

Hidden Surface Removal and Hyper Z

 O S K A R F O R S S L U N D
 a n d J A N N O R D B E R G

 Bachelor of Science Thesis
 Stockholm, Sweden 2010

Hidden Surface Removal and Hyper Z

 O S K A R F O R S S L U N D
 a n d J A N N O R D B E R G

 Bachelor’s Thesis in Computer Science (15 ECTS credits)
 at the School of Computer Science and Engineering
 Royal Institute of Technology year 2010
 Supervisor at CSC was Lars Kjelldahl
 Examiner was Mads Dam

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2010/
 forsslund_oskar_OCH_nordberg_jan_K10058.pdf

 Royal Institute of Technology
 School of Computer Science and Communication

 KTH CSC
 100 44 Stockholm

 URL: www.kth.se/csc

Abstract

When rendering a scene to be shown on a computer screen, it is vital that
the objects present in the scene are rendered so that objects at the front hide
objects behind them. To make sure this is the case, hidden surface removal
techniques are used. This paper gives an overview of techniques and opti-
mizations in this area. It also describes an actual hardware implementation
called Hyper Z, which is used by the graphics hardware manufacturer ATI.

Sammanfattning

När man renderar en scen för att visa på en datorskärm är det mycket viktigt
att objekten som förekommer i scenen renderas så att de främre objekten
döljer de bakre. För att garantera detta används tekniker för borttagning av
skymda ytor. Denna uppsats ger en överblick över tekniker och optimeringar
inom detta område och beskriver även en faktisk hårdvaruimplementation,
Hyper Z, som används av gra�khårdvarutillverkaren ATI.

Contents

1 Introduction 3

2 Background 3

3 Classic Techniques 4

3.1 Object-Space Algorithms . 4
3.1.1 L G Roberts . 4
3.1.2 Edge-Intersection Algorithms 4

3.2 List-Priority and Image-Space 5
3.2.1 List-Priority Algorithms 5
3.2.2 Depth-Priority Algorithms 6
3.2.3 Scan-Line Algorithms 6

4 Techniques Used Today 7

4.1 Z-bu�ering . 7
4.2 Culling . 7

4.2.1 View Frustum Culling 7
4.2.2 Back-face Culling . 8
4.2.3 Occlusion Culling . 8
4.2.4 Contribution Culling 8

5 Hyper Z - A Hardware Implementation 9

5.1 Hierarchical Z . 9
5.2 Early Z . 9
5.3 Z-bu�er Compression . 10
5.4 Fast Z Clear . 10

6 Summary 11

7 References 12

Hidden Surface Removal and Hyper Z

1 Introduction

Hidden surface removal techniques are used in computer graphics to speed up
graphics rendering. The occlusion of objects that are hidden from the viewer,
and the backsides of shown objects, lessens the strain on the computer. Over
the years, a number of di�erent approaches to the problem of doing this
e�ciently have been made, and in this paper we aim to make a comprehensive
overview of the more commonly used techniques.

2 Background

Two major 1940s military projects can be seen as the launch of computer
graphics development. These were the SAGE project in which the United
States Military Forces funded and built a system for tracking incoming nu-
clear missiles, and the Whirlwind project, the building of the �rst �ight
simulator. Since then, the computers used to render graphics have gone
from apartment-sized and military owned to pocket-sized and available to
everyone. Nowadays, instead of being developed by the military, most state-
of-the-art computer graphics are developed by the entertainment industry,
be it computer game developers or movie makers.

Beginning with the most intuitive and obvious approach of rendering a
multi-layered picture back to front, something that is known as the "painters
algorithm", a number of graphics rendering improvements have been made.
Even though the computers of today are immensely more powerful than
the computers of the 1940s, the ever higher demands on computer graphics
have necessitated the development of increasingly e�cient graphics rendering
algorithms.

The most widely used technique today is called Z-bu�ering. A bu�er
of all the x-y coordinate pairs of the display area with the distance (the z
coordinate value) to the nearest object is maintained, and used to decide
the color of each pixel. This combined with di�erent culling techniques, i.e.
the dismissal of non-visible objects, is the backbone of modern computer
graphics rendering.

