

The Java Modeling Language

 A study and an implementation of JML

 W I L H E L M K Ä R D E

 Bachelor of Science Thesis
 Stockholm, Sweden 2011

The Java Modeling Language

 A study and an implementation of JML

 W I L H E L M K Ä R D E

 Bachelor’s Thesis in Computer Science (15 ECTS credits)
 at the School of Computer Science and Engineering
 Royal Institute of Technology year 2011
 Supervisor at CSC was Mads Dam
 Examiner was Mads Dam

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2011/
 karde_wilhelm_K11056.pdf

 Royal Institute of Technology
 School of Computer Science and Communication

 KTH CSC
 SE-100 44 Stockholm, Sweden

 URL: www.kth.se/csc

Abstract

This is a study on the Java Modeling language, presenting its

main features and applying them onto an algorithm based upon

Binary Decision Diagrams. JML is a Design by Contract tool

for java. The principal idea behind Design by Contract is that

clients calling methods in a class have a contract with each

other. These contracts consist of pre- and post-conditions that

are to be validated before and after the execution of any method

with such a contract.

As interesting as it was studying JML, at the implementation

stage it became clear that the JML2 tool set was not upgraded

for any java upgrades beyond java 1.4. Using generic types and

other language features such as the for-each loop was not

recognized by the JML compiler.

However, once up and running with a J2SE4 environment,

many advantages could be discovered. The runtime assertion

checker worked great as a bug prevention tool and the JML

specifications serve as a good way to document code properly.

More important though is the way it forces the developer to

take into consideration all the different relationships between

classes and their methods and also to define set invariants to

hold for these.

Sammanfattning

Det här är en studie gjord på “The Java Modeling Language”

genom att presentera dess viktigaste funktioner samt applicera

dessa på en algoritm baserad på ”Binary Decision Diagrams”.

JML är ett ”Design By Contract” verktyg för java. Idén bakom

DBC är att en klient och en metod ur en klass har ett kontrakt

med varandra. Detta kontrakt realiseras genom pre- och post-

vilkor som måste uppfyllas före och efter exekveringen av

metoden.

Den intressanta studien fick en trist uppföljning när det visade

sig att JML kompilatorn inte är kompatibel med java 1.5 och

senare. Detta resulterade i kompilatorn inte kände igen

generiska typer och ”for-each” loopar t.ex.

Däremot, om man är villig att koda i java 1.4 så kunde flertalet

fördelar med JML upptäckas. JMLs ”runtime assertion

checker” fungerar utmärkt för att förhindra och upptäcka

buggar. Specifikationerna fungerade dessutom som bra kod

dokumentation. Men viktigast av allt var hur JML tvingar en att

tänka på relationen mellan klasser och metoder och invarianter

som ska hålla för dessa.

Contents

1 Introduction……………………………………………………………… 1

2 Background………………………………………………………………. 2

2.1 The Java Modeling Language…………………. 2

2.2 Binary Decision Diagrams……………………... 4
2.3 ROBDDs…………………………………………………5

3 Implementation……………………………………………………………6

 3.1 The ROBDD Algorithm………………………........6
 3.2 JML Implementation……………………………….8

4 Results..…………………………………………………………………….....9

 4.1 No Support for Generic Types……………......9
 4.2 Implementation Difficulties…………………..10
 4.3 Implementation Analysis………………………11

5 Discussion / Conclusions.…………………………………………...14

Bibliography…………………………………………………………………15

1

1. Introduction

This essay focuses on JML “Java Modeling Language”. JML is a

DBC “Design By Contract” tool for Java. The principal idea behind

DBC is that a class and its clients have a “contract” with each other.

The client must guarantee certain conditions before calling a method

defined by the class, and in return the class guarantees certain

properties that will hold after the call.[1] JML is targeted at

providing a comprehensive specification of both interfaces (syntax)

and behavior (semantics) for every aspect of Java and, at the same

time, to retain an easy-to-read format. [4]

Design by contract is a fairly new way of developing software. It

breaks away from the standard way of programming which makes it

interesting and will render a new perspective on developing software.

