

Analysis of Voting Algorithms:
a comparative study of the Single

Transferable Vote

 G A B R I E L A B E N S O U R S E L L S T R Ö M
 a n d M E I D I R U N E F E L T T Õ N I S S O N

 Bachelor of Science Thesis
 Stockholm, Sweden 2012

Analysis of Voting Algorithms:
a comparative study of the Single

Transferable Vote

 G A B R I E L A B E N S O U R S E L L S T R Ö M
 a n d M E I D I R U N E F E L T T Õ N I S S O N

 DD143X, Bachelor’s Thesis in Computer Science (15 ECTS credits)
 Degree Progr. in Computer Science and Engineering 300 credits
 Royal Institute of Technology year 2012
 Supervisor at CSC was Henrik Eriksson
 Examiner was Mårten Björkman

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/
 abensour_sellstrom_gabriel_OCH_runefelt_tonisson_meidi_K12001.pdf

 Kungliga tekniska högskolan
 Skolan för datavetenskap och kommunikation

 KTH CSC
 100 44 Stockholm

 URL: www.kth.se/csc

Abstract
A voting system is defined as a procedure through which
political power is distributed among candidates - from the
ballot box to the parliament. This essay specifically seeks
to contrast the Single Transferable Vote system with two
other voting algorithms (Modified Sainte-Laguë and First-
Past-The-Post), by constructing Java implementations of
the algorithms and running example data through them.
Thus, the suitability of a possible real-life implementation
of the Single Transferable Vote method in a Swedish par-
liament context is evaluated. Furthermore, an alternative
version of the original STV method which has been mod-
ified to fit these conditions is suggested. The effects of
such an implementation on election outcomes are not en-
tirely conclusive, and the conclusion is that more research
is needed before a definite evaluation can be made.

2

Referat
Analys av röstningsalgoritmer:

en jämförande studie av ”enkel överförbar röst”

Ett valsystem är det tillvägagångssätt med vilket den po-
litiska makten fördelas bland kandidater efter ett val. Den
här uppsatsen syftar till att jämföra valsystemet ”enkel
överförbar röst” med två andra valsystem, genom att kon-
struera Java-implementationer av algoritmerna för att kö-
ra exempeldata i. På så sätt utvärderar vi möjligheten att
använda systemet med ”enkel överförbar röst” i svenska
riksdagsval. Utöver det föreslås en alternativ version av
det ursprungliga system ”enkel överförbar röst”, där modi-
fikationer gjorts för att passa de förutsättningar som råder
i Sverige. Effekterna av ett sådant byte av valsystem är in-
te helt klarlagda och slutsatsen är att mer forskning krävs
innan det finns grund för ett definitivt omdöme.

3

Statement of collaboration
The authors would like to thank the following people for their contributions to

the project:

Henrik Eriksson, for providing an excellent starting point for the project.
Svante Linusson and Svante Janson, for contributing with superb source

material.
Marita Strand from the information department of Feministiskt Initiativ, for

supplying highly useful election poll data.

This candidate project has been acheived as a collaboration between two authors.
An outline of the main responsibilities of each author follows below.

Meidi has been responsible for designing and implementing the algorithms in
Java as well as writing the corresponding sections in the final essay (including illust-
rations). She has constructed the augmented version of the 2010 Swedish election
results fitted for the Single Transferable Vote algorithm. She has also been highly
involved in the structuring and writing of the essay itself.

Gabriel has been responsible for constructing the hypothetical sub-threshold
example for use with the MSL and STV systems. Furthermore he has been respon-
sible for retrieving and processing data from the Maltese parliament elections, which
have been used with the STV and FPTP methods. He has also created the graphs
which appear in the essay. He has been in charge of typesetting the essay in LaTeX
and handling the references, in addition to writing parts of the essay.

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Purpose . 7
1.3 Definitions . 7

2 Problem Statement 8
2.1 Evaluating voting systems . 8

2.1.1 Defining desirability of outcomes 8
2.1.2 Evaluating voting system implementations 8

2.2 Adapting the algorithms and real-life examples to suit our needs 8
2.3 Methodology . 9

3 Specification of voting algorithms 9
3.1 Modified Sainte-Laguë method . 9

3.1.1 Description . 9
3.1.2 Justification . 10
3.1.3 Theoretical evaluation . 10
3.1.4 Pseudo code . 10
3.1.5 Implementation . 11

3.2 Single transferable vote . 12
3.2.1 Description . 12
3.2.2 Justification . 13
3.2.3 Theoretical evaluation . 13
3.2.4 Pseudo code . 13
3.2.5 Implementation . 15

3.3 First-Past-The-Post . 17
3.3.1 Description . 17
3.3.2 Justification . 18
3.3.3 Theoretical evaluation . 18
3.3.4 Pseudo code . 18
3.3.5 Implementation . 18

4 Constructing outcome examples 19
4.1 The 2010 Swedish election results . 20

4.1.1 Proportional allotment . 20
4.1.2 Modification of the example data 20
4.1.3 Hypothetical differences in rankings 22

4.2 The 2008 Malta election results, 4th district 22
4.3 Sub-threshold example . 23

4.3.1 Proportional allotment . 24

5

5 Evaluation of algorithms based on examples 24
5.1 Modified Sainte-Laguë method . 24

5.1.1 Example 1: 2010 Swedish election results 24
5.1.2 Example 2: Sub-threshold example 25

5.2 Single transferable vote . 25
5.2.1 Example 1: 2010 Swedish election results 25
5.2.2 Example 2: Maltese election results 2008, 4th District 25
5.2.3 Example 3: Sub-threshold example 26

5.3 First-past-the-post . 27
5.3.1 Example 1: Maltese election results 2008, 4th District 27

6 Visual representations 27

7 Evaluations of methodology 30

8 Conclusions 30
8.1 Modified Sainte-Laguë . 30

8.1.1 Implementation . 30
8.1.2 Outcome . 30

8.2 Single Transferable Vote . 30
8.2.1 Implementation . 30
8.2.2 Outcome . 31

8.3 First-Past-The-Post . 32
8.3.1 Implementation . 32
8.3.2 Outcome . 32

9 Further research 32

10 Appendix 35

6

1 Introduction

1.1 Background

In a democratic system, a set of rules is needed in order to fairly distribute the po-
litical power amongst the candidates. Several voting systems have been designed and
tested throughout human history; some of them simple (such as the popular probabilis-
tic method of drawing straws), some of them more complex (such as the Electoral College
method currently employed in the United States1). What most voting systems have in
common, though, is that they are decidedly algorithmic in nature, which makes this field
of study interesting for Computer Scientists and Political Scientists alike.

1.2 Purpose

The purpose of this essay is to evaluate the possible use of a different version of the Single
Transferable Vote (STV) method in a Swedish parliament context through comparisons
with two other established voting algorithms: Modified Sainte-Laguë (MSL) and First-
Past-The-Post (FPTP). As an auxiliary to this principal purpose, we aim to implement
and evaluate these other voting algorithms in order to be able to draw apt comparisons
between them and the Single Transferable Vote method - both in their designs and their
achieved outcomes.

1.3 Definitions

• A party or candidate is someone for whom a vote can be cast in an election.

• An election is an event during which votes are cast by voters for parties or candi-
dates.

• A seat, or seat of office, is a unit of political power distributed between the parties
after the election has been carried out. The number of seats in a parliament might,
for example, determine the number of votes a party can cast in parliament polls.

• A vote threshold, commonly employed in many democratic systems, is defined as
a minimum percentage of votes that must be attained in order to be considered
elected. In some systems, this percentage is a fixed number (as in Sweden, where
a 4% vote threshold is used); in others, it might be the result of a more complex
mathematical calculation. In the most common version of the Single Transferable
Vote system, the equivalent to the vote threshold is the Droop quota. The Droop
quota is described with the following formula: b V OTES

SEATS+1 + 1c .

7

2 Problem Statement

2.1 Evaluating voting systems

When evaluating a voting system, several factors contribute to the perceived appropri-
ateness of a given system. For example, one might prefer systems that only demand of
the voters to have a clear opinion of their highest-ranking candidate (and not that they
rank all of the candidates), or that the votes can be tallied in a way that minimizes
errors. For the purposes of this essay, we will define the desirability of a voting system
as the combination of two factors: the desirability of the outcomes it typically produces,
and how easy the system is to implement.

2.1.1 Defining desirability of outcomes

The desirability of an election outcome can be defined in several ways. One might for
example come to the conclusion that seats should be awarded in a way that accurately
reflects the votes that have been cast, resulting in the most seats being awarded to the
party that has received the largest amount of votes. It might also be seen as desirable to
award seats in such a way that deadlocks (situations where decisions cannot be reached
due to an equal amount of members of parliament on opposing sides) are prevented.

For the purposes of this paper, we will primarily define the desirability of an election
outcome in terms of how close to complete proportionality the seats are awarded. This
means that a party that has received 30% of the vote should receive 30% of the seats in
parliament. In the vast majority of cases, complete proportionality cannot be attained,
as the total number of seats must be an integer, and there usually cannot be as many
seats as there are voters. Different voting algorithms have different solutions to this
problem.

2.1.2 Evaluating voting system implementations

The complexity of implementing the algorithm will also be a factor in determining its
quality. Of course, to programmatically implement an algorithm differs significantly from
the process involved in actually tallying the votes from a real election, but the similarities
between the processes are nevertheless sufficiently large so as to provide some insight into
the real-life difficulties of instituting a certain voting algorithm.

2.2 Adapting the algorithms and real-life examples to suit our needs

An obvious problem in empirically evaluating different voting algorithms using the same
real-life example data is that some of the election data does not fit the construction of
the voting algorithm. As an example: consider running the result of the Swedish 2010
election through the Single Transferable Vote algorithm. Since the Swedish electoral
system does not in any way register the second preference choices of the voters, there
is no way for us to extract this data in any exact manner. In order to produce an apt

8

example drawing from this initial data, we have been forced to draw some conclusions of
our own, based on voter demographics. This is further detailed in section 4.1.2.

