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Abstract—This paper deals with the implementation details and results of simulating a city populated by a large number of 

pedestrians. The goal of the simulation was to, as realistically as possible, simulate large numbers of people going about their daily 

lives, interacting with each other and the city environment, in real-time. We also simulated dense crowds and realistic collision 

avoidance techniques, and tried to replicate some observations of previous studies. Simulators based on the mechanics of human 

interaction can easily become inconveniently complex and/or resource expensive. As this has been the main risk during the project 

we’ve been careful in the implementation to keep coupling as low as possible and to construct interfaces that allow for scaling and 

adding of new behaviour in “isolation”, without having to modify prior code. The concern for performance was just as real – the 

simulation, after all, was to support thousands of interacting pedestrians walking about in real-time. 

In the end, the resulting simulation turned out to be a good and efficient representation of inner-city pedestrians, and was mostly 

fine in handling the issues of denser crowds. This may potentially be extended for use in city and public transport planning, 

producing large amounts of data for data mining or as a basis for further development into city life dynamics and the artificial 

intelligence of individuals in a populated environment. 

 

Index Terms—Agent-based, Crowd simulation, Large-scale, Real-time, Pedestrian simulation 

 

 

1 INTRODUCTION 

1.1 INTRODUCTION 

he goal of our project was to simulate large amounts of 

individuals in a big system, all of which interact with one 

another and the environment. As it scales up, situations quickly 

become more complex and the simulation becomes more 

process- and resource costly. You might want to model just a few 

individuals, or you could attempt to model hundreds, thousands, 

tens of thousands or even hundreds of thousands of individuals, 

but such large simulations would be unlikely to run in real-time 

on an average personal computer. We imagined that our 

simulator would handle at least several hundreds or even 

thousands of pedestrians, running in real-time. We find it more 

rewarding and thrilling to be able to see the system interact 

with itself in real-time, and to have the possibility of intervening 

as well, as one would naturally want to do. This puts some 

constraints on the scale and implementation aspects, and 

furthermore it does need to be able to run on the average 

personal computer (since we’ve currently misplaced our 

supercomputer). 

Pedestrian and crowd simulation is, amongst others, a subject 

of artificial intelligence – what are the pedestrians’ goals and 

how do they interact with each other and behave when various, 

perhaps unexpected, situations arise? The pedestrians could act 

based on personal needs and goals, or based on randomness 

and statistics, or a combination of the two. If the behaviour of 

the pedestrians – on individual level, as large groups or a 

population – successfully models the real world, a simulator like 

this could potentially be used for city and public transportation 

planning and to model the results of large scale events such as 

major sport arena events. If the pedestrians have the proper 

behavioural responses to stressful situations then maybe the 

simulation could be modified to predict some of the immediate 

consequences of various crisis situations such as buildings on 

fire, natural disasters or terrorist attacks. This is pure 

speculation and beyond the scope of our simulation, but we’ve 

aimed for the implementation to be as scalable as possible, 

enabling further development. Another potential application is 

to use the final results of our simulator (without modifying the 

pedestrians’ behaviour) in order to collect large amounts of 

statistical data and to analyze patterns spawned by the 

pedestrians (again, assuming that the simulation successfully 

models the real world). This data could then be mined in search 

for interesting anomalies or to be used for machine learning. 

T
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1.2 DOCUMENT OVERVIEW 

In 2 Background we discuss the use and applications of crowd 

simulation, list some observations from previous studies that 

may be used as requirements or goals, and begin to talk about 

some of the approaches to implementing crowd simulators. 

In the next section, 3 Individual Agents Approach, we talk 

about the agent-based approach in the context of our simulation 

and why we’ve chosen this camp for our simulator. Then, in 

section 4 Implementation, we go into details about our approach 

and its final implementation, attempting to give an as extensive 

description of the essentials as possible without giving an 

overwhelming amount of detail. 

Following this comes 5 Results, where in we present the 

outcome of our implementation, its performance – i.e. the 

number of pedestrians it managed to support – and of course, 

how close to reality our pedestrians behaved in various 

situations. This is followed by a discussion in 6 Discussion about 

the results, which is followed by the final conclusions in 7 

Conclusion. 

1.3 STATEMENT OF COLLABORATION 

Background research and discussions about the project’s goals 

and approach has been done equally by Boström and Wensby. 

As far as the implementation goes, Boström has done more of 

the back-end graphics coding, being formerly familiar with the 

library used, and geometry/math stuff. The rest of the 

implementation is a mix of both partners, and code written by 

one part is much likely edited by the other later. The same goes 

with the report, which has been collaboratively created using 

Google Documents (enabling both authors to edit the document 

simultaneously). 

2 BACKGROUND 

2.1 BACKGROUND AND APPLICATIONS 

There has been an increasing number of studies in recent years 

looking into the subject of simulating crowds of people 

realistically and/or efficiently. Some for the purpose of city 

planning, architectural aspects or simulating disasters such as 

fire outbreaks in buildings where escape panic, crowd 

turbulence and stampede accidents are a big concern. There has 

also been a large number of popular games released that 

include some sense of artificial intelligence for individuals or 

crowds of individuals with relevance to our subject. 

According to Thalmann and Musse [10], the dominant domain 

for crowd simulation is that of safety science and architecture. 

In architectural design of buildings, measuring and accounting 

for how safe a layout is in situations like fire and a panic 

outbreak is obviously too late when the building has already 

been built.  

In a completely different area, crowd simulation is often used 

for the 3D computer graphics in films. A good example of this is 

the massive number of independently acting warriors and 

monsters seen in the Lord of the Rings trilogy [6], and we are 

sure that you could create an extensive list of titles of this if you 

wanted. 

In video game series such as Sim City or RollerCoaster Tycoon 

you had to build roads or paths for the pedestrians to walk on so 

that they could reach various destinations. Their behaviour was 

very simple, just walking along designed paths. In the Grand 

Theft Auto series, the pedestrians was not just part of the 

scenery but could also be interacted with. In a game where the 

player could (and would) drive on the sidewalks and shoot 

people for no apparent reason, these pedestrians were 

programmed to try to avoid oncoming cars and interrupt what 

they were doing and run in panic if the player started shooting. 

Although fairly primitive responses, such behaviours were 

enough to make the city feel like it was inhabited by “living” 

people. These games did not focus on crowd forming or “crowd 

behaviour” at all. In the Dead Rising series however, almost all 

the people of intensely crowded areas (such as shopping malls) 

had turned into zombies, and the sheer number of individual 

zombies were impressive to look at. However, because they 

were “zombies”, their behaviour was not complicated at all – 

they were just mindlessly trying to move in the direction of the 

player if he was close enough, and otherwise shuffle around 

slowly and randomly – not a very realistic crowd simulation. 

The Sims series, on the other hand, focuses more on individual 

“Sims” with wants and needs, motivated by these wants and 

needs to do things, and although highly controlled by the player, 

if a Sim for example got hungry, it “wanted” to – and needed to – 

eat. 

