

Spatial Data Handling in PostGIS

 D O R O T H E A A N D E R S S O N

 Bachelor of Science Thesis
 Stockholm, Sweden 2012

Spatial Data Handling in PostGIS

 D O R O T H E A A N D E R S S O N

 DD143X, Bachelor’s Thesis in Computer Science (15 ECTS credits)
 Degree Progr. in Computer Science and Engineering 300 credits
 Royal Institute of Technology year 2012
 Supervisor at CSC was Michael Minock
 Examiner was Mårten Björkman

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/
 andersson_dorothea_K12005.pdf

 Royal Institute of Technology
 School of Computer Science and Communication

 KTH CSC
 SE-100 44 Stockholm, Sweden

 URL: www.kth.se/csc

Spatial Data Handling in PostGIS

Degree Project in Computer Science, First Level

Dorothea Andersson

doa@kth.se

Supervisor: Michael Minock
Royal Institute of Technology (KTH), Sweden

Abstract. This thesis discusses the concept of spatial data, and fo-
cuses on a theoretical example to demonstrate the need for unique ways
of modeling and representing such data. PostGIS is used to extend Post-
greSQL to solve the presented problem and demonstrate methods for
optimizing the solution queries. The behavior of PostGIS is studied and
commented on, indicating there is still a long way to go before this kind
of data can be handled in an equally straightforward manner as more
traditional data.

1 Introduction

Information collection has become a cornerstone in today's society, and
we are now heavily depending on information systems for communication
and data storage. Huge spatial databases required for the development
of, for example, robotics and geographical information systems, as well
as medical imaging, containing terabytes of data have put query opti-
mization in a whole new light [1]. Although extensive research on the
topic has been done over the past two decades, complex spatial query
processing and optimization remains a highly active �eld that presents
us with many nontrivial issues. This thesis aims to explore di�erent as-
pects of optimizing complex queries with focus on spatial data retrieval
using PostGIS.

1.1 Overview of Article

Section 2 introduces the unique issues spatial data handling presents
and what has been done to deal with these. Section 3 introduces the
problem studied throughout this thesis, including 3.1 explaining how the
spatial data types point and polyline can be represented in a traditional
relational database, further motivating the need for spatial data types
and functions. Section 4 explains the experimental setup and how the

tests were executed, before section 5 shows the test results and section 6
discusses said results. Finally, some conclusions about what is currently
happening within this �eld of research are drawn in section 7.

2 Background

To understand the issues that data retrieval from spatial databases
pose, we must �rst understand the nature of spatial data, and why tra-
ditional database systems in their current form are not well suited for
this kind of heavy duty, multidimensional data handling.

It is �rst and foremost the nature of spatial data that renders tradi-
tional database systems useless. To be properly represented, it requires
more complex data types than traditional one dimensional types such
as strings and integers. Spatial database applications must handle data
types such as points, polylines and polygons - often in three dimensions.
The sheer volume of data required to represent a geometric object is
also signi�cantly larger - a lake boundary might need a thousand ver-
tices for su�ciently accurate representation, and one low resolution sa-
tellite image of the US can consume as much as 30 MB of disk space.
[1] The complexity of functions involved in a spatial application is com-
parable to those in programming language applications, and the storage
requirements are generally more severe.

A unique feature of spatial data is that the natural medium of in-
teraction with the user is visual rather than textual. This means more
constructs are needed to provide a representation that is closer to our
perception of space. Also, because of the natural lack of order in multidi-
mensional space, both traditional clustering techniques and indices need
to be evolved and re�ned to meet the needs of this kind of data handling
[1]. There is much demand for e�ective algorithms that can discover use-
ful patterns from large and complex spatial databases in order to reduce
search spaces, minimize unnecessary view materialization, and speed up
query processing.

Over the past twenty years, research has led to the development of
spatial relations that model topological relationships between objects in
space, spatial extensions to SQL, as well as methods for spatial storage
and indexing. The common denominator for all these is that they take
into account the geometric aspects of spatial data, and they are all a
response to the ever increasing need in industry to e�ciently handle
such data in commercial database environments.

3 Approach

Let us assume we have the database of a distribution company contai-
ning all the usual information such as addresses, names, customer num-
bers, order information, employees, and so on. This seems straightfor-
ward enough, and is in fact just a simple, relational database with some
basic data types such as strings and numbers. With this setup we can

easily answer any questions we might have about customer informa-
tion, order status and employees. The trouble comes when we want to
know which distribution o�ce the customer belongs to. Even a seemingly
simple query such as "list all customers who reside within thirty miles

of this and this o�ce" will confound our database. Listing all employees
that live a certain distance from the o�ce for the purpose of determi-
ning who is eligible for a travel expense refund would present us with
the exact same problem.

