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Abstract
It is difficult to write fast, bug free applications. A small
portion of the code is run much of the time and it is hard
to know where it is. Unexpected behavior caused by bugs
can often show up in equally unexpected places.

There are a lot of tools available to help the developers
find bugs and bottlenecks so that they can spend their time
improving the right parts of their applications.

I investigated the ease of use for profilers and found the
results well worth the learning time. Using simple methods
you could quickly find many common errors or bottlenecks
that would otherwise be hard to find.



Referat
Hur profilers kan hjälpa mjukvaruutveckling

Det är svårt att skriva snabba, buggfria program. En liten
del av koden körs en stor del av tiden och det är svårt att
veta var. Oväntat beteende från buggar uppträder ofta på
lika oväntade ställen.

Till utvecklarnas hjälp finns en mängd verktyg för att
hitta olika buggar och flaskhalsar så att de kan spendera
sin tid på att förbättra rätt delar av sina program.

Jag undersökte hur lätta profilers var att använda och
fann att resultaten var väl värda tiden att lära sig verkty-
gen. Med enkla metoder kunde man snabbt hitta många
vanliga fel och flaskhalsar som annars skulle vara svåra att
hitta.
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Chapter 1

Introduction

The ”ninety-ninety rule”1 attributed to Tom Cargil is an aphorism in software
engineering that states:

”The first 90% of the code accounts for the first 90% of the development
time. The remaining 10% of the code accounts for the other 90% of the
development time”2.

It illustrates the difficulty of anticipating the hard parts of a software development
project. Over the years it has been referred to in many variations such as: ”90% of
the time is spent in executing 10% of the code”[1], illustrating that a small part of
the code is very performance critical.

These variations may not represent real scientific data but Barry Boehm mea-
sures that 20% of a programs code consumes 80% of its execution time[2]. Further
Donald E. Knuth found that more than 50% of the execution time is accounted for
by less than 4% of a programs code[3]. Optimising these parts of the code is crucial
for the application performance, optimising other parts won’t do much good.

Donald E. Knuth describes the strong negative effect of trying to improve per-
formance in non-vital parts of the code saying that it leads to more work when
considering debugging and maintaining the code, or as he puts it[4]:

”premature optimisation is the root of all evil”

Therefore optimisation should only be done after the performance-critical parts have
been identified.

Andrew J. Ko & Brad A. Myers has concluded[5, 6] that when guessing what
caused an unexpected behavior or a bug the developers were wrong almost 90% of
the time[7]. It can be said that writing fast and reliable code is very difficult. When
trying to improve speed or fix bugs, much time will be wasted working on the wrong
parts of the code if no tools are used to help identify the right parts.

1also known as the ”ninety-ten rule”
2it is not a typo that the development time sums up to 180%. It is meant to show that writing

code is harder than expected
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CHAPTER 1. INTRODUCTION

1.1 Problem formulation
Are profilers easy enough to use for finding bugs and bottlenecks, so that they can
help developers write better code?

1.2 Structure
This thesis describes the basics of analysing software for performance and correct-
ness, describing a few different approaches and discussing their pros and cons. A
more in depth study of profiling and instrumenting was made to detail how these
tools can make it easier to find bugs and bottlenecks in applications.

The ease of using such tools to improve an applications quality and performance
was investigated. The basic functionalities available in most profilers and ”instru-
ments” respectively, was used during development of a smaller application. The gain
in performance and bugs found as well as the ease of finding them was documented
to be discussed.
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Part I

Background
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Chapter 2

Definitions

2.1 Defining performance

To be able to improve the performance of an application it is critical to define per-
formance. An engineers answer would be that performance is calculative speed.
This is a good answer for applications working with simulations, 3D-rendering or
other processor intensive purposes. These kinds of applications all have long con-
tinuous calculations and it is easy to define and measure performance by measuring
the time of these calculations.

For algorithms there are ways to calculate and compare the asymptotic speed,
called the computational complexity[16]. Complexity is a way of characterising how
the amount of computations scales to the size of the data. Most common is to look
at average case and worst case. It is a measurement for growth rate, so constant
factors that can be crucial to the real-life speed won’t be accounted for. Algorithms
can also be compared by how much space is needed to perform the computations,
this is called space complexity. It is important to note that complexity only describes
the asymptotic speed or memory use of an algorithm and therefore is a very generic
measurement.

