scenario considered in this thesis is that of a HMCS where a human and a
robot interacts to solve a task with a common goal. Furthermore the robot should
try to estimate the intention of the human in order to provide better assistance.
We specially focus on manipulation tasks that can be subdivided into smaller tasks
consisting of specific motions.

To accomplish this there are two key problems that must be solved.

• Recognition of the human’s intent in order to identify the current state of the
task.

• Provide useful assistance depending on the state of the task.

This chapter first briefly introduces the two problems of intention recognition
and assistance. It goes on to provide a theoretical foundation for the various meth-
ods applied in chapter 3 and 4. Once the required theoretical background is covered
this chapter is concluded by providing examples of previous work in the area of
HMCS that is directly related to to the work presented in this thesis.

Intention Recognition

In order for robots to cooperate nicely with humans or other robots, hereafter
agents, in a shared environment it is important that they are able to interpret
the actions and estimate the intentions of these other agents. If a robot, or any
other system, is able to recognize the intention of other agents it will have a better
possibility to plan ahead and adapt its behavior to better suit other agents.

For a system to be able to recognize the intention of an agent it is necessary to
be able to classify the agents actions and relate them to an internal model of the
task. Classification of data has been extensively dealt with in the area of Machine
Learning (ML). For the case of recognition of an agent’s intent it will be necessary
to deal with the three closely related problems of sequential supervised learning,
time-series analysis and sequence classification, (Dietterich, 2002).

9

10 CHAPTER 2. BACKGROUND AND RELATED WORK

Intention recognition is not limited to dealing with robot motions. The following
examples from the literature illustrates applications in other areas.

In the work of Dielmann and Renals (2004) the goal is to analyze meetings
in order to be able to classify various meeting actions. The actions considered in
(Dielmann and Renals, 2004) were monologue, dialog, note taking, presentation and
presentation at the white board during meetings with four people. The sensors used
where one lapel microphone per meeting participant and a central circular micro-
phone array with eight microphones. Using the microphone array sound directions
could be estimated. It was assumed that meeting participants would either be in
their seat, presenting or presenting at the white board. Consequently six “speech
activities” where considered. The features used for training and recognition where
the estimated speaker activities during the last three time steps, forming a 216
dimensional feature vector and prosodic features extracted from the lapel micro-
phones forming a 12 dimensional feature vector. A two level HMM approach was
used to classify the meeting data using either early integration, where the different
feature vectors are concatenated, or a multi stream approach where the different
feature types are first classified independently and then integrated at in the top
level HMM.

Shimosaka et al. (2005) used switching linear dynamics with marginalized bags
of vector kernels to classify human actions into walking and non-walking. The
input to the classifier consisted of human motion data. The motion data was com-
prised of 36 values describing the skeletal configuration of the human. The motions
were classified into two categories, walking and non-walking. The walking category
contained examples with varying tempo and the non-walking category contained ex-
amples from sitting still, lying still, standing still, running and translational motion
from standing to sitting. The classification was performed online.

A different application of motion classification is presented by Lin et al. (2005).
The idea is to use motion classification during MIS tasks in order to estimate the
quality of the performed task, for example during training of surgeons. A model
of the task as a sequence of elementary suturing motions is extracted and linear
discriminant analysis is used to separate motions from different gestures. It is shown
that the motions of an expert surgeon separates better than the motions of a less
experienced surgeon.

Mori et al. (2004) applied HMMs at various level to perform recognition of
daily human actions such as standing still, sitting and walking. A tree structure
was used so that recognition could take place at various levels of detail. For example
the action would first be classified into sitting, lying or standing and, if for example
the action was classified to sitting, it would be classified into sitting on a chair
or sitting on the floor. Using a tree structure has two advantages. It makes the
recognition problem simpler because some irrelevant features can be excluded at
the detailed levels and it is possible to give reasonable responses to novel data by
only applying coarse classification.

A two-layer HMM was used by Zhang et al. (2004) to model individual and
group actions during meetings. An I-HMM was used to model individual actions.

11

The recognized individual actions was then passed along to the G-HMM that was
used to classify group actions.

Oliver et al. (2004) used a LHMM to recognize different types of activity in an
office environment. Xie et al. (2003) used a HHMM to automatically segment a
soccer game into two classes, pause and play in an unsupervised setting.

Assistance

Assistance provided by a robot to a human operator can take several forms and
be interpreted in various ways. In the following assistance implies that robot and
human are working together in a shared workspace and are collaboratively control-
ling an end-effector or a workpiece. That is, the robot is not autonomous since it
requires input from the human operator, nor is it a slave device simply executing
the operator’s instructions. Thus for a robot to be able to provide assistance it is
necessary to incorporate task knowledge in the control scheme. The following ex-
amples from the literature illustrates possible applications and methods for robots
assisting humans.

Riviere et al. (2003) has developed a handheld surgical tool that can measure
its own motion and assist the surgeon by reducing the tremor at the tool tip by
actively compensating for the surgeon’s tremor by deflecting its tip. The tremor
was canceled using a nonlinear adaptive noise canceling algorithm based on the
weighted-frequency Fourier linear combiner. The system currently only handles
tremor, which is a rhythmic sinusoidal movement. The system is unable to handle
non-rhythmic involuntary movements, such as jerks. There is ongoing work to
extend the tool to be able to assist the surgeon by ignoring this type of involuntary
motions as well.

Itoh et al. (2000) proposed an control algorithm for teleoperation based on
virtual tool dynamics. Using virtual tool dynamics the motion and force of the
slave manipulator is scaled in order to provide the master manipulator with virtual
tool dynamics. This means that the master manipulator is controlled as if the
operator was using a passive tool designed to solve the particular task at hand.
The operator can select suitable virtual tools in order to have the teleoperative
system provide assistance during all phases of the task.

Payandeh and Stanisic (2002) used virtual fixtures to, among other things, pro-
vide visual cues, generate and restrict motion of the robot and tune low-level control
parameters. This is applied to a tele-operated acquire task where the robot must
be positioned in order to approach, grasp and extract an object.

In (Moore Jr. et al., 2003; Peshkin et al., 2001) Cobots are presented. Cobots
are used in the manifacturing industry and are collaborative devices that can be
used to constrain the motion of a work piece to, for example, virtual paths or
surfaces.

Bettini et al. (2004) used virtual fixtures (see section 2.2) to assist a human
operator to perform path following and target approach. Virtual fixtures were used
to constrain the motion to a sequence of cylindrical tunnels and cones.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Woern and Laengle (2000) presents a control scheme that allows cooperation
between humans and a (semi-) autonomous robot. The robot usually operates in
autonomous mode, but has the possibility to switch to a semi-autonomous mode
if it detects an error or if there is missing information. In such a case a human
operator is supposed to assist the robot until the problems are resolved. Once the
problems are resolved autonomous execution can be resumed. The human operator
also has the possibility to switch the system into the semi-autonomous mode at any
time by interfering with the task.

The type of task considered in (Woern and Laengle, 2000) is a pick and place task
with a mobile robot with two PUMA 560 arms. In the semi-autonomous mode the
human operator is responsible for motion along some DOF while the robot remains
in control of the remaining DOF. For example the human can be required to move
the robot hand to the correct position using the force-torque sensor mounted on
the end-effector while the robot controls the orientation of the workpiece currently
being manipulated.

Guo et al. (1995) used event-based planning to allow fusion of human and ma-
chine intelligence. This means that if an obstacle would appear along the planned
path the robot would stop and the error would remain constant. This is different
from a time parametrized plan, where the error would increase. At any time during
execution of the plan, human intelligence can be introduced in the system through
an input device, providing fusion of the human’s and robot’s plans. This idea is
evaluated on a system with a PUMA 560 manipulator on two tasks. The first task is
avoiding an unexpected obstacle. The autonomous plan is halted because an unex-
pected obstacle is present along its path. A human operator introduces additional
knowledge into the system by specifying that the system, in addition to following
its plan, should move perpendicular to its reference direction. The perpendicular
motion specification is one out of four possible actions that can be introduced into
the system: stop, slow down, speed up and orthogonal motion. The other task
is a hybrid position/force control where the autonomous controller maintains con-
tact forces while the human operator controls the position and orientation of the
end-effector.

Li and Taylor (2004) used virtual fixtures to improve nose surgery. A 3D model
of the nose cavity was obtained from a CT-scan. The fixtures aided the surgeon in
following a precomputed trajectory while assuring that boundary constraints are
not violated.

The next section will explain about the various machine learning and classifi-
cation algorithms used for intention recognition in this thesis. If you have a strong
foundation in machine learning you may wish to skip past some parts of the next
section.

2.1. MACHINE LEARNING AND CLASSIFICATION 13

2.1 Machine Learning and Classification

A classifier in the traditional supervised learning sense is a function h : X → Y
that maps from a datum x ∈ X to a class y ∈ Y. A training example (x, y) is a
pair consisting of a datum x and its corresponding class label y taken from a set
of possible class labels Y. The training examples are usually assumed to be drawn
independently and identically (iid) from a joint distribution P (x, y). The training
data consists of N such examples. In supervised learning the classifier h undergoes
a learning process where the goal is to find an h that correctly classifies the class
y = h(x) of new unseen data. This is done by searching some space H of possible
classifiers.

For motion intention recognition classical supervised learning classifiers fail be-
cause the data associated with human motions are inherently sequential in their
nature. This means that the training data consists of sequences of (x, y) pairs
rather than isolated pairs being drawn iid. Furthermore these sequences usually
exhibit strong sequential correlation.

One way to make classification algorithms work with sequential data is to group
data over time and perform classification of the grouped data. This is easily imple-
mented as a sliding window of length L where the data in the time interval [t−L, t]
is passed as a datum point to the classifier. This works well in many settings and
is simple to implement. However there are also problems with this approach. The
window size L may affect classification performance and the optimal size may not
be constant in time. In addition spectral leakage may occur as a result of win-
dowing (Harris, 1978). Therefore it is often better to use classifiers and learning
algorithms that has been especially developed to work with sequential data.

In the sequential supervised learning problem the training data is a set Γ =
{(xi,yi)}, ∀i ∈ [1..N] of N training examples. Each example is a pair (xi,yi)
of sequences, where xi = {xi,1, xi,2, . . . , xi,T } and yi = {yi,1, yi,2, . . . , yi,T }. The
goal is to construct a classifier h that maps an unseen input sequence x to the
correct output sequence y. The two closely related problems mentioned earlier are
time-series analysis and sequence classification.

In sequence classification the goal is to predict a single label to an entire sequence
of input data. That is the function y = h(xi) maps from a sequence of input data
xi = {xi,1, xi,2, . . . , xi,T } to a single output class y.

For time-series prediction only a partial observation of xi up to time t is given
along with the corresponding correct class labels yi. The goal is then to predict
the future observations of xi and yi.

2.1.1 Markov Models

A Markov model is a model of a process that has the Markov property. The Markov
property means that the probability of changing from state s at time t to state s′

at time t + 1 depends only on the current state s. That is the probability P (s′|s)
is independent of the time t as well as any state transitions prior to time t + 1.

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1 shows an example of a Markov model as a directed graph. The arrows
connecting the states shows the probability of transition from one state to another.
These probabilities are often stored in a state transition probability matrix A, where
Ai,j is the probability of transition from state i to state j. Many variants of the
Markov model exists. For example there are continuous time versions where the
time is updated as a continuous variable rather than in steps. There are also higher
order Markov models such that for a 2nd order Markov model the state transition
does not only depend on the current state but also the previous state. For a Nth
order Markov model the state transition depends on the chain of state transitions
over the last N time steps. Markov processes are fully observable, meaning that
it is always possible to measure the current state of the process reliably. A simple
example of a Markov model could be the weather. Of course the weather is not truly
a Markov process since it is not possible to measure the state precisely. However,
an approximation can be used. In this simple example there are only three types
of weather, sunny, cloudy and raining enumerated as follows:

Weather State
Sunny 1

Cloudy 2
Raining 3

The state transition probability matrix for the simplified weather model would look
like:

A =

0.8 0.15 0.05
0.2 0.5 0.3
0.05 0.5 0.45

That is, given that it is sunny today the probability that it will be sunny tomorrow
is 80%. The probability that the weather will change to cloudy is 15% and that
it will start raining is only 5%. The corresponding graph is shown in figure 2.1.
The weather model is a fully connected model which means that it is possible to
transition from any given state to any other state. This can be seen since there are
no zero elements in the A matrix. The Markov model can be constrained in many
ways to simplify the model. One commonly used structure is the sequential left to
right (SLR) structure where it is only possible to transition to either the current
state or the next state. That is Ai,j = 0, ∀i 6= j, j 6= i + 1. Another common
structure also allows stepping backwards so that Ai,j = 0, ∀i 6= j, j 6= i± 1.

2.1.2 Hidden Markov Models

The hidden Markov model (HMM) is very similar to the Markov model described
previously. However, in the HMM it is not possible to observe the current state, it
is hidden. Compare this to the Markov model where it is always possible to observe
the current state exactly. Since it is not possible to directly observe the current
state in the HMM how can it be of any use? The answer is simple, it is possible to
observe something about the current state. That is, each state is associated with

2.1. MACHINE LEARNING AND CLASSIFICATION 15

Figure 2.1. A Markov model of the weather

a set of possible observations. However, these observations can only be associated
with a state in a statistical sense. The HMM is thus a doubly stochastic process.
There is an underlying, unobservable, Markov model which can be associated with
observations through observation probabilities. That means that each state in the
HMM has associated with it the probability of observing a particular observation.
In the simplest form of the HMM the observations are all taken from some finite
enumerated set O = {O1, O2, . . . , OM}. This means that it is possible to represent
the observation symbol probability as a matrix B where Bi,j is the probability to
observe the jth observation symbol in the state i. In addition, since it is generally
unknown even in which state the model is at time t = 0 an initial state probability
vector is also required. This is usually denoted by π such that πi is the probability
of starting in state i at time t = 0. Thus the HMM λ = {A,B, π} is defined by
three elements over N states and M discrete observation symbols.

• A ∈ R
N×N is the state transition probability matrix. Where Ai,j is the

probability of taking the transition from state i to state j.

• B ∈ R
N×M is the observation probability matrix, with Bi,j is the probability,

P (Oj |state i), of observing the jth possible observation symbol out of the total
M discrete observation symbols in state i.

• π ∈ R
N is the initial state probability vector, where πi is the probability of

starting in state i.

The majority of applications of HMMs have been in speech recognition (Rabiner,
1989) but successful results are also reported in many other fields. When dealing
with HMMs there are three problems that commonly has to be solved.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

1. Given a HMM λ = {A,B, π} and a sequence of observations symbols o =
{o1, o2, . . . , oT } up to time T , how can the probability P(o | λ) be computed.
The probability P(o | λ) reveals information about how likely the observa-
tions were generated from a process modeled by λ. This can be useful to
determine which of several processes occurred. This is hereafter referred to
as the problem of evaluation.

2. Given a HMM λ = {A,B, π} and a sequence of observations symbols o =
{o1, o2, . . . , oT } up to time T , how can the most probable state sequence be
determined? Often it is especially interesting to know which is the most
probable state at time T . This can be useful to determine the current state
of a process. This is known as the decoding problem.

3. Given training examples otrain = {o1,o2, . . . ,oK} of sequences of observa-
tions from the process, how can the model parameters A,B, π be adjusted to
maximize P(otrain | λ). This is useful to train the model to match an observed
process. This is the problem of learning.

Before we go into details on how to solve the three problems, let us consider an
example. Assume there are three coins c1, c2 and c3. Only c1 is a “fair” coin, i.e.
has the probability 0.5 for showing head and probability 0.5 for showing tail after
a toss of the coin. The coins c2 and c3 are rigged so that the probability of showing
head is different from showing tail as shown below:

Coin P(head) P(tail)
c1
c2
c3

0.5
0.33
0.2

0.5
0.67
0.8

Someone is then asked to toss the fair coin c1 50 times followed by coin c2 50 times.
With state 1 corresponding to tossing c1 and state 2 corresponding to tossing c2
this process can be modeled as a HMM with the following parameters:

A =

[

50
51

1
51

0 1

]

B =

[

0.5 0.5
0.33 0.67

]

π = [1 0]

This can be intuitively explained as follows. It is known that the fair coin is always
tossed first, i.e. the probability of starting in state 1 is 1. Since state 1 corresponds
to tossing c1 the probability of head and tail is the same, which can be seen in
the B matrix. Similar for state 2 and c2. The A matrix shows the probability of
switching from one state to another. State 1 will be active for the first 50 flips,

2.1. MACHINE LEARNING AND CLASSIFICATION 17

and the 51st flip will induce a switch of state to state 2. Thus the probability of
switching to state 2 is 1/51, given that we don’t know the number of previous flips
which is consistent with the Markov assumption, i.e. the probabilities does not
depend on the time. Once in state 2 it will remain active for the rest of the process,
and thus it has probability 1 of remaining in state 2.

Now the person is asked to flip c1 50 times and then to flip any of the other
two coins for 50 times. The outcome of the flips are recorded and makes up an
observation sequence o. From this sequence we are now interested in learning which
coins were tossed. To solve this problem using a HMM there are two approaches.

The first approach would be to construct two HMMs, one for the case when c2
is expected and one for the case when c3 is expected. For the situation with c2 the
model will obviously be the same as the one above. In the case where c3 is used
the B matrix must be changed to include the correct probabilities. The second row
of the B would change to [0.2 0.8]. Now there are two models describing the two
cases. In order to find out which model is more likely, and thus which coins were
used, it is necessary to compute P(o | λ) for both the models and then compare
the result. This is an example of the evaluation problem.

The second approach would be to alter the structure of the HMM, introducing
a new state. There would then be three states, corresponding to the three coins.
The model parameters for such a model would be:

A =

50
51

1
51·2

1
51·2

0 1 0
0 0 1

B =

0.5 0.5
0.33 0.67
0.2 0.8

π = [1 0 0]

In this model, as in the previous model, the probability to switch from state 1 to any
other state is 1

51 . The probability to switch to the two other states are distributed
evenly since there is no bias towards any of the other coins. To find out which coins
were tossed the outcome of the toss is once again recorded in an observation vector
o. If now only P(state i | o, t) could be computed for all t ∈ [1..100] it would
be possible to find out which state is most probable at the end of the toss. This
requires solving the decoding problem.

So far the examples have been simple an finding the model parameters has been
straight forward. In the last example the person is asked to begin tossing any one
coin for any number of times followed by another coin for an unknown number of
times. To make things even more difficult the person is allowed to use coins where
the probability of showing head or tail is unknown. The task now is to determine
the number of times the first coin is tossed and the probabilities that each of the
two coins show head and tail respectively. To do this it is enough to estimate the

18 CHAPTER 2. BACKGROUND AND RELATED WORK

model parameters of a two state SLR HMM. This can be done by solving learning
problem.

Evaluation

The first problem, the evaluation problem, deals with computing the probabil-
ity of a sequence of observations symbols o = {o1, o2, . . . , oT } up to time T ,
i.e. P(o | λ). Assuming the state sequence traversed is known to be Qknown =
{q1, q2, . . . , qT } the probability of the observation sequence can be rewritten as
P(o|λ) = P(o|λ,Qknown). If the state sequence Q traversed is not known it is
possible to compute the joint probability of o and Q as:

P(o, Q|λ) = P(o|λ,Q)P(Q|λ) (2.1)

The probability P(o|λ) can then be computed by summing over all possible state
sequences giving

P(o|λ) =
∑

all Q

(P(o|λ,Q)P(Q|λ)) (2.2)

From the model parameters it is now easy to see that

P(o|λ,Q) =

T
∏

t=1

Bqt,ot
(2.3)

P(Q|λ) = πq1

T−1
∏

t=1

Aqt,qt+1 (2.4)

One obvious problem with solving the evaluation problem in this way is the
summation over all possible state sequences. Since there are N states that can be
reached at each time t there will be NT state sequences. For each such state se-
quence the equations (2.3) and (2.4) must be computed. This computation involves
in the order of 2T operations. The complexity of this method is thus in O(TNT)
which is generally infeasible to compute. As an example, even for the simple model
with 2 states and 100 observations, used in the coin toss example, the number of
operations would be in the order 1032. Clearly some more efficient approach must
be used.

