

Learning Reverse Engineering

 P E T T E R D J U P F E L D T
 a n d L U C A S T A U B E R T

 Bachelor of Science Thesis
 Stockholm, Sweden 2012

Learning Reverse Engineering

 P E T T E R D J U P F E L D T
 a n d L U C A S T A U B E R T

 DD143X, Bachelor’s Thesis in Computer Science (15 ECTS credits)
 Degree Progr. in Computer Science and Engineering 300 credits
 Royal Institute of Technology year 2012
 Supervisor at CSC was Alexander Baltatzis
 Examiner was Mårten Björkman

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/
 djupfeldt_petter_OCH_taubert_lucas_K12018.pdf

 Kungliga tekniska högskolan
 Skolan för datavetenskap och kommunikation

 KTH CSC
 100 44 Stockholm

 URL: www.kth.se/csc

Abstract
Reverse engineering is the process of translating compiled programs to
source code, and analyzing the resulting code. It is useful, since without
knowing the inside of a program it is very difficult to build onto it,
create software that can interact well with it, or simply create a similar
program of your own.

The challenge of reverse engineering lies within the fact that a lot of
information contained within the source code of a program is destroyed
in the compilation process, and re-obtaining it is done through different
kinds of analyses, of which some are discussed within.

To delve into this subject, we tried to reverse a few applications and
games with different approaches, tools and methods, to find out how
the most information could be acquired.

We found a set of methods that were optimal to us, and allowed us
to modify a computer game both in runtime, and to edit the compiled
bytecode to completely change the game’s behaviour. The methods
require some knowledge about software engineering, but they provide a
good framework for a beginner to start reversing on their own.

Referat
Att lära sig reverse engineering

Reverse engineering är processen att översätta kompilerad kod till käll-
kod, och att analysera denna. Det är ett användbart ämne, eftersom det
är väldigt svårt att bygga vidare på1 pt eller att återskapa ett program,
om man inte vet hur det ser ut på insidan. Att veta det underlättar
även om man ska skapa nya program som ska interagera med det äldre
programmet.

Utmaningen med reverse engineering är att mycket av den informa-
tion som finns i ett programs källkod går förlorad när den kompileras,
och att återskapa denna genom olika sorters analys, av vilka en del
diskuteras i rapporten.

För att lära oss om det här ämnet gav vi oss påatt reverse:a några
applikationer och spel. Vi använde olika infallsvinklar, verktyg och me-
toder för att ta reda påhur vi skulle fåut så mycket information som
möjligt.

Vi hittade en mängd metoder som var optimala för oss och lät oss
modifiera ett datorspel både i runtime och dess kompilerade byte-kod,
för att helt ändra spelets beteende. Metoderna kräver viss kunskap om
programmering, men de ger en god grund för en nybörjare att börja
reverse:a på egen hand.

Statement of collaboration

Report writing and literature study
We contributed equally to writing the report. Most of it is written by us in

collaboration, and we cannot really attribute any single part to one person. The
literature study was also done by both of us in collaboration where both of us read
most of the material, but L. Taubert had more focus on the ownedcore forums,
while P. Djupfeldt focused on the paper about Deobfuscation.
Block Attacks
Analysis

The analysis of Block Attacks is primarily done by L. Taubert. He did all
the analysis with Cheat Engine and furthermore the debugging with OllyDbg. P.
Djupfeldt was responsible for the parts where we used TSearch.
Coding

Gaden and the hacked executable file were written by L. Taubert.
Spelunky

The analysis of Spelunky was primarily done by P. Djupfeldt, in both Cheat
Engine and TSearch. L. Taubert did some minor research with Cheat Engine.
Minesweeper

The Minesweeper analysis was done by P. Djupfeldt.

Contents

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Problem statement . 2

2 Background 3
2.1 Terms . 3
2.2 Literature study . 3

2.2.1 x86 Disassembly . 3
2.2.2 Reversing: Secrets of Reverse Engineering 4
2.2.3 Deobfuscation - Reverse Engineering Obfuscated Code 4
2.2.4 Ownedcore Memory Editing Forums 4

2.3 Tools . 5
2.3.1 OllyDbg 2.01 alpha . 5
2.3.2 HxD 1.7.7.0 . 5
2.3.3 TSearch 1.6b . 5
2.3.4 Cheat Engine 6.1 . 5
2.3.5 BlackMagic and C# . 6

2.4 Problems . 6
2.4.1 Obfuscated code . 6
2.4.2 Optimized code . 6
2.4.3 Pointers . 7

2.5 Solution approaches . 7
2.5.1 Already known data . 7
2.5.2 Debugging . 8
2.5.3 Scanning . 8

3 Method 11
3.1 Our approach . 11
3.2 Practical results . 11

3.2.1 Spelunky . 11
3.2.2 Minesweeper for Windows 7 13

3.2.3 Block Attacks - Rise of the Blocks 14

4 Discussion 19
4.1 Tool evaluation . 19

4.1.1 Cheat Engine and TSearch 19
4.1.2 OllyDbg 2.01 alpha . 20
4.1.3 HxD 1.7.7.0 . 20
4.1.4 C# with BlackMagic . 20

4.2 Method evaluation . 20
4.2.1 Static analysis . 20
4.2.2 Dynamic analysis . 20
4.2.3 Hex modifications . 21

5 Conclusions 23
5.1 Tool evaluation summary . 23
5.2 Method evaluation summary . 23
5.3 Final conclusion . 24

Bibliography 25

Appendices 26

Chapter 1

Introduction

Reverse engineering is the art of translating compiled software to source code. Often
though, you only search for specific key parts of the software, to gain some knowledge
of either how to modify it, or in order to learn more about the software.

Our goal with this project is to learn how to perform some basic reverse engineer-
ing. We also want to evaluate different methods and tools for reverse engineering,
and see what you can do with the knowledge of a reversed program.

Our primary focus will be on reversing games. We will try to gain as much
information as possible about the construction of the game by using different tools
and methods, and see how much we can manipulate the games behaviour with that
newfound knowledge.

1.1 Purpose

One of the prime examples of where reverse engineering is used is cheating in games.
By first analyzing how a game works, and then using methods to modify this code
at runtime or even permanently modify the program, you can gain significant ad-
vantages within the game.

Outside the domain of computer games, you can also gain insight in how to create
your own software, if you for example find an obscure program which does interesting
things, but not enough for your goals. With knowledge of reverse engineering you
could then analyze it, and use its methods to create your own solution with pieces
of code or ideas from that software.

