

Artificial Intelligence
using the QLearning Algorithm

 J O H N F O R S B E R G
 a n d L U K A S M A T T S S O N

 Bachelor of Science Thesis
 Stockholm, Sweden 2010

Artificial Intelligence
using the QLearning Algorithm

 J O H N F O R S B E R G
 a n d L U K A S M A T T S S O N

 Bachelor’s Thesis in Computer Science (15 ECTS credits)
 at the School of Computer Science and Engineering
 Royal Institute of Technology year 2010
 Supervisor at CSC was Johan Boye
 Examiner was Mads Dam

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2010/
 forsberg_john_OCH_mattsson_lukas_K10006.pdf

 Royal Institute of Technology
 School of Computer Science and Communication

 KTH CSC
 100 44 Stockholm

 URL: www.kth.se/csc

Preface
The project consisted of four parts:

• planning

• programming

• execution

• report writing

Some of them were done simultaneously, such as planning and programming.
The planning, execution and report writing parts of the project were done by both
members of the group and the programming was done completely by John. The
execution part of the project was not much work but is still mentioned. While John
was concentrating on the programming part Lukas was focused on structuring and
writing the report. Because only John could program proficiently in the language
C++ and Lukas was better at writing texts the workload was divided this way.

Abstract
This report is about the AI Learning algorithm QLearning. More specif-
ically it is about how the algorithm performs when given a limited
amount of time to learn. In this report several different configurations
of the QLearning algorithm as well as other more simple AIs will be
competing against each other to give a result as to which configuration
is the most versatile.

Referat
Artificiell Intelligens baserad på QLearning algoritmen

Denna rapport handlar om AI-inlärningsalgoritmen QLearning, eller
närmare bestämt om hur den presterar givet en begränsad inlärningspe-
riod. I denna rapport kommer flera olika konfigurationer av algoritmen
samt andra simplare AI:s tävla mot varandra för att visa vilken konfig-
uration som är den bästa.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Definitions . 3

2 Method and Results 5
2.1 Method . 5

2.1.1 The Naive AI . 5
2.1.2 Classic QLearning AI . 6
2.1.3 Modified QLearning AI . 6
2.1.4 The testing platform . 7

2.2 Problem Execution . 8
2.3 Results . 9

3 Discussion 11
3.1 Problems . 11
3.2 Conclusion . 12

Bibliography 13

Chapter 1

Introduction

In the field of implementing game AIs there have been many different approaches
during the years. Everything from the simplest models that are hard-coded to do
certain things at certain times such as the mushrooms in Super Mario which walk
to the left if Mario is to the left and right if he is to the right, or the more advanced
models such as those in the game “F.E.A.R.” which perform complex tasks such as
communicating with each other and giving covering fire to allow their teammates
to spread out to flank you [5]. Most game AIs do however have a fatal flaw: They
do not learn from their mistakes! They are simply instructed by the programmer to
behave a certain way in a certain situation, and if the programmer missed one situ-
ation the AI will not have a proper response for it. This is where machine learning
comes into the picture.

1.1 Background
Machine learning is the subject of teaching computer programs how to learn for
themselves, and has been around since the 1960’s [4]. With a machine learning
algorithm the AI would gain what its programmer would not be able to give it in
advance: the ability to react to unforseen situations.

When talking about learning algorithms there are different categories [2]:

• Supervised Learning

• Unsupervised Learning

• Semi-supervised learning

• Reinforcement Learning

• Transduction

• Learning to learn

1

CHAPTER 1. INTRODUCTION

This report covers the Reinforcement Learning algorithm QLearning [3]. For
information about the other categories and examples of algorithms for the respective
categories, see Wikipedia on machine learning [2].
A Reinforcement Learning algorithm learns from past experiences. It is given a
series of actions to choose from and after every choice it has made the environment
can give it a reward or a punishment, which is a negative reward. This can be set
up in many different manners but the common theme is that the algorithm will
strive towards the option that has the highest reward associated with it.

1.2 Problem Statement
The question that we are trying to answer is: How good is the QLearning algorithm?
Following are the main questions we will be covering:

• How long does it take to learn?
How much time does the algorithm need before it can stand on its own and
play against an arbitrary opponent without losing all the time?

