

A 19-Tone Scale Synthesizer

 C H R I S T I A N L I N D E B O R G
 a n d C H R I S T O F F E R S A N D B E R G

 Bachelor of Science Thesis
 Stockholm, Sweden 2011

A 19-Tone Scale Synthesizer

 C H R I S T I A N L I N D E B O R G
 a n d C H R I S T O F F E R S A N D B E R G

 Bachelor’s Thesis in Computer Science (15 ECTS credits)
 at the School of Computer Science and Engineering
 Royal Institute of Technology year 2011
 Supervisor at CSC was Henrik Eriksson
 Examiner was Mads Dam

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2011/
 lindeborg_christian_OCH_sandberg_christoffer_K11085.pdf

 Kungliga tekniska högskolan
 Skolan för datavetenskap och kommunikation

 KTH CSC
 100 44 Stockholm

 URL: www.kth.se/csc

Abstract

The subject of this report is the theory behind a 19-tone equal tem-
perament musical scale (as opposed to the regular 12-tone equal tem-
perament scale) and the implementation of a synthesizer using such a
scale made using an audio programming language. After a brief intro-
duction to musical theory and the construction of scales we delve into
the theory behind the 19-tone scale, and show why it is an interest-
ing experiment. We also discuss the alternative ways of implementing
the synthesizer and have documented our efforts to create one in our
chosen language, SuperCollider.

Sammanfattning

Denna rapport behandlar teorin bakom en 19-tonsskala av liksvä-
vande temperatur (i motsats till den vanliga 12-tonsskalan av liksvä-
vande temperatur) och implementationen av en synthesizer som använ-
der den skalan i ett språk avsett för ljudprogrammering. Efter en kort
introduktion till musikteori och matematiken bakom skalor fördjupar
vi oss i teorin bakom 19-tonsskalan, och visar varför det är ett intres-
sant experiment. Vi diskuterar också alternativa sätt att implementera
synthesizern och har dokumenterat våra försök att skapa en i det valda
språket, SuperCollider.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Statement of Collaboration 1
1.3 The Problem Statement . 1

2 Theory 2
2.1 Music Theory . 2
2.2 19-TET and 12-TET . 4
2.3 Technical . 6

3 Execution 7
3.1 Choosing a Language . 7
3.2 SuperCollider details . 7
3.3 Constructing the Synthesizer and learning SuperCollider . . . 8

3.3.1 Construction of the keyboard application 8
3.3.2 Construction of the sequencer 11

3.4 Sound experimentation . 12

4 Conclusions 14
4.1 Results . 14
4.2 Discussion . 14

A List of Terms 17
A.1 Music Terms . 17
A.2 Technical Terms . 17

B nineteentonescale.scd 18

C nineteentonesequencer.scd 20

1 Introduction

The goal of this project is to implement a nineteen tone scale synthesizer
in a programming language suited for audio programming. We explore the
musical theory behind the concept and the different ways of performing the
implementation. For clarity’s sake we point out that when we say synthesizer
in this report we mean a software synthesizer, not a physical instrument.

1.1 Background

We have chosen this project because of both its programming- and musical
aspects. We are both interested in music and its production and perfor-
mance, and learning a new programming language especially tailored for
this seemed interesting. We have a basic grasp of musical theory and hope
to use this project to enhance our understanding of it.

1.2 Statement of Collaboration

While much of the work was done in close cooperation, there was a division
of labour between the theory- and coding parts. Christian was responsible
for the theory part and wrote most of its text. Christoffer was responsible
for the coding of the application and the text concerning its implementation.

1.3 The Problem Statement

We aim to explore the theory of the 19 tone equal temperament scale, com-
pare it to the 12 tone equal temperament scale, find out what makes it
interesting and look into the new possibilities that the scale offers. In order
to do so many, more fundamental, concepts in musical theory will have to
be explained.