2.2 INTRODUCTION TO CROWD SIMULATION 

Existing work in these areas of simulation is said to be classified 

either into agent-based methods, which focus more on 

individual behaviour, or crowd simulations, that aim to exhibit 

emergent phenomena of the groups [9]. One can either focus on 

achieving these phenomena from the top down, by 

programming the flow of the crowd as a whole, or one can focus 

more on the individuals, and from the bottom up try to recreate 

the phenomena, adjusting the behaviours of the individuals 

accordingly. These two camps are not distinct and can be 

combined. 

Where the density of individuals is high or where there are 

“bottlenecks”, individuals can’t simply walk in the direction of 

their goals because of other obstructing individuals and objects. 

In these cases certain phenomena arise that are of high interest 

to some simulations. 

“Human crowds display a rich variety of self-organized 

behaviors that support an efficient motion under 

everyday conditions. One of the best-known examples is 

the spontaneous formation of unidirectional lanes in 

bidirectional pedestrian flows. At high densities, 

however, smooth pedestrian flows can break down, 

giving rise to other collective patterns of motion such as 

stop-and-go waves and crowd turbulence. The latter may 

cause serious trampling accidents during mass events. 

Finding a realistic description of collective human 

motion with its large degree of complexity is therefore 

an important issue.” [7] 
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There are a number of interesting observations that have been 

made regarding pedestrians’ behaviour. We present a 

condensed, summarized list of a few observations based on 

Helbing, et al.’s [2] research. 

• Pedestrians will most likely choose the fastest – and 

straightest – path towards their goal, even if the direct route 

is crowded. They refrain from taking detours or moving 

opposite to the desired direction. 

• Pedestrians prefer to walk at individual walking speeds 

(personal preference). 

• Pedestrians keep certain distance from other pedestrians 

and from obstacles. The distance decreases as the crowd 

density increases or if they are in a hurry or around 

“attractive” places. Resting pedestrians tend to be uniformly 

distributed. 

• Individuals who know each other form groups that may act 

as single entities. Loscos et al. notes that, typically, only 

around half of pedestrians walk alone, the rest walk in 

groups of varying sizes [5]. 

Also, pedestrians obviously don’t walk indefinitely. Usually they 

start at one building and end at another, and on their way there 

they may (or may not) do various actions such as window 

shopping, stop to talk to another pedestrian, queue for a bus [4] 

or may use various other vehicles (personal cars, taxis, etc) for 

transportation. 

2.3 A BRIEF OVERVIEW OF APPROACHES 

Reviewing the literature reveals that there are commonly three 

broad types of approaches one can take in simulating crowds of 

people [4]. On a macroscopic scale, crowds can – one might find 

surprisingly – be modelled as flows of fluids pertaining to 

physical laws of fluid dynamics, and attempts have been 

successfully made with this approach [3]. 

In the Cellular Automata (CA) approach the system is split 

into cells of discrete states, where future cell states are 

determined by rules based on the states of surrounding cells [4]. 

For example, a very simple cell could have just two states: “a 

pedestrian is or is not occupying this cell”. A well known 

example of CA, although not related to pedestrian simulation, is 

Conway’s Game of Life, which demonstrates that complex life-

like behaviour can arise from a very simple set of rules. 

Lastly, the most common approach, and perhaps the first one 

that would come to mind, is to model the pedestrians as 

particles – individual entities or “agents” – that interact with 

each other based on social and physical laws [4]. 

Because this paper focuses on the last of these approaches we 

will not go into detail about the other ones, but it should be 

noted that these other approaches exist. 

3 INDIVIDUAL AGENTS APPROACH 

3.1 THE INDIVIDUAL AGENTS APPROACH AND WHY WE CHOSE IT 

Our approach is to model the pedestrians as “individual agents” 

– entities that act on behalf of themselves and interact with 

other pedestrians based on social and behavioural rules. The 

pedestrians also pertain to physical restrictions such as to 

hinder them from walking through solid objects (buildings) if 

they were to fail to avoid them. 

We chose to model the pedestrians as individuals because we 

are interested in the behaviour of individuals and not just, for 

example, the “flow” of them. We wanted to model a fairly large 

city area, so we could have gone for the fluid dynamics 

approach, but at the same time we wanted to be able to zoom in 

on a single street and follow individual pedestrians and see 

what they specifically were up to and to examine their 

individual behaviours. Furthermore, we are very interested in 

the creation of artificial intelligence and in how to create 

behaviour such that observed and studied phenomena 

spontaneously will arise. The Cellular Automata approach did 

not seem as appealing, as applicable, as intuitive or as flexible as 

programming individual entities with “behavioural modules”. A 

fun thing about artificially intelligent entities is that you can put 

them in new situations and see how they react. 

More specifically, our approach is that of a “social force 

model”. 

3.2 THE SOCIAL FORCE MODEL AND AN ALTERNATIVE 

The social force model approach is a Newtonian mechanics 

inspired approach (as is the fluid dynamics one) in that it 

describes the pedestrians’ motions as the sum of attractive and 

repulsive forces reflecting external influences and internal 

motivations [7]. In reviewing Helbing and Molnár’s work, 

Leggett [4] describe three “essential forces” of theirs: 

acceleration forces as a pedestrian attempt to reach optimal 

speed towards its goal, repulsive forces from other pedestrians, 

obstacles or edges, and attraction forces between certain other 

pedestrians, such as friends, or “attractive” objects or locations 

such as window displays [4]. Legget goes on to say that Helbing 

has produced a social force model which has successfully 

demonstrated some observed phenomena such as lane 

formation, and applied the social force model to the simulation 

of building escape panic (“with impressive results”). 

In Mussaïd et al.’s paper however, it says that there are 

problems with the Newtonian-inspired approaches, that it’s 

“becoming increasingly difficult to capture the complete range 

of crowd behaviours in one single model” and claims that it is 

problematic to model interactions of multiple individuals as a 

number of binary interactions, i.e. when the interactions of a 

group of individuals are resolved through resolving interactions 

between each of the pairs in isolation [7]. An alternative, as 

proposed by Mussaïd et al., is that for every individual, we 

examine its field of view and determine the distance to impact 

of various different walking angles, taking other individuals’ 

velocity into account. As such, this model tries to choose an 

appropriate immediate path (optimal walking angle at every 

moment) through the environment instead of having forces 

determine the path. 

Our model is mainly that of a social force model, but inspired 

by Mussaïd et al., the pedestrians also try to avoid other 

pedestrians and obstacles by adjusting the angle of their path 

based on what objects are in the immediate view and the 

velocity of these objects, and as such, our model is not limited to 

binary interactions. However, we never leave the roots of the 
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social force model and any behaviour affecting a pedestrian 

does so through adding of “forces”, even if these forces were 

determined by a more sophisticated process than binary 

interactions. 

