

Automatic Wordfeud Playing Bot

 M A R T I N B E R N T S S O N
 a n d F R E D R I C E R I C S S O N

 Bachelor of Science Thesis
 Stockholm, Sweden 2012

Automatic Wordfeud Playing Bot

 M A R T I N B E R N T S S O N
 a n d F R E D R I C E R I C S S O N

 DD143X, Bachelor’s Thesis in Computer Science (15 ECTS credits)
 Degree Progr. in Computer Science and Engineering 300 credits
 Royal Institute of Technology year 2012
 Supervisor at CSC was Johan Boye
 Examiner was Mårten Björkman

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/
 berntsson_martin_OCH_ericsson_fredric_K12012.pdf

 Kungliga tekniska högskolan
 Skolan för datavetenskap och kommunikation

 KTH CSC
 100 44 Stockholm

 URL: www.kth.se/csc

Abstract

Wordfeud is a version of the board game Scrabble adapted to smartphones.
In this report we describe the algorithm for the implementation of a greedy Wordfeud playing
bot and evaluate its performance (time and score) against a random bot and against itself
(a greedy bot). The average time for calculating the move with the most points was 39.7
milliseconds. In our results the greedy bot always wins against the random bot with an average
600 points score per game against the random bots average 150 points score per game.
We draw the conclusion that our greedy bot has a viable strategy for playing the Wordfeud
game against a average human opponent.

2

Table of contents
Abstract
Table of contents
1. Purpose
2. Background

2.1 History
2.2 Game mechanics

2.2.1 Tile
2.2.2 Game cache
2.2.3 Rack
2.2.4 Valid move
2.2.5 Passing
2.2.6 Swapping tiles
2.2.7 game board
2.2.8 Points:
2.2.9 Wordlist:

2.3 Previous work
2.3.1 Scrabble
2.3.2 Wordfeud

3.1 Programming Language
3.2 Communication with wordfeud servers

3.2.1 Server protocol
3.5 greedy bot
3.6 Filtering method

3.6.1 FastFilter
3.7 Evaluation strategy

4. Results
4.1 Evaluation

4.1.2 greedy versus random
4.1.3 Greedy versus Greedy
4.1.4 Time

5. Discussion
5.1 Error Sources

5.1.1 Time
5.1.2 Score

5.2 Further work
5.2.1 advanced bot

5.3 Conclusions
6. Reference List:

3

#h.z1iwfywaqjj3
#h.z1iwfywaqjj3
#h.z1iwfywaqjj3

1. Purpose
The goal of this project is to create a automatic Wordfeud playing bot that will play the game
generating as many points as possible and thus winning the game.

The bot should be an automatic Wordfeud playing bot, so the protocol has to be reverse
engineered and thus enabling it to work automatically.

We choose to make a greedy algorithm that that finds the move that gives the most points. We
choose this kind of algorithm because it’s a first step in making a more advanced Wordfeud
playing bot and it’s a critical component in many bots that can take future moves into account.
In these advanced algorithms the greedy algorithm is run many times so it’s important that the
greedy algorithm is fast. Therefore we will focus much of our effort on optimizations to make it
as fast as possible.

A bot that plays the game completely randomly will also be implemented to be used during the
testing phase to measure the difference in the amount of points generated during a game. The
random bot will simulate the amount of points an average player generates during a game.
This will show us if our greedy algorithm is a viable strategy for playing the game.

Later, our bot could be used as some kind of cheating application or use it as some form of
single player game where you play against the bot.

We picked this project because it sounded interesting and fun.

4

2. Background

2.1 History
Wordfeud is a relatively new game only available for smartphones such as Android, IOS or
Windows phone. The game is based on the board game commonly known as “Scrabble” which
is a game created during the early 19th century [3].
Released in 2010 Wordfeud grew popular very quickly and today it has 10-50 million installs [2].

Figure 2.1, An example of how the game looks on a smartphone.

