

Large-Scale Agent-Based
Pedestrian and Crowd Simulation

in Real-Time

 H E N R I K B O S T R Ö M
 a n d L U K A S W E N S B Y

 Bachelor of Science Thesis
 Stockholm, Sweden 2012

Large-Scale Agent-Based
Pedestrian and Crowd Simulation

in Real-Time

 H E N R I K B O S T R Ö M
 a n d L U K A S W E N S B Y

 DD143X, Bachelor’s Thesis in Computer Science (15 ECTS credits)
 Degree Progr. in Computer Science and Engineering 300 credits
 Royal Institute of Technology year 2012
 Supervisor at CSC was Michael Minock
 Examiner was Mårten Björkman

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/
 bostrom_henrik_OCH_wensby_lukas_K12014.pdf

 Kungliga tekniska högskolan
 Skolan för datavetenskap och kommunikation

 KTH CSC
 100 44 Stockholm

 URL: www.kth.se/csc

May 20th, 2012

1

Large-Scale Agent-based Pedestrian and Crowd

Simulation in Real-Time
Written as a part of the

Degree Project in Computer Science, First Level

at the Royal Institute of Technology

Stockholm, Sweden

Supervisor: Michael Minock

Henrik Boström

Kungliga Tekniska Högskolan

hbo@kth.se

Lukas Wensby

Kungliga Tekniska Högskolan

wensby@kth.se

Abstract—This paper deals with the implementation details and results of simulating a city populated by a large number of

pedestrians. The goal of the simulation was to, as realistically as possible, simulate large numbers of people going about their daily

lives, interacting with each other and the city environment, in real-time. We also simulated dense crowds and realistic collision

avoidance techniques, and tried to replicate some observations of previous studies. Simulators based on the mechanics of human

interaction can easily become inconveniently complex and/or resource expensive. As this has been the main risk during the project

we’ve been careful in the implementation to keep coupling as low as possible and to construct interfaces that allow for scaling and

adding of new behaviour in “isolation”, without having to modify prior code. The concern for performance was just as real – the

simulation, after all, was to support thousands of interacting pedestrians walking about in real-time.

In the end, the resulting simulation turned out to be a good and efficient representation of inner-city pedestrians, and was mostly

fine in handling the issues of denser crowds. This may potentially be extended for use in city and public transport planning,

producing large amounts of data for data mining or as a basis for further development into city life dynamics and the artificial

intelligence of individuals in a populated environment.

Index Terms—Agent-based, Crowd simulation, Large-scale, Real-time, Pedestrian simulation

1 INTRODUCTION

1.1 INTRODUCTION

he goal of our project was to simulate large amounts of

individuals in a big system, all of which interact with one

another and the environment. As it scales up, situations quickly

become more complex and the simulation becomes more

process- and resource costly. You might want to model just a few

individuals, or you could attempt to model hundreds, thousands,

tens of thousands or even hundreds of thousands of individuals,

but such large simulations would be unlikely to run in real-time

on an average personal computer. We imagined that our

simulator would handle at least several hundreds or even

thousands of pedestrians, running in real-time. We find it more

rewarding and thrilling to be able to see the system interact

with itself in real-time, and to have the possibility of intervening

as well, as one would naturally want to do. This puts some

constraints on the scale and implementation aspects, and

furthermore it does need to be able to run on the average

personal computer (since we’ve currently misplaced our

supercomputer).

Pedestrian and crowd simulation is, amongst others, a subject

of artificial intelligence – what are the pedestrians’ goals and

how do they interact with each other and behave when various,

perhaps unexpected, situations arise? The pedestrians could act

based on personal needs and goals, or based on randomness

and statistics, or a combination of the two. If the behaviour of

the pedestrians – on individual level, as large groups or a

population – successfully models the real world, a simulator like

this could potentially be used for city and public transportation

planning and to model the results of large scale events such as

major sport arena events. If the pedestrians have the proper

behavioural responses to stressful situations then maybe the

simulation could be modified to predict some of the immediate

consequences of various crisis situations such as buildings on

fire, natural disasters or terrorist attacks. This is pure

speculation and beyond the scope of our simulation, but we’ve

aimed for the implementation to be as scalable as possible,

enabling further development. Another potential application is

to use the final results of our simulator (without modifying the

pedestrians’ behaviour) in order to collect large amounts of

statistical data and to analyze patterns spawned by the

pedestrians (again, assuming that the simulation successfully

models the real world). This data could then be mined in search

for interesting anomalies or to be used for machine learning.

T

2

1.2 DOCUMENT OVERVIEW

In 2 Background we discuss the use and applications of crowd

simulation, list some observations from previous studies that

may be used as requirements or goals, and begin to talk about

some of the approaches to implementing crowd simulators.

In the next section, 3 Individual Agents Approach, we talk

about the agent-based approach in the context of our simulation

and why we’ve chosen this camp for our simulator. Then, in

section 4 Implementation, we go into details about our approach

and its final implementation, attempting to give an as extensive

description of the essentials as possible without giving an

overwhelming amount of detail.

Following this comes 5 Results, where in we present the

outcome of our implementation, its performance – i.e. the

number of pedestrians it managed to support – and of course,

how close to reality our pedestrians behaved in various

situations. This is followed by a discussion in 6 Discussion about

the results, which is followed by the final conclusions in 7

Conclusion.

1.3 STATEMENT OF COLLABORATION

Background research and discussions about the project’s goals

and approach has been done equally by Boström and Wensby.

As far as the implementation goes, Boström has done more of

the back-end graphics coding, being formerly familiar with the

library used, and geometry/math stuff. The rest of the

implementation is a mix of both partners, and code written by

one part is much likely edited by the other later. The same goes

with the report, which has been collaboratively created using

Google Documents (enabling both authors to edit the document

simultaneously).

2 BACKGROUND

2.1 BACKGROUND AND APPLICATIONS

There has been an increasing number of studies in recent years

looking into the subject of simulating crowds of people

realistically and/or efficiently. Some for the purpose of city

planning, architectural aspects or simulating disasters such as

fire outbreaks in buildings where escape panic, crowd

turbulence and stampede accidents are a big concern. There has

also been a large number of popular games released that

include some sense of artificial intelligence for individuals or

crowds of individuals with relevance to our subject.

According to Thalmann and Musse [10], the dominant domain

for crowd simulation is that of safety science and architecture.

In architectural design of buildings, measuring and accounting

for how safe a layout is in situations like fire and a panic

outbreak is obviously too late when the building has already

been built.

In a completely different area, crowd simulation is often used

for the 3D computer graphics in films. A good example of this is

the massive number of independently acting warriors and

monsters seen in the Lord of the Rings trilogy [6], and we are

sure that you could create an extensive list of titles of this if you

wanted.

In video game series such as Sim City or RollerCoaster Tycoon

you had to build roads or paths for the pedestrians to walk on so

that they could reach various destinations. Their behaviour was

very simple, just walking along designed paths. In the Grand

Theft Auto series, the pedestrians was not just part of the

scenery but could also be interacted with. In a game where the

player could (and would) drive on the sidewalks and shoot

people for no apparent reason, these pedestrians were

programmed to try to avoid oncoming cars and interrupt what

they were doing and run in panic if the player started shooting.