3.3 THE SCOPE OF OUR SIMULATION 

The initial goal of our simulation was to be able to handle 

several hundred or even thousands of individuals in a city 

environment. The interactions between individuals and other 

individuals or crowds of individuals was planned to be as 

realistic as possible, and to ensure this we used the list of 

observations described in 2.2 Introduction to Crowd Simulation 

as the main goals for the simulation. We also wanted to look 

critically at our results every step of the way in order to spot 

unrealistic anomalies (subjectively), i.e. the behaviours of the 

pedestrians should look “natural”. The simulation would not 

contain any cars or traffic besides pedestrians due to time 

constraint, but it would certainly be an appropriate thing to 

have. 

4 IMPLEMENTATION 

We implemented our simulation in the Java programming 

language because of our familiarity with it and its cross-

platform capabilities. Due to the scale of our implementation – 

and for performance reasons – we decided to use the OpenGL 

API for graphics rendering, which we access using an external 

open source and free-to-use library called The Lightweight Java 

Game Library (LWJGL). This library is basically a way for us to 

easily create a window, handle input events and use the OpenGL 

functionality. 

This section is split up into helpful subsections regarding 

different aspects of implementation. 

4.1 IMPORTING MAPS FROM OPENSTREETMAP.ORG 

OpenStreetMap [8] is an online world map that is entirely 

collaboratively created, editable and maintained by the public – 

it is much like what Wikipedia is for articles. Maps are more or 

less available all over the world and you can zoom down to 

street level anywhere. Because of the process of which these 

maps are created and edited, the number of details often varies 

over different areas. The maps of inner cities, like Stockholm, 

are thankfully very detailed. 

We wanted our simulation to model the real world and we 

wanted to use real world areas, namely locations in Stockholm 

that we have visited. From the OpenStreetMap.org website you 

can select any area of the world map that you wish to export and 

download the section as a .osm file. This meant that we had to 

implement our own .osm file format loader, but also that our 

simulator can be used – or at least extended to be used – to 

model almost any area of the world. 

This section will give a very brief overview of the .osm file 

format and superficially how we go about loading it, more 

details are available on the wiki section of OpenStreetMap’s web 

site [8]. 

4.1.1 OSM FILE STRUCTURE OVERVIEW 

The .osm file format is structured like an XML file with tags 

(<tagtype ...>) that may have zero or more attributes 

(name="value") and child tags. What tags are allowed and what 

attributes they may possess are specified by the OpenStreetMap 

wiki. There is a sea of different attributes that may be used to 

describe all the possible map features, and too many for us to 

interpret them all. Our limited map loader only cares about 

classifying things in a broad sense such as buildings, roads, 

pedestrian paths, etc. Because of the simple XML-like structure 

of the file format, however, it would not be too difficult to 

interpret more map features.  

The basic tags for the basic “data primitives” of which 

everything of the map is defined are Nodes, Ways and Relations. 

How to interpret a data primitive more precisely is specified by 

their attributes.  

• A Node represents a point on the map, i.e. a GPS coordinate. 

• A Way is either a line strip or a closed polygon, and is 

defined by a number of Nodes. 

• A Relation is any “relation” you might want to declare 

between one or more Nodes and/or Ways; the relation could 

have a functional purpose or be purely descriptive. 

A building for example may be defined as a polygon (a Way) 

with attributes that specify that the Way is some type of 

building. 

Interpreting the file is a matter of writing parsers and 

interpreters dispatching different tags, etc, to more specialized 

interpreters that create output to the rest of the program. 

4.1.2 CONVERTING GPS COORDINATES TO PLANE COORDINATES, IN METERS 

 
GPS coordinates are defined in terms of angles (longitude and 

latitude) of the globe, and are quite cumbersome for simulation 

purposes. The Earth is slightly uneven and not a perfect sphere, 

however, there is a need to convert the GPS coordinates to plane 

(x,y)-coordinates so that distance between coordinates can be 

easily measured in meters. Since we are looking at a relatively 

tiny piece of the world we can indeed assume that the map is a 
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flat plane, and also assume that the Earth is a perfect sphere, 

because we only really care about the scale of the map and the 

distances within it, i.e. the coordinates relative to each other – 

not their absolute position of the world (which would require a 

3D model). 

The GPS-coordinates are converted in two steps, first they are 

converted from longitude and latitude angles to approximate 

(x,y,z)-coordinates, then, by measuring the linear distance 

between the points, we get (on this scale) reliable (x,y)-

coordinates. The .osm also contains the GPS-coordinates of the 

boundary’s top-left and bottom-right position. 

4.1.3 MAP FEATURES AND LACK THEREOF 

Our simulation imports buildings, roads, pedestrian paths, 

parks, etc. The .osm file format – or at least its present 

manifestation – does pose significant limitations on the 

available data. One of the most obvious absences is the lack of 

information about the width of roads – roads are just defined as 

line strips, and it says nothing about their thickness. Because of 

this we give our own predefined widths to the different kinds of 

roads; one for motorized roads and one for pedestrian paths 

(although in .osm there are a lot more road types than that). 

There is also no information about the location of crosswalks, so 

either you have to add them yourself or do without crosswalks – 

we went with the latter. It also lacks information about 

sidewalks, so we simply assume that the sides of motorized 

roads are sidewalks. Entrances are not explicitly defined either, 

however, house and street numbers are, and so based on the 

positions of these numbers, entrances can be created more or 

less where they’re supposed to be. Restaurants and shops for 

example do exist in the data, so there is certainly the potential to 

use these and have the pedestrians interact with them based on 

personal needs or preferences. However, this is not something 

that we have implemented. 

4.1.4 PATHFINDING 

It is reasonable to assume that the pedestrians know more or 

less how to get to where they are going in the city, and so the 

pedestrians mainly use pathfinding to determine their paths in 

the city. The nodes and roads contained within the .osm file can 

more or less directly be translated into nodes usable for 

pathfinding. The pathfinding algorithm we’re using is A* 

because it’s fairly efficient and reliable, the cost of a node being 

the combination of distance travelled from the start node and 

the heuristically approximated distance left to the goal. 

Some buildings, particularly small houses at the outskirt of 

the city areas, have entrances that are not directly connected to 

roads. For example, there are several houses whose entrance is 

placed on the other side of the house compared to the road. This 

lead to some problems because of the path determined by the 

pathfinder is not directing the pedestrian to go around the 

house but through it. Because of the small number of cases like 

this we simply decided to remove entrances that do not have a 

road directly outside it, rather than to create more robust 

pathfinding, adding additional path finding nodes around the 

houses or more intelligent pedestrian navigation techniques. 

4.2 THE WORLD STRUCTURE 

For performance reasons objects need to be registered to the 

world of the simulation in an efficient manner. Pedestrians, for 

example, need to be aware of nearby pedestrians and buildings 

in order to make behavioural decisions, and solid objects should 

not be penetrate-able. All of the world’s objects searching 

through a list of all other existing objects is not an option. The 

data structure of which we register objects’ existence and 

position to we refer to as the world structure, or simply “the 

world”. Objects capable of being registered to the world are 

descendants of the WorldObject class, and have (amongst other 

things) rectangular bounding boxes. 