The principal goal of this essay is to cover as much as possible about

JML and apply what learnt on an algorithm, so as to get a good feel

for its practicality. This will be done on a binary decision diagram

algorithm. Binary decision diagrams (BDDs) are another way of

representing Boolean Functions. [3]

2

2. Background

Before implementing JML into actual code, there will be some

background information about JML and Binary Decision

Diagrams (BDDs). This is to be considered only as an

introduction to both areas as this background information only

scrapes the surfaces of both subjects.

2.1 The Java Modeling Language

As mentioned in the introduction, JML is to be considered a

Design by Contract tool for the java language. Benefits when

working with JML are among other factors: More precise

description of what the code does, Efficient discovery and

correction of bugs, Reduced chance of introducing bugs as the

application evolves, Early discovery of incorrect client usage of

classes, Precise documentation that is always synced with

application code.[8]

JML specifications are written in special annotation comments,

which start with an at-sign (@). [1] Examples are illustrated in

figure 1. Thus when running a program in a standard java

compiler, the JML specifications are treated as any other

comments. To verify that the specifications are correct a JML

compiler and a JML runtime assertion checker (RAC) are

needed. The JML compiler (jmlc) behaves like Java compilers,

such as javac, by producing Java bytecode from source code

file. The difference is that it adds assertion checking code to the

bytecodes it produces. Only the classes that are to be runtime

assertion checked need to be compiled with jmlc. [1]

The contract between a client and a class requires pre- and

post-conditions. In the example code that follows, the

precondition and postcondition are specified by requires and

ensures respectively. The method specification begins in line 8

with a Java-style privacy modifier and the keyword

normal_behavior. The latter requires the method to terminate

normally, i.e. without exceptions. [4]

3

1 public class Book {
2 private /*@ spec_public @*/ boolean lent ;
3 }
5 public class Library {
6 private Collection coll ;
8 /*@ public normal_behavior
9 @ requires coll . contains (b)
10 @ && !b. lent ;
11 @ ensures b. lent ;
12 @*/
13 public void lend (Book b);
14 }
Figure 1: An example of JML syntax along with Java code.

In figure 1, two JML specifications are displayed. The first one,

/*@ spec_public @*/, declares the following Boolean variable

lent to be used as a public specification variable. This means
that Lent can now be used in any other specification, as shown

in the second specification. As it is declared as a private

variable, it would not be possible to use it in other

specifications otherwise. The second specification is a method

specification for the method lend(Book b). The precondition

states that the requirements to call this method is that

coll.contains(b) && !b.lent must hold. Likewise, the

postcondition states that if the method terminates then b.lent

must be true.

Another cornerstone in the JML specification language is the

use of invariants. An invariant is a property that should hold in

all client-visible states. It must be true when control is not

inside the object’s methods. That is, an invariant must hold at

the end of each constructor’s execution, and at the beginning

and end of all methods.[1]

A few important features that are essential to know about JML

are the use of quantifiers, important key words such as \result

and \old(), implication arrows and the key word pure which

declares a method pure. Only pure methods can be used in

specifications. A method can only be declared pure if it offers

no side-effects. The \result key word represents the return

value from a method and \old(), which takes a parameter,

represents the value of that parameter from a previous state.

Examples of an implication arrow that can be used in

specifications is, a ==> b (a implies b), and there are a few

others which are shown in table 2.

4

Syntax Meaning

a ==> b a implies b

a <== b a follows from b (b implies a)

a <==> b a if and only if b

a <=!=> b not (a if and only if b)

Table 1. Some implication arrows that can be used in JML
specifications.

Finally, JML supports several kinds of quantifiers in assertions:

a universal quantifier (\forall), an existential quantifier

(\exists), generalized quantifiers (\sum, \product, \min, and

\max), and a numeric quantifier (\num of).[1]

2.2 Binary Decision Diagrams

Binary decision diagrams (BDDs) are another way of

representing Boolean Functions. Boolean Functions are an

important descriptive formalism for many hardware and

software systems, such as synchronous and asynchronous

circuits, reactive systems and finite-state programs.