There exists a simple iterative procedure for solving the evaluation problem. It
is called the forward-backward procedure (Rabiner, 1989; Dugad and Desai, 1996)
for reasons that will become obvious. The forward variable defined as:

αi(t) = P(o1, o2, . . . , ot|qt = i, λ) (2.5)

gives the probability of observing the observation sequence o1, o2, . . . , ot up to time
t given that the model at time t is in state i. Realizing that the only way to end up
in state qt = i at time t is to have been in any of the N states at time t− 1, thus if

2.1. MACHINE LEARNING AND CLASSIFICATION 19

it was known what the probabilities of being in each state were at time t− 1, that
is αi(t− 1), it would be simple to calculate αi(t) as:

αi(t) = Bi,ot

N
∑

k=1

αk(t− 1)Ak,i (2.6)

Equation (2.6) states that the probability of being in state i at time t is simply the
probability of observing the symbol ot in that state multiplied with the probability
of transferring to this state given the probabilities of each state at time t− 1. The
forward variable can now be computed iteratively using (2.6), given that αi(1) =
πiBi,o1 . To get the total probability of the observation sequence it is enough to
sum over the probability of all possible states at time T :

P(o|λ) =

N
∑

k=1

αk(T) (2.7)

The complexity of computing the forward variable is in O(N2T), thus the example
with the coin toss would require about 400 computations. A drastic reduction from
1032.

The reason that this is referred to as the forward-backward procedure will be-
come evident in the section dealing with the learning problem when the backward
variable is introduced in a similar way.

Decoding

The decoding Problem deals with computing the most probable state sequence
Qopt given a model λ = {A,B, π} and a sequence of observations symbols o =
{o1, o2, . . . , oT } up to time T . The problem here is that there is no single definition
of optimal. For example, one optimality criterion could be to maximize the expected
number of correct individual states. However, the most commonly used criterion
is to compute the single best state sequence, i.e. to find Q such that P(Q|o, λ) is
maximized (Rabiner, 1989; Dugad and Desai, 1996). A straightforward approach
would be to compute P(Q|o, λ) for all possible Q. However, as with the evaluation
problem the straight forward approach is too computationally expensive. Similar
to the forward-backward procedure there exists a famous algorithm to solve the
decoding problem, called the Viterbi algorithm (Forney Jr., 1973) which is presented
here.

Since P(Q|o, λ) = P(Q,o|λ)/P (o|λ) maximizing over P(Q,o|λ) will result in
the same Q, because P (o|λ) is only a constant scaling factor. From (2.1), (2.3) and
(2.4) it can be seen that

P(Q,o|λ) = P(Q|o, λ)P (o|λ) =

T
∏

t=1

Bqt,ot
· πq1

T−1
∏

t=1

Aqt,qt+1

20 CHAPTER 2. BACKGROUND AND RELATED WORK

Now define

Γ(Q) = − ln (P(Q,o|λ)) = − ln

(

T
∏

t=1

Bqt,ot
· πq1

T−1
∏

t=1

Aqt,qt+1

)

=

= −
(

ln (πq1Bq1,o1) +
T
∑

t=2

ln
(

Aqt−1,qt
Bqt,ot

)

)

and note that from this definition

P(Q,o|λ) = e−Γ(Q)

and thus the problem of maximizing P(Q,o|λ) becomes equivalent to minimizing
Γ(Q). This reformulation of the problem is good because it makes it possible to
think of terms such as − ln(Aqi,qj

Bqj ,ot
) as the cost of going from state qi to state

qj at time t, given that the observation was ot.
Now that state transitions has been associated with costs it is possible to re-

formulate the problem as finding the shortest path through a graph. Consider the
following: if at time t the shortest route, and its associated cost cs, to all N states
were known it would be possible to compute the shortest route to a state q at time
t + 1 by looking at the cost of going from any of the N states to q and choosing
the minimum. Because of the Markov property which states that the next state
transition only depends on the current state and the observation at the current
time, the shortest path through state q at time t can never change after time t.
This means that at any time it is enough to keep track of the shortest path to all
N states and from that shortest path at time t+1 can be computed. This can then
be performed recursively until time T is reached.

To implement the Viterbi algorithm it is necessary to keep track of two prop-
erties. First the accumulated cost of being in state i at time t is denoted by δi(t).
The second property is the minimum cost of going from state i to state j at time t
and is denoted by ψj(t). The shortest path can now be computed recursively as

δj(t) = min
i

(δi(t− 1) − ln(Ai,j)) − ln (Bj,ot
) , ∀t ∈ [2, T..]

ψj(t) = argmin
i

(δi(t− 1) − ln(Ai,j)) , ∀t ∈ [2, T..]

where, for i ∈ [1..N]

δi(1) = − ln(πi) − ln(Bi,ot
)

ψi(1) = 0

Finally the most probable state at time T , q∗T and the most probable state sequence
leading up to q∗T is computed as follows

2.1. MACHINE LEARNING AND CLASSIFICATION 21

q∗T = argmin
i

(δi(T))

q∗t = ψq∗

t+1
(t+ 1), for t = T − 1, T − 2, . . . , 1

The total cost of the optimal path Q∗ = q∗1 , q
∗
2 , . . . , q

∗
T leading to q∗T is thus P ∗ =

mini (δi(T)) and the associated probability is given by e−P∗

.

Learning

The problem of determining the model parameters A,B, π of the model λ in order to
maximize the probability P(o | λ) is by far the most difficult of the three problems.
This problem is somewhat different than the other two in that there exists no
analytical solution. As a matter of fact there is no optimal way of estimating the
model parameters given a finite observation sequence (Rabiner, 1989; Dugad and
Desai, 1996). However, the model parameters can be locally optimized. One famous
method for accomplishing this is the Baum-Welch method which is described here.
The model parameters that needs to be estimated are A,B and π. With the same
reasoning as in the coin flip example used previously a natural way of estimating
them would be

π∗
i = expected number of times in state i at time t = 1 (2.8)

A∗
i,j =

expected number of transitions from state i to state j

expected number of transitions from state i
(2.9)

B∗
i,o =

expected number of times in state i and observing o

expected number of times in state i
(2.10)

Now all that has to be done is to compute these properties from the training
sequences. In order to achieve this define

ξi,j(t) = P(qt = i, qt+1 = j|o, λ) (2.11)

as the probability of being in state i at time t followed by state j at time t + 1
given the model λ and the observation sequence o. To compute ξ it is now time to
introduce the backward variable of the forward-backward procedure mention previ-
ously while solving the evaluation problem. Recall that the forward variable αi(t)
gives the probability of being in state i at time t given the observations sequence
o = {o1, o2, . . . , ot} up to time t for a given model λ. The backward variable βi(t)
gives the probability of the observation sequence ot+1, ot+2, . . . , oT given the model
λ and that the state at time t is i, that is βi(t) = P(ot+1, ot+2, . . . , oT |qt = i, λ). The
backward variable can be computed in a similar manner to the forward variable:

βi(T) = 1, ∀ i ∈ [1..N]

βi(t− 1) =

N
∑

j=1

(Ai,jBj,ot
βj(t))

22 CHAPTER 2. BACKGROUND AND RELATED WORK

The forward and backward variables can now be used in conjunction with Bayes
rule to compute (2.11) in the following way:

ξi,j(t) = P(qt = i, qt+1 = j|o, λ) =

=
P(qt = i, qt+1 = j,o|λ)

P(o|λ) =

=
αi(t)Ai,jBj,ot+1βj(t+ 1)

P (o|λ) =

=
αi(t)Ai,jBj,ot+1βj(t+ 1)

N
∑

i=1

N
∑

j=1

αi(t)Ai,jBj,ot+1βj(t+ 1)

(2.12)

To solve the learning problem it is only required to introduce one more property,
γi(t) = P(qt = i|o, λ), which is the probability of being in state i at time t given
the model λ and the observation sequence o up to time t. Using Bayes rule and
the forward and backward variables γi(t) can be written as:

γi(t) = P(qt = i|o, λ) =
P(qt = i,o|λ)

P(o|λ) =
αi(t)βi(t)

N
∑

j=1

αj(t)βj(t)

and it relates to ξ as

γi(t) =

N
∑

j=1

ξi,j(t)

Since γi(t) is the probability for being in state i at time t summing γi(t) over all
t ∈ [1..T] gives the expected number of times state i is visited. Summing only up
until t = T − 1 yields the expected number of transitions out of state i, that is:

ρi =
T
∑

t=1
γi(t) = expected number of times in state i

σi =
T−1
∑

t=1
γi(t) = expected number of transitions from state i

Similarly summing ξi,j(t) over all t ∈ [1..T − 1] gives the expected number of
transitions from state i to state j.

υi,j =

T−1
∑

t=1

ξi,j(t) = expected number of transitions from state i to state j

2.1. MACHINE LEARNING AND CLASSIFICATION 23

Now all properties that is necessary to update λ can be computed as:

π∗
i = γi(1) (2.13)

A∗
i,j =

υi,j

σi

B∗
i,k =

T
∑

t=1

{

0, ot 6= Ok

γi(t), ot = Ok

ρi

where B∗
i,k is simply the number of times in state i while observing Ok.

The problem with this is that in order to compute the optimal values from the
forward and backward variables it is necessary to know the model parameters, thus
to compute the model parameters the model parameters have to be known. While
this might seem like a catch-22 there is a simple solution to the problem. The
solution is to start with an initial guess of the parameters and keep reestimating
them using the equations above until a local maximum is found. Starting with an
initial model λ(A,B, π) and using the parameters of that model to compute a new
model λ∗(A∗,B∗, π∗) it can be shown that either λ∗ = λ or P(o|λ∗) > P(o|λ).
Now it is simply a matter of using the new model λ∗ as an initial guess and keep
reestimating the parameters iteratively until λ∗ = λ, in which case a local maximum
has been found.

While the Baum-Welch method is the most famous algorithm for training HMMs
there are other methods. One other method is the segmental k-means algorithm
(Dugad and Desai, 1996; Juang and Rabiner, 1990). The Baum-Welch algorithm
adapts λ in order to locally maximize P(o|λ). The segmental k-means algorithm
adapts λ in order to locally maximize P(o, Q|λ). As the name implies the segmental
k-means algorithm is based on k-means clustering (see section 2.1.5).

Since the Baum-Welch method is a local method that will search for a local
maximum of the probability P(o|λ) the initialization of λ can be very important.
Not only will the choice of the initial parameters affect the rate of convergence of
the Baum-Welch algorithm but it will also determining which local maximum is
found. Furthermore the initialization can be used to constrain the model in various
ways. For example from (2.12) it is clear that if Ai,j is zero ξi,j(t) will be zero
for all t. This results in that υi,j will be zero in (2.14) and thus Ai,j will remain
zero for ever. This can be very useful to constrain the model. As an example,
consider creating a SLR model. It would then be reasonable to initialize A as
Ai,j = 0, ∀ i 6= j, i 6= j − 1 and Ai,j = 1 − ǫ, ∀ i = j and Ai,j = ǫ, ∀ i = j − 1.
The value ǫ can be chosen arbitrarily in the interval]0, 1[but will affect the rate
of convergence and possibly which maxima is found. In this way the model can be
initialized to allow, for example, stepping backwards or even to be fully connected.

Extensions to HMMs

Hidden Markov models have been applied successfully in several areas and a number
of extensions has been proposed. Some of these extensions that are relevant to the

24 CHAPTER 2. BACKGROUND AND RELATED WORK

work presented in this thesis is briefly described in the following sections. The
interested reader are referred to the references for further details.

Multi dimensional HMM

In some settings it is not convenient to map multi dimensional input to a set of
enumerated symbols. Hannaford and Lee (1990) suggests a different approach. The
idea is to extend the HMM classification to directly deal with multi dimensional
observation symbols. The Viterbi algorithm uses the probability P (ot|state i) of
observing a specific observation symbol ot in state i together with the state tran-
sition probabilities to compute the probability of being in a certain state. To be
able to extend the Viterbi algorithm to multidimensional data, independence be-
tween the different dimensions is assumed. Thus there will be a B matrix for each
dimension of the input data. This means that for a D dimensional HMM the ob-
servation symbols are also D dimensional where each dimension d contains values
from a finite enumerated set Od = {O1, O2, . . . , OKd

}. The recursion equation in
the forward procedure (2.6) now becomes

αi(t) =

(

N
∑

k=1

αk(t− 1)Ak,i

)

D
∏

d=1

Bi,od,t

Continuous Density HMM

Another limitation with the basic HMM formulation is that the observations must
be taken from a finite enumerated set O = {O1, O2, . . . , OM}. This can often be
achieved by clustering or quantization of the data, (Gray, 1984) but sometimes
this is not a good approach. To overcome this the Continuous Density HMM, or
CDHMM, has been proposed. Here the B matrix is replaced by a set of probability
density functions (PDFs) that are used to estimate the required P (o|state i). Usu-
ally a Gaussian PDF or a mixture of Gaussians is used, but any PDF can be chosen
to fit a particular application. In the case of a Gaussian PDF the probability of
observing an observation o given a state i can be computed as

P (o|state i) =
1√

2πσi

e
(o−mi)

2

2σ2
i (2.14)

where mi is the mean and σi is the standard deviation of the Gaussian. If a mixture
of K Gaussians is used there will be an additional scaling factor such that (2.14)
becomes

P (o|state i) =
K
∑

k=1

ci,k√
2πσi

e
(o−mi)

2

2σ2
i (2.15)

All the parametersmi, σi and ci,k can be estimated by straightforward modifications
to the Baum-Welch algorithm, see e.g. Gauvain and Chin-Hui (1994).

Probability Estimators for HMMs

Using a parametric distribution to model the observation probabilities as mentioned

2.1. MACHINE LEARNING AND CLASSIFICATION 25

above may decrease the performance of the HMM since the real distribution is
hidden and the assumption of a parametric distribution is a strong hypothesis on
the model (Castellani et al., 2004).

Applying probability estimators avoids this problem. These estimators com-
pute the observation symbol probability (Bourlard and Morgans, 1990) instead of
using a look-up matrix or parametric model. Another advantage with probability
estimators compared to using discrete symbols is the possibility to use continuous
input instead of discrete observation symbols for the HMM.

Successful use of probability estimators using multi layer perceptions (MLP) and
Support Vector Machines (SVMs) are reported in (Bourlard and Morgans, 1990;
Renals et al., 1994; Ganapathiraju et al., 2000). Naturally, the estimators cannot
be trained with the Baum-Welch algorithm, but have to be trained separately.

Optimization of the HMM Parameters

It has been shown in section 2.1.2 how the parameters A,B, π of a HMM can be
trained. However, there still exists a number of free parameters for the HMM, such
as the number of states N , the topology of the model, the number of observation
symbols M or Gaussians etc. No general solution on how to estimate all of the
above mentioned parameters from training data is available (Zimmermann and
Bunke, 2002). However, methods have been proposed for optimizing the number
of states, the number of Gaussians and the number of training iterations, (Günter
and Bunke, 2003; Zimmermann and Bunke, 2002).

2.1.3 Structured Hidden Markov Models

It is sometimes useful to use HMMs in specific structures in order to facilitate learn-
ing and generalization. For example, even though a fully connected HMM could
always be used if enough training data is available it is often useful to constrain
the model by not allowing arbitrary state transitions. In the same way it can be
beneficial to embed the HMM into a greater structure; which, theoretically, may
not be able to solve any other problems than the basic HMM but can solve some
problems more efficiently when it comes to the amount of required training data.

Layered Hidden Markov Model

A layered hidden Markov model (LHMM), (Oliver et al., 2004) consists of N levels
of HMMs where the HMMs on level N + 1 corresponds to observation symbols or
probability generators at level N . Every level i of the LHMM consists of Ki HMMs
running in parallel, see figure 2.2.

At any given level L in the LHMM a sequence of TL observation symbols oL =
{o1, o2, ..., oTL

} can be used to classify the input into one of KL classes, where
each class corresponds to each of the KL HMMs at level L. This classification can
then be used to generate a new observation for the level L − 1 HMMs. At the

26 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.2. A layered hidden Markov model

lowest layer, i.e. level N , primitive observation symbols op = {o1, o2, ..., oTp
} would

be generated directly from observations of the modeled process. For example in a
trajectory tracking task the primitive observation symbols would originate from the
quantized sensor values. Thus at each layer in the LHMM the observations originate
from the classification of the underlying layer, except for the lowest layer where the
observation symbols originate from measurements of the observed process.

It should be noted here that it is not necessary to run all levels at the same
time granularity. For example it is possible to use windowing at any level in the
structure so that the classification takes the average of several classifications into
consideration before passing the results up the layers of the LHMM.

Instead of simply using the winning HMM at level L+1 as an input symbol for
the HMM at level L it is possible to use it as a probability generator by passing
the complete probability distribution up the layers of the LHMM. Thus instead
of having a “winner takes all” strategy where the most probable HMM is selected
as an observation symbol, the likelihood L(i) of observing the ith HMM can be
used in the recursion formula of the level L HMM to account for the uncertainty
in the classification of the HMMs at level L + 1. Thus, if the classification of the
HMMs at level n+1 is uncertain, it is possible to pay more attention to the a-priori

2.1. MACHINE LEARNING AND CLASSIFICATION 27

information encoded in the HMM at level L.
It should be noted here that a LHMM could in practice be transformed into

a single layered HMM where all the different models are concatenated together.
Some of the advantages that may be expected from using the LHMM over a large
single layer HMM is that the LHMM is less likely to suffer from over-fitting since
the individual sub-components are trained independently on smaller amounts of
data. A consequence of this is that a significantly smaller amount of training
data is required for the LHMM to achieve a performance comparable of the HMM.
Another advantage is that the layers at the bottom of the LHMM, which are more
sensitive to changes in the environment such as the type of sensors, sampling rate
etc, can be retrained separately without altering the higher layers of the LHMM.

Hierarchical Hidden Markov Models

In the Hierarchical Hidden Markov Model (HHMM) each state is considered to
be a self contained probabilistic model. More precisely each state of the HHMM
is itself a HHMM. This implies that the states of the HHMM emits sequences of
observation symbols rather then single observation symbols as is the case for the
standard HMM states.

When a state in a HHMM is activate, it will activate its own probabilistic
model, i.e. it will activate one of the states of the underlying HHMM, which in
turn may activate its underlying HHMM and so on. The process is repeated until
a special state, called a production state, is activated. Only the production states
emit observation symbols in the usual HMM sense. When the production state has
emitted a symbol, control returns to the state that activated the production state.
The states that does not directly emit observations symbols are called internal
states. The activation of a state in an HHMM under an internal state is called a
vertical transition. After a vertical transition is completed a horizontal transition
occurs to a state within the same level. When a horizontal transition leads to a
terminating state control is returned to the state in the HHMM, higher up in the
hierarchy, that produced the last vertical transition.

