

Robot Door Opening

 E R I K F A H L É N
 a n d J O S E F S U N E S S O N

 Bachelor of Science Thesis
 Stockholm, Sweden 2012

Robot Door Opening

 E R I K F A H L É N
 a n d J O S E F S U N E S S O N

 DD143X, Bachelor’s Thesis in Computer Science (15 ECTS credits)
 Degree Progr. in Computer Science and Engineering 300 credits
 Royal Institute of Technology year 2012
 Supervisor at CSC was Mårten Björkman
 Examiner was Mårten Björkman

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/
 fahlen_erik_OCH_sunesson_josef_K12023.pdf

 Kungliga tekniska högskolan
 Skolan för datavetenskap och kommunikation

 KTH CSC
 100 44 Stockholm

 URL: www.kth.se/csc

Abstract

In this thesis, the problem of a robot opening a door is simulated in a vir-
tual environment. The environment used is OpenRAVE, with parts of the
physics simulations written in Python. In order to solve the problem, a dy-
namic force/velocity controller is used to open doors that have trajectories that
are unknown to the robot beforehand. The performance of this controller is
tested with di�erent control gains and starting guesses, though the results did
not give a full understanding of how well it actually worked. For a complete
understanding, more testing would be required.

Sammanfattning

I den här rapporten undersöks problemet med att en robot öppnar en dörr,
i en simulerad miljö. Miljön som används är OpenRAVE, förutom en del av
fysiksimuleringarna som är skrivna i Python. För att lösa problemet används
en dynamisk kraft/hastighet-controller som även klarar dörrar där roboten inte
känner till dörrarnas rörelsebanor i förväg. Controllerns framgång testas med
olika värden och startgissningar, men resultaten gav inte någon klar bild av hur
bra den faktiskt fungerade. För att få en komplett bild skulle kräva mer testning.

Contents

1 Introduction 2
1.1 Statement of Collaboration . 2
1.2 Problem Statement . 2

2 Background 4
2.1 Adaptive Force/Velocity Controller 4

2.1.1 Notations . 4
2.1.2 Kinematic Model . 5
2.1.3 Control Design . 5

2.2 OpenRAVE . 6
2.2.1 Models . 6
2.2.2 Programming . 7

2.3 Robotics Theory . 7
2.3.1 Degrees of Freedom . 7
2.3.2 End-e�ector . 7
2.3.3 Inverse Kinematics . 7

3 Methods 8
3.1 Creating Simulation . 8

3.1.1 Physics Model . 9
3.1.2 Time Step . 10

3.2 Evaluating OpenRAVE . 10
3.3 Measuring Results . 10

4 Results 12
4.1 Simulation creation in OpenRAVE 12
4.2 Controller Gains . 14

5 Discussion 17
5.1 Additional Testing . 17
5.2 The Physics Model . 18

A Source code 20
A.1 dooropening.py . 20
A.2 ourdoor.env.xml . 25

1

Chapter 1

Introduction

In recent years, more e�orts have been put on creating robots that operate in
domestic environments. Such environments are seldom well structured, which
makes the operating of a robot in such an environment a real challenge. One of
the most commonly encountered objects in such environments are doors. The
task of opening a door where some of the door properties (i.e. the location of
its hinges or which direction it opens in) are not known to the robot is not a
trivial task in any way. None the less, it is a task into which much research and
e�ort is being put to achieve some way to smoothly complete the task. One
unpublished paper has proposed an adaptive dynamic force/velocity controller
which uses measurements of force and position/velocity to deal with the task of
opening a door where all the speci�cs are not known beforehand[5].

1.1 Statement of Collaboration

Both of the authors of this report were very interested at the prospect of learning
a new API in an unknown programming language � something which was crucial
for solving this problem. It is certainly a more advanced task than what the
authors are used to be assigned in university courses.

There has not been a formal plan for how work was divided within the group
� as we, the authors, are only two people it was not deemed necessary. When it
comes to the programming, the solutions have been discussed within the group,
but Erik has been doing most of the actual coding (roughly 75%). The work of
writing the report has been divided equally between both parties.

Finally, the authors would like to extend a big thank you to Yiannis Karayian-
nidis and Christian Smith at the Centre for Autonomous Systems at KTH, for
being extremely helpful with explaining the physics of this problem and basic
robotics theory.