5

2.2 Game mechanics
Wordfeud is played by two players each taking turns at creating words on the game board. The
goal is to create words that provide you with the most amount of points. The person with the
greatest amount of points at the end of the game is the winner.

2.2.1 Tile
The letters that you use to create words in the game are called tiles. This is because in the
board game called Scrabble you use white tiles with the letters printed on their faces to play the
game.

2.2.2 Game cache
In Scrabble a bag is used to contain all the tiles at the beginning of the game. In Wordfeud there
is no name for this bag, so in this report we choose to call it game cache. There are 104 tiles in
the game cache at the start of the game. As seen in Figure 2.3 there are 102 normal letter tiles
and 2 wildcard (blank) tiles in the game.

2.2.3 Rack
Each player has a rack consisting of 7 tiles that they may use during the game to construct
words. Each player is assigned 7 tiles at the start of the game leaving 90 left in the game
cache. The two players take turns at creating and placing words on the 15x15 game board
using the 7 tiles in their rack (See the bottom row of letters in figure 2.1) and other tiles on the
board. When a player has made his move his rack is refilled taking random tiles from the games
cache so that the player always has 7 tiles in his rack. If the game has no more tiles to provide
the player will have less then 7 tiles in his rack.

2.2.4 Valid move
The tiles must be placed in a horizontal row or a vertical column (with no free spaces on the
board between the first and last placed tiles). At least one letter must be placed on the board to
be a valid move or the player passes. At least one placed tile must be adjacent to a tile already
on the board. All new words created from placing these tiles must be valid words (must be in the
wordlist). Valid words can either be read from left to right or from top to bottom.

2.2.5 Passing
If a player passes, he forfeits his turn and allows the opponent to take his turn. If there are
3 passes in a row the game ends and the winner will be the person with the most amount of
points.

2.2.6 Swapping tiles
If it’s your turn to play you have the option of switching some or all of your tiles with new random
ones from the game cache, if there are less than 7 tiles in the game cache you are not allowed
to swap tiles. After switching tiles your opponent gets to play.

6

2.2.7 game board
The game board consists of a 15x15 grid where you can place tiles.
When you start a new game the first move must be made with a tile placed at the center (7,7).
The game board has several bonus tiles spread out either randomly (see Figure 2.1) or in a
default set manner (see Figure 2.2).
These bonuses consists of:

● DL (double letter): The points for the tile placed on this square is doubled.
● TL (triple letter): The points for the tile placed on this square is tripled.
● DW (double word): The points for the word that crosses this square is doubled.
● TW (triple word): The points for the word that crosses this square is tripled.

Figure 2.2, New default game
Note that if you create several words intersecting the tile DW or TW all of those words points are
affected.

7

2.2.8 Points:
You get points for all words that were newly created on the board during your turn. Each tile
gives a certain amount of points (each tile type has a value). Newly placed tiles on bonus
squares give bonus to all words they are parts of (those already on the board give no bonus).
Blank tiles give zero points but they still have the same bonus rules.
If a player places 7 tiles, he receives an extra 40 points.

For example if you place the tiles B,N and I like this:

Playing these 3 (the yellow ones) tiles seen in the figure above will give you points for all these
tiles seen in the image below:

8

English

Letter Count Points Letter Count Points

A 10 1 N 6 1

B 2 4 O 7 1

C 2 4 P 2 4

D 5 2 Q 1 10

E 12 1 R 6 1

F 2 4 S 5 1

G 3 3 T 7 1

H 3 4 U 4 2

I 9 1 V 2 4

J 1 10 W 2 4

K 1 5 X 1 8

L 4 1 Y 2 4

M 2 3 Z 1 10

Figure 2.3 List of letters, their points[1] and the amount of them in the game cache

2.2.9 Wordlist:
Wordfeud has a list of the words that are valid. This list is called the wordlist. Only words
contained in this list may be played during the game.