Unfortunately, this can also be the case when running real-life examples that do fit
the proposed voting algorithm. The published voting figures from the Maltese public
elections2 (where the Single Transferable Vote method is in use) simply report which
candidates have been eliminated in what round of the voting count and how the ex-
cess/wasted votes have been distributed, and not how the original votes were ranked.
Seeing as how it’s not possible to find out exactly how the original votes were ranked,
we were forced to draw some conclusions of our own from the numbers that have been
published. This is further detailed in section 4.2.

2.3 Methodology

Along with the Single Transferable Vote method, the Modified Sainte-Laguë method
and the First-Past-The-Post method have been implemented. These voting algorithms
have been contrasted and compared to each other (where applicable), and their defining
features have been evaluated. The voting algorithms have been implemented in Java -
mostly due to the fact that it is an established programming language that the authors
have previous experience with. Several test cases (based on real-life scenarios, some with
slight modifications as explained in section 4 below) have been provided as input to the
different algorithms. The results have been noted, and the data has been collected in a
structured way so as to be able to study the outcome differences as closely as possible.

As mentioned in Section 2.1.2, we have decided to study the implementational diffi-
culties of the voting algorithms as well as their achieved outcomes. This has been done
both through personally noting the perceived facility of programmatic implementation,
and through reading of source material.

3 Specification of voting algorithms

We have decided to evaluate the following voting algorithms in this paper.

3.1 Modified Sainte-Laguë method

3.1.1 Description

The Sainte-Laguë method, named after the French mathematician André Sainte-Laguë,
is a voting system employed in many multiparty parliaments. This method seeks to
accomplish approximate proportionality of seat apportionment between parties, through
successive calculations of party quotients. The vote tally for each party is divided by
a series of odd divisors, and the party with the largest such quotient is awarded the
current available seat. The Modified Sainte-Laguë method, which we will study during
the course of our work, only differs from the original Sainte-Laguë method slightly; as it
uses a different divisor in the first quotient calculation (see below). The modified version
of the method is the voting system currently in use in the Swedish parliament elections.3

9

Figure 1: A seat allotment in the Modified Sainte-Laguë method.

3.1.2 Justification

Due to its aforementioned use in Swedish elections, and due to the fact that the authors
are Swedish (and the readers most likely will be as well), the Modified Sainte-Laguë is
an apt algorithm to implement and evaluate in this context. Election data from elections
where the Modified Sainte-Laguë method has been used is readily available to us, which
facilitates the usage and possible modification of example data.

3.1.3 Theoretical evaluation

The Modified Sainte-Laguë method and the original Sainte-Laguë method differ only in
the first divisor of the quotient calculation; using 1.4 instead of 1 as the first divisor. This
is in order to not dole out the first seat “too cheaply” to small parties.3 Studies have
shown that the Modified Sainte-Laguë method generally manages to attain a medium
amount of proportionality, although less so than its unmodified predecessor.4 This is
due to the previously stated fact that the Modified Sainte-Laguë method slightly favors
larger parties over smaller parties.

3.1.4 Pseudo code

The Modified Sainte-Laguë voting system can be described in pseudocode as follows:

let V be the set of votes, with Vi denoting the number of votes for party i
let p0, ..., pn be the set of parties
let SEATS be the total amount of available seats
let seatsi be the number of seats currently awarded to pi
let quotientsi be the current quotient for party i
while SEATS > 0

if seatsi = 0

10

quotienti := Vi/(1.4)
else
quotienti := Vi/(2 ∗ seatsi + 1)

end if
seatsmax(quotients) := seatsmax(quotients) + 1

SEATS := SEATS − 1
end while

3.1.5 Implementation

The Modified Sainte-Laguë method has been implemented in a single Java class (see
ModifiedSainteLague.java in Appendix). The class relies on the following global data
structures and fields:

Code example 1: Global data structures and fields
int [] votes ; // an i n t e g e r array where the i : th e lement

denotes the number o f vo t e s ca s t f o r par ty i
int [] s e a t s ; // an i n t e g e r array where the i : th e lement

denotes the number o f s e a t s c u r r en t l y awarded to
par ty i

int SEATS; // the t o t a l number o f s e a t s in the example
par l iament

int PARTIES; // the t o t a l number o f p a r t i e s in the
example

The example data is read from a file structured in the following way:

Code example 2: Example input file
3 // the t o t a l number o f p a r t i e s
// one l i n e f o r each par ty f o l l ow , s t a r t i n g wi th the

number o f vo t e s ca s t f o r each party , f o l l owed by the
par ty name

15 SuperParty
10 MegaParty
12 UberParty

The data structures are then initialized with these values.
The seat apportionment is carried out by calculating successive quotients for each

party. If a party has yet to receive a seat in the parliament, its quotient is set to
votes[i]/1.4 - the number of votes cast for the party, divided by 1.4. In all subsequent
calculations (when the party has been allotted a seat), the quotient is set to votes[i]/(2∗
seats[i] + 1) - the number of votes cast for the party, divided by two times the number
of currently allocated seats for the party plus one.

These quotients are recalculated for each seat that is to be allocated. The seat is
allocated to the party with the highest quotient.

11

3.2 Single transferable vote

3.2.1 Description

The Single Transferable Vote method is a voting system based on preferential voting.
Instead of one vote being cast by each voter, a list of candidates is submitted in order
of preference. If a high-ranking candidate gets eliminated, the vote transfers to the next
candidate on the list. This method can be used in single-winner systems as well as
multiple-winner systems.5

Figure 2: The transfer of a ranked vote in the STV system.

The original definition of the Single Transferable Vote algorithm includes transferring
excess votes from already elected candidates to the voters second-preference choices, as
well as transferring the votes cast for the parties that did not meet the quota. For single-
winner systems, or systems where voters can vote for candidates from several different
parties, this makes sense. However, in systems where elections are typically held on the
basis that voters vote for parties and not candidates, such as the case currently is in
Sweden, this would not be applicable. Since our work includes running the data from
the Swedish elections through this algorithm, we have decided to modify the algorithm
for such examples. The modification seeks to minimize the number of “wasted” votes for
parties that do not reach the minimum vote threshold (for Swedish elections, this would
be 4% of the total vote). This modification will work as follows:

Votes cast for parties that already fulfill the minimum vote threshold will continue
to be added to the parties’ vote tallies. Votes cast for parties that do not fulfill the
minimum vote threshold when the tally of votes is completed will be transferred to the
second preference candidate of the voter casting the vote, and so on. This version will
be referred to as the party version.

The original definition of the Single Transferable Vote algorithm has also been im-
plemented, to be used for test cases where voters cast votes for individual candidates
insetad of parties. This version will be referred to as the candidate version.

12

3.2.2 Justification

The natural way of implementing a preferential voting system in Sweden would have
been to use the classical STV method where voters rank individual candidates regardless
of what party they belong to. This is a proven method which is already in use in
parliamentary elections on Malta and in Ireland.5

This essay does not explore the possibilities of using STV in the same manner in
Sweden. The reason is that there seems to be a different, less individual, culture among
the parties in Sweden, resembling a more closed corporate-like culture. This is not
surprising, since there is a tradition among party members of remaining loyal to their
own party during the votes in the parliament. The idea is that a member is represented
in the parliament in order to realize the programme of the party, rather than acting on
their own desires.6

There have been changes in the voting process in Sweden aiming at promoting politi-
cians with individual campaigns. The open list system in use in Sweden was modified in
1998. Voters now have the possibility to mark one single candidate from the party for
which they vote, giving them an advantage over the other candidates on the party list.7

However, this change has not had significant effects on the way candidates are elected. In
the election of 2010, only 24.9% of the voters took advantage of this opportunity, which
makes the number of candidates benefitting from this very limited.8 Hence, there would
not be much reason for employing the classical STV method in Swedish elections.

3.2.3 Theoretical evaluation

Critics of the Single Transferable Vote method usually stress the complexity of the
method. It demands a certain level of knowledgeability on the part of the voters, and
takes for granted that a voter has a clear view of how they would like to rank the candi-
dates.9

Another consequence of the Single Transferable vote method is that it should, theo-
retically, reduce the level of partisanship in parliament. Since parties and/or candidates
can come to power simply from the second-preference votes from other parties, one has
less to gain from strict party lines and negative campaigning.9

The Single Transferable Vote method is not immune to tactical voting. There are
several ways of tactically casting a vote within the STV system; among them, casting a
first-preference vote for a candidate that is highly unlikely to be elected. The second-
preference votes will then be transferred to other candidates at a later stage in the count,
thus carrying more weight.9

3.2.4 Pseudo code

The party version of the Single Transferable Vote system can be described in pseudocode
as follows:

let votes be the set of ranked votes
let currentvotes be the set of votes currently awarded to each party, with currentvotesi denoting

13

the number of current votes for party i
let limit be the least amount of votes needed in order to be considered elected
for each v in votes

i := first preference of v
currentvotesi := currentvotesi + 1

end for
while there are un-eliminated parties still below the vote limit

i := index of the minimum value of currentvotes
if currentvotesi < limit

divide the votes among the second-preferences of the voters that voted for i
eliminate party i from the election

end if
end while

The candidate version of the Single Transferable Vote method is similar:

let votes be the set of ranked votes
let currentvotes be the set of votes currently awarded to each candidate, with currentvotesi denoting
the number of current votes for candidate i
let limit be the least amount of votes needed in order to be considered elected
let elected be the number of candidates that are to be elected
for each v in votes

i := first preference of v
currentvotesi := currentvotesi + 1

end for
while the number of elected candidates are less than elected

while there are candidates still above the vote limit
i := index of the maximum value of currentvotes
if currentvotesi > limit

divide the votes among the second-preferences of the voters that voted for i
elect candidate i

end if
if currentvotesi = limit

elect candidate i
end if

end while
while there are un-eliminated candidates still below the vote limit

i := index of the minimum value of currentvotes
if currentvotesi < limit

divide the votes among the second-preferences of the voters that voted for i
eliminate candidate i from the election

end if
end while

14

end while

3.2.5 Implementation

The Single Transferable Vote system has been implemented in a Java class that processes
the number of first preference votes, as well as a set of probabilities of an “i-party voter”
voting for the “j-party” as a second preference (resulting in a limit of the number of
preferences to two, although votes can be redistributed several times). This is simply
due to practical reasons. We do not have access to a large set of individual votes for any
election (as previously stated in section 2.2), and thus we cannot process the original
data in the same way as the election holders for the original elections did. We have
decided not to implement a proof-of-concept version of the voting system that processes
each vote individually, since the data extracted from this implementation would not be
of any use for outcome comparisons.

