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Abstract

Gene expression is regulated in response to metabolic necessities and environ-
mental changes throughout the life of a cell. A major part of this regulation is
governed at the level of transcription, deciding whether messengers to specific
genes are produced or not. This decision is triggered by the action of transcrip-
tion factors, proteins which interact with specific sites on DNA and thus influ-
ence the rate of transcription of proximal genes. Mapping the organisation of
these transcription factor binding sites sheds light on potential causal relations
between genes and is the key to establishing networks of genetic interactions,
which determine how the cell adapts to external changes.

In this work I review briefly the basics of genetics and summarise popular ap-
proaches to describe transcription factor binding sites, from the most straight
forward to finally discuss a biophysically motivated representation based on
the estimation of free energies of molecular interactions. Two articles on tran-
scription factors are contained in this thesis, one published (Aurell, Fouquier
d’Hérouël, Malmnäs and Vergassola, 2007) and one submitted (Fouquier d’Hérouël,
2008). Both rely strongly on the representation of binding sites by matrices ac-
counting for the affinity of the proteins to specific nucleotides at the different
positions of the binding sites.

The importance of non-specific binding of transcription factors to DNA is
briefly addressed in the text and extensively discussed in the first appended arti-
cle: In a study on the affinity of yeast transcription factors for their binding sites,
we conclude that measured in vivo protein concentrations are marginally suffi-
cient to guarantee the occupation of functional sites, as opposed to unspecific
emplacements on the genomic sequence. A common task being the inference
of binding site motifs, the most common statistical method is reviewed in de-
tail, upon which I constructed an alternative biophysically motivated approach,
exemplified in the second appended article.

Keywords: gene expression, regulation, transcription factor, binding motif, ma-
trix representations, gibbs sampling, binding affinity, non-specific binding
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Chapter 1

Introduction

1.1. Scope of this Work

This Licenciate thesis summarises my work of the past two years which began in
the group of Theoretical Biological Physics at KTH by analysing the properties of
DNA binding proteins involved in gene regulation. The aim has been to develop
novel algorithms for the prediction of DNA binding sites for such regulatory
proteins these methods to answer further specific biological questions. The most
obvious questions are on the position and strengths of putative binding sites.
More involved questions are on the properties of populations of DNA binding
proteins and how they interact with a multitude of competing binding sites,
random sequences, remains of former binding sites which have changed during
evolution and strong sites, whether they have an immediate regulatory function
or not.

The models considered here are based on physical arguments of molecular
interactions and should be generally comprehensible to anyone with some back-
ground in physics or statistics. Simplifying descriptions are however provided
where it seems necessary to make the ideas as clear as possible also to the
non-specialist readers.

1.1.1. Structure & Overview

Following a statement on the articles which substantiate this thesis, I give a
brief description of historical interactions between physics and biology with an
emphasis on the impact of physics on biology. This concludes the introduc-
tory chapter which is followed by a presentation of the here relevant biological
background on gene expression. Transcription and translation regulation are
revisited as well as their susceptibility to different sources of randomness. Sub-
sequently, the modelling approaches are discussed, focusing on the interaction
between proteins and DNA, and different methods to predict DNA sequences
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bound by regulatory proteins. Questions on the functionality of such binding
sites at varying protein concentrations are also addressed, since such depen-
dencies might play a major role in restraining the influence of randomness on
genetic responses. Following a short summary, results from the articles are dis-
cussed. To round off this thesis I present further directions of my work as well
as the path I will strike in the future.

1.1.2. Appended Papers

Two papers, as found in the second chapter, accompany this work. Coauthors
of the first one were my supervisors Prof Erik Aurell (EA), KTH, Dr Massimo
Vergasola (MV), Institut Pasteur, and my former colleague Claes Malmnäs (CM)
at KTH.

Article I

The first article investigates the relationship between binding affinities of regu-
latory proteins in yeast to the organism’s DNA and their experimentally deter-
mined concentrations.

MV suggested the project, and CM and I wrote a first draft of the article after
some initial computations. I wrote parts of the subsequent manuscript versions
together with MV and EA who both did the main work on rewriting. I performed
all further computations and produced all illustrations.

The article has been published in Physical Biology 4, 134–143 (2007).

Article II

The second article is about a biophysically inspired method of identifying protein
binding sites on DNA by stochastically approximating probability distributions
describing their expected emplacements.

EA and I discussed the feasibility of the project. I did the literature search,
the analytical work, and implemented the algorithm. EA contributed with clari-
fying discussions, and finally I wrote the manuscript myself.

The implementation is publicly available under the GPL. The manuscript
has been submitted and a preprint is available on http://arxiv.org/ with the
reference arXiv:0802.0258v1 [q-bio.QM].

1.2. Physics and the Study of Life

What is life? – Aristotle addressed this question almost two and a half millenia
ago (Aristotle, 1931), and when it was posed by Erwin Schrödinger (Schrödinger,
1944) in 1944 it was still far from being answered. The old Greek’s account being
today of rather philosophical value, Schrödinger’s approach still surprises with
clarity and wit, condensing the question to facets of its most eminent substance
(Advice, 2008). One of today’s popular definitions (Wikipedia, 2008) claims seven
aspects to be required for something to be alive:
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Homeostasis – ability to regulate internal functions to maintain an overall
constant internal state

Organization – presence of specialized subunits performing different tasks

Metabolism – decomposition of external compounds and internal material into
processable components (catabolism), and synthesis of necessary matter
from external sources or catabolic products (anabolism)

Growth – maintenance of a higher rate of synthesis than decomposition

Stimulation – response to external signals on a short time-scale

Adaptation – ability to modify the above aspects in response to environmental
changes on a long time-scale

Reproduction – autonomous production of living offspring

Individual aspects are certainly discussable. Still, if one accepts some of these
statements to be valid, how are they orchestrated and controlled? Genetics, as
is known, offers parts of the answer and I will give a short introduction to the
regulation of genes. Before that, however, let me present a somewhat biased
account on physicists and their contributions to biology in the past century, es-
pecially their impact on genetics.

Niels Bohr saw no reason why biology should not undergo the same revolu-
tion as atomic physics (Bohr, 1933). He hoped for the discovery of fundamen-
tal constants (Bohr, 1963), much as they had emerged in physics, and sought
for “complementarity of mechanistic and teleological descriptions” (McKaughan,
2005) in biology. This was partially satisfied by Linus Pauling’s “research into
the nature of the chemical bond and its application to the elucidation of the
structure of complex substances”, awarded the 1954 Nobel Prize in Chemistry,
which led to a more detailed understanding of molecular structures, in par-
ticular also of biological molecules. James Watson and Francis Crick eventu-
ally published their famous work Watson and Crick (1953) on DNA in 1956,
for which they were awarded the 1962 Nobel Prize in Physiology or Medicine
together with Maurice Wilkins “for their discoveries concerning the molecular
structure of nucleic acids and its significance for information transfer in living
material”. Bohr’s strong influence and support eventually led Max Delbrück
to switch from physics to genetics, where he made fundamental “discoveries
concerning the replication mechanism and the genetic structure of viruses”,
amongst others definitely proving DNA to be the main carrier (Rassoulzadegan
et al., 2006) of genetic information. Delbrücks work was later awarded the 1969
Nobel Prize in Physiology or Medicine along with Alfred Hershey and Salvador
Luria. Erwin Schrödinger, on his part motivated by the developments in physics
and admiring the work of Delbrück, endeavoured to popularise the core ques-
tions of genetics during his years in Dublin. Today, the properties of biological
networks of arbitrary scale have emerged as important research topics, affecting
subjects from gene regulation (Alon, 2007; Maslov and Sneppen, 2002) to the
understanding of neuronal circuits in the brain (Eguíluz et al., 2005).
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Not forgetting formal requisites of this present manuscript and aiming to
assure some degree of consistency, the next chapter begins with a recapitulation
of some biological knowledge needed to motivate the specific questions which I
address.