9

2.3 Previous work

2.3.1 Scrabble
MAVEN is one of the better (or best) scrabble playing bots [5]. It uses several techniques to
get good results. It uses a data structure called DAWG [4] to quickly find all possible moves.
For each move it uses a Monte Carlo [10] method to repeatedly simulate a few moves into
the future (with random racks) and uses the average to adjust the points of each move. It also
uses heuristics to determine how good a rack is and how bad or good it is to “open up” board
positions, with some of the parameters determined through simulations. When nearing the
end of the game it uses different simulation parameters, such as for example simulating until
the game is over instead of simulating fixed amount of moves into the future. When there’s no
tiles left in the bag (and therefore no randomness) it uses a B* [11] search algorithm to find an
endgame that is close to optimal (the specific algorithm used is described in [5]).

MAVEN has been developed intermittently for over 10 years (1986-2001). So its performance
(speed and skill) should be superior to anything we could make. Also from the paper about
MAVEN[5] we can conclude that a greedy bot would lose if playing against a human at world
championship level.

2.3.2 Wordfeud
Mastermind [9] is a “cheating/assistant” applications for wordfeud for Android.
“Wordfeud Mastermind logs in to your account and lists every possible move sorted by score. For all your
games. For all your boards. For all your languages. No manual input is required by this app!”.

We don’t know what algorithm they use for finding all possible moves. But if you choose the
highest scoring move all the time, then it should give the same move as our greedy bot.

3.1 Programming Language
We have chosen create this software in Java using Eclipse as our programming environment.
The reason behind this choice is that we both find Java to be the language that we are best at.

10

3.2 Communication with wordfeud servers
We found a Wordfeud client for PC made in python[7] that communicates with the Wordfeud
servers using the Http protocol. By using the Http protocol we can retrieve information about
all the current games on an account and thus automatically calculate all the moves that can be
made in all the different games.

3.2.1 Server protocol
The protocol is a rather simple Http[6] connection where information being sent is put in the data
section of the connection.
For example the information sent when logging in can look like this:

Content-type application/json
Host game03.wordfeud.com
Connection Keep-Alive
User-Agent WebFeudClient/1.2.8 (Android 2.2.3)

{"password": "3a243d74b56cf345c7bcd1f5596a712e4fb448dc","email": "email@gmail.com"}

The only thing our application needs to do is to send a http GET/POST requests to certain URLs
with headers and data attached. The data sent and retrieved are in the JSON[8] format.

11

mailto:email@gmail.com
mailto:email@gmail.com
mailto:email@gmail.com
mailto:email@gmail.com
mailto:email@gmail.com

3.5 greedy bot
The core in our software will be the greedy algorithm that given a game board and the rack (The
tiles that the player can place) then calculates all possible moves that the player can currently
make.

Our implementation of a greedy bot uses cascading filters to minimize the amount of
calculations that are needed for each word from the wordlist.

Figure 3.1 Illustrating the use of cascading filters.

The greedy bot uses the method called getGreedyMove (see code 3.1). As can be seen in the
pseudo code (see code 3.1), before trying to fit words to a position it first filters the words on
what words can be built from the rack and the row/column (the filtering method is described in
section 3.6 Filtering method). Then it uses the remaining words to try to fit them to each position
and if they fit it adds the move to a list of moves. A move is an object with a coordinate, a word,
a direction and points. Finally it returns the move with the most points.

12

Code 3.1: getGreedyMove
Gets the move with the most points.

For each row/column:
Filter wordlist with the letters in row/column and in the rack //code 3.4
For each word in filtered wordlist:

For each position on row/column:
Check if it’s a valid move to place the word on position.//see code 3.2
If it’s a valid move:

//for points calculation see code 3.3
create a move object with the points for the move included
add move object to a list of valid moves

Finally sort the list of valid moves on points and return the move with the most points.

