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Abstract

This paper will investigate the implementation of the Q-learning reinforce-
ment algorithm on an impartial, combinatorial game known as Nim. In our
analysis of impartial games and Nim, an already established optimal strategy
for playing Nim will be presented. This strategy will then be used as an exact
benchmark for the evaluation of the learning process.

It is shown that the Q-learning algorithm does indeed converge to the opti-
mal strategy under certain assumptions. A parameter analysis of the algorithm
is also undertaken and finally the implications of the results are discussed. It is
asserted that it is highly likely that the Q-learning algorithm can be effective
in learning the optimal strategy for any impartial game.
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Chapter 1

Introduction

The report at hand is part of the course "DD143X Degree Project in Computer
Science" which is given by the School of Computer Science and Communication at
the Royal Institute of Technology in Stockholm, Sweden.

In this report we shall examine the mathematical theory of the combinatorial
game of Nim, as well as an implementation of the Q-learning algorithm to the same
game.

1.1 Background

The game of Nim is a two-player mathematical game of strategy that has been
played for centuries. It is said to originate from China but its origins are largely
unknown.[1] The earliest European references are from the 16th century. It was
given its current name in 1901 by Charles L. Bouton of Harvard University in a
paper where he describes a complete mathematical theory of the game.[2]

The game is played between two players where each player takes turn in picking
items from three heaps. You may pick any number of items, but you must pick
atleast one and all items must be from the same heap. The player which picks the
last item(s) win.

Below is an an example of how a typical game of Nim might look:
The three heaps have 5, 7 and 10 items. Alice and Bob are playing.
Alice begins by removing 4 elements from set 1. The resulting state is 1, 7, 10.
Bob removes 7 elements from set 2. The resulting state is 1, 0, 10.
Alice removes 9 elements from set 3. The resulting state is 1, 0, 1.
Bob removes 1 element from set 1. The resulting state is 0, 0, 1.
Alice removes 1 element from set 3. The resulting state is 0, 0, 0 and Alice wins.

Alice won since she removed the last element from set 3.
In general, Nim can be played with any number of heaps, but in this thesis we

will assume that it is played with only three distinct heaps.
Nim has also been shown to be isomorphic to all other impartial games. What

this means – rather simplified – is that all games of a certain type (impartial games)

1



2 CHAPTER 1. INTRODUCTION

in some sense bear the same structure as Nim[8]. That is, at a certain level of ab-
straction, they are in a sense equivalent. This makes the game even more interesting
from a mathematical analysis point of view. Impartial games will be defined in a
later chapter.

1.1.1 Machine learning and reinforcement learning
A more detailed account of the concept of reinforcement learning will be given in
Chapter 3. For now a mere overview of the more general field of machine learning
will be given.

Machine learning is the branch of artificial intelligence which concerns itself
with the algorithms and methods used for allowing computers to modify its be-
havior based on empirical data[13]. This is a very broad definition indeed and as
such, machine learning has attracted researchers from a vast array of different scien-
tific disciplines such as neuroscience, cognitive science, mathematics and of course,
computer science among others. Learning algorithms are often applied whenever
we need to develop a program that solves some problem given empirical data. For
example, the task of facial recognition is something which we humans can perform
very easily, yet we cannot easily give a clear definition of the underlying mechanism.
This fact makes it very hard to program a computer to perform the task of facial
recognition without appealing to the field of machine learning.

It is also necessary to utilize learning algorithms when we are facing a task
for which the programmer cannot possibly predict the exact nature of the problem
(often since it may be dependent on contingent circumstances not known at compile
time). For example, this could be a robot developed by NASA to explore some
planet and due to the distance it might not be viable for remote control. The robot
then must achieve some sort of autonomous control and be able to perform its
tasks even though the robot hasn’t been explicitly programmed what to do in the
unknown environment. Machine learning is used actively in the financial market as
well, in trying to discover patterns involving customer behaviors. Speech recognition
and handwriting recognition are also areas in which machine learning algorithms
excel.

In this thesis, we will focus entirely on an algorithm called the Q-learning al-
gorithm and which is part of what is called reinforcement learning. This will be
explained more thoroughly in later chapters. In short, reinforcement learning means
that the program (or agent) learns by being rewarded or punished based on its ac-
tions. This causes the agent to adapt based on this feedback from its environment.
Described on this abstraction level, it bears many similarities to classical condition-
ing occurring among most biological creatures.

1.2 Purpose
Nim is an intriguing game in several ways. For one, it has a complete mathematical
theory accompanying it and the theory is surprisingly simple. This is fascinating in
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its own right, since most games do not have such a theory.
The mathematical theory of Nim — in essence — describes an optimal way

of playing which completely determines the outcome of the game given the initial
game configuration. This is under the assumption that both players play in an
optimal manner. On the other hand, if one of the players does not play in an
optimal manner, then it can be shown that the optimal player will win no matter
the starting position.

These two properties of Nim, namely the simplicity of its theory as well as the
existence of an optimal strategy, was the reason for choosing it as the game to which
the Q-learning algorithm was applied.

The existence of an optimal strategy provides us with an exact benchmark for
measuring the performance of a learning agent. This is used to measure the effect
of changing the different parameters of the Q-learning algorithm.

Also, the optimal agent is used as a "master" to which we will train our learning
agents. One of the main points of this thesis is to examine the importance of the
training partner for the learning agent. However, the main problem statement of
the thesis is this: Will the Q-learning algorithm converge to the established optimal
strategy for the game of Nim?