Chapter 2

Biological Background

Genetics, one of the fundamental disciplines in biology, began with Gregor
Mendel’s work on the heredity of distinct characters in peas (Mendel, 1866).
Towards the end of the 19th century, almost half a century after Mendel’s exper-
iments and nearly a decade after his death in 1884, botanists Hugo de Vries and
Carl Correns, as well as agronomist Erich Tschermak-Seysenegg independently
rediscovered the rules of heredity, today well-known as the laws of Mendelian
inheritance:

Uniformity – offspring from parents being homozygous in a particular genetic
trait is uniformly heterozygous in that trait

Segregation – the fraction of heterozygous and homozygous offspring from par-
ents being heterozygous in a particular gene is equal

Independent Assortment – offspring from parents being homozygous in two
particular genetic traits inherits both traits independently from each other

The name genetics was coined in the early 20th century by Danish botanist
and pharmacist Wilhelm Ludvig Johannsen introducing genes as carriers of
hereditary information, later defined as being coded by a specific region on a
chromosome. Zygotism in Mendel’s laws refers to diploid organisms, carrying
each chromosome in two copies, one from each parent. A trait is thus called
homozygous if the corresponding chromosomes carry the same gene sequence
and heterozygous if the sequences are different. Applications for the rediscov-
ered principles were obvious: manipulation of culture and breed, and possible
lessons even more tempting: understand life. With discoveries on the structure
and function of the DNA, genetic mechanisms became more and more impor-
tant.

7



8 2.1. Regulation of Gene Expression

2.1. Regulation of Gene Expression

The expression of genes can be controlled on several levels. Being coded by
specific sequences of DNA, they are first transcribed to messenger (m)RNA and
thereafter translated to proteins. Each of these steps characteristic regulatory
mechanisms take effect, which are briefly resumed here.

2.1.1. Transcriptional Control

The most important regulation of mRNA synthesis is performed by transcription
factor (TF) proteins which bind in vicinity of the transcription start site, in the so
called promoter region. A simple model is illustrated in figure 2.1. The template
strand of DNA – complementary to the usually annotated coding strand – is
transcribed to mRNA by RNA polymerases (RNAP) which binds the promoter
regions. Transcription thus means unwinding of DNA, separation of the strands

Figure 2.1. Schematic representation of activation (A) and repression (R) of transcrip-
tion by DNA binding proteins. Transcription start sites are depicted by arrows and the
unwinding of DNA by RNA polymerase is suggested.

and covalently binding free nucleotides to a polymer of RNA.
The recognition of the binding sites for the polymerase is usually under con-

trol by a set of TFs which may either enhance or reduce transcription by fa-
cilitating binding of RNAP enzymes to DNA or by blocking the binding site for
RNAP. Transcribed mRNAs may then be processed by ribosomes, translating
them into proteins, or interact with other molecules in the cell, e.g. metabolites
leading to changes in the secondary structure of the mRNA and most promi-
nently other, so called regulatory non-coding (nc)RNA (c.f. Prasanth and Spec-
tor (2007) or Eddy (2001)). Thermus aquaticus RNAP bound to an essential
transcription factor σA (Murakami et al., 2002) is pictured in figure 2.2. All il-
lustrated structures are, if not otherwise mentionned, retrieved from the Protein
Data Bank http://www.rcsb.org/ (Berman et al., 2003) with access numbers
stated in figure captions. The images made with the QuteMol software (Tarini
et al., 2006).



2. Biological Background 9

Figure 2.2. left: Cartoon representation of Saccharomyces cerevisiae RNA poly-
merase II (PDB ID 1I6H) elongation complex travelling along DNA and synthesising
single stranded RNA (composition by David S. Goodsell of The Scripps Research In-
stitute). right: Thermus aquaticus (Taq) RNA polymerase (PDB ID 1L9U) holoenzyme
with attached DNA binding σA initiation factor (lilac, shadeless, bottom chain). Protein
subunits are displayed in different colours.

TF proteins can be classified as basal and effecting factors. The former are
usually associated to the RNAP enzyme, then referred to as holoenzyme, before
it binds to the promoter and are thus relevant for the default behaviour of the
holoenzyme. The latter bind independently to the promoter region and either
further improve the affinity of the holoenzyme for its binding site, or reduce it,
usually by covering that site. Figure 2.3 depicts Mus musculus TF Stat3B (signal
transducer and activator of transcription 3, isoform B) bound to a short stretch
of DNA and Escherichia coli Crp (cyclic AMP receptor protein) strongly bending
its target seqeunce.

2.1.2. Post-transcriptional Control

Until 1993, gene regulation was believed to be mainly transcriptional. Tran-
scribed functional mRNA was supposed to lead to the synthesis of a correspond-
ing protein and mRNA degradation by RNase proteins was rather seen as passive
garbage collection. No major post-transcriptional mechanism had been observed
in animals until small fragments of RNA, dubbed micro (mi)RNA, with surprising
properties were identified in the roundworm Caenorhabditis elegans (Lee et al.,
1993). These short fragments of ∼ 22 nt were processed from parts of the lin-4
mRNA as it was being prepared for translation and showed reverse complemen-
tarity in their genomic sequence to the mRNA of the lin-14 gene. Without going
into the details and functions of the named genes, the lin-4 miRNA was shown
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by Wightman et al. (1993) to be able to bind lin-14 mRNA and reduced the trans-
lation of lin-14 possibly by acting as a steric obstacle during the processing of
the lin-14 mRNA by ribosomes. Although more hints and clues suggesting an-
other kind of regulatory apparatus were found all along the way, it took almost
a decade for the miRNA research to point out the capacities of those short nu-
cleotide sequences. Among others, Lagos-Quintana et al. (2001) describe the
beginning of a broader understanding of the regulatory machinery. Regulation
by short RNA appears to be a fundamental mechanism in eukaryotes and sev-
eral different types of such regulators have emerged. Eventually, the 2006 Nobel
Prize in Physiology or Medicine was awarded to Andrew Fire and Craig Mello “for
their discovery of RNA interference - gene silencing by double-stranded RNA” in
the nematode Caenorhabditis elegans.

By now, a multitude of ncRNAs have emerged as important post-transcriptional
regulators. In prokaryotes, large functional ncRNAs have been identified with
the ability of modifying mRNA secondary structures upon hybridisation (see
Storz and Haas (2007) for a review), while the short miRNAs and their associated
mechanisms have not been observed to date. Furthermore, specific regions of
mRNAs have been identified as post-transcriptional regulators of the encoded
gene. Riboswitches and thermosensors denote such regions, which can en- or
disable their mRNA’s translation by modifying its affinity for the ribosomes in
response to the binding of metabolite molecules or a change in environmental
temperature, respectively. In the simplest case, this is done by changing the
secondary structure such that the ribosome binding site is being exposed or
made unavailable.