In the end it is likely that an end user of an application will be the judge of its
performance. In that case it is highly unlikely that the user will use a stopwatch or
another objective way of defining performance. In those cases perceived performance
may matter more than actual speed since the user is being subjective. What the
user perceives as performance can be many things. Feedback and response time are
often important to give a performant appearance.

In a situation where calculations are done over a large enough data set, the
”faster” approach would be to do all calculations and then redraw the screen but a
more user friendly approach would be to do ”unnecessary” calculations to redraw
the application during these calculations, updating values as they are calculated.
Not only will the user get feedback that the application is running but it may even
be that the values update so often that the user gets impressed with the speed of
the calculations.

5
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Splash screens, an image shown while the application is loaded, are often used
to let the user know that the application is on it’s way. This is a good way to give
feedback and make the system feel responsive to the user. Large applications often
use splash screens since they take a longer time to load into memory. Even with a
splash screen the application will eventually be perceived as slow as the seconds go
by.

Animating splash screens can be used to give the appearance that the application
is ready. A simple but effective animation is to scale up an image of the application
in a way that feels like a natural analogy to ”opening” the application. When
the interface of the application is loaded it takes the place of the image. In an
application that launches in about 1 second, using a 0.5 second animation starting
half way through the launch could make it seem like the application launched twice
as fast.

Performance doesn’t need to be just one thing, but can be a combination of all
things mentioned above. How these things are weighted will vary from case to case
but it could be said that improving on the current limiting factor will improve the
performance no matter how it is defined.

This thesis is about tools that measure calculative speed and memory efficiency.
A suitable definition for performant application would be applications that initialize
quickly and run fast with low memory consumption. Splash screens are only about
appearance.

2.2 Defining program correctness
A computer would consider an application that runs without errors and follows the
code as running correctly. For many purposes this is very valid definition but it
fails to account for semantic errors in the code. The developer could have meant for
the application to do something but wrote valid code that did something else. It is
important for both the developer and the user that the application does what it is
intended to do. So a program that runs without errors and does what is intended
to do is a good definition of a program running correctly.

The intensions of the developer will always be hidden from both the computer
and any analysis tool. Therefore a program analysis tool cannot directly look at
this kind of correctness.

6



Chapter 3

Modern analysis tools

It has been proven that no algorithm can determine if a program runs without
errors for all programs with a small and finite space of states[8]. This can be done
by reducing to the halting problem, stated and proven unsolvable by Alan Turing[9].
Although unsolvable, an approximate answer may find enough errors to make the
program run long enough without errors to give it an error free appearance. This
is a good goal for any tool analysing program correctness. Software can either
be analysed by looking at the code (static analysis) or by running the application
(dynamic analysis).

3.1 Static analysis

Static analysers parse the code and tries to find errors in it. This works really
well for many common kinds of bugs as the analyser can track a large amount of
logic branching in mere seconds. Therefore static analysis can offer almost effortless
detection of some critical errors that can be difficult to find otherwise. Using a static
analyser often can really help find errors as soon as they are introduced making the
cost of fixing them as small as possible.

The downside is that static analysers will only find the special kinds of errors
they are designed to look for. Dynamic analysis on the other hand will only follow
the specific branch of code that the application is running.

3.2 Dynamic analysis

Dynamic analysers collect and represent application run-time data to be analysed
mainly by the developer. The kinds of data being gathered depends on the capabil-
ities of the tools and what data the developer is looking for. Getting large amounts
of data is easy, gathering one kind of data every millisecond on a quad-core machine
for a second would generate 4000 data points. Therefore an important part of a
dynamic analyser is to visualise and help make sense of that data.

7
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There are two goals in software analysis, program optimisation and program
correctness, and most tools specialise in one of these. Certain aspects of optimisation
and correctness, such as threading, IO or graphics often have their own set of tools
since they have special properties to analyse. E.g. when looking at performance
of a multithreaded application the tool needs to be able to trace and visualise not
only the work done by each thread but how they work together and if one thread
is locking another thread.

The two main approaches to get run-time data from an application are sam-
pling and instrumenting. Sampling is the statistical procedure of gathering samples.
When it is time to gather data, the sampling profiler halts the application using
operation system interrupts and collects its data. Instrumenting (or instrumenta-
tion) is the procedure of modifying an application by inserting code that outputs
analysis data. The ATOM platform[17] has been a big influence in application
instrumentation[18].

3.3 Profiling
Profilers, sometime referred to as performance analysers, are dynamic analysis tools
that gather data from an executing program. Although tracing and instrumenting
is also considered profiling they will be discussed later in Section 3.4 on page 10.