Although fairly primitive responses, such behaviours were

enough to make the city feel like it was inhabited by “living”

people. These games did not focus on crowd forming or “crowd

behaviour” at all. In the Dead Rising series however, almost all

the people of intensely crowded areas (such as shopping malls)

had turned into zombies, and the sheer number of individual

zombies were impressive to look at. However, because they

were “zombies”, their behaviour was not complicated at all –

they were just mindlessly trying to move in the direction of the

player if he was close enough, and otherwise shuffle around

slowly and randomly – not a very realistic crowd simulation.

The Sims series, on the other hand, focuses more on individual

“Sims” with wants and needs, motivated by these wants and

needs to do things, and although highly controlled by the player,

if a Sim for example got hungry, it “wanted” to – and needed to –

eat.

2.2 INTRODUCTION TO CROWD SIMULATION

Existing work in these areas of simulation is said to be classified

either into agent-based methods, which focus more on

individual behaviour, or crowd simulations, that aim to exhibit

emergent phenomena of the groups [9]. One can either focus on

achieving these phenomena from the top down, by

programming the flow of the crowd as a whole, or one can focus

more on the individuals, and from the bottom up try to recreate

the phenomena, adjusting the behaviours of the individuals

accordingly. These two camps are not distinct and can be

combined.

Where the density of individuals is high or where there are

“bottlenecks”, individuals can’t simply walk in the direction of

their goals because of other obstructing individuals and objects.

In these cases certain phenomena arise that are of high interest

to some simulations.

“Human crowds display a rich variety of self-organized

behaviors that support an efficient motion under

everyday conditions. One of the best-known examples is

the spontaneous formation of unidirectional lanes in

bidirectional pedestrian flows. At high densities,

however, smooth pedestrian flows can break down,

giving rise to other collective patterns of motion such as

stop-and-go waves and crowd turbulence. The latter may

cause serious trampling accidents during mass events.

Finding a realistic description of collective human

motion with its large degree of complexity is therefore

an important issue.” [7]

3

There are a number of interesting observations that have been

made regarding pedestrians’ behaviour. We present a

condensed, summarized list of a few observations based on

Helbing, et al.’s [2] research.

• Pedestrians will most likely choose the fastest – and

straightest – path towards their goal, even if the direct route

is crowded. They refrain from taking detours or moving

opposite to the desired direction.

• Pedestrians prefer to walk at individual walking speeds

(personal preference).

• Pedestrians keep certain distance from other pedestrians

and from obstacles. The distance decreases as the crowd

density increases or if they are in a hurry or around

“attractive” places. Resting pedestrians tend to be uniformly

distributed.

• Individuals who know each other form groups that may act

as single entities. Loscos et al. notes that, typically, only

around half of pedestrians walk alone, the rest walk in

groups of varying sizes [5].

Also, pedestrians obviously don’t walk indefinitely. Usually they

start at one building and end at another, and on their way there

they may (or may not) do various actions such as window

shopping, stop to talk to another pedestrian, queue for a bus [4]

or may use various other vehicles (personal cars, taxis, etc) for

transportation.

2.3 A BRIEF OVERVIEW OF APPROACHES

Reviewing the literature reveals that there are commonly three

broad types of approaches one can take in simulating crowds of

people [4]. On a macroscopic scale, crowds can – one might find

surprisingly – be modelled as flows of fluids pertaining to

physical laws of fluid dynamics, and attempts have been

successfully made with this approach [3].

In the Cellular Automata (CA) approach the system is split

into cells of discrete states, where future cell states are

determined by rules based on the states of surrounding cells [4].

For example, a very simple cell could have just two states: “a

pedestrian is or is not occupying this cell”. A well known

example of CA, although not related to pedestrian simulation, is

Conway’s Game of Life, which demonstrates that complex life-

like behaviour can arise from a very simple set of rules.

Lastly, the most common approach, and perhaps the first one

that would come to mind, is to model the pedestrians as

particles – individual entities or “agents” – that interact with

each other based on social and physical laws [4].

Because this paper focuses on the last of these approaches we

will not go into detail about the other ones, but it should be

noted that these other approaches exist.

3 INDIVIDUAL AGENTS APPROACH

3.1 THE INDIVIDUAL AGENTS APPROACH AND WHY WE CHOSE IT

Our approach is to model the pedestrians as “individual agents”

– entities that act on behalf of themselves and interact with

other pedestrians based on social and behavioural rules. The

pedestrians also pertain to physical restrictions such as to

hinder them from walking through solid objects (buildings) if

they were to fail to avoid them.

We chose to model the pedestrians as individuals because we

are interested in the behaviour of individuals and not just, for

example, the “flow” of them. We wanted to model a fairly large

city area, so we could have gone for the fluid dynamics

approach, but at the same time we wanted to be able to zoom in

on a single street and follow individual pedestrians and see

what they specifically were up to and to examine their

individual behaviours. Furthermore, we are very interested in

the creation of artificial intelligence and in how to create

behaviour such that observed and studied phenomena

spontaneously will arise. The Cellular Automata approach did

not seem as appealing, as applicable, as intuitive or as flexible as

programming individual entities with “behavioural modules”. A

fun thing about artificially intelligent entities is that you can put

them in new situations and see how they react.

More specifically, our approach is that of a “social force

model”.

3.2 THE SOCIAL FORCE MODEL AND AN ALTERNATIVE

The social force model approach is a Newtonian mechanics

inspired approach (as is the fluid dynamics one) in that it

describes the pedestrians’ motions as the sum of attractive and

repulsive forces reflecting external influences and internal

motivations [7]. In reviewing Helbing and Molnár’s work,

Leggett [4] describe three “essential forces” of theirs:

acceleration forces as a pedestrian attempt to reach optimal

speed towards its goal, repulsive forces from other pedestrians,

obstacles or edges, and attraction forces between certain other

pedestrians, such as friends, or “attractive” objects or locations

such as window displays [4]. Legget goes on to say that Helbing

has produced a social force model which has successfully

demonstrated some observed phenomena such as lane

formation, and applied the social force model to the simulation

of building escape panic (“with impressive results”).

In Mussaïd et al.’s paper however, it says that there are

problems with the Newtonian-inspired approaches, that it’s

“becoming increasingly difficult to capture the complete range

of crowd behaviours in one single model” and claims that it is

problematic to model interactions of multiple individuals as a

number of binary interactions, i.e. when the interactions of a

group of individuals are resolved through resolving interactions

between each of the pairs in isolation [7]. An alternative, as

proposed by Mussaïd et al., is that for every individual, we

examine its field of view and determine the distance to impact

of various different walking angles, taking other individuals’

velocity into account. As such, this model tries to choose an

appropriate immediate path (optimal walking angle at every

moment) through the environment instead of having forces

determine the path.

Our model is mainly that of a social force model, but inspired

by Mussaïd et al., the pedestrians also try to avoid other

pedestrians and obstacles by adjusting the angle of their path

based on what objects are in the immediate view and the

velocity of these objects, and as such, our model is not limited to

binary interactions. However, we never leave the roots of the

4

social force model and any behaviour affecting a pedestrian

does so through adding of “forces”, even if these forces were

determined by a more sophisticated process than binary

interactions.