It is also possible to use reverse engineering to achieve interoperability. If there
is no public API to some software, but you still want to use it, it is possible to
reverse the software to create some kind of outside interface to it. A famous case of
this was in 1990 where a game developer named Accolade reversed Sega’s Genesis
platform to create games for it without having to negotiate with Sega about the
proper licences. [3, p. 18][5]

The list of possibilities goes on, we recommend continued reading in Reversing
- Secrets of Reverse Engineering for the interested, Eilam provides a really good

1

CHAPTER 1. INTRODUCTION

briefing on the subject in the first chapter of the book.

1.2 Problem statement
The main problem is that translating from machine readable byte code to human
readable source code is not as simple as the other way around. The high level code
contains a lot more information, which is lost in the translation, for instance names
of classes, variables, functions, et cetera. The structure is lost as well, and all the
comments and documentation. Code gets squeezed together, and if the coder is
really trying to make the final compiled code unreadable, there can be clusters of
pointers and memory allocations that switches locations at different launches of the
software.

On the other hand, since a computer will have to be able to read the program,
it logically has to be possible for a human to read it as well. It can be hard, but it
is always possible.

Because a compiled program is so large, and contains so much information, it
is impossible to just manually look through the code if you actually want to gather
information. What you have to do instead is using different tools to understand the
code. We will discuss some of them, and how we used them, in this paper.

2

Chapter 2

Background

Since reverse engineering is a quickly evolving subject, where new methods arise
quickly, we have split our research into two parts. First the basic research, which
includes reading up on how programs are stored in a computer, how compilers work,
and how the assembly language works. This is our primary literature study. The
second part is experimenting, where our primary focus lies, that will be described
in later chapters.

To give the reader a good overview of our starting point, we will also include in-
formation about some terms that will be used throughout this paper, and a reference
to the tools we will use.

2.1 Terms

Reversing: Performing reverse engineering on software. Memory editing: Chang-
ing the behaviour of running software by editing the allocated memory for that
program during runtime. [Assembly/DLL] Injection: Changing or evaluating
the behaviour of running software by programming your own code which you insert
into the running program, forcing it to run that code. Static program analysis:
Analysing a program without executing it; can be reading source code, byte code,
etc. Dynamic program analysis: Analysing a program during runtime, e.g. with
a debugger.

2.2 Literature study

2.2.1 x86 Disassembly

This book in an online wikibook (open source book), which goes in-depth about
disassembly programs written for the x86 assembly language. The level of expertise
expected by the reader is decent knowledge about the assembly language, and some
understanding of how computers and operating systems works.

3

CHAPTER 2. BACKGROUND

It goes through the subjects of different compilers, different assembly languages,
discusses tools for disassembly and decompiling, and several problems you can run
into while decompiling or disassembling programs, and often how to solve them.

This is a wikibook, which means that anyone can modify it. On the other hand,
anyone can also correct errors contained within, so in most cases the reliability can
be trusted. If we found anything that did not make sense, we looked to another
source for confirmation.

2.2.2 Reversing: Secrets of Reverse Engineering

Reversing is a book containing a lot of information of reversing. The author brings
up information of why and when reverse engineering is useful, what can be achieved
with it, and explains on a highly technical level different methods of reverse engi-
neering.

The book is written by a professional software engineer and reverser, and the
target audience is a person with extensive knowledge of software development, and
skills in lower level languages, and program structures.

It contained very good information, but it was also aimed at people with knowl-
edge sometimes quite far outside our own expertise, which made some of the infor-
mation difficult to absorb. The primary information we gathered from this book
was the more introductory information of how reversing is used.

2.2.3 Deobfuscation - Reverse Engineering Obfuscated Code

This is a scientific paper about how to deal with obfuscation techniques. It describes
a few techniques for obfuscating code and how to deal with them as a reverser, and
evaluates the results of these deobfuscation techniques. It concludes that obfusca-
tion is possible to bypass.

As it is a scientific paper on a narrow subject within reverse engineering, it
is very formally written and requires at least some understanding of the subject
beforehand. A grasp of formal logic is also needed to absorb the entirety of the
paper, but not necessary to understand the basic ideas.

2.2.4 Ownedcore Memory Editing Forums

This is a section of a large cheating forums for computer games, primarily massive
multiplayer online games like World of Warcraft. In this section, the reversing
parts of game cheating is explained, discussed and researched in depth. You can
find texts written by complete beginners asking for help, but also texts by very
skilled programmers who explain methods and contribute to discussions with their
knowledge.

In here we found more substantial methods of what you can do with knowledge
from reversing. The focus within this forum lies more on the part after you have
reversed a piece of software to gain information about it, and what you can do with

4

2.3. TOOLS

this knowledge. In here we also found really good references to further reading, and
information about tools for reversing.

While reading the information here you have to keep in mind that anyone could
have written it. There is a lot of good information, but there is also a lot of junk,
and people who think they know more than they actually do. Before trusting any
information written here, we cross-referenced with more reliable sources, or simply
tested the claims ourselves to confirm or reject them.

2.3 Tools

2.3.1 OllyDbg 2.01 alpha

OllyDbg is a debugger. This software grants the possibility to debug compiled
programs, with all that comes with it. Setting breakpoints, monitor values, and
everything else that you can expect from a debugger is possible with this.

Editing the program memory to change program functionality is also possible
with this tool, if you only want your changes to apply within the scope of one
runtime.[6]

2.3.2 HxD 1.7.7.0

HxD is a freeware hex editor. The only end we use this program for is editing
compiled files. It opens an .exe file, to show its bytecode in hexadecimal form, all
of which is open for editing.

When a certain piece of code that should be changed is isolated within a program,
this software is excellent for the purpose of just entering the file and replacing that
code, with its good navigational controls and search methods.[7]

2.3.3 TSearch 1.6b

TSearch is a freeware tool for scanning and editing memory addresses, performing
code injections and debugging. It also contains functionality for generating trainers,
and some other functions such as a built-in calculator and hexadecimal to decimal
converter.

TSearch primary use is for cheating in games by editing them during run time
or generating trainers for them, but it can open and edit any program currently
running in memory, not just games.[8]

2.3.4 Cheat Engine 6.1

Cheat Engine is an open source tool designed for modifying single-player games
during runtime, to modify the difficulty by changing some key parameters. It has
matured a lot since its release in 2000 though, and can now be used for a lot of
advanced reversing, not only in games.