Remember that a vertical transition can result in more vertical transitions before
reaching a sequence of production states and finally returning to the top level. Thus
the production states visited gives rise to a sequence of observation symbols that
is “produced” by the state at the top level. The structure of the HHMM is shown
in figure 2.3.

The methods for estimating the HHMM parameters and model structure are
more complex than for the HMM and the interested reader is referred to (Fine et
al., 1998).

It should be pointed out that the HMM, HHMM and LHMM all belong to the
same class of classifiers. That is, they can be used to solve the same set of problems.
In fact, both the HHMM and LHMM can be transformed into a standard HMM.
However, both HHMMs and LHMMs utilize their structure to solve a subset of the
problems more efficiently.

28 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.3. Illustration of the structure of a HHMM. Gray lines shows vertical
transitions. The horizontal transitions are shown as black lines. The light gray
circles are the internal states and the dark gray circles are the terminal states that
returns control to the activating state. The production states are not shown in this
figure.

2.1.4 Support Vector Machines

Support Vector Machines (SVMs) have been used extensively for pattern classifica-
tion in a number of research areas (Roobaert, 2001; Rychetsky et al., 1999; Hyunsoo
and Haesun, 2004). SVMs have several appealing properties such as fast training,
accurate classification and good generalization (Chen et al., 2005; Burges, 1998).
In short, SVMs are binary classifiers that separate two classes by an optimal sepa-
ration hyperplane. The separation hyperplane is found by minimizing the expected
classification error which is equal to maximizing the margin as demonstrated in
figure 2.4.

SVMs work with linear separation surfaces in a pre-Hilbert space (Chen et al.,
2005), i.e. a space where the inner-product is defined. However, the input patterns
are often not linearly separable, or even defined in such a space. To overcome
this limitation, a “kernel trick” is used to transform the input pattern to a Hilbert
space (Aizerman et al., 1964). A map φ : X → H is defined for the patterns
x ∈ X . The Hilbert space H is commonly called the feature space (Chen et al.,
2005). There are three benefits of transforming the data into H (Chen et al., 2005).
It makes it possible to define a similarity measure from the dot product in H. In
addition, it provides a setting to deal with the patterns geometrically and moreover
makes it possible to study learning algorithms using linear algebra and analytic
geometry. Finally, it provides the freedom to choose the mapping φ which, in its
turn, makes it possible to design a large variety of learning algorithms. SVMs try
to estimate a function h : X → {±1} that classifies the input x ∈ X to one of

2.1. MACHINE LEARNING AND CLASSIFICATION 29

Figure 2.4. A binary classification example: circles are separated from triangles by
a separation hyperplane. The support vectors originate from the training examples
and are marked by filled symbols.

the two classes ±1 based on input-output training data. It is a well known fact
from Vapnik-Chervonenkis (VC) theory that it is imperative to restrict the class of
functions that h is chosen from, in order to avoid over-fitting. SVMs restrict the
set of functions to hyperplanes.

Consider the class of hyperplanes

w · x + b = 0, wc ∈ R
N , b ∈ R

with x = φ(x) and the corresponding decision function

h(x) = sgn(w · x + b)

Among all such hyperplanes there exists a unique one that gives the maximum
margin of separation between the two classes ±1 (Chen et al., 2005), that is:

max
w,b

(

min(‖x − xi‖ : x ∈ R
N , w · x + b = 0)

)

(2.16)

If w and b are scaled to obtain a canonical form, i.e. w ·x1 + b = 1 and w ·x2 + b =
−1, the size of the margin becomes 2/‖w‖. The optimal hyperplane can then be
computed by solving the following optimization problem:

minimize
1

2
‖w‖2 over w, b

subject to : yi((w · xi) + b) ≥ 1, ∀i ∈ [1..M] (2.17)

30 CHAPTER 2. BACKGROUND AND RELATED WORK

One way to solve (2.17) is through the Lagrangian dual:

max
α≥0

(

min
w,b

(L(w, b, α))

)

L(w, b, α) =
2

‖w‖2
−

M
∑

i=1

αi(yi((xi ·w) + b) − 1)

From the above, it can be shown (Chen et al., 2005) that the hyperplane decision
function can be written as:

h(x) = sgn

(

m
∑

i=1

yi · αi(x · x) + b

)

(2.18)

which implies that the solution vector w has an expansion in terms of a subset of
the training samples. The subset is formed by the training samples with a non-
zero Lagrange multiplier, αi. The samples with a non-zero Lagrange multiplier
are known as the support vectors. The support vectors can easily be computed by
solving a quadratic programming problem, (Chen et al., 2005).

The basic SVM formulation achieves poor classification performance when faced
with outliers. That is if it is impossible to clearly separate the two classes with a
separation hyperplane. This can happen if the noise is high so that there is an
overlap between the two classes. There exists modifications to the basic SVM
formulation so that this can be handled. For example it is possible to introduce
an additional variable ν known as the slack variable. This variable can be used to
allow some amount of the training examples to violate (2.17), effectively creating a
“soft” margin where not all training examples need to be on the correct “side” of
the separation hyperplane, see e.g. Chen et al. (2005).

2.1.5 K-Means Clustering

K-means clustering is a procedure for partitioning an N -dimensional population
into k sets given training data extracted from that population, (MacQueen, 1967;
Jain et al., 1999). The k-means procedure is both computationally efficient and
easy to implent, while maintaining good classification performance. Some variants
of the k-means algorithm exit, but the core idea is the same. The approach used
in this thesis is given here, see (MacQueen, 1967) for details and analysis of the
algorithm.

The core idea of the k-means algorithm is to find k cluster centers {c1, c2, . . . , ck}
given a set of training data X = {x1,x2, . . . ,xM} so that xi is said to be a member
of cluster cj if, according to some distance measure δ(·, ·):

δ(xi, cj) < δ(xi, cl) ∀j, l ∈ [1..k], j 6= l

In the case where δ(xi, cj) = δ(xi, cl), j < l, xi is a member of cj so that if cj = cl

and j < l cl = ∅. That is, each datum is a member of the cluster corresponding to

2.1. MACHINE LEARNING AND CLASSIFICATION 31

its closes cluster center and if two or more cluster centers are at the same distance
it is a member of the lowest numbered cluster center. The set of data points X̂ ⊆ X
that is a member of cluster c is denoted by X̂ = µ(X, c). The algorithm used to
find the cluster centers can now be described by algorithm 1.

Algorithm 1 K-means clustering

1. Initialize C = [c1; c2; . . . ; ck] to k random data points from the training data
X .

2. Find the members of each data point so that Si contains all members to
cluster i

3. Compute a new cluster center ci from the average of all members in Si.

4. If the cluster centers are stationary, return C

5. Generate a new C from the new cluster centers and repeat from 2

The number of clusters and the initial cluster centers will affect the performance
and the result of the algorithm, (Jain et al., 1999). To minimize the risk of a poor
initial selection of clusters the algorithm can be run several times to generate dif-
ferent clusters and the result with, for example, the lowest average or total distance
of data points to their corresponding cluster center can be chosen.

A way to adapt the number of clusters was proposed by MacQueen (1967).
The idea is to introduce two new variables C and R known as the coarsening and
refinement parameters. After each iteration of the k-means algorithm the minimum
distance between two cluster centers are determined, such that

∆ = min
i,j

(δ(ci, cj)) (2.19)

if ∆ < C the two corresponding clusters are merged using their weights. In this
thesis the weights are simply the number of training points assigned to each cluster
center. This results in a coarsening of the clusters. Similarly, for the refinement
process, the distance of each data point to its corresponding cluster, δ(xj , ci), is
compared to R so that if δ(xj , ci) > R, xj is taken to be a new cluster center. This
result is in a refinement of the clusters. One problem with this approach is that
the selection of C and R can be difficult. For a known domain C and R can often
be given intuitive values. For a domain where little is known about the data the
selection of the parameters becomes more difficult. Furthermore, the parameters
are sensitive to scaling of the data.

Another approach that can be applied to many clustering algorithms is the so
called elbow criterion. The basic idea is simple. New clusters are added as long
as they provide a sufficient increase in performance. Now all that is needed is a
definition of sufficient and performance. To understand the elbow criterion consider

32 CHAPTER 2. BACKGROUND AND RELATED WORK

dx
dy

2 clusters

dx

dy

3 clusters

dx

dy

4 clusters

dx

dy

5 clusters

Figure 2.5. Cluster centers obtained by k-means clustering of motion direction
vectors for five nominal directions.

the following example. The goal is to estimate the number of motion directions in
a data set. The input exemplars, i.e. the training set, is a set of motion vectors.
These vectors lie on the unit circle as shown in figure 2.5 for 2, 3, 4 and 5 clusters. In
this case a reasonable measure of the performance of the clustering using k clusters
is based on the sum of distances from all exemplars to their corresponding cluster
center as shown in (2.20). This performance measurement is by no means unique
but it serves to illustrate the point.

υ(k) =

k
∑

i=1

∑

∀x∈µ(X,cj)

δ(xi, cj) (2.20)

Next υ(k) is computed for a range of possible values of k, k ∈ [1..15] in this example.
It is now possible to compute the normalized error e(k) ∈ [0, 1] from υ(k) as

e(k) =
υ(k) − min

i
υ(i)

max
j
υ(j)

The error e(k) can now be used as a performance measure so that when the error
is low, the performance is high, and vice versa. Figure 2.6 (top) shows a plot of

2.1. MACHINE LEARNING AND CLASSIFICATION 33

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Number of clusters

N
or

m
al

iz
ed

 d
is

ta
nc

e
un

its e
K

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

Number of clusters

N
or

m
al

iz
ed

 d
is

ta
nc

e
un

its −∆e
g
h

Figure 2.6. Estimation of the number of clusters using the elbow criterion. The
actual number of clusters is 5.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Number of clusters

N
or

m
al

iz
ed

 d
is

ta
nc

e
un

its e
K

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

Number of clusters

N
or

m
al

iz
ed

 d
is

ta
nc

e
un

its −∆e
g
h

Figure 2.7. Estimation of the number of clusters using the elbow criterion. The
actual number of clusters is 10.

34 CHAPTER 2. BACKGROUND AND RELATED WORK

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Number of clusters
N

or
m

al
iz

ed
 d

is
ta

nc
e

un
its e

K

1 2 3 4 5 6 7 8
0

0.5

1

1.5

Number of clusters

N
or

m
al

iz
ed

 d
is

ta
nc

e
un

its −∆e
g
h

Figure 2.8. Estimation of the number of clusters using the elbow criterion. The
actual number of clusters is 10, but only 8 clusters are considered and therefore the
wrong elbow point is selected.

e(k) for the example data set shown in figure 2.5. It can be seen from figure 2.6
(top) that the rate of decrease in error drops sharply around 5 clusters, the curve
has an “elbow” at k = 5. The idea is that when the addition of more clusters
does not have a significant effect on the error compared to the previous clusters
added the optimal number of clusters has been found. The lower plot of figure 2.6
shows the slope ∆e(k) of e(k). As it can be seen the slope is close to zero for
k > 5. By manually inspecting the normalized error or its slope it is easy to find
the number of clusters. However, if no manual intervention is allowed it is necessary
to automatically estimate the “elbow” point. The simplest way to do this is to put
a threshold on e(k) or −∆e(k) so that when the value drops below this threshold
the correct number of clusters has been found. A more robust approach is to apply
cumulative sum (CUSUM) RLS test (Gustafsson, 2000) to ∆e. The test statistic
g(k) of the CUSUM test for the input y(k) is updated according to (2.21).

g(n+ 1) = g(n) + y(n) − ŷ(n) − ν (2.21)

g(n) = 0, and k∗ = n if g(n) < 0 (2.22)

g(n) = 0, na = n and alarm if g(n) > h

ŷ(n+ 1) = ŷ(t) · N − 1

N
+
y(n)

N
, N = n− n0

2.2. VIRTUAL FIXTURES 35

Running the CUSUM RLS test backwards from n = K yields the test statistic
shown in figure 2.6 (bottom). The test triggers when g(k) > h, which is when the
dashed line is crossed. The change is estimated to the last sample the test was reset,
i.e. g(k) < 0, this point marks the elbow of the normalized error and is shown as a
vertical dashed line in figure 2.6.

Figure 2.7 shows the same thing for an example with 10 clusters. From the
figure it can be seen that there are actually “two” elbows, one around k = 5, and
one more distinct around k = 10. This is natural because at k = 5 each cluster
center is assigned to two actual clusters, drastically improving the average error
compared to using fewer clusters. This can be a problem if the range of values for k
investigated is too small. For example, figure 2.8 shows an example with the same
data, i.e. 10 clusters, but where only the possibility of 1-8 clusters are examined. It
can be seen that in this case the test triggers and gives an estimate of the number
of clusters of 5, which is the “strongest” elbow in this range.

2.2 Virtual Fixtures

Rosenberg (1993) presents the concept of virtual fixtures as an overlay of abstract
sensory information on a workspace in order to improve the tele-presence in a tele-
manipulation task. The concept of abstract sensory overlays is difficult to visualize
and talk about, as a consequence the virtual fixture metaphor was introduced. To
understand what a virtual fixture is an analogy with a real physical fixture such as
a ruler is often used. A simple task such as drawing a straight line on a piece of
paper on free-hand is a task that most humans are unable to perform with good
accuracy and high speed. However, the use of a simple device such as a ruler allows
the task to be carried out fast and with good accuracy. The use of a ruler helps
the user by guiding the pen along the ruler reducing the tremor and mental load
of the user, thus increasing the quality of the task.

The definition of virtual fixtures in (Rosenberg, 1993) is much broader than
simply providing guidance of the end-effector. For example, auditory virtual fixtures
are used to increase the user awareness by providing audio clues that helps the
user by providing multi modal cues for localization of the end-effector. Rosenberg
argues that the success of virtual fixtures is not only due to the fact that the
user is guided by the fixture, but that the user experiences a greater presence and
better localization in the remote workspace. However, in the context of HMCS, the
term virtual fixture is most often used to refer to a task dependent aid that guides
the user’s motion along desired directions while preventing motion in undesired
directions or regions of the workspace. This is the definition of virtual fixture used
in this thesis; if not stated otherwise.

Virtual fixtures can be either guiding virtual fixtures or forbidden regions virtual
fixtures. A forbidden regions virtual fixture could be used, for example, in a tele-
operated setting where the operator has to drive a vehicle at a remote site to
accomplish an objective. If there are pits at the remote site which would be harmful

36 CHAPTER 2. BACKGROUND AND RELATED WORK

(a) (b)

Figure 2.9. Example of virtual fixtures. (a) Forbidden regions virtual fixtures. (b)
Guiding virtual fixtures.

for the vehicle to fall into; forbidden regions could be defined at the various pits
locations, thus preventing the operator from issuing commands that would result
in the vehicle ending up in such a pit, see figure 2.9(a). Such illegal command could
easily be sent by an operator because of, for instance, delays in the tele-operation
loop, bad tele-presence or a number of other reasons.

An example of a guiding virtual fixture could be when the vehicle must follow
a certain trajectory, see figure 2.9(b).

The operator is then able to control the progress along the preferred direction
while motion along the non-preferred direction is constrained.

With both forbidden regions and guiding virtual fixtures the stiffness, or its
inverse the compliance, of the fixture can be adjusted. If the compliance is high
(low stiffness) the fixture is soft. On the other hand when the compliance is zero
(maximum stiffness) the fixture is hard, see figure 2.10. Recent research has inves-

Figure 2.10. The stiffness of a virtual fixture can be soft or hard. A hard fixture
completely constrains the motion to the fixture while a softer fixture allows some
deviations from the fixture.

tigated different ways of adjusting the compliance of the virtual fixture to further
improve the execution of collaborative tasks, (Nolin et al., 2003; Marayong et al.,

2.2. VIRTUAL FIXTURES 37

2002).

2.2.1 Virtual Fixture Control Law

This section describes how a control law that implements virtual fixtures can be
derived. It is assumed that the robot is a purely kinematic device with end-effector
position p = [x, y, z] ∈ R

3 and end-effector orientation r = [rx, ry, rz] ∈ R
3 ex-

pressed in the robot’s base frame Fr. The input control signal u to the robot is
assumed to be a desired end-effector velocity v = ẋ = [ṗ, ṙ]. In a tele-operated
system it is often useful to scale the input velocity from the operator, vop before
feeding it to the robot controller. If the input from the user is of an other form
such as a force or position it must first be transformed to an input velocity, by for
example scaling or differentiating.

Thus the control signal u would be computed from the operator’s input velocity
vop as shown in (2.23). If c = 1 there exists a one-to-one mapping between the
operator and the slave robot.

v = c · vop (2.23)

If the constant c is replaced by a diagonal matrix C it is possible to adjust the
compliance independently for different dimensions of ẋ. For example, setting the
first three elements on the diagonal of C to c 6= 0 and all other elements to zero
would result in a system that only permits translational motion and not rotation.
This would be an example of a hard virtual fixture that constrains the motion
from x ∈ R

6 to p ∈ R
3. If the rest of the elements on the diagonal were set to a

small value, instead of zero, the fixture would be soft, allowing some motion in the
rotational directions.

To express more general constraints assume a time-varying matrix D(t) ∈
R

6×n, n ∈ [1..6] which represents the preferred direction at time t. Thus if n = 1
the preferred direction is along a curve in R

6. Likewise, n = 2 would give preferred
directions that span a surface. From D two projection operators can be defined
(Marayong et al., 2003), the span and kernel of the column space:

Span(D) ≡ [D] = D(DT D)−1DT (2.24)

Kernel(D) ≡ 〈D〉 = I − [D] (2.25)

If D does not have full column rank the span cannot be computed, consequently
it is better to compute (2.24) by using the pseudo-inverse (Marayong et al., 2003),
thus in practice the span is computed as:

Span(D) ≡ [D] = D(DT D)†DT (2.26)

where D† denotes the pseudo-inverse of D.
If the input velocity is split into two components as shown in (2.28) it is possible

to rewrite (2.23) as:

v = c · vop = c (vD + vτ) (2.27)

with vD ≡ [D]vop and vτ ≡ vop − vD = 〈D〉vop (2.28)

38 CHAPTER 2. BACKGROUND AND RELATED WORK

Next introduce a new compliance that effects only the non-preferred component
of the velocity input and write the final control law as:

v = c (vD + cτ · vτ) = c ([D] + cτ 〈D〉)vop (2.29)

Computing the Preferred Direction

To constrain the motion to a given subspace it is enough to supply a contin-
uous time-varying matrix D(t) that spans that subspace. For example, D =

[1 1 0 0 0 0]
T

would constrain the motion to a line in the x, y-plane with a 45◦

angle from the x-axis.
It is also possible to make a guiding fixture that moves towards a target pose

xT ∈ R
6 by using a control law w = f(x,xT) such that by setting the control input

u = w the system will eventually converge to the desired pose, that is

lim
t→∞

x(t) = xT. (2.30)

Choosing D = w in (2.29) gives a control law that guides the operator to the given
target pose xT.

As described above, using D = [1 1 0 0 0 0]
T

constrains the motion to a set
of lines in the x, y-plane. However, only the direction of motion is constrained
thus motion is possible along all lines that are parallel to the desired direction.
If there is a requirement to follow a certain reference trajectory there is need for
additional constraints. To accomplish this, the preferred direction at time t must
be modified to guide the end-effector towards the desired trajectory. This is similar
to guiding towards a desired pose as described above. However, it is now necessary
to combine the two types of guiding virtual fixtures described above. Assume the
desired direction is described in D and that there exists a motion objective xT that
describes the desired trajectory. Then define the distance to the motion objective
d = f(x,xT) as the vector pointing from the current configuration x to the current
set-point on the motion objective. Then define a new preferred direction Dc as:

Dc(x) =

(

(1 − kd) [D]vop

||vop||
+ kd〈D〉d

)

, 0 < kd < 1 (2.31)

The constant kd determines how fast the end-effector is moved towards the set-
point on the motion objective. One problem with (2.31) is the division with ‖ vop ‖
which is undefined when no user input is available. In practice this can be solved
by simply setting Dc = ∅ when the user input is below a threshold. An other
approach used in (Marayong et al., 2003) is to use a scaled version of (2.31) as
shown in (2.32). This is valid since projection is invariant to scale.