Our world structure is implemented as a grid of cells of fixed 

sizes, where each cell keeps track of what objects are located in 

that specific cell. In this way, objects can efficiently find nearby 

objects by looking at what objects are located in the same or 

nearby cells. When an object moves it does a “refresh” call to the 

world to check if the cell registrations needs updating. 

4.3 SOLID OBJECTS – ISOLIDS 

Behaviourally speaking, pedestrians should obviously try to 

avoid colliding with buildings, other pedestrians and other 

objects. However, since these goals are in no way guaranteed to 

be fulfilled, the simulated world has “physical” restrictions. 

Objects that should be restricting and impossible to penetrate 

from the outside implements an interface called ISolid – these 

objects are referred to as solid objects. For simplicity’s sake the 

collision handling only bothers with circles colliding with solid 

objects; pedestrians are collision-wise represented as circles. 

The solid objects however can be any shape – buildings, for 

example, are closed polygons (convex or concave). Pedestrians 

also implement the ISolid interface so that pedestrians can’t 

penetrate each other, which serves its purpose in dense crowds 

and bottleneck situations. 
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The main component of an ISolid is the getRestrictingSurface-

Normals method. Given a circle (center position and radius) the 

method returns a collection of zero or more surface normals 

that should be used to restrict the circle’s velocity. If a circle is 

touching the side of a wall, the wall’s getRestrictingSurface-

Normals method would return the normal of that wall’s surface, 

i.e. a normalized vector perpendicular to the surface. Given this 

vector, adjusting the velocity of the circle is a matter of trivial 

vector mathematics (see the figure on the previous page). As 

soon as the circle stops touching the wall getRestrictingSurface-

Normals would return an empty collection and have no effects. 

With the velocity of the pedestrians restricted like this they 

are guaranteed not to penetrate any other solid objects, given 

that tunnelling is not an issue (which in our case it isn’t). When 

there are multiple restricting surface normals active the process 

described above is simply repeated for each normal, the velocity 

being modified in each step. However, sometimes the result of 

conforming to one of the normals causes the velocity to 

“disobey” a previously handled normal. If this happens the 

object should become “stuck” in that its velocity should be zero. 

This is achieved by going through each normal once more to 

make sure that none of the normals “wants to” modify the final 

velocity vector – if one does, the velocity is set to zero. 

4.4 PEDESTRIANS 

Pedestrians are the very heart of the simulation. The Pedestrian 

object is a WorldObject and an ISolid and collision-wise it is 

described as a circle. Visually, it is represented by a circular 

sprite and the pedestrian itself is fairly lightweight. It’s 

described as a circle that has a position, radius (0.25 m) and 

velocity, and it has an update method and a draw method. But 

the pedestrian also has a list of active Behaviour objects which 

entirely determine what the pedestrian will do for every 

moment – these are described in more detail in the next section. 

Remember that in 2.2 Introduction to Crowd Simulation, one of 

the observations was “Pedestrians prefer to walk at individual 

walking speeds (personal preference).” Because of this, when a 

Pedestrian is created it is randomly given a preferred walking 

speed (between 0.6 and 2.35 m/s) that can be read by its 

behaviours. 

Tying back to the social force model, the velocity of the 

pedestrian is never directly set by a behaviour. Instead, the 

velocity is determined by adding a number of “forces” together. 

This requires further explanation; this is not exactly like a force 

in the Newtonian sense and it is not an acceleration over time – 

a force is simply a vector used during the current update. In 

each update the velocity (also a vector, its components in m/s) 

is reset and any force added during the update call acts during 

that update call alone. The velocity vector is added to by the 

force vectors (velocity += force), in this sense our forces are 

more like impulses. If there is only a single force acting upon the 

pedestrian it directly translates into the final velocity, but if a 

second force joins in the pedestrian’s velocity becomes the sum 

of the two forces, which may counteract, further repel, or 

change the direction of the pedestrian. Since the velocity is reset 

after each update there is not necessarily any acceleration or 

deceleration – this is up to the behaviours exerting the forces. 

An update call handles behaviours and updates the velocity 

accordingly by summing up the current forces, but it also 

restricts the velocity. Firstly, a pedestrian should not be able to 

move faster than a reasonable running speed (we limit the 

speed to 7.5 m/s). Secondly, the pedestrian should not be able to 

walk through any solid objects, so nearby ISolids have their 

getRestrictingSurfaceNormals methods surveyed and the 

velocity is adjusted accordingly. This means that we 

continuously have to go through every nearby object. The world 

structure is appropriately implemented so that getting nearby 

objects is fairly effective, however, for further optimization, each 

pedestrian keeps an internal list of nearby objects and updates 

it at an appropriate interval. This list can then be shared by all 

behaviours that depend on nearby objects, without having to re-

request nearby objects from the world structure. We should 

point out though that this is only marginally faster than re-

requesting nearby objects from the world structure – it is, after 

all, an effective process. If other world structures were 

implemented, this might make more of a difference. 

 

Here is a pseudocode outline of the Pedestrian’s update method: 

if (fair time since previous nearbyObjects update) 

 update nearbyObjects 

 

for each Behavior b in behaviors 

 b.behave() // adds forces, etc 

velocity = sum of forces 

list of forces is cleared 

 

restrictingNormals = empty list 

for each ISolid s in same subsection(s) as this 

 if (bounding boxes overlap) 

  restrictingNormals += 

   s.getRestrictingSurfaceNormals(...) 

 

restrict velocity according to restrictingNormals 

restrict velocity to max speed 

 

update position based on velocity and time step 

notify world of updated position 

4.5 BEHAVIOURS 

Without behaviours, Pedestrians do nothing but stand still. 

Because behaviours are separate components, different 

behaviours can be implemented in isolation, without having to 

modify prior code, and can simply be added or removed from a 

pedestrian depending on what the pedestrian should be doing. 

Some behaviours we want to be permanent, like the avoidance 

behaviour – pedestrian not wanting to be too close to other 

pedestrians – and other are temporary, like “walk to said point 

on map”. Anything you can see a pedestrian do is the result of 

one or more behaviours. Behaviour is the name of the behaviour 

base class. 

A Behaviour instance is tied to a Pedestrian instance and must 

be added to said pedestrian in order to be active. A behaviour 

affects a pedestrian using its behave method and is called by the 

pedestrian in its update method. It typically asserts a force on 

the pedestrian, and it may remove itself from the pedestrian 

when it has fulfilled its purpose. For performance reasons, 



   

7 

 

behaviours may use timers in order to act at a lower update 

frequency than the rest of the program; it’s simply not 

necessary for every behaviour to do a major update 30 times a 

second if its behave method does a significant amount of work. 