3.3.1 Statistical profiling

A statistical profiler probes the application at regular intervals and gathers some
data of its current state1. It may be argued that this sampled result is faulty because
it does not measure between the sampling points. Indeed, worst case results with
a large sample interval and a short run-time can give you faulty results with two
kinds of problems. Routines may be completely missed between sampling points or
may be interpreted as a longer routine if running when sampling occurs but not in
between, as illustrated in Figure 5.2 on page 20.

In this worst case, the sample is truly a faulty result. However, in practice
these faults average out over very large amounts of samples. Since the performance
critical routines run much of the time they should have even better coverage and get
a good measurement. The expected error of a routine is actually about the square
root of the sampling period[19]. E.g. if a routine runs for a second and is being
sampled every 0.01 seconds, the expected error is 0.1 s. If it is needed the sampling
can sometimes be run more then once, accumulating the results across samples.

The strength of time sampling is that it can give a good overall understanding
of an applications performance without skewing the results with high overhead,
allowing the application to run at nearly full speed. With dedicated hardware, such
as the PCSAMPLE register on some MIPS processors[11], the time cost can be
further reduced resulting in an even lower overhead.

1It is common to use the applications instruction pointer to do this.

8



3.3. PROFILING

Figure 3.1. The real execution and its sampled interpretation of the call stack.

3.3.2 Call graph profiling

A call graph profiler is used to generate call graphs, directed graphs describing
relationships between routines in an application. The call graph are used for better
human understanding of the flow of data and work within the application. Call
graphs can either be represented as an actual graph or as a call tree. An example call
graph can be seen in Figure 3.2 on page 10 where the routines call their subroutines.

If the profiled application spends much of its time in third party libraries or
other code that developer can’t make changes in, it can be hard to improve the
performance. A call graph can be used to understand why and when these libraries
are being called so that changes can be made in the code that can be modified. E.g.
if some library is used to fetch data from some source and the application uses this
method often, it may be better to fetch data in larger chunks. A call graph could
help spot these situations.

9
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Figure 3.2. The sample call graph of a single thread.

3.3.3 Example tools

Some examples of common profilers are: AMDs CodeAnalyst and Intels VTune
for Windows and Linux platforms as well as Shark for Mac OS X. They all sup-
port all the sampling methods mentioned above as well as sampling multithreaded
applications and viewing the sampling result line by line in the source code.

3.4 Instrumenting and tracing

When instrumenting an application, analysis code is inserted into the application,
either automatically at compile-time or manually with the rest of the code, the later
is sometimes referred to as tracing. Instrumentation can be used to get exact data
out of an application in many ways. E.g. to see the exact number of times a routine
gets called a counter could be inserted at the entry of that routine. By inserting
code in the exit of that routine, the execution time of each pass through the routine
could also be calculated.

Instrumentation could also be much more thorough and flexible: look at input,
output, call graphs, stacks and work with their own variables. This process can
have a significant overhead if the analysis code is executed much of the time. This
can happen if the instrumented code is executed very often or the analysis takes
much time. Therefore instrumentation is more aimed towards a deeper level of
investigation and analysis.

Say the application has been profiled using a statistical profiler and it has been
determined that a lot of time is being spent reading and writing to disc. The
application could then be instrumented to print out what files are being accessed,
how often and what routines called the read/write. This will make it easier to
determine the cause of the performance issue and solve it.

Instrumentation is also a common method for analysing program correctness.

10



3.4. INSTRUMENTING AND TRACING

In a survey2 by Glenn R. Luecke et al.[20] the best systems for finding run-time
errors in C and C++ programs, Insure++ and Purify, used instrumentation. Both
of these systems slowed down the execution around 25 times compared to normal
gcc compiled executables. This slowdown doesn’t matter that much since the focus
is on correctness. It is important to note that applications can be instrumented
without a significant performance loss, especially when only parts of the application
is instrumented.

3.4.1 Intrusiveness

Instrumenting an application can be intrusive, meaning that the instrumentation is
making a significant amount changes to the application. Some level of intrusiveness
is required to be able to get data. Being very intrusive will affect the application
in several ways. The performance is lowered3 since extra code is added and since
the compiler cannot optimise the code. There may also be changes in the memory
reference patterns[22]. All these effects are bad so the instrumentation should be as
non-intrusive as possible. How intrusive the instrumentation needs to be depends
on what data is being gathered. Instrumenting certain parts of applications, such
as entries and exits of routines, can be less intrusive. Instrumenting these parts
with code that doesn’t modify the application can be called ”non-intrusive” even
though they are only low-intrusive.