If it does, under what assumptions? It might learn the optimal strategy when
playing against an optimal agent, but can it discover the theory behind Nim on
its own? If so, the Q-learning algorithm might prove to be a valuable tool in the
analysis of strategies for games in general.





Part I

Theory
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Chapter 2

Combinatorial games

2.1 Overview
This chapter presents a brief and concise overview of the basic terminology of com-
binatorial games in general and the properties of impartial games in particular.

We will refrain from giving the complete formal definition of impartial games
(the formal definition of extensive-form games as defined in game theory) as it is
not necessary for our purposes.

2.2 Basic terminology and properties of impartial games
Games have positions (or states as we will refer to them later on) in which players
can perform actions leading to new states. The set of all possible states in a game
will be denoted by S.

A player of the game may perform an action which may change the current
state into a new state according to some transition model. A sequential game is a
game in which a player chooses an action before the other player(s) choose their
actions. It is essential that the later players have some information regarding the
moves performed by the earlier players. Otherwise the difference in time would have
no effect on the strategy employed (such games are called simultaneous) [3]. By a
move we denote the act of performing an action (in some state).

Combinatorial games are a subset of sequential two-player games in which there
is no element of chance and each player has perfect information. Perfect infor-
mation means that both players have complete information regarding the actions
performed by the other player. Games which involve no element of chance are called
deterministic.

Definition 1. An impartial game is a combinatorial game which satisfies three basic
properties:

1. The actions available to a certain player depend solely on the state of the game
and not on which player’s turn it is.

7



8 CHAPTER 2. COMBINATORIAL GAMES

2. The player which has no possible action to perform loses.

3. The game will always come to an end, or equivalently, there is no sequence of
actions for which the game will continue forever.

Nim is an impartial game. This will be shown in a more rigorous manner later
on. An explanatory motivation is given below.

Since any set of elements removed by one player might just as well be removed
by the other player we have that the first property is satisfied. An example of
a game which does not satisfy the first property is chess. In chess, each player
has ownership over certain pieces and may only perform actions on these pieces.
The second property follows directly from the definition of the game and the third
property is clear when we see that each action performed must remove at least one
element from some set. Thus we will reach the end state in a finite number of moves.

2.3 Backward induction
In our analysis of Nim we will apply a technique called backward induction. It has
been used since the advent of game theory and was first mentioned in the classic
book Theory of Games and Economic Behavior (von Neumann, & Morgenstern,
1953)[4] which established game theory as a field in its own right. Cruical to the
viability of backward induction is the finiteness of the possible state sequences.[5]
We will begin with a simple example of the application of backward induction upon
a very simple version of Nim (also known as a take-away game[6]).

2.3.1 Take-away game

We will define this impartial game as follows:

1. There is a set of in total 12 elements.

2. A valid move is to remove either 1, 2 or 3 elements from this set. At least one
element must be removed at each turn.

3. The last player to perform a move (i.e. reducing the set to 0 elements) wins.

Backward induction works by working out which possible moves might have
caused a game to reach the endstate (s).

In our example from above, suppose we have 1, 2 or 3 elements left in the set.
The player whose turn it is to move will win, since he can remove all the remaining
elements and consequently win. Suppose instead that we have 4 elements in the set.
Then the player whose turn it is to move must place the resulting state with either
3 (remove 1), 2 (remove 2) or 1 (remove 3) element (s) left. This is illustrated in
Figure 2.1. As a result, the current player will not win. Continuing in this manner,
we can work our way backwards and classify all the different states into two sets.
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Figure 2.1. Last four states of the Take-away game

Table 2.1. State set partition of the take-away game

Position Optimal action N/P
0 - P
1 Remove 1 N
2 Remove 2 N
3 Remove 3 N
4 - P
5 Remove 1 N
6 Remove 2 N
7 Remove 3 N
8 - P
9 Remove 1 N
10 Remove 2 N
11 Remove 3 N
12 - P

It can be shown that the state-space for any impartial game can be partitioned
into a P − set and a N − set. This will be given a recursive definition in the next
section. For now, observe the division of the state space of the simple Take-away
game in Table 2.1.

The intuition behind the naming of the sets is that if the current state s belongs
to N then the next player to perform a move will win under the assumption that
the player moves to a state belonging to the P − set. In this way, when it is the
other player’s turn to move, that player will face a state which belongs to the P-set
and thus the previous player (i.e. the one that started) will eventually win.

From the above result of backward induction, we can see that the player which
starts in the 12th position in the take-away game must lose given that the other
player plays in an optimal manner.
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2.4 The partition of the state set

The formal definition of the two sets N and P is given below. The state set of any
impartial game may be split into these two sets.

It is as such a general framework for analyzing impartial games. If a correct
partition is found, then we also have an optimal strategy for the game.

Definition 2. P ⊂ S,N ⊂ S,P ∪ N = S and satisfy the following inductive
properties:

1. All terminal positions are P-positions.

2. From all N -positions, it is possible to move to a P-position.

3. From all P-positions, every move is to a N -position.

2.5 Nim

We will now turn our attention to the game in question of this thesis, namely Nim.
We will use the theory and terminology from above in our analysis of Nim.

As we recall, a position (or state) in Nim is simply the amount of elements in
the three sets.

The game is played between two players where each player takes turn in picking
elements from three sets (or heaps). The initial game configuration consists of any
number of elements in the three sets. Each player must remove at least one element
at each turn, and it is allowed to remove any number of elements given that they
all come from the same set. The player to remove the last element(s) and thus
reducing all the sets to zero wins.

