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Anders Elowsson

12th April 2012

Abstract

This study explores the German songs of the Essen Folk Song Collection and provides

statistical �ndings from them. The aim has been to study aspects of a contextual nature such

as probabilities for di�erent intervals at certain formations of notes, correlations between time

domain and pitch domain, or melodic ranges for phrases or songs. The results are relevant to

several �elds of music science, such as music cognition and algorithmic composition. The study

has been done in Matlab into which Kern scores were converted via MIDI. Among the most

interesting �ndings are: A clear correlation between pitch salience and metrical salience. A

clear correlation between interval size and note length. That stairs (subsequent notes of small

intervals) are more common in a rising formation than in a falling formation. Findings that the

melody tends to continue in the same direction when a new direction with small intervals has

recently been established. That contour repetition is almost always accompanied by rhythmic

repetition at the phrase level. That earlier �ndings for convex phrase arches seem to mostly be

a phenomena of an upward movement in the �rst phrase of a song and downward movements

in the last phrase of a song.
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1 Introduction

This study explores the German songs of the Essen Folk Song Collection (Scha�rath, 1995) and

provides statistical �ndings from them. The total number of songs are 5370 and in the statistical

examinations di�erent subsets of these songs are used.

The following concepts are important to understand:

• Note length - The length of a note. A note with a length of half the measure is called a half

note, a note with a length of a quarter of the measure is called a quarter note etc.

• Measure - Consists of a repeated pattern of beats.

• Meter - The perceived number of beats and the note length of each beat in the measure.

• Phrase - A musical sentence consisting of several notes.

• Pitch - Note height, a logarithmic interpretation of the fundamental frequency.

• Interval - The distance between to subsequent pitches.

• Tonic - The �rst scale degree which means that a song in C major has C as the tonic. The

tonic is perceived as a resolution and most songs end on the tonic. The tonic chord is perceived

in a similar way.

• Dominant - The �fth scale degree which means that a song in C major has G as the dominant.

The dominant is perceived as unstable and the dominant chord is perceived in a similar way.

1.1 What are the bene�ts of statistical analysis in music?

Statistics can both con�rm relationships within music, and help to provide insights to why these

relationships do exists. Let us look at an example to get acquainted with statistical analysis in

music and its bene�ts.

It has been well known that melodies tend to move down after large leaps upwards in pitch, a phe-

nomena called gap �lls (Levitin, 2006) or skip reversals (Huron, 2006). To con�rm this statistically

is fairly easy. The �rst step is to scan a large set of songs, a database with data in a format that

is accessible. Every interval between two succeeding pitches is evaluated and for the intervals that

are positive and larger than a certain threshold (as an example a rise of 6 semi-tones) the notes
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following that interval are analyzed. If they are on average falling, we have con�rmed the theory.

However we will not have explained why this is occurring. Is it an expression of style? Or perhaps

a consequence of the instrument performing the music?

Huron (2006) has analyzed this and his conclusions are that the rule of skip reversal was in fact

formulated wrong to begin with. It is not so that large leaps upwards in pitch are automatically

followed by a falling pitch. Instead the phenomena can be completely explained by regression to the

mean. That is, melodies always tend to move towards the mean pitch where the mean is de�ned by

the earlier notes of the same melody. When the melody is falling after a large leap it is merely an

e�ect of regression to the mean and the statistical evidence Huron has put forward is the following:

If a large leap upwards occurs at the lower register of a melody, so that the note which the leap will

land on is positioned below the mean pitch of that same melody, it is statistically more probable

with a continued upward motion. However, as most large leaps upwards naturally land above the

mean pitch this e�ects can not be discovered merely by looking at big leaps, disregarding mean

pitch. As a conclusion, the phenomena of skip reversal could only be explained when the context

in which they occur was taken into consideration.

Why does melodies possess this regression to the mean? In what way does it please listeners? It has

been suggested by Meyer (1956) that listeners form expectations about how the pitch of the melody

will change based of the range of the instruments playing the melody. If the instrument performs

at the top range, the listener will accurately sense a higher probability for a falling melody. Note

here that we can as listeners make predictions about an instruments range based on the frequency

spectrum of the instruments. Not only is the fundamental frequency important but perhaps more

important is the strength of the overtones (an instrument without the ability to alter the harmonic

spectrum does not lend much room for expression to the person playing it). The listener will thus

have a rough idea about where in its range an instrument is playing even if the instrument is

relatively unknown to him or her.

1.2 Aims

The aim of this study is to reveal statistical relationships that has not been studied before. The

idea is that melodies are always of a contextual nature and that simple relationships such as the

distribution of intervals does not provide the true probabilities for the next pitch of the melody.

Instead a broader context must be analyzed. The context is provided by the earlier parts of the

melody and can be of the following nature:

• Were in the melodic range of the melody is the current pitch positioned?
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• What is the direction of the earlier pitches?

To make use of the answers to these questions we must know how they a�ect probabilities in music.

This is where this study will be useful as questions of the following nature are answered:

• What are common melodic ranges?

• How does the earlier directions of the pitch a�ect probabilities for the next note pitch?

• How does metrical position a�ect pitch probabilities?

10 di�erent aspects of this nature have been examined and these aspects are presented in section

1.3 Outline of the study.

The �ndings are hopefully important in several �elds of music science, and the aim has been to

foster the development in, amongst others:

• Algorithmic Composition - Music composition with computers is dependent on statistical

data to model probabilities.