3.3 THE SCOPE OF OUR SIMULATION

The initial goal of our simulation was to be able to handle

several hundred or even thousands of individuals in a city

environment. The interactions between individuals and other

individuals or crowds of individuals was planned to be as

realistic as possible, and to ensure this we used the list of

observations described in 2.2 Introduction to Crowd Simulation

as the main goals for the simulation. We also wanted to look

critically at our results every step of the way in order to spot

unrealistic anomalies (subjectively), i.e. the behaviours of the

pedestrians should look “natural”. The simulation would not

contain any cars or traffic besides pedestrians due to time

constraint, but it would certainly be an appropriate thing to

have.

4 IMPLEMENTATION

We implemented our simulation in the Java programming

language because of our familiarity with it and its cross-

platform capabilities. Due to the scale of our implementation –

and for performance reasons – we decided to use the OpenGL

API for graphics rendering, which we access using an external

open source and free-to-use library called The Lightweight Java

Game Library (LWJGL). This library is basically a way for us to

easily create a window, handle input events and use the OpenGL

functionality.

This section is split up into helpful subsections regarding

different aspects of implementation.

4.1 IMPORTING MAPS FROM OPENSTREETMAP.ORG

OpenStreetMap [8] is an online world map that is entirely

collaboratively created, editable and maintained by the public –

it is much like what Wikipedia is for articles. Maps are more or

less available all over the world and you can zoom down to

street level anywhere. Because of the process of which these

maps are created and edited, the number of details often varies

over different areas. The maps of inner cities, like Stockholm,

are thankfully very detailed.

We wanted our simulation to model the real world and we

wanted to use real world areas, namely locations in Stockholm

that we have visited. From the OpenStreetMap.org website you

can select any area of the world map that you wish to export and

download the section as a .osm file. This meant that we had to

implement our own .osm file format loader, but also that our

simulator can be used – or at least extended to be used – to

model almost any area of the world.

This section will give a very brief overview of the .osm file

format and superficially how we go about loading it, more

details are available on the wiki section of OpenStreetMap’s web

site [8].

4.1.1 OSM FILE STRUCTURE OVERVIEW

The .osm file format is structured like an XML file with tags

(<tagtype ...>) that may have zero or more attributes

(name="value") and child tags. What tags are allowed and what

attributes they may possess are specified by the OpenStreetMap

wiki. There is a sea of different attributes that may be used to

describe all the possible map features, and too many for us to

interpret them all. Our limited map loader only cares about

classifying things in a broad sense such as buildings, roads,

pedestrian paths, etc. Because of the simple XML-like structure

of the file format, however, it would not be too difficult to

interpret more map features.

The basic tags for the basic “data primitives” of which

everything of the map is defined are Nodes, Ways and Relations.

How to interpret a data primitive more precisely is specified by

their attributes.

• A Node represents a point on the map, i.e. a GPS coordinate.

• A Way is either a line strip or a closed polygon, and is

defined by a number of Nodes.

• A Relation is any “relation” you might want to declare

between one or more Nodes and/or Ways; the relation could

have a functional purpose or be purely descriptive.

A building for example may be defined as a polygon (a Way)

with attributes that specify that the Way is some type of

building.

Interpreting the file is a matter of writing parsers and

interpreters dispatching different tags, etc, to more specialized

interpreters that create output to the rest of the program.

4.1.2 CONVERTING GPS COORDINATES TO PLANE COORDINATES, IN METERS

GPS coordinates are defined in terms of angles (longitude and

latitude) of the globe, and are quite cumbersome for simulation

purposes. The Earth is slightly uneven and not a perfect sphere,

however, there is a need to convert the GPS coordinates to plane

(x,y)-coordinates so that distance between coordinates can be

easily measured in meters. Since we are looking at a relatively

tiny piece of the world we can indeed assume that the map is a

5

flat plane, and also assume that the Earth is a perfect sphere,

because we only really care about the scale of the map and the

distances within it, i.e. the coordinates relative to each other –

not their absolute position of the world (which would require a

3D model).

The GPS-coordinates are converted in two steps, first they are

converted from longitude and latitude angles to approximate

(x,y,z)-coordinates, then, by measuring the linear distance

between the points, we get (on this scale) reliable (x,y)-

coordinates. The .osm also contains the GPS-coordinates of the

boundary’s top-left and bottom-right position.

4.1.3 MAP FEATURES AND LACK THEREOF

Our simulation imports buildings, roads, pedestrian paths,

parks, etc. The .osm file format – or at least its present

manifestation – does pose significant limitations on the

available data. One of the most obvious absences is the lack of

information about the width of roads – roads are just defined as

line strips, and it says nothing about their thickness. Because of

this we give our own predefined widths to the different kinds of

roads; one for motorized roads and one for pedestrian paths

(although in .osm there are a lot more road types than that).

There is also no information about the location of crosswalks, so

either you have to add them yourself or do without crosswalks –

we went with the latter. It also lacks information about

sidewalks, so we simply assume that the sides of motorized

roads are sidewalks. Entrances are not explicitly defined either,

however, house and street numbers are, and so based on the

positions of these numbers, entrances can be created more or

less where they’re supposed to be. Restaurants and shops for

example do exist in the data, so there is certainly the potential to

use these and have the pedestrians interact with them based on

personal needs or preferences. However, this is not something

that we have implemented.

4.1.4 PATHFINDING

It is reasonable to assume that the pedestrians know more or

less how to get to where they are going in the city, and so the

pedestrians mainly use pathfinding to determine their paths in

the city. The nodes and roads contained within the .osm file can

more or less directly be translated into nodes usable for

pathfinding. The pathfinding algorithm we’re using is A*

because it’s fairly efficient and reliable, the cost of a node being

the combination of distance travelled from the start node and

the heuristically approximated distance left to the goal.

Some buildings, particularly small houses at the outskirt of

the city areas, have entrances that are not directly connected to

roads. For example, there are several houses whose entrance is

placed on the other side of the house compared to the road. This

lead to some problems because of the path determined by the

pathfinder is not directing the pedestrian to go around the

house but through it. Because of the small number of cases like

this we simply decided to remove entrances that do not have a

road directly outside it, rather than to create more robust

pathfinding, adding additional path finding nodes around the

houses or more intelligent pedestrian navigation techniques.

4.2 THE WORLD STRUCTURE

For performance reasons objects need to be registered to the

world of the simulation in an efficient manner. Pedestrians, for

example, need to be aware of nearby pedestrians and buildings

in order to make behavioural decisions, and solid objects should

not be penetrate-able. All of the world’s objects searching

through a list of all other existing objects is not an option. The

data structure of which we register objects’ existence and

position to we refer to as the world structure, or simply “the

world”. Objects capable of being registered to the world are

descendants of the WorldObject class, and have (amongst other

things) rectangular bounding boxes.

Our world structure is implemented as a grid of cells of fixed

sizes, where each cell keeps track of what objects are located in

that specific cell. In this way, objects can efficiently find nearby

objects by looking at what objects are located in the same or

nearby cells. When an object moves it does a “refresh” call to the

world to check if the cell registrations needs updating.

4.3 SOLID OBJECTS – ISOLIDS

Behaviourally speaking, pedestrians should obviously try to

avoid colliding with buildings, other pedestrians and other

objects. However, since these goals are in no way guaranteed to

be fulfilled, the simulated world has “physical” restrictions.

