

Concurrency on the JVM

 An investigation of strategies
 for handling concurrency in Java, Clojure, and Groovy

 J O A K I M C A R S E L I N D
 a n d P A S C A L C H A T T E R J E E

 Bachelor of Science Thesis
 Stockholm, Sweden 2012

Concurrency on the JVM

 An investigation of strategies
 for handling concurrency in Java, Clojure, and Groovy

 J O A K I M C A R S E L I N D
 a n d P A S C A L C H A T T E R J E E

 DD143X, Bachelor’s Thesis in Computer Science (15 ECTS credits)
 Degree Progr. in Computer Science and Engineering 300 credits
 Royal Institute of Technology year 2012
 Supervisor at CSC was Mads Dam
 Examiner was Mårten Björkman

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/
 carselind_joakim_OCH_chatterjee_pascal_K12015.pdf

 Kungliga tekniska högskolan
 Skolan för datavetenskap och kommunikation

 KTH CSC
 100 44 Stockholm

 URL: www.kth.se/csc

Abstract
Processors with multiple cores opens up for better utilisation of
hardware resources for applications if they take advantage of con-
currency and parallelism. There are several methods to reap the
benefits of concurrency; software transactional memory, actors
and agents, locks and threads. The use of parallelism in program-
ming comes at a price: synchronisation between threads operating
on shared memory resources.

New software libraries and programming language exists to
simplify implementation of parallel application and this essay in-
vestigate strategies on those with the Java Virtual Machine as a
commonon denominator: Java, Clojure and Groovy.

Referat
En undersökning av strategier för hantering
av parallellism i Java, Clojure och Groovy

Flerkärniga processorer skapar grund för bättre nyttjande av hård-
varuresurser för applikationer implementerade parallelt. Det exis-
terar ett flertal methoder för att skörda fördelarna av parallelism:
software transactional memory, skådespelare och agenter, lås och
trådar. Men parallelism har ett pris: att synkronisera trådarna
som arbetar på delade minnesresurser.

Nya mjukvarubibliotek och programeringsspråk existerar för
att förenkla implementationen av parallella applikationer och i
denna uppsats undersöker vi de som har en gemensam nämnare
Javas virtuella maskin: Java, Clojure och Grooy.

Contents

1 Introduction 1
1 Statement of collaboration . 1
2 Delimiation of study . 1
3 Problem statement . 1
4 Introduction . 2

I Introducing concurrency 3
1 Concurrency control . 4
2 Threads and processes . 4
3 Atomicity . 4
4 Shared memory . 5

II Threads and Locks 7
1 Background . 8
2 No locks . 9

2.1 Testing correctness . 9
3 Locking with synchronized 10

3.1 Testing correctness . 11
3.2 Performance . 11

4 Explicit locks . 12
4.1 Performance . 14
4.2 Boilerplate code . 14

5 Transfers . 14

III Actors 17
1 Background . 18
2 Simulation . 19
3 A naive version . 20

3.1 Messages . 20
3.2 Actions . 21
3.3 Deadlock . 22

4 Introducing brokers . 22
4.1 Messages . 23
4.2 Actions . 24
4.3 Autonomous Actors . 25

5 Active Objects . 27
6 Problems . 28

6.1 Read performance . 29
6.2 Actors vs Threads . 29
6.3 Transactions . 29

IV Software Transactional Memory 30
1 Background . 31
2 Concurrency in Clojure . 31
3 Immutable data types . 32
4 Mutable reference types . 33

4.1 Atoms . 33
4.2 Validators . 34
4.3 Refs . 35
4.4 Transactions . 36
4.5 Agents . 39
4.6 Actors vs Reference types 39

5 Simulation 2.0 . 40
5.1 Rethinking brokers . 40
5.2 Rethinking people . 41
5.3 Transfers are synchronous 41
5.4 Choosing a reference type 41
5.5 Rethinking autonomy 42
5.6 Rethinking actions . 43
5.7 Running . 44

V Conclusion 46
1 Threads and Locking . 47
2 Actors . 47
3 Concurrency in Clojure . 48

Appendices 49

A Appendix 51

Bibliography 53

Chapter 1

Introduction

1 Statement of collaboration
The code included in appendix and elsewhere is a product of Pascal Chatterjee
and figures are a product of Joakim Carselind. The text is a collaborative out-
come of our findings performing the practical investigation and deepening our
knowledge by reading papers, articles and books in the subject of concurrency
and related subjects.

2 Delimiation of study
To limit the area of study, we will investigate concurrency in the context of
a bank transfer situation, where a withdrawal is followed by a deposit. The
system contains a predefined amount and the correctness of the system is
tested by issuing several withdraw and deposit operations in parallel and
observering the amount of money after these operations have been performed.

With this said, the result should not be viewed as the best language to use
to create a large system as we will not have time to set up a large system and
perform extensive test taking robustness, safety, availability and performance
into consideration.

3 Problem statement
To reach better utilisation of hardware resources, an increasing key factor for
companies providing IT solutions in order to be competetive and profitable,
one must leverage the full potential of multi-core processors. The rapid devel-

1

CHAPTER 1. INTRODUCTION

opment of distributed computing and concurrent applications require robust
and scalable software architecture to reap the benefits from concurrency.

To design concurrent applications is complicated but how could one make
it less complicated to implement?

4 Introduction
More cores let the computer execute instructions like add or move parallel
which could increase the performance of a software application. However, the
potential performance gain comes with a price namely increased control over
synchronisation to prevent memory corruption in shared memory resources.
Since traditional sequential execution is, to some extent, abandoned for con-
current execution, a situation arise that could cause the application to behave
non-deterministically.

For this reason, synchronisation plays a crucial role to maintain consistency
and correctness in concurrent environments.

Applications that consists of mutually exclusive operations such as dis-
tributed database queries performs well under concurrency whilst applications
tackling a computationally hard problem might see no or insignificant perfor-
mance gain when implemented with a parallel design.

Modern, dynamic languages like Ruby and Python feature a Global In-
terpreter Lock (GIL), so we need to use languages such as C/C++/Java to
leverage multiple processors. We will focus on the JVM in this paper.

2

Part I

Introducing concurrency

3

1 Concurrency control
Concurrency control defines guidelines to maintain data integrity and achieve
correctness in concurrent environments such as hardware modules and oper-
ating systems [1]. When modules, regarding level, communicate concurrently
there is a risk of the data integrity being violated. The consequence could
be that the system stop working or, even worse, continue without any outer
signs of an error occured. If situations like this occurs, they may be extremely
difficult to reproduce and debug. Therefore the use of concurrency control is
highly important to make sure that the system conforms to rules applicable
for concurrent environments.

2 Threads and processes
A process is generally created and managed by the operating system and have
its own state, address space and communicates using an interprocess protocol.

Threads, as opposed to processes, share state, address space and commu-
nicate directly since they share address space and hence variables. Threads
are spawned by a process and typically suited to perform tasks not requiring
a linear solving approach, i.e. the task could be parallelised. When a thread
has completed its task, it is absorbed by the process that created it.

The existence of multiple threads inside a process brings up a risk of dif-
ferent threads operating on the same memory resource and due to this syn-
chronisation is important to maintain correctness. The operations performed
by threads need to be atomic if they execute code in a critical section in
the context of the process memory and shared mutuable resources.

3 Atomicity
One of the first things we should realise when writing concurrent programs is
that most of the statements we use are not atomic. This means that although
we tend to think of them as indivisible units of computation, they expand to
multiple instructions when compiled to bytecode. It is these instructions that
are atomic, not the statements we write in high-level languages.