It is important to stress that our implementation of the Single Transferable Vote
method is not analogous to a real-life voting method implementation. The complexity
of tallying votes combined with simple probabilities is far smaller than the complexity of
tallying and re-tallying actual ranked votes. Thus, in evaluating the complexity of this
implementation, one must remember that the outcome of this evaluation cannot simply
be applied to a “pure” version of the Single Transferable Vote method.

The Java implementation of the Single Transferable Vote method has been achieved
in a single class (see SingleTransferableVote.java in Appendix) - but in two versions,
depending on whether a party-proportional parliament is desired or not. The first version
only redistributes votes from parties that have been eliminated; the second version also
redistributes excess votes from parties/candidates that have been elected.

The class relies on the following global data structures and fields:

Code example 3: Global data structures and fields
double [] [] votes ; // an i n t e g e r matrix , wi th e lement (i ,

j) denot ing the p r o b a b i l i t y t h a t an i−vo t e r w i l l vo t e
f o r the j−par ty . the d iagona l e lements denote the

number o f vo t e s c u r r en t l y g i ven to the par ty : −1 i f
they have been e l im ina t ed .

int SEATS; // the t o t a l number o f s e a t s in the example
par l iament

int VOTES; // the t o t a l number o f vo t e s ca s t in the
example e l e c t i o n

int PARTIES; // the t o t a l number o f p a r t i e s f o r which
the r e i s s u f f i c i e n t data

boolean DROOP; // a boo lean denot ing whether the Droop
quota shou ld be used in the vo te t h r e s h o l d
c a l c u l a t i o n . I f not , the vo te quota w i l l d e f a u l t to
4%.

15

boolean party ; // whether the par ty ve r s i on or the
cand ida te ve r s i on shou ld be run

The example data is read from a file structured in the following way:

Code example 4: Example input file
3 // the t o t a l number o f p a r t i e s
// one l i n e f o r each par ty f o l l ow , s t a r t i n g wi th the

number o f vo t e s ca s t f o r each party , f o l l owed by the
par ty name , f o l l owed by the vo te t r a n s i t i o n
p r o b a b i l i t i e s (0 f o r the par ty i t s e l f)

5 SuperParty 0 50 50
10 MegaParty 25 0 75
12 UberParty 100 0 0

The data structures are then initialized with these values. After this point, the two
versions of the algorithm differ as described below.

Party version The first-preference votes are tallied and the parties whose votes do
not suffice according to the vote threshold quota have their votes set to −1 before their
votes are divided among the other parties, in order of smallest non-threshold-fulfilling
party to largest. The probability of the second-preference vote going to the k:th party is
multiplied with the number of votes that are to be distributed. Votes are not transferred
to the party itself or to parties that have already been eliminated.

Code example 5: Vote redistribution
for (int k = 0 ; k<PARTIES; k++) {

i f (k==tmp | | cu r rvo t e s [k]==−1) {
continue ;

}
double p r obab i l i t y = (double) votes [tmp] [k] / 1 0 0 . 0 ;
double surp lusVotes = (double) su rp lu s ;
cu r rvo t e s [k] += Math . f l o o r (p r obab i l i t y ∗ surp lusVotes) ;

}

This recounting procedure continues until there are no more votes to be redistributed.

Candidate version The first-preference votes are tallied, and the candidates whose
vote count exceed (or equal) the vote threshold quota have their votes set to the vote
threshold before the surplus of their votes are divided among the other candidates, in
order of largest threshold-fulfilling candidate to smallest. These candidates are deemed
elected, and a parameter keeping count of the number of elected candidates is increased.

Code example 6: Vote redistribution
while (e l e c t e d !=SEATS) {

16

int tmp = max(cu r rvo t e s) ;
i f (cu r rvo t e s [tmp]> l im i t) {

e l e c t e dPa r t i e s . put (tmp , true) ;
e l e c t e d = e l e c t e dPa r t i e s . s i z e () ;
. . .

}
. . .

}

When all of the excess votes have been redistributed, the algorithm moves on to
redistribute the votes from the eliminated candidates, just as in the previous example.
If after these two sets of calculations, the number of elected candidates is not equal to
the number of seats that are to be apportioned, the calculations recommence (with first
redistributing excess votes and then redistributing votes from eliminated candidates).

3.3 First-Past-The-Post

3.3.1 Description

The First-Past-The-Post voting method is an election method designed for electing one
or several candidates out of a set of many candidates. It consists of simply electing the
N candidates that have received the highest amount of votes. As such, it is a suitable
algorithm for cases where several candidates are to be elected with each of the candidates
holding the same amount of political power - as well as for cases where only one candidate
is to be elected.10

Figure 3: First-Past-The-Post election with three seats and five candidates

17

3.3.2 Justification

Being a relatively elementary voting system, the reasons for including the First-Past-The-
Post method are mainly reasons of practicality. It is quite simply a method with which
comparisons easily can be made - especially comparisons with the candidate version of
the Single Transferable Vote method. As such, the results of the First-Past-The-Post
method might look obvious, but they are nevertheless needed in order to provide a
sufficient amount of data for evaluation.

3.3.3 Theoretical evaluation

The First-Past-The-Post voting method has been subject to much criticism; mainly that
the system encourages tactical voting.10 A voter that prefers an unpopular candidate
might reason that since their favorite candidate is unlikely to be elected, their vote would
go to waste if they went with their first preference - and as such, they might cast their
vote for a more popular although less personally favorable candidate. This leads to voters
having to somehow calculate the possible winners before the election takes place, which
leads to a significant risk of having their final choice influenced by media outlets and
pre-election polls.

3.3.4 Pseudo code

let V be the set of votes, with Vi denoting the number of votes for party i
let N be the number of parties that are to be elected
while less than N parties have been elected

for all Vi in V
if Vi = max(V)

elect party i
end if
Vi := −∞

end for
end while

3.3.5 Implementation

The First-Past-The-Post voting method has been implemented in a single Java class (see
FirstPastThePost.java in the Appendix). The class relies on the following global data
structures and fields:

Code example 7: Global data structures and fields
int [] votes ; // an i n t e g e r array where the i : th e lement

denotes the number o f vo t e s ca s t f o r par ty i
int PARTIES; // the t o t a l number o f p a r t i e s in the

e l e c t i o n data

18

int SEATS; // the t o t a l number o f p a r t i e s t h a t are to be
e l e c t e d

The example data is read from a file structured in the following way:

Code example 8: Example input data
3 // the number o f p a r t i e s in the example data
// one l i n e f o r each par ty f o l l ow , s t a r t i n g wi th the

number o f vo t e s ca s t f o r each party , f o l l owed by the
par ty name

5 SuperParty
10 MegaParty
12 UberParty

The data structures are then initialized with these values.
After the initialization is complete, the N parties with the highest amount of votes

are declared to be elected:

Code example 9: Winner calculation
int count = 0 ;
while (count<SEATS) {

int e l e c t e d = max(votes) ;
System . out . p r i n t l n ("Party " + e l e c t e d) + " has been

e l e c t e d ") ;
votes [e l e c t e d] = −1; // do not in c l ude in f u r t h e r

c a l c u l a t i o n s
count++;

}

4 Constructing outcome examples

In constructing our example data, we have chosen to focus primarily on real-life examples,
as well as slightly modified real-life examples. This has entailed looking up election
data online, mainly from countries that already employ one of the algorithms that we
have implemented. The reason for doing so, instead of constructing fictional examples
completely from scratch, is that the real-life examples we have found (as outlined below)
are sufficiently diverse and interesting enough in order to demonstrate the differences
between the voting systems.

As outlined in section 2.2 above, we have had to modify some of the data in the exam-
ple set for the algorithm experiments to make sense. These modifications are explained
in further detail in the sections below.

19

4.1 The 2010 Swedish election results

As the authors of this paper are of Swedish origin, as will most of the readers be, it
seems reasonable to use numbers from a Swedish election as an example. This way the
reader will have a relation to the numbers and to the results, therefore it will be easier to
understand and motivate different algorithms. In terms of voting algorithms, the results
of the 2010 election themselves are not more interesting than are the results of any of the
earlier elections. One thing that is unusual about the 2010 election is that a new party
entered the parliament, namely Sverigedemokraterna, something that had not happened
in almost 20 years.11

It should be noted that adjustment seats have not been taken into consideration in
our implementation of the voting algorithms. Therefore the results from the Swedish
2010 election, when run through our implementation, will differ slightly from the real-life
2010 seat division.

4.1.1 Proportional allotment

If the 349 seats would be allotted in a completely proportional way - giving a party with
10% of the vote 10% of the seats - the seat distribution for this example would consist of
fractional seats being allotted to the parties. The following numbers12 are thus included
purely for comparative reasons.