To be able to experiment with the scale we will develop a computer
program in the form of a synthesizer programmed in a so called audio pro-
gramming language, that we will have to learn to use. There are a number
of different languages that might be suitable. These options will be explored
and we will attempt to choose the one best fit for our purposes. The syn-
thesizer will feature some sort of graphical user interface. We will make two
separate versions of the synthesizer, one featuring a simple keyboard (this
also serves the purpose of evaluating what our chosen language can do) pro-
ducing sustained notes, and another more advanced with a simple looping
sequencer, for making melodic patterns.

1

2 Theory

2.1 Music Theory

Figure 1: An octave on a standard piano keyboard.

In modern western music the twelve tone scale is ubiquitous and the
basis of almost all music, but it is by no means the only scale possible.
The nineteen tone scale has many interesting qualities that we will attempt
to cover here, while introducing music theory concepts that might not be
familiar to the reader. A glossary of musical terms used in this report can
be found in appendix A.

A tone is a vibration of air at a certain frequency audible to our ears
and a scale is a series of these tones. An important concept when working
with scales is the interval, the ratio between the frequency of two tones.
For example the octave, the most fundamental interval, is a doubling of
frequency. So in the octave interval the ratio between frequencies is 2:1.
Most scales are defined as subdivisions of this fundamental interval. Some
other fundamental intervals are the perfect fifth, with the ratio 3:2 and the
perfect fourth with the ratio 4:3.

The words tone and note are sometimes used interchangeably in our
report. Tone really means a sound at a certain pitch and a note is the visual
representation of a tone playing for a certain amount of time in musical
notation. What term should be used where can sometimes be hard to decide.
We have tried to use tone for the most part.

In earlier music, preserving these pure ratios of intervals was seen as very
important and musicians used a system called Just Intonation, where the
ratios of the intervals were kept as close to their correct ratios as possible.
This kind of tuning made some intervals sound pure and pleasing while
others had to adapt and not come as close to their just intervals. This
uneven distribution led to the situation where an interval could represent

2

different frequency ratios on different parts of the keyboard.
As music evolved musicians wanted to be able to move between differ-

ent keys more freely. Just intonation was not well suited for this, and in
the beginning of the 18th century the idea of Equal Temperament was in-
troduced [2, p.7]. This meant that the octave was simply split into equally
large intervals and music could be transposed between different keys with-
out altering the relationships between the notes. Today we mostly use the
Twelve-Tone Equal Temperament, often abbreviated as 12-TET (which we
will use from now on), but others are possible. All equal temperaments in-
volve compromise and in most cases all intervals (except the octave) will be
approximations of their ideal ratios.

Figure 2: The perfect fifth and perfect fourth mapped to 12-TET

In order to create an equally tempered scale, the general idea is to keep
the octaves just interval and divide the remaining space of frequencies into
equally large intervals. Since an interval is the relation and not the difference
between two frequencies it is not enough to just divide it into equally large
parts. To divide the octave into n equally large intervals we start with what
we know. If we have some tone with frequency a the octave up from that tone
has the frequency 2a. To get the factor r and ratio between the frequencies
of two tones of the smallest interval we can make the equation a · rn = 2a
which gives us r = n

√
2 independent of frequency.

r = n
√

2 (1)

One more thing that should be mentioned is the different usages of the
word scale. Even those who have no real experience of music might have
heard of the C Major Scale for instance. This is a set of seven notes from
the 12-TET scale, called a diatonic scale. These types of scales are what
most musical works are written in. This means that the composition mostly
uses the notes from this scale. The 12-TET scale on the other hand is a

3

chromatic scale. These chromatic scales are seldom used as a basis for a
musical composition, but rather contain the building blocks to a range of
smaller scales.

2.2 19-TET and 12-TET

I order to show how well different equal temperaments (in our case 12-TET
and 19-TET) approximate the just intonation, we use a unit called the cent.
The cent is modeled after 12-TET where every semitone consists of 100 cents,
and thus the octave consists of 1200 cents.