3.4.2 Production systems

One important use of instrumentation and tracing is the ability to analyse produc-
tion systems, that are already shipped and running. This can be done by inserting
deactivated trace code into the application and activate it from an outside source.
Another approach is to mark safe places for instrumentation and then insert trace
code via JIT-compilation. This can be valuable when debugging a system, like a
server, that can not be taken down just for testing4.

This can also be useful if a hard-to-replicate bug appears. By turning on or
adding trace code, information about why the bug is can be retrieved without
restarting the application and having to try to replicate the conditions for that bug.

3.4.3 Example tools

Insure++ and Purify, as mentioned above are two examples of instrumentation
tools, aimed at program correctness, available for Windows, Linux and Solaris plat-
forms. Valgrind is a free alternative available on Linux and Mac OS X that also
uses instrumentation.

2The purpose of the survey was to compare the capabilities and ease-of-use of commercial and
non-commercial systems.

3The execution time may even exceed three orders of magnitude[22].
4DTrace, described in Section 5.2.1 on page 17, was made for this purpose[21].

11



CHAPTER 3. MODERN ANALYSIS TOOLS

Pin, available for Windows and Linux, and DTrace, available on Solaris and
Mac OS X, are two examples of tools that allows dynamic insertion of code into an
application via JIT-compilation.

12



Part II

Investigation
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Chapter 4

Purpose

4.1 Conclusions from the literature
There are many tools available to help find many different kinds of flaws in appli-
cations. The introduction illustrated the difficulty of finding these flaws and errors
by hand and pointed to the need for these tools. Necessity doesn’t mean ease of use
and we know from experience that small enough applications are manageable even
by hand.

Managing, optimising and maintaining an application are all important parts of
the software development process. Much work seems focused on what information
can be provided in large applications by an experienced analyser. This is of course
very important but so is the ability to scale a powerful tool down to moderate sized
and even small sized applications.

4.2 Investigation purpose
The purpose of this investigation was to see how difficult these tools were to learn
and use and how difficult it was to acquire good results.

4.3 Methodology
A statistical profiler, Shark, and an instrumenting approach, DTrace and ”Instru-
ments”, was used in the investigation. To learn how to use these tools they were
first used, in a smaller pre-investigation, to analyse a smaller application and look
at intrusiveness in a third party application.

Further a bigger application was developed, during a few weeks, with rigorous
use the same tools during and after development. The focus was laid on the func-
tionality that is available in most of the tools of their respective kind to keep focus
away from the specifics of the tools being used.

Errors or bottlenecks that where discovered where documented along with work
that lead to the discovery and the gain from solving it.

15





Chapter 5

Tools

5.1 Shark

Shark is a low overhead statistical profiler by Apple Inc[10]. Its purpose is to help
understand and optimise performance. Shark can profile just the application, the
entire system or even sample on hardware and software performance events such as
cache misses. In some common performance pitfalls Shark can give you advice of
how to improve performance1.

By default Shark samples each running thread every millisecond with a typical
overhead on the order of 20 microseconds. This low overhead can be accomplished
since the sample collection takes place in the kernel and is based on hardware
interrupts[10].

Besides time sampling, Shark can also use performance events to trigger sam-
pling, generate exact profiles for memory allocations and use static analysis on
infrequently used code paths. These functionalities target more specific problems
and won’t be in the investigation.

If much time is spent in libraries or other code that the developer can’t modify,
that time cost can be assigned to the callers to see where the developer can improve
its usage of those libraries. This can be done since the call stack is collected during
samples.

5.2 DTrace and Instruments

5.2.1 DTrace

DTrace is a dynamic tracing framework, introduced by Sun Microsystems in 2005
released under the free Common Development and Distribution License (CDDL). It
was originally developed for Solaris but has been ported to other Unix-like systems
such as Mac OS X (since 10.5 ”Leopard”)[15].

1No such advise was given for my code.
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DTrace is used to safely analyse live production systems and provide concise
answers to more specific questions. The DTrace framework provides instrumenta-
tion points, called probes. Each probe is made available by a provider, instruments
a function in a module and has a name. These four attributes servers a unique
identifier for each probe, in the format:

provider:module:function:name.