Party V S MP C FP KD M SD PP FI SPI
Seats 19.54 107.00 25.62 22.89 24.64 19.54 104.91 19.89 2.27 1.40 0.66

It must be noted that the figures above do not take the Swedish vote threshold of 4%
into account.

4.1.2 Modification of the example data

In order to make use of the data from the 2010 Swedish election while analysing the
Single Transferable Vote algorithm, we were forced to augment this data set with some
creative guessing regarding how a Swedish voter would rank their parties if they had
the opportunity to do so. Since we have already applied a modification of the Single
Transferable Vote algorithm that leads to excess votes not being redistributed among
other parties (as described in section 3.2.5), we only really need to justify the hypothetical
candidate ranking of the voters whose parties did not meet the Swedish vote threshold
of 4% of the total vote.

The three largest parties that are just below the 4% threshold are Piratpartiet (with
0.65% of the vote), Feministiskt Initiativ (with 0.40% of the vote), and SPI - Sveriges
Pensionärers Intresseparti (with 0.19% of the vote).12 We have decided to only include
these three sub-threshold parties in our ranking estimates, as relevant data regarding
voters for even smaller parties is hard to find.

There are many papers on the subject of Swedish voter trends, but unfortunately
they almost always only describe the flow of votes between parties that are already in

20

parliament. As such, we have had to rely on numbers from the SVT exit poll VALU13

that was carried out on the day of the election, in order to analyze what the probabilities
are of a person from a certain demographic voting for another party. Specifically, we
have decided to use the results of the question “which parties would you like to see in
government?” Given the fact that voters were free to choose more than one party as an
answer to this question, this does not reflect their actual second-choice preferences.

This obviously results in little more than a loosely founded guess, but even a guess
such as this should yield results that are interesting enough to warrant the inclusion
of such a guess. We have decided to only account for hypothetical second rankings of
sub-threshold party voters, though, as the construction of third and fourth-hand guesses
would be much too hypothetical to offer any real insight.

Piratpartiet

Of the voters for Piratpartiet on election day in 2010, this is the percentage breakdown
of the government party preferences:13

Party V S MP C FP KD M SD
Preference 11 19 21 19 21 9 26 9

Drawing from these numbers, we can construct a guess of what a Piratpartiet voter
would have chosen as a second-choice party in the 2010 election. Normalizing these num-
bers, we get the following percentages:

Party V S MP C FP KD M SD
Percentage 8.15 14.07 15.56 14.07 15.56 6.67 19.26 6.67

This gives us a sufficient indication of the party sympathies of the Piratpartiet vot-
ers. The data from the 2010 election can then be augmented in the obvious fashion -
giving 8.15% of the Piratpartiet voters Vänsterpartiet as a second choice, 14.07% So-
cialdemokraterna, and so on.

Feministiskt initiativ

Of the voters for Feministiskt Initiativ on election day in 2010, this is the percentage
breakdown of the government party preferences:13

Party V S MP C FP KD M SD
Preference 49 37 64 6 12 6 15 2

Normalizing these numbers, we get the following percentages:

Party V S MP C FP KD M SD
Percentage 25.65 19.37 33.51 3.14 6.28 3.14 7.85 1.05

The data from the 2010 election can then be augmented in the obvious fashion, as above.

21

SPI - Sveriges Pensionärers Intresseparti

The SPI voters have not been included in the SVT VALU exit poll, making it necessary
to use other means of constructing a hypothetical second choice for these voters. Since
the founding principle of the SPI party is to provide a government alternative that caters
to senior citizens,14 we have decided to generalize the demographic of the SPI party to
people of the ages 61 and above.

The percentage breakdown of voters of the ages 61 and above is as follows:15

Party V S MP C FP KD M SD Others
Percentage 3.83 37.17 4.44 8 8.61 6.61 27.51 3.22 0.61

Disregarding the 0.61% voting for other parties (since there is no detailed statistical
breakdown of this figure), data from the 2010 election can then be augmented in the
obvious fashion, as above.

4.1.3 Hypothetical differences in rankings

One of the key differences of voting in a Single Transferable Vote system as compared to
a Sainte-Laguë system (currently in place in Sweden), is that voters are not discouraged
from voting for their favorite candidate simply from fear of the candidate not getting into
parliament. Being able to rank the candidates in this way would possibly eliminate the
fear of one’s vote being “wasted” on a party that did not manage to meet the parliament
threshold.5

Taking this into account, it is easy to come to the conclusion that the voting numbers
for the 2010 Swedish election might have looked extremely different with the Single
Transferable Vote system in place. For example, according to a phone survey carried
out by Sifo in 2006, 11% of voters would consider voting for Feministiskt Initiativ if
they were confident that the party would make the 4% threshold.16 This makes the
augmented 2010 Swedish election results example somewhat lacking, and probably not
very representative of what the numbers would have looked like if the Single Transferable
Vote algorithm were in place by the 2010 election.

4.2 The 2008 Malta election results, 4th district

In our search for example data to draw from when evaluating the Single Transferable Vote
method, we immediately started looking for countries that already have implemented a
variant of this method in their elections. Malta emerged from several sources,5,17 and
we managed to get a hold of data from elections held in the different Maltese districts in
2008. The numbers show how the successive eliminations and vote redistributions were
carried out, but the details of the individual votes have not been reported.2

Based on this data, we have constructed a Maltese example with the same struc-
ture as the previous Single Transferable Vote examples. For each vote redistribution,
a probability of vote transfer was calculated based on the actual number of votes that
were transferred from one party to another. E.g: since 4 out of 1230 votes from Saviour

22

Parnis we redistributed to Jesmond Mugliett, the probability of vote transfer from Parnis
to Mugliett is 4/1230 ≈ 0.3%.

The main problem with this approach is that data becomes more and more sparse as
the election progresses. For the later eliminations, there is only data describing which of
the non-eliminated, non-elected candidates the redistributed votes have been allocated
to. This means that a voter whose first-preference candidate was eliminated very late in
the election may very well have had a previously eliminated candidate as their second-
preference - but this has not been reported. However, since there is no way of deducing
the actual rankings of the entire set of voters, we have had to settle for what information
could be extracted from the data set.

4.3 Sub-threshold example

The purpose of this example is to investigate what were to happen if one of the parties
which are represented in the Swedish parliament today were to receive less than 4% of
the votes (the Swedish vote threshold), and therefore lose their representation in the
parliament.

One of the parties which usually lies close to the 4% vote threshold is Kristdemokra-
terna (KD), which received 5.60% of the votes in the Swedish election of 2010.12 Now,
suppose that they had instead received 3.9% of the votes; just under the vote threshold.
This would mean that, with the current voting system in use in Sweden, they would not
have received a single seat in the parliament. Since KD is part of the right wing coalition
which currently have the majority of seats in the parliament,18 this would also mean that
the coalition as a whole would lose 3.9% of their votes, and thereby lose some of their
seats as a result.

Of the voters for KD on election day 2010, this is the percentage breakdown of the
government party preferences.13

Party V S MP C FP M SD
Preference 1 6 11 64 70 75 2

Normalizing these numbers, we get the following percentages:

Party V S MP C FP M SD
Percentage 0.44 2.62 4.8 27.95 30.57 32.75 0.87

If KD had received 232 456 votes, they would have had 3.9% of the total 5 960 408
of votes. In reality they received 333 696 votes, which is 5.60% of the total amount of
votes. So for the sake of this example, we will distribute the remaining 101 240 votes
among the seven other parties of the government, using the normalized party preferences
above.

Party V S MP C FP KD M SD
Votes 334 498 1 830 149 442 295 419 101 451 473 232 456 1 824 922 340 491
Percentage 5.612% 30.71% 7.421% 7.031% 7.575% 3.9% 30.62% 5.713%

23

4.3.1 Proportional allotment

If the 349 seats would be allotted in a completely proportional way, the seat distribution
for this example would consist of fractional seats being allotted to the parties. The fol-
lowing numbers are thus included purely for comparative reasons.

Party V S MP C FP KD M SD PP FI SPI
Seats 19.59 107.18 25.90 24.54 26.44 13.61 106.86 19.94 2.27 1.40 0.66

It must be noted that the figures above do not take the Swedish vote threshold of 4%
into account.

5 Evaluation of algorithms based on examples

The examples, as described in section 4 above, have been run as input data through
the three voting algorithms. Specific parameters have been set in order to make the
algorithms closely fit the aim of the original election: for example, the Modified Sainte-
Laguë method was given a total seat number of 349 when calculating the seat distribution
for the 2010 Swedish parliament election.

The vote threshold quotient for each example and algorithm has also been set in
an individual fashion, with the intent to fit the aim of the original election from which
the data was retrieved. A vote threshold quotient of 4% was used for the 2010 Swedish
election results example, and the Droop quota was used as a vote threshold for the 2008
Maltese election results.

5.1 Modified Sainte-Laguë method

5.1.1 Example 1: 2010 Swedish election results

The vote tally of the 2010 Swedish election results was run through the Java implemen-
tation of the Modified Sainte-Laguë method with a parameter setting of 349 seats (the
total number of seats in the Swedish parliament) and 8 parties (the parties that fulfilled
the 4% vote quota), yielding the following results:

Party V S MP C FP KD M SD
Votes 334 053 1 827 497 437 435 390 804 420 524 333 696 1 791 766 339 610
Seats 20 109 26 23 25 20 106 20

The difference between the results of the implemented Modified Sainte-Laguë method
and the actual apportionment of seats in parliament is due to the usage of adjustment
seats in Swedish parliament.