5

CHAPTER 2. BACKGROUND

It comes with a scanning feature for finding variables or code, a debugger, a
disassembler, and additional useful tools for reversing programs. It also contains an
interesting tool for especially cheating: A trainer generator. Based on the memory
values that you have saved within Cheat Engine after scanning, you can auto-
matically create a trainer, which modifies these values when you press buttons or
hotkeys.[10]

2.3.5 BlackMagic and C#

BlackMagic is a library written in C# which uses Windows API calls to gain access
to running processes under Windows. With this library, reading and writing to
memory allocated to specified processes becomes very straightforward.

BlackMagic also contains other tools, such as injecting assembly code into a
running process, and other functions.[9]

2.4 Problems

2.4.1 Obfuscated code

A measure a developer might take to protect its code is obfuscating it. Code ob-
fuscation is an umbrella term for a number of techniques for making code harder
to reverse. These include changing the structure of the program, its logic, data and
layout, without changing its functionality. This can be done either manually, by re-
naming functions and variables or making confusing function calls, or automatically,
by using an obfuscation tool.

Obfuscated code is a problem for a reverser because it is harder to read for a
human. Changing the layout of the code is no problem for a computer, it can still
read it perfectly. But for a human, not having a clear, structured path to follow
turns confusing very quickly. Likewise, adding pointless algorithms will make it
much harder for a human to understand what the program does. Adding these
pointless functions of course comes with a cost: the program might require more
processing power and become slower. [3, p. 327]

The methods above are used for obfuscating the code during runtime, but might
not be as big a problem during a static program analysis. A method for making
static program analysis harder is introducing execution paths that are not authen-
tic. While they will never be executed during runtime, they will introduce false
information into the result of a static analysis. [2]

2.4.2 Optimized code

When a program is written in a high-level language, like C++, the programmer
often goes through a lot of effort to structure and organize the program code.
Code is put into classes and structs, with thought-out variable names and extensive
documentation. Function names are selected with great care, so that you know

6

2.5. SOLUTION APPROACHES

exactly what the different functions actually do, even if you did not write them
yourself.

When this is compiled, most of it goes away. All the variable names, class names
and comments disappear completely. But it does not end there. Most high-level
compilers do not stop at just translating code to its low-level counterpart, they also
optimize the code, to increase the speed at runtime. They might change methods
using tail recursion to iteration, reform boolean expressions within if-clauses, and
generally just change snippets of code to mathematically equivalent pieces that run
faster on a machine, but is a lot harder for a human to read.

So when you compile and decompile a program, you do not only lose all the
structural conveniences, but you also receive a result that is structured different
from the original result. [1, p. 63]

2.4.3 Pointers

Pointers are variables which does not explicitly store a value, but instead an address
in the memory. They can become a problem for reversers when they are used
extensively, and in chains (pointer pointing to a pointer, pointing to a pointer,
etc.). The reason is that a value can reside at a location in memory, but when this
value is edited, it is instantly overwritten (or even ignored) since the real information
was stored at a pointer at a completely different place.

It also poses a problem for when you want to use the memory addresses within
a trainer software, since the base pointer could change its address, which results
in the interesting data being stored at different places in the memory at different
launches, even related to the base address of the program.

2.5 Solution approaches

A lot of these approaches are not found in our literature, and hence no sources are
provided. Instead, we have found these solutions by experimenting, in many cases
with guidance from our literature, in others just by using the functions provided by
the tool, and in all by using our knowledge about software engineering and problem
solving; and our common sense.

2.5.1 Already known data

When you want to reverse a well-known program or a program which is built upon a
well-known platform, you rarely have to do all the work alone. Even if the structure
of programs like, for instance, popular games and operating systems can be very
complex, there are often resources available by people who have found bits and
pieces of the code, and made it publicly available. This can include the structure
of object management, key memory locations within the program, or bits of the
engine that can be used and modified.

7

CHAPTER 2. BACKGROUND

A good example of this is within the ownedcore forums, where you can find
extensive amounts of information about most popular games, especially World of
Warcraft. With all the information available there, it takes a programmer only a
few hours to set up a running trainer for that game, which can perform tasks, or
display normally hidden data, within the game automatically.

2.5.2 Debugging
A debugger is a very useful, perhaps even mandatory, tool for performing dynamic
program analysis. Debugging is done by loading the program you wish to reverse
into the debugger. Using the debugger you then set a breakpoint instruction in the
code of the program. When it executes this instruction it is paused and control is
handed to the debugger. You can now use the debugger to go through the program
step by step, instruction by instruction. A good debugger will not only show you
the instructions, but also the relevant registers and program stack, and what they
contain at that point of execution.

All this information is very valuable for understanding exactly what a program
does. By observing what happens both in the program and in memory when a
certain instruction is called with a certain value, you get an idea of what that
segment of code is for. With enough time this will let you piece together the
entirety of the program.

While it is possible to glean some of the same information from just reading
disassembled code as from debugging, it would be a very arduous task. A debugger
helps the reverser keep track of exactly what is happening, with no risk of jumping
to the wrong instruction. A good debugger will also give the reverser access to
information not normally available, such as relevant system statistics and data, and
data only available at runtime. [3, p. 116]

2.5.3 Scanning
Another useful method for finding interesting data within a program is scanning.
Instead of stepping through the code, scanning is used for finding specific pieces
and values of the code. If you know something about how data or code will behave,
you can scan an open process for that behaviour. We will provide some examples
of how scanning with Cheat Engine and TSearch works.

Finding specific value that changes

This is the most simple scan you can do. You know exactly what value you are
looking for. To perform this scan, you simply put in the value and data type, and
scan the process for that value. Since an open process contains a lot of data, it is
probable that this value is found several times. You then trigger a change of this
value (for example type a new row in a document handler, or trigger something that
yields score in a game) and scan for the new value within the results. This process
is repeated until the value is found.

8

2.5. SOLUTION APPROACHES

Other types of value scans

If you do not know the value, you will have to use other kinds of scans. For example,
to find your location within a 3d game world, you might know when you move to
different places, but you have no idea of knowing your exact position.