Summarising, several schemes of post transcriptional regulation have been
observed so far

mRNA Modification – ncRNA, thermosensors and riboswitches modify the sec-
ondary structure of mRNA, regulating the access of ribosomes to their
binding sites. This being mostly observed in prokaryotes, some hints point
towards the existence of such mechanisms in higher organisms (Prasanth
and Spector, 2007).

mRNA Degradation – miRNA interfers with mRNA, leading to a degradation of
the latter. This ability of miRNA and small interfering (si)RNA is frequently
observed in plants (Rhoades et al., 2002).

Translation Inhibition – Bound mRNA remains intact but the processing by
ribosomes is repressed. This behaviour has been observed by Wightman
et al. (1993) to take place in animal cells.

This short excursion into the world of post-transcriptional regulation is to
prevent the possible thought that one is just in grasping distance of under-
standing the whole genetic machinery. TF proteins still play a major role in this
game but yet unknown participants may be undisclosed any time, enlarging
the necessary set of rules – on the other hand enabling us to understand the
implications of these very rules.
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2.2. Noise in Gene Expression

Based on chemical reactions, gene expression is an intrinsically noisy process
(Spudich and Koshland, 1976). Intrinsically not only in the sense that a large
network of biochemical reactions may tend to show chaotic behaviour under
certain circumstances (see e.g. Aldana and Cluzel (2003) or Pécou (2005)), but
also in that translation of mRNA sequences is counteracted by degradation en-
zymes, a stochastic process at the molecular level. Further, folding of proteins
into their functional form is also commonly regarded as stochastic (Gō, 1983).
Extrinsic noise may further play a role, stemming from environmental variations
of temperature, pressure, radiation or distributions of cellular components, thus
rather acting on the level of populations than on single cells (Elowitz et al., 2002).

It appears plausible that regulatory systems need some degree of robustness
against intrinsic and, to some degree, extrinsic noise. An important aspect
here is the affinity of TF proteins for non-specific binding sites. Such sites
may play the role of a thresholding pool which has to be filled to a certain extent
before functional sites can be bound efficiently. This issue is addressed in more
detail in Article I, where parts of the results can be interpreted as noise filtering
features of transcription regulation.
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Figure 2.3. Cartoon representations of the TF proteins Stat3B and Crp



Chapter 3

Methodological Approach

This chapter deals with the presentation of basic models of TF/DNA interaction.
The classic theory is briefly addressed, followed by the fundamentals on binding
site motifs and their identification. Thereafter I discuss a biophysical method
of motif inference, followed by a detailed presentation of a generic stochastic
algorithm and two basic implementations.

3.1. Classic Theory of TF/DNA Interaction

The classic statistical-mechanical theory for the evolution of DNA sequences to
TF binding sites (Berg and von Hippel, 1987) is based on three assumptions

Specificity – Binding sites evolve to carry out a specific regulatory task and
differ thus from random sequences.

Homogeneity – All sites on a genome satisfying such a task are equally likely
to evolve to binding sites.

Additivity – Individual nucleotides of the binding site contribute independently
to the total binding energy of a TF.

A set M = {M1,M2, . . . } of possible binding sites corresponding to a specific
factor is defined by a limited range around the discrimination energy Ē,

M =
˘
S : |E(S)− Ē| ≤ ∆E

¯
. (3.1)

Finding the expected occurrence frequencies for a nucleotide at a specific posi-
tion of the motif defined by this set – not knowing the corresponding sequences
a priori – is equivalent to the problem of finding the occupation probabilities of
energy-levels in a microcanonical ensemble of non-interacting particles. We can
thus write

fνi(Ē) =
exp(−λενi)

Ωi
Ē

(λ)
(3.2)

13



14 3.1. Classic Theory of TF/DNA Interaction

with the energy matrix entries ενi accounting for the energetic contribution of
nucleotide ν at position i of the binding site, and the selection parameter λ which
plays the role of an inverse temperature. The canonoical partition function ΩiĒ
accounts for the number of accessible states – binding sites in an ensemble of
random sequences – around the energy Ē as function of the selection parameter

ΩiĒ(λ) =
X
η

exp(−λεηi) . (3.3)

In principle, λ is not related to the temperature of the biological environment.
It can rather be interpreted as coupling factor between the properties of a TF
being represented by the energy matrix and properties of a binding site motif,
represented by the frequency matrix. Assuming the contribution of different
sequence positions to be additive, one can also find the discrimination energy
by evaluating the average

Ē =
lX
i=1

X
α

ενifνi . (3.4)

We will revisit the fundamentals of this theory in the following when describing a
method of biomodelling to estimate energy matrices which represent TF binding
sites. Especially the ensemble interpretation will be of great use, allowing the
computation of statistical quantities from the free energy of binding.

3.1.1. Representation of Binding Motifs

Put very simply, motifs are diffuse patterns on nucleotide sequences sharing a
certain degree of similarity. Different models of representation have been elabo-
rated. I describe here the most common ones as well as some terms which are
useful to quantify the descriptions. The most straightforward representation
using consensus sequences is easily established from a sample of nucleotide se-
quences containing the motif. A majority count of single nucleotides at each
position in the sample then defines the corresponding entry in the consensus.
Variability between nucleotides at specific positions can be considered by us-

Symbol A C G T U R Y S W K M B D H V N -

Base

Adenine
C

ytosine
G

uanine
Thym

ine
U

racil
A

or
G

C
or

T
G

or
C

A
or

T
G

or
T

A
or

C
C

or
G

or
T

A
or

G
or

T
A

or
C

or
T

A
or

C
or

G
any
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Figure 3.1. IUPAC symbols for nucleic acids

ing ambiguous IUPAC symbols as listed in figure 3.1 to describe the motif. The
simple representation obviously dispenses with relevant information such as
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positional importance of the nucleotides in a motif and possible dependencies
between nucleotide pairs and triplets.

A more visual representation of a motif is given by its sequence logo, in-
troduced by Schneider and Stephens (1990), in which the importance of a nu-
cleotide at each position is related to the size of the corresponding entry. In
figure 3.2, two different sequence logos are displayed, along with a weight ma-
trix representation explained in the following paragraph.

A more sensitive representation is found by counting the relative occurrences
fνi of each nucleotide ν at all positions i of the motif in our collection of N
sequences. Doing so, we calculate the entries of a frequency matrix

fνi =
cνi + 1

N + 4
(3.5)

considering a pseudocount (Berg and von Hippel, 1987) of one for each nu-
cleotide. With cνi we denote the occurrence count of ν at position i of the align-
ment. Relating the frequency matrix to some nucleotide occurrence probability
pν , we reach the concept of weight matrices

wνi = log
fνi
pν

(3.6)

which has been successfully applied by (Stormo and Hartzell, 1989) for the de-
scription of protein binding sites.

It is worthwhile to note the relationship between these weight matrices and
the energy matrices from above. With the canonical partition function ΩiĒ, we
have

ενi = −λ−1 log
“
fνiΩ

i
Ē

”
(3.7)

= −λ−1
h
wνi + log

“
pνΩiĒ

”i
(3.8)

= −λ−1 (wνi +Hνi) , (3.9)

where the shifting term can be identified with the local entropy Hνi of the setM.
Assuming typical nucleotide occurrence probabilities for the gene upstream

regions of the Escherichia coli genome, i.e. pA ≈ pT ≈ pG ≈ pC ≈ 0.25, the weight
matrix for the FruR alignment is shown in figure 3.2. It is worth to note the
usefulness of pseudocounts at this point. As the set of sequences from which
we construct wνi can be rather small, we might not observe a certain base at a
certain position, simply due to possible undersampling. The logarithm in (3.6)
would then lead to entries of −∞ in the weight matrix, making the description
useless.