Dc(x) = ((1 − kd) [D] vop + kd||vop||〈D〉d) , 0 < kd < 1 (2.32)

The components necessary to construct a control law for a virtual fixture can
now be summarized:

2.2. VIRTUAL FIXTURES 39

• A motion objective xT ⊆ R
6

• A control law w = f(x(t),xT) that moves the end-effector to xT as t → ∞
by setting the control input u = w.

• A way to compute the preferred directions D relative to xT in such a way
that 〈D〉w = 0 if and only if w = 0, i.e the end-effector satisfies the motion
objective.

Given these components a virtual fixture that guides the end-effector towards xT

and constrains the motion to a subspace of xT determined by D can be computed
by using the control law in (2.29) with D computed from (2.32).

The control law in (2.29) considers only the guidance of the end-effector towards
the motion objective under the constraint specified by D. To implement a forbidden
regions virtual fixture it will also be necessary to deal with boundary constraints.

The implementation of forbidden regions virtual fixtures can be greatly sim-
plified using application specific knowledge such as the availability of analytical
expressions for the constraints, whether the constraints can be approximated by
simple geometric shapes and the required resolution. However, for complicated re-
gions requiring high accuracy the computational complexity can become an issue.

Consider the case of sinus surgery where a medical instrument must be inserted
through the nose into the sinus cavity, (Li and Taylor, 2004). In this case the forbid-
den regions can be extracted from pre-operative 3D images. The extracted forbid-
den regions for such task is of high complexity and requires high accuracy. A natural
representation of such complex geometry is to use a large set G = {g1, g2, . . . , gN} of
small triangles to build a mesh that closely approximates the surface (Watt, 2000,
pp. 27-44). In every time step of the control algorithm the point pk on triangle
gk with shortest distance to the robot can be computed for all triangles in the set
G. For each point pk there exists a point pr,k on the robot that is closest to pk.
This yields a set of point pairs P = {(p1,pr,1), (p2,pr,2), . . . , (pN ,pr,N)}. From
the set of point pairs P a subset Pc ⊆ P can be extracted by selecting only those
point pairs (pk,pr,k) ∈ P for which ‖ pk −pr,k ‖< ethresh holds. That is, the set Pc

contains all point pairs in P that are closer to each-other than a threshold ethresh.
The points in Pc are the collision candidates.

If high accuracy is required it is necessary to be able to perform the search
for collision candidates efficiently. To avoid testing every possible combination the
mesh representation of the objects involved (the forbidden regions and the robot)
must be stored in a data structure that allows an algorithm to efficiently find
the required collision candidates. Octrees or binary space partition trees (BSP-
trees) are standard data structures commonly used in computer graphics and other
domains to solve these kinds of problems, (Watt, 2000, pp. 51-56). Using an octree
the triangle mesh can be divided into sections as seen in figure 2.11 where each
cell contains a number of triangles. Using this technique the search for collision
candidates can be greatly improved by discarding parts of the tree that cannot
possibly contain any collision candidates. For example, if the point on the box

40 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.11. Example of an octree representation of a cubic space. On the right
is the first two levels of the octree representation of the cubic space on the left.

labeled 1 in figure 2.11 that is closest to the robot is further away than ethresh the
whole box can be discarded at level 1 of the tree and that branch cut of from the
search. The idea of BSP-trees is similar but they work by building a binary tree
where each node represents a plane along one of the coordinate axis that partition
the mesh representation into two parts. Actually in the original paper by Fuchs
et al. (1980), the plane can have any orientation, but cutting along the coordinate
axis simplifies the BSP-tree representation. In (Li and Taylor, 2004), a variant of
octrees is used, a covariance tree, which is a k dimensional tree where each sub-
space is oriented in such way that the bounding boxes tend to align with the mesh
surface, improving the efficiency of the search over a regular octree.

The collision candidates can then simply be used to constrain motion in di-
rections that would decrease the distance between any point pair in Pc. For more
details on this topic, see (Li and Taylor, 2004), that shows how to pose the combined
guiding/forbidden regions virtual fixtures control law as an optimization problem.

Adjusting the Compliance

One issue with virtual fixtures that has recently received attention is how to set
the compliance of the system, (Nolin et al., 2003; Marayong et al., 2002). Recall
that the compliance determines how hard the fixture should be applied, thus a
high compliance (low stiffness) supports isotropic motion while low compliance
only allows motion along the preferred direction. The compliance can be adjusted
by setting the variable cτ in (2.29). Marayong et al. (2002) evaluates the effect
of different compliance levels for path following, off-path targeting and obstacle
avoidance. In path following the operator moves from A to B along the curve (see
figure 2.12) with the aid of a virtual fixture. In off-path targeting the operator has
to leave the path and move in a direction away from the fixture to touch point C

2.2. VIRTUAL FIXTURES 41

Figure 2.12. From left to right: curve following, off-path targeting and obstacle
avoidance.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Error

C
om

pl
ia

nc
e

Task 1
Task 2
s = 0.8
s = 1.25

(a)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Normalized Time

C
om

pl
ia

nc
e

Task 1
Task 2
s = 0.8
s = 1.25

(b)

Figure 2.13. Optimal compliance selection between path following (task 1) and
off-path targeting (task 2). (a) Compliance selected with respect to error (deviation
from the path) and (b) compliance selected with respect to execution time.

and then move back to the path. When performing obstacle avoidance the operator
first moves along the path until reaching the obstacle C. At this point the operator
must leave the path to perform a motion around the obstacle and back to the path
after clearing the obstacle. The virtual fixture applied was constructed to allow
only motion along the reference curve. This means that in the off-path targeting
and obstacle avoidance task the operator would work against the fixture. This also
implies that with a hard fixture the off-path targeting and obstacle avoidance is
impossible to perform.

Marayong et al. (2002) evaluates the error (deviation from the path) and ex-
ecution time for different compliance levels and performs line-fitting to get the
compliance as a function of the error and time respectively (Marayong et al., 2002).
Figure 2.13 shows a plot of the compliance as a function of execution time and
error for the path following and off-path targeting. The optimal compliance is then
chosen as the intersection between the two lines.

The next step is to introduce a task-oriented parameter s that can be used
to assign a relative importance of freedom to guidance given a priori information
about the task. The equation of the line representing task 1 in figure 2.13.a is
y = 1.1012x− 0.0731, to assign more importance to guidance or freedom the task-
oriented parameter is introduced to produce the following equation: y = 1.1012x ·
s − 0.0731, s ∈ [0,∞[. Setting s > 1 gives more importance to guidance while

42 CHAPTER 2. BACKGROUND AND RELATED WORK

setting s < 1 gives more importance to freedom. The dash-dotted and dotted
lines in figure 2.13 shows the difference obtained by introducing the task-oriented
parameter.

In a similar way the relative importance of execution time vs tracking error
can be accounted for. If the optimal compliance with respect to tracking error is
denoted by ce and the optimal compliance with respect to execution time is denoted
by ct the total compliance can be computed as c = wce + (1 − w)ct, w ∈ [0, 1].
The parameter w can then be used to set the relative importance of execution time
vs tracking error. With w = 0.5 both execution time and accuracy is considered
equally important. This method can be used to compute an optimal compliance
with respect to the relative importance of different tasks as well as execution time
and accuracy.

Even though an optimal compliance can be computed in terms of the relative
importance of different tasks as well as execution time and accuracy using the
above method, the main problem still remains. The fixture is only helpful during
path following and it is actually counter-productive during off-path targeting and
obstacle avoidance. To improve the situation Nolin et al. (2003) evaluates different
methods for adjusting the compliance during task execution depending on whether
the operator is trying to follow the nominal path or not.

In (Nolin et al., 2003), three different methods for adjusting the compliance is
evaluated, along with three different activation cues, that are used to determine
when the fixture should be applied. Instead of the compliance Nolin et al. (2003)
used the term force scaling to indicate the force applied by the fixture to drive
the end effector towards the motion objective. This means that a low force scal-
ing corresponds to high compliance and a high force scaling corresponds to a stiff
fixture.

The tasks used for evaluating the compliance adjustment is similar to that used
by Marayong et al. (2002) and consists of path following, off-path targeting and
obstacle avoidance (see figure 2.12). To be able to adjust the compliance it is
necessary to detect when the operator is no longer trying to follow the nominal
path (the path along which the fixture is trying to guide the operator). In (Nolin et
al., 2003) three different (classes of) methods are evaluated; explicit, implicit and
automatic. The methods works as follows:

Explicit: For the explicit activation cue the operator must manually inform the
system that he/she is going to leave the nominal path. When the operator
gives this signal, for example by pressing a foot-pedal, the fixture is activated.
An advantage of the explicit method is that it is simple and robust. However
it increases the mental load of the operator.

Implicit: The implicit activation cue works by detecting a certain predefined be-
havior of the operator, for example if no motion occurs for a predefined
amount of time (so called silence). The implicit activation cue has the ad-
vantage of reducing the mental load of the operator compared to the explicit
cue. However there is a risk of triggering the fixture at the wrong time if

2.2. VIRTUAL FIXTURES 43

Figure 2.14. Force vs error for three different force scaling methods. An error of 0
means on the nominal path and a marks the activation point.

the implicit behavior is not carefully selected. Furthermore the use of silence
increases the execution time of the task.

Automatic: When using automatic detection the activation cue a software mon-
itors the operator’s actions and tries to detect the intention of the operator.
In (Nolin et al., 2003) a simple method that activates the fixture at prede-
fined locations is used. Advantages of automatic activation cues is that they
reduce the mental load of the operator and does not increase the execution
time. One problem with automatic activation cues is that they may be less
robust and can be difficult to design.

Three methods for force scaling is also evaluated for a total of nine combinations.
The force scaling methods used in (Nolin et al., 2003) are: toggle, fade and hold
and can be seen in figure 2.14. The force scaling methods works in the following
way:

Toggle: The toggle method works so that when the operator moves away from
the nominal path the force applied by the fixture increases linearly. When
the activation cue is triggered the fixture is immediately turned of, effectively
setting the stiffness to zero to allow isotropic motion.

Fade: When using the fade method for force scaling the compliance increases (force
decreases) linearly after the point where the activation cue is triggered.

Hold: With the hold method the force produced by the fixture is held at a constant
level once the activation cue has triggered.

After performing tests on a number of people Nolin et al. (2003) was not able
to show with a statistical significance that any combination of activation cue and
force scaling method was superior. Instead a number of interesting conclusions
were presented: i) user preferences are key factors in selecting the force scaling
method and activation cue, ii) the explicit and implicit activation cues do increase

44 CHAPTER 2. BACKGROUND AND RELATED WORK

the mental load of the operator, iii) force scaling methods and activation cues must
be combined appropriately and iv) the force scaling methods should be separated
into moving a way from and returning to the virtual fixture. Nolin et al. (2003) does
not deal with how the automatic activation cue can be implemented. This issue is
dealt with in (Hundtofte et al., 2002; Li and Okamura, 2003; Yu et al., 2005) where
HMMs are used to detect the intention of the operator. As mentioned before, if the
operator’s intention can be recognized it is possible, not only to use force scaling,
but to apply a different fixture that actually aids the operator during the execution
of the whole task. In chapter 3 a force scaling method is presented that sets the
stiffness of the fixture proportional to the probability that the operator is following
the fixture, this can of course only be done when automatic action cues are used.

2.3 Examples of Previous HMCS

Bettini et al. (2004) proposed a system for cooperative manipulation at millimeter
to micrometer scale. Two different modes of operations were considered; reference
target, where the desired path is a straight line segment in R

3 from the current end
effector position to a target point and reference curve, where the reference trajectory
is a curve in R

3. Although these two modes were devised with the application of
retinal vein cannulation in mind there exists natural extension into other areas.

The virtual fixture control law used in (Bettini et al., 2004) is the same as given
by (2.29) with the exception that the input velocity is an input force. The span
and kernel is computed from (2.24) where the inverse can be used because D is
assumed to have full rank. For the reference curve case an additional error term is
also introduced to return the end effector to the reference curve producing a control
law similar to (2.32).

One issue raised in (Bettini et al., 2004) is that when the end effector nears
the target point D will not have full rank. This will unstabilize the system near
the target point. This issue is solved by defining a sphere around the target point
and altering the control law once this sphere is entered. One proposed alternative
control law is to simply fix the preferred direction of the virtual fixture once the
sphere is entered. Both hard virtual fixturing cτ = 0 and isotropic motion cτ = 1
is evaluated and it is shown that a hard fixture achieves the best performance. An
alternative solution is also proposed, using an autonomous “snap-to” control law
that simply brings the end effector autonomously towards the target point once
the sphere is entered. However, this alternative is reported to be inferior to the
cooperative control mode with a hard fixture.

The curve following task is evaluate with various degrees of compliance for the
fixtures using the steady hand robot from Johns Hopkins University, (Taylor et al.,
1999; Abbott et al., 2003). It is shown that a hard virtual fixture provides the best
results w.r.t tracking error and execution time. However, this gives no room for
the operator to handle modeling errors in the task or unforeseen events. It is also
shown that even relatively soft fixtures dramatically improves the result compared

2.3. EXAMPLES OF PREVIOUS HMCS 45

to isotropic motion while at the same time allowing the operator to deviate from
the reference curve if necessary.

Bettini et al. (2004) then extends the curve following to volumetric primitives
where the reference curve mode is modified to allow motion inside a virtual tube
spanning a safe volume, as seen in figure 2.15.

Figure 2.15. Virtual tube spanning a safe volume around a reference curve.

The reference target mode is also extended to volumetric primitives. In this case
the corresponding primitive is an approach cone, as seen in figure 2.16. Similar to
the one dimensional case, i.e. motion along a line in R

3, the target point will be a
singular point and a target sphere must be used to surround it in order to achieve
a stable control.

Figure 2.16. Virtual cone designed to guide the end effector towards a reference
point.

The motion within the tube is unconstrained and when the end effector goes
outside the tube the virtual fixture control law is applied to bring it safely back into
the preferred region. However, this leads to a discontinuity at the surface which

46 CHAPTER 2. BACKGROUND AND RELATED WORK

is handled by smoothing the transition from assisted to unassisted motion over an
interval.

Finally (Bettini et al., 2004) shows how to join tubes and cones to provide
a safe approach to a target point as shown in figure 2.17. Each tube surrounds
a locally differentiable reference curve and smooth transition between tubes, at
possibly non-differentiable points, is achieved by smoothing.

Figure 2.17. Combination of virtual tubes and cones designed to provide safe
approach to a target point.

At the end (Bettini et al., 2004) notes that one way to improve their system
would be to incorporate models of the task and provide an estimate of the operator’s
intent in order to provide real-time and context-based assistance.

* * *

Hannaford and Lee (1990) used HMMs to model different tele-operation tasks.
Two sequential tasks were considered, where at some point during the execution
an event, random in one task and as an effect of the outcome of an operation in
the other, triggers. When this event triggers the operator must follow one of two
possible paths to finish the task, see figure 2.18. The states {S1, S2, . . . , S9} in fig-
ure 2.18 corresponds to the operator’s mental model of the task. A HMM is created
with one state for each mental state of the operator. During task execution force,
torque, position and orientation is recorded for a total of 12 scalar measurements
at each time step. The idea is then to compute the parameters of the HMM given
sensor traces of users performing the different tasks and then to have the HMM
classify new sequences of data into a sequence of states as function of time, where
each state corresponds to a mental state of the operator.

To accomplish this it is assumed that the operator is able to describe the se-
quence of mental stages that will be traversed during task execution to build an

2.3. EXAMPLES OF PREVIOUS HMCS 47

Figure 2.18. A sequential task that branches into one of two different paths after
state 4.

appropriate HMM. By looking at sensor data and manually label the transitions
between states the state transition probabilities of the HMM was computed ac-
cording to (2.33). Where Ai,j is the probability of transition from state i to state
j. When a branch is involved the probability has to be divided between branches
according to the probability that a particular branch is selected.

Ai,i =
t̄

t̄+ dt
∀i ∈ [1..N]

Ai,i+1 = 1 − Ai,i ∀i ∈ [1..N]

Ai,j = 0, ∀i 6= j, i 6= j − 1 (2.33)

Equation (2.33) also shows an important property of the structure of the HMM
model. Transitions are only possible to the current state and to the next state in
a sequential manner. Therefore no backtracking or switching between branches is
possible. In (Hannaford and Lee, 1990) the probability of observing a given sensor
value in a particular state is modeled as a Gaussian where all sensor dimensions
are assumed to be independent. Figure 2.19 shows an example with two sensors
and four states. The ellipses shows the points of equal probability densities. Other
approaches to accomplish this is to use probability estimators, (Castellani et al.,
2004; Boite et al., 1994), or a codebook obtained by pre-processing and quantizing
the data, (Yu et al., 2005).

The work presented by Hannaford and Lee (1990) has four major drawbacks.
First the operator must be able to express the mental stages of the task in the form
of a SLR HMM. Also the data obtained during the recording face must be manually
examined and segmented into an appropriate state. Using a SLR model does not
allow for backtracking or error handling when something goes wrong. Finally the
Viterbi algorithm is used only to analyze data offline. These issues have since been
addressed in a number of papers, (Hundtofte et al., 2002; Li and Okamura, 2003;
Castellani et al., 2004; Yu et al., 2005).

* * *

Hundtofte et al. (2002) used HMMs at the gestem level as opposed to the task
level. This means that basic interaction primitives are modeled by a HMM and the

48 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.19. Example of probability densities under the assumption of Gaussian
independent sensor values in a 2D sensor space. The figure shows four states and
the corresponding probability densities of the two sensors.

Figure 2.20. Example of a gestem level HMM (top) and a task level HMM (bot-
tom). In a task level HMM each state corresponds to a sub-task. In the gestem
level HMM there is one HMM for each sub-task and each state corresponds to some
interpretation of the raw sensor data.

Figure 2.21. Several gestem level HMMs combined to form a network that captures
a specific task.

2.3. EXAMPLES OF PREVIOUS HMCS 49

task is represented as a network of such HMMs. Compare this to when the HMM
is used to model the task, then each state in the HMM represents a particular sub-
task, see figure 2.20. The idea presented in (Hundtofte et al., 2002) is that it should
be possible to derive a set of gestem HMMs that can be used across different tasks
by combining them into an appropriate network. The system is evaluated on a
peg-in-hole task and a painting (motion back and forth on parallel lines) task. The
input to the system is 6 DOF force and torque an the size of the movement of the
tool-tip during the last time step. Six different gestemes are used in (Hundtofte et
al., 2002). They are place, position, insert, withdraw, remove and paint.
For each gestem a SLR HMM is trained, the number of states in each HMM was
varied to find a suitable number for good representation.