For this event, we scan for an unknown initial value, which we then filter with a
lot of ”value changed”, ”value increased”, ”value decreased” and ”value unchanged”
scans after each other. We can for example repeatedly scan for value unchanged
when we stand still to remove a lot of values which naturally change (enemies
moving, time ticking, and so on). We can move forward, and search for an increase,
move backwards and search for a decrease, and so on. This process is more time
consuming, and often harder, but with some patience it can yield very interesting
results.

Code scans

Sometimes you are interested more in some piece of code instead of a stored value. In
Cheat Engine, you can search for this too. Two scans perfect for this are ”find what
accesses this address” and ”find what writes to this address”. Their functionality is
exactly what it sounds like. They lock onto a memory location, and finds pieces of
code which accesses or writes to this address.

In TSeach, this is called ”AutoHack”. You enable the debugger and select a
memory address you wish to AutoHack. The debugger then checks which instruc-
tions access that address and displays them in the AutoHack window.

This code can then be debugged, replaced, changed, analyzed or used for any
other ends.

9

Chapter 3

Method

Here we will begin to cover the second part of our research, the experimenting. We
will go through our experiences, to give a hint of what worked out well for us, and
what did not work out so well at all.

3.1 Our approach

When we started out with this project, neither of us knew much about reverse engi-
neering. Both of us could use high level programming language - such as Java and
C++ - and we had basic knowledge about lower level language - such as assembly
and C.

The first method we used was debugging some simple programs with OllyDbg.
We attempted to follow the code, and look at the program’s output while stepping
through the debugger. This was not very viable though, and only really worked
if you had a clue of where to begin, or if the program was very simple, such as
something just printing ”Hello World!”.

After that we attempted to find values with Cheat Engine and TSearch instead.
We experimented with these tools to utilize their functionality, to make some sense
of the programs we were trying to reverse. This yielded a lot more results than the
debugging, and made the debugging so much more relevant with more knowledge
about the program. We will explain our results in detail below.

3.2 Practical results

3.2.1 Spelunky

Spelunky is a randomized adventure game written in GML (Game maker language).
It is a 2d game with the player controlled character running around in dungeons,
collecting treasures and defeating enemies.

11

CHAPTER 3. METHOD

Scanning

By using Cheat Engine, we found the locations of various variables, for example
health, number of bombs, current level, et cetera. Of note was that all these values
were stored in 8 byte double types, even though many of them only could contain
values 1-99.

After discovering the x and y coordinates for the player we also found, by ex-
perimenting and looking at the assembly code, that it appears that the instructions
for storing these coordinates are always stored at the same space in the memory.
Although, after further digging, we realized that these instructions were just the
end of a long chain of events. What actually happened was that these lines of code
were called every time some data should be written. In other words, it was used for
pretty much everything.

Runtime memory editing

During an attempt to hack the game to give you infinite health by replacing the
address where health is stored with a NOP instruction something interesting was
discovered. Understandably, replacing a value with null made the game crash. The
interesting part is that the crash report showed each line where an error occurred
in plain source code. This could help with understanding just how the game works.
That it shows plain source code might be specific to GML, but it shows that some-
thing as simple as crashing a program can reveal information about how it works.

Debugging

When we attempted to use TSearch’s debugger to look at the disassembled code
and find the instructions for writing to the address where health is stored, Spelunky
crashed. This was a recurring problem for TSearch with Spelunky, and prevented
any deeper study of memory addresses using this tool, as we would need the debug-
ger to investigate any pointers to the address.

Difficulties

At different runs of the program, the variables we had discovered appeared at dif-
ferent locations in the memory. Our first thought was that they were simply offsets,
and our next approach was to see them as offsets from the base address of the game.
This, however, did not prove successful either. Not only did they appear at different
memory locations, they also appeared at different offsets seen from the base address
of the game.

Solutions

The way variables appeared at different locations in memory might hint to them
being stored in a similar way as more advanced games, like World of Warcraft
(WoW). As found in numerous threads in the ownedcore forum, WoW uses an

12

3.2. PRACTICAL RESULTS

object manager to store data about objects (for instance the player). This object
manager appears at different locations in the memory space at different launches,
but there are pointers at a fixed offset that points towards this manager object. We
attempted to find such a pointer, but with no success.

We then decided to abandon the research of this game, since it was compiled in
a way that made advanced reversing very difficult, and beyond our scope.

3.2.2 Minesweeper for Windows 7

Minesweeper is a staple game for Windows. The goal of the game is to find all the
mines without clicking on any of them. You discover mines by clicking on tiles.
Tiles either hide mines, numbers or empty space. If you click on a mine, you lose.
The numbers tell you how many mines are adjacent to that tile. To help you, you
can tag a tile with either a flag or a question mark.

Scanning

By using Cheat Engine, we discovered the value for deciding how many mines should
appear on a custom field. We also discovered that each tile is an object, and an
un-clicked tile has one of several states: blank underneath, a number underneath,
un-flagged, flagged or question marked.

TSearch was unable to detect Minesweeper as a running process, and thus unable
to open it.

Runtime memory editing

on the field, but by directly editing the memory address for mines we discovered
while scanning, we managed to fill the entire field with mines. This revealed some-
thing interesting about this version of Minesweeper: You cannot lose on the first
click. No matter where you clicked, you won immediately, as that tile was always
safe and every other was a mine.

We also edited the state of one of the tiles using the data we found while scan-
ning. The states are all decided by the values 0-11 at the memory address; 0 being
blank, 1-8 being a number, 9 unflagged, 10 flagged and 11 question marked . We
were unable to find the value that decided if there was a mine hidden underneath,
though. This might be connected to the fact that mine locations are not decided
until after the first click, as shown above.

It was, however, possible to turn a mine into something else. By playing the
game normally, you can become certain that a tile must hide a mine. Once this has
been ascertained, it is possible to change the state of the tile, and there would be
no mine. Once a tile had been revealed though, it was no longer possible to change
its value with this method.

13

CHAPTER 3. METHOD

Debugging

We did not attempt any in-depth debugging of Minesweeper.

Difficulties

The greatest difficulty with Minesweeper was that it has very little visible data, and
thus makes it a bit difficult to get an entry point for scanning.

Solutions

We had to start from what little information was available, such as the number
of mines. To get any more interesting data, careful use of the scanning tools was
required. We scanned for a likely range of values, and then performed an action to
influence the values we were looking for, and repeated this method until we found
something interesting.