Representing those systems in a computer in order to reason

about them requires an efficient representation for Boolean

Functions. [3]

To obtain a decision diagram, we perform Shannon expansions

(T = x [x1/1], [x0/0]) on one variable at a time in a Boolean

function. The expression T = x [x1/1], [x0/0] means that a

variable substitution is performed on variable x in function T.

In the case of Shannon expansions the substituted variables

holds a value denoted by the number below the slash. In this

expression x is replaced by the variables x1 and x0 who are

assigned to holding the values 1 and 0 respectively.

In the example shown in figure 2, X1 is the first variable in the

function T = (X1 Y1) Ʌ (X2 Y2) and it is the replaced by

T1 and T0, assigned to holding the values 1 and 0 respectively.

This is the same as performing T = X1 [T1/1], [T0/0].

Evaluating the second variable Y1, the substitution performed is

equivalent to T = Y1 [Tx1/1], [Tx0/0]. In this substitution the

variable x denotes which substitutions that already have been

made on previous variables in the function T. Therefore, i.e. T01

is equivalent to the first variable (X1) in function T being

replaced by the value 0 and the second variable (Y1) by the

value 1. Furthermore, T0001 denotes the first three variables in T

being replaced by 0 and the last one by the value 1.

5

If an absolute value for the Boolean function T can be

determined before expansions have been made on all variables,

no further expansions are necessary for that particular branch.

T01 evaluates to 0 for the Boolean function T regardless of what

values the last two values take on. Further expansions on T01x is

therefore not necessary as they all evaluate to the same value

for the function T, namely 0.

Evaluating the function T = (X1 Y1) Ʌ (X2 Y2) yields the

expressions in figure 2 and further down in figure 3, the

expressions are shown as a tree. Such a tree is called a decision

tree. [3]

• T = (X1 Y1) Ʌ (X2 Y2)

• T = X1 => T1, T0

• T0 = Y1 => 0, T00

• T1 = Y1 => T11 , 0

• T00

= X2 => T001, T000

• T11

= X2 => T111, T110

• T000

= Y2 => 0, 1

• T001

= Y2 => 1, 0

• T110

= Y2 => 0, 1

• T111

= Y2 => 1, 0

Figure 2: Shannon expansions on the Boolean Function T = (X1 Y1)
Ʌ (X2 Y2) along with its truth tables for and Ʌ.

A Binary Decision Diagram is a rooted, directed acyclic graph

with

 one or two terminal nodes of out-degree zero labeled 0

or 1, and

 a set of variable nodes .of out-degree two. The two

outgoing edges are given by two functions low(u) and

high(u). (In figure 3 these are shown as red and black

lines respectively). A variable var(u) is associated with

each variable node.[3]

Ʌ 0 1

0 0 0

1 0 1

 0 1

0 1 0

1 0 1

6

Figure 3: A decision tree for the Boolean Function T = (X1 Y1) Ʌ (X2
 Y2)

2.3 Reduced Ordered Binary Decision
Diagram

Reduced Ordered Binary Decision diagrams (ROBDDs) have

some interesting properties. They provide compact

representations of Boolean expressions, and there are efficient

algorithms for performing all kinds of logical operations on

ROBDDs. They are all based on the crucial fact that for any

function f : B
n
 B there is exactly one ROBDD representing

it. This means, in particular, that there is exactly one ROBDD

for the constant true (and constant false) function on B
n

: the

terminal node 1 (and 0 _in case of false). Hence, it is possible to

test in constant time whether an ROBDD is constantly true or

false. [3]

7

Figure 7: To the left is a ROBDD for the Boolean expression ((x1 || x2) &&

x3). As a reference the BDD for the same Boolean expression is shown to

the right. In the ROBDD the index of each variable is shown above their

variable name. Indexes of the terminal nodes 0 and 1 are 0 and 1

respectively.