Networks of these gestemes were then constructed to represent the different
tasks, see figure 2.21. Note that there is no probabilities assigned to the transitions
between nodes in the network, thus no a priori information on the sequence in which
the sub-tasks are executed was provided. To train the system data was collected
from test runs, where the operator manually segmented the data during execution
by pressing a foot-pedal to signal task changes. The network of gestem HMMs are
then used to segment the data offline. The segmentation of the HMMs has high
probability to correspond well with that of the manual segmentation performed by
the operator. No means for performing online recognition of intentions is presented
in (Hundtofte et al., 2002), nor is there any incorporation of knowledge of the
sequence in which the sub-tasks are executed which could certainly be useful in
more complex tasks.

* * *

Li and Okamura (2003) used HMMs for automatic segmentation and recognition
of user motions. They present an algorithm for online recognition and use the result
obtained from the online recognition to adjust the compliance of a virtual fixture.
The system in (Li and Okamura, 2003) used force and position data recorded during
a curve following task to detect and appropriately set the compliance of the virtual
fixture depending on if the operator was trying to follow the curve or move away
from the curve.

In the standard HMM approach the probability of observing a sequence of ob-
servation symbols o = {o1, o2, . . . , oT } given a HMM λ with N states is computed
by (2.6). Equation (2.7) gives the probability of being in state j at time t, given
the model λ. The total probability of the model is therefore simply the probability
of being in any state at time T , as implied by (2.6). However, to use (2.6) it is
necessary to know where to start counting, i.e. which observation symbol is the
first one. A common approach is to use some form of change detector or manual
segmentation to achieve this. For example, in speech recognition it is possible to
use the silence between words as a cue for when to start the recognition. Similarly a
foot pedal or a pause can be used to indicate a change of model in a tele-operation
task. However, using a foot pedal or a pause to detected changes will interfere with
the tele-operation task, thus it is desirable to overcome this limitation.

50 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.22. Online HMM recognition for three continuous HMMs. At any given
time one of the HMMs is selected to describe the operator’s motion.

The method proposed by Li and Okamura (2003) is to use a network of contin-
uous online HMMs shown in figure 2.22. In the online approach presented by Li
and Okamura (2003) all models are active in parallel. There are also two special
states added to each HMM, the initial starter state and the resetting state (S1 and
S5 in figure 2.22). When the system is initialized the alpha variables are initialized
as shown by (2.34). That is, the probability of starting in state 1 is 1 for all models
where as the probability of starting in any state other than 1 is 0.

α1(0) = 1

αi(0) = 0, ∀ 1 < i ≤ N (2.34)

The probability of a given model is then computed by (2.6) with the exception that
α1(t) is computed according to (2.35), where αi,m(t) is the probability of being in
state i at time t given the mth HMM. This means that the probability that the
model is in the initial state (i.e is reset) is the average of the probabilities that the
M models are in their resetting state.

α1(t) =

α
∑

m=1,MN,m

(t)

M
(2.35)

Li and Okamura (2003) used three continuous online HMMs to analyze a path
following task, where a HMM corresponded to one of the possible user actions:
silence, follow curve and avoid curve. These HMMs were then used to de-
tect, online, which of the actions the operator was performing and to switch on a
virtual fixture if the follow curve actions had highest probability. The performance

2.3. EXAMPLES OF PREVIOUS HMCS 51

−100 −50 0 50 100
0

0.5

1

σ=0.05
σ=0.1
σ=0.2
σ=0.4

Figure 2.23. Sigmoid function used to transform the SVM distance measure into
a conditional probability P (state i|x). The choice of s determines the steepness of
the function.

was then compared to the performance with a virtual fixture with fixed guidance
and with no virtual fixture. It was shown that there was a significant improvement
for the HMM approach over the others w.r.t either execution time or tracking error.

* * *

Castellani et al. (2004) used a hybrid HMM/SVM (Support Vector Machine)
approach to segment tele-operation data online and offline. Support vector ma-
chines were used as probability estimators for the HMM. SVMs are binary classifiers
that separate two classes by an optimal separation hyperplane in a high dimensional
space to which the input is transformed via a kernel function, see section 2.1.4.

The tele-operation task considered by Castellani et al. (2004) consists of a se-
quence of four different sub-tasks (where one sub-task can appear more than once).
The different sub-tasks were: move, tap, insert and extract. The input to the
system was one dimensional force data.

A HMM is used to describe the overall task, where one state in the HMM
corresponds to a different sub-task. For each state in the HMM (sub-task) a corre-
sponding SVM is computed in order to classify data as belonging to that state or
not. Instead of using the SVM as a binary classifier Castellani et al. (2004) used the
distance of a sample x to the margin of separation d(x) (figure 2.4). This distance
is then transformed to a conditional probability P (state i|x) ∈]0, 1[of membership
of a state by transforming it through a sigmoid function, figure 2.23.

Instead of quantizing the input data and label it with an observation symbol
the probability P (state i|x) can be fed directly to the HMM without any prior
assumption on the probability distribution of x.

Castellani et al. (2004) used the HMM/SVM hybrid to segment a peg in hole
task consisting of 11 sub-tasks in four categories. A HMM with 11 states was used
to model the task and a SVM was trained for each of the four categories. The

52 CHAPTER 2. BACKGROUND AND RELATED WORK

segmentation results reported by the hybrid method is somewhat higher than for
similar tasks which uses a HMM with quantized observation symbols.

Chapter 3

Adaptive Virtual Fixtures

As mentioned earlier it has been demonstrated in a number of robotic areas how the
use of virtual fixtures improves task performance both in terms of execution time
and overall precision. However, the fixtures are typically inflexible, resulting in a
degraded performance in cases of unexpected obstacles or incorrect fixture models.
In this chapter, we propose the use of adaptive virtual fixtures that can cope with
the above problems. A teleoperative or human-machine collaborative setting is
assumed, with the core idea of dividing the task that the operator is executing
into several sub-tasks. The operator may remain in each of these sub-tasks as
long as necessary and switch freely between them. Hence, rather than executing
a predefined plan, the operator has the ability to avoid unforeseen obstacles and
deviate from the model. In this system each sub-task corresponds to following a
trajectory. The probability that the user is following a certain trajectory (sub-
task) is estimated and used to automatically adjusts the compliance. Thus, an
online decision of how to fixture the movement is provided.

With recent changes in manufacturing such as just-in-time production, out-
sourcing and rapid process changes, it is necessary to be able to rapidly change the
work-flow. Peshkin et al. (2001) and Moore Jr. et al. (2003) presents the concept
of Cobots which are simple special purpose human-machine collaborative manipu-
lation systems that have been used for automotive assembly in the car industry.
Although frequently used, the Cobots have the following limitations: i) they are
specially designed for one single purpose or task - thus one Cobot is required for
every single task, ii) when the assembly task changes, the Cobots have to be mod-
ified to fit the new task, and iii) if new assembly tasks are introduced, new Cobots
have to be constructed. Hence it would be interesting to use a standard robotic
manipulator to assist humans in various tasks by providing virtual fixtures. How-
ever it may not be easy for an end-user such as a factory worker or even for medical
staff to define the required span of the task.

In order to obtain a more flexible design framework, ideas are borrowed from
the area of Programming by Demonstration (PbD). This enables building a system

53

54 CHAPTER 3. ADAPTIVE VIRTUAL FIXTURES

User

Execute task

Acquire time-position tuple

Teach task

Record time-position tuples

Find number of states (lines)

Compute a virtual fixture for each state

Quantize recorded samples to each state

Train one SVM for each state

Train a HMM for the complete task

using the SVMs for probability estimation

Compute input velocity

Compute SVM probabilities

Compute HMM probabilities

Compute guidance from HMM probability

Apply virtual fixture from most probable state

Figure 3.1. Overview of the system used for task training and task execution.

where a human-machine collaborative manipulation system can be trained in a fast
and easy way to increase the human’s performance.

In this system, a high-level task is segmented to sub-tasks where each of the
sub-tasks has a virtual fixture obtained from 3D training data. A state sequence
analyzer learns what sub-tasks are more probable to follow each other. This is
important for an online state estimator which estimates the probability of the user
being in a particular state. A specific virtual fixture, corresponding to the most
probable state is then automatically applied, see figure 3.1.

This chapter is organized in the following way. First the methods used to
recognize sub-tasks are described. The recognition system is then evaluated on
synthetically generated data to estimate the resulting performance of the system.
After the evaluation it is described how the estimated state of the task can be used
to provide fixturing of the motion. The complete system with sub-task recognition
and fixturing is then evaluated on a trajectory tracking task with a real robot and
a motion tracking device.

3.1. RECOGNIZING SUB-TASKS 55

3.1 Recognizing Sub-Tasks

The first step towards achieving the adaptive virtual fixtures is to be able to recog-
nize the current sub-task. In this case each sub-task corresponds to motion along
a straight line in R

3 and the task consists of a sequence of such motions. It is also
necessary to be able to build a task model from training data, since the goal is to
produce a system that can be used by an operator without explicit knowledge of
how to define the necessary span of a task in order to generate a correct virtual
fixture. In this case a SVM classifier will be used to estimate the probability of
observations belonging to a certain state. The SVM classifier will then be used as
a probability estimator for a task-level HMM that produces the final classification.
The partitioning of the task into a suitable number of sub-tasks is performed by
k-means clustering.

3.1.1 Retrieving Measurements

The input data consist of a set of 3D-coordinates that may be obtained from a
number of modalities, describing a (position, time) tuple {q, t}. From the input
samples, movement directions are extracted by differentiating and normalizing. The
noisy input samples are filtered using a dead-zone of radius δ around q, i.e. a
minimum distance δ since the last stored sample is required so that small variations
in position are not captured. The input to the learning system is thus a sequence
of normalized motion directions d1,d2, . . . ,dN where ‖ di ‖= 1, ∀i ∈ [1..N].

3.1.2 Estimating the Motion Directions

To estimate the nominal motion directions a number of example tasks are carried
out. This results is a set of training sequences O = {O1,O2, . . . ,ON}, Oi =
{d1,d2, . . . ,dMi

}. Each of these exemplars corresponds to a point on the unit
sphere. K-means clustering (section 2.1.5) is now performed to find a number of
distinct motion directions. The number of clusters to use can be manually selected
or determined automatically by one of the approaches mentioned in section 2.1.5.
The training data could of course also be manually segmented in which case the
nominal motion direction would correspond to the mean value of the exemplars for
a particular segment.

3.1.3 Estimating Observation Probabilities Using SVMs

For each nominal motion direction detected by the clustering algorithm, a SVM
is trained to distinguish it from all the others (one-vs-all). In order to provide a
probability estimation for the HMM, the distance to the margin from the sample
to be evaluated is computed as (Castellani et al., 2004):

fj(x) =
∑

i

αi · yi · x · xi + b (3.1)

56 CHAPTER 3. ADAPTIVE VIRTUAL FIXTURES

where x is the sample to be evaluated, xi is the ith training sample, yi ∈ {±1}
is the class of xi and j denotes the jth SVM. The distance measure fj(x) is then
transformed to a conditional probability using a sigmoid function, g(x), (Castellani
et al., 2004). The probability for a state i given a sample x can then be computed
as:

P (state i|x) = gi(x) ·
∏

j 6=i

(1 − gj(x)) (3.2)

where gi(x) = 1/(1 + e−σ·fi(x))

Given the above and applying Bayes’ rule, the HMM observation probability
P (x|state i) may be computed. The SVMs now serve as probability estimators for
both the HMM training and state estimation. Since the standard SVMs do not
cope well with outliers, a modified version of SVMs is used (Cortes and Vapnik,
1995).

3.1.4 State Sequence Analysis Using Hidden Markov Models

Even if a task is assumed to consist of a sequence of line motions, in an online
execution step, the lines may have different lengths compared to the training data.
When a certain line is followed, it is assumed that the corresponding line state is
active. Thus, there are equally many states as there are nominal motion directions.
Given that a certain state is active, some states are more likely to follow after
depending on the task and, in our system, a fully connected Hidden Markov Model
is used to model the task. The number of states is equal to the number of nominal
motion directions found in the training data. The A matrix is initially set to have
probability 0.7 to remain in the same state and a uniformly distributed probability
to switch state. The π vector is set to uniformly distributed probabilities, meaning
that all states are equally probable at the start time. For training, the Baum-Welch
algorithm is used until stable values are achieved.

3.1.5 Evaluation

In this section the proposed learning and classification system will be evaluated.
First the system will be tested on a relatively simple task, involving four distinct
motion directions that are performed in a SLR fashion. The data for this example
is generated synthetically in order to provide a ground truth. Then the system will
be tested on a trajectory recorded using a motion tracking device.

The synthetic motion data is generated in the following way. First a reference
task is generated by constructing a line sequence where each line has a length
l ∈ [ℓmin, ℓmax] and a randomly selected direction. Furthermore the angle θ between
two consecutive lines is not permitted to be lower than a threshold θmin. A reference
trajectory Tr is then created by sampling the line sequence.

The simulated operator trajectories are then created in the following way. Given
a reference trajectory Tr a target point p is selected on Tr so that the distance to p

3.1. RECOGNIZING SUB-TASKS 57

−40

−30

−20

−10

0

−40

−30

−20

−10

0
−10

0

10

20

30

40

XY

Z

−40

−30

−20

−10

0

−40

−30

−20

−10

0
−10

0

10

20

30

40

Z

Y X

Figure 3.2. Left: Example of a training trajectory. Right: Classification of
a trajectory after automatic segmentation and state sequence analysis. Different
symbols indicate different states.

from the current position q is larger than some threshold ξ. A direction of motion
d is then computed as the average between the direction towards p from q and
the current direction of motion. A random error ed is then added to d where each
element of ed is generated independently according to (3.3), where Γ is generated
from a normal distribution (µ = 0, σ = 1) and κ determines the noise level. Finally
the current position q is updated by taking a step of size δ · (1 + 2κ · Γ) in the
direction of d where δ determines the step size.

ed(i) = κ · Γ (3.3)

The simulated operator trajectories are finally normalized by sub-sampling or
interpolation to form a training set Φ and a test set Ψ. A sample trajectory from
the training set Φ is shown in figure 3.2 (left).

In this example six training trajectories are used. For each of the training trajec-
tories the motion directions are extracted by differentiating and k-means clustering
in conjunction with a CUSUM test that is used to find a suitable number of sates
as described in section 2.1.5. For each state a SVM is trained to distinguish it from
all the others and finally a HMM is trained to capture the sequencing of the task.
The state transition probability for the HMM is initialized prior to training so that:

Ai,j = 0.7, ∀i = j, i, j ∈ [1..N]

and Ai,j = 0.3/(N − 1), ∀i 6= j, i, j ∈ [1..N] (3.4)

where N is the number of states given from the k-means algorithm. After training
the state probability matrix A has the values shown in figure 3.3 (left). In this
example N = 4 states where detected.

The trajectories in the test set Ψ is now classified according the the trained
model. An example of the segmentation of the trajectory into the four states is
shown in figure 3.2 (right). The normalized likelihood of each state as a function
of the sample number is shown in figure 3.3 (right). Figure 3.3 (right) also shows

58 CHAPTER 3. ADAPTIVE VIRTUAL FIXTURES

9e−01 8e−02 8e−06 5e−09

2e−05 9e−01 3e−08 9e−02

4e−02 2e−08 1e−00 0e+00

2e−06 2e−05 3e−06 1e−00

To state

F
ro

m
 s

ta
te

State transition probability matrix

1 2 3 4

1

2

3

4

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Sample

Li
ke

lih
oo

d

S
1

S
2

S
3

S
4

Figure 3.3. Left: A matrix of the example task. Right: Normalized likelihood
of state as a function of the sample number. Vertical lines indicate the actual change
times.

the actual change times from one state to the next as vertical lines. From this the
delay for change can be estimated.

From this example a number of conclusions can be made. The initial state
probability, π, was initially set to have uniform probability over all states. After
training it was discovered that the whole probability mass had moved to state 3,
giving it a probability of 1 as being the first state. Given this information it can
be seen from the A matrix, shown in figure 3.3 (left), that a sequential model was
extracted with the state sequence 3, 1, 2, 4. This comes from the fact that these
state transitions has a probability that is a factor 104 − 106 larger than for any
other transitions. However, since none of the state transitions has a probability of
zero it is still possible to transition from any state to any other state given sufficient
evidence in the form of observations, this makes the system robust to errors and
allows it to handle task deviations.

Furthermore it can be seen from figure 3.3 (right) that the delay for detection
is relatively small. The likelihood has gone from approximately zero to one in only
5 samples after the actual change time.

Data Generation

In the following example the motion data was generated with the help of a motion
tracking device, called “Nest of birds” (NOB). The NOB is a magnetic tracker that
consists of an emitter (figure 3.5(a)) and four pose measuring sensors (figure 3.5(b)).
The emitter emits a magnetic field that is measured by the sensors. The pose, i.e.
the position and orientation of each sensor can then be calculated. The sensors are
mounted on a glove as shown in figure 3.5(c). The effective range of the emitter is
approximately 1 m in all directions and data is sampled at roughly 30 Hz. The tra-
jectory is taken as the position of sensor four, mounted on the index finger, during

3.1. RECOGNIZING SUB-TASKS 59

7e−01 3e−11 5e−10 1e−01 5e−10 7e−08 2e−01 3e−06 7e−08 8e−09

3e−12 9e−01 6e−07 7e−12 6e−02 2e−07 3e−07 6e−02 3e−06 1e−04

3e−13 3e−03 9e−01 6e−12 2e−04 2e−04 9e−12 1e−11 6e−02 2e−02

6e−03 3e−13 1e−13 9e−01 4e−11 1e−08 5e−02 6e−09 7e−09 2e−09

5e−12 4e−02 4e−02 1e−11 9e−01 3e−05 1e−07 9e−07 8e−03 3e−08

2e−09 2e−07 3e−08 2e−07 4e−02 1e−00 4e−11 2e−11 1e−06 6e−08

3e−06 9e−05 4e−02 3e−08 1e−02 6e−10 9e−01 2e−07 6e−08 5e−02

6e−02 1e−09 1e−12 7e−07 7e−09 1e−13 1e−06 9e−01 2e−09 1e−10

3e−02 8e−08 9e−10 4e−03 2e−08 9e−06 1e−09 1e−06 9e−01 7e−02

6e−05 6e−07 2e−04 2e−02 2e−06 5e−02 6e−11 7e−07 5e−02 9e−01

To state

F
ro

m
 s

ta
te

State transition probability matrix

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 3.4. A matrix of the example task.

a motion recorded with the NOB tracker. In this example four training sequences
were recorded, they are shown in figure 3.6 (left). Once again the trajectories has
been normalized before training. The motion directions and the result of the k-
means clustering can be seen in figure 3.7 (left). In this example 10 states where
detected. Once again the state transition probabilities were initialized according to
(3.4) prior to training. After training the SVMs and the HMM the state transition
probabilities takes the form shown in figure 3.4. The segmentation of a test trajec-
tory can be seen in figure 3.6 (right) and the corresponding normalized likelihood
as a function of the sample is shown in figure 3.7 (right).

A number of interesting conclusions can be drawn from this example. First
of all it should be noted that the obtained segmentation into sub-tasks does not
correspond to the “mental model” of the operator which would presumably be a
sequence of unique states. However, this is not the purpose of this system. Here
each state is defined as a motion along a unique direction and the purpose is to
detect which state the operator is in at any given time to be able to provide the
correct virtual fixture. The important thing to notice is that each time the operator
expects a change of state, the system also changes state. The difference is that the
operator tends to think of motion along parallel lines as two different states, whereas
the system regards them as the same state, because the nominal motion direction is
the same. However, since the same fixture should be applied this is not a problem.

60 CHAPTER 3. ADAPTIVE VIRTUAL FIXTURES

(a) The emitter (b) A sensor (c) The data glove

Figure 3.5. The Nest of birds magnetic tracking system.

