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Abstract

This thesis concerns numerical techniques for two phase flow simulations; the
two phases are immiscible and incompressible fluids. The governing equations
are the incompressible Navier–Stokes equations coupled with an evolution
equation for interfaces. Strategies for accurate simulations are suggested. In
particular, accurate approximations of the surface tension force, and a new
model for simulations of contact line dynamics are proposed.

In the popular level set methods, the interface that separates two immisci-
ble fluids is implicitly defined as a level set of a function; in the standard level
set method the zero level set of a signed distance function is used. The surface
tension force acting on the interface can be modeled using the delta function
with support on the interface. Approximations to such delta functions can be
obtained by extending a regularized one–dimensional delta function to higher
dimensions using a distance function. However, precaution is needed since
it has been shown that this approach can lead to inconsistent approxima-
tions. In this thesis we show consistency of this approach for a certain class
of one–dimensional delta function approximations.

We also propose a new model for simulating contact line dynamics. We
consider capillary dominated flows and assume that contact line movement is
driven by the deviation of the contact angle from its static value. This idea
is in this thesis adapted to the conservative level set method. By providing a
diffusive mechanism for contact line movement, the need to allow fluid slip at
the boundary is eliminated. Numerical experiments in two space dimensions
show that we are able to capture contact line dynamics qualitatively correct.
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Preface

This thesis consists of two parts. The first part, consisting of seven chapters,
gives a background to the second part. The second part contains three papers
in which the main contributions of this thesis are presented. The papers are
listed below.

Paper 1
A conservative level set method for contact line dynamics,
S. Zahedi, G. Kreiss, and K. Gustavsson,
submitted to J. Comput. Phys..

The development of the ideas were done in close cooperation between the
authors. The author of this thesis performed most of the computations and
wrote a large part of the paper.

Paper 2
An interface capturing method for two–phase flow with moving contact lines,
S. Zahedi, G. Kreiss, and K. Gustavsson,
Proceedings of the 1st European Conference on Microfluidics, Bologna, 2008 .

The development of the ideas were done in close cooperation between the
authors. The author of this thesis performed most of the computations, wrote
a large part of the paper and presented the paper at µFLU08.

Paper 3
Delta function approximations in level set methods by distance function extension,
S. Zahedi and A.-K. Tornberg,
manuscript to be submitted to J. Comput. Phys..

The author of this thesis prepared the manuscript, proved the theorems,
performed the computations, and developed ideas with assistance from A.-
K. T..
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Part I

Introductory chapters





Chapter 1

Introduction

There is a growing interest to accurately model and simulate multiphase flow
phenomena. Such phenomena are important in a wide range of industrial
applications. Two examples are liquid phase sintering and inkjet printing. An
inkjet device consists of a long ink channel with a nozzle that ejects small
droplets of liquid. With help from numerical simulations the size of droplets
and ejecting speeds can be predicted. Such simulations are useful when new
inkjet heads are to be designed.

Liquid phase sintering is an important process when manufacturing metal
objects from powder. For example cutting tools are manufactured in this way.
This process permits the formation of dense, pore–free carbides with superior
properties such as high strength, hardness, and toughness. An important part
of the sintering process is wetting of the liquid onto solid particles. The wetting
is a consequence of the thermodynamic driving force to reduce interfacial
energy, and results in elimination of porosity. The properties of the solid
surface and the liquid will determine how the liquid wets the surface and how
well the pores are eliminated. Numerical methods that are able to handle two
phase flow with moving contact lines, are crucial for simulating the sintering
process. Accurate simulations can contribute to improvements in the process,
and hence to the development of better cutting tools.

In the multiphase models considered in this thesis immiscible fluids are
separated by interfaces. These fluids may have different densities and viscosi-
ties. Surface tension forces act at the interfaces. An interface separating two
fluids may also be in contact with a solid surface as in the liquid phase sinter-
ing where the liquid wets the solid surface. The line were the two fluids meet
the solid is called a contact line. The representation and evolution of these
interfaces, especially at solid surfaces, and the treatment of the discontinuous
physical quantities, and the singular surface tension force, are some of the
challenges in simulations of multiphase flow problems.

In the first part of this thesis we give an overview of some strategies to

3



4 Chapter 1

these challenges. When nothing else is said we consider two space dimen-
sions, were contact lines appear as contact points. In Chapter 2 we present
some commonly used interface tracking techniques. In Chapter 3 the stan-
dard model for viscous, incompressible, immiscible fluids, the time dependent
Navier–Stokes equations, are introduced. We also present the finite element
technique for the discretization of these equations. In Chapter 4 different
strategies of modeling the surface tension force are presented. The treatment
of the discontinuous density and viscosity is discussed in Chapter 5. Models
used for the interface movement at contact lines and points are studied in
Chapter 6. The first part of this thesis ends with a discussion and future
outlook in Chapter 7.

The second part of this thesis consists of three papers. In the first two
papers we discuss a new model for contact line dynamics. In the third paper we
consider approximations of the Dirac delta function supported on an interface.
The Dirac delta function is important in this context as it is used to model
the surface tension force.



Chapter 2

Interface representation and evolution

Interface tracking techniques have been developed to represent and track mov-
ing and deforming interfaces. Existing interface representation techniques can
essentially be divided into two classes. In the first class, interfaces are rep-
resented explicitly; the interface can for example be defined by the use of
so-called marker particles marking the interface. The immersed boundary
method by Peskin used to model blood flow in the heart [1] is an example.
Another example is the front–tracking method presented by Unverdi and Tryg-
gvason for simulation of incompressible multiphase flow problems [2]. Since a
large number of marker particles can be used good accuracy can be obtained.
In the second class, there is no explicit representation of the interface. The
interface is instead represented implicitly by a function defined on a higher
dimension than the interface. This idea was used in the level set method intro-
duced by Osher and Sethian [3]. The volume of fluid method [4] and the phase
field method [5] are other examples. Compared to the methods tracking the
interface explicitly these methods handle topological changes such as merging
and breaking more easily. All such changes are seen as continuous evolution of
the function defining the interface implicitly. There are also hybrid methods
like the particle level set technique presented by Enright et al. [6] where the
level set method is combined with a marker particle scheme.

In this chapter we discuss explicit and implicit representations of interfaces.

2.1 Explicit representation of the interface

The interface Γ can be represented explicitly by a set of markers {x(l)}Nl=1 ∈ R2

together with a parametrization x(s) = (X(s), Y (s)) connecting these points.
In two dimensions, the points can be connected by straight line segments.
Higher order interpolation rules such as spline fits throw the points can also
be used. In three dimensions three points can be connected by a triangular
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Figure 2.1: The interface initially a circle with radius 0.3 centered at
(0,−0.4) is explicitly defined by 30 markers and the parametrization
Γ = {x | x = (0.3 cos(θ),−0.4 + 0.3 sin(θ), 0 ≤ θ < 2π}. The grid velocities
u(xi, yj) = − cos((xi+ 1

2 )π) sin(3π
8 yj), v(xi, yj) = sin((xi+ 1

2 )π) cos( 3π
8 yj) are

given. Interpolation is used to find the velocities at the Lagrangian markers.
The interface is advected by solving equation (2.4). No reinitialization is per-
formed. We can see how markers are depleted in some parts and clustered in
other parts.

element. Using the parametrization of the curve

Γ = {x | x(s) = (X(s), Y (s)), s ∈ [0, S), X(0) = X(S), Y (0) = Y (S)},
(2.1)

the normal vector n(s) and the curvature κ(s) can be computed by

n(s) =
(−Y ′(s), X ′(s))√

(X ′(s))2 + (Y ′(s))2
(2.2)

and

κ(s) =
X ′(s)Y ′′(s)−X ′′(s)Y ′(s)
|(X ′(s))2 + (Y ′(s))2|3/2 . (2.3)

Given velocities at grid points, interface velocities u(xl, t) can be com-
puted by interpolation. In the two–phase flow problem the velocity field is
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usually given by solving the Navier–Stokes equations on an Eulerian grid. The
interface is then evolved by advecting each marker by the local fluid velocity
u(xl, t). This is done by solving the following ordinary differential equations

dx(l)

dt
= u(xl, t), l = 1, · · · , N. (2.4)

As the interface evolves some parts may be depleted of markers and in other
parts there may be clustering of markers, see Fig. 2.1. Therefore, a reinitial-
ization step is usually needed. The computed parametrization of the interface
is used here to decide where markers need to be added or removed. In two
dimensions, markers can be added when the distance between two markers is
larger than an upper bound and markers can be deleted when this distance
is smaller than some lower bound. This procedure is straightforward in two
dimensions but becomes complicated in three dimensions. The advantage of
front–tracking algorithms is that a large number of markers can be used to
represent the interface and therefore good accuracy can be obtained.

In the segment projection method introduced by Tornberg in Ref. 7 the
interface is discretized explicitly by a set of segments. Functions of one variable
in two dimensions and of two variables in three dimensions define the segments.
Each segment is discretized on an Eulerian grid. The interface is evolved by
solving partial differential equations with the same dimension as in front–
tracking methods.

In the case of several curves or surfaces, merging and breaking of interfaces
may occur. In explicit methods a separate representation for the interface
of each curve or surface is used. Having separate representations has both
advantages and drawbacks. On one hand, merging and breaking do not occur
without explicit action. This allows for adding physically correct models. On
the other hand, merging and breaking require complicated reconstructions
of interfaces. Such reconstructions are particularly difficult in three space
dimensions [8].

In the next section we describe methods where the interface is represented
implicitly.

2.2 Implicit representation of the interface

Level set methods, volume of fluid methods and phase field methods are ex-
amples where the interface between immiscible fluids is defined implicitly by
a higher dimensional function φ(x). This function is given by values on an
Eulerian grid. In volume of fluid methods this so–called volume of fluid func-
tion gives the volume fraction of each fluid in each grid cell. The cells that
are intersected by the interface will have a volume fraction between zero and
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unity. The interface is reconstructed in each time step so that each cell obtains
the correct volume fraction. In the first reconstruction algorithms, piecewise
constant or “stair–stepped” approximations were used [4]. Later, higher order
approximations such as piecewise linear functions [9] or splines [10] were pro-
posed. The interface is evolved by updating the volume of fluid function. An
advantage with the volume of fluid methods is that they conserve mass well.
However, computations of accurate normal and curvature approximations are
not straightforward. This is because the transition from one fluid to the other
is very sharp.

In level set methods there is no reconstruction step. The interface is rep-
resented by a level set of a function. In standard level set methods [11,12] the
interface Γ is defined as the zero level set of a signed distance function

φ(x) =
{

dist(x,Γ) inside Γ,
−dist(x,Γ) outside Γ. (2.5)

Here dist(x,Γ) is the shortest distance between x and Γ. For example the
zero level set of φ(x) = r −√(x− xc)2 + (y − yc)2 defines a circle of radius
r centered at (xc, yc). Thus, the interface is embedded in a function φ(x) of
higher dimension. The normal vector n and the curvature κ can be computed
as

n =
∇φ
|∇φ| (2.6)

and
κ = −∇ · n. (2.7)

The normal vector defined as in equation (2.6) is pointing inward.
In level set methods you want a level set that defines the interface initially

to also define the interface at a later time. Thus if for a point initially on
the interface x(0) ∈ Γ, φ(x(0), 0) = C then for x(t) ∈ Γ at a later time t,
φ(x(t), t) = C. Differentiating this condition with respect to t yields

φt +∇φ · xt = 0. (2.8)

A point on the interface should move according to the velocity field and thus
xt = u. The following partial differential equation is solved for the evolution
of the interface

φt + u · ∇φ = 0. (2.9)

Given a divergence free velocity

∇ · u = 0, (2.10)

for example from solving the incompressible Navier–Stokes equations, the ad-
vection equation (2.9) can be written in conservative form

φt +∇ · (uφ) = 0. (2.11)
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As the interface evolves in time the level set of φ defining the interface moves
correctly according to equation (2.9) or (2.11). When φ is a signed distance
function, then |∇φ| = 1. However, the φ function may loose its original shape
or properties. A signed distance function φ may no longer be a distance func-
tion after some time. In order to have accurate approximations of the normal
and the curvature it is important to have a reinitialization step where essential
properties of the function φ are recovered. There are several algorithms to
create a signed distance function [13,14]. Sussman et al. proposed in Ref. 13
to solve the following partial differential equations to steady state

ψt̂ + sign(ψ0)(1− |∇ψ|) = 0
ψ(x, 0) = φ(x, t∗) (2.12)

where φ(x, t∗) is the level–set function at time t = t∗. Often a smeared out
sign function is used [12].

Rider and Kothe [15] compared different interface tracking methods and
found that the schemes that employed marker particles for the representation
had better mass conservation properties. In the level set method mass is lost or
gained when the interface is stretch or teared. These errors affect the accuracy
of the computed location of the interface. Attempts to improve the mass
conservation in level set methods have resulted in different methods [6,16–18].
In Ref. 16 the reinitialization scheme is constrained to conserve the volume
bounded by the zero level set. However, the mass enclosed by the zero level
set is not conserved in the advection step. Several hybrid method has also
been developed with the aim of improving the mass conservation. Sussman
and Puckett used a hybrid of the level set method and the volume of fluid
method [17]. In Ref. 6 a hybrid method where the level set method is combined
with a marker particle scheme was presented. However, in these methods the
simplicity of the level set methods were lost and the methods become even
more complicated and computationally expensive in three dimensions. In
Ref. 18 the so–called conservative level set method was presented. The goal
with this method was to preserve the good properties of the level set method
but improve the conservation. This method is described in the next section.

2.2.1 The conservative level set method

The conservative level set method was introduced by Olsson and Kreiss in
Ref. 18 and later in a finite element framework with an improved reinitializa-
tion in Ref. 19. In this method the interface is represented by the 0.5 level set
of a regularized indicator function

φ(x) =
1

1 + e−d(Γ,x)/εn
, (2.13)
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see Fig. 2.2. Here d(Γ,x) is the signed distance function and εn determines
the thickness of the regularized function.

The normal vector and the curvature are computed as in equation (2.6)
and (2.7) respectively. The conservative level set method was formulated
for incompressible flows. Therefore the interface is advected by solving the
conservation law (2.11). The reinitialization step is formulated in conservative
form as well:

ψt̂ +∇ · (ψ(1− ψ)n)−∇ · (εn(∇ψ · n)n)−∇ · (ετ (∇ψ · t)t) = 0, (2.14)
ψ(x, 0) = φ(x, t∗). (2.15)

Here n is the normal vector satisfying (2.6) and t is the tangent vector and
orthogonal to n. Further, εn is a diffusion parameter in the normal direction
and ετ is a diffusion parameter in the tangential direction. The second term
in (2.14) represents compression in the normal direction, the third models
diffusion in the normal direction, and the last term models diffusion in the
tangential direction. A balance between the second and the third terms estab-
lishes a layer of thickness proportional to εn, where φ changes from 0 to 1. For
the method to be accurate, εn must be much smaller than typical geometrical
features of the interface. In the original work on the conservative level set
method standard isotropic diffusion was used [18]. This corresponds to choos-
ing ετ = εn = ε in equation (2.14). In the subsequent work, the tangential
diffusion ετ was set to zero, i.e. ετ = 0, to avoid unnecessary movement of
the 0.5 level set in the tangential direction [19].

The reinitialization equation in the conservative level set method is in
conservative form. This is in contrast to the reinitialization in equation (2.12)
used in standard level set methods. Therefore, using conservative numerical
methods to obtain φh and no flux through the boundaries we get a conserved
integral:

d

dt

(∫
Ω

φh(x)dx
)

= 0. (2.16)

Now, since the φ function is a regularized indicator function this integral is
almost equal to the area bounded by the interface φh(x) = 0.5. In Ref. 19 it
was shown that the analytical error

Aφh=0.5(tn) = Aφh=0.5(0) + δ(tn), (2.17)

where
|δ(tn)| < 2LΓ(tn)|κ(tn)|∞ε2. (2.18)

Here Aφh=0.5 denotes the area inside the 0.5 level set of φh, LΓ(tn) is the
length, and κ(tn) is the curvature of the interface Γ at time t = tn. When the
interface Γ is a straight line the area is conserved as long as equation (2.16)
is satisfied.
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Figure 2.2: The interface is a circle. The 0.5 level set of a regularized indicator
function φ(x) defines the interface. The indicator function takes the value 0 in
one fluid and the value 1 in the other fluid. In Panel (a) φ = 1

1+e−(1−
√

x2+y2)/εn

is shown. εn is the regularization parameter. The interface thickness is pro-
portional to εn. Panel (b) shows level sets of φ(x).
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In Paper 1 we have extended the conservative level set method to be able to
simulate moving contact points. This extended method is also used in Paper 2.
For an introduction, see Chapter 6. In the next chapter we introduce the
Navier–Stokes equations which are the standard equations used in two–phase
flow problems.



Chapter 3

The Navier–Stokes equations

Assume that a given domain Ω ∈ R2 is occupied by two immiscible fluids
separated by an interface Γ, for example a water drop surrounded by oil. The
domains occupied by each fluid at time t ∈ [0, T ] are denoted Ω1 = Ω1(t)
and Ω2 = Ω2(t) respectively, see Fig. 3.1. In this chapter, we assume that
the interface is not in contact with the boundary of the domain ∂Ω. We will
consider the problem of moving contact points in Chapter 6. The density ρ(x)
and the viscosity µ(x) of each fluid is given by

(ρ(x), µ(x)) =
{

(ρ1, µ1) for x in fluid Ω1,
(ρ2, µ2) for x in fluid Ω2.

(3.1)

These physical quantities are in general discontinuous functions. Any method
designed for multiphase flow problems must be able to handle discontinuities.
We consider the treatment of discontinuous density and viscosity in Chapter 5.

The standard model for each domain (Ω1 and Ω2) is the time dependent
incompressible Navier–Stokes equations with the following boundary condition
at the interface separating the two fluids

[u]Γ = 0. (3.2)

This condition ensures that the velocity field is continuous across the interface.
At the interface separating two immiscible fluids, surface tension forces are
acting. The surface tension drives fluid surfaces to have minimum surface
energy. If the surface tension coefficient σ has spatial variations fluid can
flow from regions of lower to higher surface tension. We will throughout this
report consider only interfaces with a constant surface tension coefficient σ. To
account for the surface tension effects, the surface stress boundary condition

[(−pI + τ) n]Γ = σκn, τ = µ
(∇u + (∇u)T

)
(3.3)

has to be added. Here τ is the viscous stress tensor for incompressible fluids,
I is the identity tensor, n is the unit outward normal vector on Γ and κ is

13
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Figure 3.1: The domain Ω ∈ R2 is occupied by two immiscible fluids separated
by an interface Γ. The domains occupied by the fluids are denoted Ω1 and
Ω2. Here ∂Ω2 ∩ ∂Ω 6= ∅. Density is denoted by ρ and viscosity by µ.

the curvature of Γ [20]. Thus, the surface tension balances the jump of the
normal stress on the interface.

Instead of solving two equations, one in Ω1 and another in Ω2, with the
coupling conditions (3.2) and (3.3) at the interface we can reformulate and
solve the Navier–Stokes equations in the whole domain. The effect of surface
tension can then be expressed in terms of a Dirac delta function δΓ with
support on the interface Γ, the so–called continuum surface force model [1,
21,22]. This force is given by

f = σκnδΓ. (3.4)

The action of δΓ on a smooth function v is given by∫
Ω

δΓvdΩ =
∫

Γ

vdΓ. (3.5)

Different methods to approximate the Dirac delta function and the surface
tension force are discussed in Chapter 4.

The Navier–Stokes equations in conservative form with gravity and surface
tension added as source terms are defined as

(ρu)t +∇ · (ρuu) +∇p−∇ · (µ (∇u + (∇u)T
))

= ρgeg + f , (3.6)
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∇ · u = 0. (3.7)

Here u, p, ρ, and µ denote velocity, pressure, density, and viscosity, respec-
tively. Furthermore, f and eg represent surface tension and gravity forces.
In addition we need boundary conditions and appropriate initial conditions.
To solve the equations, finite difference, finite volume, or finite element dis-
cretizations can be used. In Paper 1 and Paper 2 we have used the finite
element framework. In the next two sections we discretize the Navier–Stokes
equations using the finite element technique.

3.1 Variational formulation

The finite element method is based on the variational formulation of the equa-
tions. For the weak formulation of the Navier–Stokes equations [23, 20] we
introduce sub–spaces of the Lebesgue function space L2(Ω). Let

L2
0(Ω) =

{
q ∈ L2(Ω)

∣∣∣∣ ∫
Ω

qdx = 0
}

(3.8)

be the space of square integrable functions with zero mean over Ω equipped
with the inner product and norm

(q, v) =
∫

Ω

qvdx, ||q|| = (q, q)1/2. (3.9)

Consider also the subspace

H1(Ω) =
{
v ∈ L2(Ω)

∣∣∣∣ ∂v

∂xk
∈ L2(Ω), k = 1, 2

}
(3.10)

and the corresponding norm

||v||1 = (||v||2 + ||∇v||2)1/2. (3.11)

Denote the subspace of functions v ∈ H1(Ω) which are zero on ∂Ω by

H1
0 (Ω) =

{
v ∈ H1(Ω) | v|∂Ω = 0

}
(3.12)

and let

H1(Ω) =
{
vj ∈ L2(Ω)

∣∣∣∣ ∂vj
∂xk

∈ L2(Ω) j, k = 1, 2
}

(3.13)

be the space of vector valued functions v = (v1, v2) such that each of the

components belong to H1(Ω) and the norm ||v||1 =
(∑2

i=1 ||vi||21
)1/2

.
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Assuming homogeneous Dirichlet boundary conditions on solid walls for
the velocity (referred to as the no slip condition) the weak formulation of the
Navier–Stokes equations is as follows [20]: find u(x, t) ∈ H1

0 (Ω) and p(x, t) ∈
L2

0(Ω) such that ∀t ∈ [0, T ]

((ρu)t,v) + c(u,v,u)− b(p,v) + a(u,v) = (ρgeg,v) + (f ,v), (3.14)

b(q,u) = 0 (3.15)

for all test functions (v, q) ∈ H1
0 (Ω)× L2

0(Ω). Here the forms are defined as

a : H1
0 (Ω)×H1

0 (Ω)→ R,

a(u,v) =
∫

Ω

µ
(∇u : ∇v + (∇u)T : ∇v

)
dx, (3.16)

b : L2
0(Ω)×H1

0 (Ω)→ R,

b(q,v) =
∫

Ω

q∇ · vdx, (3.17)

and

c : H1
0 (Ω)×H1

0 (Ω)×H1
0 (Ω)→ R,

c(u,v,w) =
∫

Ω

ρ(u · ∇v) ·wdx. (3.18)

The double dot operation is defined as

A : B =
∑
i

∑
j

aijbji. (3.19)

In the next section we discuss the discretization for the equations (3.14) and
(3.15).