Let us take the simple example of incrementing an integer variable. In
Java, we could write the function:

1 public static void add(int var, int num) {
2 var = var + num;
3 }

4

4. SHARED MEMORY

Intuitively, we might think that that if a context switch were to occur in
our function, it would take place at line 1, 2 or 3. This would be the case if
line 2 was atomic, but as it consists of addition and assignment, it is compiled
to multiple bytecode instructions. We can see these instructions here:

1 public static void add(int, int);
2 iload_0
3 iload_1
4 iadd
5 istore_0
6 return

The second line from our Java add function generates the iadd and istore0
instructions at lines 4 and 5 of the bytecode.

It is entirely possible for a thread switch to occur in between these in-
structions. Usually this is not problematic at all, and in fact this happens
many times a second on all modern operating systems. However, if multiple
threads attempt to change the value of the same variable at the same time,
inconsistencies begin to arise.

4 Shared memory
In order to better illustrate the lack of atomicity in our add function, we can
rewrite it to look like this:

1 public static void add(int num)
2 throws InterruptedException {
3 int v = var;
4 Thread.sleep(1);
5 var = v + num;
6 }

Here var is an instance variable. The Thread.sleep at line 4 forces a
context switch after var has been copied to the local variable v. If any other
thread alters var during this time, those changes will be lost when the original
thread resumes and writes v + num back to var. The following could well
happen if two threads were to execute add simultaneously:

5

1 // var = 0
2 // Thread 1
3 int v = var; // v = 0
4 Thread.sleep(1);
5 // * Context Switch *
6 // Thread 2
7 int v = var // v = 0
8 Thread.sleep(1)
9 var = v + 1 // var = 1

10 // * Context Switch *
11 var = v + 1; // var = 1

As we can see, after this interleaving of statements, var = 1 even though
it was incremented twice. It is in this way that shared mutable memory, or
state, can lead to inconsistent data even though the program logic is correct.
We call this phenomenon - when the result of a program is dependent on the
sequence or timing of other events - a race condition.

Figure 1.1. Process and threads synchronisation issue.

All of the concurrency strategies discussed in this paper aim to mitigate
the effects of race conditions, and thereby ensure that programs behave in
a deterministic way despite the activity of multiple threads. They do this
by eliminating one of the factors from uncontrolled access to shared,
mutable state that can lead to problems. The first approach we consider,
threads and locks, uses locks to control access to shared mutable state.

6

Part II

Threads and Locks

7

1 Background
When an application is initiated from the operating system, a process is cre-
ated to host the application and it is allocated working primary memory (ran-
dom access memory). Typically there are many processes running simulta-
neously and each process can spawn multiple threads. Since threads share
the address space, they share variables which implies a risk of executing over-
lapping operations on the same resource and synchronisation of resources is
crucial.

A bank account that allow withdrawals, deposits and reading the value of a
balance is used to illustrate the concurrency strategies in this paper. Formally
this could be viewed as an interface, that in Java can be written:

1 public interface Account {
2 public float getBalance();
3 public boolean deposit(float amount);
4 public boolean withdraw(float amount);
5 }

getBalance returns the current balance as a float; deposit and withdraw
increment and decrement the current balance respectively, and return a boolean
signifying whether they succeeded. withdraw can fail if more funds are re-
quested than are present in the balance.

8

2. NO LOCKS

2 No locks
We begin by implementing the Account interface in the simplest possible way.

1 public class NaiveAccount implements Account {
2 private float balance = 0;
3

4 public float getBalance() {
5 Thread.sleep(1);
6 return balance;
7 }
8

9 public void deposit(float amount)
10 throws InterruptedException {
11 float b = balance;
12 Thread.sleep(1);
13 balance = b + amount;
14 }
15

16 public void withdraw(float amount)
17 throws InterruptedException {
18 float b = balance;
19 Thread.sleep(1);
20 balance = b - amount;
21 }
22 }

As we explained in section 1.3, we insert a Thread.sleep in the middle of
deposit and withdraw in order to highlight the danger of context switches.

2.1 Testing correctness
We can (informally) test the correctness of this implementation by initially
depositing a certain amount in an account, carrying out a certain number of
deposits and withdrawals, and then making sure that the resulting balance is
as we expected.

In these tests the initial balance is 10, and we carry out a sequence of 10
deposits and 10 withdrawals, each for the amount of 1 unit. As these cancel
out, our finishing balance should also be 10 as that is what we started with.
These operations are themselves carried out 10 times to see what happens
when they are repeated.

9

Single Threaded

The collected final balances of the single threaded tests are shown below:

[10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]

As we can see, these final balances are exactly what we would expect given
an initial balance of 10, followed by 10 deposits and 10 withdrawals of 1 unit.
The results were also unchanged over the course of 10 trials.

Multiple Threaded

Now let’s see what happens when we run the withdrawals and the deposits in
separate threads.

[8.0, 20.0, 20.0, 20.0, 6.0, 0.0, 16.0, 18.0, 8.0, 0.0]

Here the final balance ranged between 0 and 20, which is an error of −10 ≤
error ≤ 10. This shows that in some runs all our withdrawals disappeared; in
others all our deposits disappeared; and sometimes we saw a mixture of these
two extremes. Such disappearances of actions from our results happened when
a certain interleaving of statements from the two threads occurred as described
in section 1.3.

Mean $11.6
Deviation $7.2

Table 1.1. 1 000 runs of non-thread safe bank transfer application shows a
highly non-deterministic behaviour.

This makes it very obvious that the deposit and withdraw methods are
critical sections - a section of code that should only be executed by one
thread at any time. These sections need to be mutually exclusive so that
we can reason about their effects as if they were atomic actions. Our problems
arise only when a thread context switches while leaving the shared, mutable
balance variable in an inconsistent state.

3 Locking with synchronized

Our first solution to this problem will be to use Java’s synchronized concept
to ensure that even if a context switch occurs within a critical section, other

10

3. LOCKING WITH SYNCHRONIZED

threads are blocked from entering until the currently executing thread com-
pletes its actions. This enures that the mutual exclusion property is valid in
a way provided a monitor class.

The changes to the code to facilitate this are minimal: we simply insert the
keyword synchronized into the signature of any method that references the
shared variable balance. For us, this is all three methods (even getBalance
which should not be allowed access to balance during a deposit or withdraw
as it is by definition inconsistent at that time).

3.1 Testing correctness
Running the multi-threaded test, with simultaneous deposits and withdrawals,
yields the results:

[10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]

Our problems seem to be solved! Unfortunately, this form of overzealous
locking suffers from some performance issues which we will discuss next.

3.2 Performance
Threads attempting to enter synchronized methods have to acquire an ob-
ject’s intrinsic lock, or monitor, before they can execute any code1. This en-
sures that all synchronized methods are mutually exclusive, which is good for
our deposit and withdraw operations, but can be wastfeul for getBalance.
The difference, of course, is that deposit and withdraw are mutators whereas
getBalance is simply an accessor, and while mutators should mutually ex-
clude all other operations, there is no reason why accessors should exclude
other accessors as they do not change the state of an object.

We can see the performance implications of this by carrying out a test
in which 9 threads execute getBalance and 1 thread executes deposit in
parallel. If this test takes around the same time to complete as the inverse,
where 9 threads execute deposit and 1 thread executes getBalance, then we
can conclude that accessors and mutators are all mutually exclusive.

Synchronized Read Frenzy: 121.0 ms
Synchronized Write Frenzy: 124.0 ms

1http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

11

As there is no perceptible difference between the read frenzy, with more
reads than writes, and the write frenzy, with the inverse, we can conclude that
both reads and writes have been serialised by the object’s monitor which we
invoked using synchronized.