• How smart is it?
Is it able to predict the opponents tactics and formulate a counter-strategy
or will it just keep going on with its own strategy oblivious to its opponent?
What are its strengths?

• Does it have weaknesses?
Is it vulnerable to certain strategies or will it perhaps adapt to new strategies
very slowly?

When discussing these things we came across another question that we decided
to include in our project in order to better understand the results and put them in
perspective: Can the QLearning algorithm be improved?

We want to see if it is possible to improve the learning speed of the original
QLearning algorithm by using some alternative means of decision making until it
has gathered some experience. Thus we also have the following item on the question-
list:

• Can the learning rate be improved?
By allowing the algorithm to do random actions until it has gathered some
experience, will it learn what to do faster?

2

1.3. DEFINITIONS

1.3 Definitions

Action An action performed by an agent alters its current state.
Agent A program entity that uses an algorithm to simulate AI behavior.
AI Artificial Intelligence. An algorithm with intelligent properties.
Brain The brain consists of all the learned knowledge for an agent.
State A state is an exact representation of the environment the agent op-

erates on.
Tile A tile is a location on the game board. It can either be empty or

occupied by one piece from either player.

3

Chapter 2

Method and Results

2.1 Method

In this report different types of agents will be used in both the learning and eval-
uation process to have something to compare the modified QLearning algorithm
to:

• A Naive AI.

• A Classic QLearning AI.

• A Modified QLearning AI.

A program entity that uses an algorithm to simulate AI behavior is called an
agent. The agent is at every given time in a state and for each state there is a
number of possible actions. Every state and possible action for that state has a
reward assigned to it. In our implementation a state is a description of how the
game board currently looks and an action means placing another marker onto the
board, altering its state. All of the three following are agents although they have
different behavior.

2.1.1 The Naive AI

The Naive AI is a non-learning algorithm which follows a simple set of rules when
deciding what actions to take. It is therefore very predictable.
The Naive AI begins by placing a marker at one of a predefined set of tiles at random,
and in each successive move it will place a marker at an empty tile adjacent to the
previous one. This will give simulate a player placing markers in a row in one
direction until it hits an obstacle, either an occupied tile or the edge of the game
board; and then take a turn to begin making a row in another direction.

5

CHAPTER 2. METHOD AND RESULTS

2.1.2 Classic QLearning AI
The agent called Classic QLearning AI will follow the QLearning algorithm except
for some smaller changes, these changes are stated in Problem Execution, section
2.2.

The QLearning algorithm is presented in equation 2.1. The algorithm works by
retrieving previous learned values by mapping a state with an action. Q (st, at) is
the mapping of state s and a at time t which yields the reward for using that action
at that state. To make the implementation of the algorithm easier, the learning
rate at (st, at) function is removed and set to a constant of 100%. What remained
was the γ which is called the discount factor that specifies how important the next
action will be, it is a number between zero and one. The most essential part of
QLearning is as previous stated the retrieval of the reward. It has two appearances
in the algorithm, the first being Q (st, at) which retrieves the reward for the current
state st and the action at. The second part as seen in equation 2.2 uses the best
action after the first action has been performed and therefore use the updated state
st+1.

Q(st, at)← Q(st, at) + at(st, at)× [rt+1 + γ ×maxa{Q(st+1, at)}] (2.1)

maxa{Q(st+1, at)} (2.2)

2.1.3 Modified QLearning AI
The Modified QLearning AI is very similar to the Classic QLearning, the only differ-
ence being that the Modified version will pick actions at random in the beginning.
This difference will significantly alter the way that the AI looks for mistakes after
losing a round. Instead of testing tiles sequentially in order to block the opponent
from winning it will try placing them at random, hopefully finding the correct move
faster.

