
Managing Service Levels in Grid Computing Systems

Quota Policy and Computational Market Approaches

THOMAS SANDHOLM

Licentiate Thesis

Stockholm, Sweden 2007

TRITA CSC-A 2007:6
ISSN 1653-5723
ISRN KTH/CSC/A--07/06--SE
ISBN 978-91-7178-658-6

KTH School of Computer Science and Communication
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av filosofie licensiatsexamen i datalogi månda-
gen den 14 maj 2007 klockan 10.00 i Sal 304, Parallelldatorcentrum, Teknikringen
14, Kungl Tekniska högskolan, Stockholm.

© Thomas Sandholm, maj 2007

Tryck: Universitetsservice US AB

iii

Abstract

We study techniques to enforce and provision differentiated service levels in Compu-

tational Grid systems. The Grid offers simplified provisioning of peak-capacity for appli-
cations with computational requirements beyond local machines and clusters, by sharing
resources across organizational boundaries. Current systems have focussed on access con-
trol, i.e., managing who is allowed to run applications on remote sites. Very little work
has been done on providing differentiated service levels for those applications that are
admitted. This leads to a number of problems when scheduling jobs in a fair and efficient
way. For example, users with a large number of long-running jobs could starve out others,
both intentionally and non-intentionally.

We investigate the requirements of High Performance Computing (HPC) applications
that run in academic Grid systems, and propose two models of service-level management.
Our first model is based on global real-time quota enforcement, where projects are granted
resource quota, such as CPU hours, across the Grid by a centralized allocation authority.
We implement the SweGrid Accounting System to enforce quota allocated by the Swedish
National Allocations Committee in the SweGrid production Grid, which connects six
Swedish HPC centers. A flexible authorization policy framework allows provisioning and
enforcement of two different service levels across the SweGrid clusters; high-priority and
low-priority jobs. As a solution to more fine-grained control over service levels we propose
and implement a Grid Market system, using a market-based resource allocator called
Tycoon.

The conclusion of our research is that although the Grid accounting solution offers
better service level enforcement support than state-of-the-art production Grid systems,
it turned out to be complex to set the resource price and other policies manually, while
ensuring fairness and efficiency of the system. Our Grid Market on the other hand sets
the price according to the dynamic demand, and it is further incentive compatible, in that
the overall system state remains healthy even in the presence of strategic users.

Keywords: Grid Market, Computational Grid, Service Level Management, QoS,
HPC, Grid Middleware

iv

Sammanfattning

Vi studerar metoder för att tillhandahålla och upprätthålla olika servicenivåer i Grid
system för storskaliga beräkningar. Grid modellen gör det enklare att tillgodose den
maxkapacitet som storskaliga beräkningar kräver genom att möjliggöra ett dynamiskt
och automatiserat utbyte av datorkraft mellan olika organisationer. Dagens Grid system
fokuserar på behörighetskontroll, dvs hanterande av vem som tillåts köra applikationer på
främmande system. Väldigt lite arbete har ägnats åt att erbjuda olika servicenivåer till
de som har behörighet. Detta leder till åtskilliga problem när jobb ska distribueras och
köras på ett effektivt och rättvist sätt. Användare som kör många långa jobb kan, t.ex.
blockera andra körningar, både medvetet och omedvetet.

Vi undersöker kraven som storskaliga beräkningsapplikationer ställer på infrastruk-
turen i akademiska Grid system, och föreslår två modeller för att hantera servicenivåer.
Vår första modell baserar sig på global kvotakontroll i realtid, där forskningsprojekt tillde-
las en kvota datorkraft, som t.ex. CPU timmar, av en centraliserad allokeringsenhet. Vi
implementerar SweGrid Accounting System, ett system för att se till att resurs kvota som
tilldelats forskare av Swedish National Allocations Committee, levereras av ett nätverk
av datorer, SweGrid, som sammanbinder sex super- och parallelldatorcentra i Sverige. Ett
enkelt konfigurerbart policystyrt auktoriseringsramverk tillåter tillhandahållande och up-
prätthållande av två olika servicenivåer ; högprioritets- och lågprioritetsjobb. För att få
ytterligare och bättre kontroll över servicenivå föreslår och implementerar vi en marknad
för Grid resurser som avänder sig av Tycoon, ett marknadsbaserat allokeringssystem för
datorresurser.

Slutsatsen av vår forskning är att trots att SweGrid Accounting lösningen erbjuder
bättre servicenivåstöd än dagens Grid system, visade det sig vara komplicerat att konfig-
urera resurspris och andra policyvärden manuellt, och samtidigt tillförsäkra en rättvis och
effektiv allokering. Vår lösning med en Grid-marknad å andra sidan sätter priser utefter
efterfrågan dynamiskt, och den är incitamentkompatibel, dvs systemet som helhet förblir
effektivt och rättvist trots att det finns strategiska användare som försöker utnyttja det.

Contents

Contents v

1 Introduction 1
1.1 Problem Statement . 2
1.2 Scope . 2
1.3 Approach . 2
1.4 Organization . 3

I Background and Results 5

2 Foundation 7
2.1 Grid Computing . 7
2.2 Market Theory . 11

3 Software 15
3.1 SweGrid Accounting System . 15
3.2 Tycoon Grid Resource Allocator . 17

4 Results 21
4.1 Thesis Papers . 21
4.2 Additional Publication Contributions 24
4.3 Related Work . 25
4.4 Conclusions . 27
4.5 Future Work . 27
4.6 Acknowledgments . 28

Bibliography 29

II Papers 37

v

Chapter 1

Introduction

Large-scale networks are evolving rapidly to become faster, more reliable, and more
accessible, which is exemplified by the enormous technical as well as social impact of
the Internet. This trend is a result of advances in computer science and engineering,
such as more efficient hardware and network protocols, but it is also an indirect
result of the advances in physical and social sciences, such as Bioinformatics, High-
Energy Physics, and Economics demanding increased capacity for data processing,
storage, and transfer. These demands are typically fluctuating over time, making
it impractical to purchase dedicated hardware that is unutilized most of the time,
and furthermore quickly becomes obsolete. As hardware, operating systems, and
networking software are commoditized, it becomes more feasible to share these
resources. A new array of computing systems thus evolved to govern the sharing of
resources in large-scale networks.

The power-grid utility paradigm is often used to describe such systems. It should
be as easy to upgrade your computing capacity as plugging in your appliance into a
power socket and turning a knob to get more electricity. One set of problems that
need to be tackled to achieve this involves agreeing on standards for communication
interfaces and protocols, another is related to ensuring that the shared resources
are correctly used in a secure way and that the usage is accounted and charged
for regardless of where it was provisioned. A final set of problems involves offering
a variety of service levels for customers with different needs and preferences in an
economically fair and efficient manner.

The state-of-the-art Grid systems have made great progress in interface stan-
dardization recently and have also tackled many of the security related problems
involved in executing applications remotely. Grid Accounting systems are in devel-
opment but not yet widely deployed, and not yet standardized, which complicates
charging for compute resource usage. However, the most apparent shortcoming of
today’s Grid systems is the lack of provisioning and enforcement of service lev-
els. The problem has been addressed from a linguistic perspective by inventing
new service level agreement languages and negotiation protocols, but very little

1

2 CHAPTER 1. INTRODUCTION

has been done to facilitate provisioning and enforcement of these agreements. As
a result it is hard to make the current Grid deployments economically sustainable
and thereby offered in a commercial setting as opposed to in a government-funded
research project.

1.1 Problem Statement

In this thesis we1 investigate what infrastructure can be added to existing HPC
Grid systems to automatically provision and enforce service levels more accurately
and easily.

Provisioning of service levels is the process when resource providers offer and
advertise different levels of service performance to users, whereas enforcement, a.k.a.
policing, of service levels involves making sure that the promised levels are indeed
delivered. These two activities are deeply interrelated, and we thus consider the
combination, referred to as service-level management here.

1.2 Scope

We examine service-level management from a middleware perspective. That is,
we study what tools can be developed to help Grid application programmers take
better advantage of the shared resources while still assuring that the overall state
of the system is healthy. Our focus is not on advancing research in the graphical
end-user interface design nor the design of the networking fabric, but rather to
improve the technology that bridges the two.