3.2 The finite element discretization

Here we present the spatial discretization of the Navier–Stokes equations and
in the next section we discuss the time discretization. Throughout this thesis,
we use triangular meshes consisting of regular triangles with side h as shown
in Fig. 3.2. In the finite element approximation we introduce the finite di-
mensional subspaces Vh

0 ⊂ H1
0(Ω) and Sh0 ⊂ L2

0(Ω) of piecewise polynomials.
The problem is to determine the discrete velocities uh ∈ Vh

0 (Ω) and pressure
ph ∈ Sh0 (Ω) such that

((ρuh)t,vh)h+ch(uh,vh,uh)−bh(ph,vh)+ah(uh,vh) = (ρgeg,vh)h+(f ,vh)h,
(3.20)
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h

h

Figure 3.2: A rectangular domain subdivided into regular triangles with mesh
size h.

bh(qh,uh) = 0 (3.21)

for all test functions (vh, qh) ∈ Vh
0 (Ω) × Sh0 (Ω). The forms ah(·, ·), bh(·, ·),

ch(·, ·, ·), the scalar product (·, ·)h, and consequently the norms are defined in
the piecewise sense.

The finite dimensional spaces Vh
0 and Sh0 being subspaces of H1

0(Ω) and
L2

0(Ω) is not sufficient to produce meaningful approximations. For some choice
of spaces spatial oscillations in the pressure field can be observed that may
blow up as the mesh is refined. This problem is also present in the solution
of the linear equations of Stokes flow. Hence, the oscillations are not a result
of the nonlinearity of the Navier–Stokes equations.

A necessary condition for the finite element spaces to satisfy is the so–
called “inf–sup” condition

inf
0 6=qh∈Sh

0

{
sup

06=vh∈Vh
0

bh(qh,vh)
||qh||||vh||1

}
≥ D > 0, (3.22)

where the constant D is independent of h. This condition is also referred to
as the LBB condition after Ladyshenskaya [24], Babuska [25], and Brezzi [26].
The consequence of the LBB condition is that we cannot use all combinations
of the spaces Vh

0 and Sh0 . The LBB condition is for example satisfied by the
Taylor–Hood pair; that is when Vh

0 (Ω) is the space of piecewise quadratic
polynomials and the functions in Sh0 (Ω) are piecewise linear polynomials. For
the piecewise quadratic velocity approximation there are six coefficients that
need to be determined at each triangle. These coefficients are uniquely deter-
mined by the values of uh at the triangle vertices and midpoints of the edges
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of the triangles. From a computational cost perspective and, possibly even
more important, for simplicity in the implementation it is advantageous to
approximate both the velocity and pressure using continuous piecewise linear
elements. However, this element pair satisfies the LBB condition only when
different meshes for velocity and pressure is used. One way to obtain such
meshes is to construct the mesh for the velocity by refining each triangle of
the pressure mesh into four triangles.

It has been shown that by a modification of the incompressibility con-
straint it is possible to circumvent the LBB condition [27, 28]. The simplest
modification is to change the incompressibility condition (3.21) to

bh(qh,uh)− εph2(∇p,∇qh)h = 0. (3.23)

By doing that we can use piecewise linear elements both for the velocity and
the pressure without introducing different meshes. However, there is a new
parameter εp 6= 0 in the problem that must be determined.

Note that also for finite difference discretizations of the Navier–Stokes
equations there are constraints. For example, the use of finite difference
scheme where all the derivatives are approximated on the same grid using
central difference quotients results in pressure oscillations. This is avoided by
use of staggered meshes for the pressure and the velocity [29].

When bases are chosen for the spaces Vh
0 and Sh0 , the finite element ap-

proximations for the velocity and the pressure can be expressed in these bases
as

uh(t,x) =
K∑
k=1

βk(t)vkh(x),

ph(t,x) =
J∑
j=1

αj(t)qjh(x). (3.24)

Here {vkh}, k = 1, · · · ,K and {qjh}, j = 1, · · · , J denote bases for Vh
0 and Sh0

respectively. For example Lagrange bases can be used. The coefficients βk

and αj need to be determined.
Substituting the expansions in equation (3.24) into equations (3.20) and

(3.21) and choosing vh = vkh for k = 1, · · · ,K and ph = pjh for j = 1, · · · , J ,
equations (3.20) and (3.21) are equivalent to a system of nonlinear ordinary
differential equations with constraints [23]. In the next section we describe a
time discretization algorithm.

3.2.1 A fractional step projection method

To advance the Navier–Stokes equations in time, a temporal discretization is
needed. To use a fully implicit method directly on the full system of equa-
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tions results in solving a coupled nonlinear system at every time step. Such
methods have good stability properties but are computationally expensive and
cumbersome to implement. Fully explicit methods are not often used because
of their stability restrictions on the time step. Fractional step methods have
become a popular alternative to solving the full system. Examples of such
methods include projection methods, for an overview see [30]. In these meth-
ods a sequence of decoupled equations for the velocity and the pressure has
to be solved at each time step.

The following pressure correction scheme has been used in Paper 1 and
Paper 2: First, an intermediate velocity denoted by un+1

∗ is determined sat-
isfying(

ρn+1un+1
∗ − ρnun
dt

,vh

)
+ ch(un,vh,un+1

∗ )− bh(pn,vh) + ah(un+1
∗ ,vh) =

(ρn+1geg,vh) + (fn+1,vh). (3.25)

This intermediate velocity field is not necessarily divergence free. The pressure
is treated explicitly in this first step but is corrected in the next step referred to
as the projection step. In the projection step the incompressibility condition
is enforced by solving the Poisson equation

− 1
dt
bh(qh,un+1

∗ ) =
(∇(pn+1 − pn)

ρn+1
,∇q

)
(3.26)

for the pressure. Note that in equation (3.26) we have assumed that un+1

satisfies the incompressibility condition. The divergence free velocity un+1 is
computed from(

un+1 − un+1
∗

dt
,v
)

= −
(

v∇(pn+1 − pn)
ρn+1

,v
)
. (3.27)

In the first step, pn is a first order extrapolation for p(tn+1) and a first order
accurate method (the backward Euler formula) has been used to approximate
the time derivative. Therefore the velocity is first order accurate in H1–norm
and the pressure is first order accurate in L2–norm. By taking a second
order backward difference formula (BDF2) for the approximation of the time
derivative

∂tu(tk+1) ≈ 3/2uk+1 − 2uk + 1/2uk−1 (3.28)

one obtains a second order accurate velocity approximation (in H1–norm) and
a first order accurate pressure approximation (in L2–norm) [30].

Since in Paper 1 and Paper 2 continuous piecewise linear elements were
used both for the pressure and the velocity we modify the incompressibil-
ity condition according to equation (3.23). Consequently, equation (3.26)
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and (3.27) are modified. We do this in order to circumvent the LBB condi-
tion, see the previous section.

In the next chapter we discuss how the singular surface tension force is
approximated.



Chapter 4

The surface tension force

In this work we use the continuum surface force model [1, 21, 22]. In this
model the surface tension effect is treated as a source term added to the
Navier–Stokes equations. The force is expressed in terms of a Dirac delta
function δΓ with support on the interface Γ

f = σκnδΓ. (4.1)

In this chapter we will discuss how the surface tension force can be computed.

4.1 Regularized representation of the surface tension force

A popular way of approximating the surface tension force f , defined in equa-
tion (4.1) has been to regularize it. To approximate the surface tension force
Brackbill et al. suggested to compute

σκ∇φ = σκ
∇φ
|∇φ| |∇φ|, (4.2)

where φ is a regularized indicator function. The model is often used together
with volume of fluid methods, and was also used together with the conservative
level set method, with φ being the Fermi–Dirac function [18,19]. This model
can be seen as approximating the Dirac delta function with support on the
interface Γ by |∇φ|.

4.1.1 Regularized Dirac delta functions with support on interfaces

Dirac delta functions with support on interfaces can be approximated also in
other ways. An early example is the work by Peskin [1]. Peskin introduced

21
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the one–dimensional cosine approximation

δcos
2h (x) =

{
1

4h (1 + cos(πx/(2h))) for |x| < 2h,
0 for |x| ≥ 2h, (4.3)

and used a product rule to extend this function to higher dimensions.
Let Γ ⊂ Rd be a d−1 dimensional closed, continuous, and bounded surface

and let S be surface coordinates on Γ. The product formula yields

δε(Γ, g,x) =
∫

Γ

d∏
k=1

δεk
(x(k) −X(k)(S))g(S)dS, (4.4)

where δεk
is a one–dimensional regularized delta function, x = (x(1), · · ·x(d)),

X(S) = (X(1)(S), · · · , X(d)(S)) is a parametrization of Γ, and ε = (ε1, · · · , εd)
is the regularization parameter. Tornberg and Engquist [31] showed that this
extension technique is consistent when used to approximate integrals of the
form ∫

Γ

g(S)f(X(S))dS =
∫

Rd

δ(Γ, g,x)f(x)dx. (4.5)

Here δ(Γ, g,x) is a delta function of variable strength with support on Γ.
The product formula is easy to use when Γ is explicitly defined as in the
immersed boundary method, the front tracking method, or the segment pro-
jection method.

In level set methods the signed distance function d(Γ,x) has been used to
extend a one–dimensional delta function approximation to higher dimensions
as

δε(Γ, g,x) = g̃(x)δε(d(Γ,x)). (4.6)

Here g̃ is an extension of g to Rd, such that g̃(X(S)) = g(S). In the case
of surface tension g = κn. The great appeal of this extension technique
is its simplicity. However, it has been shown that with the common choice
of regularization parameter, i.e. ε = mh, this approach may lead to O(1)
errors [31]. Even when consistent one–dimensional delta function approxima-
tions are used. To overcome this lack of consistency several delta function
approximations have been derived to be used with level set methods [32–34].
These methods are not based on the extension technique defined in equation
(4.6).

In Paper 3 we show on regular grids that there is a class of one–dimensional
delta function approximations that can be extended to higher dimension by
a distance function according to equation (4.6) and give accurate results.
This class of delta function approximations have compact support in Fourier
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space or in practice decay rapidly in Fourier space. An example of such one–
dimensional delta function approximation is the Gaussian approximation

δGε (x) =
1
ε
ϕG(x/ε), ϕG(ξ) =

√
π

9
e−π

2ξ2/9. (4.7)

Another example is the derivative of the Fermi–Dirac function

δFDε (x) = ∂x
1

1 + e−x/ε
=

1
ε

e−x/ε

(1 + e−x/ε)2
. (4.8)

used in the conservative level set method [18, 19]. These approximations are
shown to be second order accurate.

In the case when the interface is close to a boundary of the computational
domain care must be taken when regularization is used. If some part of the
regularization zone ends up outside the domain the accuracy of the delta
function approximation will usually be lost. A remedy would be to use a
skewed delta function approximation with the whole mass always being inside
the domain [35]. However, this technique is complicated and the distance to
the boundary must be known. The regularized delta function by Smereka
with support within one mesh cell could also be an alternative [33]. However,
the problem remains when the interface is in contact with the boundary.

In the finite element framework, based on the weak form, this problem can
be solved by evaluating the surface tension force through a line integral. This
technique is described in the next section.

4.2 Sharp representation of the surface tension force

Sharp treatment of the surface tension has been suggested both in finite el-
ement [36] and finite difference [37] settings. In [37], surface tension effects
are treated as boundary conditions, see equation (3.3). In the finite element
framework the surface tension force is evaluated through a line integral

(f ,v) =
∫

Ω

σκn · vδΓdx =
∫

Γ

σκn · vdΓ, (4.9)

where v is the test function. This approach was used in Paper 1 and Paper 2
when simulations of moving contact points were performed. An advantage of
evaluating the line integral is that there is no need to discretize delta func-
tions. A drawback is that particular effort is needed to find the triangles
that are intersected by the interface Γ. Using a level set method and linear
elements the values of the function φ at the three nodes of each triangle will
determine if the element is intersected by the level set defining Γ. For those
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elements a quadrature scheme that is exact for linear elements can be used
to evaluate the integral. Using quadratic elements to approximate the level
set function φ one uses the three nodes and the midpoints of each triangle
to decide whether the element is intersected by the interface or not. Those
elements that are intersected are split into four sub–triangles where in each
sub–triangle a piecewise linear approximation of the level set is defined. The
integration is then performed as above.

From an implementation viewpoint this approach is more complicated than
regularizing the delta function. However, as we indicated in the previous
section a sharp treatment is preferable in view of accuracy when the interface
is close to the boundary of the computational domain.

In order to have an accurate representation of the surface tension force we
also need to have an accurate approximation of the curvature. In the next
section we discuss this issue.

4.3 Evaluation of the curvature

The curvature in level set methods and volume of fluid methods is often com-
puted from equations (2.6) and (2.7). This is how the curvature is computed
in Paper 1. The curvature depends on second derivatives of the function
representing the interface. The presence of high frequency errors, that are
magnified by differentiation, may lead to an inaccurate approximation of the
surface tension force. A common approach to avoid such errors is to filter, or
damp the high frequencies. A filtering can be applied to the level set function
φ, before the curvature is computed or directly to the curvature κ [19]. In
Ref. 19 a new filtered curvature κ̃ was computed according to

κ̃− εκ∆κ̃ = κ, (4.10)

with εκ proportional to the mesh size h. The same idea of filtering has also
been used in the volume of fluid method [38]; in this context a convolution
technique was used.

Another approach is to reduce the order of differentiation associated with
the curvature term by using the Laplace–Beltrami operator and the finite
element technique. This idea was introduced by Dziuk [39] in numerical sim-
ulations and has been used in simulations of immiscible multiphase flow prob-
lems [40–43] for computing the surface tension. Let the tangential gradient of
a function f : U → R, with U an open neighborhood of Γ be defined by

∇f = P∇f, P = I − nnT . (4.11)

Here P is the orthogonal projection. The Laplace–Beltrami operator of f is
given by

∆f(x) = ∇ · (∇f(x)). (4.12)
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The method is based on the following theorem:

Theorem 4.3.1.
∆idΓ = κn, (4.13)

where κ is the mean curvature, n is a unit normal vector and idΓ : Γ → Γ is
the identity mapping on Γ.

For a proof see [44, 45]. Using Theorem 4.3.1 and partial integration we
have in two space dimensions∫

Ω

σκn · vδΓdΩ = −
∫

Γ

σ∇idΓ · ∇vdΓ +
∫
γ

σ(nγ · ∇idΓ) · vdγ. (4.14)

Here nγ · ∇idΓ = nγ is the normal at the contact line γ. The last term in
equation (4.14) is an integral along the contact line. In two space dimensions
it is replaced by a sum over contact points. This term will only appear if
Γ intersects the boundary and v is non–vanishing on γ. For more details,
see [40]. Note that∫

Γ

∇idΓ · ∇vdΓ =
d∑
i=1

∫
Γ

∇(idΓ)i · ∇vidΓ, (4.15)

where we have d = 2 since we consider problems in two dimensions. Further,

∇(idΓ)i(x) = ∇xi = Pei, (4.16)

where ei is the ith basis vector in R2 and P is the orthogonal projection
defined in equation (4.11). The line integral is evaluated as described in the
previous section. The advantage of using this approach is that there is no
need to compute the curvature. This method was employed in Paper 2.

Next we discuss the treatment of the discontinuous density and viscosity
in two phase flow problems.
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Discontinuous physical quantities

In multiphase flow problems the density and the viscosity may be discontin-
uous functions. We can write the density and viscosity as

ρ(x) = ρ1 + (ρ2 − ρ1)I(x),
µ(x) = µ1 + (µ2 − µ1)I(x), (5.1)

where I(x) is the indicator function which is 1 in Ω2 and 0 in Ω1, see Fig. 3.1.
When solving the Navier–Stokes equations these functions as well as the
derivative of µ(x) have to be evaluated. In the finite element framework,
Green’s formula can be used to move the derivative of µ(x) to the test func-
tion.

In level set methods, where φ is the signed distance function d(Γ,x), the
indicator function is written as

I(x) = H(d(Γ,x)), (5.2)

where H(t) is the Heaviside function

H(t) =

 0 for t < 0,
1/2 for t = 0,
1 for t > 0.

(5.3)

Thus, in the variational formulation integrals of the form∫
Ω

H(d(Γ,x))G(x)dx, (5.4)

need to be evaluated. Here G(x) is a smooth function.
A common approach to handle the discontinuities in the density and the

viscosity is to regularize the indicator function. This approach is very easy to
implement. When a regularized indicator function is used the density and the

27
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viscosity varies continuously from ρ2 and µ2 in Ω2 to ρ1 and µ1 in Ω1. The
regularization can be done by regularizing the Heaviside function. A common
class of regularized Heaviside functions are written as

Hε(t) =

 0 for t < −ε,
ν(t/ε) for |t| ≤ ε,

1 for t > ε,
(5.5)

where ν(ξ) is a smooth transition function with ν(−1) = 0 and ν(1) = 1.
The error introduced by this particular class of approximations was analyzed
in [35].

In level set methods

ν(ξ) =
1
2

(1 + ξ +
1
π

sin(πξ)) (5.6)

has been a popular choice. This approximation gives an analytical error that
arises when H(t) is replaced with Hε(t) which is proportional to ε2.

In the conservative level set method the level set function φ is a regularized
indicator function. Thus, the density and the viscosity are represented by
replacing the indicator function I(x) in equation (5.1) by φ(x). It can be
shown that the analytical error in this case is proportional to ε3.

For the treatment of discontinuity in the density and the viscosity another
approach is to split the integration over Ω into integration over the subdo-
mains Ω1 and Ω2. A benefit of this approach is that we only integrate a
smooth function and do not need to discretize the Heaviside function. This
method is possibly to prefer when the interface Γ is close to a boundary.
When regularizing the indicator function care is needed in order to keep the
transition zone within the computational domain. It is difficult to implement
the integration over the subdomains Ω1 and Ω2. In the discrete form the in-
terface Γ separating the two immiscible fluids is approximated and thus the
integration over the domains Ω1 and Ω2 is replaced with integration over Ωh,1
and Ωh,2. Triangles that are in Ωh,2 must be found. Some of the triangles
are intersected by the interface Γ. Thus, integration should be done only over
parts of these triangles.

In the next chapter we consider immiscible fluids in contact with a solid
surface and discuss how we treat moving contact points.
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Moving contact lines

Consider two immiscible fluids, for example oil and water in contact with a
solid surface. In two dimensions, the point where the interface separating
the two fluids intersect the solid surface is called the contact point. In three
dimensions there are contact lines. The phenomenon when one of the fluids
spreads on the solid surface and displaces the other is called wetting. The
situation when the fluid has spread completely is referred to as total wetting.
We consider here partial wetting, which occurs when the liquid spreads but
at equilibrium makes a nonzero contact angle to the wall, referred to as the
static contact angle, see Fig. 6.1. The static contact angle θs can be mea-
sured in experiments and is given by the surface tension coefficients of the
solid/medium σSM , solid/liquid σSL, and liquid/medium σLM interfaces via
Young’s equation:

cos(θs) =
σSM − σSL

σLM
. (6.1)

As the liquid drop wets the solid surface the contact angle changes and ap-
proaches the static contact angle. Besides being an interesting physical phe-
nomenon, the understanding of the contact line movement is important in
industrial applications. However, the physics behind the contact line move-
ment is not entirely known.

A difficulty has been that the Navier–Stokes equations coupled with the
no–slip boundary condition for the velocity at solid walls, and interface move-
ment by advection only leads to a singular stress tensor [46]. Many models
have been developed to avoid this singularity. A popular model has been to
allow the contact line to move by introducing a slip boundary condition. We
discuss this in the next section. In the diffuse interface model presented by
Jacqmin [5], the contact line moves by diffusion rater than advection. Then,
the standard no–slip boundary conditions at solid walls can be used. The idea
to move the contact line by diffusion is employed in Paper 1 and Paper 2.

29
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σSLσSM

σLM

s

Figure 6.1: A water droplet surrounded by oil is lying on a solid wall. The
drop is at equilibrium and the interface separating the two immiscible fluids
has formed an angle to the solid surface referred to as the static contact angle
θs. This angle can be determined from the interfacial tensions by Young’s
equation: cos(θs) = σSM−σSL

σLM
.

6.1 Slip models

It has been shown that the stress tensor singularity can be avoided when the
fluid is allowed to slip [47]. Therefore, simulations where moving contact lines
or points occur often employ the Navier–Stokes equations together with some
slip model near the contact line. Different slip models exist; a common choice
is the Navier boundary condition:

uslip = −lsn · (∇(u) + (∇(u))T ). (6.2)

Here the amount of slip is proportional to the shear stress. The parameter
ls is the slip length and n is the normal vector of the solid surface pointing
out of the fluid. Another model employs complete slip at the contact line but
away from the contact line the no–slip boundary condition is used. Zhou and
Sheng used a slip that decays exponentially to no–slip far from the contact
line [48].

Experiments by Hoffman [49], Cox theory [50], and molecular dynamics
simulations [51,52] all suggest that the deviation of the contact angle from its
static value is important for the contact line motion. These results have lead to
construction of new boundary conditions incorporating the dependence of the
slip on the contact angle [51, 52]. Others have used the Navier slip boundary
condition but explicitly reconstruct the interface close to the contact line or
points in order to obtain a prescribed contact angle at the wall [53, 54].

In all the models above, parameters such as the slip length and the contact
angle at the wall must be determined. These parameters are important for
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the movement of the contact line and influence the flow [50]. In Ref. 52, these
parameters were determined based on molecular dynamics simulations. In
other numerical simulations the parameters are tuned to make the simulations
comparable to experiments.

In the next section, we will consider a diffuse interface model where the
force singularity is not present and movement of contact lines and points is
possible even with the no–slip boundary condition for the velocity at solid
walls. We also present the model we used in Paper 1 and Paper 2. In these
methods a contact angle is prescribed without explicit reconstruction of the
interface.

6.2 Moving contact lines with diffusion

Consider two incompressible immiscible fluids. In diffuse interface methods
the two fluids are separated by a diffuse interface with finite thickness. Den-
sity and viscosity change continuously over the interface. A diffuse interface
model applicable to problems with moving contact lines was presented by
Jacqmin [5], who used the standard no–slip boundary condition for the veloc-
ity at solid walls. A coupled Cahn–Hilliard/Navier–Stokes formulation was
used; a function describing the concentration of each fluid defined the diffuse
interface. Two parabolic equations were solved, one for the concentration and
another for the chemical potential. Near the wall the contact line moves by
a diffusive process. In this region the curvature is high and consequently the
surface tension force is strong. Villanueva and Amberg [55] and Khatavkar
et al. [56] used this Cahn–Hilliard/Navier–Stokes model and used a boundary
condition for the concentration which lead to the contact angle in the contact
line region to be equal to the static contact angle. Thus, at the wall the fluid
was at equilibrium. In Ref. 5, an expression was given that allows also for a
non–equilibrium contact angle.