3

Hidden Surface Removal and Hyper Z

3 Classic Techniques

In March 1974 I.E. Sutherland, R.F. Sproull and R.A. Schumacker released
the paper A Characterization of Ten Hidden-Surface Algorithms. A part of
that paper was dedicated to describing available hidden surface algorithms
used at that time, much like what we are hoping to accomplish with this pa-
per. Therefore, we will include here a simpli�ed summary of said techniques
since many of the ideas of that time are still being used in various forms
today.

3.1 Object-Space Algorithms

In their paper [8], Sutherland et al., divides the ten algorithms into three
categories of which object-space algorithms is the �rst.
Object-space calculations are made to be as precise as possible and, more or
less, compute the whole virtual reality of the picture as opposed to image-

space calculations which instead focus on the display area and how to rep-
resent pictures on-screen.

Object-space algorithms are further divided into the algorithm of L.G.
Roberts and the edge-intersection algorithms of Appel et al.

3.1.1 L G Roberts

Roberts' algorithm was the �rst known solution to the hidden-line problem,
i.e. the hidden surface problem restricted to the edges of objects [8].
The algorithm tests which parts of a relevant edge, i.e an edge possibly
visible to the viewer [8], are hidden by other objects. This is done by tracing
a line from di�erent points on the edge towards the observation point. If any
point on the line lies within another object, the point from which the line
originated is obviously hidden.
In this way all the relevant edges of all objects are tested against all other
objects to see exactly which parts of them are hidden.

3.1.2 Edge-Intersection Algorithms

Sutherland et al. [8] describe four edge intersection algorithms, all of which
are rather similar as they all focus on calculating the cumulative visibility
scores of vertices, i.e. the number of faces hiding the vertices. Although
managed di�erently in the four algorithms, this is generally done by �rst
calculating the visibility score of an initial vertex of an edge. After this the
visibility scores of all points lying on edges emanating from this vertex can
easily be calculated.
The idea is that the visibility score along an edge will only change if, and
when, the edge intersects a contour edge, i.e. an edge between one visible
and one non-visible surface, in the two-dimensional projection of the model.

4

Hidden Surface Removal and Hyper Z

Further the score will only change by either +1 or -1 and only if the inter-
secting edge is determined to be closer to the point of view. Thus at each
such intersection an edge can be divided into segments and all points lying
on an edge segment will have the same visibility score.

3.2 List-Priority and Image-Space

List-priority and image-space algorithms di�er from the object space al-
gorithms by focusing on producing images and not a mathematical repre-
sentation of a model. The di�erence between list-priority and image-space
algorithms is that list-priority algorithms make computations in the object-
space of the model and thus would be able to correctly display a picture
of the model with arbitrarily high resolution, was there a suitable display.
Image-space algorithms on the other hand make calculations from the image-
space of the model and, although more e�cient, would not be able to produce
such high-quality results. Then again, that is not their purpose. Image-space
algorithms are designed to produce an image with a known resolution.

3.2.1 List-Priority Algorithms

Both list-priority algorithms described by Sutherland et al. [8] are centered
around a list of rendering priorities of the faces that make up the model.
Once priorities are established the model is rendered so that faces with higher
priority will hide those with lower priority. The di�erence between the two
algorithms lies mainly in how the priorities are calculated for each frame
that is to be displayed.

The �rst algorithm, devised by Schumacker et al. [8], uses two kinds
of priorities: cluster and face-priority. The �rst is calculated by dividing
the model into linearly separable clusters and numbering them. A cluster-
priority can then be calculated for every cluster depending on the position
of the viewpoint. After dividing the model into clusters, each face within
each cluster is given a priority in such a way that if face A can hide face
B from any viewpoint then face A should have a higher priority. This as-
signing of priorities is done ignoring back faces, i.e. faces facing away from
the currently tested viewpoint, as these faces will never be visible from that
viewpoint.
The cost of producing this kind of priority list is relatively high. The ad-
vantage though is that the face-priority only ever has do be calculated once
and can then be reused as long as the clusters stay the same. This makes
the algorithm well suited for static environments where only the viewpoint
is changed.

The second algorithm, devised by Newell et al. [8], calculates only face-
priority. This is done by �rst ordering the relevant faces by how far their
furthest vertex is from the viewpoint depth-wise. The faces are then com-

5

Hidden Surface Removal and Hyper Z

pared back to front to see if the ordering was successful. A face is deemed to
be ordered correctly if it cannot possibly hide any face with a higher priority.
If this can not be done merely by re-ordering then at least one face has to
be split and then the pieces are re-tested individually.