4 Explicit locks
Luckily for us, Java has included support for more finely-grained locks than
an object’s monitor since version 1.5. Of these, the ReentrantReadWriteLock
is most suitable for our purposes. This object actually consists of two locks, a
read-lock and a write-lock. The write-lock, like the object’s monitor, mutually
excludes everything. The read-lock however, allows multiple threads to acquire
read-lock at the same time, but still excludes other threads from acquiring the
write-lock.

This has the effect of allowing read operations to execute in parallel while
serialising writes. The reentrant part of the lock’s name signifies that either
lock may be acquired multiple times - such as read methods calling other read
methods, with no ill effects.

An implementation of a ReadWriteLockAccount is as follows:

12

4. EXPLICIT LOCKS

1 public class ReadWriteLockAccount implements Account {
2 private float balance = 0;
3

4 private final ReentrantReadWriteLock rwl =
5 new ReentrantReadWriteLock();
6 private final Lock readLock = rwl.readLock();
7 private final Lock writeLock = rwl.writeLock();
8

9 public float getBalance() throws InterruptedException {
10 readLock.lock();
11 try {
12 Thread.sleep(1);
13 return balance;
14 }
15 finally { readLock.unlock(); }
16 }
17

18 public void clearBalance() {
19 writeLock.lock();
20 try { balance = 0; }
21 finally { writeLock.unlock(); }
22 }
23

24 public boolean deposit(float amount)
25 throws InterruptedException {
26 writeLock.lock();
27 try {
28 float b = balance;
29 Thread.sleep(1);
30 balance = b + amount;
31 return true;
32 } finally { writeLock.unlock(); }
33 }
34

35 public boolean withdraw(float amount)
36 throws InterruptedException {
37 writeLock.lock();
38 try {
39 if (balance - amount >= 0) {
40 float b = balance;
41 Thread.sleep(1);
42 balance = b - amount;
43 return true;
44 } else {
45 return false;
46 }
47 } finally { writeLock.unlock(); }
48 }
49 }

13

4.1 Performance
Let’s see how this Account performs during read and write frenzies.

Read-Write-Lock Read Frenzy: 26.0 ms
Read-Write-Lock Write Frenzy: 123.0 ms

Now that read operations such as getBalance can execute in parallel,
the read frenzy test is significantly faster than the write frenzy, in which no
parallelisation is possible. Also worth noting is that the write frenzy here
took around the same time as our synchronized version. This shows that
using a ReadWriteLock should usually yield at least as good performance
as the synchronized keyword, with performance during heavy read activity
receiving the most benefits and heavy write activity staying the same.

4.2 Boilerplate code
One area in which the synchronized Account beats the ReadWriteLock ver-
sion is in the amount of boilerplate code that is required to maintain correct-
ness. The synchronized Account required only three extra words compared
to our original Account, whereas our latest version requires explicit locking
and unlocking of specific locks to surround the body of each critical method.

In our example this is not so bad, especially considering the increased
performance these locks have given us, but in larger projects the amount
of code-overhead introduced by explicit locking can be significant. In fact,
code which includes overhead like this is harder to parse (as a programmer),
maintain, and is also more fragile, as forgetting to unlock in just one place
can introduce severe bugs into a system.

More flexible languages than Java combat this problem by using macros
and higher-order functions to abstract away such boilerplate code, as we will
see in later sections.

5 Transfers
Now that we have a correct and performant account implementation, our job
seems to be done. As before, things are not quite so simple. Our latest account
implementation appears to work in isolation, but things can get trickier when
we bring multiple Accounts into the mix.

Let us imagine that we want to transfer funds between accounts. A
transfer method could be defined in some sort of AccountTransferService

14

5. TRANSFERS

class, which would take two Accounts and an amount as input, withdraw
amount from the first Account, and then deposit amount in the second Account.
These transfers are also critical sections, as accounts should not be altered
or read mid-transfer as they are in an inconsistent state.

To ensure the integrity of this critical section we have to acquire locks on
both accounts, carry out the transfer, and then release the lock. The object
monitor version is shown below (an explicit lock version would acquire the
objects’ write-locks instead):

1 public static void transfer(Account from, Account to,
2 float amount) throws InterruptedException {
3 synchronized(from) {
4 Thread.sleep(1);
5 synchronized(to) {
6 from.withdraw(amount);
7 to.deposit(amount);
8 }
9 }

10 }

This code will work as expected the vast majority of the time, but there
is a case in which not only will the program be incorrect, it will actually
hang forever. As you can imagine, this is because of the inconveniently placed
Thread.sleep on line 4.

Like before, this line forces a context switch that could occur in the normal
execution of the code. This is usually not a problem, except for the case
in which a transfer from Account A to Account B, and a transfer from
Account B to Account A occur simultaneously. This will result in the following
sequence of events:

1. Transfer 1: Acquires Account A’s lock

2. Context switch

3. Transfer 2: Acquires Account B’s lock

4. Transfer 1 waits to acquire Account B’s lock

5. Transfer 2 waits to acquire Account A’s lock

As both transfers are waiting for each other, their threads will block in-
definitely in a situation known as deadlock.

15

This dangerous juggling of locks is possibly the greatest problem that arises
when using Threads and Locks to manage concurrency. Other concurrency
strategies like the ones we will discuss later abstract away the handling of
locks, meaning that it is much harder to make mistakes involving them.

16

Part III

Actors

17

1 Background
The original theory of actors is modeled from biology, more precise the au-
tonomous and independent communication between human cells2 that are in-
herently concurrent. As with cells, an actor is, from a higher-level perspective
of concurrency, viewed as an independent entity with its own memory, proces-
sor and communication channels. An actor in the context of a software system
has similar features - its own memory (shared), its own processor (thread) and
its own asynchronous way of communicating (messages).

When using object-oriented programming (OOP), encapsulation of an ob-
jects data is of uttermost importance to maintain its internal data integrity.
Via instance methods the state of the object can be changed and whilst this
work well in a single-threaded environment it fails in multi-threaded environ-
ments. Multiple threads might call the instance methods concurrently and
jeopardize isolation and consistency.

Actors are single-threaded, provide well defined states where transition to
a state and behaviour is determined by receiving a message which is communi-
cated asychronously. These messages could be an Integer, a String or even
a Class if immutable. Upon receiving a message an actor responds in one, or
more, ways [2]

1. Send out messages to known actors, it self included

2. Change state and hence behaviour when receiving next message

3. Create more actors

Usually an actor is ”responsible” for one mutable state and does not conflict
with other actors nor their mutable state. From a computatational view, an
actor ought to perform an asynchronous task simplifying the coordination of
results. Thinking in an OOP way, each actor is its own lightweight process3

designated to perform one task and communicate with immutable messages
(not method calls!) to other active actors. Since the messages are held in a
queue and read in a FIFOmanner the mutual exclusion property is guaranteed.

2”I thought of objects being like biological cells and/or individual computers on a net-
work, only able to communicate with messages”–Alan Kay, creator of Smalltalk, on the
meaning of ”object oriented programming”

3Not an actual thread, rather a virtual thread that is allocated a real one on demand.

18

2. SIMULATION

Figure 1.2. Asynchronous message passing between Actors.

2 Simulation
Now that we have defined our three actions: deposit, withdraw and transfer,
we can use them to build a simple simulation in which multiple actors, each
with their own balance, transfer funds between each other.

The constraints of the simulation are the following:

1. Actors must be able to transfer money between each other of their own
accord.

2. The simulation must end.

3. The total amount of money in the system must be the same at the
beginning and end of the simulation.

The second constraint guards against deadlock, which as we will see is still
possible in an actor system.