3.2.3 Block Attacks - Rise of the Blocks

Block attacks is a puzzle game, quite similar to Tetris. The player sees a 6x14
matrix of different colored blocks, and the objective is to match them in lines or
columns with three or more by swapping blocks, two at a time. You control a
”crosshair” with the keyboard, which will aim on two horizontally adjacent blocks,
and by clicking the ”fire”-button, those two blocks swap places.

You receive score when you remove blocks and when a new row of blocks is
pushed up. The speed also increases as you progress.

Scanning

We started out by finding the score value. Since the game displays the value, and
it changes in a controllable manner, it was very easy to just search for this value
using the methods of Cheat Engine.

To see how memory allocation worked, we restarted the game after finding this
value, and attempted to access the same memory location. It resulted in the score
value again, and through this we learned that the game uses static memory alloca-
tion within its assigned virtual space.

This was very good news, since it meant that we could use the same address
values each time we ran the program. All the values we found had this kind of
storage, which would allow us to modify pretty much the whole program without
using any advanced scanning methods during runtime.

Using this knowledge, we performed more advanced scans, to find even more
interesting values. One of the most key pieces of memory was where the game field
itself is stored. Since the game is relatively simple, and the idea makes sense, we
assumed that the blocks would be stored in a matrix of integers, where the number
in the integer was 0 for an empty field, and another number for each of the colors.

14

3.2. PRACTICAL RESULTS

Figure 3.1. The main playing window of Block Attacks. This scene shows how four
green blocks soon will be removed because they have been lined up.

Based on this assumption we first scanned for zeros, then we narrowed down
the results by performing multiple scans for unchanged values while the game field
had not pushed up a new row, since the game field should look identical until it
did. When the game field had been pushed up, we scanned for a changed value,
and then started the process over. This scan resulted in some strange addresses,
but actually gave results. We received three addresses, which corresponded to three
randomly located blocks on the field.

We also used TSearch in an attempt to replicate the results of the scan for block
addresses we did with Cheat Engine. Once we had found one block address, it was
easy to find the addresses for the first and last block in the matrix: by first making a
list of all possible block states and their values we searched for the values of the first
blocks in two adjacent columns. By finding these, we could calculate how far apart
these addresses were in memory and thus how many rows each column contains.
By applying some simple math we quickly found the start and end points of the
matrix.

During a first, failed, attempt to find the block addresses with TSearch we

15

CHAPTER 3. METHOD

discovered something interesting. By chance we found the memory address for the
gameï¿½s crosshair y-position. From this and the way other data has been stored
in the game memory we deduced that the x-position should be located at a nearby
memory address. We assumed that it would be stored at the address just before the
y-position, since this is how x- and y-positions are usually defined. This assumption
turned out to be correct, and this knowledge let us gain full control of the crosshair.

Runtime memory editing

By changing the block values found during scanning, we discovered that zero actu-
ally was one of the colors, and that an empty field was represented by the maximum
value or a 32-bit unsigned integer, equalling -1. Some tweaking of these values re-
vealed the location of the first block, and how exactly they were stored.

The blocks were stored in a matrix, where the first value was the bottom left
block. The next value was the block on top of it, so the columns were stored
together. Our first attempts at modifying these values assumed that they used a
matrix of the same size as the playing field: 6x14. We then proceeded to clear this
matrix within Gaden, but received some strange results. Some further investigation
revealed that the matrix was actually 30 blocks high, even though it never filled up
that much by ï¿½naturalï¿½ means.

We used TSearch to locate the value for ï¿½chainsï¿½, the number of succes-
sively deleted lines with one move, in the game. Finding this value proved easy, but
we were unable to do anything with it directly, as it is constantly rewritten while
the game plays. In an attempt to change this we replaced a segment of code with no
operations. This led to something odd occurring in the game. The blocks stopped
rising and the score counter started going up at a startling rate. Undoing the code
replacement did nothing. The game was still playable, though it would run out of
blocks as no new ones would appear on the field. We tried to understand why this
happened, but because of limitations in TSearch we were unable to fully study the
entire code segment.

Debugging

When the scanning process was complete, a lot of memory locations were acquired.
To proceed with the reversing we then used the debugging tools in both Cheat
Engine and OllyDbg.

From our scanning process, we knew the location of the piece of code that
changes the type of block that appears at the bottom row, and we used this memory
location as starting point in our debug. By stepping through the code from this
point, we found the piece of code that changes the type of block that will appear
the next turn. This piece of code and its location were noted, to be used in hex
modifications.

16

3.2. PRACTICAL RESULTS

Hex editing

With the code for replacing the bottom blocks isolated, we modified it. By using the
hex editor HxD we located this bytecode within the executable file and replaced it
with bytecode representing assembly nop-operations (operations that does nothing
at all). This modified executable was then saved as a different file. When launched
and played, this game would randomize colors for each column, but never change
these colors. This resulted in the game just going on forever, the rows could not get
up since they removed themselves every three ï¿½popsï¿½.

Gaden

With all this information about the structure and storage within the game, we could
proceed with creating a trainer of our own to this particular game. We named this
trainer software ”Gaden”, an acronym for ”Game Administration Engine”. We wrote
it in C# with references to BlackMagic. By using everything we learned about the
game, we created an admin-like panel for the game. Here we could change scores,
manually swap any two pieces we wanted to, change score, and use a ”panic button”,
which fills up the whole game field with blocks of the same color, that then gets
removed by the game as matches, and provides an empty field.

The second and more advanced part of Gaden consists of an Artificial Intelligence
(AI), which simulates actual gameplay of this game. Even though we do have access
to all of the playing field, we decided to create a program which actually follows
the rules, and plays the game. To accomplish this, the engine scans the playing
field for three blocks of the same color which is located in adjacent rows. It then
simply goes through the two lower rows, aligning these blocks to the location of
the topmost block. This simple strategy is repeated until there are no more triples
to be found, and then Gaden switches over to randomly swapping pieces, to create
new opportunities.

This method proved to be quite efficient, and with a delay between each move
long enough for it to still seem humanly slow it could solve puzzles at very high
speeds. And when the delay was set to zero, Gaden could, with decent luck, solve
puzzles at any speed.

There are plenty of optimizations available for this AI, but the goal was not to
create a perfect AI for this game. We were more interested in demonstrating what
can be done when you have information about the structure and internal workings
of a program.

Difficulties

We had very few difficulties with Block Attacks, since it was such a simple program
with very little, if anything, done to obfuscate its code.

17

CHAPTER 3. METHOD

Figure 3.2. The GUI of our trainer when it is attached to the Block Attacks process.
The buttons will cause Gaden to interact with the game in different manners.