Definition 3. The set of states for the game of Nim is S = {(x1, x2, x3)|xi ∈
N0, xi ≤ n, i = {1, 2, 3}} for some n ∈ N.

We will denote the inital state of the game as s0 ∈ S. The value of n above is
thus max(s01 , s02 , s03).

Definition 4. The set of all possible actions for all states will be denoted by A.
An action in Nim will be defined as a vector with two components, namely

(α, β) ∈ A. α specifies from which set (or rather which component) of the state
we should remove elements and β specifies the amount.

Definition 5. By Actions : S → A we will denote the set of possible actions in a
given state. Actions is defined by the following map:

(x1, x2, x3) 7→ {i× [1, xi] , i ∈ [1, 3]}
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Definition 6. By Result : S × Actions(S) → S we will denote the resulting state
when an action is performed in a specific state. Result is defined by the following
map:

[(x1, x2, x3) , (α, β)] 7→ (x1, x2, x3)− (z1, z2, z3) where zα = β, zi = 0, i ̸= α

For example the action (1, 3) would remove three elements from the first set. If
we were in the state (7, 9, 5) for example, we would get Result [(7, 9, 5) , (1, 3)] =
(4, 9, 5)

The state space is the set of all possible game sequences given an initial state.
With these definitions in place, we may show that all possible game sequences

converge to the terminal state (0, 0, 0).

Theorem 1.
lim

n→∞
sn = (0, 0, 0)

Proof. All possible game sequences can be defined in a recursive manner by si+1 =
Result(si, a) for some a ∈ Actions(S) ⊂ A, when s0 is given.

From the fact that every action causes a reduction of some component of a
given state, we have that si+1 < Result(si, a) (under the product order) and thus
the sequence is strictly decreasing.

It is also clear that ∀s ∈ S, 0 ≤ s and thus it is bounded below and therefore
all possible game sequences must converge to the unique terminal state.

2.6 Classification of the P and N positions in Nim
We will now present the main theorem regarding Nim, namely the theorem that
determines if a state belongs to the P-positions or the N -positions. As we noted
earlier, an optimal strategy in an impartial game is to perform the actions such that
the resulting state belongs to the P-positions.

Thus if we can show which states belong to the P-positions, we will have an
optimal strategy to Nim.

Definition 7. We define the nim-sum operator ⊕ : {0, 1}n × {0, 1}n → {0, 1}n as

[(x1, x2, . . . , xn) , (y1, y2, . . . , yn)] 7→ (z1, z2, . . . , zn) where zi =
{

1 if xi ̸= yi

0 if xi = yi
= xi+ yi(mod 2)

This operator is also called the XOR (exclusive OR) operator. A state (x0, x1, x2) ∈
S in can be expressed in an equivalent manner by using a binary digit representation
of the components.

For the theorem to follow, assume that each component xi ∈ {0, 1}n, i = 1, 2, 3
for some n, and that this is the binary representation of the state.

Theorem 2. Bouton’s Theorem

(x1, x2, x3) ∈ P ⇔ x1 ⊕ x2 ⊕ x3 = 0
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In words this means that a position belongs to the P-positions if its nim-sum is zero.

Proof. Denote by P the set of positions which have nim-sum zero and let N be the
complement set (nonzero nim-sum).

P = {(x1, x2, x3) |x1 ⊕ x2 ⊕ x3 = 0} , N = PC

We will now show that these sets satisfy the three properties outlined in the
recursive definition of the P and N set.

1. All terminal positions are P-positions.
The only terminal position in Nim is (0, 0, 0) and 0⊕0⊕0 = 0→ (0, 0, 0) ∈ P

2. From all N -positions, it is possible to move to a P-position.
Assume s ∈ N is an arbitrary N -position.
(α, β, γ) ∈ N → α⊕ β ⊕ γ ̸= 0→ ∃i, αi + βi + γi ∈ {1, 3}.
Select the highest such i (the leftmost digit). Now we have that either αi =
1, βi = 1 and γi = 1 (if the sum was 3) or that one of these is equal to one (if
the sum was 1).

α1 α2 . . . αi . . . αm

β1 β2 . . . βi . . . βm

γ1 γ2 . . . γi . . . γm

0 0 . . . 1 ∨ 3 . . . 0 ∨ 1

In either case, change the one that is 1 or choose any of the three, and change
it into a 0. The resulting position will be less than the current (under the
product order) since we have changed the most significant digit from 1 to 0
and it is thus a valid action.

3. From all P-positions, every move is to a N -position.
Assume (α, β, γ) ∈ P is an arbitrary P-position. (α, β, γ) ∈ N → α⊕β⊕γ = 0.
Since the nim-sum operator is commutative, we can without loss of generality
assume that α is changed to α′ < α. But then we cannot have that α⊕β⊕γ =
0 = α′ ⊕ β ⊕ γ since the cancellation law would give that α = α′ and this
would yield a contradiction. This shows that the nim-sum is non-zero and
thus (α′, β, γ) ∈ N .

We have shown above that the three defining properties of the sets are satisfied and
thus the theorem follows.
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With the theory given, we now have an optimal strategy for playing Nim. We
shall conclude this chapter with an optimal algorithm for playing any impartial
game given that we know the partition of the state set.

Algorithm 1 Optimal agent for an impartial game
Input: A percept, namely the current state s ∈ S. A partition of S into P-positions
and N -positions as defined above.

if s ∈ N then
return x ∈ Actions(s) ∩P {Choose an action such that the resulting state is
a P-position.}

else
return x ∈ Actions(s) ⊂ N {All of the actions belong to the N -positions,
choose any.}

end if

Given Bouton’s theorem, we can derive an optimal agent from the above general
algorithm for the game of Nim.