24

5.1.2 Example 2: Sub-threshold example

The vote tally of the fictitious election where KD did not attain the Swedish vote thresh-
old of 4% was run through the Java implementation of the Modified Sainte-Laguë method
with a parameter setting of 349 seats and 7 parties, yielding the following results:

Party V S MP C FP M SD
Votes 334 498 1 830 149 442 295 419 101 451 473 1 824 922 340 491
Seats 21 113 27 26 28 113 21

5.2 Single transferable vote

5.2.1 Example 1: 2010 Swedish election results

The vote tally of the 2010 Swedish election results were run through the Java implemen-
tation of the Single Transferable Vote method, with the eleven parties with the largest
amount of first-hand votes in the input file. The version that was run was the party
version, which does not redistribute excess votes from already elected parties. The three
parties that did not meet the Swedish vote threshold quota of 4% votes had their ex-
ample data augmented with probabilities of the voters ranking a certain other party as
their second preference choice (as detailed in section 4.1.2). The eight parties that did
make the 4% vote threshold did not have their example data augmented, due to the
aforementioned modification to the Single Transferable Vote algorithm that results in
excess votes not being redistributed to other parties, but instead contributing to the seat
apportionment.

The redistributed votes were then run as input data to the Modified Sainte-Laguë
method, in order to calculate the new seat distribution in the Swedish parliament. This
yielded the following results (with significant changes from the results of only running
the example through the Modified Sainte-Laguë method denoted with a plus or minus
sign depending on whether the party lost or gained seats):

Party V S MP C FP KD M SD
Votes 343 805 1 841 704 452 003 397 862 428 981 337 752 1 804 120 342 786
Seats 20 108- 27+ 23 25 20 106 20

As follows from these results, it can be noted that the only difference in seat distribution
is that one seat that was previously awarded to Socialdemokraterna is now awarded to
Miljöpartiet.

5.2.2 Example 2: Maltese election results 2008, 4th District

The vote tally of the 2008 Maltese election in the 4th district, augmented with the vote
transfer probabilities as previously described in section 4.2, was run through the Java
implementation of the Single Transferable Vote method with a vote threshold (calculated
according to the Droop quota) of 3660 votes, and the 16 candidates running for office

25

in the input file. The version that was run was the candidate version, which does redis-
tribute excess votes from already elected candidates. This yielded the following results:

Candidate Votes Status
Seychell 86 ELIMINATED
Mizzi 182 ELIMINATED
Bonnici 544 ELIMINATED
Brincat 164 ELIMINATED
Cauchi 560 ELIMINATED
Chircop 4378 ELECTED
Mangion 2411 ELECTED
Muscat 49 ELIMINATED
Parnis 4890 ELECTED
Sammut 511 ELIMINATED
Azzopardi 3321 ELECTED
Bonavia 253 ELIMINATED
Galea 411 ELIMINATED
Mugliett 2484 ELECTED
Scerri 1561 ELIMINATED
Schembri 153 ELIMINATED

Table 1: Table showing the results with the number of total votes (first preference and
transferred), and whether or not the candidate was elected

5.2.3 Example 3: Sub-threshold example

The vote tally of the fictitious election where KD did not attain the Swedish vote thresh-
old of 4% was run through the Java implementation of the Single Transferable Vote
method with a parameter setting of 349 seats, and the eleven parties with the largest
amount of first-hand votes in the input file. The version that was run was the party
version, which does not redistribute excess votes from already elected parties.

The redistributed votes were then run as input data to the Modified Sainte-Laguë
method, in order to calculate the new seat distribution in the Swedish parliament. This
yielded the following results (with significant changes from the results of running the
example through the Modified Sainte-Laguë method denoted with a plus or minus sign
depending on whether the party lost or gained seats):

Party V S MP C FP M SD
Votes 345 290 1 850 552 468 215 492 264 532 231 1 914 733 345 724
Seats 20- 109- 28+ 29+ 31+ 112- 20-

26

5.3 First-past-the-post

5.3.1 Example 1: Maltese election results 2008, 4th District

The vote tally of the 2008 Maltese election in the 4th district was run through the Java
implementation of the First-Past-The-Post algorithm with a parameter setting of 5 seats
and the 16 candidates running for office in the input file, yielding the following results:

Candidate Votes Status
Seychell 86 ELIMINATED
Mizzi 182 ELIMINATED
Bonnici 544 ELIMINATED
Brincat 164 ELIMINATED
Cauchi 560 ELIMINATED
Chircop 4378 ELECTED
Mangion 2411 ELECTED
Muscat 49 ELIMINATED
Parnis 4890 ELECTED
Sammut 511 ELIMINATED
Azzopardi 3321 ELECTED
Bonavia 253 ELIMINATED
Galea 411 ELIMINATED
Mugliett 2484 ELECTED
Scerri 1561 ELIMINATED
Schembri 153 ELIMINATED

Table 2: Table showing the results with the number of total votes (first preference and
transferred), and whether or not the candidate was elected

6 Visual representations

The following graphs illustrate the differences between the outcomes of the previous
experiments.

27

Figure 4: Differences in seat allotment for the Swedish 2010 election results, between
completely proportional allotment, the Modified Sainte-Laguë method and the Single
Transferable Vote

28

Figure 5: Differences in seat allotment for the sub-threshold example, between completely
proportional allotment, the Modified Sainte-Laguë method and the Single Transferable
Vote

29

7 Evaluations of methodology

Though efforts have been made to limit the scope of this essay as much as possible, it
is evident that we might have benefitted from narrowing the scope down even further.
Comparisons between voting algorithms as far apart as the three we have chosen to
evaluate are hard to make, as example data from one election rarely fits the definition of
another election system. This is especially evident in the case of trying to make data from
Swedish elections fit the Single Transferable Vote method - some quite dramatic redesigns
of both algorithm and input data had to be made. Nevertheless, we are content with our
solution to these issues, and the result of the algorithmic redesign is a Single Transferable
Vote method that possibly could be implemented in future elections in Sweden.

In conclusion: an essay with a significantly narrower scope would have been easier
to write, and the implementations and issues that would have emerged from this would
probably not have been as challenging as those of this essay. However, the challenges of
this essay have proved constructive for answering our question formulation.

8 Conclusions

8.1 Modified Sainte-Laguë

8.1.1 Implementation

The Modified Sainte-Laguë method is relatively easy to implement in a standard election.
Votes only need to be counted once, and can theoretically be discarded once the result
has been tallied in a correct way. The seat distribution, as it depends on a well-defined
mathematical formula, is unambiguous. The Java implementation within the scope of
this essay correctly reflects this.

8.1.2 Outcome

Contrasting the outcome from the examples run through MSL with the outcome of a
completely proportional seat allotment, one might notice a tendency on the part of
MSL to favor larger parties over smaller parties. This is one of the key features of
the Modified Sainte-Laguë method, as previously described in section 3.1.3, and our
experiments correctly demonstrate this.

8.2 Single Transferable Vote

8.2.1 Implementation

Implementing a STV system in an actual election is not trivial. Votes must be saved
until the election is complete, or their ranking lists have been exhausted (such as when
the last person on a vote ranking list is eliminated). It is, again, important to note that
the implementations that have been made in the scope of this essay do not correctly
reflect the difficulties involved in utilizing such a system. This is because the focus of

30

our implementations is to estimate results based on probabilities and voting figures, and
not actually counting separate votes.

Party version An election implementation of the proposed party version of the Single
Transferable Vote method would not fundamentally differ from the unmodified version of
the Single Transferable Vote method. Voters would submit a vote consisting of a ranked
list - same principle as in all versions of STV - and the votes would be transferred from
party to party in almost the same way; the only difference at this stage being that excess
votes from already elected parties would not be transferred. After the tally is complete,
the seats could then be distributed with a seat distribution method of choice.

Candidate version The candidate version of the STV, being the standard version of
the algorithm, is implemented in many parliaments across the world today. As such, the
difficulties involved in implementing this version reflect the difficulties of implementing
the STV in general - votes must be recounted and correctly transferred from candidate
to candidate, which demands a lot of work on part of the election personnel.

8.2.2 Outcome

The outcomes of elections held according to the STV system should be said to accurately
reflect to collective will of the voters. Instead of settling for a non-favorite candidate for
whom to cast their vote, voters are encouraged to cast their votes completely according
to their own preferences.5

Party version The outcome of the examples run through the party version of the STV,
as defined in this essay, do not differ significantly from the results of the same examples
run through the Modified Sainte-Laguë method. One can note a slight tendency of
redistributing seats from larger parties to smaller parties, but the shift is so slight that
its significance is doubtful.

Again, one must remember that the construction of the numbers that constitute our
examples are essentially based on little more than probabilistic guesses. As we previously
noted in section 4.1.3, it is highly possible that the preferentially ranked votes of voters
in these elections would have looked enormously different from the votes they cast in the
non-STV elections.

Candidate version The outcome of the 2008 Maltese election for the fourth district,
when run through the STV algorithm, corresponds to the outcome of the same example
run through the First-Past-The-Post algorithm. In other words: the five candidates with
the most amount of first-preference votes were the five candidates that ended up elected.

It would appear that the implementation of the Single Transferable Vote, in this case,
was not actually significant for the outcome of the Maltese election, but it is important
to note that the utilization of the STV did make a difference for other Maltese districts
in the same election.2 Due to the fact that the redistribution of votes for other districts

31

was ambiguous (sometimes eliminating more than one candidate per round, making it
impossible to know whose votes were redistributed where), they were not applicable as
examples for our algorithms. With more detailed data from these elections, we might
have been able to demonstrate the effect of the STV in these cases.

8.3 First-Past-The-Post

8.3.1 Implementation

The First-Past-The-Post method is extremely simple to implement for real-life elections,
given the resources to correctly count the votes and sort the results somehow. Our Java
implementation also correctly reflects this.