Associated to both weight and frequency matrix is the information score, mea-
suring how unlikely an alignment is to occur by chance. Formally it is related to
the probability of observing the set of positional occurrences {cνi} in the align-
ment, given the probabilistic model defined by the set {pα}. Considering the
alignment of N sequences of length L, this is given by the product over multino-
mials

P ({cνi} | {pν}) =

LY
k=1

N !
Y
η

(pη)cηk

cηk!
. (3.10)
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aagccaaag CTGAATCGATTTT atgatttgg
cgttgcgag CTGAATCGCTTAA cctggtgat
gttagcgtg GTGAATCGATACT ttaccggtt
tagtcgatc GTTAAGCGATTCA gcaccttac
nnnnnnnnn STKAAKCGMTWHW nnnnnnnnn

wA wC wG wT

1 −0.88 0.63 0.63 −0.88
2 −0.88 −0.47 −0.47 0.73
3 −0.88 −0.47 0.92 −0.18
4 0.73 −0.47 −0.47 −0.88
5 0.73 −0.47 −0.47 −0.88
6 −0.88 −0.47 0.22 0.51
7 −0.88 1.14 −0.47 −0.88
8 −0.88 −0.47 1.14 −0.88
9 0.51 0.22 −0.47 −0.88

10 −0.88 −0.47 −0.47 0.73
11 −0.18 −0.47 −0.47 0.51
12 −0.18 0.63 −0.47 −0.18
13 0.22 −0.47 −0.47 0.22

Figure 3.2. From consensus sequence to weight matrix representation of a binding
motif for the FruR TF protein of Escherichia coli. The first sequence logo corresponds
to the occurrence counts and the second is scaled by the positional information score.
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The product over η is apparently the generation probability for an unordered
set of nucleotides at position k, the columns of the alignment, and to get the
probability of generating the whole alignment, we have to evaluate the product
over all such columns. Writing the occurrences as cνi ≈ N · fνi – with equality
when omitting pseudocounts – and making use of the Stirling approximation
log(n!) ≈ n logn− n, we find

P ({cνi} | {pν}) =

LY
k=1

exp(logN !)
Y
η

exp

„
Nfηk log

pη
(Nfηk)!

«

≈ exp

0@−NX
ηk

fηk log
fηk
pη

1A ≡ exp(−nI) , (3.11)

with the information score (Schneider et al., 1986) of an alignment described by
the frequencies fνi and weights as wνi

I =

LX
k=1

Ik =
X
ηk

fηkwηk . (3.12)

The positional information score was implicitly defined as Ik. Due to the sign in
(3.11), these quantities increases as the probability for the alignment to occur
by chance decreases. The information score thus gives a possibility to assess
the quality of an alignment by judging how unexpected it is.

3.1.2. Identification of TF Binding Sites

After building a motif model the search for binding sites on the whole genome
can begin. Sites similar to a given consensus sequences are easily found by
pattern matching algorithms (Rice et al., 2000), allowing for specified numbers
of mismatches. Matrix representations mνi of a motif of length L, are readily
evaluated on the genomic sequence S = (α1, α1, . . . ) by calculating the positional
score

R(a) =

LX
k=1

mαkk , (3.13)

where a is the first position of the assumed motif on S. Depending on the matrix
type, a threshold score for the acceptance of a putative instance of the motif
has to be defined. In the case of frequency and weight matrices this task is not
obvious a priori and a top-down approach eventually analysing the best scoring
matches first often seems to be the best approach when no further biological
information is available. Such information can be, for instance, a detailed model
of the sequence topology around some of the relatively high-scoring matches or
experimental data pointing towards a regulatory relationship between nearby
sequences. We will see below that energy matrices are free from this issue.
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3.2. Inference of Binding Motifs

3.2.1. Basic Variants

Lexical Analysis

Given the abundance of genomic material, attempts have been made to identify
regulatory motifs by deducing some set of sequences directly from the genome or
by fitting a certain model to some known gene expression data. Such methods,
as e.g. described in Bussemaker et al. (2000) where the authors try to build a
dictionary of words, hence deduce a genomic language, by comparing the occur-
rence probabilities of nucleotide strings in the genome in question with limited
success. Still further attempts are made to deduce context-free grammars from
small sequence samples (Dyrka and Nebel, 2007). A more promising algorithm
(Bussemaker et al., 2001) fitted a lexical motif model to the experimental data of
gene expression levels, thus deducing a descriptive pattern.

Others (see e.g. Pavesi et al. (2004) for an overview) try to find functional pat-
terns using stochastic methods often based on the sampling algorithm which I
describe below. Still simplicity and pragmatism often beats realism, as was
most strikingly noted in a recent assessment of motif inference tools (Tompa
et al., 2005) on a variety of eukaryotic datasets ranging from yeast to human se-
quences. The pattern alignment algorithm by Pavesi et al. (2007) is constructed
on a heuristic set of penalty rules for mismatches and gaps and performed better
than its competitors on most datasets.

Biomodelling

A different approach to the inference of motif representations is to consider the
free energy of binding from a transcription factor bound to a DNA molecule. This
quantity can be expanded in interaction terms of different order, all depending
on the sequence S of length L

E(S) =

LX
i

4X
α

ενiS
i
ν +

LX
ij

4X
νη

Jνηij S
i
νS

j
η +

LX
ijk

4X
νηκ

Qνηκijk S
i
νS

j
ηS

k
κ + . . . (3.14)

where all subscripts are integers starting at one and the greek letters are con-
trol variables for the four base types at arbitrary convention. We already en-
countered the basics of this concept in section 3.1, where I omitted the precise
definition of the free energy E(S).

The nucleotide sequence S = (α1, α2 . . . , αN ) is represented by its indicators,
defined as

Siν =


1 if αi = ν

0 otherwise
. (3.15)

Since the corrections by the higher order terms can be assumed to be small,
only the linear approximation is kept for modelling. Additionally, high order
corrections implicate the introduction of high-dimensional objects as Jνηij , Qνηκijk ,
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etc, circumventing the use of the simplifications which I detail below. It is con-
venient to think in terms of matrices

ε =

0BB@
εA1 . . . εAL
εC1 . . . εCL
εG1 . . . εGL
εT1 . . . εTL

1CCA and s =

0BB@
S1
A . . . SLA
S1
C . . . SLC
S1
G . . . SLG
S1
T . . . SLT

1CCA , (3.16)

entailing the energy to be given by the Frobenius inner product

E(S) ≈ ε : s = tr(εTs) , (3.17)

or equivalently as vectors

ε = (ε1
A, ε

1
G, ε

1
T , ε

1
C ; . . . ; εLA, ε

L
G, ε

L
T , ε

L
C)T

and
s = (S1

A, S
1
G, S

1
T , S

1
C ; . . . ;SLA, S

L
G, S

L
T , S

L
C)T . (3.18)

The problem of finding the free binding energy can now be tackled using the
method suggested in (Djordjevic et al., 2003). A corresponding thought experi-
ment is the following:

One mixes a large number of randomly generated DNA sequences of length
L to a solution with known TF concentration. Let the probability to generate the
sequence S be PS. Upon equilibration, N TFs are extracted with their associated
sequence. The likelihood of observing a setM = {S1, S2, . . . , SN} of N sequences
and no other sequence is then

P =
Y
S∈M

[γPSf(E(S)− µ)]
Y
S′ /∈M

[1− γPS′f(E(S′)− µ)] (3.19)

where f(E − µ) is the Fermi-Dirac distribution and µ is the chemical potential
relating the TF concentration and its rate of binding to DNA. Both terms are
discussed in more detail below. The factor γ describes the extraction probability
of a bound sequence. The aim of the algorithm is to maximise the likelihood P.
Making use of the expansion of e−x ≈ 1− x, equation (3.19) can be simplified to

P ≈
Y
S∈M

[γPSf(E(S)− µ)] exp

 X
S′ /∈M

[−γPS′f(E(S′)− µ)]

!
(3.20)

To get rid of the product and the exponential function, it is rather conve-
nient to consider the logarithm of this probability, referred to as the logarithmic
likelihood L = logP. From equation (3.20) we hence get

L = N log γ +
X
S∈M

log[PSf(E(S)− µ)]− γ
X
S′ /∈M

[PS′f(E(S′)− µ)] (3.21)

Maximising L corresponds to maximising the probability of extracting bound
sequences, hence to identify those relevant for transcription. This is the aim of
all here presented algorithms.
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A short excursion shows why the binding probability can be assumed to be
Fermi-Dirac distributed. One considers the simple kinetic reaction describing
the binding of a TF do DNA with reaction constants ka and kd

TF + DNA

ka



kd

TF ◦DNA (3.22)

This represents a pair of coupled ordinary first-order differential equations and
the system can be interpreted as being in one of two states, bound and unbound,
separated by the free energy of binding E. One can now look at the steady-state
of the bound complex’ concentration

∂t[TF ◦DNA] = ka[TF][DNA]− kd[TF ◦DNA] ≡ 0 (3.23)

leading to
[TF ◦DNA]

[TF][DNA]
=
ka

kd
= K · exp(−βE) , (3.24)

where equality to the right comes from the two-state model. β is the inverse
temperature (kBT )−1 in units of the Boltzmann constant and E stands for the
free energy of binding, while K is an inverse equilibrium concentration.

The probability for the DNA sequence S to be bound to a TF is given by

Pb(S) =
[TF ◦DNA]

[TF ◦DNA] + [DNA]
(3.25)

into which one can insert the statement of equation (3.24), obtaining

Pb(S) =

„
1 +

[DNA]

[TF ◦DNA]

«−1

=

„
1 +

exp(βE(S)

K · [TF]

«−1

=
1

1 + exp[β(E(S)− µ)]
, (3.26)

with the chemical potential µ = kBT log(K · [TF]), yielding the Fermi-Dirac distri-
bution. Note that µ has the same form as in an ideal gas with particle concen-
tration [TF].

To further simplify equation (3.20), one considers the border case of all TFs
being bound, claiming T → 0 or equivalently β → ∞. In this limit, the Fermi-
Dirac distribution turns into the Heaviside step distribution Θ(E − µ). Fur-
ther on, one can assume the energies E(S′) of unobserved sequences to be dis-
tributed according to ρε(E), allowing the notation

X
S′ /∈M

PS′f(E(S′)− µ) =

∞Z
−∞

dEρε(E)f(E − µ)
T→0−−−→

µZ
−∞

dEρε(E) . (3.27)

The continuous density function ρε may be approximated by a Gaussian distri-
bution as long as E is close to the mean energy. This is a central assumption
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in Djordjevic et al. (2003) and is assumed to hold for the set of unobserved
sequences. Initially keeping the temperature finite, this yields a simplified like-
lihood function

L = N log γ +
X
S∈M

log[PSf(E(S)− µ)]− γ
Z
dEρε(E)f(E − µ) , (3.28)

to be maximised in the (ε, µ, γ) space. Requiring the variations to vanish gives

∂ενiL = −N log γ
X
S∈M

[1− f(E(S)− µ)] · βSiν + γ

Z
dEf(E − µ)∂ενiρε(E) ≡ 0 (3.29)

∂µL = N log γ
X
S∈M

[−f(E(S)−µ)]·β−γβ
Z
dEρε(E)f(E−µ)[1−f(E−µ)] ≡ 0 (3.30)

∂γL =
N

γ
−
Z
dEρε(E)f(E − µ) ≡ 0 . (3.31)

The extraction factor γ turns out to be the only non-transcendent parameter

γ =
NR

dEρε(E)f(E − µ)
. (3.32)

Using this result and the zero temperature approximation in (3.28) yields a sim-
plified maximisation problem

max
ε,µ

8<:N
0@logN −

µZ
−∞

dEρε(E)

1A9=; , (3.33)

which – since N is constant – is equivalent to the evaluation of

min
ε,µ

8<:
µZ

−∞

dEρε(E) = erf

„
µ− Ē
σ

«˛̨̨̨
ε ∈ R4 × RL, µ ∈ R, E(S) ≤ µ ∀ S ∈M

9=;
(3.34)

Here we finally assumed ρε to be Gaussian with mean Ē, which can be arbitrarily
chosen by shifting the energy scale, since this doesn’t affect the minimisation
problem. Setting further

µ = max
S∈M

E(S) , (3.35)

to ensure the observed states states to be bound, the problem can be reduced
to minimising the variance of the Gauss distribution. It is hence to find

ε ∈ R4 × RL : σ2(ε) = min
ε′

σ2(ε′)

ff
(3.36)

Rescaling all energies to units of the shifted chemical potential µ− Ē leads to8><>:
minimise

ε
σ2(ε) =

P
νη

P
ij

ενiP (ν, i; η, j)εηj

subject to E(S) = ε : s ≤ −1 ∀ S ∈M
. (3.37)
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The P (ν, i; η, j) are derived from a statistical model of the genomic background,
describing the probabilities of observing the nucleotide ν at position i in the mo-
tif, while η is observed at position j > i. To construct the elements P (ν, i; η, j),
consider the occurrence probabilities pν of nucleotide ν and the stochastic ma-
trix T of probabilities of observing ν followed by η

(T)νη = P (ν | η) . (3.38)

Both pν and T are readily constructed from genomic sequences. Further intro-
ducing the vectors P,ν and Pη, with elements

(P,ν)α = P (α | ν) and (Pη,)α = P (η | α) , (3.39)

we can explicitely calculate the genomic background model

P (ν, i; η, j) = pν
h
(1− δij)Pη,T

j−i−1P,ν + δνηδij
i
, (3.40)

with the discrete delta function on the indices a and b defined as

δab =


1 if a = b

0 if a 6= b
. (3.41)

The problem of estimating the ενi is thus reduced to a quadratic optimisation
problem, which can be handled by standard quadratic programming. Let us first
summarise the system of equations of (3.37) as8<:

minimise
ε

1
2
εTPε

subject to εTS + 1 ≤ 0
(3.42)

with the vector S of sequence matrices from each of the N sequence extractions,

S = [s1, s2, . . . , sN ] . (3.43)

1 and 0 are the N dimensional vectors of ones and zeros, respectively. P can be
interpreted as the Hessian of the variance. Its elements being probabilities, P is
guaranteed to be positive semi-definite, leading to a convex optimisation prob-
lem. Consequently, there exists only a global optimum. Lagrange optimisation
with constraints requires the system – introducing the vector of multipliers λ –
to be 8><>:

minimise
ε,λ

1
2
εTPε+ λ

`
εTS + 1

´T
subject to Pε+ Sλ = 0 ∧ λ ≥ 0

. (3.44)

Inserting ε = −P−1Sλ from the new constraint back into the optimisation leads
to the dual form of the problem8<:

maximise
λ

− 1
2
λTSTP−1Sλ+ λT1

subject to λ ≥ 0
. (3.45)
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This dual problem is equivalent to the primal one (Nash and Sofer, 1996) and
has only λ left as free parameter.