1.3 Approach

We have investigated two different approaches to service-level provisioning and
enforcement in Grids. The first approach relies on a Grid accounting system, which
we developed, that allows centrally set project quota policies as well as locally
configured resource provisioning policies determine the service-level for users across
HPC clusters. The second approach is based on resource virtualization and slicing
in a proportional share, market based resource allocator.

Simulations, benchmarks, experiments, and analyzes of production system de-
ployments with real users are all methods used to verify the results and the fea-
sibility of our models and their implementation in different settings and against
alternative solutions.

1The term we is used throughout this thesis to denote the work lead and performed by the
author while collaborating with other researchers. Where there are joint contributions, the parts
done by the author are explicitly stated.

1.4. ORGANIZATION 3

1.4 Organization

The thesis is organized as follows. In the first part we summarize the background
and results of our work. Chapter 2 presents the problem domain and the underlying
technology and theory. The software that was developed as part of the thesis
research is described in some more detail in Chapter 3 and then the contributions
and the thesis papers are summarized with future work in Chapter 4.

In the second part we include the thesis papers previously published in a journal,
conference proceedings, a technical report, and a research manuscript.

Part I

Background and Results

5

Chapter 2

Foundation

In this chapter, we discuss the foundational concepts and theory of the work pre-
sented in this thesis. First, we describe the new paradigm of computing emerging in
Computational Grid systems. Second, we review the underlying theory of markets
including game theory, and fundamental micro-economic theory.

2.1 Grid Computing

In the context of this thesis the Grid refers to a collection of computational re-
sources shared across organizational boundaries to deliver non-trivial Qualities of
Service (QoS) [28, 27, 5]. Non-trivial here means that services beyond pure in-
formation sharing, as typical in the World Wide Web, are offered. What is in
common for these more advanced services offered by a Grid is that they typically
involve large-scale resource consumption within a dynamic community of users and
providers spread across a large geographic area. One of the first super computing
projects to span multiple organizations and utilizing a cross-Atlantic Grid was the
I-WAY project [17], which paved the way for Grid computing as a scientific field.
This community is known as a Virtual Organization (VO) [26]. An example VO
architecture is shown in Figure 2.1.

Security

Many of the trust, privacy and general security issues appearing in the Grid revolves
around management of rights within a VO. The idea is that a VO is a web of
trust where information exchange and resource sharing can take place just like in
a corporate Intranet. The difference is that Virtual Organizations may be created,
managed and destroyed in a more dynamic manner. Examples include ATLAS 1, a
particle physics experiment utilizing the computational Grid of the Large Hydron
Collider at CERN; and HapGrid, a bioinformatics project performing haplotype

1http://atlas.web.cern.ch/Atlas/

7

8 CHAPTER 2. FOUNDATION

Figure 2.1: Virtual Organization Example.

reconstruction and frequency estimation using the SweGrid computational Grid
resources [2].

The trust verification mechanism in Grid systems is based on the Public Key
Infrastructure (PKI) [36], with extensions to allow delegation of rights and single
sign-on using self-signed proxy certificates [65, 69]. A user will have a secret key on
her local machine and then distribute a public key to all communication partners. A
message can then be signed or encrypted with the private key by the sender to allow
the recipient to verify the authenticity of the message including non-repudiation,
and protection against denial-of-service (DoS) and replay attacks. The PKI hand-
shake protocol where authenticity is verified has two main advantages compared
to more traditional username and password based authentication protocols. First,
no personal secret such as a password or private key needs to be sent across the
communication link exposing it to eavesdropping. Second, mutual authentication
of senders and receivers is seamless, making it a good fit for peer-to-peer like sys-
tems, such as the Grid. Another fundamental concept is the Certificate Authority
(CA), which is a trust anchor asserting the identity of its users by signing their
credentials (public keys). CA’s may be established for individual VO’s, a collection
of VO’s using a particular Grid environment, a country for its citizens, etc. Cer-
tificate Authorities may also be organized hierarchically, where the parent nodes
assert the identity of their child nodes.

The use of proxy certificates allows brokers or agents to act on behalf of users

2.1. GRID COMPUTING 9

to complete a task. The broker will not simply receive the private key of the user,
as it would violate the rule of strong authentication, which states that no long-lived
personal secrets should be distributed as part of the identity verification process.
Instead the user creates a temporary key-pair, signs it, encrypts it, and sends it
to the broker. Proxy certificates thus enables single-sign on across a network of
brokers.

Policy Management

In cross-organizational wide-area networks with community overlays, such as Vir-
tual Organizations in Grid systems, managing policies for all stakeholders becomes
a challenging task. The policies of resource providers, funding agencies, virtual or-
ganizations, and users must be combined in order to make accurate authorization
and service-level decisions. Policies may either be pulled in from 3rd parties, by
intercepting the message flow and making call-outs, or pushed to decision makers
by attaching capability assertions to the message payload [69]. Combinations of
the push- and the pull-models are also common and the policy decisions may be
made both on the client and on the server side in a client-server interaction [47].
Policy-based systems aim to manage resources by enforcing, evaluating, retrieving,
administering and combining policies with standard protocols. By communicating
with all the heterogeneous resources in the same way, generic tools can automati-
cally manage arbitrarily complex networks of resources and stakeholders by means
of control feedback-loops, a.k.a. the MAPE (Measurement, Analysis, Planning,
and Execution) or autonomic self-management model [41]. Policy-based manage-
ment systems can dynamically change the configuration of resources in response
to events that in turn were triggered by various system states occurring. A key
to designing efficient policy-aware systems is to separate the policy-related tasks
into different layers and making them agnostic to the application code. These lay-
ers, often referred to as policy points, can be stacked and combined in arbitrarily
complex policy-decision trees. The different layers and their responsibilities, sum-
marized below, comprise a common architecture and nomenclature for policy-based
systems [1].

• A Policy Enforcement Point (PEP) intercepts the execution path and call-
ing decision points, i.e. a PEP integrates the application with the policy
mechanisms.

• A Policy Decision Point (PDP) combines and evaluates local as well as exter-
nal policies, and may call information points to retrieve policies to base its
decision on. The result from an evaluation is typically permit, deny, or not
applicable. The result may also contain obligations that must be met for the
result to take effect.

• A Policy Information Point (PIP) stores and retrieves policies, e.g. returns
roles that an authenticated user has in an RBAC (Role-Based Access Control)

10 CHAPTER 2. FOUNDATION

system [21]. The additional information can then be used by the PDP and is
sometimes called evidence or context credentials.

• A Policy Administration Point (PAP) sets and configures policies used by the
PDP and PIP layers.

Accounting and Systems Integration

Grid middleware services include secure remote execution management, remote
data storage and replication, monitoring services, and high-volume file-transfer ser-
vices. What distinguishes these services from other network services such as FTP,
WWW, and LDAP, is that a Grid needs to handle higher volumes of data to transfer
and store; and allow VO-enabled access control, and execution of arbitrary appli-
cations. Furthermore, all users and Virtual Organizations are accountable for their
resource usage in a Grid, in order to promote fair sharing.

Accounting services thus play a fundamental role in Grids. Grid accounting
systems must be able to handle VO-scoped accounting of the usage of heteroge-
neous resources. Standard accounting records that translate and coalesces resource
and site specific usage need to be exchanged and coordinated across the Grid.
This process is complicated by the diversity of resource management technology
and policies (e.g., security, accounting, auditing) in HPC centers offering Grid re-
sources [57, 19, 58].

Resource heterogeneity in Grid systems was first addressed by the Open Grid
Services Infrastructure protocol [66], which specifies a standard protocol interface
for managing the state of a Grid resource [25]. It was founded on state-of-the-art
systems integration technology of the time, including the XML Web services stack
with extensions, and it was adopted by the Global Grid Forum (GGF) standardiza-
tion body. This work later evolved into the Web Services Resource Framework [30],
within the OASIS standards group, which now makes up the backbone infrastruc-
ture of various distributed management standards, such as OASIS WSDM [10] and
GGF WS-Agreement [3].

Resource Allocation

Service level and QoS enforcement was addressed in a Grid context in the Grid Ad-
vanced Reservation and Allocation (GARA) [22, 23] project allowing CPU, band-
width and OS process resource capacity enforcement at different levels of service.
Here resources were configured using resource specific control mechanisms, such as
DiffServ and RSVP router management [6, 8], and DSRT CPU scheduling con-
trol [49]. This work evolved into the SNAP protocol [15] and then eventually
was standardized in the WS-Agreement specification [3], by GGF, which also bor-
rows many concepts from IBM’s WSLA (SLA for Web services) solution [16] and
SLAng [46].