To calculate the number of cents between two frequencies (meaning it
does not matter which temperament we are in) we use the formula: [1]

n = 1200 · log2

(
b

a

)
≈ 3986 · log10

(
b

a

)
(2)

The following is a list of intervals in 12-TET and how well they cor-
respond to the just intervals. The intervals presented were chosen either
because they are commonly used, important, or deviate very little or very
much from their just interval counterparts. Steps refers to the number of
semitones you would increment with on the keyboard to reach traverse the
interval.

Cents are used all over music theory, not just when speaking of the 12-
TET scale (although this is where they make the most sense). So in 19-TET
every step in the scale is 1200/19=63.158 cents.

Name Steps Exact value in
12-TET

Cents Just
Ratio

Cents
(just)

Error

Minor third 3 23/12 = 4
√

2 300 6:5 315.64 -15.64

Major third 4 24/12 = 3
√

2 400 5:4 386.31 +13.69

Perfect Fourth 5 25/12 = 12
√

32 500 4:3 498.04 +1.96

Perfect Fifth 7 27/12 = 12
√

128 700 3:2 701.96 -1.96

Minor Seventh 10 210/12 = 6
√

32 1000 7:4 968.83 +31.17

We see here that some intervals benefit from this partitioning, especially
the perfect fifth and the perfect fourth, while some others suffer, the most
prominent example being the minor seventh. If we now attempt to perform
the partitioning into nineteen equally large parts in the same way we get
another set of intervals:

4

Name Steps Exact value in
19-TET

Cents Just
Ratio

Cents
(just)

Error

Minor third 5 25/19 315.79 6:5 315.64 +0.15

Major third 6 26/19 378.95 5:4 386.31 -7.36

Perfect Fourth 8 28/19 505.26 4:3 498.04 +7.22

Perfect Fifth 11 211/19 694.74 3:2 701.96 -7.22

Minor Seventh 15 215/19 947.37 7:4 968.83 -21.46

Here the set of errors in the rightmost column looks quite different. The
perfect fifth is less accurate but the minor- and major third are more accurate
and no tone deviates as much from its correct ratio as the minor seventh does
in 12-TET.

Figure 3: What a 19-TET keyboard might look like.

The picture above is one way of constructing a 19-TET keyboard. Com-
pared to the regular 12-TET keyboard the black keys have simply been split
in two, and new keys added between those white keys which were immedi-
ately adjacent in 12-TET. New colors were introduced to differentiate the
keys. As we saw in Figure 1, and as musicians know, all the black keys have
two names. C sharp and D flat for example refer to the same note, they
are enharmonic. In 19-TET all these notes (except for E sharp/F flat and
B sharp/C flat) refer to distinct notes. This is one of 19-TETs strengths,
compared to other unorthodox scales (31-TET for example), we can use the
traditional notation system, even though the meaning of the notes is a bit
different. One could in theory take any piece of music written in regular
12-TET and interpret it as if it was written in 19-TET without any modifi-
cations to the sheet music. This would probably sound quite strange, but it
is possible!

12-TET is designed with the idea in mind that fifths on top of each other
will cycle through all the notes in the scale. This is known by musicians as

5

the Circle of Fifths, and is a very useful tool for constructing chords and
modulating between different keys, an important feature indeed in modern
music.

In 19-TET this behaviour is extended to work for all intervals. This is
because 19 is a prime number. Any interval repeated 19 times will cycle
through all the tones of the scale.

19-TET is thus interesting for several reasons. It approximates some
fundamental just intervals better than 12-TET, it can use existing 12-TET
note terminology and it has the interesting property of every interval being
able to cycle through the notes of the scale. This is also accomplished with
a relatively few number of notes compared to other unorthodox tunings like
31-TET or 22-TET which are more cumbersome.

2.3 Technical

There are several programming languages specially tailored for working with
audio. They are good examples of domain-specific languages, that is, pro-
gramming languages designed to ease development in a relatively narrow
field. The term Audio Synthesis Environment is also often used, since they
often consist of both a language (that can sometimes be graphical) and an
environment to run the language in. Some have been around since the 80s,
like CSound and Max/MSP while others are more recent like for example
ChucK. SuperCollider is somewhere in between on the timescale.