In the diffuse interface method above, a very fine mesh near the interface
is required. The conservative level set method requires less computational
effort away from contact points since a relatively coarse grid is sufficient to
capture the dynamics. Next we give a brief description of how to extend the
conservative level set method to be able to simulate moving contact points.

6.2.1 The conservative level set method with moving contact points

The model in Paper 1 and Paper 2 mimics the Cahn–Hilliard/Navier–Stokes
model. Also in our model, the interface becomes highly curved in the con-
tact point regions. In these regions, the surface tension forces are strong
and balanced by viscous forces. By including diffusion in the reinitialization
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step contact points can move without advection, and the no–slip boundary
condition for velocities at solid walls can be retained.

In each time step, first a regularized normal vector ñ is computed by

ñ−∇ · (γ2∇ñ) =
∇φ
|∇φ| , n =

ñ
|ñ| , (6.3)

ñ = nαs
,

where nαs
is the normal vector corresponding to the static contact angle.

Then the normal vector n is used in the reinitialization equation (2.14). The
tangential diffusion in the reinitialization process is essential for controlling
the contact angle at the solid boundary without a reconstruction step. The
result of this procedure is a boundary layer in φ, of thickness proportional
to the regularization parameter γ. The shape and size of the contact point
region, denoted by A in Fig. 6.2, will depend on the regularization parameter,
the diffusion in the reinitialization, and the deviation of the contact angle from
the static angle. However, we demonstrate numerically in Paper 1 that when
the thickness of the boundary layer and the diffusion in the reinitialization
decrease, the movement of the interface becomes more and more independent
of these parameters.

In Paper 2 we implemented this model and used the Laplace–Beltrami
characterization of the curvature together with partial integration to avoid
direct computation of the curvature, see Section 4.3. It is difficult to accu-
rately compute the high curvature of the interface that may appear in contact
point regions. In our model all test functions v are zero at solid walls, due
to the no–slip boundary conditions for velocities. Thus the second term in
equation (4.14) vanishes. In Ref. 41 the Laplace–Beltrami characterization of
the curvature was also used, but together with slip boundary conditions for
the velocity. In that setting the boundary term in equation (4.14) does not
vanish.

To summarize, our model for two–phase flow with moving contact points
consists of the incompressible Navier–Stokes equations coupled with evolution
of the interface by equations (2.11) and (2.14). All equations are in conser-
vative form. Therefore, using conservative numerical methods to compute φh
and no flux boundary conditions, the integral in equation (2.16) is conserved.

In Paper 1 and Paper 2 we considered capillary dominated flows and pre-
scribed the static contact angle. Future work includes simulation of problems
where it may be better to prescribe other contact angles than the static, for
example in problems where inertial effects dominate. Another possible project
is the use of adaptive mesh refinement in the contact line region.
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Figure 6.2: A boundary layer in φ, of thickness proportional to the regu-
larization parameter γ. The static contact angle is prescribed at the solid
surface. The apparent dynamic contact angle is the angle formed between the
boundary and the interface away from the contact point region.





Chapter 7

Discussion and future outlook

A common computational approach to treat discontinuities in multiphase flow
problems has been to smear them out across the interface. See Chapter 5 for
the treatment of the density and the viscosity. Also, the delta function used
to express the singular surface tension force is often regularized. This makes
the pressure a continuous function. However, in the mathematical model the
pressure is a discontinuous function.

In simulations where the pressure has been treated as a continuous func-
tion, large oscillations of the velocity near the interface have sometimes been
observed. These oscillations, referred to as spurious currents, have resulted in
unphysical movements of the interface. As a result of the spurious currents
some methods have failed to converge with grid refinement.

One reason to why spurious currents occur is the use of unsatisfactory
representations of the surface tension force acting at the interface separating
the two immiscible fluids. Other sources that affect the size of the spurious
velocities are the curvature and the pressure approximations [57–59].

Within the finite difference technique, methods have been developed for
solving the pressure jump directly by treating the surface tension effects
as boundary conditions, see equation (3.3). Examples are the ghost fluid
method [37] and the pressure boundary method [57] which treat the jump
discontinuities at the interface in a sharp way.

In the finite element framework, a strategy has been to enrich the pressure
space by discontinuous basis functions to better approximate the discontinu-
ous pressure [58]. In Ref. 58 a line integral formulation of the surface tension
force was used and the discontinuous basis functions allowed for an accurate
pressure approximation. However, some stability problems has been reported.
In Ref. 60 Green’s formula was used to rewrite the surface tension force in
weak form so that the pressure jump across the interface becomes correct in
the case of a static drop.

In this work we have treated the surface tension effect using the continuum
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surface force model [1, 21, 22]. A source term has been added to the Navier–
Stokes equations. This was done in order to solve one equation in the whole
region instead of two equations, one in Ω1 and another in Ω2, coupled by the
conditions (3.2) and (3.3), see Fig. 3.1.

I have considered a simulation of a static drop in equilibrium, where the
velocity should be zero and the pressure jump is given by the Young–Laplace
equation

[p]Γ = σκ. (7.1)

I have compared use of the regularized surface tension force equation (4.2)
and the line integral formulation equation (4.9). Preliminary results show
that the problem with spurious oscillations is much less pronounced when the
regularized force is used. However, when the interface is in contact with the
boundary the regularization zone usually ends up outside the computational
domain and the accuracy of the surface tension force is lost. Therefore a sharp
representation of the surface tension force that do not give rise to spurious
currents is desired.

One reason that the regularized force gives better results could be that the
pressure gradient and the surface tension force are balanced. A subject for
future work could be to better understand how to approximated the surface
tension and the pressure in order to reduce spurious currents. How do the
discretizations of the level set function, pressure, and surface tension affect
the unphysical oscillations in the velocity?
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Abstract

A new model for simulating contact line dynamics is proposed. We apply the
idea of driving contact line movement by enforcing the equilibrium contact an-
gle at the boundary, to the conservative level set method for incompressible two
phase flow [J. Comput. Phys. 210 (2005) 225-246]. A modified reinitialization
procedure provides a diffusive mechanism for contact line movement, and re-
sults in a smooth transition of the interface near the contact line without explicit
reconstruction of the interface. We are able to capture contact line movement
without loosing the conservation. Numerical simulations of capillary dominated
flows in two space dimensions demonstrate that the model is able to capture
contact line dynamics qualitatively correct.

1 Introduction

Accurate modeling and simulations of contact line movement are of interest in ar-
eas like lubrication, oil recovery, and immiscible fluid flow through porous media.
Another example is the liquid phase sintering process [1] which is important for in-
dustrial operations such as grinding, drilling, and cutting. This process permits the
formation of dense, pore–free carbides with superior properties such as high strength,
hardness and toughness. An important part of the sintering process is wetting of the
liquid onto solid particles. The wetting liquid acts on the solid particles to elimi-
nate porosity and reduce interfacial energy. Simulations can contribute to a better
understanding of the liquid phase sintering process and play an important role in the
development of cutting tools.
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Contact line dynamics is the movement of the intersection line between the inter-
face of two immiscible fluids and a solid surface. An example of such a phenomenon
is when a droplet with zero velocity is placed on a solid surface and starts to spread.
As the drop spreads, the contact line will move until it reaches an equilibrium state
determined by the surface energies of the interfaces involved. The angle between the
interface at equilibrium and the solid surface is often referred to as the equilibrium
or static contact angle (hereinafter, the static contact angle). For a more detailed
discussion of this kind of phenomena see [2].

The immiscible and incompressible flow is described by the incompressible Navier–
Stokes equations with the surface tension and gravity forces added as source terms.
Some representation of the interface separating the two fluids is required, for exam-
ple a level set function or markers, and an evolution equation for the advection of
the interface. At all interior points, the physically correct model is that the interface
is advected by the fluid velocity. At contact lines, however, the standard boundary
condition for the velocity is no–slip, which means that the contact line cannot move.
Most often the no–slip boundary condition is adequate. However, in many cases it is
unphysical, which is reflected by the shear stress becoming singular. Also, in molec-
ular dynamics simulations, see for example [3] and references therein, the existence
of fluid-wall slipping has been observed. Over the years, various techniques to en-
able the contact line to move have been presented. A common approach is to allow
the contact line to move by introducing a so called slip length [4, 5]. However, this
technique has difficulties in capturing flows dominated by capillary forces. Typically
such flows are driven by a deviation of the contact angle from the static angle.

Another approach was suggested by Jacqmin [6] who used a coupled Cahn–
Hilliard/ Navier–Stokes formulation consisting of the Navier–Stokes equations cou-
pled to a system of two parabolic equations for the chemical potential and the con-
centration of one of the fluids. In this model, the interface is modeled as a layer with
a continuous transition from one fluid to the other, and the contact line as a small
region; the part of the interface layer close to the solid boundary. When the angle of
the interface differs from the static angle the contact line moves by a diffusive pro-
cess on a fast time scale in the small region at the boundary so that the contact angle
is adjusted to the static value. The result is a region close to the boundary with high
curvature of the interface, and consequently a strong surface tension force. The fact
that the interface can move by diffusive processes eliminates the need for modeling
fluid slip. A drawback with the model suggested by Jacqmin is that the interface must
be highly resolved to achieve accuracy. This formulation has been used to investigate
basic wetting phenomena, dominated by capillary forces [7].

Another alternative is to use the mismatch between the dynamic and static contact
angles directly to obtain movement of the contact line. This approach has for example
been used in a volume–of–fluids and a level set context in [8] and [9], respectively.
In these methods the interface is explicitly reconstructed close to the contact line so
that the contact angle takes the prescribed value.
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In this paper we focus on capillary dominated flow. We introduce an extension of
the conservative level set method presented in [10] and [11], which is capable of cap-
turing contact line dynamics while keeping the conservation property. We formulate
a reinitialization procedure for the level set function which makes us able to control
contact angles at solid boundaries. For the velocity we use a no–slip boundary con-
dition. The procedure does not involve explicit reconstruction. It is formulated as
a partial differential equation, and the contact line moves by diffusion. Similarly to
the work by Jacqmin, a contact line region with high curvature is achieved and the
surface tension forces the fluids to move. Compared to methods that use the Cahn–
Hilliard/Navier–Stokes formulation, our conservative level set method requires less
computational effort since a relatively coarse grid is sufficient to capture the dynam-
ics, at least away from contact lines. In this paper we consider problems in two space
dimensions where contact lines become contact points.

The paper is organized as follows. In Section 2 we present the incompressible
Navier–Stokes equations for two–phase flow, together with a description of our in-
terface representation. We also introduce the main idea behind our new contact line
capturing model and present the new reinitialization. In Section 3, the new technique
is tested numerically on a scalar model problem. We discuss how to interpret and
choose values for the model parameters. In Section 4, we apply the new model to
channel flow and the spreading of a droplet on a flat plate. We show that if the contact
point region is sufficiently small , the large scale interface movement is essentially
independent of the size of this region. Section 5 contains a summary and a discussion
of the results.

2 Mathematical model

The fundamental model of two–phase flow with contact line dynamics consists of
the incompressible Navier–Stokes equations coupled with evolution of the interface.
At contact points special treatment is needed to provide a mechanism for interface
movement. In this section we will present this model.

2.1 The incompressible Navier–Stokes equations
Assume that a given domain Ω is occupied by two immiscible fluids separated by an
interface Γ. The equations describing this immiscible flow are the incompressible
Navier–Stokes equations with the contributions of the surface tension and gravity
forces added as source terms:

(ρu)t +∇ · (ρuu) = −∇p +∇ · (µ (∇u + (∇u)T
))

+ ρgeg + σκnδΓ (1)

∇ · u = 0. (2)
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Here u, p, ρ, and µ denote velocity, pressure, density, and viscosity, respectively. In
general ρ and µ are discontinuous across the interface separating the two fluids. The
curvature and normal of the interface Γ are denoted by κ and n, and δΓ is a Dirac
delta function with support on Γ. Its action on any smooth test function v is given by∫

Ω

δΓvdΩ =
∫

Γ

vdΓ. (3)

The direction of gravitation is denoted by eg , g is the gravity, and σ is the surface
tension coefficient.

Non–dimensionalize by introducing

x = lrefx′,u = urefu′, t = treft
′, p = prefp

′, ρ = ρrefρ
′, µ = µrefµ

′. (4)

Here tref, pref, ρref, µref, lref, and uref are constant reference time, pressure, density,
viscosity, length, and velocity. Omitting the primes we obtain

ρrefuref

tref
(ρu)t +

ρrefu
2
ref

lref
∇ · (ρuu) = (5)

= −pref

lref
∇p +

µrefuref

l2ref
∇ · (µ (∇u + (∇u)T

))
+ ρrefρgeg +

σ

l2ref
κnδ(Γ)

∇ · u = 0. (6)

Suitable choices of the reference time tref and the reference pressure pref are

uref · tref = lref, pref = ρrefu
2
ref. (7)

Introduce the dimensionless Reynolds, Capillary, and Froude numbers, given by

Re =
ρrefureflref

µref
, Ca =

µrefuref

σ
, and Fr =

uref√
lrefg

, (8)

respectively. After dividing (5) by µrefuref
l2ref

we obtain

((ρu)t +∇ · (ρuu)) = (9)

= −∇p +
1

Re
∇ · (µ (∇u + (∇u)T

))
+

1
Fr2 ρeg +

1
ReCa

κnδ(Γ).

In order to complete the formulation, a representation of the interface and a model
for its motion are needed. This will be addressed in the next section.

2.2 An improved level set representation of the interface
Level set representations of the interface in two phase flow have been used in many
flow simulations, see for instance [12] or [13]. The basic idea is that if a level set of
a function φ0 defines the interface at t = 0, the same level set of the solution to

φt +∇ · (φu) = 0, φ(·, 0) = φ0, (10)
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defines the interface at later times.
The method proposed in this paper is an extension of the conservative level set

method, introduced in [10]. Instead of the signed distance function [12, 13] usually
used to define the interface, this method uses a regularized indicator function φ. The
indicator function takes the value 0 in one fluid and the value 1 in the other fluid.
The 0.5–level defines the interface. In this way, good conservation properties can
be achieved simply by using a conservative discretization. It is essential to use no–
flux boundary conditions for φ except at in– or out–flow boundaries. The shape
of the regularized step function is controlled in a reinitialization step. This step is
modeled by a partial differential equation where a non–linear term, resembling a
compressive limiter (see [14]), is balanced by diffusion in the normal direction. The
normal direction is given by the gradient of the level set function. In the following we
introduce a new reinitialization that can be used to also capture contact line dynamics.
This is a generalization of the reinitialization procedures used in [10] and [11].

Our new model mimics the Cahn–Hilliard/Navier–Stokes model in the following
way. We have included diffusion of the phases, and this diffusion moves the contact
point so that the angle between the interface, defined by the 0.5–level set of φ, and
the boundary always equals the static contact angle αs, see Fig. 1. A specific static
contact angle corresponds to a specific normal vector to the interface nαs . Since
the gradient of the level set function is related to the normal of the interface by
n = ∇φ/|∇φ|, the condition on the angle can be formulated as a condition on the
gradient. We cannot, however, directly prescribe the gradient of the level set function
at the boundary without creating a flux of φ over the boundary that would destroy the
conservative properties of the model.

Instead we introduce a regularized normal vector field n, satisfying

ñ−∇ · (γ2∇ñ) =
∇φ

|∇φ| , n =
ñ
|ñ| , (11)

with Dirichlet boundary conditions, ñ = nαs along solid walls, where nαs is the
normal corresponding to the static contact angle. The regularization parameter γ
should preferably be chosen γ ≪ L, where L is the length of typical features in the
problem at hand. The regularized normal vector will have approximately the same
direction as the gradient of the unperturbed φ, except along the boundary, where a
boundary layer with thickness proportional to γ will form. In the boundary layer
the regularized normal vector field changes smoothly to the prescribed nαs . This
regularized normal vector field is then used in the reinitialization step in the following
fashion:

φt̂ +∇ · (φ(1− φ)n)−∇ · (εn(∇φ · n)n)−∇ · (ετ (∇φ · t)t) = 0. (12)

Here n is the normalized and regularized gradient of φ, satisfying (11), and t is
the tangent, orthogonal to n. Further, εn is a diffusion parameter in the normal
direction and ετ is a diffusion parameter in the tangential direction. The second
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term in (12) represents compression in the normal direction, while the third models
diffusion in the normal direction, and the last term models diffusion in the tangential
direction. A balance between the second and the third terms establishes a layer of
thickness proportional to εn, where φ changes from 0 to 1. For the method to be
accurate εn must be much smaller than typical geometrical features of the interface.
In the original work on the conservative level set method [10] the standard isotropic
diffusion was used. This corresponds to choosing ετ = εn = ε in equation (12). In
the subsequent work, presented in [11], ετ = 0. The idea was to avoid unnecessary
movement of the 0.5–level set in the tangential direction. However, the tangential
diffusion is essential in the contact point region. It ensures that the level set function
is constant in the tangential direction. At the boundary this implies that the 0.5–level
set forms the prescribed angle to the boundary.

Using this model, the interface should be advected with the fluid velocity every-
where except in the contact point region. There the reinitialization step establishes
a boundary layer in φ, of thickness proportional to the regularization parameter γ.
The angle of the interface (the 0.5–level set of φ) to the boundary changes over the
boundary layer from the static contact angle αs to the apparent contact angle αa. The
apparent contact angle is the angle formed between the boundary and the interface
away from the contact point region, see Fig. 1. Close to the boundary the curvature
of the interface will in general be large if γ is small. As long as the apparent angle
remains the same the reinitialization step will ensure that the shape of the interface
in the contact point region is constant. This means that the contact point moves with
the same speed as the tangential fluid velocity just outside the contact point region
(region A in Fig. 1).

We expect the velocity of the contact point to be determined by a balance between
surface tension and viscous forces. When the two fluids have the same viscosity the
following simple analysis shows that for small γ the speed is essentially independent
of γ. Let the dimensionless speed of the contact point be U . Then, since the fluid
velocity changes from 0 to U over a layer of thickness proportional to γ, the viscous
stress in the tangential direction, in the Navier–Stokes equations (9), is proportional
to U/γ2. The resulting viscous force on A is obtained by integrating over A, yielding
Fvisc ∼ U . The term representing surface tension is 1

Caκnδ(Γ), with Ca = µrefuref
σ .

The curvature κ depends on the static and apparent angles in some non–trivial way,
but scales inversely with γ, that is κ ∼ f(αa,αs)

γ . Integrating over A yields a tangen-

tial force Fsurface ∼ f(αa,αs)
Ca . The two forces, Fvisc and Fsurface, must be balanced,

yielding U ∼ f(αa,αs)
Ca . This indicates that at least to lowest order in γ, U is indepen-

dent of γ. Also note that in the limit γ → 0 the shear stress is still singular, but now
the singularity is integrable. In the next section these ideas are tested numerically for
a model problem.
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3 Model problem

In this section numerical tests are performed with the intention to show how different
parameters in the new model for the reinitialization, introduced in Section 2.2, influ-
ences the level set function φ and to give an idea of how they should be chosen. In
this section, we are only interested in the contact point region and therefore we only
consider the reinitialization process, and we do not solve any advection equation for
φ. We recall that the reinitialization process is governed by equations (11) and (12).

In this section we model a contact point region of a real problem, scaled so that
the curvature of the interface away from the contact point is small compared to unity.
Also, by a simple scaling argument it is clear that only the ratio between the modeling
parameters is important for the shape of the interface in the contact point region. We
therefore keep εn fixed in this section, and vary only γ and ετ .

Throughout this section the computational domain is {(x, y) : 0 ≤ x ≤ 2, 0 ≤
y ≤ 2}. Initially

φ(x, y) =
1

1 + e
1−x
εn

which gives an interface at x = 1 normal to the x–axis. Thus, the normal at the
interface ∇φ

|∇φ| = (1, 0), corresponding to an apparent contact angle of 90◦. With this
normal, equation (11) can be solved analytically for the regularized normal vector
field.

Let ñ = (n1, n2) be the component of the normal vector in the x and y direction
respectively. Then

n1(y) = c1e
y/γ + c2e

−y/γ + 1 (13)

n2(y) = c3e
y/γ + c4e

−y/γ (14)
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where the constants c1, c2, c3, and c4 are given by the boundary conditions,

n1(0) = sin(α)
dn1

dy
(2) = 0

n2(0) = cos(α)
dn1

dy
(2) = 0.

Here α is the prescribed contact angle of the interface at the contact point. In this
work we prescribe the contact angle to be equal to the static contact angle αs.

The reinitialization equation (12) is discretized on a uniform mesh with grid size
h in both x– and y–directions using a conservative second order finite difference
scheme. On the boundaries, the numerical flux functions are set to zero. For the time
stepping we use a second order Runge–Kutta scheme and for stability reasons, the
time step is chosen as ∆t = h2/(2(εn + ετ )). The reinitialization equation is solved
until the relative residual of φ, ‖φn+1−φn‖2

‖φn‖2
≤ 10−5, which we consider to be the

steady solution. In this section we will use a mesh size of h = 0.005 in all numerical
experiments. We have performed mesh convergence studies which showed that the
value of h chosen here is sufficiently small for the computations in this section to be
well resolved.

3.1 The regularization parameter γ

We will now investigate how the parameter γ affects the contact point region. To
study the influence of γ on the level set function φ, the reinitialization equation (12)
is solved with a regularized normal vector field for different values of the parameter
γ. The other parameters are kept fixed at εn = 8h and ετ = 6εn.

The 0.5–level set of φ defining the interface after the reinitialization is shown in
Fig. 2 for different values of γ and for a prescribed contact angle of αs = 45◦. We
can clearly see the influence of γ on the interface. A boundary layer proportional to γ
is formed in the reinitialization process. In this layer the normal of the interface varies
smoothly from the prescribed normal at y = 0 to the gradient of the unperturbed level
set function φ. Reinitialization with small values of γ will produce an interface with
large curvature. Also, the position of the point where the 0.5–level set intersects the
boundary y = 0 depends on the value of γ. The contact angle at steady state comes
closer to the prescribed angle when γ is increased.

In Fig. 3 we show how the contact angle changes with time for the different
values of γ. Starting from 90◦ the contact angle decreases with time towards the
prescribed static contact angle. We can see a similar behavior for all four values of γ
and that γ has a small impact on the obtained contact angle.

