Proof of Work

CHRISTIA

N HEL
and FELIX LEOPOLDO

LMAN
RIOS

Bachelor of Science Thesis
Stockholm, Sweden 2010

&

£y,
FKTHE

VETENSKAP
39 OCH KONST 9%

ST

KTH Computer Science
and Communication

Proof of Work

CHRISTIAN HELLMAN
and FELIX LEOPOLDO RIOS

Bachelor’s Thesis in Computer Science (15 ECTS credits)
at the School of Computer Science and Engineering
Royal Institute of Technology year 2010

Supervisor at CSC was Mikael Goldmann

Examiner was Mads Dam

URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2010/
hellman_christian_OCH_rios_felix_leopoldo_K10039.pdf

Royal Institute of Technology
School of Computer Science and Communication

KTH CSC
100 44 Stockholm

URL: www.kth.se/csc

Abstract

This essay covers the basics of a technique called proof-of-
work which is an attempt to have clients show their ded-
ication to a remote service before gaining access to it as
an attempt to prevent attacks. Drawbacks of the concept
and issues that might occur are discussed and solutions are
evaluated. In the puzzle section we cover aspects of differ-
ent puzzles that the client could be forced to solve in order
to provide a proof of work to the server. The essay dis-
cusses which style of proof-of-work that might be suitable
for web services and the result of a simple implementation
is included.

Referat

Proof Of Work

Denna essé tar upp grunderna i en teknik som heter proof-
of-woork. Det &ar ett férsok att fa klienter att visa sin de-
dikation till en tjanst innan den blir tillgdnglig i ett forsok
att motverka attacker. Nackdelar med konceptet och pro-
blem som kan uppsta diskuteras och 16sningar utvérderas.
I sektionen Puzzles undersoker vi tva olika pussel som en
klient kan bli tvingad att 16sa for att kunna visa ett bevis
pa arbete till servern. Essén tar upp vilken stil av proof-of-
work som kan vara lamplig for webtjanster och resultatet
av en latt implementation ar inkluderad.

Contents

1 Introduction 1
1.1 Imtroduction 1
1.2 Backgroundo 1
1.3 Purposes. e 2

2 Proof of Work 3
2.1 Puzzles e 3
2.2 Investigated Puzzles 4

2.2.1 Reverse Computinga Hash 4
2.2.2 Discrete Logarithm Problem)

3 Implementation 9
3.1 Possible Drawbacks and Issues 9
3.2 Web Browser Limitations 9
3.3 Implementation 10
3.4 Test of Calculation Time 12
3.5 Discussion e e e e e e 12

Bibliography 15

Chapter 1

Introduction

1.1 Introduction

Denial-of-Service!-attacks are a common problem when providing services over a
network. An attacker intensively makes multiple requests to a service which causes
overload and failure at server side. This is often seen among web based services such
as forums where spammers are abusing the search function or rapidly submitting
other types of forms that requires effort from the server to complete the request.

A method for preventing DoS-attacks is to have the client show its dedication
towards the service before gaining access to it. As a proof of dedication, the client
is requested to compute an answer to an algorithmic puzzle. The puzzle should
be hard to solve but the solution should be easy to verify. When the computation
is done, the answer is sent to the server which verifies the solution. The puzzle
puts heavy load on the client if several requests are made in a short time span;
this prevents the client from abusing the service. This method of authentication
for using a service is called a proof-of-work-protocol or simply proof-of-work. Since
this only causes load on a single spamming client, proof-of-work cannot prevent
distributed DoS-attacks since several clients then share the workload. Distributed
attacks are discussed in a paper by Laurie and Clayton[8] and will not be covered
in this essay.

1.2 Background

Proof-of-work was first explored in the 1990’s when problems such as spam and
DoS-attacks became more common. Ari Juels and John Brainard discusses a way
to implement client puzzles in order to resist TCP SYN attacks [5] which is an attack
where an attacker opens a huge number of TCP socket connections and leave them
opened.

Ed Kaiser and Wu-chang Feng describes a way to use proof-of-work as an al-
ternative to CAPTCHASs which is a very common method for preventing spam on

!The abbreviation DoS will be used from here.