2.2. MARKET THEORY 11

Complimentary to protocol standardization, heterogeneity can also be addressed
by resource virtualization. For example, virtualization of a host operating sys-
tem [18] gives fine-grained control over the service levels offered. CPU, disk, mem-
ory, and other resource shares can be allocated to user specific virtual machines.
This technique has been explored in the context of Grid job execution management
in [40].

As the Grid deployments extend beyond academic projects, such as EDG 2 [7],
EGEE 3 , TeraGrid 4, NEESit 5, ESG 6, and OSG 7 to self-sufficient commercial
Grid environments, the need to charge for compute resource usage like any other
commodity arises. This business model is in-line with many IT companies’ utility
computing strategy [31, 12, 35]. Economic models from the field of utility computing
could also solve the growing problem in academic Grid projects of a small number
of strategic users hogging the system. We will elaborate on how this could be
approached in the next section.

2.2 Market Theory

When managing service levels, we would like to make sure that the system cannot
be abused by strategic users, who could starve out competing resource consumers.
We therefore turn to economic theory to study how mechanisms can be developed
to ensure an overall healthy system even with strategic users.

Tragedy of the Commons

Consider the problem often referred to as the Tragedy of the Commons [33]. Farmers
let their sheep eat grass on a common. A farmer can sell one of his sheep when it has
been well fed and earn a profit compared to the original purchase price of the sheep.
Let’s further assume that the profit that an individual farmer gains from selling
a sheep is higher than the relative cost of having one more sheep share the grass
of the common, and thus leaving less grass available for other sheep. A strategic
farmer who is trying to optimize his own profits would under such circumstances
always choose to purchase another sheep. The main issue with this situation is
that the overall health of the community of farmers declines as individuals optimize
their profits, and eventually it will collapse when there are too many sheep on the
common for any single one of them to get fed well enough to be sold. It is not
hard to see that such situations could easily arise if compute power is offered as a
common good without providing some incentive for users to constrain their usage.

2European Data Grid, http://www.edg.org
3Enabling Grids for ESciencE, http://egee-intranet.web.cern.ch/egee-intranet/gateway.html
4http://www.teragrid.org
5http://it.nees.org
6Earth System Grid, http://www.earthsystemgrid.org
7Open Science Grid, http://www.opensciencegrid.org

12 CHAPTER 2. FOUNDATION

Game Theory

In Game Theory [52, 51] a number of players and their possible actions with as-
sociated individual preferences model a game. Other players’ actions affect the
utility or payoff a player receives from a game. However, the other players’ actions
may not be known before a player chooses an action. In order to choose an action
each player hence needs to make a guess of other players’ likely actions given past
experience, which is referred to as forming a belief.

Let

a∗ = {a1...ak}

be the set of actions taken by the k players in a game, where ai is the action taken
by player i. This set is called the action profile of the game.

We can now make statements about the steady states of a game, when no player
has an incentive to change her action.

Nash Equilibrium

A Nash equilibrium is defined as an action profile a∗ where no player i can get a
higher utility by changing her action a∗

i , given that every other player j performs
the action a∗

j . More concisely expressed

ui(a
∗) ≥ ui(ai, a

∗
−i)

for every action ai of player i, where ui is the utility function that represents player
i’s preferences and (ai, a

∗
−i) is the action profile where player i performs action ai

and all other players j perform action a∗
j .

It is important to note that a Nash equilibrium does not make any statements
about uniqueness of the solution, and many games can indeed have multiple Nash
equilibria.

To simplify the decision making process for a player given prior beliefs a best
response function is typically defined. It yields the set of best actions to take for a
player given an action profile of the other players, or more precisely

Bi(a−i) = {ai ∈ Ai : ui(ai, a−i) ≥ ui(a
′
i, a−i)|∀a′

i
∈Ai

}

where Ai is the set of all possible actions player i can take, a−i the action profile
including all players except player i, and Bi is the set of best response actions.

Resource Allocation Game

In our case a game can be defined as the process of allocating available Grid re-
sources, or shares of a resource, to the applications that users are requesting to run
on those resources. The users can form their prior beliefs of other users’ demand
of the resources by studying the current resource prices on the market. In order to

2.2. MARKET THEORY 13

analyze the efficiency and fairness of a resource allocation algorithm we need some
additional definitions.

The efficiency or price of anarchy [53] is calculated as the sum of all users’
utilities of a certain allocation outcome compared to the optimal utility in the
system. The sum of all users’ utilities is typically referred to as the social welfare,
and it is an indication of the global health of the system.

The social welfare for an allocation scheme ω is defined as

U(ω) =
∑k

i=1
ui(ri)

where ri is the resource share allocated to user i, and ui is the utility function of
user i.

The fairness of a resource allocation scheme can be defined in terms of envy-
freeness [67] which can be calculated as

ρ(ω) = min(min
i,j

ui(ri)

ui(rj)
, 1)

where ui(ri) is the utility that user i received from being allocated share ri, whereas
ui(rj) is the utility user i would have received had she been allocated the resource
share rj of user j instead. In an envy-free system (optimally fair) ρ(ω) equals
1. The closer the value is to 0 the more envy there is, and the more unfair the
allocation scheme is.

The task of an economically healthy resource allocation scheme is to enforce
both high efficiency and high fairness in the Nash equilibrium states of the game.

When constructing a mechanism to allocate resources in a computational mar-
ket, it is therefore important to force users towards taking actions that yield one
of these equilibrium state. In a system where a Tragedy of Commons behavior is
possible no equilibrium states will ever be reached. In other words, it should not be
possible to game (trick) the allocator for individual benefit at the cost of the overall
health of the system in terms of fairness and efficiency. A mechanism that yields
an equilibrium state in the presence of strategic users is said to be strategy proof.
Likewise a software system architecture implementing an computational economy
is truth-telling if users have an incentive to restrict their signaled and actual usage
of a resource to their true needs. Further, it is incentive-compatible if users who
have an incentive to perform a task either perform it themselves or transfer the in-
centive to a broker to perform the task on behalf of them. Incentive-compatibility
is key to any system to avoid the Tragedy of Commons problem occurring, and
it necessitates the deployment of transposable and commensurable entities, e.g. a
currency.

Best Response Agent

A game theoretical analysis tries to model the behavior of players and make state-
ments about optimal strategies and mechanisms enforcing certain global behavior

14 CHAPTER 2. FOUNDATION

based on local rules. Strategies can be implemented on behalf of a player by an
agent. One example of an agent that implements an optimal strategy to solve
the resource allocation game just described is the best response agent presented
in [20, 72]. Given a fixed budget and a pool of divisable resources allocated ac-
cording to the proportional share mechanism described above, the best response
agent finds the distribution of bids across resources that yields the highest utility
for an individual player. The prior beliefs of the demand used by the agent to
make its decision is the sum of all bids in the previous bidding cycle for all the
available resources. Zhang [72] shows that there always exists a Nash equilibrium
when the players’ utility functions are strongly competitive, i.e. when there are at
least two users competing for each resource. Furthermore, a tight efficiency bound
of Θ(1√

(m)
) and an envy-freeness of 2

√

(2) − 2 or approximately 0.828 in Nash

equilibria with m players are theoretically deduced.

Chapter 3

Software

The research results of this thesis were obtained by implementing service-level man-
agement support for two Grid and cluster middleware toolkits. Three types of
experiments were then performed. First, local simulations were run to test the al-
gorithms against theoretical models, where both resource users and providers were
simulated. Second, simulated users were run against providers deployed in the real
Grid. Finally, real users and applications were run against the real Grid.

The SweGrid Accounting System (SGAS) was implemented as a Grid accounting
system on top of the Globus Toolkit, and the Tycoon Grid Resource Allocator was
implemented as a Grid market broker on top of the Tycoon market-based resource
allocator. The general design of the two systems will be discussed below.