A probe is triggered, fires, by specific behavior causing it to take some action, writ-
ten in the D scripting language[12]. Actions are used to record data. DTrace actions
can be used to change system state in a precisely described way but these actions
are not allowed by default. DTrace supports lock-less thread-safe2 aggregations and
variables. The general form for the aggregates are:

@name[ keys ] = aggfunc( args );

with aggregating functions such as count, sum, avg, min, max[13].
A D Program consists of one or more clauses, describing the instrumentation.

Each clause targets one or more probes using their identifiers with blanks as every-
thing and question marks as wildcard, e.g.

syscall:::entry

targets the entries of all system calls. The probe triggering can then optionally be
narrowed down by a predicate that works like and if statement, e.g.

/execname == ”MyApplication”/

would prevent the probe from firing unless the application was ”MyApplication”. Af-
ter the trigger conditions the action statements are written within curly braces[13].

The power of DTrace is that very specific data can be collected from already
running applications with great ease. Running one-liner aggregation script over
some key will print a histogram for the keys. Disabled probes has zero effect on
the performance of the system. This is important since there are lots of probes in
a system, my system3 has over 86000 probes.

5.2.2 Instruments

Instruments is a debugging and performance tool for the Mac OS X platform. The
Instruments application uses special tools, called ”instruments”, to collect different
data over time. Unlike many other analysis tools, Instruments can run different
instruments at the same time, allowing the developer to trace and viewing dif-
ferent data side by side. As many instruments as needed can be added to the

2This means that these aggregations can be used in multi-threaded applications without in-
serting locks

3The development was done on an iMac running Mac OS X 10.6.3

18
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same trace document but it is recommended to use less than ten to not skew the
performance[14].

The developer can run through the application once and record different things
like CPU usage, memory allocations and user interaction and see that when a certain
button is clicked the program runs slow because application allocated many objects.
The developer can then make changes to that code and see the differences between
several runs side by side. Since the user interactions where recorded, the same
interactions can be replayed during the other recordings[14]. This is useful when
replicating bugs but won’t be used in the investigation.

Many of the built in instruments use DTrace to collect their data and custom
D programs can be added to view the results side by side with the rest of the
instruments[14].

5.3 Examples
For a simple example, say we want to know every time our application opens a file.
The code for a D program doing this would be:

syscall::open:entry
/ execname == "MyApplication" / {

printf("%s", copyinstr(arg0));
}

and the same D program written as a DTrace instrument for Instruments would
look like:

Figure 5.1. The first DTrace example, that prints out when an application
opens a file, written as a DTrace instrument

For a more advanced example, say we want to know the average execution time of
a function within our specific application, this differs from our previous example
where the open function was in the system. This time our D program would need 2
probes and we would need to use thread scoped variables using self->. The code
to do this could be:

19
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pid1234::some_function:entry {
self->entry_time = timestamp;

}

pid1234::some_function:return {
@duration = avg(timestamp - self->entry_time);

}

In the example above our application was process ”1234” and the function of interest
was some_function. We used an aggregate for the durations since they are thread-
safe and print out when we stop our D program. To use the same D Program in
Instruments it makes more sense to only calculate the duration as a local variable
and calculating the average in post processing. A DTrace instrument for this could
look like:

Figure 5.2. The second DTrace example, that calculates execution time of a
function, written as a DTrace instrument

20
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Chapter 6

Pre-investigation

6.1 Slow graphics

I wrote a small, unoptimised test application that created a large number of shapes
with different properties, shapes and shading and moved them around. I added
shapes in different views from mixed graphics libraries, like OpenGL and Quartz
2D, until the application appeared slow. I wanted to sample the application to see
what made it run slow and measure the improvements I could make.

The first run showed that 65% execution time was spent calculating normal
distributions for a Gaussian blur. Assigning the time cost to the callers only showed
that all execution time was in the drawing method, however I could figure out that
the blur was used to create drop shadows on some of the shapes.

I looked at my code for drawing shadows and realised that the shadows was
recalculated on the CPU for every frame. I could either use the graphics card and
shaders, like GLSL, to calculate the shadows or reuse them. I choose to calculate
them for the first frame and cache and reuse them at the other frames. This was
enough to make the application run smooth again and significantly reduce CPU
usage.

The total CPU usage went down a factor 10 by not recalculating the drop
shadows between frames. Any further optimisation seemed unnecessary.