3.2.2 Depth-Priority Algorithms

These algorithms focus on calculating what shade a particular area of an
image should have. The algorithms work by dividing the picture into homo-
geneous areas, or windows as they are called [8], and then calculating the
shades of the separate windows. An area is tested to be a window and if
either no faces intersect the area, or there is a critical surrounder, i.e. a
face that covers the area and is closer to the viewpoint than any other face
intersecting or covering the area, then the area is accepted as a window. If
this is not the case the area is divided into smaller test areas and the process
is repeated with those. Ultimately, if a critical surrounder can not be found
in a certain number of subdivisions, the test will be given an average shade
of the faces intersecting it.
One advantage with this method is that not all faces have to be tested
against the smaller test areas. This is made possible by the possibility to
store information on faces that either covered the original test area, or were
completely disjoint from it. Naturally, these faces will have the same relation
to the smaller test area as they had to the original.

3.2.3 Scan-Line Algorithms

These algorithms work by calculating what faces are visible along horizontal
lines [8]. This is done by �rst ordering the faces in the picture in the xy-
plane. Then the image is scanned top to bottom and for each horizontal
scan-line a series of depth tests are made to see what face is showing for
di�erent parts of the scan line. The points on the scan-line where the depth-
tests are performed are determined di�erently by di�erent algorithms but
one common way is to test every edge that intersects the scan-line. The
nearest face at this point will be visible.

6

Hidden Surface Removal and Hyper Z

4 Techniques Used Today

A lot has happened in the world of computer graphics since Sutherland et
al. published their paper in 1974. The biggest di�erence however, lies in the
hardware used to render the graphics.

In the following section we will discuss some techniques that have been
around for a while but are central in modern hidden surface removal. Z-
bu�ering for instance, appeared in Edwin Catmull's Ph.D. thesis from 1974
[2] and can now be found implemented in nearly all graphics hardware.

4.1 Z-bu�ering

When drawing an object on screen, the graphics device stores the depth value
(or z value) of a generated pixel in a bu�er, aptly named the Z-bu�er. For
every new object drawn, the depth of each pixel is compared to the stored
value of that pixel in the bu�er, and the corresponding pixel of the object
is either rejected for being further away than the pixel of the closest object
so far, or drawn onto the screen and written to the Z-bu�er. This image-
based approach is currently implemented in the hardware of most graphics
cards, and the computations involved can be carried out very rapidly. The
precision of the bu�er has to be su�ciently high to avoid a phenomenon
called Z-�ghting, where two objects that are very close to each other can
appear to blink in and out of each other, due to the resolution of the bu�er.
Transparent objects are also a problem with Z-bu�ering techniques; if the
object at the front is translucent, we would need to draw the object that is
second from the front, so it can be seen through the front object. The easy
�x to this is to draw the translucent objects after you are done with the
opaque objects. This solves most of the problems, but if you try to render a
translucent polygon behind another translucent one you will not see through
both of them. Usually, there are so few translucent objects that one can
ignore this anomaly.

4.2 Culling

According to the Oxford Dictionary of English, to cull is to pick out some-
thing and discard it as inferior. In computer graphics, culling is used to
reduce the number of polygons being rendered, due to the simple fact that
something you can not see does not have to be rendered. We will here cover
three di�erent types of culling.

4.2.1 View Frustum Culling

A viewing frustum is essentially six clipping planes bounding the part of the
model that the viewer can currently see. Obviously, all parts of the model
not inside the viewing frustum can be discarded as they are not in view [1].

7

Hidden Surface Removal and Hyper Z

If an object lies partly within the frustum it will be clipped and only the
visible part will be rendered.

In order to speed up this process, one can organize all objects in a bi-
nary space partitioning tree (or BSP tree). This data structure recursively
organizes objects within space by treating each polygon as a cutting plane,
which is used to decide whether the other objects are in front or behind that
plane. This structure can be quickly traversed when deciding which objects
to cull.