3.1 SweGrid Accounting System

We developed the SweGrid accounting system1 to meet the quota enforcement needs
of SweGrid, a national compute resource integrating 600 nodes at six HPC Centers
across Sweden [57, 19, 58]. Resource quota is granted to research projects after
peer review by the Swedish National Allocation Committee (SNAC). The quota
can then be consumed by running jobs on any of the six participating sites. The
main challenge was to consolidate the heterogeneous local accounting and security
policies into one uniform accounting system capable of charging and enforcing al-
locations globally and in real-time. Our solution was to develop a Web services
architecture based on a generic authorization policy framework capable of admin-
istering, storing, enforcing, and validating stakeholder policies at runtime. The
stakeholders in SweGrid are the Grid application users, the resource providers, and
the allocation authorities. Service-level management is carried out jointly by three
services: the Bank, the Logging and Usage Tracking Service (LUTS), and the Job
Account Reservation Manager (JARM). An overview of these services is shown in
Figure 3.1.

1http://www.sgas.se

15

16 CHAPTER 3. SOFTWARE

Broker Scheduler

Workload

Manager

plugin

 JARM

Bank LUTS

User

Site Policy

Manager

SGAS

Cluster

(resource)

External

Authorization

Services

P

A

P

P

I

P

P

E

P

P

D

P

Admin

inferface

Membership/

Community

Service

P

I

P

P

I

P

P

D

P

P

D

P

SGAS

component

External

component

Generic

interface

Figure 3.1: SGAS Components Overview.

Bank

The Bank service manages resource quota on a project and user basis. An account
in the bank is created for each research project and then the principal investigator
of the project can add all the users who should be allowed to submit jobs that
are allowed to consume the project quota. The Bank service can be queried for
available funds in an account, and holds of parts of the funds can be issued and
then charged. The Bank thus represents the allocation authority stakeholder.

LUTS

The Logging and Usage Tracking Service allows off-line accounting after the jobs
have run, and off-loads the bank from storing detailed logging and auditing records.
The LUTS can be queried by all stakeholders as a means to making allocation and
authorization decisions based on previous history.

JARM

The Job Account Reservation Manager component integrates the local accounting
system and job manager infrastructure with the SGAS services. JARM implements
the resource provider policies to enforce service levels. Currently only a binary

3.2. TYCOON GRID RESOURCE ALLOCATOR 17

service-level model is implemented where the job either runs as a full-priority task
if enough quota is available in the Bank, and as a low-priority task if the quota has
been exceeded.

3.2 Tycoon Grid Resource Allocator

Tycoon

Tycoon is a market-based resource allocation system allowing resource shares to be
auctioned out proportionally to users’ bids [43, 44, 42]. In short it implements the
resource allocation game and the best response agent as described in Section 2.2.
Furthermore, Tycoon implements resource virtualization as described in Section 2.1.
A user i bids on a resource by specifying a total bid size bi and a bidding interval
ti. The bid is then calculated as bi

ti
. If the total size of a resource is R, then ri, the

total amount of resource allocated to user i over a period P , is

ri =
ti

∑n−1
j=0

bj

tj

R

If qi is the amount of the resource consumed by user i in period P , then i pays
at a rate of:

si = min(
qi

ri

, 1)
bi

ti

Note, that payments are made, as common for a utility, per time unit on a contin-
uous basis. A resource exposes its price y as an indication of the price as the sum
of all the current bids.

To determine the best response function yielding a distribution of bids across a
set of resources given a total budget and the resource prices, Tycoon implements
the best response algorithm [20] that solves the following optimization problem for
a user: from a set of n resources pick the set {xi,j ...xi,n} that

maximizes Ui =
∑n

j=1 wi,j
xij

xij+yj
subject to

∑n
j=1 xij = Xi, and xij ≥ 0. (3.1)

where Ui is the utility of user i across a set of resources, wi,j is the preference of
machine j as perceived by user i (for example the CPU capacity of the machine),
xi,j is the bid user i should put on host j, yj the total of all current bids or the
price of host j, and finally Xi is the total budget of user i.

The prior beliefs of the demand used as input to the algorithm are represented
by the yj values, which are reported by all resource auctioneers after each completed
bidding and accounting cycle, typically once a minute. However, users are allocated
their appropriate shares instantaneously after bidding, which they can do at any
time.

18 CHAPTER 3. SOFTWARE

Grid Market

As part of our investigation of service-level management in Grid systems we de-
veloped a Grid broker on top of Tycoon (see Figure 3.2), which allows Grid HPC
users to prioritize their jobs in an incentive-compatible way by transferring Tycoon
credits to the broker. The broker receives credits from the user and automatically
creates local virtual host accounts to execute the job on the resources picked by
the best response algorithm described in Equation 3.1. The jobs run on each host
at a service level determined by the Tycoon allocator proportional to the bid de-
termined by the best response algorithm. The actual enforcement of the service
level is done by the virtualization engine in Tycoon, which is Xen. An important
addition to Tycoon that we also developed was to provide a tool for Grid users to
predict future prices of resources in order to make better decisions on how much
money should be spent on a resource to get a certain performance level.

The user interface of the broker uses the Nordugrid ARC meta-scheduler [62]
which in turn is based on the Globus Toolkit [24], both extensively deployed in
production Grid systems worldwide.

Figure 3.2: Tycoon Grid Market Architecture.

Our Grid market broker also performs a number of job related tasks on behalf
of the user, and it is important to note that these tasks are all performed as a result
of the user transferring additional money to the broker to maintain the incentive-
compatible properties of Tycoon in the Grid market. Some of the tasks we added
to the broker are enumerated here:

• Job Payments. A Grid user can pay for her jobs by attaching a transfer
token to the job submission. The transfer token is receipt of a credit transfer
from the user account to the Grid broker account. The token maps the Grid
identity to a Tycoon bank account user identity. The token can also be issued
by a 3rd party to clients who don’t have any Tycoon components installed, and
thereby use the token as a gift certificate. More commonly though the token

3.2. TYCOON GRID RESOURCE ALLOCATOR 19

will be created as part of the job submission process on the client side. This
design allows the broker to also utilize the full VO-authorization management
support provided by the Grid job manager, a.k.a. the gatekeeper. It could
be seen as a combination of identity based authentication, policy-based VO
authorization and then finally capability based authorization in the Tycoon
layer.

• Price Prediction. Future prices, performance estimates, at certain guaran-
tee levels are communicated to the user in order to give guidance as to how
much a job may cost.

• Job Boosting. A job that is running slower than first anticipated and that
is not likely to meet its deadline can be boosted with initial funds without
resubmitting the job.

• Job Snapshots. It is hard to tell from a generic infrastructure perspective,
how close the job is to completing and whether it is therefore likely to meet
its deadline. We therefore added an interface allowing users to get snapshots
of their output files while the job is still running.

• Job Stage-In, Stage-Out. Input files are seamlessly transferred from the
user to the compute node that was selected to run the job, and output files
are gathered and transferred back to the user when a job has completed.

• Multĳob Support. If multiple jobs are to be run at the same time it is
preferrable to submit them all at once and let the best response algorithm
take care of the optimal distribution and funding of them on each host. We
therefore provide support for submitting one Grid job with different inputs
for each individual compute node subjob.

• Runtime Setup. We use the YUM2 installer to automatically provide a wide
range of installation packages that may optionally be installed on demand
before the job is run, and thus customizing the compute node configuration
easily for the specific application needs and dependencies.

• Bank Account Isolation and Refunds. Each Grid user using our broker
gets a separate local bank account used to fund end refund jobs. This improves
accounting and isolation of individual user jobs, and allows the Grid broker
to maintain the Tycoon property that users only pay for what they use.

• Virtual Machine Recycling. A user can create at most one virtual machine
per compute node at any point in time to avoid the user competing with
itself, and creating a higher price of the resource than necessary. It further
helps in terms of avoiding starvation problems on a machine, since there are
physical memory limitations in the virtualization engine of maximum number

2Yellow dog Updater, Modified. http://linux.duke.edu/projects/yum/

20 CHAPTER 3. SOFTWARE

of virtual machines that can be served. In general the more slices a machine
can handle the better effect does the market approach have. However, there
is also substantial overhead incurred when creating and starting up a new
virtual machine and installing the runtimes, so we allow the user to reuse
virtual machine runtimes between job submissions (but not scratch space),
but only if the idle virtual machine was not outcompeted by other users in
the meantime. The reason why we don’t support scratch space reuse is that
the VM reuse should be transparent and only be detectable by means of a
perceived performance improvement.

• Seamless Backend Integration. In order to allow seamless backend de-
ployment of the Tycoon Grid scheduler into any Grid middleware job submis-
sion infrastructure we provides the same command line interface as OpenPBS 3,
one of the most common cluster job submission toolkits.