To conclude this section, γ should be small, in the order of εn, so that the contact
point region does not become a substantial part of the domain. However, a smaller
γ generally gives larger curvature. The mesh size h must be chosen small enough to
resolve the curvature.
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Figure 2: The steady 0.5–level set of φ for different values of γ. Here εn = 8h,
ετ = 6εn and αs = 45◦. The contact angle of the interface at the boundary where
the 0.5–level set intersects y = 0, has reached approximately 50, 49, 48, and 46◦ for
γ/εn = 1, 2.5, 5, and 10 respectively.
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Figure 3: The contact angle as a function of time in the reinitialization process for
different values of γ. Here εn = 8h, ετ = 6εn and αs = 45◦.

10



10
−5

10
−4

10
−3

10
−2

45

50

55

60

65

70

75

80

85

90

Time

C
o

n
ta

c
t 

a
n

g
le

 

 

ε
τ
=3ε

n

ε
τ
=12ε

n

ε
τ
=48ε

n

ε
τ
=192ε

n

Figure 4: Contact angle as a function of time in the reinitialization process for dif-
ferent values of ετ . Here we have used fixed values of εn = 8h and γ = 2.5εn and
αs = 45◦. Note that for the smaller values of ετ , the angle presented here has not
yet reached the steady value. In Fig. 6 you can see how close the steady state angle
comes to the prescribed value for different ετ –values.

3.2 The tangential viscosity parameter ετ

Diffusion in the tangential direction, given by the tangential viscosity parameter,
ετ , is essential for the ability of the interface to form the prescribed angle to the
boundary. To study the influences of ετ on the 0.5–level set and more specifically
on the angle of the interface to the boundary we have performed simulations with
different values of ετ for fixed values of εn = 8h and γ = 2.5εn. The prescribed
static angle is αs = 45◦.

In Fig. 4 we see that the value of the tangential viscosity has a large impact on
the contact angle and as ετ increases, the contact angle converges faster towards the
static angle αs. As the tangential viscosity increases, the shape of the foot converges,
as can be seen in Fig. 5. However, a larger value of ετ will also affect the level set
function φ away from the contact point region.

The same numerical test were made also for a prescribed static contact angle of
αs = 25◦. The behavior of the contact angle is essentially the same. As the tan-
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Figure 5: The steady 0.5–level set of φ for different values of ετ . Here εn = 8h,
γ = 2.5εn and αs = 45◦.

gential viscosity increases the contact angle converge faster towards the static angle.
However, larger values of the tangential viscosity is needed when the difference be-
tween αs and the initial contact angle is large. This can be seen in Fig. 6 where the
contact angle of the 0.5–level set at steady state is presented as a function of the ratio
ετ/εn, for αs = 45 and 25◦. We have found that varying ετ or εn without changing
their ratio does not affect the obtained contact angle. This means that an improved
convergence towards the static contact angle can be obtained either by increasing ετ

or decreasing εn while keeping the other one fixed. This exposes a trade off. On one
hand, we do not want to increase ετ too much since a large ετ will affect the level set
function φ also in regions away from the foot region. On the other hand, decreasing
εn requires a finer mesh. A solution could be to let ετ vary with the distance from
the boundary. In this way we would get tangential diffusion only in the foot region.

3.3 Conclusions
A general conclusion from the results presented here is that larger values of γ and ετ

result in contact angles closer to the prescribed angles. The value of the regulariza-
tion parameter γ does not have as large effect on the contact angle as the tangential
viscosity parameter, ετ , but γ has a larger impact on the size of the foot region.

Also, at a fixed set of parameters, the discrepancy between the prescribed contact
angle αs and the angle of the interface at the boundary, increases as the difference
between αs and the initial contact angle increases. Larger values of ετ are then
needed in order to obtain the correct angle, however at the cost of the parameters
influencing a larger region. A remedy for this could be to add tangential viscosity
only in the contact point region.

An improved convergence towards the static contact angle can also be obtained
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by decreasing εn. This would, however, require a finer mesh.

4 Application

In this section we discuss the numerical treatment and results for two types of ap-
plications: channel flow and droplets on flat plates. Both involve two immiscible
fluids and moving contact lines. In the channel flow and one of the droplet on a flat
plate applications, capillary effects dominate. In the second droplet on a flat plate
application, we also see the effect of inertia. The proposed model is used to simulate
the contact line dynamics.

4.1 Numerical treatment
The motion of the two immiscible fluids is governed by the incompressible Navier–
Stokes equations. As in [10, 11], we solve the Navier–Stokes equations by us-
ing a projection method with an added pressure stabilization term as introduced by
Guermond and Quartapelle [15]. The surface tension effect is treated as a force,
F = σκnδΓ added to the Navier–Stokes equations. We have implemented two ap-
proaches to model the surface tension force. In the first approach, the singular surface
tension force is smoothed out over a finite thickness and is given by F = σκ∇φ as
proposed by Brackbill et al. [16]. In the second approach, the singular surface ten-
sion force is evaluated through a line integral along the interface Γ as suggested by
Tornberg et al. [17]. Our model works well together with both approaches. However,
in the first approach the delta function δΓ is regularized and if part of the regulariza-
tion zone ends up outside the computational domain the accuracy will usually be lost.
Therefore evaluation of a line integral may be favorable when the interface is close
to a boundary.

At contact points diffusion of φ tangential to the interface is essential. The diffu-
sion can be added in the reinitialization equation (12), or in the advection equation.
In each time step the reinitialization equation (12) is solved until the relative residual
of φ, ‖φn+1−φn‖

‖φn+1‖ ≤ 10−5, which we consider to be the steady state solution.
As in [11] we use a second order semi–implicit discretization in time. Usually

two reinitialization steps are required. However, in case a large change of the contact
angle is needed, more steps are required to reach steady state.

The numerical simulations were carried out using FemLego, a parallel finite ele-
ment code for the solution of partial differential equations [18]. All equations were
discretized in space using piecewise linear functions.

4.2 Capillary dominated channel flow
Consider two fluids with the same density and viscosity, in a two dimensional channel
initially separated by an interface, normal to the channel, without curvature. Thus,
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the initial apparent contact angle is αa = 90◦. We assume that the static contact angle
αs is smaller than 90◦. Clearly the initial condition is not a steady state solution. In
the absence of an outer pressure gradient or prescribed flux, the only driving force is
the capillary effect at the channel walls, which will move the interface to the right.

If the densities and viscosities of the two fluids are of similar size we expect that
after an initial, transient process, the interface will move at a constant speed U . We
expect the interface to consist of an interior part with curvature κa = 2 cos(αa), and
two small sections close to the walls with curvature κ ∼ f(αa−αs)

γ , where f is some
smooth function.

4.2.1 Computations

In this subsection we present computations that demonstrate the qualitative behavior
of our model. In the computations we consider a channel of non–dimensional length
1 or 2 and width 1. The Capillary number and the Reynolds number are set to unity.
At the channel walls we prescribe zero velocity, i.e. no slip, and the flux of the
level set function is set to zero. The normal vectors at the lower and upper walls
are prescribed so that the contact angles equal the static contact angles. At the inlet
and outlet we use vanishing tangential velocity, vanishing normal derivative of the
normal velocity, and Dirichlet conditions for the level set function and the pressure.
Throughout this subsection we use h = ∆x = ∆y = 0.01, ∆t̂ = ∆t = 0.05, and
ετ = εn = ε.

In Fig. 7 and 8 we see results for a case with static contact angle αs1 = 45◦ at
the upper channel wall, and static contact angle αs2 = 90◦ at the lower wall. In this
computation we used ε = 2.5h and γ = 3ε. As expected, the capillary forces at the
upper wall exhort a pull which sets the fluid into motion. In Fig. 7(a) we see how
the interface (the 0.5–level set of φ ) develops over time. In Fig. 7(b) a detail of
the interface close to the upper wall at an early stage is shown. The angle between
the interface and the upper wall is somewhat larger than 45◦ . Two representative
velocity fields are plotted in Fig. 8. The interface develops into a steady shape after
an initial transient period of time. Here we note that away from the interface the
velocity field approaches the standard pipe flow parabola.

In Fig. 9 we have plotted results when the static angle is the same at the upper
and the lower channel walls, αs1 = αs2 = 45◦ and αs1 = αs2 = 25◦, respectively.
In these computations the channel length is 2, and we used ε = 0.05, γ = 0.025.
Also in these cases, after a transient period, a steady shape develops which moves
at a constant speed. As expected, the interface moves faster when the static contact
angle is smaller. In Fig. 10 we have plotted the velocity field, pressure field and the
level set function at t = 10 for the case αs1 = αs2 = 25◦.
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Figure 7: Capillary dominated channel flow. The static contact angles at the upper
and lower wall are 45◦ and 90◦ respectively. (a) The location of the interface, rep-
resented by the 0.5–level set of φ, at t = 0, 1, 2, 3, 4, 8, and 12. (b) Detail of the
0.5–level set of φ close to the upper wall at t = 1 with the grid.
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Figure 8: The same capillary dominated channel flow as in Fig. 7. The normalized
velocity field at two different times, t = 1 and 13.
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Figure 9: The location of the interface (the 0.5–level set of φ) at t = 0, 1, 2, 10, 15,
and 20. The angles at the upper and the lower channel walls are αs1 = αs2 = 45◦ in
Panel (a) and αs1 = αs2 = 25◦ in Panel (b).
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Figure 10: Solution at t = 10 for αs1 = αs2 = 25◦.
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4.2.2 Convergence studies

In Section 3 we saw that the shape of the contact point region, or the foot region, is
determined by the relation between the model parameters γ, ετ , and εn. The purpose
of this section is to show that when the size of the foot region is decreased, at some
point, the movement of the interface is no longer affected.

To obtain an angle which deviates at most 10% from the desired static contact
angle of 45◦ we use the suggested ratios between the modeling parameters, ετ/εn =
3, γ/εn = 2.5, see Fig. 6. The time step is ∆t = 10−3 and ∆t̂ = h2

εn+ετ
. Initially

the interface is a straight line at x = −0.3.
In the first set of computations the resolution is set to h = 0.0025. Fig. 11 shows

the results at t = 3 for three values of εn, differing by successive factors of two. For
the smallest value of εn we have εn = 3

√
2h = 0.0106.

We compute the order of convergence by comparing the position of 400 points
along the interface at t = 1, 2, 3, 4, 5 for different values of the modeling parameters.
Let xε

i be the x–coordinate of the interface at y = yi at a particular time for εn =
ε = 0.0106. If we assume the position of the interface to depend on ε as

xε
i = x + αεp +O(εp+1), (15)

we can estimate the convergence rate p from xε
i , x2ε

i , and x4ε
i by

p ≈ log

(∑400
i=1 |x4ε

i − x2ε
i |∑400

i=1 |x2ε
i − xε

i |

)
/ log(2). (16)

The results of such computations for t = 1, 2, 3, 4, 5 indicate linear convergence
for the position of the interface, see Table 1. We also obtained linear convergence in
the velocity. The velocity was computed by the difference between the x–coordinates
of the interface at y = 0.5 at two different times divided by the time difference.

In the second set of computations we varied the resolution in space, but kept the
modeling parameters fixed with εn = 4ε = 0.0424, ετ/εn = 3, and γ/εn = 2.5. In
Fig. 12 the results for three values of h, differing by successive factors of

√
2, are

plotted. Convergence rates are computed as above, and indicate linear convergence,
see Table 1.

4.3 Droplet on a flat plate – Capillary dominated
We consider here a two–dimensional droplet with diameter lref, density ρref, and vis-
cosity µref, lying on a solid surface surrounded by another liquid with the same den-
sity and viscosity. The static contact angle is αs = 25◦. Capillary effects domi-
nate and gravity is neglected. We will simulate how this droplet wets the surface.
This wetting phenomenon was previously studied using a phase field method by Vil-
lanueva and Amberg [7].
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Figure 11: Comparison between the 0.5–level set of φ at t = 3 for αs1 = αs2 = 45◦.
The width of the interface εn = 0.0106, the diffusion parameter εt = 3εn, and
the regularization parameter γ = 2.5εn were all scaled with 2 and 4. The mesh
resolution is fixed to be h = 0.0025. The contour furthest to the right corresponds to
the largest parameter values.

t = 1 t = 2 t = 3 t = 4 t = 5
ε → 0 1.0912 1.0401 1.003 0.9702 0.9616
h → 0 0.6831 0.9295 1.1576 1.3031 1.0696

Table 1: Convergence rate for the interface position at different times. The first row
shows the convergence rates when the model parameters εn, ετ , and γ are decreased.
The mesh size h is fixed. The second row shows the convergence rates when the
mesh size is decreased. The time step in the reinitialization ∆t̂ = h2

εn+ετ
.
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Figure 12: Comparison between the 0.5–level set of φ at t = 3 for αs1 = αs2 = 45◦.
Varying the mesh resolution: h = 0.0025, 0.0025

√
2, 0.005 but keeping all the other

parameters fixed.

Experiments with gas/liquid/solid systems where the viscosity ratio λ = µM

µL

ranges from 10−5 to 10−8 has been performed by Hoffman [19]. The experiments
show that the apparent contact angle is primarily a function of the capillary number
Ca∗. Later Cox [20] presented a more general analysis of the dynamics of wetting.
We will compare our results with data from Cox’s theory and the phase field simula-
tion.

4.3.1 Cox’s Theory

Given two immiscible fluids with viscosity ratio λ, Cox’s theory states that at a lead-
ing order in Ca∗,

g(αD, λ)− g(αs, λ) = Ca∗ ln(δ−1), (17)

where αD is the macroscopic dynamic contact angle, αs is the static contact angle, δ
is a small constant and the function g(α, λ) is given by

g(α, λ) =
∫ α

0

dα

f(α, λ)
(18)
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where

f(α, λ) =
2 sin α(λ2(α2 − sin2 α) + 2λ(απ − α) + sin2 α) + (π − α)2 − sin2 α)

λ(α2 − sin2 α)((π − α) + sin α cos α) + ((π − α)2 − sin2 α)(α− sin α cos α)
.

(19)
It is interesting to note that when Hoffman plotted the observed macroscopic contact
angle αD versus the capillary number Ca∗ plus a shift he observed that his experi-
mental results fell on a single curve. He did not, however, provide an explicit mathe-
matical form for the function αD(Ca∗). Later Cox showed good agreement between
his formula in (17) with δ = 10−4 and Hoffman’s curve for all values of αD, except
those very close to 180◦. We have confirmed that a value of δ ≈ 10−4 minimizes
the sum of squares of the relative difference between the contact–line speeds Ca∗

obtained from the experiments by Hoffman 1975 using silicone fluid with λ = 0
and αs = 0 and those obtained from Cox’s theory. In the following we will use
δ = 10−4.

4.3.2 Computations

The computational domain is in non–dimensional coordinates {(x, y) : −2 ≤ x ≤
2, 0 ≤ y ≤ 2} and the initial drop is symmetric around x = 0 and has non–
dimensional radius r = 0.5. At initial time the drop is in contact with the solid
wall at an angle of 156◦. The Reynolds number Re = ρrefureflref

µref
= 1 and the Cap-

illary number Ca = 2
√

2µrefuref
3σ = 1. The simulation of the wetting is performed

using a mesh consisting of regular triangles with 270 × 135 nodes and a time step
∆t̂ = ∆t = 0.0011. The liquid–liquid interface (the 0.5–level set of φ) is advected
by solving the advection equation (10) with a diffusion term equal to 0.0011. In the
reinitialization described in equation (12) the viscosity parameter in the normal di-
rection is set to εn = 4.5h where h is the mesh size and the viscosity parameter in
the tangential direction is set to ετ = 0. The regularization parameter γ = 2.5εn.
The boundary condition for the regularized normal vector field, equation (11), is set
to

n|y=0 = (−sign(x)0.4226,−0.9063)

aiming for a contact angle of 25◦ at the wall y = 0. At the other boundaries we
use homogeneous Neumann conditions. The model parameters were chosen to keep
the contact point region small without having to use a very fine mesh. However, we
recall from Section 3 that the actual contact angle will be larger than the static contact
angle of 25◦ with our choice of model parameters. We measure the dynamic contact
angle that the liquid–liquid interface makes with the solid surface at the inflexion
point of the foot as illustrated in Fig. 13. The wetting speed is given by dividing the
difference in position of the intersection point (see Fig. 13) at two successive times
by the time difference.

In Fig. 14 the wetting on the solid wall is illustrated for six different snapshots.
The liquid–liquid interface immediately forms a foot due to the boundary condition
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Figure 13: The dynamic contact angle is measured by considering the tangent at the
inflexion point. The wetting speed is given from the position of the intersection point
at different times.
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t= 0 t= 0.1 t= 1

t= 5 t= 25 t= 300

Figure 14: Wetting of a liquid drop on a solid surface. The interface separating the
two fluids at times t = 0, 0.1, 1, 5, 25, 300 with Re = 1, Ca = 1. The contact angles
at the different times are α ≈ 156, 149, 120, 88, 55, 27.

for the normal at the wall described above. The strong curvature in the foot region
causes the fluid to move and the drop starts to wet the surface. The contact–line
movement is fast in the initial steps but slows down as the drop approaches equilib-
rium. In Fig. 15 the change of the dynamic contact angle with time can be seen. The
dynamic contact angle initially decreases rapidly with time but the decrease slows
down as the angle approaches the equilibrium value.

In Fig. 16 the dynamic contact angle is plotted as a function of the Capillary
number Ca∗ = 2

√
2µrefu
3σ = u

uref
, which in this case is equal to the wetting speed.

The results are compared with a phase field simulation [7] and Cox’s theory [20].
The qualitative behavior of the simulation in this work is in agreement with previous
results.
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Figure 15: Dynamic contact angle versus dimensionless time for a liquid droplet.
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−4

Figure 16: The contact angle as a function of the capillary number. The initial angle
is 156◦. We compare the result of this work with the phase field simulation in [7]
and Cox’s theory [20]. The parameter δ in Cox’s theory is chosen to be 10−4, see
Section 4.3.1.
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4.4 Droplet on a flat plate – Role of inertia
We consider here another two–dimensional droplet lying on a solid surface sur-
rounded by another liquid with the same density and viscosity. The fluid is in rest
and the configuration is in equilibrium except for the contact angle. The static con-
tact angle is αs = 70.53◦. The dimensionless parameters are Reynolds number
Re = ρrefureflref

µref
= 20 and the Capillary number Ca = µrefuref

σ = 0.03. In this example
inertia plays an important role. Gravity effects are neglected. A simulation of this
problem has previously been performed by Renardy et al. using a volume–of–fluid
method [8].

4.4.1 Computations

The computational domain is in non–dimensional coordinates {(x, y) : −3 ≤ x ≤
3, 0 ≤ y ≤ 3} and the initial drop is circular with non–dimensional radius r = 1.0
centered at (x, y) = (0, 0.75). The simulation of the wetting is performed using a
mesh consisting of regular triangles with 406×203 nodes and a time step ∆t = 10−4.
In the reinitialization described in equation (12) the viscosity parameter in the normal
direction is set to εn = 3h, where h is the mesh size, the viscosity parameter in the
tangential direction is set to ετ = 3εn, and the time step ∆t̂ = ∆t . In equation (11)
giving the regularized normal vector field, the regularization parameter γ = 2.5εn.

In Fig. 17 the wetting on the solid wall is illustrated for nine different snapshots.
The liquid–liquid interface starts to wet the surface because of the difference in the
initial and the static contact angle. During the transient phase it passes the equi-
librium position but then retracts and oscillates toward equilibrium. The snapshots
can be compared with the snapshots from the volume–of–fluid computation in [8].
Note that, contrary to [8], the snapshots are in non–dimensional time. In Fig. 18, the
spreading diameter, i.e. the distance between the two contact points, is plotted as a
function of time. Note that this droplet oscillates toward equilibrium. This is because
of the resistance of the drop to change its motion.

5 Discussion

We have developed and presented a conservative level set model for two–phase flow,
which can capture contact line dynamics using no–slip boundary conditions for the
velocity. In this model, which is an extension of the model presented in [11], the
contact angle at equilibrium is used to induce a movement of the contact point by
diffusion. In our model, a diffusion parameter and a regularization parameter are
related to the size of the contact point region. Since the model is formulated in terms
of partial differential equations on conservative form, conservation properties are
retained by using standard conservative numerical methods.
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t = 0 t = 0.5 t = 1

t = 1.5 t = 2 t = 2.5

t = 3 t = 5 t = 10

Figure 17: Wetting of a liquid drop on a solid surface. The interface separating the
two fluids at dimensionless times t = 0, 0.5, 1, 1.5, 2, 2.5, 3, 5, 10 with Re = 20,
Ca = 0.03. The static contact angle αs = 70.53.
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Figure 18: Spreading diameter of the droplet in Fig. 17 as a function of dimensionless
time. The drop oscillates towards equilibrium.

Numerical computations for two different applications demonstrate that impor-
tant features of contact line dynamics are captured. The results from the calculations
of the droplets wetting walls have shown good agreement with other numerical meth-
ods and available theory. Parameter studies have indicated convergence as the model
parameters approach their limit values. For cases when the mismatch in angle is
moderate the method yields good results. For a fixed foot size, larger differences in
angles would result in higher curvature and require a finer mesh in the foot region,
making adaptive mesh refinement necessary. The refinement of the mesh could be
based on the curvature.

In this work we have prescribed the static contact angle and have aimed to obtain
an angle close to the static angle. In the first droplet on a flat plate calculation in
Section 4.3, the difference between the initial and the prescribed static contact angle
was large. Therefore, we had to choose between a large foot with the correct angle
at the wall and a small foot but a larger discrepancy between the obtained angle and
the prescribed static angle. We obtained much better results with a small foot region.
The qualitative behavior was correct even though the small foot region resulted in a
larger discrepancy between the obtained angle and the prescribed static angle. An
important question is if the contact angle in computations has to be exactly equal to
the static value. If it has to be equal, more tangential diffusion is needed. However,
we do not want too much diffusion away from the foot region. Therefore, it could
be beneficial to let the tangential diffusion vary with the distance from the contact
point. We have performed numerical simulations with a tangential viscosity that
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decays exponentially with the distance from the boundary, and we have obtained
promising results. This approach needs to be further investigated.