6.2 Looking at intrusiveness

To look at the intrusiveness of instrumentation I took a third party application1

and instrumented it while it rendered a 10 second long movie clip. Without any
instrumentation the process took 43.2 seconds on average to complete. This was
compared against the same render during a time sample and a leak finding instru-
mentation, alone and during a time sample. The render times are shown in Table
6.1 on page 24. There was a moderate slowdown in rendering times when instru-

1The application was a trial version of a screen casting application called ScreenFlow
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menting the application. Running several instruments side by side increased the
render time to a few minutes.

The profiler results where indistinguishable from each other. This was expected
since the instrumentation should not alter the execution of the application.

Table 6.1. Render time for different levels of instrumentation

no instr. time profile leak instr. time profiled leak instr.
1st run 42.2 s 52.3 s 83.2 s 75.4 s
2nd run 43.3 s 52.4 s 77.6 s 75.5 s
3rd run 43.2 s 48.0 s 77.9 s 85.4 s
4th run 43.1 s 48.8 s 79.0 s 88.3 s
5th run 44.0 s 51.4 s 74.3 s 82.6 s
average 43.2 s 50.6 s 78.4 s 81.4 s

times slower ×1 ×1.17 ×1.81 ×1.88
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Chapter 7

Main investigation

7.1 Description

A larger application was developed for the main investigation. The application
generated a track in 2D and then generated random ”cars” and simulated their run
through the track1. At each step the forces where calculated and balanced between
the four parts of the car by Gauss-eliminating a small numerical equation system.
Graphics was done using OpenGL and the code was written is C and Objective-C2.

7.2 Investigation experiences

7.2.1 Memory management

Doing the regular analysis I was sometimes informed of memory related errors, leaks
and over released object. The included "leaks" instrument could tell me what object
was leaked (or over released) and where. Fixing these errors were almost effortless.

An example leak is shown below, in code, where an object was leaked because
both the creation and adding it to the array retained the object. Autoreleasing the
object after adding it to the array balanced the retain count.

Figure 7.1. The code where an object was leaked and an explanation of why
it leaked.

1A screenshot of the application is shown in Figure 7.3 on page 27
2See Appendix A
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7.2.2 Slow collision detection
When running a regular time profile I noticed that 75% of execution time was spent
doing collision detection, something that I hadn’t anticipated. The application was
not running slow but this was an alarmingly high value.

When I looked at what parts of the collision detection accounted for most of
the run-time I noticed that lines of code that should run really fast (like simple
addition) was taking up a lot of time, so they had to run very often. All these lines

Figure 7.2. The time profile results line by line for the unoptimised collision
detection.

had in common that they where in the same loop, so I had to optimise the number
of times this loop was being run. This was because the collision detection was doing
detailed collision detection, checking if a line to the closest points intersected wheels
of the car, for all points.

By doing a binary search to find all pairs of points that could intersect the
wheel and only do detailed collision detection for these points the time spend doing
collision detection could be reduced to less than 2%.

Even though the application didn’t appear as slow the CPU usage was lowered
by a factor 6. I could possibly do more optimisations but during the development
phase this is more then enough to solve a critical performance problem.

This was early in development and as the detection was improved to account
for multiple collisions the time spend increased to about 4−5%.

7.2.3 Drawing circles
I encountered a problem where the application would sometimes slow down to an
almost frozen state just after starting it. A time profile showed that almost all
time was spend in my own code to draw circles. Instrumenting the input to that
function proved that the radius was 0 when running slow. I had tried to prematurely
optimise the code to use a lower amount of vertices in the circle for smaller radii.
Somehow a 0 radius caused big problems.

This simple instrumentation was very helpful in pointing out the cause of the
slow down. The real problem was that the simulation ran on different thread and
the radius was not initialised immediately, so the first drawing could be done before
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the radius was set. Simply checking if the radius was 0 and return without drawing
was a good enough solution.

7.2.4 Text in OpenGL and screen flickering

At one point the application started flickering, so I profiled it to see what was
slowing it down. I knew that the OpenGL code was completely unoptimised and
written in a vary naive way, doing much off-screen rendering so my guess was that
I needed to start making improvements there. The time profile result shocked me.
54% was spend drawing text on the screen. Looking at Figure 7.3, there is not
much text on the screen and it would have taken me a long time figure this out by
myself.

Figure 7.3. A screenshot of how the application looked when the text proved
to be a bottleneck.

The text function was part of the OpenGL Utility Toolkit (GLUT) so the only
improvement available was to call that function less.