8.3.2 Outcome

The outcome results of the First-Past-The-Post method are obvious, given the final vote
figures. As previously stated in section 8.2.2, FPTP and the candidate version of STV
managed to attain the same results for the example we have constructed for this essay,
although this can hardly be said to be a typical outcome of such a comparison.

9 Further research

In this essay we have suggested an alternative version of the Single Transferable Vote
system, which could be a potential replacement of the system currently in use in Sweden.
Our work can only be regarded as a pilot study of the effects that the proposed STV
alternative would have on the Swedish election process. To really evaluate the effects
that the system would have in a Swedish election, one would have to make much more
detailed evaluations.

One of the best ways to evaluate the system would be to perform an election exit
poll, where respondents get both the questions of what party they chose to vote for and
how they would have voted if they had the opportunity to rank candidates in the way
that the alternative STV method proposes. Of course, this would require much work
and planning since every respondent would have to be properly educated in how the
system works. Furthermore, such a study would have to have a substantial amount of
respondents from widely different demographic groups to really give an answer to the
question of how the method could change the voting process.

References

[1] Balinski M, Young P. Fair Representation: Meeting the ideal of one man, one vote.
Washington, D.C: Brookings Institution Press; 2001,

32

[2] Elections in Malta: The Single-Transferable-Vote System in Action, 1921 - 2009.
District Results, Count by Count. [cited 2012 Apr 11]. Available from: http://www.
maltadata.com/divs.htm

[3] Wikipedia. Sainte-Laguë method. [updated 2012 Apr 6; cited 2012 Apr 11]. Available
from: http://en.wikipedia.org/wiki/Sainte-Laguë_method

[4] Benoit K. Which Electoral Formula Is the Most Proportional? A New Look with New
Evidence. Political Analysis. 2000 [cited 2012 Apr 6]; 8(4):381-388. Available from:
http://polmeth.wustl.edu/analysis/vol/8/PA84-381-388.pdf

[5] Tideman N. The Single Transferable Vote. Journal of Economic Perspectives. 1995
[cited 2012 Apr 11]; 9(1):27-38. Available from: http://www.jstor.org/stable/
2138352

[6] Sveriges riksdag. Så arbetar ledamöterna. 2011 [cited 2012 Apr 11]. Available from:
http://www.riksdagen.se/sv/Sa-funkar-riksdagen/Sa-arbetar-ledamoterna/

[7] Wikipedia. Personval. [updated 2012 Apr 6; cited 2012 Apr 11]. Available from: http:
//sv.wikipedia.org/wiki/Personval

[8] Statistiska centralbyrån. Flest personröster på manliga kandidater. 2011 [cited 2012
Apr 11]. Available from: http://www.scb.se/Pages/PressRelease____310892.
aspx

[9] Wikipedia. Issues affecting the Single Transferable Vote. [updated 2011 Jul 5; cited
2012 Apr 11]. Available from: http://en.wikipedia.org/wiki/Issues_affecting_
the_Single_Transferable_Vote

[10] Wikipedia. First-past-the-post voting. [updated 2012 Mar 25; cited 2012 Apr 11].
Available from: http://en.wikipedia.org/wiki/First-past-the-post_voting

[11] Wikipedia. Sveriges riksdag. [updated 2012 Mar 19; cited 2012 Apr 11]. Available
from: http://sv.wikipedia.org/wiki/Sveriges_riksdag

[12] Valmyndigheten. Val till riksdagen - Röster. 2010 [cited 2012 Apr 11]. Available
from: http://www.val.se/val/val2010/slutresultat/R/rike/index.html

[13] Sveriges Television. Riksdagsvalet 2010 Valu. 2010 [cited 2012 Apr 11].
Available from: http://svt.se/content/1/c8/02/15/63/14/ValuResultat2010_
100921.pdf

[14] SPI – Sveriges Pensionärers Intresseparti. Partiprogram. 2010 [cited 2012 Apr 12].
Available from: http://spipartiet.org/partiprogram.html

[15] Statistiska centralbyrån. Allmänna val, valundersökningen - Andel röstande på
partierna efter kön och ålder. 2011 [cited 2012 Apr 11]. Available from: http:
//www.scb.se/Pages/TableAndChart____272993.aspx

33

http://www.maltadata.com/divs.htm
http://www.maltadata.com/divs.htm
http://en.wikipedia.org/wiki/Sainte-Lagu�_method
http://polmeth.wustl.edu/analysis/vol/8/PA84-381-388.pdf
http://www.jstor.org/stable/2138352
http://www.jstor.org/stable/2138352
http://www.riksdagen.se/sv/Sa-funkar-riksdagen/Sa-arbetar-ledamoterna/
http://sv.wikipedia.org/wiki/Personval
http://sv.wikipedia.org/wiki/Personval
http://www.scb.se/Pages/PressRelease____310892.aspx
http://www.scb.se/Pages/PressRelease____310892.aspx
http://en.wikipedia.org/wiki/Issues_affecting_the_Single_Transferable_Vote
http://en.wikipedia.org/wiki/Issues_affecting_the_Single_Transferable_Vote
http://en.wikipedia.org/wiki/First-past-the-post_voting
http://sv.wikipedia.org/wiki/Sveriges_riksdag
http://www.val.se/val/val2010/slutresultat/R/rike/index.html
http://svt.se/content/1/c8/02/15/63/14/ValuResultat2010_100921.pdf
http://svt.se/content/1/c8/02/15/63/14/ValuResultat2010_100921.pdf
http://spipartiet.org/partiprogram.html
http://www.scb.se/Pages/TableAndChart____272993.aspx
http://www.scb.se/Pages/TableAndChart____272993.aspx

[16] Sifo Research International. Sifos Telefonbuss 2006. 2006 [cited 2012 Apr 11]. Avail-
able from: http://www.feministisktinitiativ.se/downloads/grasrot/sifo_
060905.pdf

[17] Wikipedia. Table of voting systems by country. [updated 2012 Feb 1; cited 2012 Mar
28]. Available from: http://en.wikipedia.org/wiki/Table_of_voting_systems_
by_nation

[18] Wikipedia. Regeringen Reinfeldt. [updated 2012 mar 29; cited 2012 Apr 11]. Avail-
able from: http://sv.wikipedia.org/wiki/Regeringen_Reinfeldt

34

http://www.feministisktinitiativ.se/downloads/grasrot/sifo_060905.pdf
http://www.feministisktinitiativ.se/downloads/grasrot/sifo_060905.pdf
http://en.wikipedia.org/wiki/Table_of_voting_systems_by_nation
http://en.wikipedia.org/wiki/Table_of_voting_systems_by_nation
http://sv.wikipedia.org/wiki/Regeringen_Reinfeldt

10 Appendix

Code example 10: Java implementation of First-Past-The-Post
import java . i o . BufferedReader ;
import java . i o . Fi leReader ;
import java . i o . IOException ;
import java . u t i l . HashMap ;

/∗∗
∗ A c l a s s t ha t t a k e s e l e c t i o n input data and c a l c u l a t e s the winning

candidates ,
∗ accord ing to the F i r s t Past The Post vo t i n g a l gor i thm .
∗ @author Meidi Tõnisson
∗
∗/

public class FirstPastThePost {
private stat ic int [] votes ; // the s e t o f vo t e s f o r each party ,

where vo t e s [i] i s the number o f vo t e s f o r the i : th par ty
private stat ic int PARTIES; // the t o t a l number o f p a r t i e s
private stat ic int SEATS = 5 ; // the t o t a l number o f s e a t s to be

f i l l e d
private stat ic HashMap<Integer , Str ing> partynames ; // a HashMap

mapping par ty index to par ty name

/∗∗
∗ This main method shou ld be f ed the f i l ename o f a f i l e

con ta in ing the f o l l ow i n g :
∗ On the f i r s t l i n e , an i n t e g e r N denot ing the number o f p a r t i e s

in the e l e c t i o n .
∗ On the N f o l l ow i n g l i n e s , N i n t e g e r s denot ing the number o f

vo t e s the par ty r e c e i v ed
∗ in the e l e c t i on , f o l l owed by the name o f the par ty .
∗
∗ @param args The input f i l e name .
∗ @throws IOException
∗ @throws NumberFormatException
∗/

public stat ic void main (St r ing [] a rgs) throws
NumberFormatException , IOException {

partynames = new HashMap<Integer , Str ing >() ;
BufferedReader in = new BufferedReader (new Fi leReader (args [0])) ;
PARTIES = In t eg e r . pa r s e In t (in . readLine ()) ;
votes = new int [PARTIES] ;
int acc = 0 ; // w i l l conta in the t o t a l number o f vo t e s
for (int i = 0 ; i<votes . l ength ; i++) { // i n i t i a l i z e vo t e s

St r ing [] l i n e = (in . readLine ()) . s p l i t (" ") ;
votes [i] = In t eg e r . pa r s e In t (l i n e [0]) ;
partynames . put (i , l i n e [1]) ;
System . out . p r i n t l n ("Votes f o r " + l i n e [1] + " (party " + i + ")

: " + votes [i]) ;
acc+=votes [i] ;

}

35

int count = 0 ;
while (count<SEATS) { // f i l l each s ea t

int e l e c t e d = max(votes) ;
System . out . p r i n t l n (partynames . get (e l e c t e d) + " has been

e l e c t ed , with " + votes [e l e c t e d] + " votes , which i s " +
((double) ((double) votes [e l e c t e d] / (double) acc)) ∗100 .0 + "%
of the t o t a l vote . ") ;

votes [e l e c t e d] = −1; // don ’ t reuse t h i s data
count++;

}
}

/∗∗
∗ Returns the index o f the maximum element in the i n t array .
∗ @param vo t e s
∗ @return maxIndex
∗/

private stat ic int max(int [] votes) {
double max = −1;
int maxIndex = −1;
for (int i = 0 ; i<votes . l ength ; i++) {

i f (votes [i]>max) {
max = votes [i] ;
maxIndex = i ;