• Music Information Retrieval - Retrieval of music information, in particular from audio,

will become more accurate with an understanding of statistical probabilities in music.

• Music Cognition - With a statistical analysis of music, psychological aspects such as ex-

pectation and memory can be better understood.

1.3 Outline of the study

10 di�erent aspects have been examined:

1. Ambitus - The range of the melody as the distance between the highest and the lowest note.

2. Pitch & Meter - The distribution of pitches, compared across di�erent meters.

3. Metrical Salience & Pitch - How the salience of the metrical positions a�ect the distribu-

tion of pitches.

4. Intervals & Note Length - The correlation between note length and interval size.
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5. Double Notes - The distribution of repeated occurrences of two pitches with the same tone

height, for di�erent starting positions in the measure.

6. Stairs - The distribution of note sequences, with intervals of one pitch step, with continuous

direction, examined for di�erent note lengths.

7. Contour - The direction of the melody and how this direction changes, examined across

metrical positions.

8. Repetition - In which ways musical phrases repeat each other.

9. Phrase Arch - The contour of the melody examined at a phrase level.

10. Tonal Resolution - The pitch distribution at the tonal resolution in the end of each song.

The following sections will deal with these 10 aspects:

• 1.4 Background: A brief background with statistical �ndings directly relevant to this study.

• 2 Method: A brief description of preparations of the data. The approach and relevant

considerations is presented separately for each aspect.

• 3 Results: Results will be presented in the form of graphs and tables separately for each

aspect.

• 4 Discussion: The results are discussed separately for each aspect.

• 5 Conclusions: The most important conclusion that can be drawn from this study.

1.4 Background

Why can a statistical approach to music, an art form often linked to emotion, be of any use?

There seem to be statistical correlations in music wherever you look, and it has been proposed that

probable movements in music may be perceived by the listener as pleasurable (Huron, 2006).

A thorough analysis of Danish folk songs has been done by Holm (1984) where he studies interval

sizes and their distribution, the highest and lowest notes of the music as well as the melodic range

(ambitus). Huron (2006) has examined the phrase contour of the songs in the Essen Folk Song

Collection, and found an on average convex contour, sometimes referred to as the melodic arch.

On a similar theme Craig Sapp showed the author (2011) the most common �rst three notes and
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the most common last three notes from the Tirol Folk Songs (a subset of the Essen Folk Song

Collection). The most common three-note ending he found was scale notes 3-2-1 and the most

common start was 1-2-3 followed by 3-4-5. The author has examined (Elowsson, 2012) the most

common three note patterns in 80 000 songs from Theme�nder (2011). For the upward motion

1-2-3, 7.5 % of all occurrences were found in the �rst three notes but for the downward motion

3-2-1 only 1.9 % of all occurrences were found in the �rst three notes.

Vos & Troost (1989) have studied the distribution of intervals in Western music and found that

small intervals more often descend and that large intervals more often ascend. Tonality has been

studied by Krumhansl & Kessler (1982 as cited in Huron, 2006) who let listeners rate the goodness

of �t, related to major and minor keys, for di�erent pitches. Notice that the key needed to be

established beforehand, an element of uncertainty. By analyzing the Essen Folk Song Collection,

Eerola & Toiviainen (2004) have found a somewhat di�erent distribution. The importance of

contour reversals was illustrated by Watkins & Dyson (1985) by playing songs with a few notes

altered each time. When altered notes occurred at contour reversals listeners were more likely to

notice them. It has also been shown by Dowling (1978) that contour is important in our perception

of melodies.

That listeners perceive repetition of contour has also been noticed by West, Howell & Cross (1985).

The repetitive nature of music has been pointed out by others researchers as well, amongst them

Huron (2006). Parncutt (1994 a & 1994 b) has studied listeners perception of metrical accent for

repeating patterns giving credence to the notion of metrical salience based on rhythm. Generally

speaking the �rst position in the meter is the most salient and subdivisions are less salient. On

a similar theme, rhythmic organization of a melody may be perceptually more salient than the

note pattern according to Dowling (1993), and according to Monahan (1993), listeners will group

melodies (performed without accompaniment) based on the rhythmic pattern.

2 Method

2.1 Preparations

2.1.1 Turning Kern score to MIDI

The �rst project was to convert the Kern scores to MIDI. Humdrum (Huron, 1995) was used

and some commands could be derived from the Humdrum extras extension. To access the Linux
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command-line, Cygwin (2012) was used. To convert and sort the �les in a proper way commands

of the following character was used (this command locates all songs of 3/2 meter and sorts them

into a new folder) :

grep − l −Z 'M3/2 ' ∗ . krn | xargs −0 mv −t C: / cygwin/Meter /32/ −−

After this, to turn all Kern scores of all folders into MIDI �les the following command was applied:

f i nd −type f −name ' ∗ . krn ' −pr in t0 | xargs −0 −n1 sh −c 'hum2mid −P −C −T "$1"

−o C:/ cygwin/Folder /"$ ( basename ${1%.krn } .mid )" ' −

2.1.2 Preparation of data

In this study all songs have been converted to C major or A minor, which as an example for C

major means that pitch height C represents the tonic, D represents the second etc.