The final constraint is our (informal) proof of correctness - if the amount of
money in the system remains the same then we can be fairly sure that money
is not generated or lost through errors arising from race conditions.

Actor-based systems can be implemented in many JVM languages, but
usually through third-party libraries such as the Akka library 4. In this section,

4http://akka.io/

19

we will use the language Groovy, which includes the GPars concurrency toolkit
as part of its standard library.

3 A naive version
Our first implementation of the simulation tries to keep the system as simple
as possible. We define just the one Actor - called Person - that has a name
and a balance as its state. This Person accepts two messages, Deposit and
Withdraw that affect this state.

3.1 Messages
Below is an example implementation of an immutable message that Actors use
to communicate between each other. The message is not subject to change
which preserves that the received message is not altered after it has been sent.

1 class Person extends DefaultActor {
2 final class Deposit { float amount }
3 final class Withdraw { float amount }
4 ...
5 }

A common idiom in generally mutable, object oriented languages is to
explicitly define messages as immutable classes, as we do here with the final
keyword. A problem with this approach is that forgetting to declare a message
as final, and then accidentally mutating it, can result in very subtle bugs.

The Person actor handles these incoming messages as follows:

1 def handle(message) {
2 switch(message) {
3 case Deposit:
4 reply deposit(message.amount)
5 break
6 case Withdraw:
7 reply withdraw(message.amount)
8 break
9 }

10 }

A very obvious issue with this message handling code is how redundant
it is: messages containing data call the corresponding functions on the actor

20

3. A NAIVE VERSION

with their data transformed to arguments. As we see in later sections, this
actor boilerplate code can and should be abstracted away.

3.2 Actions
Let’s see how our actions look:

1 boolean deposit(float amount) {
2 balance += amount
3 say "Deposited $amount, balance is now $balance"
4 return true
5 }
6

7 boolean withdraw(float amount) {
8 if (balance - amount >= 0) {
9 balance -= amount

10 say "Withdrew $amount, balance is now $balance"
11 return true
12 } else {
13 say "That’s more than I have!!"
14 return false
15 }
16 }
17

18 void transfer(Person target, float amount) {
19 say "Sending $amount to $target"
20 def success = withdraw(amount)
21 if (success) {
22 target.sendAndWait new Deposit(amount: amount)
23 }
24 }

A refreshing feature of this code is the lack of locking boilerplate around the
balance instance variable. We are allowed to leave balance lock-free because
of the semantics of the actor model - by definition, only one message, and
therefore action, can be processed at any one time. This makes each action
atomic and means we do not have to worry about shared memory related race
conditions within the actions themselves.

21

3.3 Deadlock
That said, our naive implementation does suffer from quite an extreme bug,
which we can see from the code that handles each Person’s lifecycle (this is
an Actor’s equivalent to Thread#run):

1 void act() {
2 loop {
3 int amount = Math.random()*50
4 transfer(world.randomOther(this), amount)
5 react { message -> handle(message) }
6 }
7 }

Like with our earlier transfer implementation, this can lead to deadlock in
the following scenario:

1. Person A begins a transfer to Person B

2. Person A: personB.sendAndWait new Deposit(amount: amount)

3. Person B begins a transfer to Person A

4. Person B: personA.sendAndWait new Deposit(amount: amount)

sendAndWait is a synchronous operation, i.e. it blocks the actor until it
receives a reply, which in this case would be a boolean indicating whether the
deposit succeeded.

Unfortunately for Persons A and B, they will wait forever, as they are
waiting on each other so neither Person will complete their transfer method
call and be able to process the incoming Deposit message inside react.

This illustrates one of the biggest pitfalls of actor-based systems: as soon as
synchronous messages are included within an actor’s logic, there is the risk of
deadlock. We could solve this problem by allowing sendAndWait to time out,
or by making it an asynchronous message, but these seem like workarounds
for a badly designed system. In the next section, we will instead rethink our
actors and messages to try and eliminate this problem.

4 Introducing brokers
It seems that we gave our Person actors a little too much responsibility in
our first implementation. Allowing them to handle Withdraw and Deposit

22

4. INTRODUCING BROKERS

messages seems natural, but when we made them handle transfers themselves
we ran into trouble.

In this version of the simulation we will introduce a new actor, called a
Broker, that has the sole purpose of handling transfers between Persons. By
extracting the transfer logic from the Person class, we allow Persons to simply
react to Withdraw and Deposit messages, thereby eliminating our case of
deadlock.

Figure 1.3. A Broker coordinates messages to prevent deadlocks.

4.1 Messages

final class TransferRequest { def from; def to; float amount }

23

4.2 Actions

1 class Broker extends AccountActor {
2 void transfer(from, to, float amount) {
3 say "Sending \$amount from \$from to \$to"
4 def success =
5 from.sendAndWait new Withdraw(amount: amount)
6 if (success) {
7 to.sendAndWait new Deposit(amount: amount)
8 }
9 }

10

11 void act() {
12 loop {
13 react {
14 switch(it) {
15 case TransferRequest:
16 transfer(it.from, it.to, it.amount)
17 break
18 }
19 }
20 }
21 }
22 }

It is pretty obvious here that the Broker actor exists simply to wrap the
transfer method.

Now we have an extra sendAndWait call for the withdrawal. This time
however, the risk of the same kind of deadlock as earlier is eliminated, due to
the simplification of Person’s act loop:

1 class Person extends AccountActor {
2 ...
3 void act() {
4 loop { react { message -> handle(message) } }
5 }
6 ...
7 }

Because Person is now purely reactive - it has no other logic in act than
react - there is no chance that a Person will not be able to respond to messages

24

4. INTRODUCING BROKERS

from a transfer. This in turn means our two sendAndWaits in transfer
should not cause deadlock.

4.3 Autonomous Actors
But where in Person is a transfer actually instigated? Although we now
fulfil the second constraint of our simulation (no deadlock), how can we fulfil
the first (that Persons transfer money between each other) while still keeping
Person fully reactive?

The solution is not immediately apparent. Generally we are used to ob-
jects, that, like our new actors, simply react to messages or method calls.
These objects tend not to execute code on their own accord.

As always when we require code to be executed asynchronously, the answer
lies in spawning more threads. If we would like transfers to be made every few
seconds, which does make for a more realistic simulation, we could use a Java
ScheduledThreadPoolExecutor. This object allows us to schedule a block of
code to be executed periodically, on a Thread pool it manages itself.

This sounds good until we realise that by allowing code running on a thread
managed by a ScheduledThreadPoolExecutor to execute methods within our
actors, we break the very semantics of the Actor model, which state that only
the appropriate Actor thread may execute an actor’s methods. Clearly this
is not something we want to do as it would return us to a shared, mutable
state scenario which would require us to again think about race conditions.

One solution, called murmurs by Venkat Subramaniam, is to have this
scheduled thread make an actor send a message to itself. This has the effect
of adding an action to the actor’s queue, which, crucially, will eventually be
executed by the Actor thread, not the scheduled thread. In this way, we
preserve the semantics of the Actor model, and allow actors to remain fully
reactive: now they simply need to react to an extra message that they send
to themselves.