4.2.2 Back-face Culling

Any surface whose normal is facing away from the viewer can be discarded,
since these surfaces can not be seen. Such surfaces can easily be detected
by calculating whether the dot product of the surface normal and the viewer
vector is negative. Generally, almost half of the surfaces in a model can be
discarded in this way, theoretically cutting the rendering time in half.

4.2.3 Occlusion Culling

Objects that can not be seen due to them being behind other objects can also
be removed from the rendering pipeline. A number of di�erent approaches
to identifying these hidden objects exist, one of which is called Potentially
Visible Sets (PVS). PVS is implemented by precomputing a candidate set of
potentially visible polygons. These are then indexed at run-time to obtain an
estimate of the visible geometry. Binary space partitioning schemes reduce
the time needed for these calculations.

Another approach is Portal Rendering. In Portal Rendering, the object
space is divided into di�erent sectors, connected by shared polygons called
portals. If at any moment a portal is not visible to the viewer, the whole
sector connected to it can be discarded, otherwise the portal can be used as
a viewing frustum to the connected sector. Portal rendering is very e�cient
in indoor environments, but an open landscape might not bene�t much from
this approach, since there are no obvious portals separating di�erent parts
of the landscape.

4.2.4 Contribution Culling

Contribution culling is the process of discarding objects that will be very
small on-screen. This is usually determined by registering the size of the
objects projection on the image plane and comparing it to a certain thresh-
old value as these objects probably would not contribute very much to the
�nished frame but take up valuable rendering resources anyway. [4]

8

Hidden Surface Removal and Hyper Z

5 Hyper Z - A Hardware Implementation

There are several ways hidden surface removal can be implemented, both in
hardware and in software, and we will not be able to give a full summary of
all those techniques. What we aim for is to give an actual example of how
hidden surface removal can be implemented.

Nowadays, much of the hidden surface removal can be managed by hard-
ware. The development of powerful graphic processing units have somewhat
shifted the focus of software designers from implementing smart rendering
algorithms to synchronizing graphical applications with the rendering hard-
ware. Naturally, there is still much to be gained from clever software solu-
tions but taking advantage of the hardware is key in avoiding bottlenecks in
the graphics rendering pipeline.

The ATI Hyper Z technique is a hardware implementation found in the
ATI Radeon graphic cards. This, in turn, is comprised of four techniques:
Hierarchical Z, Early Z, Z-bu�er Compression and Fast Z Clear. [5]

5.1 Hierarchical Z

Hierarchical Z was originally developed by Ned Greene [3], and used several
Z-bu�ers with di�erent resolutions to determine an objects visibility. Greene
implemented this with octrees1, but ATI has chosen a somewhat simpler
approach. They store a reference z value for every 8x8 pixel block of the
bu�er by �nding the deepest value of all the pixels in the block, thus creating
a low resolution version of a Z-bu�er. It is then used to make a rough
initial visibility estimate for all the objects of a scene. All the objects not
guaranteed to be invisible are then passed on to the Early Z scan. [5]

5.2 Early Z

In a traditional graphics rendering pipeline, texturing of a pixel is done
when writing a pixel to the color bu�er. A depth test is performed by
checking the Z-bu�er to determine if the pixel is visible. If the z value
of the pixel is greater, it is behind some previously rendered object and
should be discarded. If the z value is less than the z value of the bu�er,
the pixel is visible, and should be written to the color bu�er. This means
that some pixels are rendered unnecessarily as they are overwritten moments
after rendering by some other pixel deemed to be in front of it. Obviously
this is a waste of time that could be hindered if the check for visibility was
performed prior to the rendering of the pixel.

1An octree is a BSP data structure in which each node has up to eight children. It

is mostly used to divide three-dimensional space by recursively subdividing it into eight

octants

9

Hidden Surface Removal and Hyper Z

Early Z does exactly this, by performing an extra z compare before the
texturing. Early Z operates per pixel, as opposed to the rougher Hierarchical
Z test [5].

It is important to understand, that even if we have an Early Z check in
the beginning of the graphics rendering pipeline, we still need to perform a Z
check later in the pipeline as well. For instance, a pixel shader might change
the z value of a pixel [7].