Code 3.2: isValidMove
Checks if a word can be placed at a position

if has letter before or after word:
return false

if has no adjacent letter and isn’t on a letter:
return false

if has corresponding letter on row that isn’t the same as in word:
return false

if has at least one crossing word that is not in the wordlist:
return false

if can construct word from letters in rack and letters under word:
return true

else:
return false

13

Code 3.3: points
Calculates the points for placing a word at a position with a given direction (horizontal or
vertical).

start values
totalCrossPoints = 0 # the total points for all the new crossing words
wordPoints = 0 # the points for all the letters in the word
wordBonusFactor = 1 # this is the total wordbonus that will be applied to the word
usedLetters = 0 # used to check if the bonus for using 7 letters should be applied

loop
for each position pos1 in word and corresponding pos2 on board:

letterPoints = points(word[pos1])
letterBonus = 1
wordBonus = 1
if row[pos2] == ’ ’:

usedLetters ++ # count the number of used letters from rack
letterBonus = letterBonus(pos2) # check if there is a bonus on the board
wordBonus = wordBonus(pos2) # check if there is a bonus on the board
if there is a crossing word:

crossPoints = 0
for each letter in crossing word:

if letter is on the same position as pos1:
crossPoints += letterPoints * letterBonus

else:
crossPoints += points(letter)

totalCrossPoints += crossPoints * wordBonus
wordPoints += letterPoints * letterBonus
wordBonusFactor *= wordBonus

if 7 letters are used from the rack you get a bonus of 40 points
if usedLetters == 7:

bingo = 40
else:

bingo = 0

return the total points
return wordPoints * wordBonusFactor + crossPoints + bingo

14

3.6 Filtering method

3.6.1 FastFilter
FastFilter is initialized/constructed (see code 3.4.1) by counting the letter frequencies (i.e.
number of letters of each letter type) for each word in the wordlist and as an extra optimization
for each word the needed letter types is embedded into an int. These calculations only needs
to be done once because they will always give the same result for the same wordlist and the
wordlist doesn't change.

Once the FastFilter has been initialized/constructed the filtering (see code 3.4.2) works in the
following way for the given row/column:
The number of blank tiles in the row/column are counted. All the letters in the rack (except the
blank tiles) and all the letters on the row/column are copied to a string. Then an integer with
the letters types (in the string) embedded is made and the letter frequencies of this string are
calculated. The previous operations described in this paragraph are fast because they are only
done once per call to this filtering method. Then for each word in the wordlist, check if the word
has all the letter types and then if there’s enough of each letter type and if so it’s added to a list
of possible words that can be placed on the given row/column.

The check for letter types (see code 3.7) is much faster than the check for letter frequencies
(see code 3.8), because the first has constant time complexity and the latter has a time
complexity depending on the the number of letter types in the word/string.

15

Code 3.4: FastFilter
Used to return a list of words with words that are impossible to construct with the letters from
the rack and the row/column filtered out.

Code 3.4.1: Initialization/construction:
letterFreqs= two dimensional array of bytes
checkList= two dimensional array of bytes
letterTypes= array of ints
i=0
for each word in wordlist:

letterFreqs[i]=countFrequencyOfEachLetterType(word)//code 3.5
checkList[i]=getListOfIndexesContainingValuesGreaterThanZero(letterFreq)
letterTypes[i]=letterTypesInWord(word)//code 3.6
i=i+1

Code 3.4.2: Filter:
//do this for a given row/column
//lettersOnRow can also be lettersOnColumn
def String[] filter(String rack,String lettersOnRow):

blanks=count blanks in rack
rack2=remove blanks from rack
letters=get all the letters in rack2 and the current row/column
hasLetters=countFrequencyOfEachLetterType(letters)//code 3.5
hasLetterTypes=letterTypesInWord(letters))//code 3.6
res=[]
i=0
for each word in wordlist:

if blanks>0 or hasLetterTypes(letterTypes[i],hasLetterTypes)//code 3.7
 if hasNeededLetters(checkList[i],letterFreqs[i],hasLetters,blanks)://code 3.8

res.append(word)
i++

return res

16

Code 3.5: countFrequencyOfEachLetterType
Used to count the frequency (how many) of each letter type in the string, and returns the
result as a string of byte where index 0 contains the frequency of a, and index 0 b etc.
It has a linear time complexity depending on the length of the string used as input.