25

1 class Person extends AccountActor {
2 ...
3 static ScheduledThreadPoolExecutor timer =
4 new ScheduledThreadPoolExecutor(2)
5

6 void requestTransfer() {
7 int amount = Math.random()*100
8 def target = world.randomMember(this)
9 def broker = world.getBroker()

10 broker?.send
11 new TransferRequest(from: this,
12 to: target, amount: amount)
13 }
14

15 def handle(message) {
16 switch(message) {
17 case Start:
18 say "Starting"
19 timer.scheduleAtFixedRate(
20 { send new Tick() },
21 0, 100, TimeUnit.MILLISECONDS
22)
23 break
24 case Tick:
25 requestTransfer()
26 break
27 case Deposit:
28 reply deposit(message.amount)
29 break
30 case Withdraw:
31 reply withdraw(message.amount)
32 break
33 }
34 }
35 ...
36 }

This pattern of using murmurs to make fully reactive actors autonomous is
a powerful one, and it would be a shame to have to implement it from scratch
every time we want a ticking actor. Similarly, having to create messages and
write handlers purely to call the appropriate method with the appropriate

26

5. ACTIVE OBJECTS

arguments is getting quite monotonous, so our next section will deal with how
to abstract away a lot of the Actor boilerplate, resulting in far cleaner code.

5 Active Objects
Active Objects are an object-oriented facade over the Actor model. Every Ac-
tive Object instance has its own hidden actor, and whenever certain methods,
called Active Methods, are called on these Active Objects, the method call is
translated to a message that is passed to this hidden actor.

What this means is that we can scrap the entirety of our message handling
boilerplate while retaining the semantics of having only one thread inside an
Active Method at one time. Also, as methods are no longer coupled to a mes-
sage handling routine, we can distribute them across objects using standard
inheritance.

For example, we can now extract the ticking logic from Person into the
more general TickingActor class:

1 @ActiveObject
2 abstract class TickingActor extends NamedActor {
3 static final TIMER_THREADS = 2
4 static final ScheduledThreadPoolExecutor TIMER =
5 new ScheduledThreadPoolExecutor(TIMER_THREADS)
6

7 static TIMER_INTERVAL = 100
8 static TIMER_INTERVAL_UNIT = TimeUnit.MILLISECONDS
9

10 TickingActor() {
11 TIMER.scheduleAtFixedRate(
12 { this.tick() },
13 0, TIMER_INTERVAL, TIMER_INTERVAL_UNIT
14)
15 }
16

17 abstract void tick();
18 }

Here we can see that this.send new Tick() has become simply this.tick(),
and we can use Java’s usual abstract semantics to signify that concrete child
classes must implement the tick method.

27

Our Person class becomes similarly simplified, leaving us with just the
logic that is specific to a Person and its state.

1 @ActiveObject
2 class Person extends TickingActor {
3 ...
4 @ActiveMethod(blocking=true)
5 boolean deposit(float amount) {
6 balance += amount
7 say "Deposited $amount, balance is now $balance"
8 return true
9 }

10

11 @ActiveMethod(blocking=true)
12 boolean withdraw(float amount) {
13 if (balance - amount >= 0) {
14 balance -= amount
15 say "Withdrew $amount, balance is now $balance"
16 return true
17 } else {
18 say "That’s more than I have!!"
19 return false
20 }
21 }
22

23 @Override
24 @ActiveMethod
25 void tick() {
26 int amount = Math.random()*100
27 def target = world.randomMember(this)
28 def broker = world.getBroker()
29 broker?.transfer(this, target, amount)
30 }
31 }

6 Problems
We’ve made a lot of progress with Actors, going from a deadlocking, broken
Actor system to a streamlined, reusable system using Active Objects. Never-
theless, our implementation still suffers from some drawbacks.

28

6. PROBLEMS

6.1 Read performance
If we were to replace our @ActiveMethod decorators with the synchronized
keyword, the semantics of our objects would barely change. Like with the most
primitive form of locking, reads will be serialised as well as writes in an Active
Object, as after all they are just responses to messages. That said, it can be
argued that Active Objects are simpler to reason about than synchronized
locking, and as we are using higher-level constructs it is entirely possible for
read performance to be optimised in the Active Object implementation with-
out any changes required in our code.

6.2 Actors vs Threads
We also gain by using the higher-level Actor abstraction as opposed to threads.
Though the Actor model requires that only one thread execute methods within
an Actor at one time, there is no requirement that it is the same thread. As a
result, we can easily have a crowd of Actors sharing a limited pool of threads,
where the thread pool size is optimised for the number of available processors.

Again this could be achieved using Executors and locking, and indeed it
probably is in the underlying Actor implementation, but if a library exists it
should be used instead of writing our own code.

6.3 Transactions
One of the last problems with our implementation is that our simulation
is still quite fragile. If a Person instance dies mid-transfer, then the Bro-
ker carrying out the transfer will deadlock and the amount of money in
the system will be inconsistent. Also, the return of a boolean signifying
whether an action succeeded is not as semantic as it could be: for exam-
ple if a message is never received, False will never be returned and hence a
MessageNotReceivedException is more appropriate.

In these cases, we would like failed transfers to behave like transactions,
i.e. they should be rolled back on failure, leaving no trace of their execution,
so they can be retried at a later time. This is possible using a system known
as Software Transactional Memory (STM), which we will discuss next.

29

Part IV

Software Transactional Memory

30

1. BACKGROUND

1 Background
Software transactional memory (STM) is influenced by database transactions
and that operations are conceptually atomic. STM provides abstraction of
handling in-code synchronisation and provide the appearance that code is
executed sequentially. Every transaction maintains a log to track its progress
in case it would be aborted to enable the operations to be rolled back. If
the transaction was successful the operations is commited and changes made
permanent.

STM enables composition of atomic operations [3] which is hard to achieve
in tradtional lock-based programs. This proves extremely useful to avoid in-
consistency when executing two dependent operations.

2 Concurrency in Clojure
Clojure is the third JVM language we will use. Unlike the object-oriented
Java and Groovy, Clojure is a functional language that also happens to be a
dialect of LISP. Consequently, Clojure tries to avoid shared, mutable objects
and focuses instead on immutable data structures and functions that operate
on them.

Clojure provides a separation of state and identity, where an identity could
be viewed as an account and the the balance the state. A withdrawal does not
change the identity rather it affects its state. The balance prior the withdrawal
becomes a record of the balance at that time and that state is immutable. In
Clojure all values and collections are, by design, immutable and an identity
could only change state in a transaction.

The use of operations with side effects in transactions is highly discouraged
due to difficulties to perform rollback 5. For example I/O-operations could
prove extremely hard to redo and printing to e.g. a log could obfuscate it.
Best practice is to schedule operations with side effects in a post-commit
section.

MVCC tag the data with a read and write timestamp to keep track of
the current version. When a write transaction Ti is started the latest ver-
sion of the data is available as a snapshot with a timestamp TS(Ti). If an-
other write transaction Tj is running, there must exist a timestamped version
TS(Tj) where TS(Ti)TS(Tj) to complete and for Ti to commit. Otherwise Ti

is aborted and any changes rollbacked. This ensures consistency as well as
isolation since each transaction work with its own snapshot.

5http://clojure.org/refs

31

http://clojure.org/refs

Figure 1.4. A write collision when inserting element in a linked list

Looking at the illustration Figure 1.5 of a write collision that occur when
T2 tries to insert an element before T1 has successfully commited, T2 silently
aborts and retry the insert operation with a fresh snapshot reflecting the
changes made by T1.

3 Immutable data types
Data types are immutable by default, which we can see in the following snippet
executed in the Clojure REPL:

1 user=> (def x 1)
2 #’user/x
3 user=> x
4 1
5 user=> (inc x)
6 2
7 user=> x
8 1

Instead of assigning 1 to the variable x, we define it to be 1. Executing
the increment function with x as an argument results in a new value 2 and
leaves x unchanged.

32

4. MUTABLE REFERENCE TYPES

This makes reasoning about programs a lot easier as equality is not subject
to change, and the effects of sharing data with other threads or even other
modules is a lot more predictable when that data is immutable.