}
}
return maxIndex ;

}

}

Code example 11: Java implementation of Modified Sainte-Laguë
import java . i o . ∗ ;
import java . u t i l . HashMap ;

/∗∗
∗ A c l a s s t ha t t a k e s e l e c t i o n input data and c a l c u l a t e s the s ea t

d i s t r i b u t i o n
∗ between the pa r t i e s , accord ing to the Modif ied Sainte−Laguë

vo t i n g a l gor i thm .
∗ @author Meidi Tõnisson
∗
∗/

public class Modif iedSainteLague {

private stat ic int [] votes ; // the s e t o f vo t e s f o r each party ,
where vo t e s [i] i s the number o f vo t e s f o r the i : th par ty

private stat ic int [] s e a t s ; // the s e t o f s e a t s f o r each party ,
where s e a t s [i] i s the number o f s e a t s f o r the i : th par ty

private stat ic f ina l int SEATS = 349 ; // the t o t a l number o f
a v a i l a b l e s e a t s

private stat ic int PARTIES; // the t o t a l number o f p a r t i e s
private stat ic HashMap<Integer , Str ing> partynames ; // a mapping o f

36

par ty index to par ty name

/∗∗
∗ This main method shou ld be f ed the f i l ename o f a f i l e

con ta in ing the f o l l ow i n g :
∗ On the f i r s t l i n e , an i n t e g e r N denot ing the number o f p a r t i e s

in the e l e c t i o n .
∗ On the N f o l l ow i n g l i n e s , N i n t e g e r s denot ing the number o f

vo t e s the par ty r e c e i v ed
∗ in the e l e c t i on , f o l l owed by the name o f the par ty .
∗
∗ @param args The input f i l e name .
∗ @throws IOException
∗ @throws NumberFormatException
∗/

public stat ic void main (St r ing [] a rgs) throws
NumberFormatException , IOException {

BufferedReader in = new BufferedReader (new Fi leReader (args [0])) ;
partynames = new HashMap<Integer , Str ing >() ;
PARTIES = In t eg e r . pa r s e In t (in . readLine ()) ;
s e a t s = new int [PARTIES] ;
votes = new int [PARTIES] ;
for (int i = 0 ; i<votes . l ength ; i++) { // i n i t i a l i z e vo t e s

St r ing [] l i n e = (in . readLine ()) . s p l i t (" ") ;
votes [i] = In t eg e r . pa r s e In t (l i n e [0]) ;
partynames . put (i , l i n e [1]) ;
System . out . p r i n t l n ("Votes f o r " + partynames . get (i) + " (party

" + i + ") : " + votes [i]) ;
}

double [] quo t i en t s = new double [PARTIES] ; // a s e t o f q u o t i e n t s
f o r each par ty

for (int j = 0 ; j<SEATS; j++) { // f o r every s ea t
for (int i = 0 ; i<votes . l ength ; i++) { // c a l c u l a t e q uo t i e n t s f o r

each par ty
i f (s e a t s [i] == 0) { // the f i r s t q uo t i en t i s c a l c u l a t e d wi th

a d i f f e r e n t d i v i s o r
quot i en t s [i] = (double) ((double) votes [i] / (1 . 4)) ;

} else {
quo t i en t s [i] = (double) ((double) votes [i] / (((double) s e a t s [i

] ∗ 2 . 0) +1.0)) ;
}

}
s e a t s [max(quo t i en t s)]++; // the par ty wi th the g r e a t e s t

curren t d i v i s o r g e t s the curren t s ea t
}

for (int i = 0 ; i<s e a t s . l ength ; i++) { // p r i n t the f i n a l r e s u l t
System . out . p r i n t l n (" Seats f o r " + partynames . get (i) + " : " +

s e a t s [i]) ;
}

}

37

/∗∗
∗ Returns the index o f the maximum element in the doub le array .
∗ @param quo t i e n t s
∗ @return
∗/

private stat ic int max(double [] quo t i en t s) {
double max = −1;
int maxIndex = −1;
for (int i = 0 ; i<quo t i en t s . l ength ; i++) {

i f (quo t i en t s [i]>max) {
max = quot i en t s [i] ;
maxIndex = i ;

}
}
return maxIndex ;

}

}

Code example 12: Java implementation of Single Transferable Vote
import java . i o . BufferedReader ;
import java . i o . ∗ ;
import java . i o . IOException ;
import java . u t i l . ∗ ;

/∗∗
∗ A c l a s s t ha t t a k e s e l e c t i o n input data and c a l c u l a t e s the

r e d i s t r i b u t i o n o f vo t e s
∗ between the p a r t i e s accord ing to the S in g l e Trans f e rab l e Vote

a l gor i thm .
∗
∗ @author Meidi Tõnisson
∗
∗/

public class S ing l eTrans f e rab l eVote {
// an i n t e g e r matrix , wi th e lement (i , j) denot ing the p r o b a b i l i t y

t h a t an i−vo t e r
// w i l l vo t e f o r the j−par ty . the d iagona l e lements denote the

number o f vo t e s c u r r en t l y
// g iven to the par ty : −1 i f they have been e l im ina t ed .
private stat ic double [] [] votes ;
private stat ic f ina l int SEATS = 349 ; // the number o f s e a t s to be

f i l l e d
private stat ic int VOTES; // the t o t a l number o f vo t e s ca s t in the

e l e c t i o n
private stat ic int PARTIES; // the t o t a l number o f p a r t i e s
private stat ic boolean party = true ; // whether the par ty ve r s i on

or the cand ida te ve r s i on shou ld be run
private stat ic boolean DROOP = true ; // whether the Droop vo te

quota shou ld be used or not . I f not , the vo te quota w i l l
d e f a u l t to 4%

private stat ic HashMap<Integer , Str ing> partynames ; // a HashMap
mapping index va l u e s to par ty names

38

/∗∗
∗ This main method shou ld be f ed the f i l ename o f a f i l e

con ta in ing the f o l l ow i n g :
∗ On the f i r s t l i n e , an i n t e g e r N denot ing the number o f p a r t i e s

in the e l e c t i o n .
∗ On the N f o l l ow i n g l i n e s , N i n t e g e r s denot ing the number o f

vo t e s the par ty r e c e i v ed
∗ in the e l e c t i on , f o l l owed by the name o f the party , f o l l owed by

the vo te t r a n s i t i o n p r o b a b i l i t i e s .
∗
∗ @param args The input f i l ename and the output f i l ename .
∗ @throws IOException
∗/

public stat ic void main (St r ing [] a rgs) throws IOException {
BufferedReader in = new BufferedReader (new Fi leReader (args [0])) ;
S t r ing o u t f i l e = args [1] ; // the output w i l l be wr i t t en to a

f i l e t h a t can be g iven as input to the Modif ied Sainte−Laguë
c l a s s

partynames = new HashMap<Integer , Str ing >() ;
PARTIES = In t eg e r . pa r s e In t (in . readLine ()) ;
int [] f i r s t v o t e s = new int [PARTIES] ; // the s e t o f f i r s t −

pre f e r ence vo t e s f o r each party , where f i r s t v o t e s [i] i s the
number o f f i r s t −pre f e r ence vo t e s f o r the i : th par ty

votes = new double [PARTIES] [PARTIES] ; // i n i t i a l i z e vo te matrix
int acc=0; // w i l l conta in the t o t a l number o f vo t e s
for (int i = 0 ; i<PARTIES; i++) {

St r ing [] l i n e = (in . readLine ()) . s p l i t (" ") ;
f i r s t v o t e s [i] = In t eg e r . pa r s e In t (l i n e [0]) ; // the f i r s t

i n t e g e r on every l i n e denotes the number o f f i r s t h and
vo t e s ca s t f o r a c e r t a i n par ty

votes [i] [i] = f i r s t v o t e s [i] ; // the d iagona l e lements denote
the curren t number o f vo t e s f o r the par ty

acc+=f i r s t v o t e s [i] ;
partynames . put (i , l i n e [1]) ;
System . out . p r i n t l n (" F i r s t−p r e f e r en c e votes f o r " + partynames .

get (i) + " (party " + i + ") : " + f i r s t v o t e s [i]) ;
i f (l i n e . length >2) { // i f p r e f e r ence s have been supp l i e d f o r

the par ty
for (int index = 2 ; index<l i n e . l ength ; index++) {

i f (index−2!= i) { // don ’ t save p r e f e r ence s f o r the par ty
i t s e l f

votes [i] [index −2] = Double . parseDouble (l i n e [index]) ;
}

}
}

}
VOTES = acc ;
int l im i t = voteLimit (SEATS,VOTES) ;
System . out . p r i n t l n ("Vote th r e sho ld : " + l im i t) ;
int [] cu r rvo t e s = new int [PARTIES] ;
cu r rvo t e s = f i r s t v o t e s ;
int round = 1 ; // to keep t rack o f recount rounds

39

HashMap<Integer , Boolean> e l e c t e dPa r t i e s = new HashMap<Integer ,
Boolean >() ;

i f (party) {
System . out . p r i n t l n ("Running party ve r s i on . ") ;
boolean f i n i s h e d = fa l se ; // in order to en ter wh i l e loop
while (! f i n i s h e d) {

System . out . p r i n t l n ("Recount round "+round) ;
f i n i s h e d = true ;
int tmp = min (cu r rvo t e s) ; // f i nd par ty wi th l e a s t amount o f

vo t e s
i f (cu r rvo t e s [tmp]< l im i t&&tmp!=−1) { // do they f a l l be low

the t h r e s h o l d ?
f i n i s h e d = fa l se ; // make sure a l l r e d i s t r i b u t i o n s have

been ca r r i e d out b e f o r e f i n i s h i n g
System . out . p r i n t l n (partynames . get (tmp)+" : "+cur rvo t e s [tmp