Chapter 3

Reinforcement learning and the
Q-learning algorithm

3.1 Overview
This chapter introduces the concept of reinforcement learning and describes the
main algorithm of this thesis, namely the Q-learning algorithm. Some of the ter-
minology used in this chapter has already been introduced in the previous chapter
and will not generally be reiterated.

This chapter will present the Q-learning algorithm but in a very brief manner
as it is beyond the scope of this report to derive it in a complete sense. For further
information, the reader is referred to any introductory textbook in machine learning
or AI. The basis of this chapter is due to the book "Artificial Intelligence: A modern
approach"[7].

3.2 Background
In the field of artificial intelligence, an (intelligent) agent is an entity that performs
actions in some environment. This differs from an ordinary computer program in
the sense that the agent acts autonomously and acts based on its perception of
its environment. This usually entails that the agent adjusts its behavior in such a
manner so as to achieve the best possible outcome.

An agent is performing the act of learning if it is is capable of improving its
performance on future tasks based on its earlier experience on similar tasks[7].
Defined in this broad sense, learning is indeed a very general topic encompassing
concepts from control theory, operations research, information theory, statistics etc.

The general concept of learning can be further subdivided into reinforcement
learning and supervised learning (among others). Reinforcement learning can be
contrasted with supervised learning. In a supervised learning situation, the agent
in question is given input-output pairs and learns a function that approximates
these pairs (and thus learns which outputs relate to which inputs).

15
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Reinforcement learning however works by a different mechanism. The agent
learns by being given a series of reinforcements (rewards or punishments) based on
its actions. Reinforcement learning then tries to maximize the cumulative rewards
received in the different states. For example in our game of Nim, the agent would
be given a reward if it wins and a punishment if it loses. It is however rare that the
reinforcement information is available directly after performing a certain action.

It is usually the case that the reinforcements are delayed and are available at a
later time (for example when the game ends). The learning task is thus complicated
by this fact and the agent must try to deduce which of its actions contributed the
most to produce the final outcome of the game.

3.3 Preliminaries
In our further discussions, we will have the reader recall the functions Actions and
Result as well as the set of states S.

These functions define the environment in the sense that they define the possible
state sequences (the state space).

We must also define a reward function which instructs the agent which states it
should prefer (and therefore the rewards received will be crucial in deciding which
actions to take). The reward for a state s is denoted by R(s), R : S → R.

The reward function maps each state to a real number. Positive rewards are
used to make some behavior more prevalent and a negative reward "punishes" the
agent and makes the behavior leading to those states less prevalent overall.

A policy is a function which maps states to actions. That is, a policy completely
determines the agent’s behavior. A policy will usually be denoted by π. π(s) thus
gives the recommended action for the given state s when executing the policy π.
The optimal policy is denoted by π∗.

We often speak of a state sequence which the agent perceives or acts in, this is
usually denoted by {S0, S1, . . . , Sn}. As an example, an agent may be in state Si

and perform an action which then puts the agent in state Si+1.
There are two fundamental constans used in the Q-learning algorithm. These

are the learning rate α and the discount factor γ.

3.4 Feedback
The feedback strategy used in the implementation is to reward the agent whenever
it makes a move so that it reaches the goal (and thus wins the game) and punish it
whenever it loses a game.

3.5 Exploration
In order to learn the Q-function for the actual environment, it is of vital importance
that the agent is not too greedy. A greedy agent might choose the optimal actions,
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but it can still be suboptimal in the larger sense. This is because the learned model
is seldom the actual true environment in which the agent belongs.

There is thus a fundamental tradeoff between exploitation to maximize the re-
wards, and exploration to maximize the "long-term" rewards(which will be higher
the better the model is) [7]. We can only hope to achieve a good model of the
environment if we have explored a reasonable amount of its states.

Definition 8. f(u, n) is called the exploration function. Any function which satis-
fies the following two properties may be used:

• Increasing in u

• Decreasing in n

A simple function often used is

f(u, n) =
{

R+ if n < Ne

u otherwise

where R+ would be an estimate of the highest possible reward and Ne is some
fixed parameter. The effect of using this function would be that the agent explores
each state atleast Ne times.

Since we need to classify all the states of the state space as either belonging to
the P-set or the N -set, it is of vital importance that all states gets visited by the
Q-learning algorithm.

The approach used was to choose the starting state depending on which game
trial it is. That is, pick a map θ : [1, |S|]→ S and θ(n) would give the initial state
for the n:th trial.

Usually however, one defines an exploration function used in the Q-algorithm
that defines the exploration behaviour of the agent. In our case, this function is
simply f(u, n) = u (since the exploration is handled at a meta-level).

3.6 The Q-learning algorithm
The task then for the Q-learning algorithm is to try to achieve as good a policy as
possible.

To obtain the utility function U we may solve the Bellman equation[7]:

U(s) = R(s) + γ max
a

∑
s′

P (s′|s, a)U(s′) (3.1)

The Bellman equation in essence captures the very intuitive idea that the utility
of a state (a measure of how "good" it is compared to other states) is the reward
received in that state plus the discounted utility of the next state under the as-
sumption that the agent chooses the optimal action.
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Since the environment is deterministic in our case, P (s′|s, a) = 1 and this reduces
to:

U(s) = R(s) + γ max
a

∑
s′

U(s′) (3.2)

We will denote the Q-function by Q(s, a), s ∈ S, a ∈ Actions(a) and the value
is a measure of the utility of performing the action a in the state s.