A BDD is Ordered (OBDD) if on all paths through the graph

the variables respect a given linear order x1 < x2 < … < xn. An

(O)BDD is Reduced (R(O)BDD) if

 (uniqueness) No two distinct nodes u and v have the

same variable name and low- and high-successor, i.e.,

var(u) = var(v), low(u) = low(v), high(u) = high(v),

implies u = v

and

 (non-redundant-test) No variable node u has identical

low- and high-successors, i.e.,

low(u) != high(u). [3]

8

3. Implementation

In this section, the foundation for the implementation is

mapped out. First the algorithms for this work are introduced

followed by the introduction of relevant JML considerations for

the algorithms.

3.1 The ROBDD Algorithm

The algorithm is split into two parts. Part one of the algorithm

is shown in figure 4 below. This recursive function Build is the

core of the algorithm and it takes a Boolean expression as a

parameter on which to perform the Shannon expansions as

previously mentioned. The second part is an algorithm whose

main purpose is to make sure that the ROBDD being

constructed is reduced. Hence, its objective is to make sure that

the ROBDD being constructed follows the uniqueness as well

as the non-redundant-test throughout the construction. Only

through the second algorithm is a new Node created and

inserted into an array from which the final ROBDD can be read

from as seen in figure 5.

Build(t, i)

1: if i > n then

2: if t is false then return 0 else return 1

3: else v0 Build (t[xi/0], i +1)

4: v1 Build (t[xi/1], i +1)

5: return GetIndex(i, v0, v1)

6: end Build

Figure 4: The function Build(t, i)

The parameter t represents the Boolean expression from which

we build the tree. An input example of t would be

“x1&&x2||x3”. The parameter i represent the index of the

current variable on which a Shannon expansion is performed in

lines 3 and 4. In line 1 this index is compared with the variable

n, representing the number of variables in t, so when i is greater

than n then all variables have been given a value trough

Shannon expansions and t can be evaluated as true or false. As

previously mentioned, Shannon expansions are performed in

line 3 and 4. This is done recursively so that the Shannon

expansions are done on one variable at a time in the correct

order. The first time a value is assigned to v0 and v1 is when all

variables in the expression t have been assigned a value (i.e. t =

0&&0||0 instead of t = x1&&x2||x3). The algorithm then calls

GetIndex which creates a new Node with var = i, low = v0 and

9

high = v1 if and only if the uniqueness as well as the non-

redundant-test requirements are met. The variable var is the

variable number of the Node. Low and high are the indexes to

the respective low- and high-branch Node in an array. The first

two indexes 0 and 1 are reserved for the terminal nodes 0 and 1

respectively. The first Node will therefore have index 3 in the

array with low- and high-values of 0 and 1 depending on what

they evaluate to. Through GetIndex new Nodes are created if

necessary and saved in an array. It is from this array that the

final ROBDD can be read. An example of such a representation

of a tree in a table is shown in figure 5.

Figure 5: To the left an ROBDD as saved in an array with Nodes : Node

(var, low, high) from the Boolean expression ((x1 || x2) && x3). Index 0

and 1 are represented by the terminal nodes 0 and 1 respectively. Each node

is assigned an index variable var which is the number of variables in

ordering plus one.

The second part of the algorithm is as mentioned the GetIndex

method shown in figure 6. In line 1 the algorithm tests that the

non-redundant requirement is met. Thereafter, in line 2, the

uniqueness requirement is checked so that finally in line 4 a

new node can be created and inserted in both table T and H if

all requirements hold. Table H is only used to quickly lookup if

a Node already exists as shown in line 2 and 3. Note that in line

3 and 6, the return values are the indexes that are to be passed

on as values for v0 and v1 in Build. In line 1 no new Node is

created as the low and high value are not permitted to be the

same, hence their value is simply returned to Build.