6

3 Execution

3.1 Choosing a Language

We chose to look closer at three different audio programming languages,
Max/MSP, ChucK and SuperCollider. There are many others but we cannot
within the scope of this project thoroughly investigate all the alternatives.
We have had no prior experience with any of the candidate languages, and
have attempted to use our knowledge of other more general languages to
assess the suitability of the choices. We take into account our own ability to
learn the language, and therefore we will place preference on a language that
are somewhat similar to what we already know(object-oriented languages
such as Java).

Max/MSP is a largely graphical language that has been around since the
80s, where visible modules are connected and different parameters are set in
a graphical user interface, and is used by many artists and others who don’t
have a lot of technical knowledge[7]. We will not be using Max/MSP for
this project since we would rather work with and learn a real programming
language, and Max/MSP is also one of the few alternatives which is not free.

ChucK is a new language in this category and emphasizes readability
and flexibility, while sacrificing some performance [6]. It lacks some of the
features that would make it a real programming language, such as good
support for string operations[6]. ChucK is a young language, and there is a
risk it is not mature enough not to cause unnecessary trouble.

SuperCollider is a fully fledged programming language that’s aimed to-
wards designing sounds and instruments, and makes the construction of GUIs
relatively easy[5]. We have chosen to use SuperCollider, since it facilitates
easy construction of GUIs yet it is still a mature all-purpose programming
language, which makes it more interesting to learn. It also has a thriving
community built around it and a nice built-in documentation system.

3.2 SuperCollider details

SuperCollider uses a client-server module architecture that can communicate
using a protocol called Open Sound Control, or OSC. The server generates
the sounds and the programmer generally uses only the client to program,
and sends commands to the server. Since OSC, which is implemented by
many other audio applications and environments, is used in communication
between the two components, there is nothing preventing the use of another
client than the default one.

The language is object oriented but many things are done “in reverse”
from the perspective of a Java programmer. For instance the if -statement
and the for -loop.

7

(2>1).if({
"2 is larger than 1".postln;

});

Here we see that the if-statement and its condition are in reversed posi-
tions compared to most other languages. The reverse phenomenon is proba-
bly derived from the traditional class-methods where the object reference is
passed as the first argument to the method.

19.do({
"Hello world!".postln;

});

The preceding code prints the string Hello world! 19 times to the post
window, followed by a 19 (SuperCollider always prints out the value of the
last line of code).

3.3 Constructing the Synthesizer and learning SuperCollider

First off we will attempt to construct a GUI featuring a simple musical
keyboard suited for 19-TET, with keys added for the new notes. The user
should be able to simply click on the keys and a tone will sound for a period
of time. One should be able to click several notes and hear how they sound
together.

In order to be able to experiment and try out new things in 19-TET
we will also design a small and simple looping sequencer. A sequencer is
what is often used in digital music production to describe a progression of
notes, much like a piano roll on an old self-playing piano would look, except
sideways (in most modern cases). The sequencer should be able to make use
of the sound generating code from the keyboard implementation. It will look
like a simple grid of 19 rows (one for each note in the scale) and 16 columns,
where every cell can be active or inactive. Every note in the same column is
played at the same time, and all the columns are played in order, over and
over again. This looping behaviour lets the user try out chords and melodies
in an experimental way.

3.3.1 Construction of the keyboard application

To make the application there are a few obstacles that needs to be overcome
using SuperCollider.

• Playing a tone of a certain frequency.

• Turning the tone on/off.

• Creating a GUI with a button for each tone.

8

Figure 4: The synthesizer playing a C Major chord.

To play a sound in SuperCollider a Synth-object is used. A Synth-object
is created referencing a SynthDef -object which act as a template for the
Synth and is sent to the audioserver in advance. The Synth can then be told
to play or pause as needed. For this application a SynthDef was created with
a variable parameter, the frequency freq.