Objects that should be restricting and impossible to penetrate

from the outside implements an interface called ISolid – these

objects are referred to as solid objects. For simplicity’s sake the

collision handling only bothers with circles colliding with solid

objects; pedestrians are collision-wise represented as circles.

The solid objects however can be any shape – buildings, for

example, are closed polygons (convex or concave). Pedestrians

also implement the ISolid interface so that pedestrians can’t

penetrate each other, which serves its purpose in dense crowds

and bottleneck situations.

6

The main component of an ISolid is the getRestrictingSurface-

Normals method. Given a circle (center position and radius) the

method returns a collection of zero or more surface normals

that should be used to restrict the circle’s velocity. If a circle is

touching the side of a wall, the wall’s getRestrictingSurface-

Normals method would return the normal of that wall’s surface,

i.e. a normalized vector perpendicular to the surface. Given this

vector, adjusting the velocity of the circle is a matter of trivial

vector mathematics (see the figure on the previous page). As

soon as the circle stops touching the wall getRestrictingSurface-

Normals would return an empty collection and have no effects.

With the velocity of the pedestrians restricted like this they

are guaranteed not to penetrate any other solid objects, given

that tunnelling is not an issue (which in our case it isn’t). When

there are multiple restricting surface normals active the process

described above is simply repeated for each normal, the velocity

being modified in each step. However, sometimes the result of

conforming to one of the normals causes the velocity to

“disobey” a previously handled normal. If this happens the

object should become “stuck” in that its velocity should be zero.

This is achieved by going through each normal once more to

make sure that none of the normals “wants to” modify the final

velocity vector – if one does, the velocity is set to zero.

4.4 PEDESTRIANS

Pedestrians are the very heart of the simulation. The Pedestrian

object is a WorldObject and an ISolid and collision-wise it is

described as a circle. Visually, it is represented by a circular

sprite and the pedestrian itself is fairly lightweight. It’s

described as a circle that has a position, radius (0.25 m) and

velocity, and it has an update method and a draw method. But

the pedestrian also has a list of active Behaviour objects which

entirely determine what the pedestrian will do for every

moment – these are described in more detail in the next section.

Remember that in 2.2 Introduction to Crowd Simulation, one of

the observations was “Pedestrians prefer to walk at individual

walking speeds (personal preference).” Because of this, when a

Pedestrian is created it is randomly given a preferred walking

speed (between 0.6 and 2.35 m/s) that can be read by its

behaviours.

Tying back to the social force model, the velocity of the

pedestrian is never directly set by a behaviour. Instead, the

velocity is determined by adding a number of “forces” together.

This requires further explanation; this is not exactly like a force

in the Newtonian sense and it is not an acceleration over time –

a force is simply a vector used during the current update. In

each update the velocity (also a vector, its components in m/s)

is reset and any force added during the update call acts during

that update call alone. The velocity vector is added to by the

force vectors (velocity += force), in this sense our forces are

more like impulses. If there is only a single force acting upon the

pedestrian it directly translates into the final velocity, but if a

second force joins in the pedestrian’s velocity becomes the sum

of the two forces, which may counteract, further repel, or

change the direction of the pedestrian. Since the velocity is reset

after each update there is not necessarily any acceleration or

deceleration – this is up to the behaviours exerting the forces.

An update call handles behaviours and updates the velocity

accordingly by summing up the current forces, but it also

restricts the velocity. Firstly, a pedestrian should not be able to

move faster than a reasonable running speed (we limit the

speed to 7.5 m/s). Secondly, the pedestrian should not be able to

walk through any solid objects, so nearby ISolids have their

getRestrictingSurfaceNormals methods surveyed and the

velocity is adjusted accordingly. This means that we

continuously have to go through every nearby object. The world

structure is appropriately implemented so that getting nearby

objects is fairly effective, however, for further optimization, each

pedestrian keeps an internal list of nearby objects and updates

it at an appropriate interval. This list can then be shared by all

behaviours that depend on nearby objects, without having to re-

request nearby objects from the world structure. We should

point out though that this is only marginally faster than re-

requesting nearby objects from the world structure – it is, after

all, an effective process. If other world structures were

implemented, this might make more of a difference.

Here is a pseudocode outline of the Pedestrian’s update method:

if (fair time since previous nearbyObjects update)

 update nearbyObjects

for each Behavior b in behaviors

 b.behave() // adds forces, etc

velocity = sum of forces

list of forces is cleared

restrictingNormals = empty list

for each ISolid s in same subsection(s) as this

 if (bounding boxes overlap)

 restrictingNormals +=

 s.getRestrictingSurfaceNormals(...)

restrict velocity according to restrictingNormals

restrict velocity to max speed

update position based on velocity and time step

notify world of updated position

4.5 BEHAVIOURS

Without behaviours, Pedestrians do nothing but stand still.

Because behaviours are separate components, different

behaviours can be implemented in isolation, without having to

modify prior code, and can simply be added or removed from a

pedestrian depending on what the pedestrian should be doing.

Some behaviours we want to be permanent, like the avoidance

behaviour – pedestrian not wanting to be too close to other

pedestrians – and other are temporary, like “walk to said point

on map”. Anything you can see a pedestrian do is the result of

one or more behaviours. Behaviour is the name of the behaviour

base class.

A Behaviour instance is tied to a Pedestrian instance and must

be added to said pedestrian in order to be active. A behaviour

affects a pedestrian using its behave method and is called by the

pedestrian in its update method. It typically asserts a force on

the pedestrian, and it may remove itself from the pedestrian

when it has fulfilled its purpose. For performance reasons,

7

behaviours may use timers in order to act at a lower update

frequency than the rest of the program; it’s simply not

necessary for every behaviour to do a major update 30 times a

second if its behave method does a significant amount of work.

In those cases the behaviours may, for example, assert the same

force for each behave call in-between the comparatively

expensive re-evaluation of what the force should be. These

details have been discarded from the pseudocode of the

behaviours presented in this report.

Given our definition of a behaviour, a behaviour can be pretty

much anything and the details are specific to the specific types

of Behaviour descendants. Note that spawning pedestrians with

various behaviours can be “probabilistically scheduled” through

the use of so called Activities. For example, one could have the

Activity “going to work” defined as “during the time 7:00-9:00

there should be an average of 10 pedestrians per entrance

spawning with the behaviour ‘going to work’.” We describe

activities more later.

4.5.1 BASICAVOIDANCEBEHAVIOUR

This behaviour is the very simplest form of avoidance, the

pedestrian simply attempts to keep distance from other objects

(including other pedestrians, of course). It achieves one of the

observations defined in 2.2 Introduction to Crowd Simulation:

Pedestrians keep certain distance from other

pedestrians and from obstacles. The distance decreases

as the crowd density increases or if they are in a hurry or

around “attractive” places. Resting pedestrians tend to

be uniformly distributed.

The force asserted is fairly weak at a distance, but grows

(exponentially to a point) the closer the pedestrian is to an

object, but the force never becomes overwhelmingly strong.