Q-values are related to the utility of a state by the following equation:

U(s) = max
a

Q(s, a) (3.3)

That is, the utility of a state is simply the utility of performing the best possible
action in that state.

The optimal policy is defined as

π∗(s) = arg maxa′∈A Q(s, a′) (3.4)

As such, it is simply the policy which chooses the best action possible (this is
under the assumption that the Q-function is in equilibrium).

We have the following constraint equation that must be true at equilibrium when
the Q-values are in accordance with the optimal policy[7]:

Q(s, a) = R(s) + γ
∑
s′

max
a′

Q(s, a′) (3.5)

This equilibrium equation can be stated in words in a simpler manner. The
utility of a state-action pair is the reward for that specific state as well as the sum
of the utility of performing the best action in all neighboring states (since we assume
that we would in each of these states execute the optimal policy). The similarity of
equation (3.4) and (3.5) is no coincidence.
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Finally we introduce the fundamental update equation for the Q-learning algo-
rithm.

Q(s, a)← Q(s, a) + α(R(s) + γ max
a′

Q(s, a′)−Q(s, a)) (3.6)

This update equation is calculated every time the agent performs action a in
state s resulting in state s′.

With these equations in place, Algorithm 2 shows the final Q-learning algorithm.

Algorithm 2 Q-learning agent
Input: A percept, namely the current state s′ ∈ S and a reward r′.
Persistent:

• Q, a table of action values indexed by state and action, initially zero

• Nsa, a table of frequencies for state-action pairs, initially zero

• s, a, r, the previous state, action and reward, initially zero

if Terminal(s) then
Q[s, None]← r′

end if
if s ̸= Null then

Nsa ← Nsa + 1
Q[s, a]← Q[s, a] + α(Nsa[s, a])(r + γ max a′Q[s′, a′]−Q[s, a])

end if
s, a, r ← s′, arg maxa′ f(Q[s′, a′], Nsa[s′, a′]), r
return a

We will have the reader recall that the function f(u, n) above is called the
exploration function and determines how eager the agent is to explore new states.
α(Nsa[s, a]) is a function allowing us to change the learning rate depending on
the progression of the exploration. As seen in the algorithm, Nsa[s, a] is simply
a variable keeping track of how many times the agent has encountered a specific
state-set entry. Having a function α based on this value then, makes it possible to
adjust learning rates depending on the progression. For example, we may arbitrarly
say that we should have a higher value of α for all the state-action pairs which
haven’t been visited more than 50 times, and then lowering it.

The reason for wanting to adjust the learning rate of the algorithm, is that it
might be beneficial to have a faster learning rate in the initial stages of the learning
process, and then successively lowering it.

The final line of the algorithm assings to s, the new state s′ and it chooses the
action a by choosing the action that maximizes f(Q[s′, a′], Nsa[s′, a′]). In our case,
since the exploration function is the identity in the first dimension (f(u, n) = u),
this reduces to arg maxa′ Q[s′, a′] which is simply the optimal policy if we’ve reached
equilibrium. See equation (3.4).





Part II

Implementation and results
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Chapter 4

Implementation

4.1 Classes
The implementation was written in C++ and compiled with the Microsoft Visual
Studio 2008 compiler. It uses the C++ Standard Template Library as well as
Boost1.

Fundamentally, the program consists of three main classes called Action, State
and Agent.

Regarding the representation of the state set, it is currently represented as a
vector. That is, the order of the components matters. An improvement would be
to interpret a state as an unordered set instead of as an ordered vector, and an
action as a removal of some amount of elements from an arbitrary set containing a
specified amount of elements. That is, an action would correspond to the removal
of X elements from any set which has Y elements. This would reduce the number
of state-action pairs, however this was not implemented but it should be noted that
this would significantly improve the learning speed.

4.1.1 State
The state class uniquely determines a state s ∈ S and thus internally consists of
three integers.

It provides the following public interface:

• std::vector<Action> GetActions() const

This function returns a vector with all the actions which are valid from this
given state. See the definition of Actions in Chapter 2.

• bool IsGoal() const

Returns true if the state is the goal state, that is if s = (0, 0, 0), false otherwise.
1The Boost library (http://www.boost.org/) is a collection of free peer-reviewed, open source

libraries that provides extensive extra functionality to C++.
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• bool operator==(const State& B) const

Comparison between two state objects, returns true if the states are equal.

• int NimSum() const

Calculates the nim-sum for the given state.

• void DoAction(const Action& kAction)

Performs the given action on the state and thus transforms it into a new state.

• State PeekAction(const Action& kAction) const;

Performs the given action on the state and and returns the new state.

4.1.2 Action
The action class specifies an action in accordance with the definition presented in
the Theory chapter. Internally it consists of an integer specifying which set to
remove elements from(an integer in the interval [0, 3]) as well as the amount.

It provides the following public interface:

• bool operator==(const Action& b) const

Comparison between two action objects, returns true if the actions are equal.

4.1.3 Agent
This class in an abstract base class and it provides the framework for all the agents.
The main function of the Agent-class is the behaviour function which given a state,
returns an action. This is in line with the definitions given in the Theory chaper.
This function is not defined for the Agent class, and consequently all deriving classes
must specify the agent’s behaviour. In other words, it is not possible to instantiate
an agent without specifying a behaviour.

The second important function is the function which provides feedback to the
agent. This function is defined for the Agent class, however it does nothing in its
original form. Since it is a virtual function, any deriving class may override this
definition.