3Open Portable Batch System.http://www.openpbs.org

Chapter 4

Results

In this chapter, the paper contributions attached to the end of this thesis are
summarized. The papers represent the evolution of approaches used to solve the
service-level provisioning and enforcement problem discussed in Section 1.1. In
Paper 3, the contribution from the work conducted as part of this thesis is limited
to the results section and to performing the experiments. All other papers were
authored as full parts of this thesis.

We also summarize our contribution to other publications, which were only
co-authored or only indirectly related to the service-level problem addressed here.
Finally we summarize related work and conclusions.

Various research projects funded parts of this work, including the Swegrid ac-
counting project (Swedish Research Council), Enabling Grids for ESciencE (Euro-
pean Union), NextGrid (European Union), Globus (Globus Alliance), and Tycoon
(Hewlett-Packard and Intel JIP).

The thesis author’s contribution level is given within parenthesis in each paper
headline.

4.1 Thesis Papers

Paper 1: A Service-Oriented Approach to Enforce Grid Resource
Allocations (90%)

In this journal article1 [58] we discuss the initial approach of enforcing global re-
source quotas on a project basis across the SweGrid machines. SweGrid is the
Swedish national Grid resource comprising 600 compute nodes distributed across six
High Performance Computing (HPC) Centers and interconnected with a 10Gbit/s
WAN. Various research projects are allocated CPU quota by the Swedish National

1First edition published in the proceedings of the 2nd ACM International Conference on
Service-Oriented Computing, New York City, USA, November 2004. Second edition published in
the World Scientific International Journal on Cooperative Information Systems, September 2006.

21

22 CHAPTER 4. RESULTS

Allocation Committe (SNAC), after a peer review of the scientific value of the
project and its computational needs. Allocations are administered and renewed on
a six-month basis. The problem we are addressing in this work is how the allo-
cations can be enforced in real-time on all of the SweGrid machines in a coherent
manner.

The problem is to a large extent a systems integration problem, in that all HPC
centers already use their own resource management system and their own account-
ing and access control policies and tools. We therefore introduced an integration
platform based on a service-oriented XML Web services architecture entirely writ-
ten in Java. The architecture comprises a Bank service, responsible for enforcing
the global resource quota and managing project accounts; a Logging and Usage
Tracking service, for off-line usage analysis and post-accounting; and finally a Job
Account Reservation Manager, which integrates the local site resource manager into
the global accounting system.

The most important research contribution from this work is the policy-based
access control system, which, at real-time, lets user, resource, and allocation au-
thority policies determine whether a Grid job should be allowed to run on a resource
and at what level of service. We call this solution soft real-time allocation enforce-
ment, because resources may not want to strictly refuse access if the quota has
been exceeded, but instead downgrade the priority of the job. This model extends
the state-of-the art in that a binary service-level is provisioned based on usage his-
tory and centrally allocated grants. A higher level of fairness is thus achieved, and
problems like denial-of-service attacks and job starvation can be resolved.

Paper 2: Service Level Agreement Requirements of an
Accounting-Driven Grid (100%)

In this technical report2 [56] we discuss the requirements obtained after studying the
first production deployment of the accounting system presented in [58]. We more
specifically focus on how electronic contracts, a.k.a. Service Level Agreements, can
be used to address some of the shortcomings of the existing system.

An enhanced, agent and policy-driven architecture is proposed, where the service
levels are determined and enforced in a continuous and automatic way based on
mutually signed contracts. The contracts represent a user capability as well as a
resource provider obligation, and can thus be used as the basis for access control
and service-level configuration.

The main contribution of this paper to the research presented in this thesis is
the mapping of typical Grid user requirements to an agent-based, contract-driven
architecture. The first insight gained from the SweGrid accounting system [58], was
that it was very flexible to customize policies of all components, but determining
what those policies should be quickly became a non-trivial task for a human actor.

2Published in the NADA TRITA technical report series at the Royal Institute of Technology,
Stockholm, Sweden, September 2005.

4.1. THESIS PAPERS 23

Agents could thus use contracts embodying user and provider preferences to opti-
mize user utility, or provider profit and utilization by automatically setting these
policies.

Paper 3: The Design, Implementation, and Evaluation of a
Market-Based Resource Allocation System (50%)

In this manuscript3 [45] we introduce Tycoon, a market-based resource allocation
system for large-scale networks like PlanetLab and the Grid. Tycoon allocates vir-
tualized slices on hosts proportional to user bids. The main focus of this paper is to
evaluate and benchmark the economic properties of the Tycoon resource allocation
algorithms in a real cluster environment through a set of experiments. We study
efficiency, based on the sum of the utilities across all users, a.k.a. as social welfare;
and fairness, defined as the level of envy-freeness. Envy in turn is defined as the
ratio between the maximum utility a user would get from another user’s allocation
and the utility of the allocation obtained. An optimally fair system would thus
have an envy-freeness value of 1.

It is shown in our experiments that the Tycoon proportional share allocation is
more efficient than an equal-share allocation algorithm like the one used in Planet-
Lab when slicing individual resources in shares. It is further shown that the Best
Response algorithm implemented in Tycoon to distribute bids optimally across
hosts yields a higher efficiency than other load balancing algorithms. In terms of
fairness our experiments were not able to show as clear trends due to noise in the
live cluster contributing to increased envy.

The results in this paper confirms previous simulation results and also shows
how Tycoon can be used to dynamically trade off winner-takes-it-all and equal-
share allocation algorithm properties. In essence, the higher the statistical variance
on the bids is, the closer the Tycoon algorithm is to the winner-takes-it-all scheme.
If the variance is 0 it is equivalent to an equal-share algorithm.

Paper 4: Market-Based Resource Allocation using Price
Prediction in a High Performance Computing Grid for Scientific
Applications (90%)

In this conference paper4 [59] we combine the results from the previous three pa-
pers by providing a Grid resource market for HPC users. This market is further
supported by a suite of prediction models and tools to allow users to spend their
money more efficiently in the market to meet their requirements.

Our solution is to integrate a Grid meta-scheduler and resource manager with
Tycoon. We thus maintain the cross organizational VO-supported PKI security

3Manuscript prepared for publication at Hewlett-Packard Laboratories, Palo Alto, USA, May
2006.

4Published in the proceedings of the 15th IEEE International Symposium on High Performance
Distributed Computing, Paris, France, June 2006

24 CHAPTER 4. RESULTS

model and the support for high-volume data transfers to stage in and out jobs to
compute nodes seamlessly. At the same time we leverage the economically efficient
and fair Tycoon model including the Best Response scheduler and the proportional
share allocator. The integration is achieved by two means, a) a transfer token used
as a lightweight contract simulating a ’gift certificate’ to purchase resource shares,
b) a broker receiving the transfer token attached to the jobs to be submitted, which
funds and executes the jobs according to the Best Response bidding algorithm.

The experimental results were obtained by running a Bioinformatics application,
from SweGrid, in a cluster managed by the Tycoon Grid Market. It was shown
that a continuous service level (as opposed to the binary one in SweGrid) could
be offered proportional to the funding of the job. The account management is
also simplified in our Grid Market, as the local accounts are created on demand
and dynamically configured to match the service level purchased. Finally, rights
delegation is seamless as it only involves transferring Tycoon credits between user
accounts, and resources get credits when users run jobs that in turn can be used to
submit jobs. Therefore, our Grid Market has the desirable property of offering a
closed-loop sharing of resources among peers, true to the foundational idea of the
Grid.

4.2 Additional Publication Contributions

Contribution 1 to 5 are co-authored papers and 6 is a lead-authored technical report.

Contribution 1 (10%)

The Global Grid Forum Open Grid Services Infrastructure (OGSI) specification [66]
introduces many of the fundamental integration concepts that the SGAS work is
based on. We contributed the XML rendering of that specification.

Contribution 2 (90%)

A conference version of Paper 1 was presented in [57]. It contains some additional
Fuzzy Logic experiments and it is based on an earlier Web service integration
platform. Paper 1 also contains some lessons learned from deploying the solution
presented in [57] in SweGrid.

Contribution 3 (50%)

The Bank service of SGAS is presented in some more detail in the conference
paper [19]. The Bank was implemented by a collaborator, but the core Web services
infrastructure, and the access control and policy framework was contributed as part
of this thesis. The overall design of the Bank was also a collaborative effort.