This means that “resting” pedestrians will move away from each

other and become uniformly distributed, and the same goes for

a crowd of pedestrians. Due to forces cancelling each other out,

and also the final force asserted by the behaviour being divided

by the number of individual forces (i.e. number of nearby

objects/pedestrians), a crowd of pedestrians is “slow” at

spreading out, so despite the avoidance behaviour crowds can

easily form, and we achieve the property that as the density

increases the distance between the individual decreases.

In isolation, two pedestrians with BasicAvoidanceBehaviour

are reasonably good at avoiding each other, but if a pedestrian is

blindly walking straight towards another pedestrian or into a

crowd, there will be collisions – especially in the case of walking

into a crowd. This might sound like a problem, however, it’s

exactly what we want. Imagine you are trying to walk through a

crowd of people; it is (mostly) up to you to navigate in order to

avoid the other people. The individuals in the crowd are not

“afraid” of you, they will only move a little bit. Also, if the

BasicAvoidanceBehaviour were too strong it would be

impossible to walk into another human being. So, the

BasicAvoidanceBehaviour is the default behaviour and is mostly

concerned with keeping distance from other pedestrians in

absence of other influences, and is not responsible for keeping a

walking pedestrian from avoiding objects in its path, that’s up to

the walking behaviour (WalkToPointBehaviour).

The forces of BasicAvoidanceBehaviour have been tweaked and

re-tweaked based on subjective experience with the simulation

– that is the justification for the formulas in the pseudocode. The

update of forces is executed four times per second.

finalForce = previous finalForce / 2

for each WorldObject obj in agent’s nearbyObjects

 if (obj is a agent in same group as this one)

 continue; //do not avoid other group members

 dist = distance between pedestrian and obj

 if (dist > 2)

 continue; //ignore objects 2 m away

 if (dist < 0.001)

 dist = 0.001 //minimum distance

 force = normalized distance vector from obj to

 pedestrian

 // Determine force intensity

 f = 1 + dist, ff = f * f

 forceIntensity = 0.25 / ff + 0.75 / (ff * ff)

 // Tweak

 if (number of nearbyObjects > 10)

 forceIntensity = forceIntensity * 2

 if (number of nearbyObjects > 20)

 forceIntensity = forceIntensity * 3

 force = force * forceIntensity

 finalForce = finalForce + force

finalForce = finalForce / (number of individual

 forces / 3 rounded up)

pedestrian.addForce(finalForce);

4.5.2 WALKTOPOINTBEHAVIOUR

According to Mussaïd et al., “past studies have shown that vision

is the main source of information used by pedestrians to control

their motion” [7].

This is the behaviour used for telling a pedestrian to walk to a

given point. It is assumed that the point is reachable through a

more or less, straight path, as this behaviour does no

pathfinding. However, based on the “vision” of a pedestrian, the

angle of the path is adjusted to proactively avoid colliding with

objects (i.e. without relying on the avoidance behaviour, which

is generally too weak for a walker anyway). The walking angle

directly from the pedestrian to its goal point is not adjusted

unless a collision is determined to be inbound some time during

the next three seconds, and smaller adjustments are preferred.

With this behaviour, a pedestrian on one side of a crowd can

be told to walk to the other side of the crowd, going through the

crowds, “strafing” left and right, avoiding other individuals.

Cutting through a crowd like this is one of the more extreme

examples. More commonly WalkToPointBehaviour simply

makes sure that walking pedestrians don’t foolishly walk in to

each other or other solid objects. WalkToPointBehaviour is

updated four times per second. If a pedestrian gets “stuck” and

can’t move, it backs off in the opposite of the desired direction

for just a quarter of a second. This causes some movement that

prevents “clumping” of pedestrians in bottleneck situations and

helps them to get unstuck.

The technique for determining if there is a collision inbound in a

given walking direction is fairly complicated as it does not only

account for the current distances between the objects, but their

velocities as well. Any object may be moving away or into a

given path, so we have to appreciate the time until impact

number of alternative direct paths (walking angles), accounting

for the fact that all the nearby objects might be moving in any

direction. In order to achieve our goal we must briefly talk about

continuous collision detection, which is a complicated subject in

and of itself!

The reason for not settling with only the dis

other objects (it being easier) is that the velocity of the other

pedestrians is very important. If two pedestrians, for example,

are walking one in front of the other, the distance between them

could be very small indeed, but that certainly

one of the pedestrians needs to turn in order to avoid collision,

because they could both be walking in the same direction (in a

line). Accounting only for the distances would only work

properly if all the other objects were immobile, wh

not.

Basically, WalkToPointBehaviour should pick a walking angle

and have the pedestrian walk in that direction. The default angle

is always the one straight from the pedestrian to the goal point.

However, if the path is – or rather will be

alternative angle has to be chosen. We create a reasonable

number of candidate angles (five) that make up a “cone” of

angles representing the pedestrian’s field of view, kind of.

Determining the time until impact of all the candidate angles

(where time until impact = infinity if there will be no collisions),

the final walking angle is simply one of the angles that have the

greatest time until impact, preferring angles with the smallest

deviation from the default angle. See figure on bottom of pa

Complicated though it might be, the process of choosing the

walking angle is pretty straightforward assuming we can

determine the “time until impacts”.

So, given a walking angle and a walking speed (the pedestrian’s

preferred walking speed), how do we determine the time until

impact, assuming all of the velocities will remain constant for

the near future? We will use some techniques of

8

prevents “clumping” of pedestrians in bottleneck situations and

The technique for determining if there is a collision inbound in a

given walking direction is fairly complicated as it does not only

account for the current distances between the objects, but their

velocities as well. Any object may be moving away or into a

time until impact of a

number of alternative direct paths (walking angles), accounting

r the fact that all the nearby objects might be moving in any

direction. In order to achieve our goal we must briefly talk about

continuous collision detection, which is a complicated subject in

The reason for not settling with only the distances to the

other objects (it being easier) is that the velocity of the other

pedestrians is very important. If two pedestrians, for example,

are walking one in front of the other, the distance between them

could be very small indeed, but that certainly doesn’t imply that

one of the pedestrians needs to turn in order to avoid collision,

because they could both be walking in the same direction (in a

line). Accounting only for the distances would only work

properly if all the other objects were immobile, which they are

Basically, WalkToPointBehaviour should pick a walking angle

and have the pedestrian walk in that direction. The default angle

is always the one straight from the pedestrian to the goal point.

will be – blocked, an

alternative angle has to be chosen. We create a reasonable

number of candidate angles (five) that make up a “cone” of

field of view, kind of.

Determining the time until impact of all the candidate angles

ere time until impact = infinity if there will be no collisions),

the final walking angle is simply one of the angles that have the

greatest time until impact, preferring angles with the smallest

deviation from the default angle. See figure on bottom of page.

Complicated though it might be, the process of choosing the

walking angle is pretty straightforward assuming we can

So, given a walking angle and a walking speed (the pedestrian’s

e determine the time until

impact, assuming all of the velocities will remain constant for

the near future? We will use some techniques of continuous

collision detection. Due to space constraints we will be very brief

about this, and would like to refer to

presentation on the subject [1].