We have found that our method works well also in cases when the flow is not
dominated by capillary forces, even without high resolution. For such cases it is
not important that the interface attains the static angle at all times, only that the
reinitialization procedure provides a mechanism for contact line movement.
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ABSTRACT

This paper presents a conservative numerical method capable of capturing contact line movement for the simulation of
capillary dominated flow of two immiscible, incompressiblefluids. The interface between the two fluids is represented
implicitly by the 0.5–level set of a function varying smoothly from zero to one. The flow of each phase is governed by
the incompressible Navier–Stokes equations with no–slip boundary condition at solid walls. The key idea is to drive the
contact line movement by prescribing the normal vector at the boundary to be the static normal vector corresponding to
the equilibrium contact angle. Our model is formulated as a system of partial differential equations and takes into account
differences in density and viscosity, gravity, and surfacetension effects. We discretize using the finite element method
which allows for use of the weak form of the equations. The surface tension forces are included as line integrals along
the interfaces. We eliminate the second order derivatives in these forces, coming from the curvature term, by applying
partial integration of the Laplace–Beltrami operator. Numerical experiments of capillary dominated flows in two space
dimensions are presented and include tests of convergence rates and comparison with other numerical methods. Our
numerical scheme show good accuracy and our results comparewell with available theory.

1. INTRODUCTION

Accurate modeling and simulations of contact line movementis of crucial interest in simulations of 1) two–
phase flow in microfluidic devices, such as pumps, valves, separators etc, 2) inkjet printing, spray coating,
and spray cooling, and 3) two–(or multi–)phase flow in pore structures occurring for example when oil is
recovered by water injection and in liquid phase sintering.In all these cases simulations can contribute to a
better understanding of the process considered.

Contact line dynamics is the movement of the intersection line between the interface of two immiscible
fluids and a solid boundary. An example of such a phenomenon iswhen a liquid drop is spreading over a solid
surface. As the drop spreads, the contact line will move until it reaches an equilibrium state determined by the
surface energies of the interfaces involved. The angle between the contact line at equilibrium and the boundary
is often referred to as the equilibrium or static contact angle (hereinafter,the static contact angle). For a more
detailed discussion of this kind of phenomena see [1].
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The immiscible and incompressible flow is described by the incompressible Navier–Stokes equations with
the surface tension forces and gravity forces added as source terms. Some representation of the interface sepa-
rating the two fluids is required, for example a level set function or markers, and an evolution equation for the
advection of the interface. At all interior points, the physically correct model is that the interface is advected
by the fluid velocity. At contact lines, however, the standard boundary condition for the velocity is no–slip,
which means that the contact line cannot move. This is unphysical in many cases, which is reflected by the
shear stress becoming singular. Over the years, various techniques to overcome this difficulty have been intro-
duced. One direction is to introduce a so called slip length,which permits the contact line to move, see for
instance [2] and references therein. The difficulty with this approach is to provide an appropriate value for the
slip coefficient. The existence of fluid–wall slipping has been observed in molecular dynamics simulations, see
[3] and references therein. Another approach was suggestedby Jacqmin [4] who used a coupled Cahn–Hilliard/
Navier–Stokes formulation consisting of the Navier–Stokes equations coupled to a system of two parabolic
equations for the chemical potential and the concentrationof one of the fluids. In this model, the interface is
modeled as a layer with a continuous transition from one fluidto the other, and the contact line as a small region;
the part of the interface layer close to the solid boundary. The contact line moves by diffusive processes on a
fast time scale in the small region at the boundary so that thecontact angle is adjusted to the static value. The
result is a region close to the boundary with high curvature of the interface, and consequently a strong surface
tension force. The fact that the interface can move by diffusive processes eliminates the need for modeling fluid
slip. A drawback with the model suggested by Jacqmin is that the interface must be highly resolved to achieve
accuracy. In [5] this formulation was used to investigate basic wetting phenomena.

A new level set method for two phase flow with good mass conservation of each fluid was introduced in
[6] and [7]. In this method the interface is represented implicitly by the 0.5–level set of a regularized Heaviside
function φ. By construction, the method conserves

∫
φ. We have extended this method to be able to capture

contact–line movement while retaining the conservative property [8, 9]. The new model mimics the Cahn–
Hilliard/Navier–Stokes behavior of the interface at solidwalls by using diffusion to move the contact point.
Compared to the standard Cahn–Hilliard/Navier–Stokes formulation we believe the new model reduces the
needed computational effort, since a relatively coarse grid is sufficient to capture the dynamics, at least away
from contact points. In this work we use an improved representation of the surface tension, based on partial
integration of the Laplace–Beltrami operator, see [10, 11]and references therein. In this way we avoid compu-
tation of the curvature. We also present new computations, where viscosity and density of the fluids differ. All
our computations are in two space dimensions, but there is noprincipal difficulty to extend the method to three
space dimensions.

The paper is organized as follows. In section 2 we present thegoverning equations of the model and give
a description of our interface representation and the numerical method. The treatment of the surface tension
force based on partial integration of the Laplace–Beltramioperator is explained. In section 3, we use the model
in three different applications; the spreading of a dropleton a flat plate, the rising of a droplet and a channel
flow. Section 4 contains a summary and a discussion of possible improvements of the model.

2. MATHEMATICAL MODEL AND NUMERICAL METHOD

The fundamental model of two–phase flow with contact line dynamics consists of the incompressible Navier–
Stokes equations coupled with evolution of the interface. Evolution of the interface is, in this work, achieved
by use of the advection equation together with a reinitialization step. In this section we will present this model
and how it is treated numerically.

2.1 The Incompressible Navier–Stokes Equations

Assume a given domainΩ is occupied by two immiscible fluids separated by an interface Γ. The equations
describing this immiscible flow are the incompressible Navier–Stokes equations with the contribution of the
surface tension forces and the gravity forces added as source terms:

Re((ρu)t +∇ · (ρuu)) = −Re∇p +∇ · (µ (∇u + (∇u)T
))

+
Re

Fr2 ρeg +
1

Ca
κnδΓ, (1)
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∇ · u = 0.

Hereu, p, ρ andµ denote velocity, pressure, density, and viscosity, respectively. In generalρ andµ are discon-
tinuous across the interface separating the two fluids. The curvature and normal of the interfaceΓ are denoted
by κ andn, andδΓ is a Dirac delta function with support onΓ. Its action on any smooth test functionv is given
by ∫

Ω
δΓvdΩ =

∫
Γ

vdΓ. (2)

The direction of gravitation is denoted byeg. The equations are formulated on a non–dimensional form where
the dimensionless Reynolds, Capillary and Froude numbers are given by

Re=
ρrefureflref

µref
, Ca =

µrefuref

σ
, andFr =

uref√
lrefg

. (3)

Hereρref, µref, lref, anduref are constant reference density, viscosity, length and velocity. The coefficientσ is
the surface tension coefficient andg is the gravitational constant. The Reynolds number is the ratio between
inertial and viscous forces. The Capillary number gives theratio between the viscous and surface tension forces
and the Froude number gives a measure of the ratio between inertial and gravitational forces.

In order to complete the formulation, a representation of the interface and a model for its motion are
needed. This will be addressed in the next subsection.

2.2 An Improved Level set Representation of the Interface

Level set representations of the interface in two phase flow have been used in many flow situations, see for
instance [12] or [13]. The basic idea is that if a level set of afunctionφ0 defines the interface att = 0, the same
level set of the solution to

φt +∇ · (φu) = 0, φ(·, 0) = φ0, (4)

defines the interface at later times.

The method proposed in this paper is an extension of the conservative level set method, introduced in
[6]. Instead of the signed distance function [12, 13] usually used to define the interface, this method uses a
regularized indicator functionφ that takes the values0 and 1 in the two fluids, respectively. The0.5–level
defines the interface. In this way, good conservation properties can be achieved simply by using a conservative
discretization. The shape of the regularized step functionis controlled in a reinitialization step. This step is
modeled by a partial differential equation where a non–linear term, resembling a compressive limiter (see
[14]), is balanced by diffusion in the normal direction. In the following we introduce a new reinitialization that
can be used to capture contact line dynamics. This is a generalization of the reinitialization procedures used in
[6] and [7].

The new model mimics the Cahn–Hilliard/Navier–Stokes model in the following way. Contact points are
modeled as regions and diffusion is used to move the contact point so that the angle between the interface,
defined by the0.5–level set ofφ, and the boundary always equals the static contact angleαs. The static contact
angle corresponds to a normal to the interfacenαs . Since the gradient of the level set function is related to the
normal of the interface byn = ∇φ/|∇φ|, the condition on the angle can be formulated as a condition on the
gradient. We cannot, however, directly prescribe the gradient of the level set function at the boundary without
creating a flux ofφ over the boundary that would destroy the conservative properties of the model.

Our idea is to instead use a regularized normal vector field satisfying

n−∇ · (γ2∇n) =
∇φ

|∇φ| , (5)

with Dirichlet boundary conditions,n = nαs along solid walls. The regularization parameterγ should prefer-
ably be chosenγ ≪ L, whereL is the length of typical features in the problem at hand. The regularized normal
vector will then be close to the gradient of the unperturbedφ, except along the boundary, where a boundary
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layer with thickness proportional toγ will form. The modified vector field is then used in the reinitialization in
the following fashion

φt̂ +∇ · (φ(1 − φ)n)−∇ · (εn(∇φ · n)n)−∇ · (ετ (∇φ · t)t) = 0 (6)

wheren is the normalized and regularized gradient ofφ, satisfying (5), andt is the tangent, orthogonal ton, εn

is a viscosity parameter in the normal direction andετ is a viscosity parameter in the tangential direction. The
second term in (6) represents compression in the normal direction, while the third models diffusion in the normal
direction and the last term models diffusion in the tangential direction. In the original work on the conservative
level set method [6] the standard isotropic diffusion was used. This corresponds to choosingετ = εn = ε in
equation (6). In the subsequent work, presented in [7],ετ = 0. The idea was to avoid unnecessary movement of
the0.5–level set in the tangential direction. However, the tangential diffusion is essential for the contact angle
to achieve the desired static value. An alternative is to include diffusion in the advection equation (4).

If our modeling is successful, the solutionφ will exhibit a boundary layer of thickness proportional to the
regularization parameterγ. The angle of the interface (the 0.5–level set ofφ) to the boundary changes from the
static contact angleαs to the apparent contact angleαa. The apparent contact angle is the angle formed between
the boundary and the interface away from the contact point region. Thus, close to the boundary the curvature
will be large. It is important thatγ is chosen so that the curvature in this region is numericallyresolved. The
contact point will move with the same speed as the tangentialfluid velocity just outside the contact point region.
When the two fluids have the same viscosity it can be shown thatfor smallγ the speed is independent ofγ, see
[9].

2.3 Numerical Treatment

We solve the Navier–Stokes equations using a projection method with an added pressure stabilization term
[7]. This method was introduced by Guermond and Quartapelle[15]. The surface tension effect is treated as a
force, f = σκnδΓ added to the Navier–Stokes equations. Since we consider applications where the capillary
effects dominate the accuracy of the surface tension force is essential. In general, the accuracy of the curvature
estimation and the implementation of the surface tension force are crucial in order to avoid large unphysical
oscillations of the velocity close to the interface, so–called spurious velocities. Using the finite element frame-
work enables us to write the equations in weak form. The weak formulation of the equations does not include
δΓ and therefore no explicit discretization of the delta function is required. By using the Laplace–Beltrami
characterization of the curvature we do not need to calculate the curvature.

Define the tangential derivative of a functiong along Γ by ∇Γg = P∇g where P is the orthogonal
projection:

P = I − nnT . (7)

Replace the termκn by the Laplace–Beltrami operator

∇Γ · (∇ΓidΓ) = κn, (8)

whereidΓ is the identity onΓ and the normal vectorn is calculated as

n =
∇φ

|∇φ| . (9)

If v is a smooth vector valued function onΩ we can integrate by parts to get

fΓ(v) =
1

Ca

∫
Ω

κn · vδΓdΩ =
1

Ca

∫
Γ

κn · vdΓ =

=
1

Ca

∫
Γ
∇Γ · (∇ΓidΓ) · vdΓ = − 1

Ca

∫
Γ
∇ΓidΓ · ∇ΓvdΓ (10)

In our model the boundary conditions for the velocity is no–slip. Hence our test functionv is zero at the contact
points and we don’t have any boundary terms in the above identity. This technique of reducing the order of
differentiation associated with the curvature term has also successfully been applied in the finite element context
in [10, 11] and references therein.
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At contact points diffusion ofφ tangential to the interface is essential. In the third application, ”Capillary
Dominated Channel Flow”, we choose to add the diffusion in the reinitialization equation (6) by lettingετ = εn.
In the first and the second application, ”Droplet on a Flat Plate” and ”Rising Droplet”, we letετ = 0 but we
add an isotropic diffusion term equal to5h2 = 0.0011 in the advection equation (4). In each time step the
reinitialization equation (6) is solved to steady state. Asin [7] we use a second order semi–implicit discretization
in time with∆t̂ = ∆t. Typically two steps of reinitialization is performed at each time step.

The numerical simulations were carried out using FemLego (Amberg et al. [16]), a symbolic tool to solve
partial differential equations with the finite element method. All equations were discretized in space using
piecewise linear functions and the linear systems were solved using conjugate gradient methods.

3. APPLICATIONS

In this section we discuss the numerical treatment and results for three applications in which capillary effects
dominate: a droplet on a flat plate, rising droplet and channel flow. All applications involve two immiscible
fluids and moving contact lines. The proposed model is used tosimulate the contact line dynamics. The results
in the application ”Droplet on a Flat Plate” is compared withtheory and other computations. The two other
applications indicate that we can also handle density and viscosity differences.

3.1 Application 1: Droplet on a Flat Plate

We consider here a two–dimensional droplet with diameterlref, densityρref, and viscosityµref, lying on a solid
surface surrounded by another liquid with the same density and viscosity. The static contact angle isαs = 25◦.
Capillary effects dominate and gravity is neglected. We will simulate how this droplet wets the surface. This
wetting phenomenon was previously studied using a phase field method by Villanueva and Amberg [5]. We
will compare our results with data from the phase field simulation and Cox’s theory [17].

3.1.1 Computations

The computational domain is in non–dimensional coordinates {(x, y) : −2 ≤ x ≤ 2, 0 ≤ y ≤ 2} and the
initial drop is symmetric aroundx = 0 and has non–dimensional radiusr = 0.5. At initial time the drop is in
contact with the solid wall at an angle of156◦. The Reynolds numberRe = ρrefureflref

µref
= 1 and the Capillary

numberCa = 2
√

2µrefuref
3σ = 1. The simulation of the wetting is performed using a mesh consisting of regular

triangles with270 × 135 nodes and a time step∆t = 0.0011. The liquid–liquid interface (the0.5–level set
of φ) is advected by solving the advection equation (4) with a diffusion term equal to5h2 = 0.0011 where
h = ∆x = ∆y and typically two steps of reinitialization. In the reinitialization described in equation (6) the
viscosity parameter in the normal direction is set toεn = 4.5h = 0.0667 and the viscosity parameter in the
tangential direction is set toετ = 0. The boundary condition for the velocity is no–slip. For theregularized
normal vector field, equation (5) the boundary condition is

n|y=0 = (−sign(x)0.4226,−0.9063)

so that the contact angle at the wall is equal to the static contact angle25◦. At the other boundaries we use
homogeneous Neumann conditions. The regularization parameter in equation (5)γ = 0.1667. We want to
chooseγ so that the normal vector varies smoothly from the prescribed equilibrium value at the boundary to
the actual value. Thus on one hand, a largeγ is needed when the dynamic contact angle is large compared to
the static contact angle. The static contact angle determines the value of the normal vector at the boundary. On
the other hand, ifγ is too large, we get too large wetting speed, especially in the initial steps. This was studied
in [9]. Whenγ is decreased, the grid has to be refined. We believe that compared to [9] we should be able to
use a smallerγ since we don’t need to calculate the curvature. This has however not yet been tested.

In Fig. 1 the wetting on the solid wall is illustrated for six different snapshots. The liquid–liquid interface
immediately forms a foot due to the boundary condition for the normal at the wall described above. The strong
curvature in the foot region causes the contact line to move and the drop starts to wet the surface. The contact–
line movement is fast in the initial steps but slows down as the drop approaches equilibrium. Att ≈ 300
equilibrium is reached.
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We measure the dynamic contact angle that the liquid–liquidinterface makes with the solid surface at the
inflexion point of the foot as illustrated in Fig. 2(a). The wetting speed is given by dividing the difference in
position of the intersection point (see Fig. 2(a)) at two successive times by the time difference. The dynamic
contact angle initially decreases rapidly with time but thedecrease slows down as the angle approaches the
equilibrium value. In Fig. 2 the dependence of the dynamic contact angle on the Capillary numberCa∗ =
2
√

2µrefu
3σ = u

uref
, which in this case is equal to the wetting speed, is shown. The results are compared with a

phase field simulation[5] and Cox’s theory[17]. Our simulation shows qualitative agreement with them all. The
velocity for each given angle is, in our simulation, somewhat larger than the predictions provided by Cox’s
theory with the viscosity ratioλ = 1 andδ = 10−4. See [9] for the choice ofδ.

To investigate convergence we have performed computationsfor three different meshes withh1 = 0.0222,
h2 = 2

3h1 andh3 = 4
9h1. All parameters are fixed, the initial contact angle is now90◦ andγ = 0.1. The error is

measured as the sum of absolute differences in the y–coordinates for the interface for100 x–coordinates divided
by the number of points. The order of convergence is shown in Fig. 3 both when applying integration by parts
of the Laplace–Beltrami operator on the interface and calculating the curvature and then the line integral.

3.2 Application 2: Rising Droplet

We now consider a two–dimensional droplet with densityρD and viscosityµD lying on a solid surface at an
angle of90◦ surrounded by a heavier fluid with densityρL = 10ρD and viscosityµL = µD. We make a
simulation of the droplet rising.

3.2.1 Computations

The computational domain is in non–dimensional coordinates {(x, y) : −1.5 ≤ x ≤ 1.5, 0 ≤ y ≤ 3}. The
initial drop is symmetric aroundx = 0 with non–dimensional radiusr = 0.5. The Reynolds number and the
Capillary number are as in the first application ”Droplet on aFlat Plate” set to1 but the gravity cannot be
neglected and the Froude numberFr = uref√

lrefg
= 0.7. The simulation is performed using a mesh consisting of

regular triangles with180× 180 nodes and a time step∆t = 0.0011. The regularization parameter in equation
(5) γ = 0.1. All other parameters are as in the first application ”Droplet on a Flat Plate”. In Fig. 4 the interface
and the velocities at the interface are plotted at a sequenceof different times. The drop wants to wet the solid
surface but the surrounding fluid is heavier so it starts to rise. Att ≈ 9 the droplet breaks into two parts, where
one part continues to rise and one part remains attached to the lower wall.

3.3 Application 3: Capillary Dominated Channel Flow

Consider two fluids in a two dimensional channel of non–dimensional width1 and length1.5, initially separated
by an interface, normal to the channel, without curvature. Thus, the initial apparent contact angle isαa = 90◦.
We assume that the static contact angleαs is less than90◦, which corresponds to the left fluid wetting the
channel walls. Clearly the initial condition is not a steadystate solution. In the absence of an outer pressure
gradient or a prescribed flux, the only driving force are the capillary effect at the channel walls, which will move
the interface to the right. If the densities and viscositiesof the two fluids are of similar size we expect that after
an initial, transient process, the interface will move at a constant, or in the case of differing fluid properties,
slowly varying speedU . We expect the interface to consist of an interior part with curvatureκa = 2cos(αa),
and two small sections close to the walls with curvatureκ ∝ f(αa−αs)

γ , wheref is some smooth function.

We have performed two sets of computations to investigate the qualitative behavior of our model. In the
computations in this section the Capillary number and the Reynolds number are set to unity, and both fluids
have the same density. At the channel walls we prescribe zerovelocity, i.e. no slip, and the flux of the level set
function is set to zero. The normal vector is set so that the contact angle at the wall equals the static contact
angle. At the inlet and outlet we use vanishing tangential velocity, vanishing normal derivative of the normal
velocity, and Dirichlet conditions for the level set function and the pressure. Throughout this section we use
ετ = εn = 0.025, γ = 0.05, ∆x = 0.01 and∆t̂ = ∆t = 0.04.

In the first set of computations we investigate the effect of the static contact angle on the interface speed.
In these computations the fluids have the same viscosity. In Fig. 5 we show the interface together with local
velocity vectors during the initial, transient phase. A region of large curvature of the interface develops near
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t= 0 t= 0.1 t= 1

t= 5 t= 25 t= 240

Figure 1: Wetting of a liquid drop on a solid surface. The interface separating the two fluids at times
t = 0, 0.1, 1, 5, 25, 240 with Re = 1, Ca = 1. The contact angles at the different times areα ≈
156, 149, 117, 82, 54, 29. The regularization parameterγ = 0.1667.
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Figure 2: (a): The dynamic contact angle is measured by considering the tangent at the inflexion point. The
wetting speed is given from the position of the intersectionpoint at different times. (b) : The dynamic contact
angle versus the capillary number. Initial angle is156◦.
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Figure 3: The order of convergence both when applying integration byparts of the Laplace–Beltrami operator
on the interface and calculating the curvature and then the line integral. All parameters are fixed, the initial
contact angle is90◦ andγ = 0.1.
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(a) t = 0 (b) t = 7 (c) t = 9 (d) t = 13

Figure 4: Rising drop. The location of the interface separating the two fluids at timest = 0, 7, 9, 13 with Re=1,
Ca=1, Fr=0.7, andρL

ρD
= 10. The arrows show velocities at the interface.

the solid walls. There, the surface tension is strong, resulting in local, large velocities. Aftert = 3 the transient
development of the interface is complete, but the curvatureand velocities are still large near the wall. Away from
the interface the velocity field is close to the standard pipeflow parabola. In Fig. 6 we see the time history of
the interface for two different static angles. In both casesan interface shape develops within the first time units,
and then propagates with constant speed. As expected, the speed is greater when the static angle is smaller.
In the second set of computations we investigate the effect of a difference in fluid viscosity on the interface
movement. We let the fluid to the left be more viscous than the fluid to the right. As the interface moves to the
right an increasing part of the channel is filled with the moreviscous fluid. Thus we expect the interface speed
to slow down. In Fig. 7 we see the time history of the interfaceat an early stage and at a later stage for two
different viscosity ratios. It is clear that increasing thedifference in viscosity increases the slowing down effect,
as expected.

4. CONCLUSIONS

We have developed and presented a conservative level set model for two–phase flow, which can capture contact
line dynamics using no–slip boundary conditions for the velocity. In this model, the contact angle at equilibrium
is used to induce a movement by diffusion of the contact point. Since the model is formulated in terms of partial
differential equations on conservative form, conservation properties are retained by using standard conservative
numerical methods.