Solutions

With a lack of difficulties, we simply applied what we had learned during the pre-
vious test on other games, and yielded satisfactory results.

18

Chapter 4

Discussion

4.1 Tool evaluation

4.1.1 Cheat Engine and TSearch

Cheat Engine

In addition to performing its expected duties with grace, Cheat Engine surprised in
a positive manner by having very advanced features for reversing, coming with a de-
bugger equipped with automatic assembly injection, and other very useful reversing
tools.

The graphical user interface (GUI) is also well matured, and all buttons can be
hovered for an explanation of what they do.

TSearch

One of the first things one notices when running TSearch is that it is not immediately
apparent what every button does. Some are obvious, such as the big Open Process
button, but others are near impossible to tell what they do just from looking at
them. All buttons in the main window give a short description upon mouse over,
but none in one of the other windows, the AutoHack window, where one looks at the
disassembled code and performs code injections. These buttons required looking up
in the TSearch manual to understand.

A limit in TSearch is that it, despite what the manual says, cannot open any
running process. What decides if a process can be opened in TSearch is uncertain,
as it cannot open any active program running and only a few passively running
processes.

Conclusion

In conclusion, it is readily apparent that Cheat Engine is a better tool than TSearch.
There was nothing TSearch could do that Cheat Engine could not do just as well,
or better, except having a built-in calculator and hexadecimal to decimal converter.

19

CHAPTER 4. DISCUSSION

These tools are however not very necessary, as the standard Windows calculator
can perform these functions.

4.1.2 OllyDbg 2.01 alpha

OllyDbg is a very competent debugger. We did not use it overly much, mostly
because the debugging step comes when you have pretty significant knowledge about
the software already, and want to go in-depth. For our purposes when we needed a
debugger, we found no flaws. The user interface was excellent, loading times were
relatively fast and breakpoint management smooth.

4.1.3 HxD 1.7.7.0

We only used this tool for replacing source code, and for that end it performed
great. It opened up, modified and changed the program instantly (as opposed to
OllyDbg) since no debugger has to be attached, and the navigation was excellent.

4.1.4 C# with BlackMagic

BlackMagic was a great library for managing running processes. The compilation
of the provided source code was quick, and linking to the completed DLLs was easy.
We did not delve into advanced coding, and any high-level programming language
could probably have sufficed. Although, since we worked in Windows, C# had
relatively straightforward access to the necessary API-calls, which made this choice
a good one, and removed a lot of configuration time from our project.

4.2 Method evaluation

4.2.1 Static analysis

We have used very little static analysis during this project, partially because it is
a very daunting task to go through pure decompiled code, but also because the
method did not lend itself very well to what we tried to do, i.e. editing games
during run time. It is likely to be more useful for fully reversing a program, as that
requires a deeper understanding of the program structure than what we did.

4.2.2 Dynamic analysis

Scanning

Scanning worked very well for us, and is the method we used the most throughout
the project. We used it a lot in conjunction with debugging, where we would scan for
a value we were interested in and then using a debugging tool to see how the value
was changed by the program. Experimenting with values and memory addresses
we found through scanning often gave us a better understanding of the program

20

4.2. METHOD EVALUATION

we were working on. An example is when we discovered the true size of the block
matrix in Block Attacks. We had first assumed that the matrix was 6x14 blocks
large, the same size as the visible playing field, but by scanning and changing values
we discovered that it was in fact 6x30 blocks large.

We used scanning as an entry point method. Even with no knowledge at all
about a program, scanning based on qualified guesses provided very usable results,
which we noted and built more research on.

Debugging

Debugging is very useful for finding details about how code executes. With knowl-
edge about the program’s structure, and some detailed information about where
information is stored, breakpoints can be set in the program, and code analyzed.

Debugging worked out great when we had information to base the process on,
and often yielded very interesting results. For example, we learned how variables
are accessed and modified by debugging. By debugging, we could also find memory
locations that we needed, by starting the debug process in a place we had already
found by scanning, and following its trace.

We also attempted debugging as an entry point for reversing, which did not
work out well. Programs are simply too large, debugging without any information
about where to start becomes too much of a tedious and futile process.

4.2.3 Hex modifications
The hex modifications we performed were very simple. They were the last step in
our chain, and when we got to it we already knew what code we had, and what
code we needed. We had already analyzed the variables, debugged the program, and
tried replacing some assembly lines during runtime. Only the final modifications
were left to do here.

A pitfall can be to attempt to perform hex modification too early. Modifying
even one assembly instruction to something invalid might completely break the
program, so you have to possess the exact knowledge required before attempting
this step, it is no method of analysis.

21

Chapter 5

Conclusions

5.1 Tool evaluation summary

The art of reverse engineering is a vast subject, and we have only touched the
surface of it in this project. There are many tools available and we have tested and
evaluated only a few of them, most notably Cheat Engine and TSearch.

At first glance the two programs appeared to be equally good, with only aesthetic
differences and some very minor functional differences, TSearch having some tools
for performing calculations in decimal and hexadecimal. But once we pushed their
limits a bit more we noticed some serious flaws in TSearch, and became more and
more positively disposed towards Cheat Engine.

OllyDbg, HxD and BlackMagic all worked as expected, and we think they are
all excellent tools in the repository for a beginning reverser.

5.2 Method evaluation summary

The method that yielded best results for us was using a chain of tools in order,
proceeding to the next step after sufficient knowledge had been acquired. The
chain which worked out best for us is explained below.

The first thing to do was always scanning. This was done to isolate pieces of
data and/or code within a running program, which could then be analyzed further.
If the scan was thorough, knowledge about the structure within the program, some
source code and methods of storage were all obtained.

The second step was debugging the running program. With the knowledge
from scanning, breakpoints could be set, and code further analyzed. Particularly
interesting pieces of code were read through, and knowledge of details not revealed
in the scanning process could be obtained.

The third step was the modification. This could be done in two ways, either
modifying the program itself with an hex editor, or creating an external program
which would attach to the process in order to modify and/or read the program data
in runtime.

23

CHAPTER 5. CONCLUSIONS

5.3 Final conclusion
Reverse engineering is a very deep and interesting field, and we have learned a lot
about the subject throughout the course of this project. We are, however, still no
experts, as the subject is far too complex to fully absorb during the relatively short
time we had for this project.