The screen however was still flickering and it was doing so even without the
text. The problem actually was slow OpenGL code that doesn’t show up when
time sampling or instrumenting the application because the code runs on the GPU.
In fact GPUs differ a lot from CPUs when it comes to debugging and performance
analysis. There are often special tools made for profiling code on GPUs but this
doesn’t lie within the scope of this thesis and won’t be described here.
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Figure 7.4. Graphs of the CPU usage before improving the text handling,
highlighting the 18.4% line. The graph is linear showing 0% − 35%.

Figure 7.5. Graphs of the CPU usage after improvements, highlighting the
4.0% line and the 18.4% line (from Figure 7.4). The graph is linear showing
0% − 35%.

7.2.5 Logic errors
During development there was some difficult errors where the application didn’t do
as it was supposed to. One of these were a problem with the collision detection
where it missed collisions in the front of the wheel if the ground was ascending.
Since the purpose was to use profiling and instrumenting to find the problem I tried
to use these tools to find the cause of these bugs but I more than once had to fall
back to drawing the basic steps of my collision detection on paper and think it
through to find the cause of the problem. In this example the problem was that the
collision detection returned the collision as soon as it found an intersecting point.

For this and other such occasions I often had to step trough the code using the
debugger (GDB) and make changes to the code back and forth. In some cases, like
this, I even had to take a step back and use pen and paper to fully understand why
the application misbehaved.
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Chapter 8

Post-development optimisation

At this point, the developed application ran fast enough for all it’s code to only
account for a couple of percent of the execution time. The rest was spent sleeping
the thread. The graphics had a bad performance so it was improved enough to run
smooth before the rest of the optimisations1.

8.1 Goal
To create a purpose of optimising the application, the timed sleep was removed and
the simulation step size was reduced to a small enough value to cause the simulation
to run at a normal speed. This made it difficult to come up with a natural goal for
the optimisation. I chose to aim at a 25% increase in speed, directly proportional
to a 25% lowered CPU usage.

8.2 Results
The first step was to establish the base line for comparison by profiling the release
version, with all the compiler optimisations turned on. The release version used
83.2% of one CPU on average2. This base line profile also pointed out that the
collision detection accounted for approximately 65% of the total execution time.
The second heaviest part of the application was the calculation and balancing of
the forces that accounted for less than 6%.

From this data I choose to start make improvements in the collision detection
and only modify the other parts if I couldn’t reach my goal from the collision
detection alone. To be able to lower the overall CPU usage by 25% I had to lower
the time spent doing collision detection by approximately 40%, i.e. lower it from
65% to less than 40%.

Looking at the execution time line by line I could see that calculating the square
root of each distance in the detailed collision detection was the heaviest lines by

1This lies outside the scope of this thesis, as mentioned in the end of Section 7.2.4 on page 27.
2The debug version used 89.6% of one CPU on average.
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itself. Since it was only used to compare with the radius of the part it was much
cheaper to square the radius once in the beginning and not do the 50-150 square
roots. This was the first improvement, lowering the execution time to approximately
52% of the overall execution time.

Another profile revealed no obvious hot spots, but pointed to the detailed colli-
sion detection as a whole. This meant that finding pairs of points that could collide
with the part was efficient but taking small steps along the line between those points
was not. I started thinking about different algorithms to find the closest collision
and realised that there where two different cases of collision detection to solve.

If the part was a wheel, then I needed to know the point along the line closest
to the center of the circle. On the other hand if the part was not a wheel, then
the car should brake so I only a needed to know if the line intersected the circle.
Braking the detection up into these two pieces brought it to about 37.5% of the
total execution time.

This had actually reached my goal but I still knew a simple improvement that
could be made. That was to only walk along the line between the points while
the distance to the center decreased, starting from the closer of the two points.
Other than that some variables where moved to the top of the method to stop
them from being recalculated unnecessary. Now the collision detection accounted
for about 32% of the total execution time and the post development optimisation
was complete.
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Chapter 9

Discussion

9.1 Performance
My experience during this project was that the tools where easy to use and quick
for common tasks. To know what parts of the code was running the most, I only
had to start the profiler and attach it to the application and let it run for about 30
seconds. This meant that a minute every now and then was enough to ensure that
the performance was kept under control during development.

The time profile was very easy to understand for code that was well re-factored
into small enough pieces. The names of the heavy1 methods where often enough
to know what lines of code was relevant to look at. For the cases where the cause
wasn’t obvious the ability to view percentage of execution time within the code
could often help show a pattern, especially for loops.