CHAPTER 1. INTRODUCTION

the Internet. Their implementation mod_kaPoW is a module to the Apache web
server [6, 2].

The on-demand music service Spotify uses proof-of-work for decreasing the load
on their authentication system and to prevent brute force password attacks [3]. Of
course, there could be more unknown implementations of proof-of-work in closed
source projects.

1.3 Purposes

Proof-of-work should only be used whenever a server needs to process a request
and the processing demands more server resources than sending out a puzzle. If
responding to a request is as demanding as sending out a puzzle, proof-of-work is
rendered useless since the server side processing time for multiple requests are equal
in both cases. This will not ease up the server workload during an attack.

Proof-of-work should be used when clients can accept a small delay for requested
data. Examples of this are login forms and search forms. The easiest way to calibrate
the difficulty of the puzzle is when you have information about the client platforms
and specifications; a homogeneous client base is excellent.

It is clear that proof-of-work should not be used when fast request processing is
required.

In this essay we shall investigate how the proof-of-work works to prevent overload
of a web server.

Chapter 2

Proof of Work

2.1 Puzzles

A puzzle should not require any user interaction to be solved, and for every puzzle
there should be a good lower time complexity bound for the best known algorithm
that solves the puzzle. As mentioned earlier the puzzle that the client will have to
solve should be quite hard to compute for the client and easy to verify by the server.
A common property of the puzzles is that they have to be non pre-computable. If a
puzzle is pre-computable, an attacker could spend some time calculating solutions to
puzzles and store them in a table before an attack. When attacking, the solution for
the puzzle is looked up in the table and provided without any significant processing
time, rendering proof-of-work pointless. It will be necessary for the server to identify
the clients so that one client cannot solve a puzzle for another client.

The difficulty of the puzzle is an important decision — will devices with different
performances be able to compute the same puzzle within the same time limit using
the same difficulty? Furthermore, since the clock frequency of computers is stag-
nating while the number of cores increases, it is a good idea to have a puzzle that
is not scalable i.e. not able to be computed faster by computing on several cores
simultaneously.

We have examined two different puzzles and we have discussed their properties
in 2.1.

Necessary Properties for a Puzzle

A summary of necessary properties for every puzzle is given below.

e The solution should be hard to compute for the client, and at the same time
easy to verify for the server.

o A client shall only be able to compute its own puzzle.

e Pre-calculation of a puzzle should not be possible.

3

CHAPTER 2. PROOF OF WORK

e There should be a good lower time complexity bound for the best known
algorithm that solves the puzzle.

e The difficulty of the problem should be configurable.

2.2 Investigated Puzzles

2.2.1 Reverse Computing a Hash

The puzzle presented below is based on reverse computation of a hashed string
from DOS-resistant Authentication with Client Puzzles[1]. Normally, it is almost
impossible to reverse a hash to its original string but it is easier to find a string that
hashes to a similar hash. This is the key idea for this puzzle.

h(X,s) =000...000+Y (2.1)
m zeros

where h is a hash function, m € Z and s is a string. As mentioned above, hash
values from strings are very hard to reverse. A known puzzle for use in proof-of-
work is to provide the client with a string s used as a seed and a level of difficulty m.
The difficulty m specifies how many leading zeros the hash A should contain. The
client then attempts to find a string X which has a hash value with the specified
number of of leading zeroes and which also contains the seed sent from the server
i.e. it computes h(X,s) where X and s are concatenated. The string s used as seed
is re-generated on every new request and is needed to prevent the client from using
pre-calculated tables for the solution.

Protocol

The difficulty m is pre-assigned. The protocol is described below.
Client Sends a request for a service to the server.
Server Generates a random s and sends difficulty m and seed s.

Client Tries to concatenate s with a guessed string X and computes h(X, s) where
X and s is concatenated. This process is repeated until the calculated hash
starts with m leading zeros. When X is found the client provides the server
with it.

Server Verifies that h(X,s) has m leading zeros and provides the client with the
requested service.

Figure 2.1 may help to visualize the situation.

2.2. INVESTIGATED PUZZLES

Client Server
Request for service S
Generates s.
(m,s)
Tries to find a string X
that makes
h(X,s)
to a string with
m leading zeros.
X
Verifies the solution by
computing h(X,s).
S

Figure 2.1. Flow chart for the Reverse computing a hash puzzle.