Zero entries in the sequence matrix S lead inevitably to the loss of some
information, “flattening” the manifold on which to find an optimum. To counter
this, we perform a shifting operation on the sequences, defining for the entries
of each sequence matrix sj

(̂sj)νi ≡ (sj)νi − pν . (3.46)

This transformation does not affect the optimisation problem but rescales the
chemical potential, which was arbitrarily set to unity, as in equation (3.44).

To reconstruct the estimated energy matrix we have to evaluate

ε = −P−1Ŝλ , (3.47)

obtaining the energy matrix ε in terms of the chemical potential µ.
Solving the dual problem yields a computational benefit when optimising

via quadratic programming. The matrix of the dual quadratic form is SP−1S

and therewith of rank N instead of 4L for P in the primal problem. In general
we have N � 4L, and one has just to perform one matrix inversion and two
multiplications, while the optimisation procedure evaluates the quadratic form
numerous times. The smaller the problems dimension, the faster the evaluation.

Figure 3.3 visualises the idea behind the likelihood maximisation at finite
temperature. For T → 0 the sigmoidal distribution becomes a sharp step. The

Figure 3.3. Distribution of binding energies and sequence binding probability

domain of overlapping Fermi-Dirac and Gauss distributions is a measure for
the amount of binding sites that are wrongly not being considered in the model
(3.19). By minimising the variance of the Gaussian, the probability diminishes,
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maximising the likelihood of only finding the observed set of sequences in the
thought experiment.

A calibration can be done respective to a known set of binding sequences, in
order to find an estimate for the binding-free-energies ε. With this estimate, it
is possible to find other sequences subject to the constraint set by the chemical
potential by evaluating the energy matrix on the whole genome.

3.2.2. Stochastic Method

Suppose we do not have exact binding sites given from which to infer a motif
representation, but instead a set S = {Si | i = 1 . . . N, ‖Si‖ = Li} of N nucleotide
sequences of lengths Li, each containing zero or more binding sites for the same
TF. What we would like to set up is the joint probability distribution

p[N ](a1, a2, . . . , aN ) (3.48)

of the positions of binding sites on each sequence and analyse the most proba-
ble configurations given S. However, this task turns out to be hard to perform
in general, and approximative methods are used instead. The Gibbs sampler is
such a method, based on the Metropolis-Hastings algorithm (Hastings, 1970),
which allows the estimation of statistical quantities from a set of random vari-
ables when detailed information about their distributions is missing.

Let me start by describing this method in a more general way before coming
back to the problem of sequence alignment. We are interested in the properties
of random variables X and Y1, . . . , Yn. This nomenclature is just to skip the index
of the first random variable whose properties we will estimate. Such properties
can be for instance the joint probability distribution of n+ 1 variables

p[n+1](x, y1, y2, . . . , yn) (3.49)

or any marginal distribution from which we can extract information on the cor-
responding variable independently of the others, i.e.

p[1](x) =

Z
dy1

Z
dy2 . . .

Z
dyn p[n+1](x, y1, y2, . . . , yn) (3.50)

Note that when the random variables X and Yi are generated from a Marko-
vian process, meaning the conditionals distributions depend only on their pre-
deceding neighbours, fulfilling p[1|n](yi | x, y1, y2, . . . , yi−1, yi+1, . . . , yn) = p[1|1](yi |
yi−1), it holds for the marginal distribution that

p[1](x) =
p[n](x, y1, y2, . . . , yn)

p[1|1](yn | yn−1) · · · p[1|1](y2 | y1) · p[1|1](y1 | x)
, (3.51)

with arbitrary realizations yi of the random variables Yi. In such cases, the
marginal distribution of x is accessible without performing any integration over
the set {yi}.
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The generic scheme is to draw a sequence X(0), X(1), . . . , X(k) of the random
variable X ∼ p[1](x) and to use this sequence to approximate specific proper-
ties of the marginal distribution p[1](x) or even the distribution itself without
knowing it explicitly. The sequence is drawn from the conditional probabili-
ties p(x|y1, y2, . . . , yn) and p(yi|x, y1, . . . , yi−1, yi+1, . . . , yn) in an iterative procedure
starting with randomly chosen realizations ŷ1, . . . , ŷn, sequentially updated as
new realisations of Yi become available

X(0) ∼ p[1|n](x | {Yk = ŷk , k = 1 . . . n}) ,
Y

(0)
i ∼ p[1|n](yi | X = x(0), {Yj<i = y

(0)
j , Yj>i = ŷi}) ,

. . .

X(t) ∼ p[1|n](x | {Yk = y
(t−1)
k , k = 1 . . . n}) .

(3.52)

Each drawing of X(k) is thus preceded by n drawings Y (k−1)
1 , . . . , Y

(k−1)
n , and as

k → ∞, it is possible to reach arbitrary precision in the approximation. The
marginal density can now be estimated from conditionals

p̂[1](x) = k−1
kX
i=0

p[1|n](x)
k→∞−→ p[1](x) , (3.53)

while for instance the expectation value of X can be approximated by

Ek[X] = k−1
kX
i=0

X(i) k→∞−→ E[X] , (3.54)

both consequences of the Rao-Blackwell theorem (Barton, 1961). I refer to more
specialised literature for a rigorous mathematical treatment (Tanner, 1998) and
a variety of examples (Casella and George, 1992).

In the context of motif inference on the S = {Si | i = 1 . . . N , ‖Si‖ = Li}, let
the set of alignment boxes be AS = {(ai, wi) | i = 1 . . . N , ai ∈ [1, Li−wi+1] , wi ∈
[1, Li]}, with specific positions and widths on each Si, as illustrated in figure 3.4.
The random variables are now discrete alignment positions Ai and widths Wi on
each sequence Si with realizations ai and wi, respectively. Density functions
representing the probabilities of observing a given alignment are thus replaced
by discrete probability distributions of the form

p[2N ] :

NY
i=1

([1, Li − wi + 1]× [1, Li]) → (0, 1) | ‖p[2N ]‖ = 1 , (3.55)

and of interest are the marginal distributions p[2](Ai = ai,Wi = wi), describing
the probabilities to find a binding site of width wi at position ai on sequence Si.

To illustrate the probabilistic framework and clarify the relationship between
the marginals and the actual presence of binding sites, let the alignment widths
wi be given and fixed to the same value w, thus pruning the set of random
variables. This reduces the dimensionality of the space of random variables in
order to simplify the notation and leaves us with A1, . . . , AN or alternatively the
N-dimensional random variable A. To this aim, let also the sequence lengths
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Figure 3.4. Alignment boxes of a set of four sample sequences with a1 = 3, a2 = 17,
a3 = 10 and a4 = 23. Different alignment widths w1 = w2 = 5 and w3 = w4 = 6
correspond to a gapped alignment, as shown to the right.