The MIDI-toolbox (Eerola & Toiviainen, 2004) was used to turn the MIDI-�les into a proper format

in Matlab (2012). Easy-accessible Matlab �les were created with the most common meters and the

number of songs are shown in Table 1.

2/4 3/4 4/4 6/8 Sub Total

Number of songs in Major 1047 921 1295 574 3837

Number of songs in Minor 69 66 138 81 354

Table 1: Matlab �les were created for the following meters.

All songs in Table 1 were extracted with and without the human edited phrase slurs of the Essen

Folk Song Collection. The number of songs extracted with and without phrase slurs varied slightly

due to a few erroneous data. Phrase slurs and measure lines were �rst converted to MIDI notes to

provide the possibility to move them to Matlab with the MIDI-toolbox. They were used in Matlab

to align the MIDI �les correctly with the meter and to mark up the phrase starts, and then they

were removed.

2.2 Examinations

The songs were examined with simple Matlab commands. This is an example of a short Matlab

code to calculate the average length of the notes of each interval.
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for i n t e r v a l = −12:1:12 %For each I n t e r v a l

l en = 0 ;

cou = 0 ;

for j j = 1 : l ength (nm2) %For each song

song = nm2{ j j } ;

for i i = 1 : ( l ength ( song )−1) %For each note

i f ( song ( i i , 4 ) == song ( i i +1 ,4) + i n t e r v a l ) %I f c o r r e c t i n t e r v a l

l en = len + ( song ( i i ,2)+ song ( i i +1 ,2) ) ; %Add length

cou = cou + 1 ; %Add count

end

end

end

pitchLen ( i n t e r v a l +13) = len /( cou ∗2 ) ; %Calcu la te r a t i o

end

p lo t ( pitchLen ) %Plot f i n d i n g s

2.2.1 Ambitus

A separation into scale tones was accomplished by the scheme in Table 2.

Scale tone 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Semi-tone 1 3 5 7 8 10 12 13 15 17 19 20 22 24

Semi-tone 2 4 6 9 11 14 16 18 21 23

Table 2: Separation into scale tones from semi-tones.

2.2.2 Pitch & Meter

The number of notes of each pitch as a relation to the total number of notes for each meter was

examined. An average was also taken between four di�erent meters. By doing so, the average would

not depend on which meter that was most common within the data set.

2.2.3 Metrical Salience & Pitch

To visualize a possible correlation between strong metrical position and important notes of the scale

(pitch salience) the pitches were sorted according to three di�erent criteria. The aim was to score

the pitch salience of each scale tone, where lower means more salient.
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• Salience from the circle of �fths: {C = 1, G = 2, D = 3, A = 4, E = 5, B = 6, F = 7}

• Connection to the chord I (C major) as a relation to the connection to the chord V (G major):

{C = 1, E = 2, A = 3, G = 4, F = 5, D = 6, B = 7}

• The total number of notes divided by the number of occurrences of each scale tone.

A relationship to the metrical positions could then be extracted for each criteria by summarizing

the weighted pitches. The metrical positions where sorted into groups as described in Table 3.

Meter 4/4 2/4 3/4 6/8

1 {1,3} {1} {1} {1,4}

2 {2,4} {2} {2,3} {3,6}

3 {1.5,2.5,3.5,4.5} {1.5,2.5} {1.5,2.5,3.5} {2,5}

4 {16th notes} {16th notes} {16th notes} {16th notes}

Table 3: Positions in the measure sorted into groups based on metrical salience.

2.2.4 Intervals & Note Length

The code for this examination is displayed in section 2.2 Examinations. An important aspect in

visualizing the results was a cubic �tting. This as the results becomes very noisy for unusual

intervals. The average of the length of both notes in each interval was used.

2.2.5 Double Notes

The aim is to show patterns of repeated twin notes with the same pitch and note length. An

example of a song built around two notes of the same pitch followed by two new notes of the same

pitch etc. is �Twinkle, Twinkle, Little Star�. For 8th notes no further examinations was done beyond

4 notes as so few examples was found and the statistical data became uncertain.

2.2.6 Stairs

The idea is to �nd units of notes with similar length that occur as falling or rising stairs. As di�erent

note length are examined the context of note length as a�ecting the tendency for stair-formations

can be analyzed. To make the results generally applicable the total number of repeated notes of
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the di�erent note lengths are used and the �ndings for the di�erent note length becomes a ratio

between the number of found stairs and the number of total occurrences. A comparison between

rising and falling stairs is also interesting and therefore results are plotted both for falling and rising

stairs, as well as for the sum of the two.

2.2.7 Contour

As contour reversals seem to be perceptually important (Watkins & Dyson, 1985) these were ex-

amined separately. To be able to display the results based on position in the meter a decision was

made to only use the most common metrical positions. For a 4/4 meter this meant 8 positions an

8th note apart from each other. In the results for 3.7.1 Contour Reversal and 3.7.2 Direction all

semi-tones are displayed, as interesting relationships would otherwise have been lost.

2.2.8 Repetition

The phrase information in the Essen Folk Songs Collection opens the possibility for interesting

examinations. When examining repetitions between phrases it has to be decided what actually

constitutes a repetition. How much is the phrase allowed to deviate from perfect repetition for it to

still count as a repetition? The phrases were examined for repetition in the time domain and in the

pitch domain with di�erent degrees of strictness regarding the repetition. In this way the reader

gets the possibility to choose relevant data based on the nature of the repetition, and the reader

also gets an overview of how the results changes as the demand for perfect repetition is altered.