In our model we have a diffusion parameter and a regularization parameter related to the size of the contact
point region. An investigation of where the needed diffusion is best to add, in the advection equation or in the
reinitialization, as well as the magnitude of the diffusionterm needs to be done. By writing the equations in
weak form and using the Laplace–Beltrami operator we have been able to avoid calculation of the curvature.
We believe this will enable us to choose a smaller regularization parameter but this remains to be studied. As a
further improvement of this model we suggest that the model parameters as well as the new boundary condition
should be adaptive and act only locally in small regions close to contact points. Also, adaptive refinement of
the mesh in regions with large curvature would be beneficial in order to be able to use smaller values of the
parameters. This is especially important for the regularization parameterγ.

Numerical computations for three different applications demonstrate that qualitative features of contact
line dynamics are captured. The results from the calculation of the droplet wetting the wall has shown good
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(a) t = 0.04 (b) t = 0.20 (c) t = 1.0

(d) t = 3.0 (e) t = 3.0

Figure 5: The location of the interface (the0.5–level set ofφ) at t = 0.04, 0.2, 1.0, 3.0. The arrows show the
velocities. The angles at the upper and the lower channel walls areα = 45◦. The viscosity ratioµ1

µ2
= 1.
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(b) αs1 = 75◦

Figure 6: The location of the interface (the0.5–level set ofφ) at t = 0, 5, 10, 15, and20 for two different static
contact angles. The viscosity ratioµ1

µ2
= 1.
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Figure 7: The location of the interface (the0.5–level set ofφ) at t = 1, 2, 3, 4, 5, 36, 37, 38, 39, 40. The angles
at the upper and the lower channel walls areαs1 = αs2 = 45◦. The fluid to the left is more viscous than the
fluid to the right.
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agreement with available theory and we observed better convergence compared to the calculations done in
[9]. However, comparison with experiments and a better understanding of how the diffusion parameter and the
regularization parameter should be chosen in order to resolve the curvature is needed before the model can be
used for qualitative predictions.
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Abstract

In [J. Comput. Phys. 200 (2004) 462–488], it was shown for simple
examples that the then most common way to regularize delta functions
in connection to level set methods produces inconsistent approxima-
tions with errors that are not reduced with grid refinement. Since then,
several clever approximations have been derived to overcome this prob-
lem. However, the great appeal of the old method was its simplicity.
Here, we show that the old method – a one–dimensional delta function
approximation extended to higher dimensions by a distance function –
can be made accurate with a different class of one–dimensional delta
function approximations. The prize that we pay is a wider support of
the resulting delta function approximations.

1 Introduction

The level set method, originally devised by Osher and Sethian [1], is a very
popular method for the evolution of interfaces, and it has been implemented
for numerous applications. In some of these applications, the question of how
to numerically approximate a Dirac delta function arises. For example, in
immiscible multiphase problems, Dirac delta functions supported on interfaces
separating different fluids are often used in the modeling of the surface tension
forces acting on the interfaces. Another example is the problem of evaluating
a line integral in two dimensions or a surface integral in three dimensions.
This problem can conveniently be reformulated as an integral in 2D or 3D
involving a Dirac delta function with support on the line or surface. An
approach to approximate such delta functions is to extend a regularized one–
dimensional delta function to higher dimensions using a distance function.
This has been a common technique in connection to level set methods [2]
since the distance function is usually available discretized on a computational
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grid. However, care is needed since the extension to higher dimensions using a
distance function may lead to O(1) errors [3]. In [3], it was shown that another
extension technique that is based on products of regularized one–dimensional
delta functions [4] is consistent. This technique is however only applicable
when an explicit representation of the curve or the surface is available. In
level set methods the curve or the surface is represented implicitly by a level
set [2, 5].

To overcome the lack of consistency that became apparent with the work
presented in [3], a number of consistent delta function approximations that
can be used with level set methods have been proposed. Engquist et al. [6]
proposed two such approximations. The first one is an approximation of the
product rule using the distance function and its gradient. The second one is
based on the linear hat function but uses a variable regularization parameter.
Smereka [7] derived a discrete delta function obtained as the truncation error
in solving the Laplacian of the Green’s function, which was proven to be
second order accurate by Beale [8]. Consistent approximations for which the
level set function and its gradient are needed have also been introduced by
Towers [9, 10]. The advantage of these methods is that the supports of the
delta function approximations are very small. The discrete delta function
proposed by Smereka has its support contained within a single mesh cell.

One way to explain the reason for the inconsistency shown in [3] is the
following: The one–dimensional delta function approximation is designed to
obey certain moment conditions on a uniform grid. The first moment condi-
tion is the mass condition that ensures that the delta function approximation
sums to one independent of shifts in the grid. Delta function approximations
with compact support where the widths of the approximations are fixed to
a number of cell widths was considered in [3]. As the one–dimensional delta
function is extended to higher dimensions, using the closest distance to the
line or surface, the effective width in each coordinate direction relative to the
grid size will depend on the slope of the curve or surface. This will in general
no longer be within the design of the one–dimensional delta approximation,
causing a violation of the mass condition, and hence an O(1) error that will
not vanish with grid refinement. This is further discussed in Section 3. This
effect was recognized by Engquist et al. [6] who introduced a first correction
to this, by defining the regularization parameter to depend on the gradient of
the distance function.

The problem with extending the delta function to higher dimensions using
the closest distance to the line or surface is hence that the one–dimensional
delta approximation is dilated, and that the moment conditions are no longer
valid. One can however construct delta approximations such that the moment
conditions do hold for a wide range of dilations. These functions are however
not of compact support. One such function was given in [11]. It has compact
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support in Fourier space, and decays rapidly enough in real space to lend
itself to truncation, but the effective support will be wider than one or two
grid points as in the approximations above. In addition, in difference to the
delta function approximations discussed above, that are of low regularity, this
function is infinitely differentiable.

Another way to recognize the problem of extending a compact one–dimen-
sional delta function approximation by the distance rule, is to use the result
from the analysis in [12]. Here, the error is split into two parts. The first part
is the analytical error due to the approximation of the delta function. The
second part is the numerical error due to the approximation of the integral
containing the delta function approximation. For the first part, it is continu-
ous moment conditions that are important, and for the second part, it is (in
addition to the order of the quadrature rule) the regularity of the delta func-
tion approximation that limits the accuracy. This gives an upper limit of the
error, but in the case when extending by the distance rule, the error is quite
close to this upper limit. The result from this analysis is that the numerical
error is of order O((h/ε)p) where p is determined by the regularity of the delta
function approximation, which is typically low. This shows that with a choice
of ε = mh, which has been the common choice, the numerical error is of O(1),
and the method is inconsistent. Depending on the regularity and continuous
moment order of the approximation, there is an optimal α < 1 in ε ∼ hα

that results in the best convergence. If we replace the narrow delta function
approximation with an infinitely differentiable delta function approximation,
the result is quite different. The regularity of the delta function approxima-
tion will no longer limit the accuracy of the quadrature rule. In fact, these
functions can be considered as periodic functions, since they decay to zero.
For these functions, the trapezoidal rule on a uniform grid will converge faster
than any power of h in the limit as h → 0. This is often referred to as the
superconvergence of the trapezoidal rule, and will yield a very small numerical
error.

In this paper, we will consider three different functions that all have these
properties. We will now provide a comparison between one of the delta func-
tion approximations considered in this paper and the narrow linear hat func-
tion which in [3] was shown to give O(1) errors. Consider the computation of
the arc–length of a circle of radius 1 centered at origin by evaluating∫

Ω

δε(d(Γ,x))dΩ,

where the computational domain Ω is discretized with a regular mesh with
mesh size h. Use the trapezoidal rule for the integration. For the narrow
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linear hat function

δL
2h(x) =

{
1
2h (1− |x|

2h ), if |x| ≤ 2h,
0, if |x| > 2h,

(1)

there is no analytical error in the computation of the arc–length, see [12]. Still
there is no convergence as h→ 0:

h 0.1 0.05 0.025 0.0125 0.00625
Relative error 2.2 · 10−3 8 · 10−4 8 · 10−4 5 · 10−4 4 · 10−4

Due to the symmetry of the problem and resulting cancellation of errors,
these errors are quite small compared to the errors in the examples given in
Section 3. We use the same technique with the one–dimensional delta function
δε(x) = δFD

2h (x) defined as the derivative of the Fermi–Dirac function

δFD
2h (x) = ∂x

1
1 + e−x/(2h)

. (2)

This delta function approximation was used in the conservative level set
method [13, 14]. For this approximation, the error decreases exponentially
down to the relative floating point error:

h 0.1 0.05 0.025 0.0125 0.00625
Relative error 4.4 · 10−3 2 · 10−5 7 · 10−10 1 · 10−14 4 · 10−15

What we see is the superconvergence of the trapezoidal rule for infinitely
differentiable periodic functions.

This paper is organized as follows. In Section 2 we define delta function
approximations and state conditions for accuracy in one–dimension. In Sec-
tion 3 we discuss the simple example of computing the length of a line. We
show why the compact delta function approximations produce O(1) errors and
how large they are. We also show why this does not occur for approximations
with compact support in Fourier space. In Section 4 we introduce three dif-
ferent consistent delta function approximations and discuss their properties.
In Section 5 we state and prove theorems for the error in both two and three
dimensions. We present numerical experiments in Section 6 and summarize
our results in Section 7.

2 Regularization

Given a function ϕ(ξ), a delta function approximation can be constructed by

δε(x) =
1
ε
ϕ(x/ε). (3)
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Figure 1: Building blocks ϕ(ξ) for delta function approximations. A linear
hat function (a), a cosine approximation (b), and a piecewise cubic function
(c).

Examples of such ϕ(ξ) functions with compact support are: the piecewise
linear hat function

ϕL(ξ) =
{

(1− |ξ|), if |ξ| ≤ 1,
0, if |ξ| > 1, (4)

the cosine approximation

ϕcos(ξ) =
{

1
2 (1 + cos(πξ)), if |ξ| ≤ 1,
0, if |ξ| > 1, (5)

and the piecewise cubic function

ϕC(ξ) =

 2− |2ξ| − 2|2ξ|2 + |2ξ|3, if 0 ≤ |ξ| ≤ 1/2,
2− 11

3 |2ξ|+ 2|2ξ|2 − 1
3 |2ξ|3, if 1/2 < |ξ| ≤ 1,

0, if |ξ| > 1.
(6)

The functions ϕL(ξ), ϕcos(ξ), and ϕC(ξ) are plotted in Fig. 1.
In the next section we state the conditions the regularized one dimensional

delta function must satisfy in order to be accurate.

2.1 Discrete regularization in one–dimension

Assume a regular grid in one–dimension, with grid size h and grid points
xj = jh, j ∈ Z. We introduce the discrete moment conditions:

Definition 2.1. A function δε satisfies q discrete moment conditions if for
all x∗ ∈ R,

Mr(δε, x∗, h) = h
∑
j∈Z

δε(xj − x∗)(xj − x∗)r =
{

1, if r = 0,
0, if 1 ≤ r < q, (7)

where xj = jh, h > 0, j ∈ Z.
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If δε satisfies q moment conditions, we say that it has a moment order
q. The first moment condition ensures that the mass of the delta function
approximation δε is one, independent of shifts in the grid. It is therefore re-
ferred to as the mass condition. The higher moment conditions are important
when the delta approximation is multiplied by a non–constant function. The
following theorem states that in one–dimension the numerical accuracy of a
regularized delta function is determined by the number of discrete moment
conditions.

Proposition 2.1. Assume δε satisfies q discrete moment conditions and has
compact support in [−Mh,Mh]. Assume also that f(x) ∈ Cq(R), and that all
derivatives of f are bounded, then

E =

∣∣∣∣∣∣h
∑

j

δε(xj − x∗)f(xj)− f(x∗)

∣∣∣∣∣∣ ≤ Chq (8)

and E = 0 if f is constant.

A proof based on Taylor expansion of f around x∗ ∈ R is found in
Refs. [15, 3]. The delta function approximations δε in last section have support
in [−ε, ε]. The linear hat function δL

2h(x), the cosine approximation δcos2h (x)
and the cubic function δC

2h(x) all satisfy the mass condition and hence are
consistent approximations. The cubic function δC

2h(x) is most accurate. It
satisfies four discrete moment conditions and is according to Proposition 2.1
a fourth order accurate approximation.

2.2 Extensions to higher dimensions

A Dirac delta measure concentrated on a curve or surface can be approxi-
mated by extending a regularized one–dimensional delta function to higher
dimensions. Basically two techniques are used. One is the product formula
and the other technique is based on a distance function to the curve or the
surface.

Let Γ ⊂ Rd be a d−1 dimensional closed, continuous, and bounded surface
and let S be surface coordinates on Γ. The product formula yields

δε(Γ, g,x) =
∫

Γ

d∏
k=1

δεk
(x(k) −X(k)(S))g(S)dS, (9)

where δεk
is a one–dimensional regularized delta function, x = (x(1), · · ·x(d)),

X(S) = (X(1)(S), · · · , X(d)(S)) is a parametrization of Γ and ε = (ε1, · · · , εd).
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Assume that the space Rd is covered by a regular grid

{xj}j∈Zd , xj = (x(1)
j1
, · · · , x(d)

jd
),

x
(k)
jk

= x
(k)
0 + jkhk, jk ∈ Z, k = 1, · · · , d. (10)

The following theorem was proved by Tornberg and Engquist in Ref. [3].

Theorem 2.1. Suppose that δε is a one–dimensional delta function approx-
imation with compact support in [−ε, ε], that satisfies q discrete moment
conditions (see Definition 2.1); g ∈ Cr(Rd) and f ∈ Cr(Rd), r ≥ q. Then
for any rectifiable curve Γ and δε(Γ, g,x) as defined in equation (9) with
ε = (mh1,mh2 · · · ,mhd), it holds that

E =

∣∣∣∣∣∣
(

d∏
k=1

hk

) ∑
j∈Zd

δε(Γ, g,xj)f(xj)−
∫

Γ

g(S)f(X(S))dS

∣∣∣∣∣∣ ≤ Chq (11)

with h = max1≤k≤d hk and E = 0 for constant f .

This means that the results from one–dimension carry over to higher di-
mensions, and that it is still the discrete moment order of the one–dimensional
delta function approximation that determines the order of accuracy.

The product formula is easy to use when Γ is explicitly defined. However,
in level set methods, Γ is defined implicitly by a level set function φ(x) : Rd →
R,

Γ = {x | φ(x) = 0}. (12)

It is therefore preferable to use this function to extend the regularized one–
dimensional delta function δε to higher dimensions. In the case when φ(x) =
d(Γ,x), the signed distance function to Γ, where the distance is the Euclidean
distance from x to Γ, the delta function approximation is defined as

δε(Γ, g,x) = g̃(x)δε(d(Γ,x)), (13)

where g̃ is an extension of g to Rd, such that g̃(X(S)) = g(S). In this paper
we focus on the extension to higher dimensions that employs the distance
function.

3 Computing the length of a straight line

In this section we study the error made in the computation of the length of a
straight line. In the computations a regularized one–dimensional delta func-
tion δε is extended to higher dimensions using a distance function, according
to equation (13) with g = 1.
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Consider the problem of calculating the length of a curve Γ:

|Γ| = S̄ =
∫

R2
δ(Γ,x)dx. (14)

In the computation of |S̄|, a delta function approximation δε on a regular grid
is used:

S̄h = h2
∑
j∈Z2

δε(d(Γ,xj)),

xj = (xj1 , yj2), xj1 = j1h, yj2 = j2h, jl ∈ Z, l = 1, 2. (15)

In the following we will let the curve Γ ∈ R2 be a straight line with slope
k, but not a vertical line. In Ref. [3] it was shown that for Γ = {x, x(2) =
x(1), 0 ≤ x(1) < S̄/

√
2}, a line with slope k = 1 and δε being equal to the

narrow linear hat function δL
h the relative error |S̄h − S̄|/S̄ is more than 12%

as h → 0. This was shown by dividing the sum S̄h into contributions of M
subsegments of Γ, each of length

√
2h. Here, we consider a different approach.

We express the error in terms of the first discrete moment of δε (see equation
(7) with r = 0). We can then show which delta function approximations that
will produce O(1) errors. For simplicity, we consider a line of infinite length
so we do not have to worry about contributions from end point terms.

From equation (3) we see that we can write δε(x) as

δε(x) = βδε̃(βx), ε̃ = βε. (16)

We take
β =

1
k

√
1 + k2, (17)

where k is the slope of Γ as defined above. Using equation (16) the computed
length of a straight line S̄h (as given in (15)) is

S̄h = h
∑
j2∈Z

h∑
j1∈Z

δε(d(Γ, xj1 , yj2))

 = h
∑
j2∈Z

βh∑
j1∈Z

δε̃(βd(Γ, xj1 , yj2))

 .

(18)
It can be verified from Fig. 2 that βd(Γ, xj1 , yj2) = xj1 − x∗(yj2) where

x∗(yj2) = xn + ph, 0 ≤ p < 1, n ∈ Z (19)

is the x–coordinate of Γ at y = yj2 . Using the definition of the first discrete
moment condition we can express S̄h in terms of the first moment of δε̃ in the
x–direction:

S̄h = h
∑
j2∈Z

βh∑
j1∈Z

δε̃(xj1 − x∗(yj2))

 = βh
∑
j2∈Z

M0(δε̃, x∗(yj2), h). (20)
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ε

βε

Γ

(a)

ε

βε

Γ

(b)

Figure 2: Γ is a straight line with slope k, β = 1
k

√
1 + k2, and ε = 2h. In

Panel (a) k = 1, β =
√

2, and x∗, defined in equation (19) is always a grid
point, i.e p = 0. In Panel (b) k = 2, β =

√
5

2 , and x∗ is either a grid point or
lies in the middle of two grid points, i.e p = 0 and p = 1/2 every second time.

For the linear hat function δL
ε and the cosine approximation δcosε with

ε = mh we have from Ref. [11] that

M0(δ
L
mh, x∗, h) =

1

m2

„
(k0 + k1 + 1)m + (k1 − k0 − 1)p− k0(k0 + 1)

2
− k1(k1 + 1)

2

«
(21)

and

M0(δ
cos
mh, x∗, h) =

k0 + k1 + 1

2m
+

sin((k0 + k1 + 1)π/2m) cos(((k1 − k0)/2− p)π/m)

2m sin(π/2m)
,

(22)

where
k0 = ⌊m− p⌋, k1 = ⌊m+ p⌋. (23)

Here, ⌊m⌋ denotes m rounded to the nearest integer towards minus infinity.
We recall from Section 2.1 that one–dimensional delta function approxima-
tions are consistent if they fulfill the mass condition i.e. M0(δmh, x

∗, h) = 1
for any shift in the grid. The linear hat function with half width support
ε = mh satisfies the mass condition when m is an integer. The cosine func-
tion with half width support ε = mh satisfies the mass condition when 2m
is an integer. In this case, when Γ is a straight line, the effective half width
support is βε (see Fig. 2) and βm and 2βm, respectively, must be integers
in order for the linear hat function and the cosine function to be consistent
approximations.
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Using equation (20) together with the formulas (21) and (22) we can eval-
uate the error in the computation of the length of a straight line with slope k
using the linear hat function or the cosine approximation. The line in Fig. 2(a)
has slope k = 1 and it intersects the grid points, hence (x∗(yj2), yj2) is always
a grid point i.e. p = 0. Using the delta approximation δε = δL

h as in [3] we
get from equation (20) and (21) with β =

√
2, m = β, and p = 0

S̄h =
1
2

(
3
√

2− 2
) ∑

j2∈Z

√
2h = 1.1213

∑
j2∈Z

√
2h. (24)

This indicates a relative error of over 12% independent of the mesh size h.
This was also observed in [3]. With the delta approximation δε = δcos2h we get
from equation (20) and (22) with β =

√
2, m = 2β, and p = 0

S̄h =
1

2m

(
5 +

sin(5π/(2m))
sin(π/(2m))

)∑
j2∈Z

√
2h ≈ 1.0035

∑
j2∈Z

√
2h. (25)

This shows that a relative error of 0.35% independent of the mesh size h is
expected when the approximation δcos2h is used. The line in Fig. 2(b) has slope
k = 2 and it either intersect a grid point or lies in the middle of two grid
points. Hence every second time p = 1/2 instead of p = 0. Thus, using
δε = δL

h equation (20) and (21) with β =
√

5
2 , m = β and p = 0, p = 1/2 every

second time gives

S̄h =

(
3
√

5− 4
5

+
2
√

5− 2
5

)∑
j2∈Z

√
5

2
h ≈ 1.0361

∑
j2∈Z

√
5

2
h. (26)

This results in a relative error of 3.61% independent of mesh size. For δcos2h a
relative error of around 0.013% is expected.

3.1 Numerical validation

In order to validate the results of the previous subsection we consider Γ being
two parallel lines of length L at a normal distance 2a, joined at both ends
by a half circle with radius a. The slope of the lines to the x–axis is k. The
length of Γ is S̄ = 2L+ 2πa. Contours of the distance function d(Γ,x) when
k = 2 are shown in Fig. 3.

In Fig. 4(a) we show the relative error E = |S̄h − S̄|/S̄ where Sh is com-
puted according to equation (15) with δε = δcos2h and k = 1. We can clearly
see that there is no convergence as h → 0. Equation (25) indicates that the
relative error for the straight lines is around 0.0035. We can see in the fig-
ure that this number is approached when the length of the straight lines is
increased and the radius of the half circles is decreased.
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Figure 3: Contours of the distance function d(Γ,x). Γ is two parallel lines of
length L = 4 at a normal distance 2a, joined at both ends by a half circle of
radius a = 0.48/

√
5. The slope of the lines to the x–axis is 2.

In Fig. 4(b) the slope of the parallel lines is 2 and δε = δL
h has been used

in the computation. There is no convergence. Equation (26) indicates that
the relative error for the straight lines is around 0.0361. We see in the figure
that as the length of the straight lines is increased or the radius of the half
circles is decreased the relative error approaches this number.