]) ;
int l e f t o v e r = cur rvo t e s [tmp] ;
cu r rvo t e s [tmp] = −1; // e l im ina t ed
System . out . p r i n t l n ("The " + l e f t o v e r + " votes from " +

partynames . get (tmp) + " were d iv ided : ") ;
for (int k = 0 ; k<PARTIES; k++) {

i f (k==tmp | | cu r rvo t e s [k]==−1) { // don ’ t r e d i s t r i b u t e
vo t e s to the par ty i t s e l f or to e l im ina t ed p a r t i e s

continue ;
}
double p r obab i l i t y = (double) votes [tmp] [k] / 1 0 0 . 0 ; //

vo te t r a n s i t i o n p r o b a b i l i t y
double surp lusVotes = (double) l e f t o v e r ; // the number o f

" l e f t o v e r " vo t e s
cu r rvo t e s [k] += Math . f l o o r (p r obab i l i t y ∗ surp lusVotes) ;
System . out . p r i n t l n (Math . f l o o r (p r obab i l i t y ∗ surp lusVotes)

+ " (" + p r obab i l i t y + "∗" + surp lusVotes + ") votes
to " + partynames . get (k)) ;

}
continue ;

}
round++;

}
} else {

System . out . p r i n t l n ("Running candidate ve r s i on . ") ;
int e l e c t e d = 0 ; // the number o f e l e c t e d cand ida t e s
while (e l e c t e d !=SEATS) {

System . out . p r i n t l n ("Recount round "+round) ;

// r e d i s t r i b u t e l e f t o v e r vo t e s from e l e c t e d p a r t i e s

int tmp = max(cu r rvo t e s) ; // f i nd par ty wi th most amount o f
vo t e s

i f (cu r rvo t e s [tmp]== l im i t) { // no r e d i s t r i b u t i o n , but they
are e l e c t e d

e l e c t e dPa r t i e s . put (tmp , true) ;
e l e c t e d = e l e c t e dPa r t i e s . s i z e () ;
System . out . p r i n t l n (partynames . get (tmp)+" : "+cur rvo t e s [tmp

40

]) ;
}
i f (cu r rvo t e s [tmp]> l im i t) { // s e t as e l e c t e d and

r e d i s t r i b u t e l e f t o v e r vo t e s
e l e c t e dPa r t i e s . put (tmp , true) ;
e l e c t e d = e l e c t e dPa r t i e s . s i z e () ;
System . out . p r i n t l n (partynames . get (tmp)+" : "+cur rvo t e s [tmp

]) ;
int su rp lu s = cur rvo t e s [tmp]− l im i t ;
cu r rvo t e s [tmp] = l im i t ;
System . out . p r i n t l n ("The su rp lu s " + surp lu s + " votes from

" + partynames . get (tmp) + " were d iv ided : ") ;
for (int k = 0 ; k<PARTIES; k++) {

i f (k==tmp | | cu r rvo t e s [k]==−1|| e l e c t e dPa r t i e s . get (k) !=null
) { // don ’ t r e d i s t r i b u t e vo t e s to the par ty i t s e l f ,
to e l im ina t ed p a r t i e s or to e l e c t e d p a r t i e s

continue ;
}
double p r obab i l i t y = (double) votes [tmp] [k] / 1 0 0 . 0 ;
double surp lusVotes = (double) su rp lu s ;
cu r rvo t e s [k] += Math . f l o o r (p r obab i l i t y ∗ surp lusVotes) ;
System . out . p r i n t l n (Math . f l o o r (p r obab i l i t y ∗ surp lusVotes)

+ " (" + p r obab i l i t y + "∗" + surp lusVotes + ") votes
to " + partynames . get (k)) ;

}
continue ;

}
tmp = min (cu r rvo t e s) ; // f i nd par ty wi th l e a s t amount o f

vo t e s
i f (cu r rvo t e s [tmp]< l im i t&&cur rvo t e s [tmp]!=−1) { // are they

be low the t h r e s h o l d ?
System . out . p r i n t l n (partynames . get (tmp)+" : "+cur rvo t e s [tmp

]) ;
int l e f t o v e r = cur rvo t e s [tmp] ;
cu r rvo t e s [tmp] = −1;
System . out . p r i n t l n ("The " + l e f t o v e r + " votes from " +

partynames . get (tmp) + " were d iv ided : ") ;
for (int k = 0 ; k<PARTIES; k++) {

i f (k==tmp | | cu r rvo t e s [k]==−1|| e l e c t e dPa r t i e s . get (k) !=null
) { // don ’ t r e d i s t r i b u t e vo t e s to the par ty i t s e l f ,
to e l im ina t ed p a r t i e s or to e l e c t e d p a r t i e s

continue ;
}
double p r obab i l i t y = (double) votes [tmp] [k] / 1 0 0 . 0 ;
double surp lusVotes = (double) l e f t o v e r ;
cu r rvo t e s [k] += Math . f l o o r (p r obab i l i t y ∗ surp lusVotes) ;
System . out . p r i n t l n (Math . f l o o r (p r obab i l i t y ∗ surp lusVotes)

+ " (" + p r obab i l i t y + "∗" + surp lusVotes + ") votes
to " + partynames . get (k)) ;

}
continue ;

}
round++;

41

}
}

System . out . p r i n t l n ("Recount f i n i s h e d . F ina l r e s u l t : ") ;
i f (party) {

for (int i = 0 ; i<PARTIES; i++) {
i f (cu r rvo t e s [i] != −1)

System . out . p r i n t l n (partynames . get (i) + " : " + cur rvo t e s [i]
+ " votes ") ;

else {
System . out . p r i n t l n (partynames . get (i) + " : ELIMINATED") ;

}
}

} else {
for (int i = 0 ; i<PARTIES; i++) {

i f (e l e c t e dPa r t i e s . get (i) != null)
System . out . p r i n t l n (partynames . get (i) + " : ELECTED") ;

else {
System . out . p r i n t l n (partynames . get (i) + " : ELIMINATED") ;

}
}

}

F i l eWr i t e r f s t ream = new Fi l eWr i t e r (o u t f i l e) ;
Buf feredWriter out = new Buf feredWriter (f s t ream) ;
out . wr i t e (PARTIES + "\n") ;
for (int i = 0 ; i<PARTIES; i++) {

out . wr i t e (cu r rvo t e s [i] + " " + partynames . get (i) + "\n") ;
}
out . c l o s e () ;

}

/∗∗
∗ This method re turns the number o f vo t e s needed in order to be

cons idered " e l e c t e d " . This
∗ i s e i t h e r done by c a l c u l a t i n g the Droop quota , or by us ing the

4% quota .
∗ @param SEATS The t o t a l number o f s e a t s .
∗ @param vo t e s The t o t a l number o f vo t e s .
∗ @return The number o f vo t e s needed in order to be cons idered

e l e c t e d .
∗/

private stat ic int voteLimit (int SEATS, int votes) {
i f (DROOP) {

return (int)Math . f l o o r ((double) ((double) votes / ((double)SEATS
+1)) + 1) ;

} else { // d e f a u l t to 4% th r e s h o l d
return (int) Math . f l o o r ((double) ((double) votes ∗0 .04)) ;

}
}

/∗∗

42

∗ Returns the index o f the sma l l e s t non−nega t i v e va lue in the
array .

∗ @param vo t e s
∗ @return minIndex
∗/

private stat ic int min(int [] votes) {
double min = In t eg e r .MAX_VALUE;
int minIndex = −1;
for (int i = 0 ; i<votes . l ength ; i++) {

i f (votes [i]<min&&votes [i]!=−1) {
min = votes [i] ;
minIndex = i ;

}
}
return minIndex ;

}

/∗∗
∗ Returns the index o f the g r e a t e s t va lue in the array .
∗ @param vo t e s
∗ @return maxIndex
∗/

private stat ic int max(int [] votes) {
double max = −1;
int maxIndex = −1;
for (int i = 0 ; i<votes . l ength ; i++) {

i f (votes [i]>max) {
max = votes [i] ;
maxIndex = i ;

}
}
return maxIndex ;

}
}

43

www.kth.se

	Introduction
	Background
	Purpose
	Definitions

	Problem Statement
	Evaluating voting systems
	Defining desirability of outcomes
	Evaluating voting system implementations

	Adapting the algorithms and real-life examples to suit our needs
	Methodology

	Specification of voting algorithms
	Modified Sainte-Laguë method
	Description
	Justification
	Theoretical evaluation
	Pseudo code
	Implementation

	Single transferable vote
	Description
	Justification
	Theoretical evaluation
	Pseudo code
	Implementation

	First-Past-The-Post
	Description
	Justification
	Theoretical evaluation
	Pseudo code
	Implementation

	Constructing outcome examples
	The 2010 Swedish election results
	Proportional allotment
	Modification of the example data
	Hypothetical differences in rankings

	The 2008 Malta election results, 4th district
	Sub-threshold example
	Proportional allotment

	Evaluation of algorithms based on examples
	Modified Sainte-Laguë method
	Example 1: 2010 Swedish election results
	Example 2: Sub-threshold example

	Single transferable vote
	Example 1: 2010 Swedish election results
	Example 2: Maltese election results 2008, 4th District
	Example 3: Sub-threshold example

	First-past-the-post
	Example 1: Maltese election results 2008, 4th District

	Visual representations
	Evaluations of methodology
	Conclusions
	Modified Sainte-Laguë
	Implementation
	Outcome

	Single Transferable Vote
	Implementation
	Outcome

	First-Past-The-Post
	Implementation
	Outcome

	Further research
	Appendix