Basically, collision detection can be considered “discrete” or

“continuous”. In discrete collision detection,

discrete time steps, say at a certain frequenc

bodies overlap, the collision

collision detection you instead determine beforehand when the

next time of impact is going to be based on position, shape and

velocity. You advance in time so much and handle the collisions

one at a time, without ever getting any overlaps. Do note that we

do not use continuous collision detection for any other part of

the simulation, or even truly for this, we only use the

of continuous collision detection in order to determine the

precious time of impact between moving objects. In order to

grasp how to get the time of impact there are two fundamental

concepts one must first realize:

Position and velocity are relative to the current frame of

reference. You can switch from the world’s frame of

the top circle’s frame of reference (or any other frame of

reference) and get a different, but equally valid, picture of the

same scene.

Not only can we view the position and velocity of objects as

relative to one another. Surprisingly, this

shapes as well, maintaining the distance between the objects. It

is easy to see how this works for simple objects like circles (see

above), but the same strategy can be applied to any shapes

just that the process of determining the

more difficult. For general shapes like polygons one would use

what is called Minkowski differences, but we will not go into

details about that here (see [1] instead).

. Due to space constraints we will be very brief

about this, and would like to refer to Squirrel Eiserloh’s

Basically, collision detection can be considered “discrete” or

“continuous”. In discrete collision detection, bodies are moved at

discrete time steps, say at a certain frequency, and once two

collision is handled. With continuous

collision detection you instead determine beforehand when the

next time of impact is going to be based on position, shape and

velocity. You advance in time so much and handle the collisions

hout ever getting any overlaps. Do note that we

do not use continuous collision detection for any other part of

the simulation, or even truly for this, we only use the techniques

of continuous collision detection in order to determine the

impact between moving objects. In order to

grasp how to get the time of impact there are two fundamental

Position and velocity are relative to the current frame of

reference. You can switch from the world’s frame of reference to

the top circle’s frame of reference (or any other frame of

reference) and get a different, but equally valid, picture of the

Not only can we view the position and velocity of objects as

relative to one another. Surprisingly, this can be done with

shapes as well, maintaining the distance between the objects. It

is easy to see how this works for simple objects like circles (see

above), but the same strategy can be applied to any shapes – it’s

just that the process of determining the relative shape becomes

more difficult. For general shapes like polygons one would use

what is called Minkowski differences, but we will not go into

] instead).

No matter the situation or what shapes are involved, we end up

with a singularity at the origin (0,0) and a relative shape

(generally this would be some kind of polygon), and its relative

velocity. By ray-casting from (0,0) and in the opposite direction

of the relative velocity vector, either a hit-point is determine

the relative shape, or the ray misses. If the ray misses, the two

objects will not collide and time until impact can be considered

infinite. If the ray hits, we have the distance to impact (between

origin and hit-point) and can hence easily determine

until impact. Ray-casting will not be explained due to space

constraints.

Thus, the time until impact can be determined for each

candidate angle and the final angle is determined as described

earlier. If the time to impact is greater than three se

consider it infinite, because WalkToPointBehaviour is only

concerned with immediate collisions.

6.5.3 FOLLOWPATHBEHAVIOUR

This behaviour is also used to make pedestrians walk to a point

on the map, but not necessarily to points that are more or l

straightforward from the pedestrian. FollowPathBehaviour uses

the pathfinder to plan the path beforehand, and then has the

pedestrian follow it. We remind the reader of an observation

made in 2.2 Introduction to Crowd Simulation:

Pedestrians will most likely choose the fastest

straightest – path towards their goal, even if the direct

route is crowded. They refrain from taking detours or

moving opposite to the desired direction.

Because the pedestrians should take the most direct route

towards their goal (even if it’s crowded) it is sufficient to find

the shortest path through the city and follow it. The pathfinder

returns a set of nodes that should be visited, one after the other.

Each of these subgoals (nodes) are walked to one at a time using

the previously described WalkToPointBehaviour. We will refer

to a subgoal as a waypoint, and when we talk about moving a

waypoint we’re not talking about moving the actual node that

spawned the waypoint, just the position to be visited.

Beyond simply queuing up WalkToPointBehaviours,

FollowPathBehaviour keeps track of the road currently being

used in the pathfinding (if any), and which the next road is going

to be (if any). Based on this, waypoints are re

the sidewalks (i.e. side of roads if mo

pedestrians are not encouraged to walk in the middle of

motorized roads. Waypoints are moved just before it’s their turn

to be walked to. Before a waypoint is moved it is ensured

(through ray-casting from the pedestrian’s current position)

that the new position is not obstructed by a building

9

No matter the situation or what shapes are involved, we end up

with a singularity at the origin (0,0) and a relative shape

(generally this would be some kind of polygon), and its relative

casting from (0,0) and in the opposite direction

point is determined on

the relative shape, or the ray misses. If the ray misses, the two

objects will not collide and time until impact can be considered

infinite. If the ray hits, we have the distance to impact (between

point) and can hence easily determine the time

casting will not be explained due to space

Thus, the time until impact can be determined for each

candidate angle and the final angle is determined as described

earlier. If the time to impact is greater than three seconds, we

consider it infinite, because WalkToPointBehaviour is only

This behaviour is also used to make pedestrians walk to a point

on the map, but not necessarily to points that are more or less

straightforward from the pedestrian. FollowPathBehaviour uses

the pathfinder to plan the path beforehand, and then has the

pedestrian follow it. We remind the reader of an observation

:

likely choose the fastest – and

path towards their goal, even if the direct

from taking detours or

Because the pedestrians should take the most direct route

r goal (even if it’s crowded) it is sufficient to find

the shortest path through the city and follow it. The pathfinder

returns a set of nodes that should be visited, one after the other.

Each of these subgoals (nodes) are walked to one at a time using

previously described WalkToPointBehaviour. We will refer

to a subgoal as a waypoint, and when we talk about moving a

waypoint we’re not talking about moving the actual node that

spawned the waypoint, just the position to be visited.

up WalkToPointBehaviours,

FollowPathBehaviour keeps track of the road currently being

(if any), and which the next road is going

to be (if any). Based on this, waypoints are re-positioned onto

the sidewalks (i.e. side of roads if motorized) so that

pedestrians are not encouraged to walk in the middle of

motorized roads. Waypoints are moved just before it’s their turn

to be walked to. Before a waypoint is moved it is ensured

casting from the pedestrian’s current position)

that the new position is not obstructed by a building –

otherwise some waypoints would be used that

unreachable.

The path to follow should hence not lead the pedestrian into

imaginary traffic (our simulation does not actually have cars),

however, at this point there is nothing that actively prevents the

pedestrian from walking onto a motorized road. Because the

pedestrian needs to cross certain roads, all motorized roads

should not be avoided, instead, FollowPathBehaviour makes

sure that the pedestrian avoids just the road currently being

used, if motorized, through repulsive forces that are added if the

pedestrian touches the road. Similarly, if the road is a pedestrian

road, the pedestrian should prefer to walk on it, and so

attractive forces are added if the pedestrian leaves the road.

4.5.4 GROUPINGBEHAVIOUR

The last observation made in

Simulation was as follows:

Individuals who know each other form groups that may

act as single entities. Loscos et al. (2003) notes that

typically, only around half of pedestrians walk alone, the

rest walk in groups of varying sizes.