10

20

30

40

50

60

−80 −70 −60 −50 −40 −30 −20 −10 0 10

−30

−20

−10

0

10

20

30

40

X

Y

Z

10

20

30

40

50

60

−80 −70 −60 −50 −40 −30 −20 −10 0 10

−30

−20

−10

0

10

20

30

Z

Y

X

Figure 3.6. Left: Training trajectories. Right: Classification of a trajectory
after automatic segmentation and state sequence analysis. Different symbols indicate
different states.

−1
−0.5

0
0.5

1 −0.5
0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Y
X

Z

0 20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

1

Sample

Li
ke

lih
oo

d

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

Figure 3.7. Left: Normalized likelihood of state as a function of the sample
number. Right: Clusters as obtained from the automatic k-means algorithm.

3.2. FIXTURING OF THE MOTION 61

Sometimes the system also divides a state, as perceived by the operator, into two
or more states. Generating too many states is far better than generating too few,
since this still means that the correct fixture can be applied all of the time. An
example of this can be seen during the motion along the z-axis (light and dark blue
circles) which is actually supposed, according to the operator, to be one and the
same state, i.e. motion direction.

The reason for this behavior comes from the fact that the model is unconstrained
and the HMM training simply chooses the parameters that locally optimize P(o|λ)
as described in section 2.1.2.

3.2 Fixturing of the Motion

Once it is possible to recognize the current sub-task it is of interest to provide the
operator with guidance. Therefore a virtual fixture is associated with each sub-task.
The virtual fixture is defined by the nominal motion direction of the associated sub-
task, d. In order to apply the correct fixture, the current state has to be estimated.
The system continuously updates the state probability vector p = p1, p2, . . . , pN ,
where pi = P (o1,o2, . . . ,ot|state i) is calculated according to (3.5).

p̂i =

πi · P (x|state i) if plast = 0

P (x|state i) ·
N
∑

j

Aij · plast
j otherwise

pi = p̂i/
∑

k

p̂k (3.5)

The state s with the highest probability ps is chosen and the virtual fixture corre-
sponding to this state is applied with the fixturing factor k = max(0.5, ps · ξ), ξ ∈
[0, 1], where ps = maxi{pi} and ξ is the maximum value for the fixturing factor.
The fixturing factor describes how the virtual fixture will constrain the manip-
ulator’s motion by transforming the operator’s commanded velocity, vop, to the
robot’s reference velocity v as shown in (3.6). In the case of a haptic input device,
the fixture can also be used to provide the necessary feedback to the user and not
only constraining the motion of the teleoperated device. Thus, when unsure which
state the user is currently in, the user has full control. On the other hand, when
all observations indicate a certain state, the fixturing factor k is set to ξ. This
automatic adjustment of the fixturing factor allows the user to leave the fixture
and move freely without having a special “not-following-fixture” state.

v = projd(vop) · k + perpd(vop) · (1 − k) (3.6)

where proju(a) =
a · u
‖u‖2

u (3.7)

and perpu(a) = a − proju(a) (3.8)

62 CHAPTER 3. ADAPTIVE VIRTUAL FIXTURES

3.3 Experimental Evaluation

In this section, three experiments are presented. The first experiment is a simple
trajectory tracking task in a workspace with obstacles, shown in figure 3.8. The
second is similar to the first one, but the workspace was changed after training, in
order to test the algorithm’s automatic adjustment to similar workspaces. In the
last experiment, an obstacle was placed along the path of the trajectory, forcing the
operator to leave the fixture. This experiment tested the adjustment of the fixturing
factor as well as the algorithm’s ability to cope with unexpected obstacles.

Figure 3.8. Typical workspace for pick-and-place task with obstacles. The white
line shows the expected path of the end-effector.

In the experiments, a teleoperated setting was considered. A PUMA 560 robot
was controlled via the NOB magnetic tracker which was mounted on a data-glove,
as shown in figure 3.5(c), carried by the user. Once again only one sensor is used
since it provides the full position and orientation estimate of the user’s hand motion.
Sub-Task recognition is performed with a frequency of 30 Hz. The movements of
the operator measured by the NOB sensor were used to extract a desired input
velocity to the robot. After applying the virtual fixture according to (3.6), the
desired velocity of the end effector is sent to the robot control system.

The system also works well with other input modalities. For instance, a force
sensor mounted on the end effector has also been used to control the robot. In all
experiments, a dead-zone of δ = 2 cm was used. This value of δ corresponds to

3.3. EXPERIMENTAL EVALUATION 63

the approximate noise level of our input device. One of the major difficulties of the
system is that the input device provides no haptic feedback. Therefore, the virtual
fixture framework is used to filter out sensor noise and correct unintentional opera-
tor motions. This is done by scaling down the input velocity that is perpendicular
to the desired direction of the virtual fixture as long as the commanded motions is
along the general direction of the learned fixture as described by (3.6).

In all experiments, a maximum fixturing factor was ξ = 0.8. A radial basis
function with σ = 2 was used as the kernel for the SVMs and the value of σ in the
sigmoid transfer function (3.2), was empirically chosen to 0.5. A PUMA 560 robot
arm was used in all experiments.

3.3.1 Experiment 1: Trajectory following

The first experiment was a simple trajectory following task in a narrow workspace.
The user had to avoid obstacles and move along certain lines to avoid collision.
During training, the operator demonstrated the task five times, the system learned
from training data and four states were automatically identified. A typical training
sequence can be seen in figure 3.9(a). The user then performed the task again, the
states were automatically recognized and the robot was controlled aided by the vir-
tual fixtures generated from the training data. The path taken by the robot is shown
in figure 3.9(b). For clarity, the state probabilities and fixturing factor estimated
by the SVM and HMM during task execution are presented in figure 3.10 (Left).
This example clearly demonstrates the ability of the system to successfully segment
and repeat the learned task, allowing a flexible state change.

Initially, the end-effector is moving along the y-axis, corresponding to the direc-
tion of state 3. Because of deviations from the state direction, the SVM probability
will fluctuate since its estimation is based on the distance from the decision bound-
ary. However the HMM probability remains steady due to the estimation history.
This shows the advantage of using a HMM on top of SVM for state identification.
At sample 24, the user switches direction and starts raising the end-effector. The
fixturing factor decreases with the probability for state 3, simplifying the direction
change. Then, the probability for state 1, corresponding to movement along the
z-axis, increases. In total, the user performed 4 state transitions in the experiment.

3.3.2 Experiment 2: Changed Workspace

This experiment demonstrates the ability of the system to deal with a changed
workspace. The same training trajectories as in the first experiment were used, but
the workspace was changed after training. As it can be seen in figure 3.9(c), the size
of the obstacle the user has to avoid has been changed. As the task is just a variation
of the trained task, the system is still able to identify the operator’s intention and
correct unintentional operator motions. The trajectory generated from the online
execution shows that the changed environment does not introduce any problem
for the control algorithm since an appropriate fixturing factor is provided at each

64 CHAPTER 3. ADAPTIVE VIRTUAL FIXTURES

−1

−0.5

0

0.5

−1
−0.5

0
0.5

−0.4

−0.2

0

x

y

z

(a) A training example demonstrated by the
user

−1

−0.5

0

0.5

−1

−0.5

0

0.5
−0.4

−0.3

−0.2

−0.1

0

x

y

z

State 1
State 2
State 3
State 4

(b) Following trajectory using virtual fixtures

−1

−0.5

0

0.5

−1

−0.5

0

0.5
−0.4

−0.3

−0.2

−0.1

0

x

y

z

State 1
State 2
State 3
State 4

(c) Modified workspace (obstacle size)

−1

−0.5

0

0.5

−1
−0.5

0
0.5

−0.4

−0.2

0

x

y

z

State 1
State 2
State 3
State 4

View from above

(d) Avoid obstacle not present during training

Figure 3.9. End effector position in example workspace. The different symbols
(colors) corresponds to the different states recognized by the HMM

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
1

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
2

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
3

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
4

0 25 50 75 100

0.5

0.8

F
ix

tu
rin

g
fa

ct
or

Sample

HMM
SVM

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
1

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
2

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
3

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
4

0 25 50 75 100

0.5

0.8

F
ix

tu
rin

g
fa

ct
or

Sample

Avoid Obstacle HMM
SVM

Figure 3.10. Estimated probabilities for the different states in experiment 1 (left)
and experiment 3 (right). Estimates are shown for both the SVM and HMM. The
fixturing factor is also shown

3.4. DISCUSSION 65

state. This clearly justifies the proposed approach compared to the work previously
reported in (Peshkin et al., 2001).

3.3.3 Experiment 3: Unexpected Obstacle

The final experiment was conducted in the same workspace as the first one. How-
ever, this time a new obstacle was placed right in the path of the learned trajectory,
forcing the operator to leave the fixture. In this case, the virtual fixture is not aid-
ing the operator, but may instead do the opposite as the operator wants to leave
the fixture in order to avoid the obstacle. Hence, in this situation it is desired that
the effect of the virtual fixture decreases as the operator avoids the obstacle. Once
again, the same training examples as in the previous experiments were used.

figure 3.9(d) illustrates the path taken in order to avoid the obstacle. The
system always identifies the class which corresponds best with input data. fig-
ure 3.10 (Right) shows the probabilities and fixturing factor for this experiment.
Initially, the task is identical to experiment 1, the user follows the fixture until the
obstacle has to be avoided. The fixturing factor decreases as the user diverts from
the direction of state 3, and thus the user is able to avoid the obstacle. It can be
seen that the overall task has changed and that new states were introduced in terms
of sequencing. The proposed system not only provides the possibility to perform
the task, but can also be used to design a new task model by demonstration if this
particular task has to be performed several times.

3.4 Discussion

In this chapter, a system based on the use of adaptive virtual fixtures has been
described. It is widely known that one of the important issues for teleoperative
systems is the ability to divide the overall task into sub-tasks and provide the
desired control in each of them. In particular, it has been shown that it is possible
to use a HMM/SVM hybrid state sequence analyzer on multi-dimensional data
to obtain an online state estimate that can be used to apply a virtual fixture.
Furthermore, the process is automated to allow construction of fixtures and task
segmentation from demonstrations, making the system flexible and adaptive by
separating the task into sub-tasks. Hence, model errors and unexpected obstacles
are easily dealt with.

In the current design, the algorithm automatically estimates the number of sub-
tasks required to divide the training data. If instead it is possible for the user to
manually select the number of states, the algorithm may be expected to perform
even better. Such approach may be, for example, used in medical applications
since surgical tasks are expected to be well-defined and known in advance. The
experimental results have further shown that two straight lines with almost the
same directions are classified as the same straight line. This, however, is not a
severe problem as the fixture for this line is close to the optimal fixtures for the
individual lines and appropriate guidance is provided by the system.

66 CHAPTER 3. ADAPTIVE VIRTUAL FIXTURES

The proposed system have several limitations. For example, the proposed au-
tomatic detection of the states during training is only possible when the states
corresponds to motion along straight lines. This is not such a severe problem as it
may seem at first since many tasks can actually be decomposed into linear motions.
In chapter 4 a method for performing motion intention recognition on general tra-
jectories is presented. However, no automatic task segmentation during training is
provided there and moreover, the proposed system is limited in that it only con-
siders motion data. For some tasks it will be required to incorporate more sensing
modalities such as force or vision to be able to distinguish between a broader set
of sub-tasks.

Chapter 4

Layered HMM for Motion Intention

Recognition

Hidden Markov models can be used on two levels when modeling human actions.
A HMM can be used to recognize the operator’s motion primitives, or gestemes, as
in (Hundtofte et al., 2002) or to model the mental stages of the operator performing
a teleoperation task as in (Hannaford and Lee, 1990). A gestem-level HMM is used
to recognize a primitive motion sequence and a task-level HMM is used to recognize
a complete task. This chapter evaluates the HMM approach to gestem classification
and proposes a layered HMM structure for motion intention recognition.

While the HMM/SVM approach presented in the previous chapter is applicable
in a number of areas it may be too constrained for others. This is a price payed for
allowing the method to be fully autonomous during training and execution. There
are many settings where task knowledge and some understanding of task segmenta-
tion is available from the operator. In medical settings it may be possible to extract
reference trajectories from pre-operative images obtained from, for example, a CT
(Computed Tomography) scan. In other areas it is possible that the reference tra-
jectory can be predefined and that it is only required to deviate from the predefined
plan occasionally. In such settings a more complex task structure can be used to
allow for more complicated sub-tasks. The idea here is to replace the SVM clas-
sifiers with the more expressive HMM classifiers in order to build a layered HMM
where there is a HMM modeling the overall task and a HMM modeling each action
primitive, hereafter referred to as gestemes.

The reason for using the LHMM instead of, for example, the HHMM (section
2.1.3) structure is that it corresponds well with the intended scenario. At the lowest
level there are several models active in parallel classifying sensor data into action
primitives. The classification then progresses through the LHMM until finally the
task is modeled at the top level.

In this chapter no automatic segmentation of the task into sub-tasks is per-
formed. Instead, the trajectories are manually labeled during a post-processing

67

68 CHAPTER 4. LAYERED HMM FOR MOTION INTENTION RECOGNITION

Figure 4.1. A two level layered hidden Markov model, modeling gestemes at level
2 and a task at level 1.

step. There are two main reasons for this. If the structure of the LHMM, e.g.
number of sub-tasks etc, should be extracted from the training data, a huge amount
of training sequences would be required. Furthermore, even if the structure of the
LHMM could be extracted or predefined the Baum-Welch algorithm will adjust
the HMM parameters λ to locally maximize the probability P (Q|λ) of the state
sequence Q, which may not correspond to the mental model of the operator. The
training of the task level HMM is discussed further in section 4.1.2.

4.1 The Layered Hidden Markov Model

The concept of the Layered Hidden Markov Model (LHMM) is described in section
2.1.3. In this chapter a LHMM with two levels are considered. At level 1 a single
HMM is used to model the task, where each state in the HMM corresponds to a
sub-task. At level 2 there is a HMM for each of the K2 possible gestemes that
may occur during execution of the task. The observation sequence for the level 2
HMMs is generated from the quantized motion direction of the trajectory recorded
during task operation. The index of the HMM with highest likelihood among the
K2 HMMs at level 2 is then taken to be the the observation symbol for the level
1 HMM. The level 1 HMM is then used to compute the probability of a certain
state as a function of time given the observation sequence produced by the HMMs
at level 2. Since each state in the level 1 HMM corresponds to a mental stage of
the teleoperation task this information can be used to understand the operator’s
intention. The proposed structure is outlined in figure 4.1

Here, the winning HMM at level 2, i.e. the one with the highest likelihood, is
chosen and an observation symbol corresponding to this gestem is generated for the
level 1 HMM. The alternative would be to use the complete probability distribution
and have the HMMs at level 2 act as a probability estimator for the level 1 HMM,
as explained in section 2.1.3. However, according to (Oliver et al., 2004) using the

4.1. THE LAYERED HIDDEN MARKOV MODEL 69

complete distribution does not give any apparent advantage over the simpler winner
takes all model. Consequently, the simpler approach is taken in this work.

4.1.1 The Gestem HMM

The goal of the gestem HMMs is to distinguish between different motion primitives.
For example there can be gestem HMMs to recognize motion along lines with dif-
ferent direction or circles with different radii and orientation in space. Actually the
gestemes can be any arbitrary motion in 2D or 3D. The observations for the gestem
HMMs are extracted from motion data. The trajectory is recorded, normalized and
differentiated in order to compute the motion directions. The motion directions are
then mapped to corresponding observation symbols in a way that will be described
later in this section.

For the gestem HMMs three different approaches are evaluated. The one dimen-
sional HMM, the multi dimensional HMM and the multi dimensional HMM with
Fourier transform. The various HMMs and the generation of observation symbols
are described below.

One dimensional HMM: The simplest HMM is the one dimensional HMM (OD
HMM), where the observation symbols are then taken from a finite set
O = {O1, O2, ..., OK} of K discrete symbols. The B matrix is then used
to retrieve the probability of observing the jth symbol in state i, that is
Bi,j = P (Oj |statei), see section 2.1.2.

In this work the symbols are generated by k-means clustering of all the train-
ing directions. The number of cluster centers is 25 in all experiments, if not
stated otherwise. This number was chosen by an offline examination of the
data. The number of cluster centers is not crucial for the performance, but us-
ing too few clusters will make it hard to distinguish between different motion
directions while using too many will make generalization difficult.

Multi dimensional HMM: The multi dimensional HMM, or MD HMM, assumes
independence between the different dimensions of the input data. Thus there
will be a B matrix for each dimension of the input data. This means that for
a D dimensional HMM the observation symbols are also D dimensional where
each dimension d contains values from a finite enumerated set, as described
in section 2.1.2.

In this work, each dimension is split into 10 equally sized bins and the input
directions are projected into these bins generating the observation symbols.
As with the number of cluster centers the exact number of bins is not impor-
tant but it has to be selected to facilitate discrimination and generalization.

Multi dimensional HMM with FT: The third type of HMM, the FFT HMM,
considered in this paper is similar to the MD HMM except that instead of
mapping the raw motion directions to symbols, each dimension of the raw

70 CHAPTER 4. LAYERED HMM FOR MOTION INTENTION RECOGNITION

input directions are pre-processed by applying the Fourier transform to small
overlapping windows, similar to that reported in Yu et al. (2005). In this
work a Hamming window, Harris (1978) of size 6 with 50% overlap was used.

4.1.2 The Task HMM

The task HMM, or the level 1 HMM in the LHMM structure, encodes the task
sequencing information. Both levels of the LHMM work on the same time gran-
ularity and for each observation generated from the motion data the likelihood of
the gestem (level 2) HMMs are computed. The gestem HMMs are enumerated and
the index of the most likely gestem HMM is used as an observation for the task
level (level 1) HMM.

Each of the states in the task level HMM corresponds to a sub-task in the
operator’s mental model and the most likely state can be computed in order to, for
example, aid the operator with the execution of that sub-task.

It should be noted that there need not be a one-to-one mapping between a state
in the task level HMM and a gestem HMM. Rather a specific gestem can corre-
spond to different states depending on the previous state (the Markov assumption).
Furthermore there may be several gestemes that can appear in a single state.

As mentioned previously the states of the task level HMM are supposed to
correspond to the mental states of the operator. As a consequence, it is not possible
to use the Baum-Welch algorithm to train the task level HMM, because it will
optimize the HMM parameters λ in order to maximize P (o|λ) for the observation
sequence o. The approach taken in this work is to have the operator manually
segment the trajectory into sub-tasks corresponding to the mental model of the
operator. The gestem HMMs are then trained as before, using the Baum-Welch
algorithm. Using the gestem HMMs to classify the training data a new observation
sequence o′ is obtained. From the observation sequence o′ the B can be computed
by counting the occurrences of each symbol in every state and the normalizing the
rows of B. The task level HMM can now be trained by a modified version of the
Baum-Welch algorithm where the B matrix is kept constant.

4.2 Experimental Evaluation with Synthetic Data

To be able to better analyze and reproduce the results experiments are first per-
formed on synthetic data. A reference task consists of a sequence of motion prim-
itives randomly generated from two groups of motion primitives. The first group
contains straight lines of varying directions and lengths and the second group is
made up of circle segments with varying starting and ending angles as well as ori-
entations and radii. Figure 4.2 shows typical simulated operator trajectories. These
trajectory types may seem simple, but they were chosen because we believe that
there exists several relevant tasks in areas such as medical surgery or automotive
assembly that can be decomposed into a sequence of linear and circular motions.