• virtual Action behaviour(const State& kCurState) = 0;

This function is to be implemented by any deriving class and it specifies the
agents policy(strategy). Given a state, the agent recommends an action to
perform in that state.

• virtual void givefeedback(const State& kCurState, double dFeedback)

This function is to be overridden by any learning agent. It is not purely virtual
however.
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4.1.4 Three different agents
Three different agents have been implemented. These are the Q-learning agent, the
optimal agent and a random agent. All of these agents derive from the common
base class Agent defined above.

Random agent This agent simply overrides the behaviour function and calls the
GetActions-function of the given state and select a random action to execute.

Optimal agent This is an implementation of of the Optimal agent algorithm for
Nim as defined in Chapter 3.

Q-learning agent This is an implementation of the the Q-learning algorithm de-
scribed in Chapter 3. Internally it uses a hash map for storing the Q-function.





Chapter 5

Results

5.1 Methodology
With the implementation in place, it is of essence to measure two different concepts.
We want to know how good the learnt policy is and we want to know how quickly
the Q-learning agent learns.

The reader is reminded that α is the learning rate and that γ is the discount
factor of the Q-learning algorithm.

We want a measure of how effecient the Q-learning algorithm is for the game
of Nim. This is of course dependent on the choice of the two parameters α and γ.
It also depends on which agent the learning agent is facing. So in the analysis of
the results, these factors have to be carefully considered. It is also of interest to see
which are the optimal values for the α and γ parameters.

To measure how good the learnt policy is, we will utilize the fact that we have
the optimal policy to our disposal and thus get an exact benchmark of how good
any given policy is.

Note that it is possible to achieve an optimal policy even though the Q-function
estimate is inaccurate [7]. So even if a policy is optimal, the Q-function might differ
from the theoretical Q-function of Nim.

Definition 9. By Uπ(s), s ∈ S, we denote the utility received when executing policy
π and starting in state s.

S0 = s, Uπ(s) =
∞∑

i=1
γiR(Si)

Definition 10. Let Uπ be the vector of utilities for the different states in the state
set S when executing policy π.

We define the policy loss of the policy π as ||Uπ − U∗||, where the norm is the
L1-norm.

The difference measures the total difference of utility when it’s quantified over
all possible states in S. In other words, it measures the utility difference of executing
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π instead of the optimal policy π∗.
It is as such a measure of how good or bad a given policy is, since π∗ is already

known.
However, a different approach was chosen. Instead of measuring the utility

difference, we measure the number of states in which the agent does not perform
the "correct" action. Since there is only one correct move in the states that belongs
to N , and since all moves are correct if the state belong to P, this implies that we
can count the number of states belonging to N in which the agent executes a wrong
move.

This approach was chosen since as we noted above, the policy may be optimal
even though the policy loss is non-zero. Zero deviations from the optimal policy
however obviously implies policy equivalency.

We have now explained the methodology of measuring both the accuracy of the
policy at a given moment as well as the learning speed. In the following sections we
turn our attention to three different testing scenarios and the results.

Algorithm 3 Optimality deviations
Input: πi which is the current policy.

n = 0
States = S
for s ∈ States do

if s ∈ N then
if Result(s, πi(s)) ∈ N then

n← n + 1
end if

end if
States← States\{s}

end for
return n

In practice, the only states which we have to examine are those which belong to
the N -set, since any move from a state in P is guaranteed to be in accordance with
the optimal policy.

The optimality deviations algorithm(Algorithm 3) is called every 2500th trial
and statistics are collected. 2500 was an arbitrary number chosen so as to get a
reasonable amount of data for the plots.

By executing the above pseudo-code, we get an exact measure of how the Q-
learning agent is progressing along towards the optimal algorithm.

The state space was limited for these tests by imposing the condition that each
heap may not exceed seven items. That is, S ⊂ B7(0), where B7(0) is the ball of
radius seven of position 0 in N3

0.
This gives 7 ∗ 7 ∗ 7 = 343 different states and in total 3087 different entries for

the Q-function(state-action pairs).
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5.2 Scenarios

5.2.1 Overview
The following different scenarios were tested:

1. Letting the Q-learning agent play against the optimal agent.

2. Letting the Q-learning agent play against another Q-learning agent for differ-
ent values of α and γ. This is the most interesting scenario.

3. Letting the Q-learning agent play against a random agent for a fixed value of
α.

We will begin the examination by examining how the discount factor value effects
the learning process. This will be only for scenario two as it turns out that discount
factor values other than 1 tend to give bad results. Therefore, in the subsequent
sections where we examine the three different scenarios described above, we will
only be concerned with manipulating the α value and having γ set to 1.

5.2.2 Discount factor
It is reasonable to assume that the optimal value for the γ parameter is 1 since
the only rewards ever received are at the end states, and we should propagate this
information "backwards" from the end states, to all earlier states and thus acheive
our partition of the state set.

γ=0.5
γ=0.8
γ=1
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Figure 5.1. Q-agent vs Q-agent agent, α = 0.45

This assumption was examined for three different values of γ as can be seen in
Figure 5.1. It is clear that γ = 1 is the optimal parameter of those examined and
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it is not likely that any other discount factor (other than those examined) will be
better than γ = 1. Since the γ = 1 curve converge to quickly to 1, the plot is
zoomed in order for it to be visible at all (since it would be a mere straight line
otherwise). In the further sections, this specific value will be given a more thorough
treatment.