Because only half of pedestrians walk alone, we couldn’t ignore

the grouping phenomena. Thus, we’ve made it possible for

pedestrians to form groups. People w

group obviously have the same walking speed, so whenever a

pedestrian is a member of a group it uses the group’s mutual

preferred walking speed rather than its own. Pedestrians within

the same group should not avoid each other, so if

pedestrians are in the same group, BasicAvoidanceBehaviour

will ignore the other pedestrian. It is an underlying assumption

that all members of a group have the same goals so that they’re

always walking in roughly the same direction. Given this,

GroupingBehaviour makes it so that individual

group 1) stay together and 2) walk side by side each other.

Given all the member’s individual positions and velocities,

GroupingBehaviour calculates an average position and velocity

that approximately applies to the group as a whole. Using the

group’s direction, a perpendicular line can be drawn through

the group, crossing the group’s center position. Using this line,

pedestrians that are behind it gets a force added so that they

will “catch up” with the rest of the group, and forces are added

along this line (“left” and “right” forces) to adjust the positions

of the members so that they will walk side by side.

4.6 ACTIVITIES

An Activity is our way to arrange for scheduling in the

simulation and is a class that initiates behaviour of spawned

pedestrians. Pedestrians always spawn at the entrances of

buildings (that they “come out of”). An Activity “go to work”, for

example, could initiate the pedestrians’ to have a

FollowPathBehaviour that takes them to th

The spawner of pedestrians is called the PedestrianSpawner

which has a list of active Activities. The PedestrianSpawner

continuously fetches the probabilities that activities have for the

likelihood that pedestrians should be spawned us

activity, and as it fetches this probability, the current time is

otherwise some waypoints would be used that could be

The path to follow should hence not lead the pedestrian into

imaginary traffic (our simulation does not actually have cars),

at this point there is nothing that actively prevents the

pedestrian from walking onto a motorized road. Because the

pedestrian needs to cross certain roads, all motorized roads

should not be avoided, instead, FollowPathBehaviour makes

trian avoids just the road currently being

, if motorized, through repulsive forces that are added if the

pedestrian touches the road. Similarly, if the road is a pedestrian

road, the pedestrian should prefer to walk on it, and so

added if the pedestrian leaves the road.

The last observation made in 2.2 Introduction to Crowd

Individuals who know each other form groups that may

act as single entities. Loscos et al. (2003) notes that,

typically, only around half of pedestrians walk alone, the

rest walk in groups of varying sizes.

Because only half of pedestrians walk alone, we couldn’t ignore

the grouping phenomena. Thus, we’ve made it possible for

pedestrians to form groups. People who walk together in a

the same walking speed, so whenever a

pedestrian is a member of a group it uses the group’s mutual

preferred walking speed rather than its own. Pedestrians within

the same group should not avoid each other, so if two

pedestrians are in the same group, BasicAvoidanceBehaviour

will ignore the other pedestrian. It is an underlying assumption

that all members of a group have the same goals so that they’re

always walking in roughly the same direction. Given this,

ngBehaviour makes it so that individuals that form a

group 1) stay together and 2) walk side by side each other.

Given all the member’s individual positions and velocities,

GroupingBehaviour calculates an average position and velocity

applies to the group as a whole. Using the

group’s direction, a perpendicular line can be drawn through

the group, crossing the group’s center position. Using this line,

pedestrians that are behind it gets a force added so that they

e rest of the group, and forces are added

along this line (“left” and “right” forces) to adjust the positions

of the members so that they will walk side by side.

ctivity is our way to arrange for scheduling in the

ss that initiates behaviour of spawned

pedestrians. Pedestrians always spawn at the entrances of

buildings (that they “come out of”). An Activity “go to work”, for

example, could initiate the pedestrians’ to have a

FollowPathBehaviour that takes them to their place of work.

The spawner of pedestrians is called the PedestrianSpawner,

which has a list of active Activities. The PedestrianSpawner

continuously fetches the probabilities that activities have for the

likelihood that pedestrians should be spawned using the said

activity, and as it fetches this probability, the current time is

10

passed as a parameter to the activity. This means that an activity

could have different probabilities based on the time and day, so

for example, there could be a greater chance of “going to work”

in the morning than the rest of the day or on weekends. The

probability we speak of is expressed as the average number of

pedestrians that should come out of any one entrance per hour.

Just like Behaviours, Activities can be added in isolation

without having to modify prior code, and what an Activity does

or represents is entirely up to the specific implementation of

IActivity. This makes it so that new scenarios can easily be

simulated. For example, say there’s an upcoming sport arena

event that you’d like to simulate – a SportArenaActivity could be

added that have a large number of pedestrians “scheduled” to

spawn and go to this event.

Activities basically represents different goals that newly

spawned pedestrians will have in the simulated world. A very

basic activity, and the one mainly used in our simulation, is the

MoveToEntranceActivity, which does exactly what the name

implies. A pedestrian (or group of pedestrians) is spawned at

the doorstep of a randomly selected entrance, it selects a second

entrance at random from anywhere else on the map, and then

initiates the pedestrian(s) to go there. Once a pedestrian

initiated with this activity reaches its destination, it is

indefinitely removed from the simulation (as he “enters” the

building). Because “only around half of pedestrians walk alone,

the rest walk in groups of varying sizes”, the spawning group

size of MoveToEntranceActivity is set so that 50% of spawned

individuals are alone, 25% are in a group of two, and 25% are in

a group of three.

This activity, in a sense, populates the world with a “living”

population that seems to go about their daily lives, even though

there is no underlying reason as to why they are going where

they are going. One could imagine they are going to work, or

visiting a friend, or going to a restaurant, etc. Because of the

scale of our simulation, it’s not really important why an

individual is going where he or she is going, but the important

thing is that every individual starts at one building and ends at

another.

5 RESULTS

In the end, the simulator was able to support a few thousands of

pedestrians in an active city environment, running at 30 frames

per seconds in real-time. In a 1280x1090 m2 large area of

Södermalm, Stockholm, we were able to support up to five

thousand active individuals without frame-drops when zoomed-

in to street level.

The spawning of pedestrians through random entrances and

having them walk to other random entrances, although highly

artificial, works well in making the city “come to life” with a

population.

The behaviour of the pedestrians, and the avoiding of other

individuals, worked particularly well for pedestrians not a

member of any group, whether they were heading towards

other individuals or cutting through large crowds. In common

situations collision-avoidance appears “natural”; works good

but not perfectly (collisions are still possible), and in cutting

through the dense crowds there is some pushing aside going on.

Small groups of individuals (acquaintances) are kept together

and have shared goals, but each member still act as an

individual entity. This results in groups of individuals

sometimes being poor at avoiding other individuals or groups

(especially in head-on cases), and sometimes they collide where

it is unnecessary. However, each member still acting as an

individual entity has the benefit that individuals can cut through

a group of individuals, the members separating enough for the

individual to cut through, and then they move together to walk

side by side again.

We constructed a few scenes in which different scales and

aspects of our simulation could be tested to get objective results

in terms of number of pedestrians that could be handled with

reasonable performance.

First off, we have the main scene that contains a map of

Södermalm (loaded from a .osm) as previously described, here

pedestrians are spawned by activities and walk around in the

world.

The second scene is an empty scene that we fill up with a very

large amount of pedestrians, all of which have the

BasicAvoidanceBehaviour, stress-testing the simulation in

regards to the sheer number of agents it can support.