Li be fixed to L, constraining the alignment positions to ai ∈ [1, L̂], with the
rightmost alignment position L̂ = L− w + 1, leading to distributions

p[N ] : [1, L̂]N → (0, 1) | ‖p[N ]‖ = 1 . (3.56)

Marginals of interest are now p[1](ai) and conditional probabilities for finding a
binding site at ai on sequence Si, depending on the alignments on the other
sequences Sj 6=i, can be explicitly written as

p[1|N−1](Ai = ai | {Aj 6=i = aj}) =
p[N ]({Ak = ak | k = 1 . . . N})PL̂
bi=1 p[N ](Ai = bi, {Aj 6=i = aj})

, (3.57)

which will be evaluated in the following paragraphs on the Gibbs Motif Sam-
pler. The definition of conditional probabilities further yields the expression for
distributions with reversed dependence of the alignments on the Sj 6=i,

p[N−1|1]({Aj 6=i = aj} | Ai = ai) =
p[N ]({Ak = ak | k = 1 . . . N})PL̂
{bj 6=i=1} p[N ](Ai = ai, {Aj 6=i = bj})

. (3.58)

In principle, the conditional distributions are easily calculated for the actual
problem, as illustrated below, and upon construction, they can be directly ap-
plied to iteratively sample a sequences of alignments A(0),A(1), . . . ,A(k). Each
A(i) represents a set of N random alignments A(i)

1 , . . . , A
(i)
N on the ith nucleotide

sequence from S. Before focusing on an actual implementation, however, let
me make plausible why the marginal distribution is recovered from from the
sampled alignments. Using the conditional distributions, the transition proba-
bilities for the alignment on a specific nucleotide sequence to go from Ai → A′i
with realizations ai → a′i in any iteration can be written as

p̂[1|1](A
′
i | Ai) =

L̂X
{aj 6=i=1}

p[1|N−1](A
′
i | {A′j 6=i}) · p[N−1|1]({Aj 6=i} | Ai) , (3.59)
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where the notation was shortened by the attribution of realisations to the ran-
dom variables. These conditional probabilities define a homogeneous Markov
process (Papoulis, 1991), since they are independent of the actual iteration.
They can be expressed as L̂× L̂ transfer matrix P̂[i] for the alignment transition
on sequence Si with p̂[1|1] as elements

P̂[i],ai,a
′
i

= p̂[1|1](A
′
i = a′i | Ai = ai) , (3.60)

with X
ai

P̂[i],ai,a
′
i

= 1 . (3.61)

In a sequence of sampled alignments A(0),A(1), . . . ,A(k), let us now assume that
we know the marginal probability distribution for the specific random variable
A

(k)
i after the kth iteration. In fact, we could have estimated this distribution

by creating a great number of independent sequences of alignment, each with k

iterations, and averaging over the realizations obtained for each final A(k)
i , again

as consequence of the Rao-Blackwell theorem (Barton, 1961).
The marginal distribution of A(k)

i can on its part be expressed as L̂ dimen-
sional vector p

(k)

[i] with elements

p
(k)

[i],ai
= p[1](A

k
i = ai) , (3.62)

and we can readily verify that the marginal distribution could as well have been
calculated from any earlier iteration using powers of the transfer matrix

p
(k)

[i] = P̂[i]p
(k−1)

[i] = P̂2
[i]p

(k−2)

[i] = · · · = P̂k
[i]p

(0)

[i] . (3.63)

Further, the Perron-Frobenius theorem (Graham, 1987) guarantees the exis-
tence of a stationary distribution p[i] satisfying the eigenvalue equation

p[i] = P̂[i]p[i] . (3.64)

even for non trivial transfer matrices, and it is clear from the above that this
distribution is reached by infinite sampling

lim
k→∞

p
(k)

[i] = p[i] . (3.65)

We can hence define simple criteria for the convergence of p
(k)

[i] by monitoring its
evolution and deciding at which iteration to stop the sampling. Hereafter, we
may decide what to learn from the process. Estimating marginal distributions
was the initial task, but in practice just one of the alignments A(i), e.g. the most
common, is often of greater interest, thus representing a snapshot of the joint
distribution of alignments on all sequences.

Gibbs Motif Sampler

To give a concrete example of the estimation of optimal alignments, let me sum-
marise the basic version of the stochastic algorithm by Lawrence et al. (1993).
In figure 3.5, the quantities computed during the sampling iterations are dis-
played. The algorithm itself proceeds as follows:
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Figure 3.5. Evaluation of the model matrices cνi and qνi, and the background vector
pν on the complete set of sequences from the previous example in figure 3.4.

Initialization – Random alignment positions ak are chosen on each sequence.

Predictive update step – The sequence Sk is removed from S, where k can be
chosen arbitrarily or in a specific order covering all members of S. From
the remaining set we calculate the pν and the qνi according to

pη =
cν + bν

N − 1 +B
and qνi =

cνi + bνi
N − 1 +B

(3.66)

where occurrences of ν (at position i) are denoted by c, and pseudocounts
by b and B, respectively (Berg and von Hippel, 1987). Optimal values for
these regularisers are intuitively bν = bνi = 1 and B = 4, which can be
shown with rigour (Karplus, 1995).

Sampling step – Every alignment box (a,w) in Sk = (α1, . . . , αL) is being con-
sidered as instance of the pattern and we calculate the background and
model probabilities Pw(a) and Qw(a) for the alignment box from

Pw(a) =

a+wY
i=a

pαi and Qw(a) =

a+wY
i=a

qαii . (3.67)

From those we can directly construct the conditional probability for the
alignment on Sk given the other alignments as

p[1|N−1](Ak = a | {Aj 6=k = aj}) ∼
Qw(a)

Pw(a)
, (3.68)

and draw a new alignment position on Sk before iterating with the following
predictive update step.
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If, at some iteration, a set of “correct” alignments is chosen, i.e. some of the ak
correspond to a highly non-background-pattern, the algorithm will tend to lock
the remaining alignments to satisfy the “correct” pattern. That way, the method
converges to a (although possibly local) optimum of alignment. Formally, the
fixed point of equation (3.65) is approximated.

Quadratic Programming Sampler

Instead of building the probability distribution of new alignment positions from
motif frequency matrices fνi and background probabilities pν , we can directly
construct it from the probabilities for a TF protein to bind to the nucleotide
sequences in S. Let us first introduce the alignment probability distribution
P̂ε(x) for a binding motif at position x on sequence S = (α1, α2, . . . , αL), which is
constructed from the binding probabilities Pb from equation (3.26) by setting

P̂ε(x) =
Pb((αx, αx+1, . . . , αx+w))PL−w+1

x′=1 Pb((αx′ , αx′+1, . . . , αx′+w))
. (3.69)

Figure 3.6. Schematics of the QPS algorithm taking N input sequences S1 to SN with
initialisation i, motif extraction m, matrix computation c, and evaluation steps e. S2 is
highlighted as being retained for the updating of a2.

The optimal local alignment is then approximated upon convergence of the
following procedure:

Initialisation – Random alignment positions ai, i = 1, . . . , N are set on each of
the input sequence.

Model construction – The sequence motifM of N − 1 sequences is extracted,
excluding sequence Si.
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Matrix computation – The energy matrix ε of the motifM is computed.

Sequence evaluation – ε is evaluated on the excluded sequence Si using Rε.