It is also clear that we do not acheive the optimal policy when γ = 0.5 and
γ = 0.8.

5.2.3 Scenario 1: Q-agent vs Optimal agent

Since the learning agent plays against the optimal agent in this scenario, we would
expect that it does indeed learn the optimal policy after some time. This is because
any wrong move on the Q-agents parts will result in it losing the game and thus
receiving negative reinforcement. Conversely, only those games in which the learning
agent performs strictly correct moves will result in positive reinforcement.
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α=0.45
α=0.75
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Figure 5.2. Q-agent vs Optimal agent

As seen in Figure 5.2, the Q-agent does indeed learn the optimal policy after
some approximately 17500 iteration for α = 0.45 and it learns it even more quickly
using α = 0.3.

We can conclude that this is indeed quite fast and it only takes a couple of
seconds of execution time on most modern computers. It is however of little value
since in practice, we cannot expect to have an optimal agent available to learn from
since that would remove the whole purpose of having an agent learn a policy to
begin with.

This scenario however is of importance when comparing the learning rates of the
other scenarios. It will be seen later that this is undoubtedly the fastest scenario of
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those examined.

5.2.4 Scenario 2: Q-agent vs Q-agent

In this scenario we have two Q-agents playing against each other for several different
values of alpha. The results here presented are very interesting since as it turns out
– for most values of alpha – the Q-learning agent is indeed capable of autonomously
learning the optimal strategy for the game of Nim for the restricted state space.
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Figure 5.3. Q-agent vs Q-agent

As seen in Figure 5.3, the Q-agent does indeed converge to 100% correct actions
as defined in the methodology. We also note that it seems that among the three
different values of alpha in this plot, α = 0.45 reaches the optimal policy the fastest.
It reaches it in about half of the iterations required for α = 0.30.

This can be seen more clearly in Figure 5.4, where the later phase of the learning
process is emphasised. Do note that that the algorithm is construed in such a way
as to abort when the optimal policy is found. In the more general case, when there
is no optimal policy available to compare with, there are more general methods
available to determine when computation should stop
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α=0.30
α=0.45
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Figure 5.4. Q-agent vs Q-agent zoomed

5.2.5 Scenario 3: Q-agent vs Random agent

This scenario consisted of the Q-agent playing against an agent which chooses all
its actions in a random manner. One might expect that this would not result in an
agent that can play the game optimally, since it is seldom the case that a policy
that is efficient against a random opponent is also efficient against a "good" player.

It turns out that in Nim, we can indeed learn the optimal policy by merely
playing against a random agent. This is illustrated in Figure 5.5. However, with α
set to 0.45, we did not acheive convergence to the optimal policy (it ran until the
millionth iteration, however in the plot it is truncated at the 700000-th iteration).
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Figure 5.5. Q-agent vs Random agent

5.3 Discussion
The α-parameter regulates the learning rate of the Q-function. Some values for
alpha seem to be much better than others. For example α = 0.45 in Figure 5.4
shows that the curve for α = 0.45 is above the curve for α = 0.75.

With a high value of α-parameter, the changes to the Q-function are very rapid
and thus it makes the graph look volatile. A higher learning rate causes the learning
curve to be more volatile and often reach better policies faster, but this volatility
can cause it to "miss" the optimal policy, while a lower learning rate tends to be less
volatile but slower. One possible strategy to cope with this is to use a high inital
α-value and lower it after some trials have been run to acheive convergence. This
has not been tested.

For scenario two(Q-agent vs Q-agent), several tests were run to examine effect
of the learning rate and it turns out that with α > 0.8, we cannot expect the
Q-learning algorithm to converge to the optimal policy.

On contrast, a low value of α will make the learning process take longer, but it
often finds the optimal policy. In fact, all values between 0.02 and 0.8 do converge
to the optimal policy for scenario two.

The number of trials in which this happens depends greatly on the initial moves
of the algorithm (which are random, before the Q-function has been populated).
Therefore, a plot of this has not been included as its random behaviour makes it
difficult to establish any conclusions as to the exact effects of different α-values.

What can be generally concluded though, is that it fails to establish the optimal
policy if the α-value is too high, and it is very slow to converge if it is too low.
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Somewhere around α = 0.4 and α = 0.5 seems to be the optimal interval.
The lowest number of iterations was acheived at α = 0.45 with merely 142500

iterations. This can be contrasted however with the fact that when playing against
the optimal player, we learn the optimal policy with only 17500 iterations for the
same learning rate. This shows that not only is the α parameter important for the
rate of convergence, but the most important factor is which opponent the learning
agent is facing.

This is also confirmed by examining the number of trials it took for the Q-agent
to learn the optimal policy when playing against a random player. It took the
learning agent 600000 iterations to converge with a learning rate value of 0.20, and
it did not converge at all for α = 0.45.

Finally, in Figure 5.6, we see the different rates of convergence when the Q-
learning agent is playing against three different kinds of agents with the learning
rate set to 0.45.
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Figure 5.6. Q-agent vs three different agents(α = 0.45)

5.3.1 The resulting Q-function

When the Q-learning algorithm has learned the optimal policy, a manual exam-
ination of the resulting Q-function is undertaken. Table 5.1 shows the complete
Q-function for a state set restriction of maximum two elements in each set.

The rewards have been set to 20 for winning a game and -20 for losing a game.
What we notice when we examine the Q-function is that – when it has acheived
the optimal policy – all positive Q-values are precisely those actions in which we
go from an N -state to a P-state. What’s more is that all the negative Q-values
are precisely those states which belong to P and in which we are forced to take an
action placing the state in N .