2.2.9 Phrase Arch

Huron (2006) has done some interesting examinations of phrase contour. The �ndings were a rising

contour in the beginning of the phrase and a falling contour in the end of the phrase as described

in the background section. The precision of these examinations was improved by tracking how the

phrase contour changes over the course of the song. The �rst and the last phrase was examined

separately as it was expected that these phrases would produce the most distinctive results. Another

idea was to produce more generally applicable results. This was achieved by not separating the

phrases based on their length as done by Huron. Instead, the 5 �rst notes and the last 5 notes

was examined separately for all phrases. If a phrase had less than 5 notes the missing notes were

disregarded.
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2.2.10 Tonal Resolution

The end point at which the melody resolves at the tonic is interesting to examine. The examination

is done in the pitch domain for a few of the last notes. If the melody did not end at the tonic that

song was disregarded. The distance to C was calculated as described in Table 4.

Pitch C D E F G A B

Distance 0 1 2 3 3 2 1

Table 4: The distance to the tonic C, used in calculations for tonal resolution.

3 Results

3.1 Ambitus

Figure 1: Ambitus in major (left) and minor (right), both displayed as scale tones (top) and semi-
tones (bottom).
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In �gure 1 we �nd that an ambitus of 7 or 8 scale tones is the most common in major mode and

that an ambitus of 7 scale tones is the most common in minor mode.

3.2 Pitch & Meter

Figure 2: The distribution of pitches in di�erent meters.

No signi�cance di�erence in the pitch distribution across di�erent meters was found (Figure 2).

3.3 Metrical Salience & Pitch

For each meter a table (Tables 5-8) shows the relative distribution of the scale pitches for di�erent

positions in the measure, and a �gure (Figures 3-7) plots the correlation between pitch salience and

metrical salience.
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3.3.1 4/4 - Major

Beats/Pitches C D E F G A B

1 0.3076 -0.1339 0.0828 -0.2562 0.0039 -0.0409 -0.343

1.5 -0.2813 0.2274 -0.2059 0.4519 -0.0733 0.0796 0.249

2 -0.1004 0.0669 0.1039 -0.0118 -0.0319 0.0102 -0.0788

2.5 -0.2419 0.1693 0.0144 0.4156 -0.2879 0.243 0.1715

3 0.0212 0.0758 0.0545 -0.1181 0.0064 -0.0827 -0.131

3.5 -0.1363 -0.0523 -0.3032 0.4375 0.0841 0.1241 0.2641

4 -0.0155 -0.0599 -0.1652 -0.0993 0.2338 -0.0152 0.1079

4.5 -0.322 -0.0307 0.0509 0.4671 -0.1684 0.0305 0.6015

16th notes -0.1039 0.1985 -0.0593 0.2115 -0.2661 -0.0207 0.5516

Table 5: Relative distribution of pitches at metrical positions in 4/4 meter and major mode.

Figure 3: The relationship between metrical salience and pitch salience in 4/4 meter and major
mode.

The similarity between Intermediate/Weak {1.5,2.5,3.5,4.5} and Weak {16th notes} in Figure 3

indicates that there is no increase of pitch salience between the respective positions in 4/4 meter.
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3.3.2 2/4 - Major

Beats/Pitches C D E F G A B

1 0.3271 -0.1804 -0.0441 -0.2115 0.0735 -0.0758 -0.2655

1.5 -0.1256 0.004 -0.0073 0.1698 0.0619 -0.072 -0.0465

2 -0.0619 0.1164 0.1412 -0.1005 -0.0992 -0.0505 0.0589

2.5 -0.1539 0.0289 -0.1016 -0.0122 0.1332 0.1032 0.1292

16th notes -0.2914 0.178 0.0152 0.6571 -0.3585 0.2296 0.4154

Table 6: Relative distribution of pitches at metrical positions in 2/4 meter and major mode.

Figure 4: The relationship between metrical salience and pitch salience in 2/4 meter and major
mode.

The similarity between Intermediate/Strong {2} and Intermediate/Weak {1.5,2.5} in Figure 4 in-

dicates a relatively small increase in pitch salience between the respective positions in 2/4 meter.
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3.3.3 3/4 - Major

Beats/Pitches C D E F G A B

1 0.3316 -0.1367 -0.0114 -0.2112 0.0667 -0.1038 -0.2538

1.5 -0.248 -0.0601 0.046 0.1369 -0.0504 0.1588 0.4171

2 0.0684 0.0534 0.0522 -0.0454 -0.0524 -0.0922 -0.1063

2.5 -0.2611 0.0494 -0.07 0.2249 0.0365 0.26 -0.0789

3 -0.0654 0.0384 0.0065 -0.1014 0.0511 -0.0648 0.1839

3.5 -0.3031 0.0535 0.0076 0.3088 -0.0629 0.1188 0.1622

16th notes -0.3522 0.2706 -0.0769 0.5444 -0.2455 0.253 0.0325

Table 7: Relative distribution of pitches at metrical positions in 3/4 meter and major mode.

Figure 5: The relationship between metrical salience and pitch salience in 3/4 meter and major
mode.