SynthDef("synth_template", {
|freq|
Out.ar([0, 1],

SyncSaw.ar(freq, 150, 0.2)
);

}).send(s);

As output a sawtooth wave synced to the frequency freq is generated
and played at channels 0 and 1 (right and left speaker). After creation the
SynthDef is immediately sent to the audioserver and can be used for creating
a Synth. As the plan is to have one whole octave on the keyboard there will
be twenty different tones and thus twenty Synths are needed. These are put
into an array for easy access in the future.

synths = Array.new(20);
r = 1.03715504;

20.do({ |i|
var calcFreq = baseFreq * (r**(i));
a = Synth.new("synth_template", [\freq, calcFreq]);
a.run(false);
synths.add(a);

});

For each tone the frequency is calculated from the base-frequency (261.626
Hz in this case for a standard C) and stepping up i steps of the smallest in-
terval by multiplying the base-frequency by r, i times. The variable r is the

9

ratio between two tones of the smallest interval in the scale and calculated
to be approximately 1.03715504 by formula (1). A Synth is then created
using the previously created SynthDef and given the calculated frequency
as parameter. The Synth is by default started in playing mode so its run
method is called with the parameter set to false to prevent just that.

The window is created by simply making an instance of the Window-class
that takes parameters like title and position.

w = Window("19-tonescalesynth", Rect(450, 64, 640, 160));

The buttons are then created in a similar fashion with the window as
parent. They also need two states, playing and non-playing, and some func-
tionality when clicked.

20.do({ |i|
b = Button(w, Rect(0, 0, 25, 100));
b.states = [[toneMap.at(i), Color.white, Color.black],

[toneMap.at(i), Color.white, Color.blue]];

b.addAction({
|button|
(button.value == 1).if({

synths[i].run(true);
}, {

synths[i].run(false);
});

});
});

The states are set by the attribute with the same name. The same
button text is set to the two states but different colors. The text is taken
from the Dictionary toneMap which just maps the numbers 0-19 to a string
with the name of the tone. The addAction method of the Button-class sets
the function to run when the button is clicked. The called function is given
one argument which is a reference to the clicked button, so depending on the
state of that button the corresponding Synth is set to play or pause. The
resulting program source code can be found in appendix B.

Construction of a simple graphical keyboard and an elementary sound-
generation component was accomplished in SuperCollider with around 70
lines of code, showcasing the rapid development of these sort of applications
that SuperCollider enables. The simple application consists of 20 buttons
(the first note, C, was duplicated in order to provide us with the octave
interval) representing tones that can be set to on or off. The tone from each
button continues to sound for as long as it is set to on.

10

3.3.2 Construction of the sequencer

As predicted, large parts of the first application can be re-used in the con-
struction of the sequencer. The GUI will need to be a grid of two-state
buttons that are used to indicate if a tone should be played at the specific
time or not. Each button-reference is stored in an array for later checking
of state. The bigger change is that a timed loop is handling the playing of
tones, and that tones end after a period of time rather than when a button
is clicked. To be able to use the delaying function in the timed loop it has
to happen in a Task. A Task is done in a separate process and created by
instantiating the class and giving it a function to run.

Task.new({
loop {

// Play relevant tones.
0.1.wait;

}
}).play(AppClock);

This will create a new process in the form of a Task and start it. In it
runs a loop indefinitely waiting a tenth of a second between every iteration.
Before the delay the tones corresponding to pressed buttons in the current
column needs to be played. As before this is done with one Synth per tone.
The difference here is that each tone is supposed to end after a certain time
and make use of what is called an envelope. That is, the sound should
change over time, and emulate the sound of a key being struck or a string
being plucked, rather than a constantly sounding tone. This is done with a
slightly modified SynthDef.