In those cases the behaviours may, for example, assert the same 

force for each behave call in-between the comparatively 

expensive re-evaluation of what the force should be. These 

details have been discarded from the pseudocode of the 

behaviours presented in this report. 

Given our definition of a behaviour, a behaviour can be pretty 

much anything and the details are specific to the specific types 

of Behaviour descendants. Note that spawning pedestrians with 

various behaviours can be “probabilistically scheduled” through 

the use of so called Activities. For example, one could have the 

Activity “going to work” defined as “during the time 7:00-9:00 

there should be an average of 10 pedestrians per entrance 

spawning with the behaviour ‘going to work’.” We describe 

activities more later. 

4.5.1 BASICAVOIDANCEBEHAVIOUR 

This behaviour is the very simplest form of avoidance, the 

pedestrian simply attempts to keep distance from other objects 

(including other pedestrians, of course). It achieves one of the 

observations defined in 2.2 Introduction to Crowd Simulation: 

Pedestrians keep certain distance from other 

pedestrians and from obstacles. The distance decreases 

as the crowd density increases or if they are in a hurry or 

around “attractive” places. Resting pedestrians tend to 

be uniformly distributed. 

The force asserted is fairly weak at a distance, but grows 

(exponentially to a point) the closer the pedestrian is to an 

object, but the force never becomes overwhelmingly strong. 

This means that “resting” pedestrians will move away from each 

other and become uniformly distributed, and the same goes for 

a crowd of pedestrians. Due to forces cancelling each other out, 

and also the final force asserted by the behaviour being divided 

by the number of individual forces (i.e. number of nearby 

objects/pedestrians), a crowd of pedestrians is “slow” at 

spreading out, so despite the avoidance behaviour crowds can 

easily form, and we achieve the property that as the density 

increases the distance between the individual decreases. 

In isolation, two pedestrians with BasicAvoidanceBehaviour 

are reasonably good at avoiding each other, but if a pedestrian is 

blindly walking straight towards another pedestrian or into a 

crowd, there will be collisions – especially in the case of walking 

into a crowd. This might sound like a problem, however, it’s 

exactly what we want. Imagine you are trying to walk through a 

crowd of people; it is (mostly) up to you to navigate in order to 

avoid the other people. The individuals in the crowd are not 

“afraid” of you, they will only move a little bit. Also, if the 

BasicAvoidanceBehaviour were too strong it would be 

impossible to walk into another human being. So, the 

BasicAvoidanceBehaviour is the default behaviour and is mostly 

concerned with keeping distance from other pedestrians in 

absence of other influences, and is not responsible for keeping a 

walking pedestrian from avoiding objects in its path, that’s up to 

the walking behaviour (WalkToPointBehaviour). 

 

The forces of BasicAvoidanceBehaviour have been tweaked and 

re-tweaked based on subjective experience with the simulation 

– that is the justification for the formulas in the pseudocode. The 

update of forces is executed four times per second. 

finalForce = previous finalForce / 2 

for each WorldObject obj in agent’s nearbyObjects 

 if (obj is a agent in same group as this one) 

  continue; //do not avoid other group members 

 dist = distance between pedestrian and obj 

 if (dist > 2) 

  continue; //ignore objects 2 m away 

 if (dist < 0.001) 

  dist = 0.001 //minimum distance 

 

 force = normalized distance vector from obj to  

      pedestrian 

 

 // Determine force intensity 

 f = 1 + dist, ff = f * f 

 forceIntensity = 0.25 / ff + 0.75 / (ff * ff) 

 // Tweak 

 if (number of nearbyObjects > 10) 

  forceIntensity = forceIntensity * 2 

  if (number of nearbyObjects > 20) 

   forceIntensity = forceIntensity * 3 

 

 force = force * forceIntensity 

 finalForce = finalForce + force 

 

finalForce = finalForce / (number of individual  

     forces / 3 rounded up) 

pedestrian.addForce(finalForce); 

4.5.2 WALKTOPOINTBEHAVIOUR 

According to Mussaïd et al., “past studies have shown that vision 

is the main source of information used by pedestrians to control 

their motion” [7]. 

This is the behaviour used for telling a pedestrian to walk to a 

given point. It is assumed that the point is reachable through a 

more or less, straight path, as this behaviour does no 

pathfinding. However, based on the “vision” of a pedestrian, the 

angle of the path is adjusted to proactively avoid colliding with 

objects (i.e. without relying on the avoidance behaviour, which 

is generally too weak for a walker anyway). The walking angle 

directly from the pedestrian to its goal point is not adjusted 

unless a collision is determined to be inbound some time during 

the next three seconds, and smaller adjustments are preferred. 

With this behaviour, a pedestrian on one side of a crowd can 

be told to walk to the other side of the crowd, going through the 

crowds, “strafing” left and right, avoiding other individuals. 

Cutting through a crowd like this is one of the more extreme 

examples. More commonly WalkToPointBehaviour simply 

makes sure that walking pedestrians don’t foolishly walk in to 

each other or other solid objects. WalkToPointBehaviour is 

updated four times per second. If a pedestrian gets “stuck” and 

can’t move, it backs off in the opposite of the desired direction 

for just a quarter of a second. This causes some movement that 



 

 

prevents “clumping” of pedestrians in bottleneck situations and 

helps them to get unstuck. 

 

The technique for determining if there is a collision inbound in a 

given walking direction is fairly complicated as it does not only

account for the current distances between the objects, but their 

velocities as well. Any object may be moving away or into a 

given path, so we have to appreciate the time until impact

number of alternative direct paths (walking angles), accounting 

for the fact that all the nearby objects might be moving in any 

direction. In order to achieve our goal we must briefly talk about 

continuous collision detection, which is a complicated subject in 

and of itself!  

The reason for not settling with only the dis

other objects (it being easier) is that the velocity of the other 

pedestrians is very important. If two pedestrians, for example, 

are walking one in front of the other, the distance between them 

could be very small indeed, but that certainly 

one of the pedestrians needs to turn in order to avoid collision, 

because they could both be walking in the same direction (in a 

line). Accounting only for the distances would only work 

properly if all the other objects were immobile, wh

not. 

Basically, WalkToPointBehaviour should pick a walking angle 

and have the pedestrian walk in that direction. The default angle 

is always the one straight from the pedestrian to the goal point. 

However, if the path is – or rather will be

alternative angle has to be chosen. We create a reasonable 

number of candidate angles (five) that make up a “cone” of 

angles representing the pedestrian’s field of view, kind of. 

Determining the time until impact of all the candidate angles 

(where time until impact = infinity if there will be no collisions), 

the final walking angle is simply one of the angles that have the 

greatest time until impact, preferring angles with the smallest 

deviation from the default angle. See figure on bottom of pa

Complicated though it might be, the process of choosing the 

walking angle is pretty straightforward assuming we can 

determine the “time until impacts”. 