A steady increase of pitch salience with increased metrical salience for 3/4 meter (Figure 5).
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3.3.4 6/8 - Major

Beats/Pitches C D E F G A B

1 0.2894 -0.211 0.1241 -0.2749 0.0715 -0.1401 -0.3936

2 -0.1712 0.0234 -0.0168 0.3265 -0.1991 0.356 0.2841

3 -0.0057 0.0458 0.0728 0.0149 -0.0573 -0.044 -0.1147

4 0.0493 0.1669 -0.0202 -0.0831 -0.0031 -0.1632 -0.1995

5 -0.0947 0.0317 -0.0652 0.4068 -0.4409 0.262 1.1397

6 -0.1723 -0.056 -0.1319 -0.0977 0.3007 -0.0233 0.2235

16th notes -0.4038 0.3207 -0.061 0.9068 -0.5114 0.6767 0.0977

Table 8: Relative distribution of pitches at metrical positions in 6/8 meter and major mode.

Figure 6: The relationship between metrical salience and pitch salience in 6/8 meter and major
mode.

A relatively steady increase of pitch salience with increased metrical salience can be observed for

6/8 meter (Figure 6).
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3.3.5 Combined

Figure 7: The relationship between metrical salience and pitch salience as an average of all examined
meters.

Overall the idea of increasing pitch salience with increasing metrical salience seems to comply with

the data as can be seen in Figure 7. However, for notes that belong to the dominant chord and

not the tonic chord (B & D with the highest weightings in tonic/dominant) there are indications

in Tables 5-8 of an even stronger di�erence depending on the positioning start/end of the measure.
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3.4 Intervals & Note Length

Figure 8: The average note lengths for di�erent intervals. Note length is calculated as the average
note length of the two notes that constitute the interval. A cubic �tting has been applied to illustrate
the concave pattern with shorter note lengths for smaller intervals and longer note lengths for larger
intervals.

We �nd in Figure 8 that large intervals occur between longer notes and small intervals occur between

shorter notes.
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3.5 Double Notes

Figure 9: The number of twin pitches (two repeated pitches followed by two new repeated pitches
etc.) for quarter notes with start position for the whole pitch succession displayed in the measure.

Notice (Figure 9) how the stronger metrical position {1,3} take precedence over {2,4}, and that

there are no occurrences at {1.5,2.5,3.5,4.5}. The formation of 2 twin pitches (4 notes) occurs 0.64

times per song.

Figure 10: The number of twin pitches (two repeated pitches followed by two new repeated pitches
etc.) for 8th notes with start position for the whole pitch succession displayed in the measure.

For the 8th notes (Figure 10) the results are harder to interpret. There are fewer matches overall
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and there seems to be a repeating pattern for the �rst four 8th notes and the last four 8th notes of

the measure.

3.6 Stairs

Notice that for this part the measure (4/4 meter) was divided into 8 positions, meaning that starts

on 16th positions was not taken into consideration.

16th 8th Quarter Half . 16th 8th Quarter Half . 16th 8th Quarter Half

Total 103 8693 12640 429 . 103 5752 8751 192 . 32 3427 5962 101

Rising 39 2051 1437 113 . 28 835 501 22 . 0 192 137 6

Falling 11 783 840 21 . 3 213 236 0 . 0 50 42 0

Stair of 3 3 3 3 - 4 4 4 4 . 5 5 5 5

Table 9: A summary of the �ndings for stairs. The Total count represents the total number of
notes with the same length.

As evident in Table 9, for �ve 16th notes the total count of occurrences was only 32 and the statistical

data became very uncertain. Notice that if three 16th notes comes in a row a fourth follows every

time in the data.

Figure 11: Relative distribution for stairs of varying length, with varying note lengths.
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Notice (Figure 11) that rising stairs are signi�cantly more common than falling stairs. Notice also

that stairs are more common for faster note progressions. However half notes seem to be more

common than quarter notes.

3.7 Contour

Notice that for this part the measure (4/4 meter) was divided into 8 positions, meaning that starts

on 16th positions were not taken into consideration.

3.7.1 Contour Reversal

Figure 12: The distribution of contour reversals for di�erent pitches.

As we study the results based on pitch (Figure 12) we �nd that 5 (E) and 8 (G) are most common

as maximum pitches and that 1 (C) and 3 (E) are most common as minimum pitches in a contour

reversal. For the two notes in C major that are non-pentatonic, 6 and 12 (F and B), there are

large di�erences between minimum and maximum. A succession of three notes in a row far from

the tonic in C major 6, 8 and 10 (F, G and A) are all maximum pitches. A succession of four notes

in a row close to the tonic 12, 1, 3 and 5 (B, C, D and E) are all minimum pitches.
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Figure 13: The distribution of contour reversals for di�erent positions in the measure.

The maximum position tends to occur on (salient) beats and the �rst beat is especially common

(Figure 13). The results for the minimum position is more inconclusive.

3.7.2 Direction

Figure 14: The distribution for the subsequent direction from di�erent pitches.

As can be seen in Figure 14, pitch 12 (B) tends to move upwards and pitch 6 and 10 (F and A)

tends to move downwards whereas pitch 8 (G) is often steady.
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Figure 15: The distribution for the subsequent direction from di�erent positions.

From Figure 15 we �nd that the positions from where the pitch rises are mainly in the end of the

measure. The steady pitches are more common in the beginning. The results for the positions from

where the pitch is falling are inconclusive.