4 Mutable reference types
However, there are times when mutable data can be very useful. Clojure
has three reference types that act as ’wrappers’ for data structures. These
wrappers ensure that changes to these references are protected against a lot
of problems usually associated with mutable state change.

4.1 Atoms
The simplest of these types is called an atom. Atoms are references to data
that facilitate uncoordinated, synchronous changes to their value. This is
how they look in action:

1 user=> (def x (atom 1))
2 #’user/x
3 user=> x
4 #<Atom 24e33e18: 1>
5 user=> (swap! x inc)
6 2
7 user=> x
8 #<Atom 24e33e18: 2>

This time we used the swap! function to atomically swap the current
value of x for the value returned after executing the increment function. This
change was synchronous (it happened immediately) and uncoordinated (it was
independent of other actions).

Though this may have added a little additional complexity to dealing with
data - we have to use swap to change a reference’s value instead of executing
functions directly - we gain massive benefits when atoms are shared between
threads:

33

1 (defn sleepy-inc [a]
2 (Thread/sleep 1)
3 (inc a))
4

5 (defn inc-atom! []
6 (let [x (atom 0)]
7 (println "x: " @x)
8 (do-pool! 10
9 (fn [pool]

10 (dothreads!
11 #(swap! x sleepy-inc)
12 pool :threads 10 :times 1)))
13 (println "x: " @x)))
14

15 accounts=> (inc-atom!)
16 x: 0
17 x: 10
18 nil

Here we define x as an atom with the initial value of 0. We then increment
x 10 times from 10 different threads, simultaneously (context switches are
forced by the Thread/sleep in sleepy-inc). When these threads are all
done, we check the value of x with the dereference macro, @, and see that its
value is 10 as expected.

4.2 Validators
We can see mutable references as state machines, with the value of a reference
being its state and transitions being the functions supplied to swap!. These
functions take the current state of the reference as input, and return the next
state as output.

An effect of this paradigm is that data structures are kept strictly separated
from the functions that act on them, unlike Object Oriented Programming
where state is stored in an objects instance variables and functions that act
on them make up its instance methods.

Whenever functions, or methods, operate on data there is a risk of the
object or data structure finding itself in an invalid state. A familiar example
for us is a reference representing a balance, where a negative balance is invalid.
A sensible place to store information about valid and invalid states is with the
data itself, not the functions that operate on it.

34

4. MUTABLE REFERENCE TYPES

For us this would mean storing information about a balance validity with
the balance reference itself, not within the functions that act on it. We do
this by using set-validator!:

1 user=> (def balance (atom 10))
2 #’user/balance
3 user=> (set-validator! balance #(>= % 0))
4 nil
5 user=> (swap! balance - 10)
6 0
7 user=> @balance
8 0
9 user=> (swap! balance - 1)

10 IllegalStateException Invalid reference state
11 user=> @balance
12 0

In line 3 we declare that balance is only valid if the form (>= % 0) returns
true, with the % being replaced by the value of a new state. If the validator
fails then we get an IllegalStateException and balance remains at its old,
valid, state.

4.3 Refs
Now We have seen how validators work, let’s get back to Clojure’s reference
types.

Sometimes changes to multiple mutable references needs to be coordinated.
For these cases we wrap data types with reference types called ref. We can
change the value of a ref using alter, which, like swap!, sets the new value
of a ref to that returned by the supplied function.

1 user=> (def x (ref 1))
2 #’user/x
3 user=> x
4 #<Ref@4826dfcc: 1>
5 user=> (alter x inc)
6 IllegalStateException No transaction running

Here we can see what coordinated change really means. An exception was
thrown because we tried to alter a ref’s value independently. Instead,

35

refs are meant to be used within transactions, as part of Clojure’s Software
Transactional Memory implementation.

4.4 Transactions
Database transactions obey to atomicity, consistency, isolation and durability6

and for transactions in Clojure the first three are valid. Durability is not an
issue since values are stored in volatile memory (RAM).

Atomicity The transaction was successful or did not happen. This prevents
race-conditions to occur.

Consistency The data integrity is maintained after transaction is executed
regardless if commit or aborts the result. In case of two simultaneous
withdraw and deposit the balance correctly reflects the yielded result
from both operations.

Isolation Transition states are not visible to other transactions, only the
outcome of an success becomes visible for other transactions.

The use of operations with side effects in transactions is highly discouraged
due to difficulties to perform rollback7. For example I/O-operations could
prove extremely hard to redo and printing to e.g. a log could obfuscate it.
Best practice is to schedule operations with side effects in a post-commit
section.

MVCC tag the data with a read and write timestamp to keep track of
the current version. When a write transaction Ti is started the latest ver-
sion of the data is available as a snapshot with a timestamp TS(Ti). If an-
other write transaction Tj is running, there must exist a timestamped version
TS(Tj) where TS(Ti)TS(Tj) to complete and for Ti to commit. Otherwise Ti

is aborted and any changes rolled back. This ensures consistency as well as
isolation since each transaction work with its own snapshot.

6In concurrency control this is known under the acronym ACID
7http://clojure.org/refs

36

http://clojure.org/refs

4. MUTABLE REFERENCE TYPES

Figure 1.5. A write collision when inserting element in a linked list.

Looking at the illustration Figure 1.5 of a write collision that occurs when
T2 tries to insert an element before T1 has successfully commited, then T2
silently aborts and retries the insert operation with a fresh snapshot reflecting
the changes made by T1.

A transaction is delineated by the dosync form:

1 user=> (dosync (alter x inc))
2 2
3 user=> x
4 #<Ref@4826dfcc: 2>

Transactions reveal their usefulness when we consider how they allow us
to coordinate changes to multiple refs all with their own validators.

For example, let’s define a donate function that takes a donor and a re-
ceiver, and transfers 1 unit from the donor to the receiver.

1 (defn donate [donor receiver]
2 (dosync
3 (alter receiver inc)
4 (alter donor dec)))

37

By wrapping these alters in dosync we declare that donate is a transac-
tion: either the inc and the dec should both succeed, or the entire operation
should be rolled back as if it never happened.

We can take donate for a test run with the following function:

1 (defn mk-balance [b]
2 (let [balance (ref b)]
3 (set-validator! balance #(>= % 0))
4 balance))
5

6 (defn donation [donor-balances]
7 (let [donors (map mk-balance donor-balances)
8 receiver (mk-balance 0)]
9 (doseq [d donors]

10 (try
11 (donate d receiver)
12 (catch IllegalStateException e)))
13 (println "donors:" donors)
14 (println "receiver:" receiver)))

All is well when the donors have money to give:

1 accounts=> (donation [10 10 10])
2 donors: (#<Ref@751201a1: 9> #<Ref@71292d12: 9>
3 #<Ref@464e32c8: 9>)
4 receiver: #<Ref@69ce835b: 3>

Each donor donated 1 to the receiver, leaving the donors with 9 each and
the receiver with 3.

But what happens if one of the donors is in fact as poor as the receiver,
and has nothing to give?

1 accounts=> (donation [10 0 10])
2 donors: (#<Ref@2f6e4ddd: 9> #<Ref@72ba007e: 0>
3 #<Ref@11768b0a: 9>)
4 receiver: #<Ref@7e349a0e: 2>

Surprisingly enough, nothing broke! Because donate is a transaction,
when the time came for the donor with the empty balance to donate, the

38

4. MUTABLE REFERENCE TYPES

IllegalStateException thrown by the dec to the donor caused the whole
transaction to fail and the inc to the receiver’s balance was not committed.
As a result, the system remained consistent.