1.2 Problem Statement

The purpose of this thesis is to create and perform simulations of a robot trying
to open a door where the robot does not know all the speci�cs of the door.
The simulations evaluate di�erent control gains in an adaptive force/velocity
controller used for trying to open those doors. The goal of the simulations is to

2

DD143X

try to �nd control gains that will make the robot only exert forces that will not
break neither the door nor the robot while opening the door. Moreover, this
thesis also evaluates whether or not a software library called OpenRAVE is a
suitable tool to use for performing simulations of robot controllers such as the
one used in this thesis.

3

Chapter 2

Background

In the �rst section of this chapter, the adaptive force/velocity controller under
evaluation in the simulations done in this thesis will be introduced. In the
subsequent sections, an introduction is given to the software library OpenRAVE
and a few basic concepts in robotics.

2.1 Adaptive Force/Velocity Controller

In order for a robot to perform any kind of action, there has to be some con-
trolling mechanism sending commands to robot telling it what to do. In the
simulations performed in this thesis work, the objective of the robot has been
to open a door about which not all the speci�cs has been known to the robot in
advance. To achieve that objective, an adaptive force/velocity controller pro-
posed in a currently unpublished paper[5] has been used. This controller is in
turn designed for trying to achieve a smooth opening of an unknown door.

For the controller to achieve this smooth opening, it uses dynamically cal-
culated force and velocity signals, which it wants the end-e�ector (see section
2.3.2) to use. Those signals have in turn been calculated from estimates about
the kinematics of the door. A description of how those estimates and signals
are calculated will follow, though before that, some notations and then a model
of the robot door opening problem will be given.

2.1.1 Notations

For convenience, these notations will be used occasionally:

z =
z

||z||

s(z) =

[
0 −1
1 0

]
z

4

DD143X

2.1.2 Kinematic Model

Figure 2.1: A basic overview of the door opening.

X
e

r

X
o

Door
frame

Door Robot
end-

effector

Hinges

The kinematic model of the robot door opening problem used by the controller
assumes a planar de�nition of the door opening, which means that it does not
work with doors where also vertical movements have to made in order to open
the door. It is also assumed that the robot has achieved a �xed grasp on the
handle of the door. This, which is depicted in �gure 2.1, provides the following:

r = Xo −Xe

Xo is the position of the hinges of the door, though that position is not
known by the robot, and Xe is the position of the end-e�ector. In the force
and velocity signals, estimations of r and Xo play an extremely important part.
When the end-e�ector is moved, forces arise between the end-e�ector and the
kinematic mechanism of the door. Seen from the perspective of the door, these
forces act in the radial direction, which is the direction of r, and in its orthogonal
direction, which is the tangential direction. The force along the radial direction
is de�ned as follows:

fr = r>F where F is the total force acting between the end-e�ector and the
kinematic mechanism of the door.

2.1.3 Control Design

To begin with, the controller has a desired radial force, frd, and a desired
velocity in the tangential direction, vd. The objective of the controller is to
achieve: fr → frd and Ẋe → rvd, while not knowing the direction of r.1 As
previously stated, the controller uses estimates of the kinematics of the door.
More speci�cally, it uses estimates of the center of rotation, X̂o(t). From this

1Newton's notation, the dot notation, will be used for di�erentiation in this thesis.

5

DD143X

estimate of the center of rotation, an estimated radial direction, r̂(t), can be
calculated as follows: r̂(t) = X̂o(t)−Xe.2 The estimate of the radial direction is
then used to calculate the force and velocity signals, and to update the estimate
of the center of rotation. The formula for calculating the force signal will be
omitted here because it is only used to control the motion of the robot's arm and
that OpenRAVE itself can handle that. However, part of the force signal formula
appears in the formula for updating the estimate of the center of rotation.

The formula for calculating the velocity signal looks like this:
vref = s(r̂)vd − αr̂vf
α is a positive control gain and vf is a force feedback term de�ned as:

vf =

∫ t

0

˜̂
fr dt

The term ˜̂
fr is the error of the estimated force in the radial direction. The

estimated force in the radial direction is de�ned as: f̂r = r̂>F. With that, ˜̂
fr is

de�ned as: ˜̂
fr = f̂r − frd.

To update the estimation of the center of rotation, the following update law
is de�ned:

˙̂
Xo = γ||r̂||−1

[
(kf + 1)

˜̂
fr + kI

∫ t

0

˜̂
fr dt

]
v

v is the current velocity of the end-e�ector and γ, kf and kI are three more
control gains.