4.3. RELATED WORK 25

Contribution 4 (10%)

The SGAS authorization framework was contributed to the Globus Toolkit, and
it is the foundation for extended work presented in the workshop publication [61].
Our authorization framework, in turn, borrows many concepts from the XACML
architecture [1] and the GGF Authorization Working Group model [47].

Contribution 5 (10%)

SGAS provides a testbed for authorization management rights delegation, in the
conference paper [60]. This work is also based on the authorization policy frame-
work developed as part of SGAS, and extends it by integrating a 3rd-party autho-
rization engine as a policy administration and decision point.

Contribution 6 (100%)

In the technical report [55] a philosophical view of the Grid is presented. The main
contribution is to relate the concept of Ontologies in the Philosophy of Science
community to the use of Ontologies in Computer Science in general and in Service
Level Agreement protocols in particular. Ontologies play an important role in
policy definition and embodies the universe of discourse used by agents to optimize
the users’ utility based on their preferences. The discussion in this report shows
that work as early as Aristotle had striking similarities to the use of Ontologies
today.

4.3 Related Work

Related work fall into three categories; first, systems that focus on the accounting
aspect of the problem; second, general purpose computational economies; and fi-
nally Grid market systems. These categories can be related to our work with SGAS,
Tycoon and the Tycoon Grid market respectively.

The DataGrid Accounting System (DGAS) [32] was an early approach to create
a closed-loop accounting system for the LHC Grid at CERN, capable of exchanging
virtual Grid credits for computational resource time. The project focussed mostly
on providing an economic infrastructure for exchanging credits, but did not provide
any price setting mechanism, like the one implemented in Tycoon. Furthermore,
it did not take the integration approach used by SGAS, which made it difficult to
deploy in Swegrid, without completely replacing the existing accounting and job
submission infrastructure used by the different HPC sites. The GridBank project [4]
took a similar approach to SGAS in that only a single call-out to a bank is necessary
to verify the availability of funds to execute the job on the requested resource.
They also took a similar approach to our Grid market by attaching a cheque-like
token to the job-submission request to pay for the job. It, however, lacks the
policy customization infrastructure of SGAS, allowing different resources to easily

26 CHAPTER 4. RESULTS

implement different policies for running and charging for external jobs. SGAS
also implements account holds which can be seen as soft reservations of a portion
of the account balance, where jobs are only charged for the amount of resources
actually consumed. A similar hold approach is implemented in the Gold accounting
system [38], which also has expiring account quotas similar to SGAS. Gold did,
however, not take the standards-based Web services architecture approach central
to the design of SGAS, which also made it harder to integrate with an arbitrary
local HPC site accounting system. Neither GridBank nor Gold have any price-
setting mechanisms nor the same flexible authorization framework implemented in
our work. Additional related accounting approaches can be found in [64, 37, 34].

Spawn [68], was one of the first implementations of a computational market,
and Tycoon is an incarnation and evolution of many ideas presented in that work.
Tycoon, in essence, extends Spawn by providing a best response agent for optimal
and incentive-compatible bid distribution and host selection, and by virtualizing re-
sources to give more fine-grained control over QoS enforcement. Tycoon also offers
a more extensive price prediction infrastructure. However, the general, continuous
bid and proportional share auction architecture is largely the same. Bellagio [50]
uses a centralized allocator called SHARE. SHARE uses a centralized combinato-
rial auction allowing users to express preferences with complementarities. Solving
the NP-complete combinatorial auction problem results in an optimally efficient
allocation. The price-anticipating scheme in Tycoon is decentralized, i.e. runs an
auction at every single host, and does not explicitly operate on complementarities.
The efficiency in Tycoon may thus not be as high but all the overhead and compu-
tational complexities of combinatorial auctions, as well as the issues with strategic
users gaiming the mechanism is avoided [45]. Related computational economy ap-
proaches are described in [54, 48, 29, 9, 63, 13].

Faucets [39] is a framework for providing market-driven selection of compute
servers. Compute servers compete for jobs by bidding out their resources. The bids
are then matched with the requirements of the users by the Faucets schedulers.
Adaptive jobs can shrink and grow depending on utilization and prioritization.
QoS contracts decide how much a user is willing to pay for a job. The main
difference to our work is that Faucet does not provide any mechanism for price
setting. Further, it has no banking service, use central server based username-
password mechanisms, and does not virtualize resources. G-commerce [70] is a Grid
resource allocation system based on the commodity market model where providers
decide the selling price after considering long-term profit and past performance. It is
argued and shown in simulations that this model achieves better price predictability
than auctions. However, the auctions used in the simulations are quite different
from the ones we use in our work. The simulated auctions are winner-takes-it-all
auctions and not proportional share, leading to reduced fairness. Furthermore, the
auctions are only performed locally and separately on all hosts leading to poor
efficiency across a set of host. In Tycoon the best response algorithm ensures fair
and efficient allocations across resources. An interesting concept in G-commerce is
that users get periodic budget allocations that may expire, which could be useful

4.4. CONCLUSIONS 27

for controlling periodic resource allocations (as exemplified by our SGAS work)
and to avoid price inflation. The price-setting and allocation model differs from
our work in that resources are divided into static slots that are sold with a price
based on expected revenue. The preemption and agile reallocation properties inherit
in the bid-based proportional share allocation mechanism employed in our system
to ensure work conservation and prevent starvation is, however, missing from the
G-commerce model. Additional Grid Market models are described in [14, 71, 11].

4.4 Conclusions

Our work with the SweGrid Accounting System advances the state-of-the art of
academic production Grid systems for High Performance Computing tasks by pro-
viding real-time quota enforcement across the Grid governed by a flexible policy
framework. It thereby improves the overall fairness in the system. However, it only
enforces two levels of service, and it does not provide any price-setting mechanisms.
Furhtermore, it is very complex to manage all the policies manually without some
broker or agent layer between users or providers, and the accounting system. The
quota allocation model fits the SweGrid SNAC, and US NRAC periodic central
allocation schemes, but it does not promote fast low-burden entry for new users.

Tycoon, addresses all of these problems by implementing a market for virtualized
computational resources, allowing any service levels to be configured proportional
to a user’s bid and inversely proportional to the demand of the resources. Our
main contribution in this thesis is hence the merge of the Tycoon market mecha-
nisms with the Grid, thus creating a market appropriate for hosting both academic
and commercial Grid applications. Dynamic host account creation and configu-
ration according to purchased service levels, transfer of incentive compatible job
tokens, and a combined identity and capability-based authorization model were all
important parts of our solution.

4.5 Future Work

Tycoon implements a spot market, in order to quickly adapt the prices to the
demand, and to allow important tasks to preempt currently running lower-priority
tasks. However, these features come at the cost of less predictability and reduced
guarantees of service levels. To address this issue we are working on enhanced
prediction techniques to estimate future demand and give users tools to budget
their future resource requirements more efficiently.

We would also like to investigate the combination of spot and reservation mar-
kets (such as derivative markets, e.g. options) for Tycoon, as well as contract
brokers guaranteeing service levels, and offering discounts (paying penalties) if the
promised level of service was not delivered.

28 CHAPTER 4. RESULTS

4.6 Acknowledgments

First and foremost I would like to thank Bernardo Huberman and Kevin Lai, at
Hewlett-Packard Laboratories in Palo Alto, both for their invaluable technical in-
sights and feedback on my work, and for their continuous support to allow me to
extend my stay at HP Labs to complete my work. I am also very grateful to all
the technical support and contributions from Olle Mulmo at the Royal Institute
of Technology in Stockholm related to the Grid security work in this thesis. Peter
Gardfjell from Umeå University co-designed and co-authored the SGAS system with
me and made great contributions to the Bank service. I would also like to thank
his advisor Erik Elmroth for his help on finalizing the SGAS publications. Finally,
I would like to thank my own advisor Lennart Johnsson, and Lars Rasmusson for
their feedback.

Bibliography

[1] A. Anderson, A. Nadalin, B. Parducci, D. Engavatow, H. Lockhart, M. Kudo,
P. Humenn, S. Godik, S. Abderson, S. Crocker, and T. Moses. eXtensible
Access Control Markup Language (XACML) Version 1.0. Technical report,
OASIS, 2003.

[2] Jorge Andrade and Jacob Odeberg. HapGrid: a resource for haplotype re-
construction and analysis using the computational Grid power in Nordugrid.
HGM2004: New Technologies in Haplotyping and Genotyping, April 2004.