def byte[] countFrequencyOfEachLetterType(String string):
#create byte array with size of alphabet

 freq=new byte['z'-'a'+1]
#calculate the letter frequencies

 for each letter in string:
#letter and ‘a’ are seen as ascii numbers
#change so that a gives letterIndex 0 b gives 1 etc.
letterIndex=letter-’a’
freq[letterIndex]++

 return freq

Code 3.6: letterTypesInWord
Used to embed the information about which letter types are in the string into an integer. This
way of saving the information makes it very fast to later check if a string has all needed letter
types (see code 3.7). The time complexity of letterTypesInWord is linearly dependant on the
length of the string.

#letterIndex 0 corresponds to a
#letterIndex 1 corresponds to b
#etc.

def int letterTypesInWord(String string)

int res=0
for each letter in string:

letterIndex=letter-’a’
| is bitwise or,<< is bitwise shift left
res=res | (1<<letterIndex)

return res

17

Code 3.7: hasLetterTypes
This method is used to check if an integer (see code 3.6) has all the needed letters. This
method is very fast and has constant time complexity.

boolean hasLetterTypes(int neededLetterTypes, int hasLetterTypes)
 return (neededLetterTypes & hasLetterTypes) == neededLetterTypes

Code 3.8: hasNeededLetters
This method is used to check if hasFreq and blanks has all the needed letter frequencies.
This check has linear time complexity depending on the number of letter types in the string
used to make the needFreq array (this is the same as the length of the checkList array). The
maximum number of letter types are the same as the length of the alphabet.

boolean hasNeededLetters(byte[] checkList,byte[] needFreq, byte[] hasFreq,int blanks){
for i in checkList:

if needFreq[i]>hasFreq[i]:
need=needFreq[i]-hasFreq[i]
blanks=blanks-need
#check if used too many blanks
if blanks<0

return false
return true

18

3.7 Evaluation strategy
We intend to let our greedy bot play against a bot that plays the game by placing moves
randomly. We do this to simulate how an average user plays the game versus our greedy bot.
Once a person finds a suitable move they are too lazy to find a better move or just can’t find any
better moves.
Once the bots has played several games with each other we should be able to see a pattern
illustrating how the difference in strategies affects the amount of points they generate.
By doing this we will be able to draw a conclusion about our greedy bot, if it is a viable strategy
or not.

We also intend to let out greedy bot play against itself to see how the amount of points are
affected. Our hypothesis is that the average points will be lower because the other greedy
bot “steals” good positions and uses more tiles so that there are less chances to get points.

19

4. Results

4.1 Evaluation

4.1.2 greedy versus random
The results from the games played was as expected, a major victory for the greedy bot against
the random bot. As seen in figure 4.1 the greedy bot always has a large gap in the amount of
points generated during the game and thus always ends up as the victor.

Figure 4.1 Points at the end of the game for 67 games played for greedy versus random
bot

 Greedy Random

Average 598,806 146,4776

Max 752 222

Min 475 63

Figure 4.2 Points statistics for the 67 games played

20

4.1.3 Greedy versus Greedy
When playing the greedy versus greedy we see that the average amount of points generated
drops due to the opponent playing smarter thus making it harder to score large amount of
points. The opponents steals good placement positions and creates longer words leaving less
tiles in the cache.

Figure 4.3 Points at the end of the game for greedy vs greedy bot

 Greedy 1 Greedy 2

Averege 442,0476 431,8095

Max 602 558

Min 334 302

Figure 4.4 Points statistics for the greedy versus greedy games

21

4.1.4 Time
As we can see in Figure 4.3 the time it takes for the bot to make a move is within an acceptable
range. You may notice the big spikes in the graph. These occur when the bot receives a
wildcard.
The average time it takes the bot to make a move is calculated as 39.7 milliseconds.
The time it takes for the bot to handle all communications with the server is excluded from this
graph. This graph only has the actual time it takes for the bot to decide on what word it wants to
play as this is the only thing we are interested in.