It is worth pointing out that time profiles can be a false positive if the application
runs code on hardware that is not being profiled, like a GPU.

The post development optimisations required a little more thinking because
there was no obvious mistakes slowing down the code. The statistical profiler still
gave the same, good pointers of where to look and it was easy to make decisions
about where to change the code. The line by line view was great for finding patterns
within a method and even more important, show the low percentage parts of the
method that was unnecessary to look at.

9.2 Correctness
The tools made it really easy to both find and fix smaller, common errors. Even
though the effort was low, many of these errors could have been found even faster
and with less effort using a static analyser. For the bigger and less common errors
instrumenting the application was really useful when knowing what to look for,
and even more if knowing where to look. Otherwise the instrumentation tried to
compete with the debugger. Instrumentation and debuggers don’t work together,

1Time profilers call methods that run much of the time for heavy or hot
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at least not well. Debuggers are built to debug errors like these and they where
better integrated with the IDE and was of more use in these situations. However
instrumentation was a good alternative to adding log-statements in the code.

9.3 Cost of learning
Both the concept behind time profiling and how to use it was really straightforward.
Interpreting the results was slightly harder but very easy to get accustomed to. I
used a simple workflow of looking at the heaviest methods and assigning the cost
of all methods that were outside of my code-base to their callers. This was a quick
way to get a rough pointer of where to look for improvements and didn’t require
much learning. This approach worked well when there are obvious ”hot spots”.

The various approaches of instrumentation was harder to grasp. However it
wasn’t necessary to fully understand instrumentation to be able to start using it.
It still took some time of reading user guides and following tutorials to know when
instrumentation could and should be used. Compared to inserting debug code,
instrumentation was a little bit hard to get used to but easier to clean up.

Using the built in ”instruments” was straightforward for common things like
checking for memory leaks. Considering the time of learning and using them in
my investigation, I found it well worth using them when looking for these common
errors. Finding many of these errors would have taken much more time by hand
and most likely all would not have been found.

9.4 Conclusions
Some kind of tool should be used when developing an application, both for im-
proving the performance and the correctness. Profiling was easy to start using and
start learning and that there was a gain in both understanding of the code and
performance of the application by doing so.

There are many different approaches to find common errors and some tool,
no matter the approach, should be used to find these errors. When looking at
application specific errors, especially semantic errors. Other tools have a hard time
competing with a real, integrated debugger unless you know what you are looking
for.

All in all I was surprised by the ease of getting some results and intrigued by
the ability to get good results with the proper knowledge of the tools. I believe that
these kinds of tools will become even easier to use in the future and that they will be
able to give more precise information. This will hopefully increase their popularity
and make it trivial to find even more common errors.
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Appendix A

Objective-C

A.1 Language

Objective-C is a strict superset of C that adds object orientation in a SmallTalk
like syntax, with square brackets, e.g. [object method];. Conventions recommend
descriptive method names and the language supports arguments within the method
name, e.g. [myColor changeColorToRed:5.0 green:2.0 blue:6.0];. Objective-
C 2.0 also allows ”dot” syntax for properties, e.g. object.property;.

The language itself is available for both Linux and Windows but is most popular
for developing for Mac OS X.

A.2 Memory management

Objective-C and the Foundation-framework uses a retain and release based mem-
ory management system. All object that are allocated and initialised have a re-
tain count of 1. When an object needs another object it retains it, by calling
[object reatin];, thus increasing that objects retain count by 1. If several ob-
jects need the same object they all retain that object to keep it from going away,
incrementing the retain count each time.

When one of them no longer needs to hold on to the object, it releases it by
calling [object release];, thus decrementing the retain count by 1. When the
retain count gets lowered to 0, no other object needs that object any more and it is
deallocated.

Conventions determine whether a method should return a retained object or not.
E.g. methods starting with init or copy should always return retained objects. It
is not safe to return an object without retaining it, since it can get deallocated. For
these cases objects returned are autoreleased by calling return [object autorelease];.
Autoreleased objects will be have an increased retain count for a short time period,
allowing the caller of the method to either use the object in an calculation and
letting it get released or retain it to prevent it from being deallocated.
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A.2.1 Instrumenting
By instrumenting the retain and release methods, an objects retain count can
be traced. This information is very helpful when determining the cause of a leak.
By saving what object retained and released the leaked object it becomes easy to
find the one/ones that doesn’t balance their retains and releases.
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