 

So, given a walking angle and a walking speed (the pedestrian’s 

preferred walking speed), how do we determine the time until 

impact, assuming all of the velocities will remain constant for 

the near future? We will use some techniques of 

 

8 

prevents “clumping” of pedestrians in bottleneck situations and 

The technique for determining if there is a collision inbound in a 

given walking direction is fairly complicated as it does not only 

account for the current distances between the objects, but their 

velocities as well. Any object may be moving away or into a 

time until impact of a 

number of alternative direct paths (walking angles), accounting 

r the fact that all the nearby objects might be moving in any 

direction. In order to achieve our goal we must briefly talk about 

continuous collision detection, which is a complicated subject in 

The reason for not settling with only the distances to the 

other objects (it being easier) is that the velocity of the other 

pedestrians is very important. If two pedestrians, for example, 

are walking one in front of the other, the distance between them 

could be very small indeed, but that certainly doesn’t imply that 

one of the pedestrians needs to turn in order to avoid collision, 

because they could both be walking in the same direction (in a 

line). Accounting only for the distances would only work 

properly if all the other objects were immobile, which they are 

Basically, WalkToPointBehaviour should pick a walking angle 

and have the pedestrian walk in that direction. The default angle 

is always the one straight from the pedestrian to the goal point. 

will be – blocked, an 

alternative angle has to be chosen. We create a reasonable 

number of candidate angles (five) that make up a “cone” of 

field of view, kind of. 

Determining the time until impact of all the candidate angles 

ere time until impact = infinity if there will be no collisions), 

the final walking angle is simply one of the angles that have the 

greatest time until impact, preferring angles with the smallest 

deviation from the default angle. See figure on bottom of page. 

Complicated though it might be, the process of choosing the 

walking angle is pretty straightforward assuming we can 

So, given a walking angle and a walking speed (the pedestrian’s 

e determine the time until 

impact, assuming all of the velocities will remain constant for 

the near future? We will use some techniques of continuous 

collision detection. Due to space constraints we will be very brief 

about this, and would like to refer to

presentation on the subject [1]. 

Basically, collision detection can be considered “discrete” or 

“continuous”. In discrete collision detection, 

discrete time steps, say at a certain frequenc

bodies overlap, the collision 

collision detection you instead determine beforehand when the 

next time of impact is going to be based on position, shape and 

velocity. You advance in time so much and handle the collisions 

one at a time, without ever getting any overlaps. Do note that we 

do not use continuous collision detection for any other part of 

the simulation, or even truly for this, we only use the 

of continuous collision detection in order to determine the 

precious time of impact between moving objects. In order to 

grasp how to get the time of impact there are two fundamental 

concepts one must first realize: 

Position and velocity are relative to the current frame of 

reference. You can switch from the world’s frame of 

the top circle’s frame of reference (or any other frame of 

reference) and get a different, but equally valid, picture of the 

same scene. 

Not only can we view the position and velocity of objects as 

relative to one another. Surprisingly, this

shapes as well, maintaining the distance between the objects. It 

is easy to see how this works for simple objects like circles (see 

above), but the same strategy can be applied to any shapes 

just that the process of determining the

more difficult. For general shapes like polygons one would use 

what is called Minkowski differences, but we will not go into 

details about that here (see [1] instead).

 

. Due to space constraints we will be very brief 

about this, and would like to refer to Squirrel Eiserloh’s 

 

Basically, collision detection can be considered “discrete” or 

“continuous”. In discrete collision detection, bodies are moved at 

discrete time steps, say at a certain frequency, and once two 

collision is handled. With continuous 

collision detection you instead determine beforehand when the 

next time of impact is going to be based on position, shape and 

velocity. You advance in time so much and handle the collisions 

hout ever getting any overlaps. Do note that we 

do not use continuous collision detection for any other part of 

the simulation, or even truly for this, we only use the techniques 

of continuous collision detection in order to determine the 

impact between moving objects. In order to 

grasp how to get the time of impact there are two fundamental 

 

 
Position and velocity are relative to the current frame of 

reference. You can switch from the world’s frame of reference to 

the top circle’s frame of reference (or any other frame of 

reference) and get a different, but equally valid, picture of the 

 
Not only can we view the position and velocity of objects as 

relative to one another. Surprisingly, this can be done with 

shapes as well, maintaining the distance between the objects. It 

is easy to see how this works for simple objects like circles (see 

above), but the same strategy can be applied to any shapes – it’s 

just that the process of determining the relative shape becomes 

more difficult. For general shapes like polygons one would use 

what is called Minkowski differences, but we will not go into 

] instead). 



 

 

No matter the situation or what shapes are involved, we end up

with a singularity at the origin (0,0) and a relative shape 

(generally this would be some kind of polygon), and its relative 

velocity. By ray-casting from (0,0) and in the opposite direction 

of the relative velocity vector, either a hit-point is determine

the relative shape, or the ray misses. If the ray misses, the two 

objects will not collide and time until impact can be considered 

infinite. If the ray hits, we have the distance to impact (between 

origin and hit-point) and can hence easily determine 

until impact. Ray-casting will not be explained due to space 

constraints. 

Thus, the time until impact can be determined for each 

candidate angle and the final angle is determined as described 

earlier. If the time to impact is greater than three se

consider it infinite, because WalkToPointBehaviour is only 

concerned with immediate collisions. 

6.5.3 FOLLOWPATHBEHAVIOUR 

This behaviour is also used to make pedestrians walk to a point 

on the map, but not necessarily to points that are more or l

straightforward from the pedestrian. FollowPathBehaviour uses 

the pathfinder to plan the path beforehand, and then has the 

pedestrian follow it. We remind the reader of an observation 

made in 2.2 Introduction to Crowd Simulation:

Pedestrians will most likely choose the fastest 

straightest – path towards their goal, even if the direct 

route is crowded. They refrain from taking detours or 

moving opposite to the desired direction. 

Because the pedestrians should take the most direct route 

towards their goal (even if it’s crowded) it is sufficient to find 

the shortest path through the city and follow it. The pathfinder 

returns a set of nodes that should be visited, one after the other. 

Each of these subgoals (nodes) are walked to one at a time using 

the previously described WalkToPointBehaviour. We will refer 

to a subgoal as a waypoint, and when we talk about moving a 

waypoint we’re not talking about moving the actual node that 

spawned the waypoint, just the position to be visited.