Properties

The puzzle solutions are not pre-computable since the server generates a random s
at each request. The puzzle is also easy to implement since most programming lan-
guages provides some hash function that can be used. To calibrate the difficulty of
the puzzle one increases the value of m. This leads to a puzzle that is exponentially
harder to compute which is inefficient when trying to find an appropriate difficulty.
This can easily be solved by limiting the leading hash numbers in the solution to a
range of allowed numbers instead of just zeros.

2.2.2 Discrete Logarithm Problem

The puzzle presented below is a special case of the Discrete Logarithm Problem [9)].

y=g¢" modp (2.2)

where p is a prime number, z € Z, , y € Z, \ {0} and g € Z, \ {0,1}. This
puzzle forces the client to calculate zen; | that makes (2.2) true where y, g and p
is given by the server.

The server chooses a sufficiently large p and generates at random gepper > and
g and calculates y = g®s¢ver mod p and stores Tserver. The server then sends y, g

Y% tient serves as x in (2.2) at client side.
2 P server SETVES as T in (2.2) at server side.

CHAPTER 2. PROOF OF WORK

and p to the client. The client searches for xjen: such that y = g¥eient mod p
and sends .ent back to the server. The server then simply makes the comparison
Tserver = Telient 1O verify that the correct x has been sent.

The space needed to store all values of all combination of g and z increases in
O(p?). Hence a big value on p will protect a against such pre-computed tables. On
the other hand, when increasing the value of p the difficulty of solving the puzzle
also increases. Omne solution to solve that problem is to at the server side when
generating Tserver do not generate over the whole Z, but only over some range
specified by a range start, rgq-+ and a range size, Ts;,.. The difficulty of the puzzle
will then be growing due to r4... Moreover to prevent a malicious client from pre-
calculate the combinations from 7sq¢ t0 (7start + Tsize), Tstart Should also be chosen
randomly.

Protocol

The prime number p and the range size rg;,. are pre-assigned. ¢ and 7 are
randomly generated and should be re-generated every nth request to prevent the
client from using pre-calculated tables, where n is an integer specified at server side.
To generate new values of g and x4t at every request would also cause too much
load on the server. The protocol is described below.

Client Requests for a service S.
Server Makes the following steps:

1. Generates a random 7grt € [1... ((p — 1) — rsize)] every nth request.
Generates a random Zserper € [Tstart - - - (Tstart + T'size)]-
Generates a random g where every nth request.

Computes y = g¥s¢"ver mod p and stores Tserver-

oo W

Sends vy, g, p, Tstart and g, to the client.

Client Tries to find an Zjent € [Tstart - - - (Tstart + Tsize)] that fulfils the equation
y = g¥elient and sends T.jent back to the server.

Server If the comparison T.jjent = Tserver 1S true, server sends the requested service
to the client.

Figure 2.2 may help to visualize the situation.

2.2. INVESTIGATED PUZZLES

Client Server
Request for service S

Generates at random
Tstarty; Lserver and g-
Computes
y = g¥server mod p.
and stores Tgerper

(y7 9,p, Tstart)

Tries to find Z¢ient
such that
y — gwclient mod p

Lclient

Verifies that

Lclient = Tserver-

Figure 2.2. Flow chart for the Discrete logarithm problem puzzle.

Properties

As mentioned above a table with pre-computed values of x for all combination of
y and g will increase in O(p?). Remember, this is for only one specific prime. For
every newly decided prime a new table would have to be made. As an example, by
letting p = 99999989 and assuming that every integer is represented by 4 bytes, a
table with pre-computed solutions would be of approximately 4 - 9.5 - 10'® bytes.

Chapter 3

Implementation

3.1 Possible Drawbacks and Issues

When implementing proof-of-work as a solution against search abuse in web services,
the first question raised is probably whether or not the calculation time ruins the
experience for the user. The time it takes to solve the puzzle could be an issue for the
client since the wait might be strenuous. This can be solved entirely or partially in
numerous ways. A possible solution could be to have the puzzle solution calculated
as the search query is entered.