Node(index) var low high

0 4

1 4

2 3 0 1

3 2 0 2

4 1 3 2

10

GetIndex(i, l, h)

1: if l = h then return l

2: else if member(H, i, l, h) then

3: return indexOf(lookup(H, i, l, h))

4: else u add(T, i, l, h)

5: insert(H, i, l, h)

6: return indexOf(u)

Figure 6: The function GetIndex(i, l, h)

T and H represent two tables saved as ArrayList<Node> and

HashMap<String, Node> respectively. Table T contains

information about all nodes in the ROBDD and table H is used

to lookup existing nodes in the ROBDD quickly. The String

key in table H is the combined lettering of the values from the

respective Node that it is key to. So a Node with var = 3, low =

0 and high = 1 will have the String key “301”. A Node holds

the three values var, low and high. An example of table T is

shown in figure 5.

3.2 JML Implementation

From the algorithm definition there are already a few JML

implementations that need be taken into consideration. Perhaps

the most important one to consider is regarding the uniqueness

and non-redundant-test requirements. Since these requirements

should hold throughout the entire lifetime of the algorithm,

invariants are perfect to make sure that they are met.

Other obvious JML implementations to consider are

implementations for all of the intended methods of the

GetIndex- and Build-algorithms as well as the constructor.

Since the algorithm makes us of an ArrayList<Node>, a class

representation for Node is necessary.

The GetIndex algorithm can be performed in a single method,

using the built-in methods of ArrayList and HashMap for

lookup and insertion. First off, considering no Node takes on

any negative values, no parameters should ever be negative.

Another precondition is that since GetIndex makes use of tables

T and H, it is necessary to make sure that they are properly

initiated. When GetIndex finishes, there are three possibilities.

Either parameter two is returned, the index of the already

existing node is returned or the index of the new node that is

created is returned. Hence the only thing certain about the

postcondition is that the method returns an index or one of the

last two parameters.

11

As with the GetIndex algorithm, the Build algorithm can be

performed in a single method. The Build algorithm takes two

parameters, a Boolean expression t and a variable index i. For

the index variable, a scope between 1 and n+1 is necessary (k

being the number of variables in the Boolean expression t).

There cannot be less than one variable in our Boolean

expression and if i takes on a value greater than n+1 then the

Build algorithm has made too many recursive calls rendering

the outcome unclear. Another necessary precondition is to

make sure that the variable n is initialized so that i will not be

compared with a null value.

Then of course, a precondition is required to make sure that the

Boolean expression is a valid. The return value is always 0, 1 or

the return value from GetIndex, hence that is also a valid

postcondition for Build.

In the constructor for the main class, two things take place.

First the number of variables is calculated based on the input

from the user. Then the table T is initialized to contain Node 0

and 1. To count the number of variables correctly, a

precondition is that the input is correct from the user. The

postcondition is that both n and T have been correctly

initialized.

Finally, the Node constructor initializes its three values to

positive numbers, which results in a precondition that all

parameters are positive and a postcondition that the initialized

variables are positive as well.

4 Results

Due to the discovery of some constraints in the Java Modeling

language, this section begins with a short introduction of those

constraints along with some explanations to why in fact they do

exist. This is followed by an analysis for how these constraints

affected the implementations done in this paper along with the

results of the final implementation of JML.

4.1 No Support for Generic Types

The JML2 tool suite, which was used for the verification of the

implementations of JML done for this paper, lacks support for

generic types. The JML2 tool suite was written and maintained

for Java 1.4. Java 1.5, introduced in 2004, brought significant

changes to Java, but the work to evolve JML tools to work with

Java 1.5 stalled for lack of resources. [6]

12

The most significant language addition in Java 1.5 was generic

types and methods. [6] As Java 1.5 was a rather large upgrade

from Java 1.4 this was not the only language feature upgrade.

The following features were the language feature upgrades:

Generics, Enhanced For Loop, Autoboxing/Unboxing,

Typesafe Enums, Varargs, Static import, Metadata. [7] The

Enhanced For Loop in this case is the so called for each loop.

4.2 Implementation Difficulties

As the project originally was constructed on a runtime

environment supporting all the features from java 1.5, early on,

this project mainly resulted in JML2 errors. However, once

runtime environment was changed to java 1.4 most errors

disappeared. Unfortunately a new error occurred which could

not be solved. The use of the methods get and containing for

HashMap resulted in:

JML2 Error: The actual parameter 1 of method

“containing” has type “readonly java.lang.Object” but for

this call the method expects a parameter with type “peer

java.land.Object”

Since this error was never solved, the HashMap

implementation was replaced by only using ArrayList. The

ArrayList was sufficient for this project except it doesn’t

execute its method contains as fast as HasMap.