Before the modified agent performs an action a check is made to determine if
it should be a randomly chosen action or if it should use its experience to choose
the best action. The chance for a random chosen action decreases at a rate linear
to the knowledge in the brain. A factor that determines how much knowledge it
should have before it stops is implemented and in the pseudo code sample below it
is called f. At the first ten matches the agent performs nearly 100% random actions
but at a few hundred matches later there is no random actions.
R← randomNr[1, 128]
S ← numberOf(StatesLearned)
if R− S ∗ f > 0 then
{perform a random action.}

else
{follow the normal QLearning algorithm.}

end if

6

2.1. METHOD

2.1.4 The testing platform

In order to answer the questions in the problem statement the algorithms will be
put in a relatively simple environment which is both easy to visualise and to judge:
A board game. The board game will be a somewhat modified version of the classic
game three-in-a-row. In the modified version (from here on out called five-in-a-row)
two players take turns placing their markers on a game board consisting of 9x9
tiles, and the first player to place five of his markers in a row either horizontally,
vertically or diagonally wins the game. The evaluation will consist of two phases:

Training

In the first phase one fresh copy of every type of agent will be assigned a sparring
partner. They will then complete 400 game rounds against each other.

The matchups for the training will be as follows:

• Classic QLearning vs Naive AI

• Modified QLearning vs Naive AI

• Classic QLearning vs Classic QLearning

• Modified QLearning vs Modified QLearning

The learning experiences of the learning AIs from this training will then be saved
and copied for the second phase. To keep track of all the different AI experiences
they must be named uniquely. Their names will thus be either “Classic” or “Learn-
ing” followed by the first letter of their opponents name, either “N” for Naive, “C”
for Classic or “M” for Modified.

Thus, the AIs available after the training are:

• ClassicN

• ModifiedN

• ClassicC

• ModifiedM

Competition

In the second phase the differently taught agents will play against each other in all
possible matchups for 200 rounds. To ensure that no single AI gets to play several
competition games and thus gain an advantage by having more experience, copies
of the different AIs will be made; one for each matchup. The AI with the most
games won will be considered the winner.

The matchups for the competition will be as follows:

7

CHAPTER 2. METHOD AND RESULTS

• ClassicC vs ModifiedN

• ClassicC vs ModifiedM

• ClassicN vs ModifiedN

• ClassicN vs ModifiedM

2.2 Problem Execution
The code structure was planned in conjunction with researching implementations of
the QLearning algorithm and it was finally decided to implement it in the language
C++. A website with the QLearning algorithm in C++ was used to get a good
idea on how to begin [1]. The programming was by far the most time consuming
part of the problem execution, both due to the nature of the task and because only
one of our two project members were comfortably familiar with the language.

First the game was implemented. It was structured to allow both human and
computer players to make modifications to the board according to the same set of
rules. A logging function was also added to the program for readability of the data.

The Naive AI was created very quickly due to its simple nature. The only thing
that was added to its functionality in addition to that specified in 2.1 was the ability
to alter its starting coordinates using the configuration file mentioned in the next
paragraph. The implementation of the QLearning algorithm was straightforward
except for one thing: As seen in equation 2.1, the algorithm takes the currently
available actions as well as the potentially available actions for the next round
into consideration when deciding what the next action should be, the problem is
that between these two actions the other player is taking an action. To overcome
this problem the implementation finds the best “next action” by looking through
its currently available actions and for every one of those find the opponents best
available actions and for every one of those search for the next best action. This is
a time consuming yet necessary step to adapt the algorithm to the game.

After all the code was written different agents could be configured by editing
an external configuration file for each matchup as specified in 2.1. The agents
would be created using the configuration file and if the user wanted them to use
any previously learned experience he had to specify the name of the file where that
knowledge had been saved during the configuration. After the specified number of
games had been played the agents would add their new knowledge to that file. This
was relatively easy to do but the games were processor intense. Each game could
take up to several seconds which meant that the training for every agent took up
to an hour on the commercial CPU’s used.

8

2.3. RESULTS

X O X O O
O X O X X
X O X O O
O X O X X
X O X O O
O X O X
X O X O
O X O X
X O X X

Figure 2.1. The checker board often created by two agents.

2.3 Results
The following section will cover the results for the two parts of the execution, first
is the training and following that is the results of the tournament.

Training

The agents training against the Naive AI learned to beat it surprisingly fast and
after just a few matches they started to win every time. Because if this the number
of alternative starting tiles for the naive AI was increased from one to seven and
the training was redone. The agents training against themselves showed a tendency
to create a checker board pattern, see figure 2.1.