3.2 Mass condition reformulated using a Fourier transform

By the use of Poisson’s summation formula

α
∑
j∈Z

ϕ(αj) =
∑
j∈Z

ϕ̂(j/α), (27)

the mass condition for a regularized delta function δε = 1
εϕ(x/ε) with ε = mh

can be related to the Fourier transform of the function ϕ(ξ)

ϕ̂(k) =
∫ ∞

−∞
ϕ(ξ)e−2πikξdξ, (28)

in the following way:

M0(δmh, x
∗, h) =

1
m

∑
j∈Z

ϕ((j − p)/m) =
∑
j∈Z

e−2πijpϕ̂(jm). (29)
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Figure 4: The relative error E = |S̄h − S̄|/S̄ where Γ is two parallel lines
of length L at a normal distance 2a, joined at both ends by a half circle of
radius a. In Panel (a) the slope of the parallel lines is k = 1 and δε = δcos2h

is used. Circles: L = 4, a = 0.24
√

2. Stars: L = 6, a = 0.12
√

2. Squares:
L = 6, a = 0.03

√
2. The predicted relative error for the length of lines is

around 3.5 · 10−3. In Panel (b) the slope of the parallel lines is k = 2 and
δε = δL

h is used. Circles: L = 4, a = 0.48/
√

5. Stars: L = 6, a = 0.12/
√

5.
Squares: L = 6, a = 0.06

√
2. The predicted relative error for the length of

lines is around 0.0361.
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The linear hat function, ϕL(ξ), defined as in equation (4), has the Fourier
transform

ϕ̂L(k) =
sin2(πk)
π2k2

. (30)

Thus, using equation (29) we have

M0(δL
ε , x

∗, h) = 1 +
∑

j∈Z,j 6=0

e−2πijp

(
sin(πmj)
πmj

)2

, (31)

Here, we have used that ϕ̂L(0) = 1. The second term in equation (31) is
zero independent of any shift in the grid x∗ only when sin(πmj) = 0 for all
j ∈ Z, j 6= 0. Therefore the mass condition is satisfied only for integers m ≥ 1.
This result can also be obtained using formula (21).

The cosine approximation ϕcos(ξ), defined in equation (5), has the Fourier
transform

ϕ̂cos(k) =

{ (
sin(2πk)

2πk

)
1

1−4k2 , if k 6= ±1/2,
1/2, if k = ±1/2.

(32)

By the same argument as above we have that the mass condition is satisfied
only when sin(2πmj) = 0 for all j ∈ Z, j 6= 0 and m 6= 1/2. Therefore, the
mass condition is satisfied when m ≥ 1 and 2m is an integer.

In equation (20) we needed to evaluate M0(δε̃, x∗, h), where ε̃ = βmh.
From Poisson’s summation formula we have

M0(δε̃, x∗, h) =
∑
j∈Z

e−2πijpϕ̂(jβm). (33)

Thus, in order to not have O(1) errors in the computation of the length of a
straight line, m in ε = mh must be chosen such that βm ≥ 1 is an integer
when δε = δL

ε and βm ≥ 1, 2βm is an integer when δε = δcosε .
Remark The regularized one–dimensional delta functions were in this sec-

tion extended using the distance function. If instead a non distance function
φ(x) is used ε must be chosen differently in order to avoid O(1) errors. This
is due to the fact that φ(x) does not give the physical distance, and hence a
different scaling is needed.

Assume that ϕ̂(k) has compact support on (−1, 1) and that ϕ̂(0) = 1.
Then, by equation (33), for all m ≥ 1/β, the mass condition is satisfied. Note
that if φ(x) is a distance function, β > 1. Therefore, for all m ≥ 1, there is
no O(1) error. However, when φ(x) is not a distance function β ≤ 1. Thus a
harder restriction on m is needed in order to not obtain O(1) errors.
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In the next section, we introduce a class of one–dimensional delta functions
for which the ϕ̂(k) functions have compact support. We will see that this type
of delta function approximations will satisfy the discrete moment conditions
for a wide range of dilations.

4 Approximations with compact Fourier transform

In the last section we saw that the linear hat function δL
ε and the cosine ap-

proximation δcosε with ε = mh are consistent approximations in one–dimension
only for a discrete set of m–values. Therefore they can lead to inconsistent
approximations in higher dimensions. However, it is possible to construct
delta function approximations that obey the mass condition for a wide range
of dilations. We start by stating a theorem

Theorem 4.1. Assume a regular grid in one–dimension with grid points xj =
jh, j ∈ Z and let x∗ = xn + ph where 0 ≤ p < 1 and n ∈ Z. Consider a delta
function approximation δε = 1

εϕ(x/ε) with ε = mh where

ϕ(ξ) =
∫ ∞

−∞
ϕ̂(k)e2πikξdk (34)

and the Fourier transform of ϕ

ϕ̂(k) =
∫ ∞

−∞
ϕ(ξ)e−2πikξdξ. (35)

If ϕ̂(k) has compact support on (−β, β) and

∂rϕ̂(k)
∂kr

∣∣∣∣
k=0

=
{

1, for r = 0,
0, for 1 ≤ r < q. (36)

Then for all m ≥ β the delta function approximation δε satisfies q discrete
moment conditions.

The discrete moment conditions are important for the accuracy of the one–
dimensional delta function approximation, see Proposition 2.1. The conditions
in equation (36) in the theorem are equivalent to the continuous moment
conditions i.e.

∂rϕ̂(k)
∂kr

∣∣∣∣
k=0

=
{

1, for r = 0,
0, for 1 ≤ r < q

⇔
∫ ∞

−∞
ϕ(x)xrdx =

{
1, for r = 0,
0, for 1 ≤ r < q.

(37)
The continuous moment conditions will be important as we consider the an-
alytical error in higher dimensions.
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Proof of Theorem 4.1. There is no restriction in taking n = 0, such that x∗ =
ph, with 0 ≤ p < 1. Let fr,ε(x) = 1

εϕ(x/ε)xr. We have

Mr(δε, x∗, h) = h
∑
j∈Z

δε(xj − x∗)(xj − x∗)r

= h
∑
j∈Z

1
ε
ϕ((xj − x∗)/ε)(xj − x∗)r =

= h
∑
j∈Z

fr,ε((j − p)h). (38)

Since the Fourier transform of fr,ε(x) is

f̂r,ε(k) =
1

(−2πi)r

∂r

∂kr
ϕ̂(εk) (39)

and the Fourier transform of fr,ε(x − x∗) is e−2πikx∗ f̂r,ε(k) we have from
Poisson’s summation formula that

Mr(δε, x∗, h) =
∑
k∈Z

e−2πikp 1
(−2πi)r

∂r

∂kr
ϕ̂(εk/h). (40)

With ε = mh we get

Mr(δε, x∗, h) =
1

(−2πi)r

∂rϕ̂(mk)
∂kr

∣∣∣∣
k=0

+
1

(−2πi)r

∑
k∈Z,k 6=0

e−2πikp ∂
r

∂kr
ϕ̂(mk).

(41)

If ϕ̂(k) has compact support in (−β, β) the second term in the above equation
vanishes for all m ≥ β. Hence if the condition in equation (36) is satisfied for
r = 0, 1, · · · , q − 1 then δε = 1

εϕ(x/ε) satisfies q discrete moment conditions.

An example of a delta function approximation with the function ϕ̂(k)
having compact support is the delta function introduced in Ref. [11]

δTE
ε (x) =

1
ε
ϕTE(x/ε) (42)

with

ϕTE(ξ) =
∫ ∞

−∞
ϕ̂TE(k)e2πikξdk, ϕ̂TE(k) =

{
e

1
dβ2 e

1
d(k2−β2) if |k| < β,

0 if |k| ≥ β,
(43)
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d = 0.1 and β = 1. Note that

ϕ̂TE(0) = 1,
∂ϕ̂TE(k)

∂k

∣∣∣∣
k=0

= 0,
∂2ϕ̂TE(k)

∂k2

∣∣∣∣
k=0

=
−2
dβ4

6= 0. (44)

Hence from Theorem 4.1 we have that δTE
mh(x) is of moment order 2 for all

m ≥ 1. Thus, it is possible to construct one–dimensional delta function ap-
proximations that obey the discrete moment conditions for a wide range of
dilations. These delta function approximations will not have compact sup-
port since their Fourier transforms have compact support. However, if an
approximation is decaying rapidly it can in practice be truncated.

It is computationally demanding to evaluate the approximation from its
Fourier transform. Therefore, we would like to have an explicit expression for
the approximation. In the following we give explicit expressions for two delta
function approximations which have Fourier transforms that decay rapidly.
Theorem 4.1 can then be used to find m–values for which δmh(x) satisfies the
discrete moment conditions within a given error tolerance.

4.1 The derivative of the Fermi–Dirac function

Define a delta approximation as the derivative of the Fermi–Dirac or the
sigmoid function

δFD
ε (x) = ∂x

1
1 + e−x/ε

=
1
ε

e−x/ε

(1 + e−x/ε)2
. (45)

Let then δFD
ε (x) = 1

εϕ
FD(x/ε), where

ϕFD(ξ) =
e−ξ

(1 + e−ξ)2
. (46)

The Fourier transform of ϕFD(ξ) is

ϕ̂FD(k) = 1− 4πkℑ
 ∞∑

j=1

(−1)j

j + 2πik

 , (47)

where ℑ represents the imaginary part. This was obtained by differentiating
the Fourier transform of the Fermi–Dirac function given in Ref. [16]. We have

ϕ̂FD(0) = 1,
∂rϕ̂FD(k)

∂kr

∣∣∣∣
k=0

= 0 (48)

for r odd. However, the second derivative

∂2ϕ̂FD(k)
∂k2

∣∣∣∣
k=0

= 16π2

 ∞∑
j=1

(−1)j

j2

 6= 0. (49)
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Hence from Theorem 4.1 we have that δFD
mh (x) is of moment order 2 for all

m ≥ β provided that ϕ̂FD(k) has compact support in (−β, β). Since ϕ̂FD(k)
does not have compact support, as was the case for ϕ̂TE(k) we will always have
a mass error but for m = 2 this error will be of order 10−16 which usually is
the order of rounding errors. Therefore we consider ϕ̂FD(k) to have compact
support in (−2, 2) and thus by Theorem 4.1 δFD

mh (x) is of moment order 2 for
all m ≥ 2. In Fig. 5(b) (solid line) we can see that for k = ±1, ϕ̂FD(k) is of
order 10−7. This implies that taking m = 1 will typically give a mass error
that is of order 10−7.

The advantage of the approximation δFD
ε (x) compared to δTE

ε (x) is that it
is given explicitly and is less computationally demanding to evaluate compared
to δTE

ε (x).

4.2 The Gaussian function

A third example is the Gaussian function. The Fourier transform of a Gaussian
is another Gaussian. Let

ϕG(ξ) =
√
π

9
e−π2ξ2/9. (50)

Then,
ϕ̂G(k) = e−9k2

. (51)

Also, for this function we have that

ϕ̂G(0) = 1,
∂rϕ̂G(k)
∂kr

∣∣∣∣
k=0

= 0 (52)

for all odd r but
∂2ϕ̂G(k)
∂k2

∣∣∣∣
k=0

6= 0. (53)

Hence from Theorem 4.1 we have that δG
mh(x) is of moment order 2 for all

m ≥ β provided that ϕ̂G(k) has compact support in (−β, β). Just as ϕ̂FD(k),
the function ϕ̂G(k) is never zero. Therefore, it does not, strictly speaking,
have compact support. However, since the function decreases exponentially
to zero, it can in practice be regarded as zero whenever smaller than some
tolerance. In Fig. 5(b) we see the function ϕ̂G(k) (dash–dotted line). For
k = ±1, ϕ̂G(k) is of order 10−5 and for k = ±2 it is of order 10−16 just as
ϕ̂FD(k). With an error tolerance of 10−16 we consider ϕ̂G(k) to be of moment
order 2 for all m ≥ 2. We can see from Fig. 5(a) that the support of ϕG(ξ)
is much smaller than ϕFD(ξ). Since, in practical computations, a narrow
support of ϕ(ξ) is desired the Gaussian approximation seems to be preferable.
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Figure 5: The functions ϕ(ξ) (Panel (a)) used to define the regularized delta
functions δε(x) = 1

εϕ(x/ε), and their Fourier transforms ϕ̂(k) (Panel(b)).
Solid lines: ϕ(ξ) = ϕFD(ξ) and ϕ̂(k) = ϕ̂FD(k). Dash–dotted lines: ϕ(ξ) =
ϕG(ξ) and ϕ̂(k) = ϕ̂G(k).

In the next section we state and prove theorems about the error when the
distance function is used to extend the one–dimensional delta approximations
to higher dimensions.

5 Error analysis

Let Ω be the domain of integration. We assume throughout this section that
the approximation δε(d(Γ,x)) has compact support in

Ωω = {x : |d(Γ,x)| ≤ ω}, (54)

where d(Γ,x) is the signed distance function and ω is small. We want to
integrate

IΓ,F =
∫

Ω

δ(d(Γ,x))F (x)dx. (55)

The total error in the integration of the function δ(d(Γ,x))F (x) approximated
by δε(d(Γ,x))F (x) is

Etot,F (δε) =
∫

Ω

δ(d(Γ,x))F (x)dx− quad(δε(d(Γ,x))F (x)), (56)

where quad denotes the quadrature rule used to approximate the integral.
The quadrature rule we consider is the trapezoidal rule. We split the total
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error into two parts: the analytical error made when replacing the integrand
with its approximation

Eω,F (δε) =
∫

Ωω

δ(d(Γ,x))F (x)dx−
∫

Ωω

δε(d(Γ,x))F (x)dx (57)

and the numerical error made in the integration of this approximation using
the trapezoidal rule

Equad,F (δε) =
∫

Ωω

δε(d(Γ,x))F (x)dx− quad(δε(d(Γ,x))F (x)).

5.1 Analytical error

Definition 5.1. A function δε with compact support in [−ω, ω] satisfies α
continuous moment conditions if∫ ω

−ω

δε(t)trdt =
{

1, if r = 0,
0, if 1 ≤ r < α. (58)

We now state two theorems for the analytical error. The first theorem
provides an expression for the analytical error in two dimensions, and the
second theorem in three dimensions.

Theorem 5.1. Let δε be a continuous function with support in [−ω, ω], ω = pε
that satisfies α continuous moment conditions, see Definition 5.1. Assume
that Γ, the zero level set of d(Γ,x), is a curve in R2 of class C2 that can
be parametrized by Γ = (x(s), y(s)), x, y ∈ C2[s1, s2] with the curvature κ(s)
defined by

κ(s) =
x′(s)y′′(s)− x′′(s)y′(s)

q(s)3
, q(s) =

√
x′(s)2 + y′(s)2 6= 0. (59)

Assume also that
ωmax

s
|κ(s)| < 1, (60)

and that F (x) is a smooth function. Then, the analytical error for the integra-
tion of δ(d(Γ,x))F (x) made when replacing δ(d(Γ,x)) by δε(d(Γ,x)) is given
by

Eω,F (δε) = −εαCα,F

∫ p

−p

ϕ(ξ)ξαdξ +O(εα+1), (61)

with

Cα,F =
1
α!

∫ s2

s1

q(s)fαt(s, 0)ds− 1
(α− 1)!

∫ s2

s1

q(s)κ(s)f(α−1)t(s, 0)ds. (62)
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A proof of this theorem for p = 1 is given in Ref. [12] but a generalization
is straightforward. The parametrization of Γ = (x(s), y(s)) and the normal
vector of the curve defined by

n =
(−y′(s), x′(s))

q(s)
(63)

are used to parametrize the integration domain Ωω. Introducing the parametriza-
tion Xj(s, t) = x(s) + tn1(s), Y j(s, t) = y(s) + tn2(s). The integration can
be performed over [r1, r2] × [s1, s2] × [−ω, ω] when the condition in equation
(60) is fulfilled. The function f in equation (62) is defined by

f(s, t) = F (Xj(s, t), Y j(s, t)). (64)

Theorem 5.2. Let δε be a continuous function with support in [−ω, ω], ω = pε
that satisfies α continuous moment conditions, see Definition 5.1. Assume
that Γ, the zero level set of d(Γ,x), is a 2–manifold in R3 of class C2. Suppose
that P j(r, s) = (x(r, s), y(r, s), z(r, s)) : (r1, r2)× (s1, s2) → Vj is a coordinate
patch on Γ of class C2 and Γ is covered by the disjoint union of the open sets
V1, · · · , Vl and a set of measure zero in Γ. Let κ1 and κ2 be the principal
curvatures of Γ on Vj. Assume also that

ωmax(max
r,s

|κ1(r, s)|,max
r,s

|κ2(r, s)|) < 1, q(r, s) = ||P j
r × P j

s || 6= 0, (65)

and that F (x) is a smooth function. Then, the analytical error for the integra-
tion of δ(d(Γ,x))F (x) made when replacing δ(d(Γ,x)) by δε(d(Γ,x)) is given
by

Eω,F (δε) = −εα

∫ p

−p

ϕ(ξ)ξαdξ
l∑

j=1

Cj
α,F +O(εα+1), (66)

with

Cj
1,F =

∫ r2

r1

∫ s2

s1

ft(r, s, 0)q(r, s)dsdr

−
∫ r2

r1

∫ s2

s1

f(r, s, 0)q(r, s)(κ1(r, s) + κ2(r, s))dsdr (67)

and for α ≥ 2

Cj
α,F =

1
α!

∫ r2

r1

∫ s2

s1

q(r, s)fαt(r, s, 0)dsdr

− 1
(α− 1)!

∫ r2

r1

∫ s2

s1

q(r, s)(κ1(r, s) + κ2(r, s))f(α−1)t(r, s, 0)dsdr

+
1

(α− 2)!

∫ r2

r1

∫ s2

s1

q(r, s)(κ1(r, s)κ2(r, s))f(α−2)t(r, s, 0)dsdr. (68)
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A proof can be found in the Appendix. In order to perform the integration
over Ωω we parametrize this region using the local parametrization of Γ and
the normal vectors defined as

n = (n1, n2, n3) =
1

q(r, s)
(P j

r × P j
s ). (69)

Introducing the parametrization Xj(r, s, t) = x(r, s) + tn1(r, s), Y j(r, s, t) =
y(r, s) + tn2(r, s), and Zj(r, s, t) = z(r, s) + tn3(r, s) we can cover the domain
Ωω by disjoint union of open sets M1, · · · ,Ml and a set of measure zero in
Ωω, where

Mj = {(x, y, z) : x = Xj(r, s, t), y = Y j(r, s, t), z = Zj(r, s, t),
r ∈ (r1, r2), s ∈ (s1, s2), t ∈ [−ω, ω]}. (70)

The condition in equation (65) guarantees that this parametrization is nonsin-
gular. The integration can then be performed over [r1, r2]× [s1, s2]× [−ω, ω].
For ω small one can Taylor expand

f(r, s, t) = F (Xj(r, s, t), Y j(r, s, t), Zj(r, s, t)) (71)

around (r, s, 0) and express the analytical error in terms of the moments of
the function δε.

In the next section we analyze the numerical error made using the trape-
zoidal rule for integration.

5.2 Numerical error

The following theorem gives the error of the trapezoidal rule in one dimension.

Theorem 5.3. Let

xn = a+ nh, n = 0, · · ·N, h =
b− a

N
(72)

be a decomposition of the interval [a, b] and Th(a, b, h, ψ) be the trapezoidal
sum

Th(a, b, h, ψ) =
N∑

n=0

wnψ(xn), (73)

where

wn =
{

1/2, for n = 0, and n = N ,
1, otherwise. (74)

Assume that ψ(x) ∈ C2r+2(a, b). Then

Th −
∫ b

a

ψ(x)dx = RT (a, b, h, ψ(x)) (75)
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with

RT (a, b, h, ψ(x)) =
r∑

k=1

B2kh
2k

(2k)!
ψ2k−1(x)

∣∣b
x=a

+R2r+2(a, b, h, ψ), (76)

where Bj are the Bernoulli numbers and R2r+2(a, b, h, ψ) is O(h2r+2).

For a proof see Ref. [17] p. 298. Note that when the function ψ(x) ∈ C∞
for x ∈ R and ψ has [a, b] as an interval of periodicity, then

ψ(k)(b) = ψ(k)(a), k = 0, 1, 2, · · · . (77)

Hence,
|RT (a, b, h, ψ)| = O(h2r+2) (78)

for arbitrary r. Therefore, we have that for periodic infinite differentiable
functions the trapezoidal error tends to zero faster than any power of h, as
h → 0. This is referred to as superconvergence. In Ref. [18] another proof is
given. It is shown by using the Poisson summation formula that the error

RT =
N∑

n=0

wnψ(xn)−
∫ b

a

ψ(x)dx. (79)

decreases as ψ̂(1/h), with

ψ̂(ω) =
∫ ∞

−∞
ψ(x)e−2πikxdx. (80)

If ψ ∈ Cr[R] and periodic, then ψ̂(1/h) = O(hr), as h → 0. Thus, for
ψ ∈ C∞[R] the trapezoidal rule converges faster than any power of h.

In higher dimensions we use the notion of a product rule. For simplicity
we do the analysis here in two dimensions. The analysis in three dimensions
is similar. Let Ω = [a, b]× [c, d], and ψ(x, y) ∈ C2r+2(Ω). Introduce a uniform
grid

xj = a+ jhx, j = 0, · · ·M, hx =
b− a

N
,

yn = c+ nhy, n = 0, · · ·N, hy =
d− c

N
. (81)

Denote by Q the quadrature scheme obtained by using the trapezoidal rule in
both x and y directions with step size hx and hy. We can write

I =
∫ ∫

Ω

ψ(x, y)dxdy =
∫ d

c

g(y)dy, (82)
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where

g(y) =
∫ b

a

ψ(x, y)dx. (83)

Using the trapezoidal rule to integrate in the y–variable (see, equation (73)
and (74)) gives

I = hy

N∑
n=0

wn

∫ b

a

ψ(x, yn)dx+RT (c, d, hy, g(y)), (84)

where RT is the quadrature error. Using also the trapezoidal method in the
x–direction with step size hx yields

I = hy

N∑
n=0

wn

hx

M∑
j=0

wjψ(xj , yn) +RT (a, b, hx, ψ(x, yn))


+RT (c, d, hy, g(y)). (85)

Simplifying the expression we get

I = hyhx

N∑
n=0

M∑
j=0

wnwjψ(xj , yn) +
N∑

n=0

hywnRT (a, b, hx, ψ(x, yn))

+RT

(
c, d, hy,

∫ b

a

ψ(x, y)dx

)
. (86)

Hence∣∣∣∣∣∣I − hyhx

N∑
n=0

M∑
j=0

wnwjψ(xj , yn)

∣∣∣∣∣∣ ≤ (d− c) max
yn

|RT (a, b, hx, ψ(x, yn))|

+ (b− a) max
x∈[a,b]

|RT (c, d, hy, ψ(x, y))| ,
(87)

and we see that the convergence results from one dimension extend to two
dimensions. Thus, the superconvergence of the trapezoidal rule also applies
in two dimensions. We are now able to formulate the following theorem.

Theorem 5.4. Let Ω = [a, b]×[c, d], and Q be the quadrature scheme obtained
by using the trapezoidal rule in both x and y directions with step size hx and
hy. Suppose δε has compact support in [−ω, ω] and Ωω ⊂ Ω where

Ωω = {x : |d(Γ,x)| ≤ ω}. (88)
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Suppose further that δε(d(Γ,x))F (x) ∈ C∞(Ω). Then the numerical error

EQ,F (δε) =
∣∣∣∣∫

Ω

δε(d(Γ,x))F (x)dx−Q(δε(d(Γ,x))F (x))
∣∣∣∣ (89)

decreases faster than any power of h = max(hx, hy).