Figure 4.3 Example of time taken per move during a game in milliseconds with two
greedy bots playing against each other

22

5. Discussion

5.1 Error Sources

5.1.1 Time
The time it takes to make the moves may be very different against a different opponent,
because the time is dependant on how the board looks and how many possible moves there
are, and that is dependant on what words are placed on the board.

The time is dependant on “random” factors such as if the computer is doing other things at the
same time. This can be mitigated by taking the average of many runs.

The time is very dependant on the hardware and it will take less time on faster hardware.

5.1.2 Score
As can be seen in figure 4.1 the points of a game can vary. We mitigate this error source by
making many runs and also displaying the data in such a way that these variations can be seen.

The random bot might be better or worse than an average user. The average points might not
be very accurate, but it probably accurate enough to make a rough evaluation of our greedy bot.

The greedy bot might not be as effective against a more difficult opponent. A more difficult
opponent might block high scoring moves, or try to exploit the fact that the greedy bot is always
trying to make the move with the most points.

5.2 Further work

5.2.1 advanced bot
We want to make an advanced bot but we will not make it due to time limitation. We want the
advanced bot to consider the opponent's possible moves after a move, so that the points gained
relative to the opponent can be maximized.

We could use the Expectimax algorithm [12] to consider the weighted average (the weight is
the probability of getting a rack) of every counter move to every possible move. This would also
take into account what possible racks the opponent can have. Using the Expectimax algorithm
the possible racks (after drawing tiles) are seen as a random event and every possible outcome
(every possible rack) is considered. There are 3222188 possible rack combinations at the start
of the game. A lower estimate of the time to calculate a move at the start of the game could be 1
ms * 100 moves * 3222188 combinations = 89.5 hours. And that’s a lower estimate. This means
that we can’t use this idea. But if the number of considered racks could be lowered in some way
it might still be possible, or it might be possible to use Expectimax at the end of the game when
the amount of possible racks are lower due to the low amount of tiles in the cache.

It is probably more efficient and almost as accurate to do a Monte Carlo simulation[10]. This
could be done by first finding all possible moves and then for each move: Do simulations with

23

random racks and let greedy bot find the move with the most points for each random rack. Then
calculate the average of these results and subtract it from the points of the move. The resulting
points should be close to the result of using the expectimax algorithm, if enough simulations
are run. If the simulations are fast enough we could even do the simulation a few steps into the
future.

5.3 Conclusions
We can conclude from the results of the testing that the greedy bot does indeed work as a
viable strategy for playing the Wordfeud game.

If we compare the average points for greedy vs random and greedy vs greedy (figure 4.2 and
figure 4.4) we can see that the average points are lower against the greedy bot. This seems to
support our hypothesis that the greedy bot will get less points against a more difficult opponent.

From what we read in the paper about MAVEN [5] we can conclude that our greedy bot could
not win at world championship level against humans.

24

6. Reference List:
1. The Wordfeud website containing most of the rules for the game.

http://wordfeud.com/wf/help/ (11/4/2012)
2. The Wordfeud application page on the Android store.

https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free (11/4/2012)
3. The Scrabble board game.

http://en.wikipedia.org/wiki/Scrabble (11/4/2012)
4. The DAWG data structure.

http://en.wikipedia.org/wiki/Directed_acyclic_word_graph (11/4/2012)
5. Text about the Scrabble playing bot MAVEN | Title: World-championship-caliber

Scrabble Author: Brian Sheppard
http://www.sciencedirect.com/science/article/pii/S0004370201001667 (11/4/2012)