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu. Web services agreement specification (ws-
agreement). Technical report, Global Grid Forum, 2005.

[4] A. Barmouta and R. Buyya. Gridbank: A grid accounting services architecture
(gasa) for distributed systems sharing and integration. In Int. Parallel and
Distributed Processing Symposium (IPDPS’03), Nice, France, 2003. IEEE.

[5] F. Berman, G Fox, and A.J.G. Hey, editors. Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons, 2003.

[6] S. Blake, D. Black, M. Carlson, E. Davis, W. Zheng, and W. Weiss. Rfc 2475:
An architecture for differentiated services. Technical report, IETF, 1998.

[7] Diana Bosio, James Casey, Akos Frohner, Leanne Guy, Peter Kunszt, Er-
win Laure, Sophie Lemaitre, Levi Lucio, Heinz Stockinger, Kurt Stockinger,
William Bell, David Cameron, Gavin McCance, Paul Millar, Joni Hahkala,
Niklas Karlsson, Ville Nenonen, Mika Silander, Olle Mulmo, Gian-Luca Vol-
pato, Giuseppe Andronico, Federico DiCarlo, Livio Salconi, Andrea Domenici,
Ruben Carvajal-Schiaffino, and Floriano Zini. Next-generation eu datagrid
data management services. In Proceedings of Computing in High Energy and
Nuclear Physics, La Jolla, CA, USA, March 2003.

[8] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Rfc 2205: Reserva-
tion protocol (rsvp) version 1 functional specification. Technical report, IETF,
1997.

29

30 BIBLIOGRAPHY

[9] Brent N. Chun and Philip Buonadonna and Alvin AuYoung and Chaki Ng
and David C. Parkes and Jeffrey Shneidman and Alex C. Snoeren and Amin
Vahdat. Mirage: A Microeconomic Resource Allocation System for SensorNet
Testbeds. In Proceedings of the 2nd IEEE Workshop on Embedded Networked
Sensors, 2005.

[10] Vaughn Bullard, Bryan Murray, and Kirk Wilson. An introduction to wsdm.
Technical report, OASIS, 2006.

[11] Rajkumar Buyya, Manzur Murshed, David Abramson, and Srikumar Venu-
gopal. Scheduling Parameter Sweep Applications on Global Grids: A Deadline
and Budget Constrained Cost-Time Optimisation Algorithm. Software: Prac-
tice and Experience (SPE) Journal, 35(5):491–512, April 2005.

[12] Germano Caronni, Tim Curry, Pete St. Pierre, and Glenn Scott.
Supernets and snHubs: A Foundation for Public Utility Comput-
ing. Technical Report TR-2004-129, Sun Microsystems, 2004. URL
http://research.sun.com/techrep/.

[13] Anthony Chavez, Alexandros Moukas, and Pattie Maes. Challenger: a multi-
agent system for distributed resource allocation. In AGENTS ’97: Proceedings
of the first international conference on Autonomous agents, pages 323–331,
New York, NY, USA, 1997. ACM Press. ISBN 0-89791-877-0.

[14] Li ChunLin and Li Layuan. A two level market model for resource allocation
optimization in computational grid. In CF ’05: Proceedings of the 2nd confer-
ence on Computing frontiers, pages 66–71, New York, NY, USA, 2005. ACM
Press. ISBN 1-59593-019-1.

[15] Karl Czajkowski, Ian Foster, Carl Kesselman, Volker Sander, and Steven
Tuecke. Snap: A protocol for negotiating service level agreements and coor-
dinating resource management in distributed systems. Lecture Notes in Com-
puter Science, 2537:153–183, 2002.

[16] A. Dan, E. Davis, R. Kearney, A. Keller, R.P. King, D. Kuebler, H. Ludwig,
M. Polan, M. Spreitzer, and Y.A. Web services on demand: Wsla-driven
automated management. IBM Systems Journal, 43, 2004.

[17] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview of the
I-WAY: Wide Area Visual Supercomputing. International Journal of Super-
computer Applications, 10:123–130, 1996.

[18] Boris Dragovic, Keir Fraser, Steve Hand, Tim Harris, Alex Ho, Ian Pratt,
Andrew Warfield, Paul Barham, and Rolf Neugebauer. Xen and the Art of
Virtualization. In Proceedings of the ACM Symposium on Operating Systems
Principles, 2003. URL citeseer.ist.psu.edu/dragovic03xen.html.

31

[19] Erik Elmroth, Peter Gardfjell, Olle Mulmo, and Thomas Sandholm. An ogsa-
based bank service for grid accounting systems. In Jerzy Wasniewski, editor,
Lecture Notes in Computer Science: Applied Parallel Computing. State-of-the-
art in Scientific Computing. Springer Verlag, 2004.

[20] Michal Feldman, Kevin Lai, and Li Zhang. A Price-Anticipating Resource
Allocation Mechanism for Distributed Shared Clusters. In Proceedings of the
ACM Conference on Electronic Commerce, 2005.

[21] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-NCSC
National Computer Security Conference, pages 554–563, 1992.

[22] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. NAhrstedt, and A. Roy. A
Distributed Resource Management Architecture that Supports Advance Reser-
vations and Co-Allocation. In Proceedings of the International Workshop on
Quality of Service, 1999.

[23] I. Foster, A. Roy, V. Sander, and L. Winkler. End-to-end quality of service for
high-end applications. Technical report, Argonne National Laboratory, 1999.

[24] Ian Foster. Globus toolkit version 4: Software for service-oriented systems.
In IFIP’05: Proceedings of International Conference on Network and Parallel
Computing, volume 3799, pages 2–13. LNCS, Springer-Verlag GmbH, 2005.

[25] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steven Tuecke. Grid services for
distributed system integration. Computer, 7:37–46, March 2002.

[26] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organization. International Journal of Supercomputing
Applications, 15(3), 2001.

[27] Ian Foster and Carl Kessleman, editors. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann, 1999.

[28] Ian Foster and Carl Kessleman, editors. The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2003.

[29] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin Vahdat.
SHARP: An Architecture for Secure Resource Peering. In ACM Symposium
on Operating Systems Principles (SOSP), October 2003.

[30] S. Graham, A. Karmarkar, J. Mischkinksy, I. Robinson, and I. Sedukhin. Web
services resource 1.2. Technical report, OASIS, 2005.

[31] Sven Graupner, Jim Pruyne, and Singhal Sherad. Making the Util-
ity Data Center a Power Station for the Enterprise Grid. Techni-
cal Report HPL-2003-53, Hewlett-Packard Laboratories, 2003. URL
http://www.hpl.com/techreports/2003.

32 BIBLIOGRAPHY

[32] A. Guarise, R. Piro, and A. Werbrouck. Datagrid accounting system - archi-
tecture - v1.0. Technical report, EU DataGrid, 2003.

[33] Garrett Hardin. The Tragedy of the Commons. Science, 162:1243–1248, 1968.

[34] V. Hazelwood, R. Bean, and K. Yoshimoto. Snupi: A grid accounting and
performance system employing portal services and rdbms back-end. 2001.

[35] Joseph Hellerstein, Kaan Katricioglu, and Maheswaran Surendra. An Online,
Business-Oriented Optimization of Performance and Availability for Utility
Computing . Technical Report RC23325, IBM, December 2003.

[36] R. Housley, W. Ford, W. Polk, and D. Solo. Rfc 2459: Internet x.509 public
key infrastructure and crl profile. Technical report, IETF, 1999.

[37] S. Jackson. Qbank: A resource management package for parallel computers.
Technical report, Pacific Northwest National Laboratory, Washington, USA,
2000.

[38] S. Jackson. The gold accounting and allocation manager, 2004.
http://sss.scl.ameslab.gov/gold.shtml.

[39] Laxmikant V. Kale, Sameer Kumar, Mani Potnuru, Jayant DeSouza, and Sind-
hura Bandhakavi. Faucets: Efficient resource allocation on the computational
grid. In ICPP ’04: Proceedings of the 2004 International Conference on Paral-
lel Processing (ICPP’04), pages 396–405, Washington, DC, USA, 2004. IEEE
Computer Society. ISBN 0-7695-2197-5.

[40] Katarzyna Keahey, Karl Doering, and Ian Foster. From Sandbox to Play-
ground: Dynamic Virtual Environments in the Grid. In Grid 2004: Proceed-
ings of the 5th International Workshop in Grid Computing, Pittsburgh, PA,
USA, November 2004.