3.7.3 Good Continuation

Figure 16: The probabilities for more rising intervals after x number of rising intervals of one pitch
step.
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Figure 17: The probabilities for more falling intervals after x number of falling intervals of one pitch
step.

Figure 18: The probabilities for intervals to continue in the same direction after x number of
intervals of one pitch step in that direction.

The �ndings in Figures 16-18 for good continuation indicate the following correlation: When a new

directions has been established the probabilities to continue in the same direction are high. As more

notes follow in the same direction the probabilities are lowered.
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3.8 Repetition

Figure 19: The probabilities for di�erent forms of phrase repetition. The probabilities represents
how likely it is for any given phrase of a song to be a repetition of an earlier phrase. This means
that if one phrase repeats another in a song of two phrases it is counted as 0.5, there is a 50 %
probability for a randomly chosen phrase to be repeated. For a song of three phrases where they
all repeat each other the score will be 0.67. The probability will never reach 1 as the �rst phrase
does not repeat any earlier phrase.

R = Rhythm, C = Contour, C&R = Contour & Rhythm, E = Exact repetition with iden-
tical pitches, + = Varying phrase length, ++ = Varying phrase length and one note di�erent,
{4,5,6} = Number of the �rst notes of a phrase that are repeated.

Figure 19 shows the results for phrase repetition. As the �rst phrase is also counted and as this

phrase will of course not repeat any earlier phrases the probabilities are somewhat underestimated.
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3.9 Phrase Arch

Figure 20: The average contour for the beginning (left) and the end (right) of each phrase.

Notice (Figure 20) that the rising contour for the beginning of the phrases is strongest for the

�rst phrase (bottom, left). If the �rst phrase is removed no rising contour can be detected (top,

left). Notice also that the falling contour for the end of the phrases is strongest for the last phrase

(bottom, right). If the last phrase is removed there is however still a small tendency for a falling

contour in the end (top, right).
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3.10 Tonal Resolution

Figure 21: The pitches of the last notes of a song. The songs have been transposed to C and only
the songs that ends on the tonic C were evaluated. Arrows indicate common movements.

A falling motion is common in the end of a song as visualized by the thicker arrow (Figure 21).

Figure 22: The distance in scale steps to the tonic C for the last notes of a song. The songs have
been transposed to C and only the songs that ends on the tonic C were evaluated.

When there are �ve notes left the distance to the tonic (C) starts to decrease (Figure 22).
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4 Discussion

4.1 Ambitus

The �ndings for ambitus in Figure 1, section 3.1, are in line with earlier �ndings from Danish

folk songs (Holm, 1984). The tendency for a lower ambitus for the songs in minor are somewhat

interesting and could be further examined. Perhaps a correlation to the length of the examined

melody can be found as well. Also notice from the semi-tone �gures that the ambitus for songs in

minor is smoother than the ambitus for songs in major. Perhaps this is due to the characteristics

of the minor scale where in A minor the notes F, F#, G and G# all occur frequently (Krumhansl

& Kessler, 1982 as cited in Huron, 2006; Eerola & Toiviainen, 2004).

4.2 Pitch & Meter

The pitch distribution in Figure 2, section 3.2, is very similar between di�erent meters. One

could imagine that there would be deviations in pitch distribution, as certain genres with di�erent

distributions of the pitches would perhaps use di�erent meters, but none was found.

4.3 Metrical Salience & Pitch

We �nd strong indications of a correlation between pitch salience and metrical salience (Figures

3-7, section 3.3). A correlation has been found for all three examined weightings of the pitches. The

fact that this correlation exists in such a similar way, independently of if you regard pitch salience

as depending on the Circle of Fifths, Weights, or the Tonic/Dominant scheme, tells us that there

is accuracy in the �ndings.

It is also interesting to examine the pitch deviations in Tables 5-8, section 3.3. We �nd that notes

belonging to the dominant chord but not the tonic chord (B and D) are more common towards the

end of the measure whereas C is most common at the �rst position in the measure. This could be

studied further.

4.4 Intervals & Note Length

The �ndings in Figure 8, section 3.4, clearly indicate a correlation between the length of the notes

and the size of the interval as large intervals often occur between longer notes and small intervals
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are more often found between shorter notes. For unusual intervals (such as certain large intervals)

the statistical foundation becomes smaller, producing more random results, and the cubic �tting

comes in handy to visualize the correlation. A next step could be to plot common note lengths in

the x-axis and their average interval in the y-axis. Perhaps the transition between di�erent note

lengths will be less smooth than the transition between di�erent intervals.

4.5 Double Notes

For quarter notes (Figure 9, section 3.5) the most interesting �ndings were that the �rst note of

double notes much more often start at the more metrically salient {1,3} than the less salient {2,4}.

With 0.64 occurrences per song of two twin pitches in a row (for quarter notes), the phenomena is

fairly common.

For the 8th notes (Figure 10, section 3.5) there seems to be a repeating pattern for the �rst four 8th

notes and the last four 8th notes of the measure. One possible interpretation is that double notes

have a tendency to start with metrically salient positions also for 8th notes. They may start an 8th

note before but not an 8th note after the metrically salient position to include that position early

on in the double note formation.

4.6 Stairs

We �nd in Figure 11 and Table 9 of section 3.6 that stairs are more common for faster note lengths

if the total number of repeated notes of the di�erent note lengths are taken into consideration. As

quarter notes and 8th notes are more common the statistical �ndings for these two is more reliable.