4.3 Implementation Analysis

The invariants implemented were successful in their task of

making sure the uniqueness and non-redundant-test were met.

An invariant was added to make sure that the ArrayList T was

never empty. When violation against the invariants were made,

a JMLruntimeInvariantError occurred and pointed out which

method that violated the invariant along with if it did so in the

pre- or post-condition of the method call.

Exception in thread "main"

org.jmlspecs.jmlrac.runtime.JMLInvariantError: by

method JML.build@pre

Figure 11: A runtime exception error from a failed invariant in the

precondition of JML.build.

The second invariant states that for all Nodes x, if table T

contains x, then that Nodes low value is not equal to its high

value. Thus, this second invariant constitutes to the non-

redundant-test. The third invariant states that for all Nodes x, if

table T contains x, then the index of the last occurrence and

13

first occurrence of x in table T are equal. In other words, no

Node x occurs more than once in table T. This corresponds to

the uniqueness requirements.

/*@

 @ public invariant !T.isEmpty();

 @ public invariant (\forall Node x;

 @ T.contains(x) ==>

 @ x.getLow() != x.getHigh());

 @ public invariant (\forall Node x;

 @ T.contains(x) ==>

 @ T.lastIndexOf(x) == T.indexOf(x));

 @*/

Figure 12: The three invariants used in the implementation of the ROBDD

algorithm.

As table T, represented by an ArrayList(), is needed in the

specifications of the invariants, it needed to be made

spec_public as it was otherwise a private field. Further, the

variable n representing the number of variables in the Boolean

expression, is used in both the constructor and Build method

specification and thus also had to be declared spec_public.

Furthermore, as can be seen in figure 11, the getLow() and

getHigh() methods in Node are both used in the specification.

Therefore, they had to be declared pure in the method

declaration as shown in figure 13:

public /*@ pure @*/ int getLow()

Figure 13: pure declaration of method getLow() in class Node.

In the constructor there were two preconditions. Those

preconditions were intended to make sure that the input

Boolean expression was correct. The actually implemented

preconditions are by no means complete but they at least make

sure that the distribution between variables and operands is

correct. The conclusive decision on the validation of the input

takes place later on in the Build method. In the constructor,

table T and variable n are both initiated and the postconditions

specifies the required states they both need be in after

initialization.

/*@

@ requires args.length % 2 == 1 &&

@ args[0].equals("x1");

@ ensures !T.isEmpty() && n > 0;

@*/

Figure 14: JML specification for the constructor in the main class.

The specifications for GetIndex are quite straightforward. As

explained earlier, the only preconditions are that all parameters

are positive, and in return the postcondition is positive return

14

value. The variables v, l and h represent the parameters and

\result the return value.

/*@ requires v >= 0 && l >= 0 && h >= 0;

 @ ensures \result >= 0;

@*/

Figure 15: JML specifications for GetIndex.

As with the GetIndex specification, the specification for the

constructor in the class Node corresponded only in a

precondition where all parameters needed be positive. The

postcondition was to make sure all variables were initialized to

their corresponding parameter value. All three field variables

had to be declared spec_public since they were all part of the

constructor specification.

/*@ requires a >= 0 && b >= 0 && c >= 0;

 @ ensures a==var && b==low && c==0;

@*/

Figure 16: JML specification for constructor in Node.

Each field variable had method getters associated to them.

Since they were only to return the value and not change it, there

is only one postcondition for these methods. It ensures that the

returned value is the same value as the intended return value

had before the call was made. They were all identical to the

part of the variable name the method represented. The

specification for one of these methods is shown in figure 17.

/*@
 @ ensures \result == \old(var);

 @*/

Figure 17: JML specification for the method getVar() in Node.