There are several applications for the art of reversing, many of them in the
field of computer security. By using reversing techniques you can find out how a
program works on a more fundamental level than by just using it and looking at
what is presented to you while you use it normally. This can of course reveals holes
in a program’s security, and this can be used for a number of purposes by a reverser:
from cheating in games, such as we have done in our experiments and shown in this
report, to attacking businesses that rely on secure software. By using reversing
techniques to detect these security holes a company will be able to deliver a safer
product.

24

Bibliography

[1] x86 Disassembly, (2011). Available from: http://en.wikibooks.org/wiki/

X86_Disassembly; [Accessed 31-01-2012]

[2] Udupa, S., Debray, S., Madou, M. Deobfuscation - Reverse Engineering
Obfuscated Code, (2006). Tucson: The University of Arizona. Available
from: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

1566145 [Accessed 04-04-2012]

[3] E. Eilam, Reversing - Secret of Reverse Engineering, (2005). Indianapolis, Wiley
Publishing.

[4] [Guide] How to make a Wow bot for complete newbs!, (2011). Available from:
http://tinyurl.com/ownedcore-wow-bot-how-to; [Accessed 15-02-2012]

[5] United States Court of Appeals 977 F.2d 1510, (1993). Available
from: http://bulk.resource.org/courts.gov/c/F2/977/977.F2d.1510.
92-15655.html; [Accessed 11-04-2012]

[6] OllyDbg, (2011). Available from: http://www.ollydbg.de/; [Accessed 31-01-
2012]

[7] HxD - Freeware Hex Editor and Disk Editor, (2011). Available from: http:

//mh-nexus.de/en/hxd/; [Accessed 04-04-2012]

[8] TSearc Manual, (2002). Available from: http://www.timsvault.com/

cheattools/tsearch.htm; [Accessed 20-02-2012]

[9] BlackMagic – Managed Memory Manipulation, (2008). Available from: http:

//tinyurl.com/blackmagic-mem-manipulation; [Accessed 17-03-2012]

[10] Cheat Engine, (2011). Available from: http://www.cheatengine.org/; [Ac-
cessed 20-02-2012]

25

Appendix

AI code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

using Magic;

namespace BlockAtHACKs
{

class AI
{

private uint[,] boardMatrix;
private int xSize, ySize;
private BlackMagic BMage;
public static int SLEEPTIME = 100;
private static int SLEEP_BETWEEN_CLEAR = 1000;

public void init(int xsize, int ysize, BlackMagic BM)
{

BMage = BM;
xSize = xsize;
ySize = ysize;

boardMatrix = new uint[xSize, ySize];
UpdateBoard();

}

public void Scramble(int times)
{

SLEEPTIME = SLEEPTIME / 4;
Random rng = new Random();
for (int i = 0; i < times; i++)
{

MoveCursorSlowly((uint)rng.Next(12), (uint)rng.Next(5))
;

SwapAtCursor();
}
SLEEPTIME = SLEEPTIME * 4;

}

27

public bool ClearRow()
{

uint targetx = 11;
uint targety = 0;
bool found = false;
while (targetx >= 2 && !found)
{

targety = 0;
while (targety <= 5 && !found)
{

if (IsTopOfTriple(targetx, targety))
{

found = true;
System.Console.WriteLine("Found " + BMage.

ReadUInt(GetMatrixMemPos(targetx,targety))
+ " at x: " + targetx + ", y: " + targety);

}
targety++;

}
targetx--;

}
targety--;
targetx++;
System.Console.WriteLine("Target X: " + targetx + ", Target

Y: " + targety);
if (!found)

return false;
// x, y = FindMatching() >= 2
// color = Read(x,y)
uint color = BMage.ReadUInt(GetMatrixMemPos(targetx,targety

));
// location1 = FindLocation(x-1,y,color)
uint firsty = FindBlockOnRow(targetx-1, color);
// location2 = FindLocation(x-2,y,color)
uint secondy = FindBlockOnRow(targetx-2, color);
System.Console.WriteLine("First Y: " + firsty + ", Second Y

: " + secondy + ", Color: " + color);
MoveCursorSlowly(targetx-1, targety);
System.Console.WriteLine("Movement complete to place of

origin");
MoveCursorDir(’d’);
Thread.Sleep(SLEEPTIME);
MoveBlockBetween(firsty, targety);
System.Console.WriteLine("Movement complete from first row

.");
MoveCursorDir(’d’);
Thread.Sleep(SLEEPTIME);
MoveBlockBetween(secondy, targety);
System.Console.WriteLine("Movement complete from second row

.");
Thread.Sleep(SLEEP_BETWEEN_CLEAR);
return true;

}

28

public bool IsTopOfTriple(uint x, uint y)
{

if (NumberMatchingBelow(x, y) >= 2)
return true;

return false;
}

public void UpdateBoard()
{

//for (uint x = 0; x < xSize; x++)
//{
// for (uint y = 0; y < ySize; y++)
// {
// boardMatrix[x, y] = BMage.ReadUInt(

GetMatrixMemPos(x, y));
// }
//}

}

public void MoveCursorDir(char dir)
{

uint curx = BMage.ReadUInt((uint)Form1.Globals.XHAIR_X);
uint cury = BMage.ReadUInt((uint)Form1.Globals.XHAIR_Y);
switch (dir)
{

case ’u’:
MoveCursor(curx + 1, cury);
break;

case ’d’:
MoveCursor(curx - 1, cury);
break;

case ’l’:
MoveCursor(curx, cury - 1);
break;

case ’r’:
MoveCursor(curx, cury + 1);
break;

}
}

private uint FindBlockOnRow(uint row, uint block)
{

for (uint i = 0; i <= 6; i++)
{

if (BMage.ReadUInt(GetMatrixMemPos(row, i)) == block)
{

return i;
}

}
return 100;

}

public void MoveBlockBetween(uint from, uint to)

29

{
// from 6 to 5
if (from > to) // We’re going to move the block left. Align

cursor 1 step to the right of the pos.
MoveCursorSlowly(0, from - 1, false);

else // Moving right, align on the spot.
MoveCursorSlowly(0, from, false);

while (to > from) // Move the block some steps right
{

from+=1;
SwapAtCursor();
MoveCursorDir(’r’);
Thread.Sleep(SLEEPTIME);

}
while (to < from) // Move the block some steps left
{

from-=1;
SwapAtCursor();
MoveCursorDir(’l’);
Thread.Sleep(SLEEPTIME);