Here we �nd that for all nine types, the 8th note stair is more common than the quarter note stair

if their relative commonality is taken into consideration. We also �nd that for all nine types where

the 16th notes are represented they are more common than the quarter note stairs. Stairs for the

half notes are relatively common despite their length. One reason may be that they are as long as

the length of shorter chords. For a stair of one pitch step per note this means that all notes can

harmonize well with the chords which is not possible for stairs of shorter note lengths.

Stair formations tend to occur more often in a rising formation. This is especially interesting when

put in the context of the most common direction of the melody as found in 4.7.2, where we �nd

that falling pitches are more common than rising pitches. It is also the opposite of what have been

found to be true for intervals in general, that small intervals more often descend than ascend (Vos

& Troost, 1989). There seems to be something special with stairs that makes them more common
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as rising than falling. Perhaps stairs can be perceived as moving more clearly towards a speci�c

goal for a rising contour than a falling contour, making rising stairs more useful to the composer.

4.7 Contour

4.7.1 Contour Reversal

If we examine the total number of occurrences as maximum or minimum pitch for the di�erent

pitches in Figure 12 of section 3.7.1 we �nd that the most common pitches overall are more common

as contour reversals. There are big di�erences for many pitches in their tendency to be the maximum

pitch and the minimum pitch at a contour reversal. Pitch 12 (B) occurs 7 times more often as a

minimum pitch than a maximum pitch and pitch 6 (F) occurs almost 5 times as often as a maximum

pitch than as a minimum pitch. Why does this happen? One reason may be that both of these

extremes are found for notes that are non-pentatonic. We �nd that the tendency in pitch 6 (F) to

become the maximum pitch may be explained by its close connection to pitch 5 (E) one semi-tone

away. The same reasoning can be applied to pitch 12 (B) that has a strong tendency to move

towards pitch 1 (C) one semi-tone away. An answer may also be found in counterpoint which

constitute that the tritone interval (6 semi-tones) is forbidden between any of 3 subsequent notes

(Girton, 2001). This could make 12 (B) less likely to be reached from below and and 6 (F) less

likely to be reached from above.

Another interesting result, as also was pointed out in the section 3.7.1, is that a succession of three

notes in a row far from the tonic in C major 6, 8 and 10 (F, G and A) are all maximum pitches. A

succession of four notes in a row close to the tonic 12, 1, 3 and 5 (B, C, D and E) are all minimum

pitches. Why does this happen? Here a conclusive answer is harder to give. Perhaps it is an e�ect

that arises as a result of the fact that two notes within the scale in a row, 10 and 12 (A and B),

does not belong to the tonic chord. If we assume that the tonic chord is the most common, that

melodies tend to move with small intervals and that it is unusual for two notes in a row in melodies

to not belong to the chord, pitch 10 and 12 creates a barrier. Notes above the barrier {12,1,3} etc.

will move away from the barrier upwards and notes below the barrier {6,8,10} will move away from

the barrier downwards.

As we study where in the measure the maximum and the minimum pitch occur, we �nd - as

concluded in the section 3.7.1 - that the maximum position tends to occur on (salient) beats and

that the �rst beat is especially common (Figure 13). The results for the minimum position is more

inconclusive. A tendency for them to occur later in the measure seems to exist. We �nally conclude
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that di�erences for maximum and minimum pitch are much stronger in the pitch domain than in

the time domain.

4.7.2 Direction

When rising and falling contours are examined (Figures 14-15, section 3.7.2) the tendency that can

be observed for contour reversal is once again apparent. Pitch 12 (B) tends to move upwards and

pitch 6 (F) tends to move downwards (Figure 14). A similar explanation (non-pentatonic notes

moving one semi-tone) may be applied here as well. Overall the �ndings for direction is less clear

than the �ndings for contour reversal. Interesting is also the tendency for 8 (G) to be steady.

One explanation may be that G belongs to the two most common chords I (tonic chord) and V

(dominant chord). G can therefore occur repeatedly and still belong to the chord. The higher

tendency for 10 (A) to fall may be explained by the movement to the steady and common G and

the movement away from the earlier proposed barrier that A and B forms.

In the measure (Figure 15) we �nd that the rising intervals occur towards the end of the measure

and the steady intervals (same pitch) occur towards the beginning. The falling pitch is perhaps a

little more common towards the end but the �ndings are inconclusive. An explanation for steady

intervals in the beginning of the measure can perhaps be traced to the chords. In the beginning

of a measure a new chord has often recently been introduced and the melody can rest steadily at

chord notes. In the end of the measure we instead soon have a new chord with di�erent pitches to

which the melody must move.

We again conclude that di�erences are much stronger in the pitch domain than in the time domain.

4.7.3 Good Continuation

The probability to continue in the same direction when a new direction has just been established is

high both for rising and falling contours (Figures 16-17, section 3.7.3). They however di�er between

the 4th and the 6th note. Perhaps the fact that rising stairs are more common than falling stairs

(Figure 11, section 3.6) o�er an explanation here. The higher scores for rising contour between the

4th and the 6th note would in that case be a result of our predisposition to these rising stair lengths.