Tournament

The tournaments was a huge disappointment due to the fact that a bug in the
program caused the agents to not learn anything new. Because of this most of
the matches that were played presented only two patterns. One pattern when the
winning agent started and one for when the opponent started. Without the bug
the agents would have learned from the previous match and tried a different action
before their opponent won. However this was not the case, and the agent kept losing
the same way. The result of this was that the agent using the classic algorithm won
all but twelve of its matches.

9

Chapter 3

Discussion

3.1 Problems
This project consisted of a lot of programing which proved to be very rough due
to the choice of language. Also, the fact that all the code was implemented from
scratch ment longer implementation time. A better approach would have been to use
an already implemented QLearning algorithm, however the implementation of the
code was a very good way to understand how QLearning works and the knowledge
gained could prove valuable in the future.

Training

During the training of the agents we hoped to see a difference between the modified
and the classic QLearning algorithm, but the modification of the algorithm was
pointless. The modified version just tried to place markers at random tiles for a
couple of matches losing every time, after which it started playing identically to the
agent following the classic QLearning algorithm. The only difference between the
classic and modified agent was therefore in the end that the modified was missing
valuable experience.

Tournament

As previously mentioned there was an unidentified bug during the competitions
between the agents, this bug was not fixed due to the late discovery of it. Luckily this
was not a huge problem as the tournament was only going to be used to determine
which of the agents was the best and since the bug affected all learning agents in
the same way the playing field was even.

11

CHAPTER 3. DISCUSSION

3.2 Conclusion
Improving the algorithm

As the tournament results showed the classic QLearning algorithm is superior to
one modified to take random actions in the beginning. We conclude that the reason
for this is because the random actions were used in an ineffective manner. Random
actions should instead have been taken when there are no known good actions to
take in the current state. Using this as a criteria would have enabled the algorithm
to take random actions long into its learning process but only when needed. The
random actions would eventually seize, but only when the algorithm no longer needs
them.

The reason we thought that adding an element of randomness would help the
agent is because instead of iterating through all the possible actions it would have
a statistically advantageous chance of finding an effective counter-move because it
would not be as predictable and thus find ways to block its opponent faster.

Learning speed

Like any kind of reinforcement learning algorithm QLearning takes a very long time
to learn. This is because it must learn to counter every strategy individually, it
cannot see patterns or similarities in strategies and therefore anticipate them. In our
implementation the learning was generally even slower because we lacked efficient
training data. Having efficient training data which simulated a very skilled opponent
would encourage the AI to learn faster by not wasting any time playing matches
which are very improbable of occurring or identical to previous ones. The naive AI
proved to be a more effective teacher than letting the AIs play against themselves
because it was a better human analog than the untrained learning algorithms. In
conclusion the QLearning AI takes a long time to learn but it can be sped up using
training data to simulate the situations it will be facing once its training period has
ended.

Strengths and weaknesses

The QLearning algorithm is not very smart. It can not predict opponent strategies
and it only knows what it has previously seen. It is unable to recognize patterns and
it takes a long time to learn why things happened because it has to iterate through
all possible reasons one game at a time. This means that it is very vulnerable to
a witty opponent that tricks the AI by using different starting moves and then the
same end strategy. It is however a decent algorithm to use in smaller games with a
finite number of states because they can be iterated over and learned in a reasonable
amount of time.

We can conclude that our experimental modification of the QLearning algorithm
was ineffective, but it was not entirely futile for we have, just like the agents we
created, gathered experience.

12

Bibliography

[1] QLearning in C++. http://www.compapp.dcu.ie/~humphrys/Notes/RL/
Code/code.q.html. Last Accessed 10/03/2010.

[2] Wikipedia on Machine Learning. http://en.wikipedia.org/wiki/Machine\
_learning. Last Accessed: 28/04/2010.

[3] Wikipedia on QLearning. http://en.wikipedia.org/wiki/Q-learning. Last
Accessed: 28/04/2010.

[4] Samuel A.L. Some Studies in Machine Learning Using the Game of Checkers.
Feigenbaum and Feldman, 1963.

[5] Jeff Orkin. Three States and a Plan: The A.I. of F.E.A.R. http://
web.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf. Last Accessed:
02/05/2010.

13

www.kth.se