5.3 Z-bu�er Compression

Z-bu�er compression is used to cut down on the bandwidth used when using
Z-bu�ers. This is managed in two ways of which the most obvious one
is that compressed data is smaller than uncompressed data and therefore
any compression made will save bandwidth. This compression, however, is
subject to some restrictions [9].
The �rst restriction is that compression must be lossless since all changes in
depth precision might a�ect the resulting picture. Second, the compression
ratio must be �xed as the size of the blocks of data to be read from memory
must be known.
The compression method used by ATI is called Di�erential Di�erential Pulse
Code Modulation (DDPCM) and operates on 8x8 pixel blocks. In stead of
storing actual depth values, the DDPCM stores a reference value and a set
of di�erentials, capitalizing on the fact that all points belonging to a triangle
will lie in the same plane [9]. An obvious problem with this method is that all
the pixels in the block must belong to the same triangle for the compression
to work. As this is not always the case memory must be allocated to handle
uncompressed data resulting in the fact that the compression does not reduce
the amount of memory allocated. However, the compression does reduce
bandwidth load as a �ag is maintained for each block signaling which state
the block is in. This can either be compressed, uncompressed or cleared,
letting the hardware know when to read compressed data to save bandwidth.
This also allows another optimization; when a block is �agged as clear the
data does not have to be read at all!

5.4 Fast Z Clear

After each picture frame is drawn, the Z-bu�er needs to be cleared for the
next frame. This can be done by writing some clear-value to every slot in
the bu�er but that takes a lot of time. Thanks to the Z-bu�er Compression
there is another, more e�cient way of doing this.
As mentioned above, there is a �ag maintained for every 8x8 pixel block.
This �ag is stored in a lookup table and can be easily accessed. This makes
clearing the Z-bu�er very fast as setting the compression �ags to 'clear'
e�ectively clears the whole Z-bu�er. [6]

10

Hidden Surface Removal and Hyper Z

6 Summary

We have had a lot of fun researching the di�erent topics of hidden surface
removal. There is a wealth of information available on the Internet, as well
as in di�erent books and papers published by esteemed researchers both
from di�erent universities, as well as from the two major graphics hardware
manufacturers, Nvidia and ATI. One is often lead astray down the winding
paths of the marvellous land of computer graphics when confronted with
topics such as shadow rendering, depth-of-�eld simulation or lens �are im-
plementations to name but a few. Hopefully, readers of this paper will also
be encouraged to learn more in this diverse �eld.

11

Hidden Surface Removal and Hyper Z

7 References

References

[1] Ulf Assarsson and Tomas Möller. �Optimized view frustum culling al-
gorithms for bounding boxes�. In: J. Graph. Tools 5.1 (2000), pp. 9�22.
issn: 1086-7651.

[2] Edwin Earl Catmull. �A subdivision algorithm for computer display of
curved surfaces�. Ph.D. Thesis. The University of Utah, 1974.

[3] Ned Greene, Michael Kass, and Gavin Miller. �Hierarchical Z-bu�er vis-
ibility�. In: SIGGRAPH '93: Proceedings of the 20th annual conference

on Computer graphics and interactive techniques. Anaheim, CA: ACM,
1993, pp. 231�238. isbn: 0-89791-601-8.

[4] Jong-Seung Park and Bum-Jong Lee. Hierarchical Contribution Culling

for Fast Rendering of Complex Scenes. 2006. url: http://www.mee.
chu.edu.tw/labweb/psivt2006/papers/4319/43191324.pdf.

[5] Emil Persson. Depth In-Depth. 2007. url: http://developer.amd.com/
media/gpu_assets/Depth_in-depth.pdf.

[6] Guennadi Riguer. Performance Optimization Techniques for ATI

Graphics Hardware with DirectX R© 9.0. 2002. url: http://ati .amd.
com/developer/dx9/ATI-DX9_Optimization.pdf.

[7] Firing Squad. FS Guide: Occlusion Culling. 2002. url: �ringsquad.com/
guides/occlusionculling.

[8] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. �A
Characterization of Ten Hidden-Surface Algorithms�. In: ACM Comput.

Surv. 6.1 (1974), pp. 1�55. issn: 0360-0300.

[9] Per Wennersten. �Depth Bu�er Compression�. Master Thesis. Royal In-
stitute of Technology, 2007. url: http://www.nada.kth.se/utbildning/
grukth / exjobb / rapportlistor / 2007 / rapporter07 /wennersten_per_
07121.pdf.

12

www.kth.se