Model construction’ – A new alignment position ai is drawn on Si from the
alignment probability distribution P̂ε(a), exclude a new sequence Si′ and
iterate with a subsequent matrix computation.

Figure 3.6 illustrates the procedure in which each iteration draws a new align-
ment on the skipped sequence Si. The algorithm is described in some more
detail in Article II.



Chapter 4

Results & Discussion

4.1. Article I – Numbers and Affinity

TFs exert their regulatory functions by binding to nucleotide sequences on DNA,
but they do not solely bind to sequences related to a specific function. Indeed
TFs are thought to bind mostly non-specifically to DNA. We report in this article
on the properties of such non-specific binding described by an effective back-
ground free energy Fb describing the affinity of a single TF for a random stretch
of DNA. Other quantities of interest in this study were the chemical potential µ
of the type of considered TFs as well as their binding energy E∗ to the optimal
binding site.

We analysed the relationship between Fb, E∗ and the average amount nobs

of TF proteins measured in exponentially growing yeast. As demonstrated in
the article, the relationship between chemical potential, protein amount and
background free energy can be written as

µ ' β−1 logn+ Fb . (4.1)

We argue that the chemical potential, representing an energetic threshold for
strong binding, is on average of the order of the best binding energy E∗, thus
requiring the background free energy to satisfy

Fb ≈ E∗ − β−1 lognt , (4.2)

with a thresholding amount nt guaranteeing occupation of the specific binding
sites. This statement is in contrast to earlier assertions in the literature (Gerland
et al., 2002) which we discuss, claiming the free background energy to neglect
the lognt term, thus non-specific binding to be much weaker, i.e.

Fb ≈ E∗ . (4.3)

We calculated the energies in question by adopting both weight and energy
matrix representations of 63 TFs of Saccharomyces cerevisiae. Figure 4.1 shows
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our assumption of a strong binding background to be satisfied on average, while
the claim of a weaker Fb appears to hold only for a small number of TFs. This
on average behaviour observed using experimentally measured amounts further
suggests that in vivo TF concentrations as measured in exponential growth are
close to the threshold amounts nT. A direct consequence of this conjecture is
that the background pool of non-specific binding sites is filled up before specific
binding sites can be occupied with high probability, thus presenting a natural
barrier for genetic responses to spurious TF productions.

4.2. Article II – Quadratic Programming Sampling

In this article I describe the implementation of a Gibbs sampler procedure mak-
ing use of the energy matrices described previously. The idea behind the de-
velopment of this sampler was to make direct use of the promising biophysical
description of TF binding sites by such matrices and present an alternative to
the widely used Gibbs Motif Sampler which is implicitely based on a frequency
matrix description of motif sequences.

I validated the functionality of QPS on a small set of coregulated promotors
in in Escherichia coli consisting of aceBAKp, icdAp, pckAp, and ptsHp. Each
region contains an experimentally known binding site for the fructose repressor
protein FruR, which I tried to infer. Figure 4.2 shows the evolution of expected
alignment positions on the small set of promoter sequences. The heat maps il-
lustrate the probability distributions of alignment positions which was assumed
to be stationary if it did not change within five iterations. The principal func-
tionality of the sampler procedure has been verified. A larger-scale assessment
on realistic biological data is necessary to argue for or against the quality of pre-
dictions made by QPS.

The benchmark proposed by Tompa et al. (2005) has attracted some attention as
test of popular inference tools. It is composed of 52 individual data sets of gene
upstream regions of yeast (8), fruitfly (6), mouse (12) and human (26). Each
data set is made of one to 35 sequences of lengths varying between 500 and
3000 nucleotides and contains zero to 76 experimentally known binding sites
(Wingender et al., 1996).

The very construction of the data sets, however, makes the bona fide evalu-
ation of QPS hard, since no recognition of multiple binding sites or the discrim-
ination of uninformative sequences (not containing binding sites) has yet been
implemented. Extensive preprocessing of the sequences is necessary to apply
QPS and draw conclusions on its applicability. Still, lacking extensive knowl-
edge on the content of the sequences in the data sets makes it difficult to differ
between wrong motif predictions and possibly unknown relationships. A recent
discussion of the benchmark by Sandve et al. (2007) addresses these issues and
tries to reduce the dependence on preprocessing and the bias due to incomplete
knowledge and results of QPS on the reviewed benchmark are pending.
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Figure 4.1. Comparison of the relation between the background energy Fb and the
abundance for a set of S. cerevisiae transcription factors. Values of the difference
between the consensus energy E∗ and the background energy Fb are reported as
squares. Their values shifted by the logarithm of the TF abundance (as measured
experimentally) are reported as circles. Vertical dashed lines correspond to the average
values for the two sets of points. Points have a sizeable scatter but circles are clearly
centered around zero. No relation has been found between the deviation of the points
around zero and the functional role of the corresponding TFs (upper: results for log-
odds ratio matrices; lower: results for energy matrices). Histograms give better visual
access to the distribution widths.
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Figure 4.2. Logarithmic heat maps of the evolution of alignment position probability
distributions on the promoter regions of different operons in Escherichia coli. The re-
gions contain one known TF binding site for FruR each and were aligned by QPS. At
iteration 14, the distributions have reached their stationary form.



Chapter 5

Outlook & Perspectives

The topics I introduced here represent my entry point into the physics of regu-
latory systems, and are yet largely of algorithmic nature. Concluding this initial
work on transcription regulation by TF proteins, I will pursue my research in this
vast and to large parts still unexplored domain, reorienting on a different kind
of regulator: non-coding RNA. An immense layer of regulation by non-coding
RNA of a wide range of sizes, from tenths to several thousands of nucleotides,
and functions is about to emerge, and it seems opportune to focus on its mech-
anistic description. Moreover, RNA being a rather simple polymer compared to
proteins, fundamental research on its properties may be more fruitful than on
the latter. Concretely, I will emphasise the two following aspects in my future
research. . .

5.1. Transcription Regulation by non-coding RNA

The broad range of regulatory interactions between ncRNA and mRNA as briefly
mentioned in a few examples in chapter 2.1.2 is just a small part of the picture.
ncRNA has the ability to exert regulatory functions by interacting not only with
other RNAs, but also with regulatory proteins, competing with TF binding sites
on DNA. Another recently discovered surprising functions is for instance the
mimicking of open promoter structures on DNA, as prominently performed by
6S-RNA in Escherichia coli.
This part of my research will be partially experimental since I had the oppor-
tunity to establish ties with biology labs at the French National Institute for
Agricultural Research. The common interest on the ab initio identification of
ncRNA will hopefully lead to exciting results. We currently work on a genomic
map of ncRNA in the opportunistic lactic ferment Enterococcus faecalis.
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5.2. Dynamics of RNA Secondary Stucture Formation

Detailed understanding of the time scales of RNA folding, unfolding, interaction
with hybridisation targets, separation from those and eventually refolding into
a stable form is becoming more and more necessary as the importance of RNA-
RNA interactions emerges. This will answer questions on principal functioning
and efficiency of ncRNA in presence of degrading enzymes in vivo. A choice of
questions I tend to look into are the following. How fast is the overall folding
process? How does it depend on local alterations of the sequence? How do
the interaction dynamics depend on the target sequence? Can we design stable
ncRNAs with higher efficiency than wildtype sequences? How about target genes
with varied susceptibility? Which minimal mutations optimise or disable the
interaction? Can we quantify the requirements for an efficient ncRNA regulator?
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