4.2. EXPERIMENTAL EVALUATION WITH SYNTHETIC DATA 71

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−2

−1

0

1

2

3

4

5

x

y

−2
0

2
4

−101234

−2

−1

0

1

2

3

4

5

6

7

y
x

z

Figure 4.2. Typical simulated operator trajectories in 2D (left) and 3D (right).
The red dots marks the change from one primitive to the next.

In section 4.3 similar experiments are performed with a robotic manipulator to ver-
ify the simulated results. There, the data is taken from a trajectory-tracking task
where the end-effector of the manipulator is force controlled by a human operator.

The simulated operator trajectories are created in the same way as in section
3.1.5 where the step-size parameter δ was set to 0.05 in all experiments. The value of
κ, that governs the amount of noise, was set to 0.15 in (3.3) for all experiments if not
otherwise stated. In this chapter, three different classes of reference trajectories are
used. They are referred to as line, circle and mixed trajectories in 2D respectively
3D. The line trajectories are made up of a sequence of linear segments, the circle
trajectories are comprised of circle segments and the mixed trajectory type consists
of a mixture of linear and circular segments.

In the experimental evaluation, three different types of HMMs are considered.
The reason for evaluating different types of HMMs is that previous work has pro-
posed the use of different kinds of HMMs and we are interested in investigating if
there is an apparent advantage to any of them.

4.2.1 Experimental Evaluation

For the LHMM to be successful, there must be a robust underlying gestem classifier.
Furthermore, the LHMM and gestem classifiers must be able to produce good results
online with only partial observation sequences. The experimental evaluation in this
part consists of evaluating the HMM gestem classifier for the three HMM types
described in the beginning of this section with respect to the number of gestemes,
the influence of the number of training samples, the effect of noise and the effect of
the number of observation symbols.

72 CHAPTER 4. LAYERED HMM FOR MOTION INTENTION RECOGNITION

The Gestem Classifier

The HMM is able to handle a large amount of noise as long as the noise is consistent
during training and classification. To evaluate what amount of noise the gestem
classifiers can handle, we tested the classification performance with several synthetic
runs generated by varying the value of κ in (3.3) from 0.05 to 0.55. The input data
was generated as described in Section 4.2, thus some gestemes can be very similar.
If the gestemes are not generated at random but chosen from some set of gestemes
that are constructed to be easy to distinguish between (such as the letters of the
alphabet) the performance could be expected to be better than that reported here.
For the proposed methods to work in the intended setting it is required to obtain
good results with only a limited amount of training samples. Therefore only five
training samples where used for the experiments in this section, if not otherwise
stated. Furthermore, the results presented in this section are the average of 10
independent trials, if not explicitly stated.

Figure 4.3 and 4.4 shows the classification performance as a function of the noise
variable κ in (3.3). From the figures, it is possible to conclude that a reasonable
value for the noise parameter κ is less then 0.2 − 0.25. For the remainder of the
experimental results on synthetic data the value of κ is therefore set to 0.15 unless
explicitly specified. It should be pointed out that setting the value of κ > 0.7
would prevent the simulated trajectories from reaching the goal without consuming
unreasonable computer resources because the motion would be too dominated by
noise. It is worth noting that already a value of κ ∈ [0.3, 0.5] is almost as bad as
guessing.

By examining the individual runs, it can be seen that the noise sensitivity is
highly affected by the similarity of the gestemes. If the gestemes are similar, the
performance decreases almost linearly with increased noise. If the gestemes contains
few common symbols, the classification performance remains relatively unaffected
until the noise starts to dominate (i.e is large compared to the nominal motion).

One interesting result of the noise experiment is that the OD HMM appears
to have better performance with respect to noise sensitivity. We believe that the
reason for this is the low dimensionality and that the k-means clustering of the
pre-processing step helps with generalization since the cluster centers are affected
by the actual training data instead of using pre-defined bins.

The second experiment evaluates the effect of the number of gestemes on clas-
sification performance. Remember that for every gestem there is a corresponding
HMM which is trained to recognize it. As it can be seen in figure 4.5 and 4.6,
the recognition performance drops almost linearly from 100% to about 60% for 25
gestemes for the medium noise case where κ = 0.15. Once again it is interesting
to note that the OD HMM appears to have better performance w.r.t noise. The
classification performance for the three dimensional data is a bit better but that
can be explained with the fact that the individual gestemes are less likely to be
similar.

It is well known that HMMs can be successfully trained with only a small

4.2. EXPERIMENTAL EVALUATION WITH SYNTHETIC DATA 73

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

FFT HMM − 3D Mixed

10 states
20 states
Random 10
Random 20

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

FFT HMM − 3D Circles

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

FFT HMM − 3D Lines

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

MD HMM − 3D Mixed

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

MD HMM − 3D Circles

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

MD HMM − 3D Lines

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

OD HMM − 3D Mixed

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

OD HMM − 3D Circles

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1
R

ec
og

ni
tio

n
ra

te

Noise (κ)

OD HMM − 3D Lines

Figure 4.3. Classification performance as a function of noise.

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

FFT HMM − 2D Mixed

5 states
10 states
Random 5
Random 10

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

FFT HMM − 2D Circles

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

FFT HMM − 2D Lines

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

MD HMM − 2D Mixed

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

MD HMM − 2D Circles

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

MD HMM − 2D Lines

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

OD HMM − 2D Mixed

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

OD HMM − 2D Circles

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Noise (κ)

OD HMM − 2D Lines

Figure 4.4. Classification performance as a function of noise.

74 CHAPTER 4. LAYERED HMM FOR MOTION INTENTION RECOGNITION

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

FFT HMM − 3D Mixed

κ = 0.1
κ = 0.15
κ = 0.2
Random

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

FFT HMM − 3D Circles

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

FFT HMM − 3D Lines

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

MD HMM − 3D Mixed

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

MD HMM − 3D circles

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

MD HMM − 3D Lines

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

OD HMM − 3D Mixed

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

OD HMM − 3D Circles

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

OD HMM − 3D Lines

Figure 4.5. Classification performance as a function of the number of gestemes.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

FFT HMM − 2D Mixed

κ = 0.1
κ = 0.15
κ = 0.2
Random

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

FFT HMM − 2D Circles

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

FFT HMM − 2D Lines

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

MD HMM − 2D Mixed

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

MD HMM − 2D circles

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

MD HMM − 2D Lines

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

OD HMM − 2D Mixed

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

OD HMM − 2D Circles

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of gestems

OD HMM − 2D Lines

Figure 4.6. Classification performance as a function of the number of gestemes.

4.2. EXPERIMENTAL EVALUATION WITH SYNTHETIC DATA 75

amount of training data. Especially if there are few outliers such as in our training
data where the motion is perfect except for the introduced noise. It can be seen in
figure 4.7 and 4.8 that the recognition rate is quite high even for only two training
runs. This is a good feature of the HMM gestem classifier since in many settings
extensive training is not possible. When the type of noise changes and outliers
are introduced the necessary number of training sequences will increase in order to
be able to capture the larger variations that occurs. However, preliminary results
indicate that in practice the necessary number of training sequences is actually
quite low as long as the training sequences are representative for what will occur
during execution. Also it could be noted that with increased noise the number of
required training sequences increases somewhat.

The number of distinct observation symbols is not crucial but have to be set
reasonably. If too few symbols are used the HMM cannot distinguish between
different directions leading to poor classification performance. At the same time,
using too many symbols will prevent the HMM from generalizing, leading to poor
classification performance because none of the models will correspond well with the
training sequences. Figure 4.9 and 4.10 shows the classification performance as a
function of the number of observation symbols. Remember that the observation
symbols are defined differently between the OD and MD HMMs and values are
thus not comparable. For the OD HMM the observation symbols correspond to the
cluster centers obtain from the k-means clustering of the nominal motion directions
of the training data, whereas for the MD HMMs the observation symbols are taken
from M · D predefined bins of size 1/M giving a total of MD different possible
observations, where M is the number of discrete observation symbols and D is the
dimensionality of the MD HMM.

So far, all the experiments have been conducted offline where the whole gestem
was available. In order to work in the intended setting, the LHMM and gestem
classifiers must be made to work online with only partially observed gestemes.
However, because the performance is very dependent on the similarity between the
first parts of the gestemes the success will vary depending on the type of task.
Therefore we cannot present any quantitative data that is statistically interesting
in the general case. Despite this, we can conclude from our experiments that given
reasonably distinct gestemes the classification performance usually reaches its peak
value approximately when 10%-20% of the gestem has been observed.

Another important aspect for online classification is the exact time at which the
HMM recursion starts. In this case the exact times were known due to the fact that
the test data was synthetically generated. If the change time for switching between
gestemes are off there is a risk of observing very unlikely observation symbols and
thus the correct HMM can be severely penalized in the beginning of the classification
and in worst case never recover. There are ways around this problem, for example
using the continuous HMM presented in Li and Okamura (2003). An alternative
approach is based on a CUSUM test Gustafsson (2000) of the change in likelihood
of the most probable model, i.e. the “elbow criterion”, as demonstrated in section
2.1.5.

76 CHAPTER 4. LAYERED HMM FOR MOTION INTENTION RECOGNITION

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

FFT HMM − 3D Mixed

5 gestems
15 gestems
Random 5
Random 15

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

FFT HMM − 3D Circles

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

FFT HMM − 3D Lines

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

MD HMM − 3D Mixed

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

MD HMM − 3D Circles

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

MD HMM − 3D Lines

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

OD HMM − 3D Mixed

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

OD HMM − 3D Circles

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

OD HMM − 3D Lines

Figure 4.7. Classification performance as a function of the number of training
sequences.

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

FFT HMM − 2D Mixed

5 gestems
15 gestems
Random 5
Random 15

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

FFT HMM − 2D Circles

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

FFT HMM − 2D Lines

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

MD HMM − 2D Mixed

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

MD HMM − 2D Circles

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

MD HMM − 2D Lines

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

OD HMM − 2D Mixed

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

OD HMM − 2D Circles

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of training sequences

R
ec

og
ni

tio
n

ra
te

OD HMM − 2D Lines

Figure 4.8. Classification performance as a function of the number of training
sequences.

4.2. EXPERIMENTAL EVALUATION WITH SYNTHETIC DATA 77

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

FFT HMM − 3D Mixed

5 gestems
10 gestems
20 gestems
Random 5
Random 10
Random 20

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

FFT HMM − 3D Circles

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

FFT HMM − 3D Lines

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

MD HMM − 3D Mixed

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

MD HMM − 3D Circles

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

MD HMM − 3D Lines

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

OD HMM − 3D Mixed

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

OD HMM − 3D Circles

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

OD HMM − 3D Lines

Figure 4.9. Classification performance as a function of the number of symbols.
Note that the number of symbols have different meaning for one and multi dimen-
sional HMMs.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

FFT HMM − 2D Mixed

5 gestems
10 gestems
20 gestems
Random 5
Random 10
Random 20

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

FFT HMM − 2D Circles

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

FFT HMM − 2D Lines

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

MD HMM − 2D Mixed

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

MD HMM − 2D Circles

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

MD HMM − 2D Lines

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

OD HMM − 2D Mixed

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

OD HMM − 2D Circles

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ra
te

Number of symbols*

OD HMM − 2D Lines

Figure 4.10. Classification performance as a function of the number of symbols.
Note that the number of symbols have different meaning for one and multi dimen-
sional HMMs.

78 CHAPTER 4. LAYERED HMM FOR MOTION INTENTION RECOGNITION

−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

l

l

l3

1c

c1

1

2

Figure 4.11. Example trajectory of a task with 5 states and 4 gestemes.

The LHMM

Figure 4.11 shows a 2D trajectory that contains four gestemes, G = {l1, l2, l3, c1}.
The “mental model” of this task is that the gestemes should be performed in a
sequential-left-to-right (SLR) fashion with the c1 gestem appearing twice so the
task should go through the five different states S1, ..., S5 and thus execute the
gestemes in the following order: l1, c1, l2, c1, l3. The gestem is exactly the same in
S2 and S4 so one cannot differentiate between these states by simply monitoring
the output from the four gestem classifiers.

A task level HMM is now trained on the output of the gestem classifiers. That
is, the trajectory is classified by the gestem classifiers (online) and the sequence of
winning gestemes are used as input to the task-level HMM which is trained in order
to extract the task-model. figure 4.12 (bottom plot) shows a typical classification
sequence obtained by the gestem classifiers. The vertical dashed lines indicate the
switch from one state to the next. Note that there are only four gestemes recognized
in the bottom plot whereas there are five states in the top and middle plots since
the gestem c1 is associated with two states.

It can be seen from figure 4.12 that even though the gestem classifiers are some-
times confusing gestem l1 and c1 the task-level HMM is still capable of determining
the correct state. This is because the misclassifications of the gestem classifiers are
consistent with training data and thus the task-level HMM expects some misclas-
sifications. Furthermore the discriminant power of the LHMM is much better than
that of the HMM, i.e. the difference between the most probable and the second
most probable state is in general much larger for the LHMM.

4.3 Experimental Evaluation with a Robot System

In order to verify the validity of the proposed approach and to show that the quan-
titative results obtained with the synthetic data are relevant, we have performed

4.3. EXPERIMENTAL EVALUATION WITH A ROBOT SYSTEM 79

0 50 100 150
0

0.5

1
Li

ke
lih

oo
d

1
2
3
4
5

0 50 100 150
0

0.5

1

N
or

m
al

iz
ed

lik
el

ih
oo

d

0 50 100 150

2

4

M
os

t l
ik

el
y

ge
st

em

Figure 4.12. Classification of the LHMM for the task shown in figure 4.11. The
top plot shows the likelihood of each state and the plot in the middle shows the nor-
malized likelihood. The bottom plot shows the (online) classification of the motion
by the gestem classifiers and is the input to the task-level HMM.

0 20 40 60 80 100
0

0.5

1

sample

Li
ke

lih
oo

d

0 20 40 60 80 100
0

0.5

1

sample

N
or

m
al

iz
ed

lik
el

ih
oo

d

1
2
3
4
5
6

0 20 40 60 80 100 120

2

4

6

sample

M
os

t l
ik

el
y

ge
st

em

Figure 4.13. Classification of the LHMM for the 3D trajectory-tracking task ex-
ecuted with the robot manipulator as shown in figure 4.15 (right). The top plot
shows the likelihood of each state and the plot in the middle shows the normalized
likelihood. The bottom plot shows the (online) classification of the motion by the
gestem classifiers and is the input to the task-level HMM.

80 CHAPTER 4. LAYERED HMM FOR MOTION INTENTION RECOGNITION

Figure 4.14. The manipulator used for the experimental validation.

a number of qualitative experiments with a robot manipulator. The robot used
is an ActivMedia PowerBot and the manipulator used is made from a number of
PowerCube elements and passive links and it is mounted on the mobile base as
shown in figure 4.14.

The manipulator is equipped with a JR3 force/torque sensor mounted between
the end-effector and the last link, providing 6 DOF force/torque measurements.
It provides decoupled data at 8 kHz per channel, which is low-pass filtered with
the bandwidth 30 Hz (-3 dB) by a DSP. The data is first read from the DSP and
the current arm configuration is then used to subtract the influence of gravity on
the end-effector. The force/torque vector is then transformed to the base frame
attached to the base of the mobile platform. If the magnitudes of the force and
torque are both below a threshold the velocity of all joints are set to zero. Otherwise,
the Cartesian velocity of the arm is set to be proportional to the force. The same
applies to the rotational velocities and the torque. The Cartesian velocities are
then transformed to joint velocities of the arm using the inverse kinematics.

Due to the kinematics of the manipulator, large motions (of the joints) are
sometimes required to realize small changes in orientation of the end-effector. This
can make control of the manipulator more difficult than for a PUMA-like robot,
that is, 6 rotary DOF with the 3 DOF of the wrist intersecting a single point. In
all experiments the platform is stationary and the operator guides the manipulator
by applying forces to the end-effector.

4.3. EXPERIMENTAL EVALUATION WITH A ROBOT SYSTEM 81

0 0.05 0.1 0.15 0.2 0.25 0.3

0.3

0.35

0.4

0.45

0.5

0.55

0.6

start end

l1

2l

c 1 c 1

2l

l1

0.65
0.7

0.75
0.8

−0.4

−0.3

−0.2

−0.1

0

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Figure 4.15. Representative trajectories for the two trajectory-tracking tasks. The
dots mark the change between different states.

Two trajectory-tracking tasks are used in the experiments. The first task con-
sists of tracking a sequence of lines and circle segments on a planar 2D surface,
very similar to the simulated trajectories used previously. The second task con-
sists of tracking a trajectory on an object in 3D without touching the object. Two
representative trajectories are shown in figure 4.15.

The trajectories are normalized so that samples are 1 cm apart, this is a re-
duction of data of about 90%. From the normalized data the sequence of motion
directions is computed and k-means clustering is used to identify 10, for 2D data,
or 25, for 3D data, cluster centers used as the symbols in a one-dimensional HMM.
The sequence of motion directions is then transformed to a sequence of observation
symbols. A total of five trajectories were recorded and three of them were used
for training and two for testing. The reason for using only five trajectories is that
one important aspect of the proposed system is to provide good results even with
a small amount of training data, which should be possible given the previously
presented results.

Figure 4.13 shows the results of the online classification of the gestemes for the
3D trajectory in figure 4.15 (right).

As it can be seen the classification is good even though there were only three
training trajectories available. One of the reasons for this is that it is the same
person that performs the training and testing sequences. For operator independent
training the number of required training samples is expected to be higher.

For the 2D case the LHMM was tested on the task shown in figure 4.15 (left)
with the sequence of gestemes {l1, l2, c1, l2, c1, l1}. Even though the accuracy of the
underlying gestem classifiers are very high the use of the LHMM is still motivated
by two facts. First, it can encode the sequence of the gestemes and thus tell
them apart even though the same gestem appears more than ones. Second the
discriminate power is greater so it is possible to have a more confident classification.
The same LHMM was also evaluated on the sequence {l1, l2, c1, l1, c1, l2} which is
not seen during training. It should be clear that the LHMM can still recognize the

82 CHAPTER 4. LAYERED HMM FOR MOTION INTENTION RECOGNITION

correct state sequence. However, there is a significant delay before the evidences
(observations) are strong enough warrant a state change. This can be seen around
sample 70 and 90 of figure 4.17.

It can be seen from figure 4.13 that even though the gestem classifiers are
sometimes detecting the wrong gestem the LHMM can still clearly recognize the
correct state. It can also be seen from the unnormalized likelihood that the total
probability drops rapidly when unexpected gestemes are identified. This can be
used to assign a measure of the certainty of the system and can be useful determining
how much confidence to put into the classification during, for example, a fixturing
of the motion, as was done in chapter 3. It should be noted that the LHMM was
tested on manually segmented data and thus the classification is restarted at the
“perfect” time which explains the zero delay for switching states and thus indicates
the best possible results that can be achieved with the implemented system.

4.3. EXPERIMENTAL EVALUATION WITH A ROBOT SYSTEM 83

0 20 40 60 80 100 120
0

0.5

1

sample

Li
ke

lih
oo

d

0 20 40 60 80 100 120
0

0.5

1

sample

N
or

m
al

iz
ed

lik
el

ih
oo

d

1
2
3
4
5
6

0 20 40 60 80 100 120
1

2

3

sample

M
os

t l
ik

el
y

ge
st

em

Figure 4.16. Classification of the trained sequence {l1, l2, c1, l2, c1, l1}. Classifica-
tion of the LHMM for the two dimensional trajectory-tracking task. The top plot
shows the likelihood of each state and the plot in the middle shows the normalized
likelihood. The bottom plot shows the (online) classification of the motion by the
gestem classifiers and is the input to the task-level HMM.