Beyond simply queuing up WalkToPointBehaviours, 

FollowPathBehaviour keeps track of the road currently being 

used in the pathfinding (if any), and which the next road is going 

to be (if any). Based on this, waypoints are re

the sidewalks (i.e. side of roads if mo

pedestrians are not encouraged to walk in the middle of 

motorized roads. Waypoints are moved just before it’s their turn 

to be walked to. Before a waypoint is moved it is ensured 

(through ray-casting from the pedestrian’s current position)

that the new position is not obstructed by a building 
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with a singularity at the origin (0,0) and a relative shape 

(generally this would be some kind of polygon), and its relative 
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Thus, the time until impact can be determined for each 

candidate angle and the final angle is determined as described 

earlier. If the time to impact is greater than three seconds, we 

consider it infinite, because WalkToPointBehaviour is only 

This behaviour is also used to make pedestrians walk to a point 

on the map, but not necessarily to points that are more or less 

straightforward from the pedestrian. FollowPathBehaviour uses 

the pathfinder to plan the path beforehand, and then has the 

pedestrian follow it. We remind the reader of an observation 

: 

likely choose the fastest – and 

path towards their goal, even if the direct 

from taking detours or 

 

Because the pedestrians should take the most direct route 

r goal (even if it’s crowded) it is sufficient to find 

the shortest path through the city and follow it. The pathfinder 

returns a set of nodes that should be visited, one after the other. 

Each of these subgoals (nodes) are walked to one at a time using 

previously described WalkToPointBehaviour. We will refer 

to a subgoal as a waypoint, and when we talk about moving a 

waypoint we’re not talking about moving the actual node that 

spawned the waypoint, just the position to be visited. 

up WalkToPointBehaviours, 

FollowPathBehaviour keeps track of the road currently being 

(if any), and which the next road is going 

to be (if any). Based on this, waypoints are re-positioned onto 

the sidewalks (i.e. side of roads if motorized) so that 

pedestrians are not encouraged to walk in the middle of 

motorized roads. Waypoints are moved just before it’s their turn 

to be walked to. Before a waypoint is moved it is ensured 

casting from the pedestrian’s current position) 

that the new position is not obstructed by a building – 

otherwise some waypoints would be used that 

unreachable. 

The path to follow should hence not lead the pedestrian into 

imaginary traffic (our simulation does not actually have cars), 

however, at this point there is nothing that actively prevents the 

pedestrian from walking onto a motorized road. Because the 

pedestrian needs to cross certain roads, all motorized roads 

should not be avoided, instead, FollowPathBehaviour makes 

sure that the pedestrian avoids just the road currently being 

used, if motorized, through repulsive forces that are added if the 

pedestrian touches the road. Similarly, if the road is a pedestrian 

road, the pedestrian should prefer to walk on it, and so 

attractive forces are added if the pedestrian leaves the road.

4.5.4 GROUPINGBEHAVIOUR 

The last observation made in 

Simulation was as follows: 

Individuals who know each other form groups that may 

act as single entities. Loscos et al. (2003) notes that

typically, only around half of pedestrians walk alone, the 

rest walk in groups of varying sizes.

Because only half of pedestrians walk alone, we couldn’t ignore 

the grouping phenomena. Thus, we’ve made it possible for 

pedestrians to form groups. People w

group obviously have the same walking speed, so whenever a 

pedestrian is a member of a group it uses the group’s mutual 

preferred walking speed rather than its own. Pedestrians within 

the same group should not avoid each other, so if 

pedestrians are in the same group, BasicAvoidanceBehaviour 

will ignore the other pedestrian. It is an underlying assumption 

that all members of a group have the same goals so that they’re 

always walking in roughly the same direction. Given this, 

GroupingBehaviour makes it so that individual

group 1) stay together and 2) walk side by side each other.

Given all the member’s individual positions and velocities, 

GroupingBehaviour calculates an average position and velocity 

that approximately applies to the group as a whole. Using the 

group’s direction, a perpendicular line can be drawn through 

the group, crossing the group’s center position. Using this line, 

pedestrians that are behind it gets a force added so that they 

will “catch up” with the rest of the group, and forces are added 

along this line (“left” and “right” forces) to adjust the positions 

of the members so that they will walk side by side.

4.6 ACTIVITIES 

An Activity is our way to arrange for scheduling in the 

simulation and is a class that initiates behaviour of spawned 

pedestrians. Pedestrians always spawn at the entrances of 

buildings (that they “come out of”). An Activity “go to work”, for 

example, could initiate the pedestrians’ to have a 

FollowPathBehaviour that takes them to th

The spawner of pedestrians is called the PedestrianSpawner

which has a list of active Activities. The PedestrianSpawner 

continuously fetches the probabilities that activities have for the 

likelihood that pedestrians should be spawned us

activity, and as it fetches this probability, the current time is 
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ss that initiates behaviour of spawned 

pedestrians. Pedestrians always spawn at the entrances of 

buildings (that they “come out of”). An Activity “go to work”, for 

example, could initiate the pedestrians’ to have a 

FollowPathBehaviour that takes them to their place of work. 

The spawner of pedestrians is called the PedestrianSpawner, 

which has a list of active Activities. The PedestrianSpawner 

continuously fetches the probabilities that activities have for the 

likelihood that pedestrians should be spawned using the said 

activity, and as it fetches this probability, the current time is 
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passed as a parameter to the activity. This means that an activity 

could have different probabilities based on the time and day, so 

for example, there could be a greater chance of “going to work” 

in the morning than the rest of the day or on weekends. The 

probability we speak of is expressed as the average number of 

pedestrians that should come out of any one entrance per hour. 

Just like Behaviours, Activities can be added in isolation 

without having to modify prior code, and what an Activity does 

or represents is entirely up to the specific implementation of 

IActivity. This makes it so that new scenarios can easily be 

simulated. For example, say there’s an upcoming sport arena 

event that you’d like to simulate – a SportArenaActivity could be 

added that have a large number of pedestrians “scheduled” to 

spawn and go to this event. 

Activities basically represents different goals that newly 

spawned pedestrians will have in the simulated world. A very 

basic activity, and the one mainly used in our simulation, is the 

MoveToEntranceActivity, which does exactly what the name 

implies. A pedestrian (or group of pedestrians) is spawned at 

the doorstep of a randomly selected entrance, it selects a second 

entrance at random from anywhere else on the map, and then 

initiates the pedestrian(s) to go there. Once a pedestrian 

initiated with this activity reaches its destination, it is 

indefinitely removed from the simulation (as he “enters” the 

building). Because “only around half of pedestrians walk alone, 

the rest walk in groups of varying sizes”, the spawning group 

size of MoveToEntranceActivity is set so that 50% of spawned 

individuals are alone, 25% are in a group of two, and 25% are in 

a group of three. 

This activity, in a sense, populates the world with a “living” 

population that seems to go about their daily lives, even though 

there is no underlying reason as to why they are going where 

they are going. One could imagine they are going to work, or 

visiting a friend, or going to a restaurant, etc. Because of the 

scale of our simulation, it’s not really important why an 

individual is going where he or she is going, but the important 

thing is that every individual starts at one building and ends at 

another. 

5 RESULTS 

In the end, the simulator was able to support a few thousands of 

pedestrians in an active city environment, running at 30 frames 

per seconds in real-time. In a 1280x1090 m2 large area of 

Södermalm, Stockholm, we were able to support up to five 

thousand active individuals without frame-drops when zoomed-

in to street level. 

The spawning of pedestrians through random entrances and 

having them walk to other random entrances, although highly 

artificial, works well in making the city “come to life” with a 

population. 