To process this query, the database system will have to transform the
customer addresses, as well as the addresses of the o�ces, into a suitable
reference system such as longitude and latitude, in which distances can be
computed and compared. Then, it will have to scan through the entire
customer list, compute the distance between customer and o�ce, and
then compare this to the requested distance of 30 miles. Since traditional
indices are incapable of ordering multidimensional coordinate data, a
regular index cannot be used to narrow down the search [1].

Thus it only takes a simple legitimate business query to send a tra-
ditional database management system (DBMS) into a hopeless tailspin,
and in this example we are still only dealing with a two dimensional
space. The need for databases tailored for handling spatial queries is ob-
vious, and then we haven't even considered the implications of modeling
the three dimensional world we are living in.

The problems actually start emerging already when we consider how
to store the geometric points. There is no data type point in a traditional
relational database system, and there is no natural way of mapping spa-
tial relations onto such a database. The problems caused by the lack of
geometric data types could potentially be solved by creating a collection
of tables with overlapping attributes, but this is far from straightforward
and not at all computationally e�cient.

3.1 Geometric Data Representation

The two dimensional point (x,y) is the most simple geometric data
type, and forms the basis for all other more complex geometric types
such as polygons and polylines. Points could be represented in a tradi-
tional relational database by simply adding a table point with the three
columns point-id, x-coordinate and y-coordinate. Any point in use would
have to be stored as a separate tuple in this table and be referenced with
its own id.

What if we consider the implications of representing a simple polyline
instead ? A polyline is a series of connected line segments, typically used
to approximate the shape of a river or the boundary of a country. Let us
assume we have a simple polyline forming a square with corner points
(0,0), (1,0), (1,1) and (0,1) as shown in Figure 1 below. How would
we represent this in a non-spatial database ? We would de�nitely need
the previously suggested point table. We would also need a means to
represent a line with two endpoints, and a means to connect individual
lines to form a boundary. This could be done using the three tables in Fi-

gure 2 [1]. A polyline can then be referenced by its unique boundary-ids.
It should be obvious that this is not a very e�cient or straightforward
approach to storing and handling spatial data - just imagine the impli-
cations of extending this approach to three dimensions !

Figure 1 � A simple polyline.

Figure 2 � Polyline representation in a traditional DBMS.

For simplicity, we will assume that the distribution company deter-
mines o�ce memberships in a point a to point b manner. Basing this
judgment on the actual street wise distance is not within the scope of
this thesis, but it should be obvious that the computational complexity
added by such an approach would be immense in comparison to the ap-
proach used here. Therefore, what we mean by the range query "within

thirty miles" is to list all customers that live within a radius of thirty
miles from the speci�ed o�ce. In reality, wanting to know the actual dri-
ving distance from an o�ce to a customer could of course be an equally
valid query.

Consider then the convenience of being able to, with one or several
queries to the same database, get a list of all the company's customers,
complete with their nearest o�ce. Add to that being able to rely com-
pletely on this result and that no customer has been left out or has been
matched with the wrong o�ce or counted twice. From a business point of

view this would be great and save a lot of time and money, but to imple-
ment such a query would be far from trivial. In the context of what we
can imagine useful in a business environment, the example here is very
simple and yet e�ectively shows the complexity of and the challenges
this area presents us with.

Furthermore, we will omit the transformation of address strings to
longitude-latitude pairs, since this computation simply cannot be avoi-
ded.

4 Implementation

For testing purposes, PostGIS has been used to �spatially enable� Post-
greSQL. PostGIS is an open source extender for PostgreSQL which adds
support for a number of spatial functions such as distance and area, as
well as geometry data types like points, polygons and polylines [2].

The aim of the following experiments has been to show examples of
what can be done to optimize spatial queries, further motivating the
need of the functionality o�ered by the di�erent solution approaches
available. Also, a goal has been to build up enough knowledge to draw
some conclusions on what is currently happening within this active �eld
of research.

To solve our initial problem of the thirty mile radius, a test data-
base was set up containing a thousand customers and three o�ces in
accordance with the relational diagram shown in Figure 3 below. This
database forms the basis for both our radius based and the following
region based range queries, as will be shown later on.

Figure 3 � Test database part 1.

Since we are omitting the address transformation, our initial queries
will simply be based on the distances between the customer locations
and the o�ce location in a very straightforward manner. In reality one
might have to consider what happens to the customers who live precisely
between two o�ces, and if the radius approach is even realistic.

Let us say the company has three o�ces, and they deliver to all of
Sweden. Then it would probably divide the whole of Sweden into three
regions, each one being handled by its own o�ce. Considering the shape
of any country, the circle approach wouldn't make much sense - rather
these regions would most likely be represented by irregularly shaped

geometric objects such as polygons. Such an example will also be shown
later on.