6. The HTTP protocol.
http://sv.wikipedia.org/wiki/HTTP (11/4/2012)

7. Python Wordfeud client for PC.
https://github.com/jonte/JarJar9 (11/4/2012)

8. The JSON data string format.
http://www.json.org/ (11/4/2012)

9. Mastermind Android application on Android store.
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en (12/4/
2012)

10. Monte Carlo algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm (12/4/2012)

11. B* algorithm
http://en.wikipedia.org/wiki/B* (12/4/2012)

12. Expectimax algorithm
http://en.wikipedia.org/wiki/Expectimax (12/4/2012)

25

http://wordfeud.com/wf/help/
http://wordfeud.com/wf/help/
http://wordfeud.com/wf/help/
http://wordfeud.com/wf/help/
http://wordfeud.com/wf/help/
http://wordfeud.com/wf/help/
http://wordfeud.com/wf/help/
http://wordfeud.com/wf/help/
http://wordfeud.com/wf/help/
http://wordfeud.com/wf/help/
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
https://play.google.com/store/apps/details?id=com.hbwares.wordfeud.free
http://en.wikipedia.org/wiki/Scrabble
http://en.wikipedia.org/wiki/Scrabble
http://en.wikipedia.org/wiki/Scrabble
http://en.wikipedia.org/wiki/Scrabble
http://en.wikipedia.org/wiki/Scrabble
http://en.wikipedia.org/wiki/Scrabble
http://en.wikipedia.org/wiki/Scrabble
http://en.wikipedia.org/wiki/Scrabble
http://en.wikipedia.org/wiki/Scrabble
http://en.wikipedia.org/wiki/Scrabble
http://en.wikipedia.org/wiki/Scrabble
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://en.wikipedia.org/wiki/Directed_acyclic_word_graph
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://sv.wikipedia.org/wiki/HTTP
http://sv.wikipedia.org/wiki/HTTP
http://sv.wikipedia.org/wiki/HTTP
http://sv.wikipedia.org/wiki/HTTP
http://sv.wikipedia.org/wiki/HTTP
http://sv.wikipedia.org/wiki/HTTP
http://sv.wikipedia.org/wiki/HTTP
http://sv.wikipedia.org/wiki/HTTP
http://sv.wikipedia.org/wiki/HTTP
http://sv.wikipedia.org/wiki/HTTP
http://sv.wikipedia.org/wiki/HTTP
https://github.com/jonte/JarJar9
https://github.com/jonte/JarJar9
https://github.com/jonte/JarJar9
https://github.com/jonte/JarJar9
https://github.com/jonte/JarJar9
https://github.com/jonte/JarJar9
https://github.com/jonte/JarJar9
https://github.com/jonte/JarJar9
https://github.com/jonte/JarJar9
https://github.com/jonte/JarJar9
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
https://play.google.com/store/apps/details?id=se.ballefjongberga.wfmm&hl=en
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_algorithm
http://en.wikipedia.org/wiki/B*
http://en.wikipedia.org/wiki/B*
http://en.wikipedia.org/wiki/B*
http://en.wikipedia.org/wiki/B*
http://en.wikipedia.org/wiki/B*
http://en.wikipedia.org/wiki/B*
http://en.wikipedia.org/wiki/B*
http://en.wikipedia.org/wiki/B*
http://en.wikipedia.org/wiki/B*
http://en.wikipedia.org/wiki/B*
http://en.wikipedia.org/wiki/B*
http://en.wikipedia.org/wiki/B*
http://en.wikipedia.org/wiki/Expectimax
http://en.wikipedia.org/wiki/Expectimax
http://en.wikipedia.org/wiki/Expectimax
http://en.wikipedia.org/wiki/Expectimax
http://en.wikipedia.org/wiki/Expectimax
http://en.wikipedia.org/wiki/Expectimax
http://en.wikipedia.org/wiki/Expectimax
http://en.wikipedia.org/wiki/Expectimax
http://en.wikipedia.org/wiki/Expectimax
http://en.wikipedia.org/wiki/Expectimax
http://en.wikipedia.org/wiki/Expectimax

www.kth.se