When δε has compact support in [−ω, ω] the approximation δε(d(Γ,x)) has
compact support in Ωω. As long as Ωω ⊂ Ω, δε(d(Γ,x)) is a periodic function
on Ω. Since the integrand is C∞(Ω) the superconvergence of the trapezoidal
rule gives the result of the theorem.

The same result also holds in three dimensions.

5.3 Practical considerations

The theorems in the previous section are applicable to delta function approx-
imations with compact support in [−ω, ω]. In order to obtain the supercon-
vergence of the trapezoidal rule discussed in the previous section, the delta
function approximations must also be infinitely differentiable. All the delta
function approximations presented in Section 4 are infinitely differentiable but
do not have compact support. To be able to apply the theorems of the pre-
vious section, we will truncate the delta function approximation and set it to
zero outside some [−ω, ω] interval. This is motivated by the fact that the delta
function approximations in question decay exponentially fast. The truncation
results in an integration error. In the following, we show that it is possible to
select an ω so that this integration error is negligibly small. For such ω, the
delta function approximation essentially has compact support.

For the analytical error to be small and the conditions in Theorems 5.1 and
5.2 to be satisfied ω needs to be small. Also, note that since the conditions in
equation (36), Theorem 4.1 is equivalent to the continuous moment conditions
i.e.
∂rϕ̂(k)
∂kr

∣∣∣∣
k=0

=
{

1, for r = 0,
0, for 1 ≤ r < q

⇔
∫ ∞

−∞
ϕ(x)xrdx =

{
1, for r = 0,
0, for 1 ≤ r < q.

(90)
all the delta function approximations in Section 4 satisfy two continuous mo-
ment conditions. Therefore we expect them to be second order accurate.

Split the integration over the whole domain into three parts:∫ ∞

−∞
δε(t)f(t)dt =

∫ ω

−ω

δε(t)f(t)dt+
∫ −ω

−∞
δε(t)f(t)dt+

∫ ∞

ω

δε(t)f(t)dt. (91)

Let ω = pε. Then the error we make by not having a delta function approxi-
mation with compact support in [−ω, ω] is the sum of

I1 =
∫ ∞

ω

δε(t)f(t)dt =
∫ ∞

p

ϕ(t)f(εt)dt (92)
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and
I2 =

∫ ω

−∞
δε(t)f(t)dt =

∫ ∞

−p

ϕ(t)f(εt)dt. (93)

Since δFD
ε (t) decays slower then the other approximations introduced in Sec-

tion 4, see Fig. 5(a), we obtain the largest values for I1 and I2 when δFD
ε (t) is

used. Therefore, we do the following analysis only for δε = δFD
ε (t). We have

that

|I1| ≤
∣∣∣∣∫ ∞

p

e−tf(εt)dt
∣∣∣∣ (94)

and

|I2| ≤
∣∣∣∣∫ −p

−∞

f(εt)
1 + e−t

dt

∣∣∣∣ . (95)

We assume that f(t) is either a bounded function or a polynomial. For func-
tions f(t) that increase exponentially the delta function approximations con-
sidered in this paper may fail to give accurate results. They are generally not
able to cancel such f(t) outside the interval. For f(t) = tn we get

∣∣∣∣∫ ∞

p

e−t(εt)ndt

∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=0

cjε
npje−p

∣∣∣∣∣∣ ≤Me−p, (96)

where M is a bounded constant and depends on εn. Now, given M one can
choose ω = pε to be such that Me−p is within some error tolerance. However,
the computational domain must be large enough so that [−ω, ω] is included
in the domain.

For the delta function approximations δFD
ε and δG

ε that we introduced
in Section 4 we suggest here a way to select ε = mh and the half width
support where the functions can be truncated so that the approximations
have compact support and are second order accurate down to a specified error
tolerance. Given a tolerance C, choose m such that ϕ̂(m) = C. This gives a
delta function approximation δmh that is second order accurate down to the
specified error tolerance. We then define the half width support ω of this delta
approximation so that δε(ω) = C with ε = mh. In Figs. 6 and 7 we show
m and ω/h for different error tolerances for δG

ε and δFD
ε respectively. The

widths for the different functions is in agreement with their decay behaviors,
see Fig. 5. The Gaussian function decay much faster than the derivative of
the Fermi–Dirac function. For example for a tolerance of 10−6 the optimal
m for the Gaussian approximation is around 1.25. The function δG

mh then
has a half width ω around 6h for an error tolerance of 10−6. For the same
tolerance, m is somewhat smaller than 1 for the derivative of the Fermi–Dirac
function but the half width of δFD

mh is 25h. The difference between the width
of the Gaussian approximation and the derivative of the Fermi–Dirac function
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Figure 6: For the delta function δG
mh we show in Panel (a) m as a function of

error tolerance. We show the smallest m such that ϕ̂G(m) is below the given
error tolerance. This means that δG

mh is a second order accurate approximation
of the delta function down to the specified error tolerance. In Panel (b) we
show the half width support of δG

mh divided by h when m from Panel (a) is
used. The support is computed with the same error tolerance that was used
to find the appropriate m–value. This calculation was made for two different
values of h, h = 10−6 (stars) and h = 10−2 (squares) and gives an idea of
where the delta function approximation can be truncated. For a tolerance
of 10−6 the optimal m is, for example, around 1.25. The width of the delta
approximation down to the same tolerance is around 6h, while for a requested
tolerance of 10−16, m ≈ 2 and the width of the approximation is around 14h.

is larger for smaller error tolerances. In practical computations the Gaussian
function is preferable.

6 Numerical results

In this section, we present three numerical examples using the distance func-
tion to extend the one–dimensional regularized delta functions δFD

ε , δG
ε , and

δTE
ε to higher dimensions. We also show results when non–distance func-

tions are used. Here, we study the rate of convergence numerically by mesh
refinement. In all the examples in this section we have integrands with non–
vanishing second derivatives and ε = mh. Since the approximations δTE

ε , δFD
ε ,

and δG
ε all are of continuous moment order 2, we expect to have a second order

analytical error in both two and three dimensions, according to theorems 5.1
and 5.2.
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Figure 7: The delta function δFD
mh is used. This figure should be compared

with Fig. 6. In Panel (a) we show the smallest m such that ϕ̂G(m) is below
the given error tolerance. This means that δFD

mh is a second order accurate
approximation of the delta function (since 2 moment conditions are satisfied)
down to the specified error tolerance. In Panel (b) we show the half width
support divided by h of δFD

mh when m from Panel (a) is used. The support is
computed with the same error tolerance that was used to find the appropriate
m–value. This calculation was made for two different values of h, h = 10−6

(stars) and h = 10−2 (squares) and gives an idea of where the delta function
approximation can be truncated. Here, for a tolerance of 10−6 the optimal m
is somewhat smaller than 1. The width of the delta approximation up to the
same tolerance is around 25h. Note that this is much larger than the width
of the Gaussian approximation which is around 6h for the same tolerance, see
Fig. 6.
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Example 1 Consider the problem of computing the line integral

I =
∫

Γ

3x2 − y2ds = 2π, (97)

where Γ is a circle of radius 1 centered at the origin. This problem has
previously been considered by Smereka, see Table 3 in Ref. [7]. We cover the
domain Ω = {x = (x, y) | |x| ≤ 2, |y| ≤ 2} with a regular grid

xi = −2 + ih, i ∈ Z, (98)
yj = −2 + jh, j ∈ Z, (99)

and approximate the line integral I by

Ih = h2
∑
j∈Z

∑
i∈Z

(3x2
i − y2

j )δFD
mh (φ(Γ, (xi, yj))). (100)

In Fig. 8 the relative error E = |Ih − I|/I is shown for m = 1, 2, and 2.5.
In Fig. 8(a) the level function φ(Γ,x) = d(Γ,x) and we see second order
convergence. The mass error in the case when m = 1 is of order 10−7 (see
Fig. 6) and cannot be seen in the plot. We have also used the level set function
φ(Γ,x) = x2 + y2 − 1 as in Ref. [7], which is not a signed distance function.
The results are shown in Fig. 8(b) and indicate second order convergence for
m ≥ 2. In the case of a non–distance function the mass error increases as
expected (see the Remark in Section 3). For m = 1 the curve representing
the error (circles in Fig. 8(b)) flattens out as h decreases since the total error
is then dominated by the mass error.

Example 2 Here, we consider the computation of the surface integral:

I =
∫

Γ

(4− 3x2 + 2y2 − z2)dA =
40π
3
, (101)

where Γ is a sphere of radius 1 centered at the origin. In Refs. [7, 9] the level
function u(Γ,x) = x2 +y2 + z2−1 is used to extend one–dimensional regular-
ized delta functions to three dimensions. The relative error using δFD

2h (u(Γ,x))
and δG

2h(u(Γ,x)) is shown in Fig. 9(b), where second order convergence can be
seen. In Fig. 9(a) we use the distance function and observe that the conver-
gence is faster than second order. Using spherical coordinates to parametrize
the sphere Γ one can show that the constant C2,F in the analytical error de-
fined in Theorem 5.2 (equation (68)) with F = 4 − 3x2 + 2y2 − z2 is zero.
Further, since both delta approximations used here satisfy all the odd moment
conditions, the convergence is of fourth order, in accordance with Theorem
5.2. The results are similar when the center of the sphere is shifted. The
relative error is smaller when δG

2h(u(Γ,x)) is used compared to δFD
2h (u(Γ,x)).

This is also in accordance with Theorem 5.2 since the width ω of δG
2h is much

smaller than the width of δFD
2h (see Section 5.3). Consequently, the constant

in the analytical error is smaller.

28



10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

h

R
e
la

ti
v
e
 e

rr
o
r

 

 

m = 1

m = 2

m = 2.5

y = h
2

(a)

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

h

R
e
la

ti
v
e
 e

rr
o
r

 

 

m = 1

m = 2

m = 2.5

y = h
2

(b)

Figure 8: The relative error E = |Ih − I|/I where I and Ih are defined in
equation (97) and (100), respectively. We have used δFD

mh with m = 1 (circles),
m = 2 (stars), and m = 2.5 (squares). The dashed line is y = h2. In Panel
(a) the level function is the signed distance function. In Panel (b) the level
function φ(Γ,x) = x2 + y2 − 1 is used.
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Figure 9: The relative error in the computation of the surface integral in
equation (101) when Γ is a sphere of radius 1 centered at the origin. The
results are for δFD

2h (u(Γ,x)) (stars) and δG
2h(u(Γ,x)) (squares). In Panel (a) the

level function is the signed distance function. In Panel (b) the level function
u(Γ,x) = x2 + y2 + z2 − 1 is used.
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6.1 Partial differential equations

We consider now the differential equation,

Lu = δ(Γ, g,x), x ∈ Ω ⊂ Rd,

Bu = r(x), x ∈ ∂Ω. (102)

The solution can be written as

u(x) =
∫

Ω

G(x,y)δ(Γ, g,y)dy +R(x), (103)

where G(x,y) is Green’s function and R(x) represents the contribution from
the boundary conditions. In the case of homogeneous boundary conditions
R(x) = 0. In the computations the delta function is approximated by a
regularized delta function δε(Γ, g,x) with half width support ω. Assume that
Green’s function G(x,y) is regular away from x = y for all y ∈ Γ. Then, for
all xj for which |xj − x| > ω for all x ∈ Γ,

|uj − u(xj)| ≤ Chmin (p,q), (104)

where q is the order of accuracy of the delta function approximation and p is
the order of accuracy for the discretization of the differential operator L. For
a proof see Ref. [3].

Example 3 Let us consider the Poisson equation in R2

−∆u = δ(Γ,x), x ∈ Ω ⊂ R2

u(x) = v(x), x ∈ ∂Ω (105)

where Ω = {x = (x(1), x(2)); |x(1)| ≤ 1, |x(2)| ≤ 1}, Γ = {x, |x − x̂| = 1/2},
and v(x) = 1− log(2|x− x̂|)/2. The solution of this equation is

u(x) =
{

1 |x− x̂| ≤ 1/2,
1− log(2|x− x̂|)/2, |x− x̂| > 1/2, (106)

see Fig. 10. We introduce a uniform grid, with step size h = 2/N in both x(1)

and x(2) direction. The delta function approximations δFD
ε , δG

ε , δTE
ε , and δC

ε

are tested for ε = mh. We use a fourth order stencil D4
2 to approximate the

differential operator. See [3] for the definition of D4
2. The error,

||u− uh|| (107)

is measured in both the maximum norm and the L1–norm. Here, u is the
exact solution given in equation (106) and uh is the numerical solution. In
Figs. 11 and 12 we show the error when the circle Γ is centered in x̂ = (0, 0).
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Figure 10: The exact solution u(x) given by equation (106) for x̂ = 0.

In Fig. 11 the maximum norm measured over the whole domain Ω when δFD
mh

and δG
mh are used is shown for m = 1, m = 2, and m = 3. We have first order

convergence since we measured the error close to Γ. To measure the error
away from Γ, we introduce the sub–domain

Ω̃ = {x : x ∈ Ω, |d(Γ,x)| > η}. (108)

Since δFD
ε , δG

ε , and δTE
ε are all second order accurate we expect from equation

(104) to see second order convergence when the error is measured away from
Γ. We recall that analytical results suggested that η ≥ ω is needed to obtain
the convergence order of the delta function approximation, see equation (104).
However, our numerical simulations indicate that η = ε is sufficient. In Fig. 12
the maximum norm and the L1-norm of the error is shown for δFD

2h , δG
2h, δTE

2h ,
and δC

2h. For the regularized delta function δC
2h of order h4 in one dimension

there is no convergence, neither in the maximum norm nor in the L1–norm.
Note that the error using δG

2h is almost identical to the error we obtain using
δTE
2h .

We obtained similar results for other values of x̂ away from the boundary
of the computational domain.

7 Conclusions

We have introduced delta function approximations that are convenient to use
for delta functions with support on a curve or a surface, represented implicitly
by a level set. The framework is based on the ”old” method with a one–
dimensional delta function approximation extended to higher dimensions by
a distance function.

This method was in [3] shown to be inconsistent when different compact
one–dimensional delta function approximations were used. In this paper, we
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Figure 11: The maximum norm of the error measured over Ω is shown for
δmh, m = 1 (circles), m = 2 (stars), and m = 3 (squares). A fourth order
discretization for the differential operator has been used. The dashed line is
y = h. In Panel (a) δmh = δFD

mh is used. In Panel (b) δmh = δG
mh is used.

As expected, we see a first order error, since we have measured the error also
close to Γ.

have shown that this can be understood from the fact that these compact
functions cannot both satisfy the discrete mass condition for all shifts in the
grid and for a range of dilations of the support. This is however possible if one
is basing the approximation on functions that have compact support instead
in Fourier space, or in practice, that are smaller than some tolerance outside
a given interval. For such functions, we have proven in both two and three
dimensions that the error can be bounded by the sum of the analytical and
the numerical error. The analytical error is determined by the moment order
of the one–dimensional approximation and the numerical error tends to zero
faster than any power of h in the limit as h→ 0, due to the superconvergence
of the trapezoidal rule. All the three functions we have discussed have second
order analytical errors. When we are to compute an integral over the delta
function itself, yielding length of curve or surface area, or over the delta func-
tion multiplied by a linear function, there is no analytical error for any of the
approximations that we have introduced, since they are all of moment order
2.

A function that is compact or decays rapidly in Fourier space will not
produce delta function approximations with compact support. This means
that in practice, we need to truncate these approximations. For the Gaussian
function δG

ε , that was introduced in Section 4.2, the accuracy of this procedure
was discussed in conjunction with Fig. 6. It was concluded that to achieve an
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Figure 12: The error measured over Ω̃ (this domain is defined in (108) with
η = 0.2) using a fourth order discretization of the differential operator. The
max–norm of the error (circles) and the L1–norm (stars) are shown. The
dashed line is y = h2. In Panel (a) δε = δFD

2h . In Panel (b) δε = δG
2h. In Panel

(c) δε = δTE
2h . In Panel (d) δε = δC

2h. The second order convergence is now
obtained in Panel (a), (b), and (c), as we are excluding the region closest to
Γ, as explained in the text.
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error around 10−6 we need ε ≥ mh, m = 1.25. For m = 1.25 the Gaussian
function can be truncated so that the half width support becomes around 6h.
To get an error around 10−16, we need m = 2 and a half width support of
around 14h. When we have non–vanishing second derivatives of the function
F , see (55), there will be a second order analytical error which will dominate
the numerical error, and for moderate grid sizes, there is no point in using a
wider support than 6h.

In this paper, we also discussed the function δTE
ε , as defined in (42). This

function yields very similar results to the Gaussian, but is more computation-
ally expensive, since the function is not given explicitly but must be computed
from its Fourier transform. We found that, compared to the other approxi-
mations, the approximation δFD

ε , has a slower decay in real space and hence a
larger support. We therefore recommend to use the Gaussian approximation.
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8 Appendix

We start by stating a definition and a theorem from Ref. [19] that will be used
in the study of the analytical error in three dimensions.

Definition 8.1. Let k > 0. A k–manifold in Rn of class Cr is a subspace M
of Rn having the following property: For each p ∈ M , there is an open set V
of M containing p, a set U that is open in either Rk or the upper half–space
in Rk and a continuous map P : U → V carrying U onto V in one–to–one
fashion, such that :

1. P is of class Cr .

2. P−1 : V → U is continuous.

3. DP (x), the Jacobian matrix of P , has rank k for each x ∈ U .

The map P is called a coordinate patch on M about p.

Theorem 8.1. Let M be a compact k–manifold in Rn, of class Cr. Let
f : M → R be a continuous function. Suppose that Pi : Ai → Mi, for
i = 1, · · · , N is a coordinate patch on M , such that Ai is open in Rk and M is
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the disjoint union of the open sets M1, · · · , MN of M and a set K of measure
zero in M . Then ∫

M

fdV =
N∑

i=1

∫
Ai

(f ◦ Pi)V (DPi) (109)

This theorem states that
∫

M
fdV can be evaluated by separately evaluating

the integral over local parametrized parts of the manifold and then summing
up all the contributions. A proof of the theorem can be found in Ref. [19]. It
is assumed that the support of the integrand f lies in M .

Proof of Theorem 5.2. In three dimensions we cannot expect to have a global
parametrization but a local exist. By the assumption Γ is a 2–manifold that
can be covered by an union of disjoint open sets V1, · · · , Vl and a set K of
measure zero in Γ. It has been proven that such sets can be constructed using
polygonal charts sets, see [20]. Further, we have assumed that a coordinate
patch P j = (x(r, s), y(r, s), z(r, s)) : (r1, r2) × (s1, s2) → Vj of class C2 on Γ
exists.

The normal of Γ at Vj is defined as n = (n1, n2, n3) = 1
q(r,s) (P

j
r × P j

s ),
where q(r, s) = ||P j

r × P j
s || 6= 0.

The integration is over Ωω. This is a compact 3-manifold of class C2. The
integrand δεF : Ωω → R, is a continuous function. The domain Ωω can be
covered by the disjoint union of open sets M1, · · · ,Ml and a set of measure
zero in Ωω. The open set Mj can be given by the following parametrization

Mj = {(x, y, z) : x = Xj(r, s, t), y = Y j(r, s, t), z = Zj(r, s, t),
r ∈ (r1, r2), s ∈ (s1, s2), t ∈ [−ω, ω]}, (110)

where Xj(r, s, t) = x(r, s) + tn1(r, s), Y j(r, s, t) = y(r, s) + tn2(r, s), and
Zj(r, s, t) = z(r, s) + tn3(r, s). Let Aj = (r1, r2)× (s1, s2)× [−ω, ω], and

βj = (Xj(r, s, t), Y j(r, s, t), Zj(r, s, t)). (111)

Then it follows from Theorem 8.1 that

IΩω (δεF ) =
l∑

j=1

IAj =
l∑

j=1

∫
Aj

(δε ◦ βj)(F ◦ βj)V (Dβj), (112)

where V (Dβj) = |det(J(r, s, t))|dtdsdr. The Jacobian determinant for this
transformation from (x, y, z) to (r, s, t) is

det(J(r, s, t)) = (Xj
r , Y

j
r , Z

j
r )× (Xj

s , Y
j
s , Z

j
s) · (Xj

t , Y
j
t , Z

j
t )

= (P j
r × P j

s + t(nr × P j
s + P j

r × ns) + t2(nr × ns)) · n
= ||P j

r × P j
s ||(1− t(κ1 + κ2) + t2κ1κ2)

= q(r, s)(1− tκ1(r, s))(1− tκ2(r, s)). (113)
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Here we have used that the coordinate patch, P j is C2 hence P j
rs = P j

sr. This
transformation is non–singular because of the assumption in equation (65)

Note that d(Γ,x) = t and denote

f(r, s, t) = F (Xj(r, s, t), Y j(r, s, t), Zj(r, s, t)). (114)

We have

IAj
=
∫

Aj

(δε ◦ βj)(F ◦ βj)V (Dβj) =∫ r2

r1

∫ s2

s1

∫ ω

−ω

δε(t)f(r, s, t)q(r, s)(1− tκ1(r, s))(1− tκ2(r, s))dtdsdr. (115)

The assumption that F (x) is a smooth function yields that f(r, s, t) has N+1
bounded derivatives with respect to t. Since t ∈ [−ω, ω] we can for ω small
Taylor expand f(r, s, t) around (r, s, 0)

f(r, s, t) =
N∑

i=0

ti

i!
fit(r, s, 0) +O(tN+1). (116)

The index i in fit denotes the number of partial derivatives with respect to t.
Define the moments of the function δε(t) as

Mα(δε(t)) =
∫ ω

−ω

δε(t)tαdt. (117)

Replacing f(r, s, t) in equation (115) with its Taylor expansion we obtain

IAj
= M0(δε(t))

∫ r2

r1

∫ s2

s1

f(r, s, 0)q(r, s)dsdr

+M1(δε(t))
(∫ r2

r1

∫ s2

s1

ft(r, s, 0)q(r, s)dsdr

−
∫ r2

r1

∫ s2

s1

f(r, s, 0)q(r, s)(κ1(r, s) + κ2(r, s))dsdr
)

+
N∑

α=2

Cj
α,FMα(δε(t)) +O(MN+1(δε(t))), (118)

where the constant Cj
α,F is given in equation (68).

By the change of variable t/ε = ξ and since ω = pε we get

Mα(δε(t)) =
∫ ω

−ω

1
ε
ϕ(t/ε)tαdt = εα

∫ p

−p

ϕ(ξ)ξαdt. (119)

By summing up contributions from all Aj we obtain the theorem.
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