The above mentioned examples are rather simple ones, but what if we
wanted to know what customer was closest to a particular o�ce instead ?
Perhaps the o�ce wants to start their delivery round with the closest
customer and calculate the shortest delivery round based on that. How
do we �nd that �rst customer ? Based on our �rst problem, the naive
approach would be to ask for all customers within a small radius from
the o�ce, and then decrease the size of that radius until we are left
with a limited number of customers among which we can determine the
closest one. This is known as a Nearest Neighbor query, and is a common
problem with many applications [3].

For testing purposes, a random point generator was used to generate
3000 points within a bounding box of size 50 by 50 units [4]. These were
added to the test database along with a table of polygons representing
bounding boxes of sizes ranging from 0 by 0 units up to the whole point
range of 50 by 50 units. The problem here is to, given the set of random
points, see what happens in PostGIS when we want all points within
each one of these bounding boxes, sorted by distance from the given
point. Does it use an index ? If so, what kind, and can we improve it
somehow ? If not, what can we do to add one ? How long does it take to
process this query depending on the size of the bounding box ?

The entire test database contained the tables shown in Figure 3
above, as well as the two tables in Figure 4 below.

Figure 4 � Test database part 2.

5 Results

5.1 Radius Based Range

First, we simply query our test database for the id, name and location
of all customers within a radius of 8 units from the Stockholm o�ce. That
is, we ask for all customers where the distance between the customer
point and the o�ce point is less than 8. To do this, we use the distance
operator <->, which calculates the distance between two points in space :

SELECT *

FROM public.customer, public.office

WHERE office.name = 'Stockholm'

AND (customer.location <-> office.location) < 8;

The average runtime based on ten consecutive runs for this query was
36 ms, and when we take a look at the query plan given by EXPLAIN
ANALYZE, we �nd that it performed as expected :

1. Nested Loop

2. Join Filter: (customer.location <-> office.location) < 8

3. -> Index Scan using office pkey on office

4. Index Cond: (name = 'Stockholm')

5. -> Seq Scan on customer

A sequential scan is used to go through the entire customer list, and
since o�ce.name is the public key of the o�ce table, an index scan is used
to �nd the Stockholm o�ce tuple. The two resulting relations are then
combined using a nested loop join with our speci�ed distance condition.

This time result might not seem very impressive, but keep in mind
that we only have a thousand customers, and that this query actually
only returns 400 of these. In fact, if we turn this into a non-spatial query
and use the pre-calculated o�ce memberships we already have in our
database (and by doing so omitting the distance calculation altogether),
the average runtime becomes 21.3 ms. Clearly, the distance calculation
in the spatial query adds considerable complexity, and it should be safe
to assume that this time di�erence would be quite noticeable given more
realistic data sets.

5.2 Region Based Range

Next, we will leave the radius approach and instead assume that the
three di�erent o�ce regions are represented by polygons, and that a cus-
tomer belongs to a certain o�ce if he or she lives within the boundaries
of that o�ce's region polygon. We still have a thousand customers in the
database of whom 400 belong to Stockholm. The Stockholm region used
here is now a polygon with 50 vertices rather than the radius of 8 units
used above.

SELECT *

FROM public.customer, public.office

WHERE office.name = 'Stockholm'

AND customer.location <@ office.region;

The average runtime based on ten consecutive runs for this query
was 15 ms, and using EXPLAIN ANALYZE, we �nd that it is executed
in the same way as the radius based query. A sequential scan is used
on customer and an index scan on o�ce, and the resulting relations
are combined using a nested loop join with the containment condition
location <@ region [5].

1. Nested Loop

2. Join Filter (location <@ region)

3. -> Index Scan using office pkey on office

4. Index Cond: (name = 'Stockholm')

5. -> Seq Scan on customer

We can clearly see that this approach is faster than the radius ap-
proach, enabling us to conclude that the containment function <@ is
computationally cheaper than the distance function <->. We can also
see that PostGIS doesn't di�erentiate between these two functions - the
query is executed the same way no matter which function we use.

5.3 Constrained Nearest Neighbor

5.3.1 Default PostGIS

Now, let us consider the nearest neighbor problem - �nding the cus-
tomer who is closest to a given o�ce location. What we get is in fact a
constrained nearest neighbor (CNN) query, since we have an outer boun-
dary within which all our customer points are located [3]. We are now
using the second part of our test database (see Figure 4) ; the boxpoints

table which contains 3000 customer points, and the box table with 51
di�erent sized bounding boxes, the largest one containing all 3000 points.