[41] J. Kephart and D.M. Chess. The Vision of Autonomic Computing.

[42] Kevin Lai. Markets are Dead, Long Live Markets. SIGecom Exchanges, 5(4):
1–10, July 2005.

[43] Kevin Lai, Bernardo A. Huberman, and Leslie Fine. Tycoon: A Distributed
Market-based Resource Allocation System. Technical report, arXiv, 2004.
http://arxiv.org/abs/cs.DC/0404013.

[44] Kevin Lai, Lars Rasmusson, Eytan Adar, Stephen Sorkin, Li Zhang, and
Bernardo A. Huberman. Tycoon: an Implemention of a Distributed Market-
Based Resource Allocation System. Technical Report arXiv:cs.DC/0412038,
HP Labs, Palo Alto, CA, USA, December 2004.

33

[45] Kevin Lai and Thomas Sandholm. The design, implementation, and evaluation
of a market-based resource allocation system. Technical Report Manuscript for
Publication, Royal Institute of Technology and Hewlett-Packard Labs, Stock-
holm, Sweden, May 2006.

[46] D. Lamanna, J. Skene, and W. Emmerich. SLAng: A Language for Defining
Service Level Agreements. In Proceedings of the Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems (FTDCS03), 2003.

[47] M. Lorch and D. Skow. Authorization Glossary. Technical report, Global Grid
Forum, 2004.

[48] Thomas W. Malone, Richard E. Fikes, Kenneth R. Grant, and Michael T.
Howard. Enterprise: A Market-like Task Scheduler for Distributed Computing
Environments. In Bernardo A. Huberman, editor, The Ecology of Computation,
number 2 in Studies in Computer Science and Artificial Intelligence, pages 177–
205. Elsevier Science Publishers B.V., 1988.

[49] K. Nahrstedt, H. Chu, and S. Narayan. QoS-aware resource management for
distributed multimedia applications. Journal on High-Speed Networking ,
December 1998.

[50] Chaki Ng, Philip Buonadonna, Brent N. Chun, Alex C. Snoeren, and Amin
Vahdat. Addressing Strategic Behavior in a Deployed Microeconomic Resource
Allocator. In Proceedings of the 3rd Workshop on Economics of Peer-to-Peer
Systems, 2005.

[51] Martin J. Osborne. An Introduction to Game Theory. Oxford University Press,
July 2002.

[52] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT
Press, 1994.

[53] Christos H. Papadimitriou. Algorithms, Games, and the In-
ternet. In Symposium on Theory of Computing, 2001. URL
citeseer.ist.psu.edu/papadimitriou01algorithms.html.

[54] Ori Regev and Noam Nisan. The Popcorn Market: Online Markets for Com-
putational Resources. In Proceedings of 1st International Conference on In-
formation and Computation Economies, pages 148–157, 1998.

[55] Thomas Sandholm. The philosophy of the grid: Ontology theory -
from aristotle to self-managed it resources. Technical Report TRITA-NA-
0532, Royal Institute of Technology, Stockholm, Sweden, September 2005.
http://www.pdc.kth.se/ sandholm/trita/SandholmOntologyV2.pdf.

34 BIBLIOGRAPHY

[56] Thomas Sandholm. Service level agreement requirements of an
accounting-driven computational grid. Technical Report TRITA-NA-
0533, Royal Institute of Technology, Stockholm, Sweden, September 2005.
http://www.pdc.kth.se/ sandholm/trita/TRITA-SLA.pdf.

[57] Thomas Sandholm, Peter Gardfjell, Erik Elmroth, Lennart Johnsson, and Olle
Mulmo. An ogsa-based accounting system for allocation enforcement across
hpc centers. In ICSOC ’04: Proceedings of the 2nd international conference on
Service oriented computing, pages 279–288, New York, NY, USA, 2004. ACM
Press. ISBN 1-58113-871-7.

[58] Thomas Sandholm, Peter Gardfjell, Erik Elmroth, Lennart Johnsson, and
Olle Mulmo. A Service-Oriented Approach to Enforce Grid Resource Allo-
cations. International Journal of Cooperative Information Systems, 2006. (to
appear).http://www.worldscinet.com/ĳcis/ĳcis.shtml.

[59] Thomas Sandholm, Kevin Lai, Jorge Andrade, and Jacob Odeberg. Market-
based resource allocation using price prediction in a high performance com-
puting grid for scientific applications. In HPDC ’06: Proceedings of the 15th
IEEE International Symposium on High Performance Distributed Computing,
June 2006.

[60] Ludwig Seitz, Erik Rissanen, Thomas Sandholm, Babak Sadighi
Firozabadi, and Olle Mulmo. Policy administration control and
delegation using xacml and delegent. In Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing, November 2005.
http://pat.jpl.nasa.gov/public/grid2005/index.html.

[61] Frank Siebenlist, Takuya Mori, Rachana Ananthakrishnan, Liang Fang,
Tim Freeman, Kate Keahey, Sam Meder, Olle Mulmo, and Thomas
Sandholm. The globus authorization processing framework, April 2005.
http://lotos.site.uottawa.ca/ncac05/index.html.

[62] O. Smirnova, P. Erola, T. Ekelöf, M. Ellert, J.R. Hansen, A. Konsantinov,
B. Konya, J.L. Nielsen, F. Ould-Saada, and A. Wäänänen. The NorduGrid Ar-
chitecture and Middleware for Scientific Applications. Lecture Notes in Com-
puter Science, 267:264–273, 2003.

[63] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah,
Jeff Sidell, Carl Staelin, and Andrew Yu. Mariposa: a wide-area distributed
database system. The VLDB Journal, 5(1):048–063, 1996. ISSN 1066-8888.

[64] W. Thigpen, J. Hacker, L. McGinnis, and B. Athey. Distributed accounting
on the grid. Technical report, Global Grid Forum, 2001.

[65] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. IETF RFC
3820. Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate Profile,
2004. http://www.ietf.org/rfc/rfc3820.txt.

35

[66] Steven Tuecke, Karl Czajkowski, Ian Foster, Jeff Frey, Steven Graham, Carl
Kesselman, Tom Maquire, Thomas Sandholm, David Sneling, and Peter Van-
derbilt. Open Grid Services Infrastructure (OGSI) Version 1.0. Technical
report, Global Grid Forum, 2003.

[67] Hal R. Varian. Equity, Envy, and Efficiency. Journal of Economic Theory, 9:
63–91, 1974.

[68] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O.
Kephart, and W. Scott Stornetta. Spawn: A Distributed Compu-
tational Economy. Software Engineering, 18(2):103–117, 1992. URL
citeseer.nj.nec.com/waldspurger91spawn.html.

[69] Von Welch, Ian Foster, Carl Kesselman, Olle Mulmo, Laura Pearlman, Steven
Tuecke, Jarek Gawor, Samuel Meder, and Frank Siebenlist. X.509 Proxy Cer-
tificates for Dynamic Delegation. In Proceedings of the 3rd Annual PKI R&D
Workshop, 2004.

[70] Rich Wolski, James S. Plank, Todd Bryan, and John Brevik. G-commerce:
Market formulations controlling resource allocation on the computational grid.
In IPDPS ’01: Proceedings of the 15th International Parallel and Distributed
Processing Symposium (IPDPS’01), page 10046.2, Washington, DC, USA,
2001. IEEE Computer Society. ISBN 0-7695-0990-8.

[71] Lĳuan Xiao, Yanmin Zhu, Lionel M. Ni, and Zhiwei Xu. Gridis: An incentive-
based grid scheduling. In IPDPS ’05: Proceedings of the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’05) - Papers,
page 65.2, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-
7695-2312-9.

[72] Li Zhang. The efficiency and fairness of a fixed budget resource allocation
game. Lecture Notes in Computer Science, 3580:485–496, 2005. ISSN 0302-
9743.

	sandholmlic
	Paper1
	Paper2
	Abstract
	5.1 Decision Making System (DMS)
	5.2 Component Bus (CB)
	5.3 SLA Negotiator (SLAN)
	5.4 SLA Monitor (SLAM)
	5.5 SLA Event Sink (SLAS)
	5.6 SLA Policy Manager (SLAP)
	5.7 SLA Rating Engine (SLAR)
	5.8 SLA Task Manager (SLAT)

	Paper3
	Paper4