0 20 40 60 80 100 120
0

0.5

1

sample

Li
ke

lih
oo

d

0 20 40 60 80 100 120
0

0.5

1

sample

N
or

m
al

iz
ed

lik
el

ih
oo

d

1
2
3
4
5
6

0 20 40 60 80 100 120
1

2

3

sample

M
os

t l
ik

el
y

ge
st

em

Figure 4.17. Classification of a sequence not seen during training,
{l1, l2, c1, l1, c1, l2}. Classification of the LHMM for the two dimensional trajectory-
tracking task. The top plot shows the likelihood of each state and the plot in the
middle shows the normalized likelihood. The bottom plot shows the (online) clas-
sification of the motion by the gestem classifiers and is the input to the task-level
HMM.

Chapter 5

Discussion and Future Work

This thesis focused on two aspects of human-machine collaborative systems. Clas-
sification of an operator’s motion into a predefined state of a manipulation task
and assistance based on virtual fixtures. The particular applications considered
consisted of manipulation tasks where a human operator controls a robotic manip-
ulator in a cooperative or teleoperated mode.

In chapter 3 we proposed the use of adaptive virtual fixtures to cope with the
problems of incorrect fixture models, handling of task deviations and automatic seg-
mentation and learning of demonstrated tasks. A teleoperative or human-machine
collaborative setting is assumed, with the core idea of dividing the task that the
operator is executing into several sub-tasks. The operator may remain in each of
these sub-tasks as long as necessary and switch freely between them. Hence, rather
than executing a predefined plan, the operator has the ability to avoid unforeseen
obstacles and deviate from the model. In our system, the probability that the user
is following a certain trajectory (sub-task) is estimated and used to automatically
adjusts the compliance. Thus, an online decision of how to fixture the movement
is provided.

We have shown that it is possible to use a HMM/SVM hybrid state sequence
analyzer on multi-dimensional data to obtain an online state estimate that can be
used to apply a virtual fixture. Furthermore, the process is automated to allow
construction of fixtures and task segmentation from demonstrations, making the
system flexible and adaptive by separating the task into sub-tasks. Hence, model
errors and unexpected obstacles are easily dealt with.

In the current design, the algorithm automatically estimates the number of sub-
tasks required to divide the training data. If instead it is possible for the user to
manually select the number of states, the algorithm may be expected to perform
even better. Such approach may be, for example, used in medical applications since
surgical tasks are expected to be well-defined and known in advance.

It should be noted that in the case with the automatic state segmentation the
obtained sub-tasks does not correspond to the “mental model” of the operator

85

86 CHAPTER 5. DISCUSSION AND FUTURE WORK

which would presumably be a sequence of unique states. This is a consequence
of the fully connected HMM used and is not a problem in the intended setting.
Instead, each state is defined as a motion along a unique direction and the purpose
is to detect which state the operator is in at any given time to be able to provide
the correct virtual fixture. The important thing to notice is that each time the
operator expects a change of state, the system also changes state. The difference
is that the operator tends to think of motion along parallel lines as two different
states, whereas the system regards them as the same state, because the nominal
motion direction is the same. However, since the same fixture should be applied
this is not a problem. Sometimes the system also divides a state, as perceived by
the operator, into two or more states. Generating too many states is far better than
generating too few, since this still means that the correct fixture can be applied all
of the time.

In chapter 4 we considered the use of a layered hidden Markov model (LHMM)
to model human skills. We evaluated a gestem classifier that classifies motions
into basic action-primitives, or gestemes. The gestem classifiers are then used in
a LHMM to model a simulated teleoperated task. We investigated the classifica-
tion performance with respect to noise, number of gestemes, type of HMM and
the available number of training sequences. We also applied the LHMM to data
recorded during the execution of a trajectory-tracking task in 2D and 3D with a
robotic manipulator in order to give qualitative as well as quantitative results for
the proposed approach.

Experimental evaluation shows that LHMMs have a good potential for modeling
and real-time recognition of teleoperative and HMCS tasks. The evaluation has
also shown that both one and multi dimensional HMMs are suitable for modeling
gestemes and they are even able to handle gestemes that are quite similar in nature
as long as the SNR is low. The HMMs are able to suppress relatively large amounts
of noise as long as the noise is white. However, preliminary results indicate that
the HMMs are more sensitive to other types of disturbances.

It is clear from the experimental evaluation that the LHMM has a strong po-
tential to model complex tasks since it is able to perform well even with miss-
classifications in the underlying layers. Thus as long as the gestem classifiers pro-
duce consistent misclassifications during training and testing the layered structure
of the LHMM is able to handle this. The LHMM also has a much greater discrim-
inating power than the standard HMM approach.

Furthermore, we have also pointed out three main issues that must be addressed
in order to successfully build a layered HMM for online motion intention recognition.
The first issue is that it is necessary to have a robust gestem classifier. Secondly,
the gestem classifier must work online, with only partial observations of the gestem.
Finally it is necessary to detect when one gestem ends in order to re-start the gestem
classifiers.

This work presents a foundation for further development of a system where
human intention recognition is used together with virtual fixtures and intelligent
control to improve the execution of human-machine collaborative or teleoperative

87

tasks. The key contributions of this work is the proposed LHMM structure for mo-
tion intention recognition and the associated evaluation together with the proposed
method of using the probability that the operator is executing a certain state to
adjust the compliance of a virtual fixture.

The short term goal of this research is to unify the ideas presented in chapter
3 and 4 to provide a framework with adaptive virtual fixtures applied to general
operator trajectories. Furthermore, it is of interest to investigate the possibility to
extend the intention recognition part to deal with more advanced features. As a first
natural step orientation could be introduced, later tactile or force-torque sensors
could be attached to the end-effector to provide information about contact forces
during operation. The next step would be to incorporate computer vision into the
system and extract task relevant features. It would also be interesting to further
investigate the possibility to train the LHMM using unsupervised algorithms.

In the long run, it would be interesting to identify key areas where the ap-
plication of fixturing combined with intention recognition is expected to have the
highest impact. It would then be required to implement similar systems on the
relevant hardware and perform user studies to analyze the possible improvements
over the traditional approach. Obviously, safety concerns must be addressed before
a system can be deployed outside of a laboratory setting.

Bibliography

J. J. Abbott, G. D. Hager, and A. M. Okamura. 2003. Steady-Hand Teleoperation
with Virtual Fixtures. In Proc. of the IEEE Int. Workshop on Robot and Human
Interactive Communication, pages 145 – 151.

M. Aizerman, E. Braverman, and L. Rozonoer. 1964. Theoretical Foundations of
the Potential Function Method in Pattern Recognition Learning. Automation
and Remote Control, 25:821–837.

A. Bettini, P. Marayong, S. Lang, A. M. Okamura, and G. D. Hager. 2004. Vision-
Assisted Control for Manipulation Using Virtual Fixtures. IEEE Trans. on
Robotics, 20:953–966.

J-M. Boite, H. Bourlard, B. D’hoore, S. Accaino, and J. Vantieghem. 1994. Task
Independent and Dependent Training: Performance Comparison of HMM and
Hybrid HMM/MLP Approaches. In Proc. of the IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, pages 617 – 620.

H. Bourlard and N. Morgans. 1990. A Continuous Speech Recognition System Em-
bedding MLP into HMM. Advances in Neural Information Processing Systems,
2:186 – 193.

H. Bruyninckx and J. De Schutter. 1997. Where does the Task Frame go? In Proc.
of the International Symposium of Robotics Research, pages 86 – 91.

C. J.C. Burges. 1998. A Tutorial on Support Vector Machines for Pattern Recog-
nition. Data Mining and Knowledge Discovery, 2:121–167.

A. Castellani, D. Botturi, M. Bicego, and P. Fiorini. 2004. Hybrid HMM/SVM
Model for the Analysis and Segmentation of Teleoperation Tasks. In Proc. of the
IEEE Int. Conf. on Robotics and Automation, pages 2918–2923.

P-H. Chen, C-J. Lin, and B. Schölkopf. 2005. A Tutorial on ν-Support Vector
Machines. Applied Stochastic Models in Business and Industry, 21:111–136.

C. Cortes and V. Vapnik. 1995. Support-Vector Networks. Machine Learning, 20:
273–297.

89

90 BIBLIOGRAPHY

P. Dario, B. Hannaford, and A. Menciassi. 2003. Smart Surgical Tools and Aug-
menting Devices. IEEE Trans. on Robotics and Automation, 19:782–792.

A. Dielmann and S. Renals. 2004. Dynamic Bayesian Networks for Meeting Struc-
turing. In Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Pro-
cessing, pages V–629–632.

T. G. Dietterich. 2002. Lecture Notes in Computer Science, volume 2396, chapter
Machine Learning for Sequential Data: A Review, pages 15–30. Springer.

R. Dugad and U. B. Desai. 1996. A Tutorial on Hidden Markov Models. Technical
Report SPANN-96.1, Department of Electrical Engineering, Indian Institute of
Technology, Bombay.

A. Elgammal, V. Shet, Y. Yacoob, and L. S. Davis. 2003. Learning Dynamics for
Exemplar-Based Gesture Recognition. In Proc. of the IEEE Computer Society
Conf. on Computer Vision and Pattern Recognition, pages 571–578.

S. Fine, Y. Singer, and N. Tishby. 1998. The Hierarchical Hidden Markov Model:
Analysis and Applications. Machine Learning, 32:41–62.

G. D. Forney Jr. 1973. The Viterbi Algorithm. Proc. of the IEEE, 61:268–278.

H. Fuchs, Z. M. Kedem, and B. F. Naylor. 1980. On Visible Surface Generation
by A Priori Tree Structures. In Proc. of the 7th annual conference on Computer
graphics and interactive techniques, pages 124 – 133.

A Ganapathiraju, J Hamaker, and J Picone. 2000. Hybrid SVM/HMM Architec-
tures for Speech Recognition.

J-L. Gauvain and L. Chin-Hui. 1994. Maximum a Posteriori Estimation for Multi-
variate Gaussian Mixtureobservations of Markov Chains. IEEE Trans. on Speech
and Audio Processing, 2:291–298.

R. M. Gray. 1984. Vector Quantization. IEEE ASSP Magazine, 1:4–29.

S. Günter and H. Bunke. 2003. Optimizing the Number of States, Training Itera-
tions and Gausians in an HMM-based Handwritten Word Recognizer. In Proc.
of the 7th Int. Conf. on Document Analysis and Recognition, pages 472– 476.

C. Guo, T-J. Tarn, N. Xi, and A. K. Bejczy. 1995. Fusion of Human and Machine
Intelligence for Telerobotic Systems. In Proc. of the IEEE Int. Conf. on Robotics
and Automation, pages 3110 – 3115.

F. Gustafsson. 2000. Adaptive Filtering and Change Detection. John Wiley & Sons,
Ltd.

91

B. Hannaford and P. Lee. 1990. Multi-Dimensional Hidden Markov Model of Tele-
manipulation Tasks With Varying Outcomes. In Proc. of the IEEE Int. Conf. on
Systems, Man and Cybernetics, pages 127–133.

F. J. Harris. 1978. On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform. Proc. of the IEEE, 66:51– 83.

C. S. Hundtofte, G. D. Hager, and A. M. Okamura. 2002. Building a Task Lan-
guage for Segmentation and Recognition of User Input to Cooperative Manipu-
lation Systems. In Proc. of the 10th Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, pages 225–230.

K. Hyunsoo and P. Haesun. 2004. Prediction of Protein Relative Solvent Acces-
sibility with Support Vector Machines and Long-Range Interaction 3D Local
Descriptor. Proteins: Structure, Function, and Bioinformatics, 54:557–562.

T. Itoh, K. Kosuge, and T. Fukuda. 2000. Human-Machine Cooperative Tele-
manipulation with Motion and Force Scaling Using Task-Oriented Virtual Tool
Dynamics. IEEE Trans. on Robotics and Automation, 16:505–516.

A. K. Jain, M. N. Murty, and P. J. Flynn. 1999. Data Clustering: A Review. ACM
Computing Surveys, 31:264 – 323.

B-H. Juang and L. R. Rabiner. 1990. The Segmental K-Means Algorithm for Esti-
mating Parameters of Hidden Markov Models. IEEE Trans. on Acoustics, Speech,
and Signal Processing, 38:1639–1641.

M. Kaiser and R. Dillmann. 1996. Building Elementary Robot Skills from Human
Demonstration. In Proc. of the Int. Conf. on Robotics and Automation, pages
2700–2705.

D. Kragić, P. Marayong, M. Li, A. M. Okamura, and G. D. Hager. 2005. Human-
Machine Collaborative Systems for Microsurgical Applications. Int. Journal of
Robotics Research, 24:731 – 741.

M. Li and A.M. Okamura. 2003. Recognition of Operator Motions for Real-Time
Assistance Using Virtual Fixtures. In Proc. of the 11th Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, pages 125– 131.

Ming Li and R.H. Taylor. 2004. Spatial Motion Constraints in Medical Robot
Using Virtual Fixtures Generated by Anatomy. In Proc. of the IEEE Int. Conf.
on Robotics and Automation, pages 1270– 1275.

R-H. Liang and M. Ouhyoung. 1998. A Real-Time Continuous Gesture Recognition
System for Sign Language. In Proc. of the Int. Conf. on Automatic Face and
Gesture Recognition, pages 558–567.

92 BIBLIOGRAPHY

Henry C. Lin, Izhak Shafran, Todd E. Murphy, Allison M. Okamura, David D.
Yuh, and Gregory D. Hager. 2005. Automatic Detection and Segmentation of
Robot-Assisted Surgical Motions. In Proc. of the Int. Conf. on Medical Image
Computing and Computer-Assisted Intervention, pages 802–810.

J. B. MacQueen. 1967. Some Methods for Classification and Analysis of Multi-
variate Observations. In Proc. of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, pages 281–297.

P. Marayong, A. Bettini, and A. Okamura. 2002. Effect of Virtual Fixture Compli-
ance on Human-Machine Cooperative Manipulation. In Proc. of the IEEE/RSJ
Int. Conf. on Inteligent Robots and Systems, pages 1089– 1095.

P. Marayong, M. Li, A. M. Okamura, and G. D. Hager. 2003. Spatial Motion Con-
straints: Theory and Demonstrations for Robot Guidance Using Virtual Fixtures.
In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 1270– 1275.

C. A. Moore Jr., M. A. Peshkin, and J. E. Colgate. 2003. Cobot Implementa-
tion of Virtual Paths and 3-D Virtual Surfaces. IEEE Trans. on Robotics and
Automation, 19:347–351.

T. Mori, Y. Segawa, M. Shimosaka, and T. Sato. 2004. Hierarchical Recognition
of Daily Human Actions Based on Continuous Hidden Markov Models. In Proc.
of the IEEE Int. Conf. on Automatic Face and Gesture Recognition, pages 779–
784.

Jason T. Nolin, Paul M. Stemniski, and Allison M. Okamura. 2003. Activation Cues
and Force Scaling Methods for Virtual Fixtures. In Proc. of the 11th Symposium
on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages
404– 409.

N. Oliver, A. Garg, and E. Horvitz. 2004. Layered Representations for Learning
and Inferring Office Activity from Multiple Sensory Channels. Computer Vision
and Image Understanding, 96:163–180. ISSN 1077-3142.

S. Payandeh and Z. Stanisic. 2002. On Application of Virtual Fixtures as an Aid
for Telemanipulation and Training. In Proc. of the 10th Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, pages 18–23.

M. A. Peshkin, J. E. Colgate, W. Wannasuphoprasit, C.A. Moore, R. B. Gille-
spie, and P. Akella. 2001. Cobot Architecture. IEEE Trans. on Robotics and
Automation, 17:377–390.

L.R. Rabiner. 1989. A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition. Proc. of the IEEE, 77:257–286.

93

S. Renals, N. Morgan, H. Bourlard, M. Cohen, and H. Franco. 1994. Connectionist
Probability Estimators in HMM Speech Recognition. IEEE Trans. on Speech and
Audio Processing, 2:161–174.

C. N. Riviere, W. T. Ang, and P. K. Khosls. 2003. Toward Active Tremor Can-
celing in Handheld Microsurgical Instruments. IEEE Trans. on Robotics and
Automation, 19:793–800.

D. Roobaert. 2001. Pedagogical Support Vector Learning: A Pure Learning Ap-
proach to Object Recognition. PhD thesis, Department of Numerical Analysis
and Computing Science, Royal Institute of Technology, Sweden.

L. B. Rosenberg. 1993. Virtual fixtures: Perceptual tools for telerobotic manipu-
lation. In Proc. of the IEEE Annual Int. Symposium on Virtual Reality, pages
76–82.

M. Rychetsky, S. Ortmann, and M.Glesner. 1999. Support Vector Approaches
for Engine Knock Detection. In Proc. of the Int. Joint Conference on Neural
Networks, pages 969–974.

R. D. Schraft, C. Meyer, C. Parlitz, and E. Helms. 2005. PowerMate – A safe
and Intuitive Robot Assistant for Handling and Assembly Tasks. In Proc. of the
IEEE Int. Conf. on Robotics and Automation, pages 4085 – 4090.

M. Shimosaka, T. Mori, T. Harada, and T. Sato. 2005. Marginalized Bags of Vectors
Kernels on Switching Linear Dynamics for Online Action Recognition. In Proc.
of the IEEE Int. Conf. on Robotics and Automation, pages 3072 – 3077.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta,
Z. Wang, E. deJuan, and L. Kavoussi. 1999. A Steady-Hand Robotic System for
Microsurgical Augmentation. Int. Journal of Robotics Research, 18:1201–1210.

R. H. Taylor and D. Stoianovici. 2003. Medical Robotics in Computer-Integrated
Surgery. IEEE Trans. on Robotics and Automation, 19:765– 781.

A. Watt. 2000. 3D Computer Graphics, 3 edition. Addison-Wesley Publishing Ltd.

H. Woern and T. Laengle. 2000. Cooperation Between Human Beings and Robot
Systems in an Industrial Environment. In Proc. of the Int. Conf. on Mechatronics
and Robotics, pages 156–165.

L. Xie, S. Chang, A. Divakaran, and H. Sun. 2003. Unsupervised Discovery of Mul-
tilevel Statistical Video Structures Using Hierarchical Hidden Markov Models.
In Proc. of the IEEE Int. Conf. on Multimedia and Expo (ICME), pages III – 29
– 32.

W. Yu, R. Alqasemi, R. Dubey, and N.Pernalete. 2005. Telemanipulation Assistance
Based on Motion Intention Recognition. In Proc. of the IEEE Int. Conf. on
Robotics and Automation, pages 1121– 1126.

94 BIBLIOGRAPHY

D. Zhang, D. Gatica-Perez, S. Bengio, I. McCowan, and G. Lathoud. 2004. Model-
ing Individual and Group Actions in Meetings: A Two-Layer HMM Framework.
In Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition Workshop, pages 117– 117.

M. Zimmermann and H. Bunke. 2002. Hidden Markov Model Length Optimization
for Handwriting Recognition Systems. In Proc. of the 8th Int. Workshop on
Frontiers in Handwriting Recognition, pages 369– 374.

R. Zöllner, O. Rogalla, R. Dillmann, and M. Zöllner. 2002. Understanding Users
Intention: Programming Fine Manipulation Tasks by Demonstration. In Proc.
of the Int. Conf. on Intelligent Robots and Systems, pages 1114– 1119.