SynthDef("synth_template", {
|freq|
var env = Env.perc(0.005, 1.5, 1, -4);
var env_gen = EnvGen.kr(env, doneAction: 2);
Out.ar([0, 1],

SyncSaw.ar(freq, 150, 0.2, mul:env_gen)
);

}).send(s);

As stated above the difference is the envelope, an EnvGen-object is given
as argument when creating the wave which will give the amplitude the char-
acteristics of the defined envelope. When creating the EnvGen there is also
a special argument given, the doneAction, which when set to 2 effectively
cleans up after the Synth when it has finished playing. In this example the
envelope was set to a percussive shape by the perc method. So when creat-
ing a Synth from this SynthDef, it will follow the envelope and eventually

11

Figure 5: The sequencer.

die out and self-destruct. All that is left to do then is to actually create
Synths corresponding to the frequency of the selected buttons in the current
column in the iteration. The resulting program source code can be found in
appendix C.

3.4 Sound experimentation

After construction of the sequencer was complete we made a 12-TET vari-
ation of the same application to make comparisons to. The first few notes
of Twinkle Twinkle Little Star were used to perform very unscientific blind-
tests. When listened to in rapid succession the two tunings were noticeably
different. The perfect fifth in particular stood out as different. In 19-TET
it is about 5 cents lower in pitch, which could make it sound like it “does
not quite get there”. However when listened to on its own without recent
exposure to 12-TET it is hard to be sure. In this case we are of course
only using intervals that appear in both scales, to be able to compare them.

12

When using those intervals from 19-TET that do not appear in 12-TET a
completely different and “out of tune” sound is achieved.

The new intervals we have at our disposal enable the construction of new
kinds of chords. One could for example take the regular minor chord (which
consists of a base tone, a minor third and a fifth) and lower the minor third
one one step, to a position that was never available in 12-TET. This produces
a sound that could be interpreted as “even more sad” (approaching tragic)
than the usual minor chord.

13

4 Conclusions

4.1 Results

The process for creating a 19-TET scale (generalized to any number of tones)
has been explained together with the fundamentals of music theory needed to
understand it. Some of the intervals from the 19-TET scale were calculated
in cents. Comparing these to their just interval counterparts produced a
different set of errors compared to those from 12-TET. Certain intervals like
the minor and major third produced smaller errors while the error of the
perfect fifth grew.

The audio programming language SuperCollider was chosen and success-
fully used to create two simple synthesizers with graphical user interfaces,
using less code than we initially anticipated. Our rather modest goals for
the synthesizers were quite easily fulfilled.

Minor and highly unscientific experimentation was made with the help of
the produced sequencer program. Results of this are highly subjective and
our thoughts can be read about in the previous section.

4.2 Discussion

Musical theory is a surprisingly big field and the exploration of 19-TET and
what possibilities it entails could be taken much further, but not without
spending a lot of time familiarizing oneself with a lot more general musical
theory, which this report does not attempt. We feel however that we have
made clear both that 12-TET is not the only alternative and that 19-TET
is an interesting one, at least from a mathematical and theoretical point-of-
view. What sounds good and what does not is as always highly subjective
but in this case we think most people would agree that music in 19-TET
sounds strange, even when only the intervals we are used to from 12-TET
are used (with the new approximations of 19-TET). It is hard not to ask
oneself questions like “what is music?” and “why does this sound nice while
that does not?” We have been subjected to the sounds of 12-TET all our
life, and that is hard for our ears to put aside. There have been attempts to
make music in 19-TET but they are few and far between. So even though
we doubt 19-TET will make an appearance on the charts anytime soon it is
very interesting to think about.

SuperCollider is quite different from other languages we are used to and
required some research and quite a bit of trial-and-error, even though the
total amount of code required to do what we wanted was quite small. Find-
ing information when we encountered problems was not always as easy as
we wanted. The online documentation was hard to perform searches in
compared to what we were used to from other languages, and the built-in
documentation was not always enough. We never used any of the other

14

audio programming languages to do any real work and cannot compare Su-
perCollider with them when it comes to practical usage, but can say from
our experience with other more general-purpose languages that development
was greatly enhanced by using a domain-specific language. Writing a similar
program in Java would have required many times the amount of code and
would be much more complex to write and understand.

If we were to develop the application further we would add ways to modify
the sound on the fly through the use of sliders controlling things like the
envelope parameters or playback speed. Another interesting path would be
to enable testing of scales of arbitrary size, and new ways of comparing them
side-by-side in some fashion to be able to hear the more subtle differences.