The behaviour of the pedestrians, and the avoiding of other 

individuals, worked particularly well for pedestrians not a 

member of any group, whether they were heading towards 

other individuals or cutting through large crowds. In common 

situations collision-avoidance appears “natural”; works good 

but not perfectly (collisions are still possible), and in cutting 

through the dense crowds there is some pushing aside going on. 

Small groups of individuals (acquaintances) are kept together 

and have shared goals, but each member still act as an 

individual entity. This results in groups of individuals 

sometimes being poor at avoiding other individuals or groups 

(especially in head-on cases), and sometimes they collide where 

it is unnecessary. However, each member still acting as an 

individual entity has the benefit that individuals can cut through 

a group of individuals, the members separating enough for the 

individual to cut through, and then they move together to walk 

side by side again. 

 

We constructed a few scenes in which different scales and 

aspects of our simulation could be tested to get objective results 

in terms of number of pedestrians that could be handled with 

reasonable performance. 

First off, we have the main scene that contains a map of 

Södermalm (loaded from a .osm) as previously described, here 

pedestrians are spawned by activities and walk around in the 

world. 

The second scene is an empty scene that we fill up with a very 

large amount of pedestrians, all of which have the 

BasicAvoidanceBehaviour, stress-testing the simulation in 

regards to the sheer number of agents it can support. 

The scene “Empty Scene, Extreme density” is much like the 

previous test scene, the difference is that in this scene every 

pedestrian is ordered to walk to the same point somewhere in 
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the middle of the scene, which tests how well our simulator 

handles massive densities of pedestrians before significant 

frame-drop. The number given for this scene is the amount that 

is supported as the crowd is as dense as physically possible, 

forming a ball of “hugging” pedestrians. 

The simulation has been run with the different scenes on two 

household computers. 

 

Computer Map Scene 

(Södermalm) 
Empty Scene Empty Scene 

Extreme density 
CPU: 2.8 GHz, 

4 cores 

RAM: 4 GB 
~5000 agents ~9000 agents ~1600 agents 

CPU: 3.3 GHz, 

4 cores 
RAM: 3.25 GB 

~3000 agents ~7000 agents ~1600 agents 

Note that the simulation is a single-threaded application. 

 

There are still a few more scenarios that we tested in a near-

empty scene, to examine some results unrelated to the sheer 

number of pedestrians. 

In one scenario, pedestrians are ordered to form a fairly dense 

crowd, and we test how well an individual can cut through it. In 

another scenario two crowds are formed, and then each crowd 

is told to cut through the other. In both of these cases the 

pedestrians are fairly successful at avoiding each other, with not 

too many collisions or pushing about, and it looks realistic. 

The perhaps most problematic testing scenario was the 

bottleneck test scene, in which crowds of agents are ordered to 

go through an hourglass-like construction (of which only a small 

number of individuals fit at the same time). This has been done 

with a single crowd walking in one direction, and also with one 

crowd at each end walking in opposite directions through the 

small bottleneck. The first case works fairly well – they get 

condense and start queuing as one would expect (see picture 

below) – but in the latter case, both groups meet in the middle 

and comes to a complete stand still. One observed phenomena 

that we did not manage to replicate was the spontaneous lane 

formation in big crowds of stuck pedestrians like in this case. 

Pedestrians from each end blocked each other, unable to move 

aside, and nobody got through. 

 

Testing of WalkToPointBehaviour and BasicAvoidanceBehaviour. Note that this 

is not a test of the pathfinding, hence the stuck pedestrians on the structure's left. 

6 DISCUSSION 

During development, we noticed a significant drop in the 

amount of pedestrians our simulator could manage, especially 

when pedestrians started to interact with nearby objects 

beyond collision detection and penetration prevention (from 50 

thousand to the final five thousand). This is not surprising 

though, as when each entity goes from doing almost nothing to 

doing something, there is a large percentage shift in the 

difference of the amount of CPU each entity is going to require. 

Half way into the development we also realised that, because 

the simulation runs in real-time, the different schedules based 

on the time of day (and even more so the ones based on 

different weekdays), is practically pointless. With different 

activities at different times of day you would have to run the 

simulation continuously for hours or even days without pause 

for the differences to occur. Instead, the activities we 

implemented were independent of the time of day. 

It would have been interesting to have the pedestrians act on 

“wants” and “needs” such as if hungry, go to a restaurant, or 

pedestrians going shopping at various shops. While this was the 

plan throughout most of the project, it didn’t seem relevant 

enough for the scale that we were going for, and we left it out as 

one of those things that “could be added in the future”. 

Also, as the map is directly imported from OpenStreetMaps, 

and the fact that pathfinding nodes are being created directly 

from the map’s roads, problems occurred with open areas such 

as marketplaces or certain parks – pedestrians did not pass 

through these areas because the pathfinding avoided them since 

these areas lacked of pathfinding nodes. A more sophisticated 

node placer or even an altogether different pathfinding 

technique could possibly make these areas more accessible, and 

behaviours or activities could be added to make these areas 

attractive places to be. 

 When crowds became too dense with too many individuals, 

the simulator couldn’t keep up and would freeze, and as 

reported in the results the number of pedestrians supported at 

extreme densities is significantly lower than that of a scene 

where the pedestrians are spread out. This is because each 

individual has to go through each of its nearby individuals. So 

the number of operations performed within a “nearby area” 

grows by the square of the number of “nearby individuals” 

(although this number is limited by the small area that is 

considered “nearby”). We tried to limit the number of objects 

considered nearby to avoid this problem, but it either didn’t 

help a lot or caused other problems. If one truly wants the 

nearest x objects, a different world structure altogether might 

be needed. Perhaps some kind of network of objects, like a 

graph, rather than a grid of cells. This is probably not worth 

changing though unless you want to model massive amounts of 

individuals (thousands) that are all at extreme density. But then 

again, if that is your goal, then perhaps you should go with the 

fluid dynamics approach? 

As for spontaneous lane formation not arising when 

pedestrians gets stuck, we believe that this is a feature that is 

still possible to solve with our approach, but that it would 

require additional or modified behaviour. 
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7 CONCLUSION 

Fully fledged, real-time, pedestrian simulation with vast 

numbers of agents up to tens of thousands of individuals or 

more still, seems out of reach when using today’s common 

household computers. This, however, would have been an overly 

optimistic goal to have. Our resulting thousands of pedestrians 

is still an order of magnitude greater than many of the resulting 

numbers found when reviewing the literature, and although 

other researchers’ goals are not necessarily quantity, our 

implementation shows improvement in this area – plus, our 

real-time simulation runs at an impressive 30 frames per 

second. 
Conclusively, the agent-based approach and the social force 

model combined with pedestrians acting on visual information 

is a good way to go about simulating pedestrians, both at large 

and small scales, and using “behavioural modules” is a good way 

to ease the development process by keeping different pieces of 

code separate. 
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