4.5 Agents
Agents are for potentially coordinated, asynchronous change to mutable
references. Instead of replacing state with the results of alter or swap!, we
affect agents by sending them state-transition functions. These functions are
queued and executed asynchronously on the agent’s own thread. We can see
this in action here:

1 (defn time-agent [times sleep]
2 (let [x (agent 0)]
3 (dotimes [_ times]
4 (send-off x
5 (fn [x]
6 (Thread/sleep sleep)
7 (inc x))))
8 (time (await x))
9 @x))

10

11 accounts=> (time-agent 1 1000)
12 "Elapsed time: 1001.424 msecs"
13 1
14 accounts=> (time-agent 2 1000)
15 "Elapsed time: 2002.785 msecs"
16 2

We send an agent a number of anonymous functions that cause it to sleep
and then increment its value. We then time how long it takes for the agent
to process its queue. After running time-agent the time taken indicates that
these sent functions are indeed executed sequentially.

4.6 Actors vs Reference types
On the surface, Clojure’s agents seem very similar to Groovy’s actors: both
allow asynchronous change of state guaranteed to take place on a single thread.
Nonetheless, they do differ in some key areas.

39

Read performance

Retrieving the value of an agent, or any reference type, does not require us to
send it a message.

1 accounts=> (send-off x (fn [x] (Thread/sleep 10000) (inc x)))
2 #<Agent@127e942f: 0>
3 accounts=> @x ; Immediately
4 0
5 accounts=> @x ; 10 seconds later
6 1

Not only does this show that agents are indeed asynchronous, but we also
see that we can dereference them to get their value while they are processing
messages, in constant time.

This is a result of Clojure’s reference type semantics - we do not need to use
a function to get an agent’s value as functions are solely for state transitions,
which is not what a read-value-function represents. Instead, as reference types
are designed to be state machines, dereferencing can be supported as a ”special
case” operation for returning a machine’s current state.

Flexibility

Unlike with actors, the set of possible messages you can send a reference type
is open. As we have demonstrated, it is entirely possible to send, swap or
alter a reference type with an anonymous function, something that would
be impossible if we had to define messages and methods in advance. This
lack of boilerplate makes Clojure reference types both more concise and more
extensible than Actors.

5 Simulation 2.0
Now that we have been introduced to Clojure’s approach to concurrency, we
can try to rethink our simulation to fit these patterns. These patterns have
very strict semantics so we should take care not to violate them.

5.1 Rethinking brokers
Brokers as a middleman actor seemed a good idea at the time, as they removed
a potential deadlock from our system and allowed all actors to simply react.
However, a facet of Brokers that was easy to miss in Groovy but is painfully

40

5. SIMULATION 2.0

obvious in Clojure is that they are stateless. Therefore, we should avoid
implementing them as agents in Groovy as this would break our state-machine
semantics.

5.2 Rethinking people
Making a Person a type of Actor made sense in Groovy, but that was in
a language in which state and behaviour are not clearly distinguished. In
Clojure, we can see clearly that a Person is simply a custom data type that
we can define like this:

(defrecord Person [name balance])

We can think of a Person as a record with fields for a name and a balance.
This is a pure declaration of state; definitions of behaviour are stored in the
functions that act on these records.

5.3 Transfers are synchronous
In our Groovy implementation, we used sendAndWait (and later a blocking
ActiveMethod) in our transfers that made them wait until the withdraw and
deposit completed before returning. In the context of our simulation, where
all we do is transfer (as we do not want to generate or lose money), having
withdraw and deposit as asynchronous actions does not make sense. And if
we do not need asynchronous actions, maybe we shouldn’t be using agents at
all.

5.4 Choosing a reference type
So what should we use if not agents? We have established that our transitions
(withdraw and deposit) need to be synchronous and coordinated. The
Clojure reference type for that is a ref. We can write a kind of factory method
for these reference types that creates the underlying record, wraps it and sets
the appropriate helper functions.

41

1 (defn make-person [name balance]
2 (let [person (ref (Person. name balance))]
3 (set-validator! person
4 (fn [new-state] (>= (:balance new-state) 0)))
5 (add-watch person :print-balance
6 (fn [k p old-state new-state]
7 (let [n (:name new-state)
8 b1 (:balance old-state)
9 b2 (:balance new-state)]

10 (println n ": balance" b1 "->" b2))))
11 person))

Here we declare what a valid state should look like, and also add a watcher
function that will be called whenever the Person’s state changes. Again, these
functions are purely concerned with issues of state, and it feels far cleaner to
declare them here once instead of having to validate and fire our own watchers
in every instance method as we would have to in an object oriented language.

5.5 Rethinking autonomy
Whatever changes we make, we must ensure that we maintain our core idea
of simulating transfers between autonomous entities. Even though our ticking
actors with their murmurs seemed a good solution for this, we can see now that
murmurs were actually a workaround for Actor semantics (only one thread in
an actor’s body), and we know now we shouldn’t have been using actors at
all.

We can simplify matters by realising that we can simulate autonomy by
scheduling a repeating function f that represents the actions of a single person.
If we schedule this function for every Person in our simulation then we can
say that every Person is acting autonomously.

42

5. SIMULATION 2.0

1 (def TICK-INTERVAL 100)
2 (defn start [me people timeline]
3 (schedule
4 (fn []
5 (let [target (rand-other people me)
6 amount (rand-int 100)]
7 (try
8 (transfer me target amount)
9 (println "Transferred" amount

10 "from" me "to" target)
11 (catch IllegalStateException e))))
12 timeline TICK-INTERVAL))

That function f is the anonymous function on line 4. In fact, it is a closure
that closes over the variable me, which represents the Person we are starting. In
this way this function represents a Person’s ”unique”, autonomous behaviour.

This behaviour is scheduled on the given timeline, which, like in Groovy,
is a ScheduledThreadPoolExecutor. The difference is that it is entirely okay
for the scheduled thread to actually do the transfer - we do not need the added
complexity of handing execution back to an actor thread any more.

5.6 Rethinking actions
We can do this because of how we implement transfer, withdraw and deposit.

1 (defn transfer [sender receiver amount]
2 (dosync
3 (deposit receiver amount)
4 (withdraw sender amount)))
5

6 (defn deposit [person amount]
7 (dosync
8 (let [balance (:balance @person)]
9 (alter person assoc :balance (+ balance amount)))))

10

11 (defn withdraw [person amount]
12 (dosync
13 (let [balance (:balance @person)]
14 (alter person assoc :balance (- balance amount)))))

43

Finally we define some behaviour to go with our state. As we can see,
we only have logic that is specific to the action; validation and monitoring of
state is handled by our helper functions that were defined earlier.

Every action is wrapped in a transaction, as transactions can nest without
issue. The fact that withdraw and deposit are transactions ensures that
withdrawals and deposits on the same Person do not conflict; the fact that
transfer is a transaction ensures that its effects are committed iff both the
deposit and withdraw both succeed. The transfer function is a perfect
example of composed operations and it is for this reason we can safely
deposit before we withdraw.

5.7 Running
All that remains is to take our simulation for a spin:

1 (def NUM-PEOPLE 100)
2 (def START-BALANCE 100)
3 (defn simulate []
4 (let [people (make-people NUM-PEOPLE START-BALANCE)
5 timeline (Executors/newScheduledThreadPool 2)]
6 (doseq [p people] (start p people timeline))
7

8 (Thread/sleep 1000)
9

10 (.shutdown timeline)
11 (.awaitTermination timeline 5 TimeUnit/SECONDS)
12

13 (let [balances (map #(:balance @%) people)]
14 (println "Balances:" balances)
15 (println "Total:" (reduce + balances)))))
16

17 account-sim=> (simulate)
18 Balances: (138 46 513 161 3 51 138 19 34 23 294 13 41 136 73
19 108 106 46 179 16 152 82 61 147 1 29 92 37 150 76 123 59 235
20 302 221 146 139 47 28 7 103 137 86 67 25 79 163 55 20 150 46
21 78 14 21 19 26 17 112 66 128 108 32 22 39 86 21 274 7 123 95
22 104 187 125 1 165 53 398 227 147 81 46 26 49 154 55 45 32 158
23 227 289 111 243 31 52 19 66 39 122 214 43)
24 Total: 10000
25 nil

44

5. SIMULATION 2.0

It seems to be working, and we have managed to reduce our complexity
significantly by removing all actor threads from the equation. It is trivial to
make the size of our ScheduledThreadPool a function of the available cores,
meaning we can also scale our program with ease.