15

References

[1] Cent article on Wikipedia. http://en.wikipedia.org/wiki/Cent_
(music) (Accessed 2011-04-13) 2011.

[2] Per Brolinson, Kompendium i Musikteori. Stockholms Universitet, 1996.

[3] Ivor Darreg, A Case For Nineteen. http://sonic-arts.org/darreg/
case.htm (Accessed 2011-03-09) 1979.

[4] Hubert S. Howe, Jr., 19-Tone Theory and Applications. http:
//qcpages.qc.edu/~howe/articles/19-ToneTheory.html (Accessed
2011-03-09) 1993.

[5] SuperCollider article on Wikipedia. http://en.wikipedia.org/wiki/
SuperCollider (Accessed 2011-04-10) 2011.

[6] ChucK article on Wikipedia. http://en.wikipedia.org/wiki/ChucK
(Accessed 2011-04-10) 2011.

[7] Max/MSP article on Wikipedia. http://en.wikipedia.org/wiki/Max/
MSP (Accessed 2011-04-10) 2011.

16

A List of Terms

A.1 Music Terms

• 12-TET: The twelve-tone equal temperament scale.

• 19-TET: The nineteen-tone equal temperament scale.

• Tone: A sound at a specific pitch

• Note: A written representation of a tone and how long it should be
played etc.

• Semitone: Also known as a half-tone. This is the smallest step in a
scale, the distance between two adjacent notes.

• Interval: The relationship between two notes.

• Just interval: A perfect interval, corresponding to a fraction of small
numbers. For example a perfect fifth is (3/2) times the frequency of
its keynote.

• Scale: A sequence of intervals acting as a palette to choose from, cov-
ering one octave.

• Temperament: A system of tuning where the just intervals are com-
promised.

• Equal temperament: In an equal temperament scale the step between
two adjacent notes is always the same size, no matter where on the
keyboard.

• Key: A scale having its origin at a specific note.

• Transposition: To move a note or group of notes up or down in pitch
by a certain amount.

A.2 Technical Terms

• GUI: A Graphical user interface

• Synthesizer: An instrument that produces sound by electronic means.
Can refer to a physical instrument with real keys and knobs, but
can also be implemented in software and controlled in many ways.
Throughout this report the latter is what is implied.

• Sequencer: Some way of electronically put notes in sequence in a spe-
cific way. Can be likened to the piano rolls of old self-playing pianos.
Sequencers can differ greatly in appearance.

17

B nineteentonescale.scd

var synths, nrKeys, baseFreq, toneMap, calcFreq;

// Number of keys to play on (the toneMap needs to be synced with this)
nrKeys = 20;

// Starting freqency for the first tone in toneMap (C)
baseFreq = 261.626;

// toneMap maps the numbers 0-19 to the 20 tonenames in the octave
toneMap = Dictionary[

0 -> "C",
1 -> "C#",
2 -> "Db",
3 -> "D",
4 -> "D#",
5 -> "Eb",
6 -> "E",
7 -> "E#\nFb",
8 -> "F",
9 -> "F#",
10 -> "Gb",
11 -> "G",
12 -> "G#",
13 -> "Ab",
14 -> "A",
15 -> "A#",
16 -> "Bb",
17 -> "B",
18 -> "B#\nCb",
19 -> "C"

];

// Define the Synth-template for the tones with variable frequency
SynthDef("synth_template", {

|freq|
Out.ar([0, 1],

SyncSaw.ar(freq, 150, 0.2)
);

}).send(s);

// Create an array to fill with Synth-objects
synths = Array.new(nrKeys);

18

// The "magic number" that specifies the ratio between
// two tones of the smallest interval in the scale.
r = 1.03715504;

// For each key
nrKeys.do({ |i|

// Calculate the frequency for the tone
calcFreq = baseFreq * (r**(i));

// Create Synth-object with the frequency
a = Synth.new("synth_template", [\freq, calcFreq]);