As we noted in Chapter Two, all impartial games lend themselves to the possi-
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Table 5.1. The resulting Q-function for all states with n=2

State Action Nim-sum (P/N ) Nim-sum of resulting state (P/N ) Q
(1, 1, 1) (2, 1) 1(N ) 0(P) 20
(0, 1, 1) (2, 1) 0(P) 1(N ) −20
(1, 1, 1) (1, 1) 1(N ) 0(P) 20
(1, 1, 0) (0, 1) 0(P) 1(N ) −20
(1, 1, 1) (0, 1) 1(N ) 0(P) 20
(1, 0, 0) (0, 1) 1(N ) 0(P) 20
(1, 0, 1) (2, 1) 0(P) 1(N ) −20
(1, 0, 1) (0, 1) 0(P) 1(N ) −20
(0, 0, 1) (2, 1) 1(N ) 0(P) 20
(0, 1, 1) (1, 1) 0(P) 1(N ) −20
(1, 1, 0) (1, 1) 0(P) 1(N ) −20
(0, 1, 0) (1, 1) 1(N ) 0(P) 20

bility of dividing the state set into N -positions and P-positions and we also showed
a general algorithm for optimal game play in any impartial game (see Algorithm 1).
Now, with this in mind, we see that we have an optimal policy if we can determine
the two-set partition into N and P.

The learning problem has in a sense been reduced to determining the two-set
partition of the state set into N -positions and P-positions.

So it would be possible to apply the Q-learning algorithm to any impartial
game, and when it has converged to an optimal policy, we may apply a boolean
classification algorithm to determine the explicit form of the division.

If this would be done to Table 5.1 (suppose we didn’t know Bouton’s Theorem),
the result would be exactly Bouton’s Theorem dividing the state set.

The boolean classification problem would be to determine the indicator function

1P : S → {0, 1}

where the state is given in binary representation (and 1P is therefore a boolean
function) as defined in Chapter 2.

That is, the boolean indicator function satisfy:

(x1, x2, x3) ∈ P ⊂ S ⇔ 1P(x1, x2, x3) = 1

Since all boolean functions may be expressed in the disjunctive normal form
(DNF)1, this involves a search in a finite function space and is thus guaranteed to
find the partition.

It is beyond the scope of this thesis to explore this further, but we can mention
that a decision list learning algorithm will probably be efficient for determining the
correct partition.

1A boolean expression is in DNF if it is a disjunction of conjunctive clauses.
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Conclusions

These results suggest that reinforcement learning in general – and particularly the
Q-learning algorithm – might be used as a powerful method for investigating the
properties of games.

What is interesting to note is that even though we’ve only examined the specific
impartial game of Nim, the implications are wider.

If the game is impartial, the Q-learning algorithm will almost always converge to
the optimal strategy under the assumption that it plays against another Q-learning
player and that the parameters are reasonable. This is since the Sprague-Grundy
theorem states (rather simplified) that every impartial game is isomorphic to the
game of Nim. For further details, see the article "Mathematics and games" by P.
M. Grundy written in 1938[8] or the book "Winning ways for your mathematical
plays" by Berlekamp, Conway, & Guy from 2001[9].

These findings suggest an interesting approach to the learning of an optimal
policy for impartial games in general. Assume that we are given an impartial game
to which there is no known optimal strategy. The Q-learning algorithm may then
be executed until we have found an optimal strategy. Two questions arise: how do
we determine when we are done and what is the explicit form of the partition of
the state set?

As mentioned in the Discussion part of Chapter 5, by applying a boolean classi-
fication algorithm (such as a decision list algorithm) to the Q-function, we can get
a hypothesis partition of the state set.

Any candidate hypothesis can be discarded if it loses any game when starting
in a position belonging to the N-positions and playing against an agent operating
under the same hypothesis. This may be used as an optimality criterion.

With this optimality criterion in place, we may continuously apply it during the
learning process of the Q-learning algorithm, and abort when an optimal strategy
has been found. This partition of the state set is then guaranteed to be optimal.

We may also conclude that the optimal parameters for the Q-learning algorithm
in the game of Nim must be a learning rate between 0.4 and 0.5 as well as a discount
factor of 1. It is reasonable to assume that these values should transfer over to other
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impartial games as well.

6.1 The state-of-the-art
Papers on reinforcement learning are published frequently in Machine learning in
the Journal of Machine Learning Research[7] and there is also the International
Conference on Machine Learning(ICML) held annually.

It is indeed an active research area and the Journal of Machine Learning Re-
search was in 2009 ranked on the 14th place in the article "Top journals in Computer
Science" published by Times Higher Education[12].

A modern approach to the task of learning is that of hierarchical reinforcement
learning methods which incorperate different levels of abstraction to the learning
process.

The foundation of this approach is due to an article by J.-P. Forestier and
P. Varaiya published in 1978, where they showed that behaviors at a low level of
abstraction – of an arbitrary complexity – can be regarded as discrete actions by the
higher-level structures invoking them[11]. It is then possible to establish a learning
hierarchy. The contemporary methods that build upon this work are among others
partial programs. A partial program defines a particular hierarchical structure for
the agent, but the specific action primitives are unspecified and must be learned
by reinforcement learning. These methods of reinforcement learning have proved to
be very good at solving large-scale problems which are not normally viable[10] (e.g.
state spaces of in total 10100 states ).

For further reading, see the article "Machine Learning: The State of the Art"
published in 2008 in Intelligent Systems, IEEE [14].
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