45

Part V

Conclusion

46

1. THREADS AND LOCKING

As declared in the section delimiation of study, the project has focused on a
rather small domain of a banking system, namely multiple concurrent transfers
of money between accounts. The impact on the result and the discussion is
that large systems are not reflected properly and the results presented might
differ if a complete system would have been implemented. A complete banking
system, or other system for that matter, contains many areas not covered
by this report in which the performance of solutions discussed would have a
negligible impact on the overall performance, as well as stability and security.

The emerging trend of concurrency to speed up execution of applications
and for managing distributed computing paved the way to find a stable and
scalable way of implementing concurrency. In our investigation we came across
traditional synchronisation with threads and locks, an object-oriented ap-
proach using actors and ultimately we went deeper into STM influenced by
database transactions. These strategies have in common that they all want
the control the exection of code that acts on shared mutable resources, i.e. en-
sure that the mutual exclusion property is guaranteed at any point involving
threads that might access mutable data.

1 Threads and Locking
We looked first at handling concurrency with threads and locks. We saw how
easy it is to forget that even single statements are not atomic, and that Java
allows you to write thread-unsafe code with impunity. Once we recognised
critical sections, we found an easy way to protect them by locking them with
an object’s intrinsic locks using the synchronized keyword.

While this was easy and didn’t add much complexity to the code it also
reduced performance during heavy read activity. To solve this, we tried using
some locks from Java’s newer concurrency library. This helped performance
but added a lot of boilerplate that made code harder to reuse.

In short using threads and locks seems to be a compromise between sim-
plicity (synchronized) and speed (explicit locks). And even when one set of
locks seems to work, coordinating multiple locks is very difficult and can lead
to deadlock.

2 Actors
We then moved up the ladder of abstraction to the Actor model as imple-
mented in Groovy. Our first attempt at designing an Actor system put too
much responsibility in the hands of the actors, and so suffered from a dead-

47

lock bug. We managed to solve this by redesigning our actors to make them
purely reactionary, but this introduced another type of actor that added some
complexity.

We can draw from this that Actor systems manage to avoid race conditions
due to their share-nothing approach, but badly designed systems can still
easily suffer from problems such as deadlock. We also had to jump through
some hoops with murmurs to ensure that actors could act autonomously while
preserving this single-threaded guarantee.

We noticed throughout that declaring messages and handlers added a sim-
ilar amount of boilerplate as explicit locks, and this separation of behaviour
made it hard to share or reuse code. However, we managed to solve this using
an abstraction known as Active Objects.

A valid conclusion seems to be that actors should be used when a problem
fulfils the following criteria:

• The problem can be naturally divided into loosely coupled parts.

• Minimal communication is required, as messages are expensive (to write,
handle and send).

• Messages do not need to be coordinated (no transactions).

• Asynchronicity is a must.

3 Concurrency in Clojure
Finally, we took a look at concurrency in Clojure. We saw how a functional
style of programming fit naturally with Clojure’s notions of identity (mutable
references) and state (immutable data). This view of shared memory as a state
machine, with functions as transitions and a data type as state allowed us to
separate state management from behaviour. We were able to leave most state
management, such as processing message queues or trying and committing
transactions to the underlying implementation, and instead focused on domain
specific issues such as validation and watching functions.

Our behavioural code - the transition functions - also became simpler as
we were able to delegate validation and watching to helper functions defined
with our state. The only addition to the code was defining transactions,
and this was impossible to forget as not doing so would have resulted in
compile errors. The benefits were that we were able to leverage Clojure’s
STM implementation, which allowed us to alter state with the comfort of
knowing that if anything went wrong nothing would be left inconsistent.

48

3. CONCURRENCY IN CLOJURE

This complete lack of boilerplate left our code far more readable, easier to
predict and easier to reuse. We even got fast read performance for free, due
to dereferencing not altering state. One cause of confusion however, is which
reference type to pick. The following guidelines seem logical:

• Atoms when uncoordinated, synchronous change is required.

• Refs for coordinated, synchronous change.

• Agents for uncoordinated, asynchronous change. (Agents can take
part in transactions but I wasn’t able to get this to work in the way I
wanted).

Clojure lead to reduce the amount of code written and its complexity
which has advantageous implications; low maintenance, timesaving and less
error prone programming. The account implementation in Clojure confirms
our finding and give weight to our conclusion. As C.A.R Hoare (Tony Hoare)
once said:

”There are two ways of constructing a software design: One way
is to make it so simple that there are obviously no deficiencies,
and the other way is to make it so complicated that there are no
obvious deficiencies.”8

Given all these options, and a clean and powerful set of abstractions in
which to use them, it appears that Clojure represents the state of the art in
concurrency on the JVM.

8http://en.wikiquote.org/wiki/C._A._R._Hoare

49

http://en.wikiquote.org/wiki/C._A._R._Hoare

Appendix A

Appendix

Code
The source code is available at https://github.com/pascalc/jvm-concurrency.

51

https://github.com/pascalc/jvm-concurrency

Bibliography

[1] “Concurrency control.” http://en.wikipedia.org/wiki/Concurrency_
control, Mar. 2012. Last visited March 22 2012.

[2] P. Haller and M. Odersky, “Scala actors: Unifying thread-based and event-
based programming,” Theoretical Computer Science, vol. 410, no. 2–3,
pp. 202 – 220, 2009.

[3] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy, “Composable memory
transactions,” Microsoft Research, Cambridge, Aug. 2006.

[4] V. Subramaniam, Programming Concurrency on the JVM: Mastering Syn-
chronization, STM, and Actors. TBE, Sept. 2011.

[5] M. Fogus and C. Houser, The Joy of Clojure: Thinking the Clojure Way.
Manning, Apr. 2011.

[5]

53

http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Concurrency_control

www.kth.se

	Introduction
	Statement of collaboration
	Delimiation of study
	Problem statement
	Introduction

	Introducing concurrency
	Concurrency control
	Threads and processes
	Atomicity
	Shared memory

	Threads and Locks
	Background
	No locks
	Testing correctness

	Locking with synchronized
	Testing correctness
	Performance

	Explicit locks
	Performance
	Boilerplate code

	Transfers

	 Actors
	Background
	Simulation
	A naive version
	Messages
	Actions
	Deadlock

	Introducing brokers
	Messages
	Actions
	Autonomous Actors

	Active Objects
	Problems
	Read performance
	Actors vs Threads
	Transactions

	 Software Transactional Memory
	Background
	Concurrency in Clojure
	Immutable data types
	Mutable reference types
	Atoms
	Validators
	Refs
	Transactions
	Agents
	Actors vs Reference types

	Simulation 2.0
	Rethinking brokers
	Rethinking people
	Transfers are synchronous
	Choosing a reference type
	Rethinking autonomy
	Rethinking actions
	Running

	Conclusion
	Threads and Locking
	Actors
	Concurrency in Clojure

	Appendices
	Appendix
	Bibliography