Overall the �ndings in Figure 18, section 3.7.3 can be summarized in the following way:

If a new direction has been established by an interval of one pitch step, new intervals of one pitch

step tends to continue in the same direction. As 3-5 notes have passed in the same direction the

probabilities are instead higher for a change of direction.
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The decrease in probability as more notes are added in the same direction can probably be con-

nected to the ambitus (Figure 1, section 3.1). The melody can only continue in the same direction

for a certain number of notes before the melodic range is reached. For each note added in the

same direction the probabilities to reach the melodic range increases. As was pointed out in the

introduction, with the role of regression towards the mean pitch (section 1.1), di�erent aspects of

the melody must be taken into consideration. This is a similar case where regression to the mean

can also be applied in a meaningful way.

4.8 Repetition

In Figure 19 of section 3.8 we found that about 40 % of any randomly chosen phrase in the data

will be a rhythmical repetition of an earlier phrase. This if we accept phrases with identical rhythm

but di�erent lengths as an approved repetition. For repeated contour the probability is close to 20

%. Notice (by comparing C and C&R in Figure 19) that almost all contour repetitions are rhythm

repetitions as well. We have 0.196 for C&R and 0.207 for only C. If we accept varying length we

have 0.204 for C&R and 0.228 for C. This last phenomena can be interpreted in the following way:

If we have a repetition, one of two cases, which have about the same probability is likely be true.

Either it is a rhythmical repetition or it is a repetition of both rhythm and contour.

That contour is so rarely repeated on its own is interesting as it in a way contradict the notion

that listeners can perceive repeated contour independently (West et al., 1985). However it has been

repeatedly observed (Dowling, 1993; Monahan, 1993) that the rhythmic organization is perceptually

more salient.

4.9 Phrase Arch

One of the most interesting �ndings of this study is for phrase arches (Figure 20, section 3.9). It

highlights the uncertainties in statistical music analysis, where it is hard for the researcher to know

what is actually studied in the music. What seemed to be a rising contour in the beginning of the

phrase may instead turn out to be a rising contour in the beginning of the song. What seemed to

be a falling contour in the end of the phrases may instead turn out to be a falling contour in the

end of each song. As pointed out by one of my supervisors Anders Friberg, with this data it seems

like there is a phrase arch present in each song and not in each phrase. The same phenomena was

also observed by Huron (2006) in the original study of phrase arches. When he took the average
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pitch height of all phrases an arch-like structure appeared. The phenomena could be referred to as

song arch and further studies of it will be done.

Let us analyze the results for the start and the end of the phrase separately. For the beginning

of the phrase we see that for the �rst phrase of the songs, at the �fth note (interval 4 in Figure

20) the melody has risen with about 2.5 semi-tones, but when the �rst phrase is excluded and all

the other phrases observed, the melody has instead fallen 0.05 semi-tones. At the point where the

contour has risen the most when excluding the �rst phrase we �nd that it has risen 0.1 semi-tones

and that this occur at the third note (interval 2 in the �gures). At the same position for the �rst

phrase the contour has risen 2 semi-tones. The di�erence is striking and highlights the importance

of the �rst phrase concerning rising phrase contour.

Lets look at the contour at the end of the phrase. We �nd that when 4 intervals remain the contour

for the last phrase of the song will on average still have 2 semi-tones left to fall. At this position if

we exclude the last phrase we instead �nd 0.36 semi-tones left to fall. Once again a big di�erence

has been found. This time however, the tendency for a falling contour in the end of a phrase still

has some merit.

In conclusion the idea of a rising contour in the beginning of a phrase seems to be entirely connected

to a rising contour in the �rst phrase. The idea of a falling contour in the end of a phrase is strongly

connected to a falling contour in the last phrase but also present if the last phrase is removed.

4.10 Tonal Resolution

As could perhaps be expected the melody gradually moves closer to the tonic C in the end of the

songs before the actual tonic is reached (Figure 22, section 3.10). We see how the tendency for the

melody to approach the last note from above (as described for phrase arch) is re�ected in the large

number of occurrences for D and E just before the end (Figure 21, section 3.10). Arrows have been

applied to mark what seems to be common movements.

There is a small tendency for the melody to move away from C, 4-6 notes before the end (evident

in Figure 22). The distance from C is higher there (1.90) than the average distance for the whole

song, which is 1.73. This �nding is certainly interesting, but the deviation is perhaps to small for

any distinct conclusions.
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5 Conclusions

We have found correlations between pitch and time for several aspects. It is evident from 3. Metrical

Salience & Pitch, 5. Double Notes and 7. Contour that pitch in various ways is a�ected by metrical

position. For 4. Intervals & Note Length and 6. Stairs we have found correlations between intervals

and note length. Interesting �ndings for phrases was found in 8. Repetition and 9. Phrase Arch.

An overview of melodic range in vocal music was provided in 1. Ambitus and the tonal resolution

at the end of a song was visualized in 10. Tonal Resolution.

Among the most interesting �ndings are:

• A clear correlation between pitch salience and metrical salience.

• A clear correlation between interval size and note length.

• That stairs are more common in a rising formation than in a falling formation.

• Findings that the melody tends to continue in the same direction when a new direction with

small intervals has recently been established.

• That contour repetition is almost always accompanied by rhythmic repetition at the phrase

level.

• That earlier �ndings for convex phrase arches seem to mostly be a phenomena of an upward

movement in the �rst phrase of a song and a downward movement in the last phrase of a

song.
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