// Turn it off to begin with and put it in the array
a.run(false);
synths.add(a);

});

w = Window("19-tonescalesynth", Rect(450, 64, 640, 160));
w.view.decorator = FlowLayout(w.view.bounds);
w.view.background = Color(0.6, 0.8, 0.8);

// Generate the button-keyboard
nrKeys.do({ |i|

b = Button(w, Rect(0, 0, 25, 100));
b.states = [[toneMap.at(i), Color.white, Color.black],
[toneMap.at(i), Color.white, Color.blue]];

b.addAction({
|button|
(button.value == 1).if({

synths[i].run(true);
}, {

synths[i].run(false);
});

});
});
w.front;

19

C nineteentonesequencer.scd

var nrTones, nrTimes, baseFreq, countFreq, toneMap, buttons, toneIndex, colorMap;

// Number of keys to play on (the toneMap needs to be synced with this)
nrTones = 20;
// Number of "time units" in the sequence
nrTimes = 20;

// Starting freqency for the first tone in toneMap (C)
baseFreq = 261.626;

// toneMap maps the numbers 0-19 to the 20 tonenames in the octave
toneMap = Dictionary[

0 -> "C",
1 -> "C#",
2 -> "Db",
3 -> "D",
4 -> "D#",
5 -> "Eb",
6 -> "E",
7 -> "E#\nFb",
8 -> "F",
9 -> "F#",
10 -> "Gb",
11 -> "G",
12 -> "G#",
13 -> "Ab",
14 -> "A",
15 -> "A#",
16 -> "Bb",
17 -> "B",
18 -> "B#\nCb",
19 -> "C"

];

// Dictionary to control button-color
colorMap = Dictionary[

0 -> Color.white,
1 -> Color.black,
2 -> Color.gray,
3 -> Color.white,
4 -> Color.black,
5 -> Color.gray,

20

6 -> Color.white,
7 -> Color.red,
8 -> Color.white,
9 -> Color.black,
10 -> Color.gray,
11 -> Color.white,
12 -> Color.black,
13 -> Color.gray,
14 -> Color.white,
15 -> Color.black,
16 -> Color.gray,
17 -> Color.white,
18 -> Color.red,
19 -> Color.white

];

// Define the Synth-template for the tones with
// variable frequency and an envelope
SynthDef("synth_template", {

|freq|
//var env = Env.triangle(1, 0.2);
var env= Env.perc(0.005, 1.5, 1, -4);
var env_gen = EnvGen.kr(env, doneAction: 2);
Out.ar([0, 1],

SyncSaw.ar(freq, 150, 0.2, mul:env_gen)
);

}).send(s);

w = Window("19-TET Sequencer", Rect(400, 64, 35*nrTimes, 35*nrTones));
w.view.decorator = FlowLayout(w.view.bounds);
w.view.background = Color(0.0, 0.0, 0.0);

buttons = Array2D.new(nrTones, nrTimes);

// Generate "the grid" of buttons
nrTones.do({ |j|

toneIndex = nrTones - j - 1;

nrTimes.do({ |i|
b = Button(w, Rect(0, 0, 30, 30));
b.states = [

[toneMap.at(toneIndex), colorMap.at(toneIndex), Color.new(0.2, 0.2, 0.3)],
[toneMap.at(toneIndex), colorMap.at(toneIndex), Color.new(0.4, 0.4, 0.4)]

];

21

b.font_(Font("Helvetica", 10));

buttons[toneIndex, i] = b;
});

});
w.front;

// Create and start the loopsequence
Task({

j = 0;
loop {

nrTones.do({
|i|
toneIndex = nrTones - i - 1;
// Check if the button is pressed and if so play the tone
(buttons[toneIndex,j].value == 1).if({

countFreq = baseFreq * (1.03715504**(toneIndex));
Synth("synth_template", ["freq", countFreq]);

});
});

j = j + 1;
(j == nrTimes).if({ j = 0; });
0.1.wait;
};

}).play(AppClock);

22

www.kth.se