}
}

public void MoveCursorSlowly(uint x, uint y, bool movex = true)
{

if (x > 12)
x = 12;

if (y > 4)
y = 4;

uint curx = BMage.ReadUInt((uint)Form1.Globals.XHAIR_X);
uint cury = BMage.ReadUInt((uint)Form1.Globals.XHAIR_Y);
while (curx != x && movex)
{

if (curx > x)
{

MoveCursorDir(’d’);
curx--;

}
else if (curx < x)
{

MoveCursorDir(’u’);
curx++;

}
Thread.Sleep(SLEEPTIME);

}
while (cury != y)
{

if (cury > y)
{

MoveCursorDir(’l’);
cury--;

}
else if (cury < y)
{

30

MoveCursorDir(’r’);
cury++;

}
Thread.Sleep(SLEEPTIME);

}
}

public void SwapAtCursor()
{

uint x = BMage.ReadUInt((uint)Form1.Globals.XHAIR_X);
uint y = BMage.ReadUInt((uint)Form1.Globals.XHAIR_Y);
x++;

uint oldleft = BMage.ReadUInt(GetMatrixMemPos(x, y));
uint oldright = BMage.ReadUInt(GetMatrixMemPos(x, y + 1));

if ((oldleft > 5 && oldleft < 4000000000) || (oldright > 5
&& oldright < 4000000000))
return;

BMage.WriteUInt(GetMatrixMemPos(x, y), oldright);
BMage.WriteUInt(GetMatrixMemPos(x, y + 1), oldleft);

}

public void MoveSelectedToPos(uint x, uint y, uint block)
{

// Finding closest block
uint pos = 0;
for (uint col = 0; col <= 6; col++)
{

if (BMage.ReadUInt(GetMatrixMemPos(col, y)) == block)
{

pos = col;
break;

}
}

}

public int NumberMatchingBelow(uint x, uint y)
{

int matching = 0;
uint block = BMage.ReadUInt(GetMatrixMemPos(x, y));
if (block > 100)

return 0;
for (uint row = x - 1; row >= 1 && row < 100; row--)
{

if (NumberInRow(row, block) > 0)
matching++;

else
return matching;

}
return matching;

}

31

private int NumberInRow(uint x, uint block)
{

int matching = 0;
for (uint y = 0; y <= 6; y++)
{

matching += (BMage.ReadUInt(GetMatrixMemPos(x, y)) ==
block) ? 1 : 0;

}
return matching;

}

public void MoveCursor(uint x, uint y)
{

if (x < 0 || x > 12 || y < 0 || y > 4)
return;

BMage.WriteUInt((uint)Form1.Globals.XHAIR_X, x);
BMage.WriteUInt((uint)Form1.Globals.XHAIR_Y, y);

}

public void Swap(uint x, uint y)
{

if (x < 0 || x > 12 || y < 0 || y > 4)
return;

MoveCursor(x, y);
uint leftPos = GetMatrixMemPos(x + 1, y);
uint rightPos = GetMatrixMemPos(x + 1, y + 1);
uint oldLeft = BMage.ReadUInt(leftPos);
uint oldRight = BMage.ReadUInt(rightPos);
BMage.WriteUInt(leftPos, oldRight);
BMage.WriteUInt(rightPos, oldLeft);

}

public uint GetMatrixMemPos(uint x, uint y)
{

return (uint)(Form1.Globals.BOARD_PTR) + x * 4 + y * 4 *
30;

}
}

}

32

Gaden code

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Threading;

using Magic;

namespace BlockAtHACKs
{

public partial class Form1 : Form
{

/* Form methods */

public Form1()
{

InitializeComponent();
}

private void LoadButton_Click(object sender, EventArgs e)
{

if (IsLoaded)
{

return;
}
Initialize();

}

private void PanicButton_Click(object sender, EventArgs e)
{

ClearField();
}

private void SolveButton_Click(object sender, EventArgs e)
{

AInt.ClearRow();
}

private void SolveAllButton_Click(object sender, EventArgs e)
{

while (AInt.ClearRow()) ;
}

33

private void SolveForeverButton_Click(object sender, EventArgs
e)

{
while (true)
{

if (!AInt.ClearRow())
AInt.Scramble(1);

}
}

private void SwapButton_Click(object sender, EventArgs e)
{

//RandomSwap();
try
{

AInt.Swap((uint)Convert.ToInt32(textBox1.Text), (uint)
Convert.ToInt32(textBox2.Text));

}
catch (System.FormatException exc)
{

RandomSwap();
}

}

private void ReadButton_Click(object sender, EventArgs e)
{

textBox3.Text = "" + AInt.NumberMatchingBelow(Convert.
ToUInt32(textBox1.Text), Convert.ToUInt32(textBox2.Text
));

SetDebug(debug);
}

private void ActionButton_Click(object sender, EventArgs e)
{

int newSpeed = Convert.ToInt32(textBox1.Text);
AI.SLEEPTIME = newSpeed;

}

/* Editing part */

//Debug
public static string debug;

private BlackMagic BMage;
private AI AInt;
private bool IsLoaded;
private int[,] boardMatrix;

public enum Globals
{

SCORE = 0x0028A538,
SPEED = 0x0028A4F4,

34

BOARD_PTR = 0x0028A1A8,
XHAIR_X = 0x0028A520,
XHAIR_Y = 0x0028A51C

};

public void Initialize()
{

BMage = new BlackMagic();
if(!BMage.OpenProcessAndThread(SProcess.

GetProcessFromProcessName("block_attack")))
{

Console.WriteLine("Yes you are fucked!");
IsLoaded = false;
return;

}
IsLoaded = true;
AInt = new AI();
AInt.init(30, 6, BMage);
Console.WriteLine("Attached to le Blocks!");
Form1.ActiveForm.Text = "Gaden - Attached at " + BMage.

MainModule.BaseAddress;
}

private void RandomSwap()
{

Random random = new Random();
uint x = (uint)random.Next(13);
uint y = (uint)random.Next(5);
AInt.Swap(x, y);

}

private void ClearField()
{

int offset = 0x0;
for (int i = 0; i < 30; i++)
{

for (int j = 0; j < 6; j++)
{

BMage.WriteInt((uint)(Globals.BOARD_PTR + offset),
0);

offset += 0x4;
}

}
}

public void SetDebug(string text)
{

Text_Debug.Text = text;
}

}
}

35

www.kth.se