Assume that the average search query consists of 2.4 search terms, as suggested
in [12], and that a person composes the search query at a rate of 19 words per
minute [7]; this makes the time for entering the query 7.58 seconds. Now assume
that the person searching does not enter any advanced filter rules [12] and that
the query is executed instantly; we have 7.58 seconds to asynchronously calculate
the solution to the puzzle without affecting the client’s experience. The fast-typing
users who already knows their query in beforehand would have to wait a few seconds
for their search to be executed but it might still be faster than the more common
CAPTCHA-solution. To ease up the process even more, proof-of-work could be
turned off for logged in users since the registration process should handle the event
of a user being a non-human spammer.

Another issue is low performance clients where the work takes too much time.
Different platforms have different speeds that may affect the solving time.

3.2 Web Browser Limitations

When implementing proof-of-work to protect a web search function, the client
side programming language will probably be JavaScript. JavaScript is not multi
threaded, henceforth a puzzle cannot be solved while the user fills in a form with-
out the web browser acting unresponsive. There are a few solutions to this problem.
We could do the puzzle calculations after the user submits the query but, as men-
tioned earlier, this might ruin the experience for the user. Another solution is to

9

CHAPTER 3. IMPLEMENTATION

use Web Workers [13], an API for running scripts in the background. Web Workers
are currently only implemented in a few browsers.

Different browsers may have different implementations of JavaScript of various
speed. We will investigate this in Section 3.4.

The web browsers Morzilla Firefox and Google Chrome have time limits that
limits the computation time for a JavaScript. When the limit is exceeded the
browser prompts the user with a question whether to continue running the script
or not. It is obvious that this would ruin the experience for a user.

3.3 Implementation

Ajax is a programming style for the web using JavaScript to asynchronously send
a request to a server. Some server side language such as PHP [10] is often used to
perform actions on the server and XML is used to pass data between the client and
the server. Ajax could for example be a used in a search field that makes a database
query each time a new character is typed. Here it might be a good idea to let the
client solve a puzzle before getting access to fulfill the request.

Our implementation of a simple proof-of-work system consists of a small web
page with an input form that represents a search box or a log in form. Upon load,
the page queries the server silently using Ajax for a puzzle. The puzzle is then
solved in JavaScript at client side. Since JavaScript is synchronously executed and
single threaded one might in the future want to use Web Workers to make the
GUI available while performing the calculations. When the form is submitted the
server verifies that the puzzle is correctly solved before providing the client with
the requested information. PHP was chosen for the server side but the technique
should be similar in other languages. The reverse hash calculation puzzle using md5
as hashing function was used in this implementation. The JavaScript API jQuery
[4] was used because of its simple syntax. To ensure that the client does not change
identity and solves another clients puzzle, PHP sessions was used. Sessions works
both on client and server side and has a unique identifier [11]. The default max
lifetime for a session is 1440 seconds [10]. An attacker could use this and cause
a DoS-attack by requesting a service protected by proof-of-work several times and
ignore the puzzles. This could lead to an unacceptable number of open sessions. To
prevent this one should add a time limit within which each puzzle should be solved.
After the limit has exceeded, the session will be destroyed. The length of this limit
should be configured according to the difficulty of the puzzle.

The implementation is available for testing and downloading at
http://wproj.nada.kth.se/~chellman/pow/.

10

3.3. IMPLEMENTATION

Client Server

) Ajax request R
Loads a protected web service. _

Detects that there
is no solution provided
(s,m)

Tries to find a string X

that makes
h(X,s)
to a string with m leading zeros.
X
Verifies that
h(X,s) has m leading zeros.
S

Figure 3.1. Flow chart for the protocol of the implementation.

Protocol

The protocol for the implementation is described below.

Client Loads a JavaScript enabled page which makes an Ajax request for informa-
tion from a PHP script.

Server The PHP script detects that no solution has been specified in the request
and provides the client with a seed and a difficulty.

Client The JavaScript receives the variables in the Ajax call back function and
starts calculating a solution by generating strings for concatenation and hashes
the results. When a correct amount of leading zeros according to the difficulty
shows up in the start of the hash, another Ajax call is made to the PHP script;
this time with a solution as an argument.