The final specification implemented is the specification for the

Build method. The Build method takes two parameters, the

Boolean expression and an integer i. The precondition for i is as

previously discussed a bound between 1 and n+1. The Boolean

expression t is declared to have the same restriction on it as for

the input string in the constructor. This is fairly reasonable

since the constructor passes the input string to Build, and it is to

do so without changing it. The only other precondition is for

the number of variables n to have been initialized. Finally, the

postcondition for Build is that it returns a positive value.

/*@ requires 0 < j && j <= n+1;

@ requires n > 0;

@ requires t.length % 2 == 1;

@ ensures \result >= 0;

@*/

Figure 18: JML specification for Build.

15

5. Discussion / Conclusions

Working with The Java Modeling Language for the first time

was very interesting. Studying for the task of implementing it

into actual code made me realize how wide the subject of DBC

really is. Unfortunately, in this case, JML is not up to date with

the rest of the java language. Several papers have been

published on the subject of upgrading JML to at least J2SE5.

For now however, if one wishes to work with JML, one would

have to do so using J2SE4.

I hope one day it could be integrated into the standard editions

of future java development environments in the likes of

Eclipse. When working correctly, JML is a joy to work with.

For bug prevention and bug detection it can be very useful and

in some cases far superior to the tedious task of debugging.

Along with pre-and post-conditions, invariants offer a “bigger

picture” feeling to source code as it forces the developer to

think in a slightly different way. The thought process of

developing with JML forces one to take into consideration the

relationship between methods and classes more frequently and

of major goals of your application. This alone could be great

for bug prevention. The fact that JML specifications are not

compiled by a regular java compiler further allows it to work as

documentation. The syntax is to the point and universal for

anyone who knows JML and surely decipherable for any java

developer.

What has not yet been brought up in this paper is the fact that

JML offers a wide range of tools that stretch far beyond the

runtime assertion checker. A very interesting tool is the

ESC/Java2 “Extended Static Checker for Java”. Its main goal is

to find runtime errors at compile time. Future studies could be

done on this or any other of the interesting tools offered for the

Java Modeling Language.

16

Bibliography

Gary T. Leavens and Yoonsik Cheon (2006), Design

by Contract with JML.
http://www.eecs.ucf.edu/~leavens/JML//jmldbc.pdf [1]

Henrik Reif Andersen (1999), An Introduction to Binary

Decision Diagrams
http://www.itu.dk/courses/EAP/Notes/bdd-eap.pdf [2]

M. Huth, M. Ryan , (2004),

Logic in Computer Science 2
nd

 ed [3]

Daniel Bruns (2009), Formal Semantics for the

Java Modeling Language.
http://lfm.iti.uni-
karlsruhe.de/download/Diplomarbeit_DanielBruns.pdf [4]

Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens and Erik Poll,

Beyond Assertions: Advanced Specification and Verification with

JML and ESC/Java2

http://www.eecs.ucf.edu/~leavens/JML/fmco.pdf [5]

David R.Cock, Adapting JML to generic types and Java 1.6

Eastman Kodak Company Research Laboratory

1999 Lake Avenue

Rochester, NY 14650 USA [6]

New Features and Enhancements J2SE 5.0
http://download.oracle.com/javase/1.5.0/docs/relnotes/features.ht
ml#boxing [7]

Getting started with JML, improve your Java [8]

programs with JML annotation.
http://www.ibm.com/developerworks/java/library/j-jml/index.html

http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf
http://www.itu.dk/courses/EAP/Notes/bdd-eap.pdf
http://lfm.iti.uni-karlsruhe.de/download/Diplomarbeit_DanielBruns.pdf
http://lfm.iti.uni-karlsruhe.de/download/Diplomarbeit_DanielBruns.pdf
http://www.eecs.ucf.edu/~leavens/JML/fmco.pdf
http://download.oracle.com/javase/1.5.0/docs/relnotes/features.html#boxing
http://download.oracle.com/javase/1.5.0/docs/relnotes/features.html#boxing
http://www.ibm.com/developerworks/java/library/j-jml/index.html

www.kth.se