The scene “Empty Scene, Extreme density” is much like the

previous test scene, the difference is that in this scene every

pedestrian is ordered to walk to the same point somewhere in

11

the middle of the scene, which tests how well our simulator

handles massive densities of pedestrians before significant

frame-drop. The number given for this scene is the amount that

is supported as the crowd is as dense as physically possible,

forming a ball of “hugging” pedestrians.

The simulation has been run with the different scenes on two

household computers.

Computer Map Scene

(Södermalm)
Empty Scene Empty Scene

Extreme density
CPU: 2.8 GHz,

4 cores

RAM: 4 GB
~5000 agents ~9000 agents ~1600 agents

CPU: 3.3 GHz,

4 cores
RAM: 3.25 GB

~3000 agents ~7000 agents ~1600 agents

Note that the simulation is a single-threaded application.

There are still a few more scenarios that we tested in a near-

empty scene, to examine some results unrelated to the sheer

number of pedestrians.

In one scenario, pedestrians are ordered to form a fairly dense

crowd, and we test how well an individual can cut through it. In

another scenario two crowds are formed, and then each crowd

is told to cut through the other. In both of these cases the

pedestrians are fairly successful at avoiding each other, with not

too many collisions or pushing about, and it looks realistic.

The perhaps most problematic testing scenario was the

bottleneck test scene, in which crowds of agents are ordered to

go through an hourglass-like construction (of which only a small

number of individuals fit at the same time). This has been done

with a single crowd walking in one direction, and also with one

crowd at each end walking in opposite directions through the

small bottleneck. The first case works fairly well – they get

condense and start queuing as one would expect (see picture

below) – but in the latter case, both groups meet in the middle

and comes to a complete stand still. One observed phenomena

that we did not manage to replicate was the spontaneous lane

formation in big crowds of stuck pedestrians like in this case.

Pedestrians from each end blocked each other, unable to move

aside, and nobody got through.

Testing of WalkToPointBehaviour and BasicAvoidanceBehaviour. Note that this

is not a test of the pathfinding, hence the stuck pedestrians on the structure's left.

6 DISCUSSION

During development, we noticed a significant drop in the

amount of pedestrians our simulator could manage, especially

when pedestrians started to interact with nearby objects

beyond collision detection and penetration prevention (from 50

thousand to the final five thousand). This is not surprising

though, as when each entity goes from doing almost nothing to

doing something, there is a large percentage shift in the

difference of the amount of CPU each entity is going to require.

Half way into the development we also realised that, because

the simulation runs in real-time, the different schedules based

on the time of day (and even more so the ones based on

different weekdays), is practically pointless. With different

activities at different times of day you would have to run the

simulation continuously for hours or even days without pause

for the differences to occur. Instead, the activities we

implemented were independent of the time of day.

It would have been interesting to have the pedestrians act on

“wants” and “needs” such as if hungry, go to a restaurant, or

pedestrians going shopping at various shops. While this was the

plan throughout most of the project, it didn’t seem relevant

enough for the scale that we were going for, and we left it out as

one of those things that “could be added in the future”.

Also, as the map is directly imported from OpenStreetMaps,

and the fact that pathfinding nodes are being created directly

from the map’s roads, problems occurred with open areas such

as marketplaces or certain parks – pedestrians did not pass

through these areas because the pathfinding avoided them since

these areas lacked of pathfinding nodes. A more sophisticated

node placer or even an altogether different pathfinding

technique could possibly make these areas more accessible, and

behaviours or activities could be added to make these areas

attractive places to be.

 When crowds became too dense with too many individuals,

the simulator couldn’t keep up and would freeze, and as

reported in the results the number of pedestrians supported at

extreme densities is significantly lower than that of a scene

where the pedestrians are spread out. This is because each

individual has to go through each of its nearby individuals. So

the number of operations performed within a “nearby area”

grows by the square of the number of “nearby individuals”

(although this number is limited by the small area that is

considered “nearby”). We tried to limit the number of objects

considered nearby to avoid this problem, but it either didn’t

help a lot or caused other problems. If one truly wants the

nearest x objects, a different world structure altogether might

be needed. Perhaps some kind of network of objects, like a

graph, rather than a grid of cells. This is probably not worth

changing though unless you want to model massive amounts of

individuals (thousands) that are all at extreme density. But then

again, if that is your goal, then perhaps you should go with the

fluid dynamics approach?

As for spontaneous lane formation not arising when

pedestrians gets stuck, we believe that this is a feature that is

still possible to solve with our approach, but that it would

require additional or modified behaviour.

12

7 CONCLUSION

Fully fledged, real-time, pedestrian simulation with vast

numbers of agents up to tens of thousands of individuals or

more still, seems out of reach when using today’s common

household computers. This, however, would have been an overly

optimistic goal to have. Our resulting thousands of pedestrians

is still an order of magnitude greater than many of the resulting

numbers found when reviewing the literature, and although

other researchers’ goals are not necessarily quantity, our

implementation shows improvement in this area – plus, our

real-time simulation runs at an impressive 30 frames per

second.
Conclusively, the agent-based approach and the social force

model combined with pedestrians acting on visual information

is a good way to go about simulating pedestrians, both at large

and small scales, and using “behavioural modules” is a good way

to ease the development process by keeping different pieces of

code separate.

 REFERENCES

[1] Eiserloh, S., 2006. Physics for Games Programmers Tutorial –

Motion and Collision – It’s All Relative [PowerPoint Presentation]

Available at:

<http://www.eiserloh.net/gdc2006_Eiserloh_Squirrel_PhysicsTuto

rial.ppt> [Accessed 6 April 2012]

[2] Helbing, D., et al., 2001. Self-organizing Pedestrian Movement,

Environment and Planning B: Planning and Design, Volume 28,

(No. 3), pp.361-83.

[3] Hughes, R., 2003. The Flow of Human Crowds, Annual Review of

Fluid Mechanics, Volume 35, pp.169-82.

[4] Leggett, R., 2004. Real-Time Crowd Simulation: A Review.

[5] Loscos, C., Marchal, D. And Meyer, A., Intuitive Crowd Behaviour in

Dense Urban Environments using Local Laws, Proc.Theory and

Practice of Computer Graphics 2003, IEEE ComputerSociety, 2003.

[6] The Lord of the Rings Trilogy (Extended Edition Box Set). 2004

[DVD] Peter Jackson. United States: New Line Cinema. (Clip of

referenced material available at:

 <http://www.youtube.com/watch?v=W5pNPJAhsBI>)

[7] Moussaïd, M., Helbing, D. and Theraulaz, G., 2011. How simple rules

determine pedestrian behaviour and crowd disasters. Proceedings

of the National Academy of Sciences (PNAS), Volume 108, (No. 17)

[April 26, 2011], pp. 6884-8.

[8] OpenStreetMap Foundation, 2012. OpenStreetMap Wiki [open

encyclopedia] Available at: <http://wiki.openstreetmap.org/>

[Accessed 3 April 2012]

[9] Sud, A. et al., 2008. Real-Time Path Planning in Dynamic Virtual

Environments Using Multiagent Navigation Graphs. IEEE

Transactions on Visualization and Computer Graphics, Volume 14,

(No. 3), pp.526-38.

[10] Thalmann, D. and Musse, S.R., 2007. Crowd Simulation. London:

Springer

www.kth.se