Server The PHP script detects that a solution is provided and concatenated the
solution with the seed and hashes it to make sure that the first part are zeros.
The seed and difficulty are remembered through a PHP session, unique for this
client. The PHP script returns the requested information to the JavaScript.

Figure 3.1 may help to visualize the situation.

11

CHAPTER 3. IMPLEMENTATION

m Time (milliseconds)
Firefox 3.5.2 | Firefox 3.6.3 | Google chrome 4.0.207.0
1 98.5 8.4 3.8
2575.6 110.5 55.5

Figure 3.2. The results are mean times for solving 100 puzzles. m is the difficulty
of the puzzle.

3.4 Test of Calculation Time

The implementation was tested by sending 100 requests in sequence from two differ-
ent web browsers. In this test, Google Chrome and Mozilla Firefox was used. This
was to examine if two web browsers using different JavaScript engines would have
a noticeable difference in the puzzle solution calculation time. Different difficulties
was tested to see if the two browsers would both fall into an acceptable time range
at the same difficulty.

The computer running on the client side was a MacBook Pro with an Intel Core
2 Duo 2.53 GHz CPU. Firefox was tested using both version 3.5.2 and version 3.6.3.
The version of Chrome was 4.0.207.0. Results of the test are given in Figure 3.2.

3.5 Discussion

Proof-of-work is simple to implement. Choosing a good proof-of-work puzzle is
trivial compared to the issues facing different client platforms as we conclude from
Figure 3.2. If the difficulty of the puzzle differs from client to client depending on
what platform they have then prevention of spoofing is hard.

The JavaScript implementations efficiency differ much between the browsers.
Chrome solves the proof-of-work implementation much faster than Firefox. This
makes it hard do have the puzzles solved equally fast. If the puzzle difficulty is
tweaked for each specific browser, an attacker would simply identify itself as the
slowest browser and get the easiest puzzle.

A possible workaround for the particular case with Firefox and Chrome differ-
ent speeds is to have Firefox using Web Workers. This would make the JavaScript
execute in the background and that might compensate for the slow execution speed.
Although this helps for now, Chrome and other browsers can implement Web Work-
ers in the future and gain the same advantage. There is also a future possibility
that Firefox improves its JavaScript engine or that another puzzle might be more
suitable for its current engine.

Possible future implementation improvements

When Web Workers are more commonly available, proof-of-work should use it to
not lock up the user interface while doing the calculations. If a script executes for a

12

3.5. DISCUSSION

long time without Web Workers, browsers sends a warning and tells the user about
an unresponsive script.

A time limit for the computation of a puzzle is necessary to prevent attackers
from open several unused sessions, as mentioned in Section 3.3.

13

Bibliography

Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-resistant Authen-
tication with Client Puzzles. Springer Berlin / Heidelberg, 2001.

Captcha. http://captcha.net, May 2010.
Despotify. http://despotify.com, May 2010.
Jquery. http://jquery.com, May 2010.

Ari Juels and John Brainard. Client Puzzles: A Cryptographic Countermeasure
Against Connection Depletion Attacks, pages 151-165. Proceedings of NDSS
'99 (Networks and Distributed Security Systems), San Diego, CA, February
1999.

Ed Kaiser and Wu cheng Feng. mod__ kaPoW Protecting the Web with Trans-
parent Proof-of-Work. 2007.

Clare-Marie Karat, Christine Halverson, Daniel Horn, and John Karat. Pat-
terns of entry and correction in large vocabulary continuous speech recognition

systems. ACM, 1999.
Ben Laurie and Richard Clayton. 'Proof-of-work” Proves Not To Work. 2004.

Mathworld wolfram. http://mathworld.wolfram.com/DiscreteLogarithm.
html, May 2010.

Php. http://php.net, May 2010.
Php sessions. http://php.net/manual/en/intro.session.php, May 2010.

Amanda Spink, Dietmar Wolfram, Major B. J. Jansen, and Tefko Saracevic.
Searching the Web The Public and their Queries. Journal of the american
society for information science and technology, 2001.

Web workers. http://whatwg.org/specs/web-workers/current-work, May
2010.

15

www.kth.se