Since these points were randomly generated within a bounding box
of 50 times 50 units, we will assume that they are evenly distributed,
and study the query runtime e�ects depending on the number of points
in each bounding box query as the box size decreases. The query looks
as follows, and has been run ten times for each bounding box size :

SELECT public.boxpoints.location

FROM public.boxpoints, public.box

WHERE box.id = 1 AND boxpoints.location <@ box.region

ORDER BY boxpoints.location <-> '(0,0)';

The average runtime based on ten consecutive runs for this query on
the outermost bounding box (50 times 50 units) was 54.3 ms, and the
e�ects of the decreasing bounding box sizes can be seen in Figure 5.

The graph above is a quadratic approximation of the resulting run-
times, and has been plotted against the number of points contained in
each box, ranging from 54.3 ms for the outermost box containing 3000
points, to 11.6 ms for the innermost box containing zero points. Clearly,
the average runtime is approximately linear with respect to the number
of points in the query bounding box.

Similar to the previously run queries, EXPLAIN ANALYZE reveals
that a sequential scan is used on boxpoints, and an index scan on box
using the primary key box.id. These are joined together using a nested
loop join on the region containment condition. The resulting points are
then sorted using quicksort based on their distance to the given point.
What is most interesting to note here is that even though we have quite
a few points, PostGIS does not add an index to them to speed up the
search. Clearly, the behaviour of the query optimizer is rather naïve in
this case, and the generated query plan is far from ideal.

Figure 5 � Average runtime (ms) for increasing number of points in
bounding box.

5.3.2 GiST on Location Points

Let us add an index on the boxpoints table and see what happens.
Since this table only contains points, a spatial index must be used. A
Generalized Search Tree (GiST) index was created on boxpoints.location,
and then the query presented in section 5.3.1 was run again [5]. The ave-
rage runtime based on ten consecutive runs this time was 44.7 ms (as
opposed to 54.3 ms without the index). There is a di�erence, but what
has happened ? Not very much, as it turns out. The only di�erence is
that a bitmap heap scan is used on boxpoints using our newly created in-
dex, rather than the previously used sequential scan. Clearly, this simple
change of search algorithm makes a big di�erence.

Repeating the same test as before with decreasing bounding box sizes,
we �nd that the result is still approximately linear, and consistently
faster than without the index.

6 Discussion

Particularly interesting to note is that PostGIS only seems to use
nested loop joins as a default, which hardly can be considered ideal [6].
Like traditional joins, spatial joins are expensive and notoriously di�cult
to optimize, and there are numerous pieces of work out there discussing
the use of di�erent join algorithms - many of them promoting the spatial
semijoin. The focus has been on developing methods for reducing the size
of the relations involved, and by using a semijoin, approximations can
be used to reduce the search space [7].

The query optimizer is ultimately responsible for choosing the most
e�cient execution plan from all logically equivalent expressions available

for a certain query [8]. As we have seen, nothing beyond the most naïve
approach , and no index beyond those manually created, are used in this
case. It seems the only way of optimizing query performance here is by
manual indexing and rewriting. Clearly, a lot could be done to increase
the intelligence of the PostGIS query optimizer.

7 Conclusion

The development of optimizing techniques for spatial query processing
has been heavily in�uenced by existing solutions for traditional relational
databases, resulting in extensions to already existing systems and query
languages. Relational databases were developed for e�cient storage and
retrieval of massive amounts of data in its most basic forms - not for
handling spatial data.

Since the relational model and SQL are so widely used, this is what
has been adopted to the needs of spatial data handling, resulting in ex-
tensions such as PostGIS. As we have seen, there is a lot of work to be
done before industry can start letting go of their go to method of using
EXPLAIN ANALYZE and manually rewriting queries. Everything is a
work in progress, and no real standards are in place even though a pos-
sible route for future development is emerging in the form of �eld and
object based approaches to modeling spatial data, as well as suggested
standards for spatially enabling SQL. Along with the approximation-
re�ne paradigm, this is leading the way into the future of spatial infor-
mation handling.

References

1. Shekar, S., Chawla, S. : Spatial Databases : A Tour. Prentice Hall,
ISBN 0130174807.

2. PostGIS. http ://postgis.refractions.net/ (2012-04-01).

3. Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., El Abbadi, A. :
Constrained Nearest Neighbor Queries. Springer-Verlag Berlin, 2001.

4. Random Point Generator. http ://www.geomidpoint.com/random/
(2012-04-03).

5. PostgreSQL 9.1.3 Documentation.

6. Silberschatz, A., Korth, H.F., Sudarshan, S. : Database System
Concepts. McGraw-Hill, 6th edition.

7. Tan, K-L., Ooi, B.C., Abel, D.J. : Exploiting Spatial Indexes for
Semijoin-Based Join Processing in Distributed Spatial Databases.
IEEE Transactions on Knowledge and Data Engineering, vol. 12,
No. 6, November/December 2000.

8. Chaudhuri, S. : An Overview of Query Optimization in Relational
Systems. Microsoft Research.

www.kth.se