2.2 OpenRAVE

OpenRAVE (Open Robotics Automation Virtual Environment) is a virtual envi-
ronment designed for testing motion planning algorithms for robotics applications[1].
It is plugin-based and quite a few di�erent plugins with di�erent useful func-
tionality are o�ered in the standard installation package. One of those plugins
provided gives the user the possibility to create a nice graphical visualization
of a simulation. That functionality makes it a bit easier to understand what is
happening in a simulation.

In order to perform a simulation in OpenRAVE, a model of an environment
that is supposed to be simulated has to be created. When that is done, objects
in that model can be manipulated using a high level programming language.

2.2.1 Models

Models in OpenRAVE are stored in XML �les.[3] In its essence, a model can be
a de�nition of an object, a robot or several objects and robots. In the XML-
format used by OpenRAVE, a de�nition of an object has to be of the type
KinBody. A KinBody in turn can consist of several rigid bodies connected by
joints. A de�nition of a robot is of the type Robot, though the robot will in turn
consist of at least one KinBody de�nition.

2The argument of t will onwards be omitted for notational convenience.

6

DD143X

2.2.2 Programming

While the core OpenRAVE API is written in C++, there is also a Python im-
plementation which uses the C++ API seamlessly. The Python API makes
it easy to quickly do high level scripting in OpenRAVE. The software is dis-
tributed with several Python examples that make robots do simple things such
as grabbing an object or moving a hand in a straight line. These examples is a
great help to quickly get a basic environment set up when �rst starting to use
the OpenRAVE library.

2.3 Robotics Theory

While it is not necessary to be an expert on robotics to understand the simu-
lations in this thesis, a few concepts encountered in this thesis work and in the
code behind the simulations will be explained in this section.

2.3.1 Degrees of Freedom

Degrees of freedom (DOF) is a general mechanical term describing the number
of parameters that de�ne a system's state[7]. A common example in the real
world is six degrees of freedom - three parameters for position and three param-
eters for rotation. A robot arm consists of many di�erent individual parts that
themselves have very few degrees of freedom. While every joint individually
might have only one or two DOF, the total DOF of the arm is a combination of
all the joints.

2.3.2 End-e�ector

An end-e�ector is a tool of some kind that sits at the end of a robot arm. It is
typically some sort of grasper. In this report there is no speci�c tool at the end
of the arm � the end-e�ector simply refers to the tip of the arm.

2.3.3 Inverse Kinematics

Inverse kinematics (IK) is an important part of robot motion planning. It plans
the motion path for a robot arm by determining the joint movements that
give the desired position of an end-e�ector.[6] Motion planning with inverse
kinematics can therefore transform a motion path of an end-e�ector into joint
movements. When these joint movements are performed, the end-e�ector will
follow the desired motion trajectory until it reaches the desired position.

7

Chapter 3

Methods

In this part, the methodology used to solve the problem stated in this thesis
will be described. A short description of what has been done is that �rst, a
simulation in OpenRAVE was created, and then, statistics of di�erent setups
were collected. Simultaneously with those phases, the suitability of OpenRAVE
was evaluated. A more exhaustive description of all those phases follows in the
subsequent sections.

3.1 Creating Simulation

To begin with, the �rst step was to play around with the examples provided
along with the OpenRAVE library to try and make some sense as to what
and how things could be done with this library. The next step was then to
setup a basic environment with a robot and a door present in them. Both a
robot, which is fairly similar to a real robot used at CVAP1, a model of a door
already existed in the examples provided. Therefore, those objects only had to
be merged together in a single environment to have a rudimentary setup.

1Computer Vision and Active Perception Lab at KTH.

8

DD143X

3.1.1 Physics Model

Figure 3.1: The end-e�ector is connected to the door handle by a spring. The
spring force is depicted in this �gure.

θ

X
e

F
X
Dh

r
D

With that simple setup complete, the next objective was to implement the con-
troller. In order to make it work, some sort of physics model had to be imple-
mented �rst. The one that was used assumes that the end-e�ector is connected
to the handle of the door by a very sti� spring. That way, a simulation of the
forces acting on the end-e�ector and the door exist. Those forces arise through
the fact that when the end-e�ector is moved, the spring becomes stretched out.
When the spring is stretched out, a force arises to return the spring to its re-
laxed state. The magnitude of that force follows Hooke's law[4]: F = −Kx,
where x is the distance the spring has been stretched out and K is a constant
representing the sti�ness of the spring. In this model, F is therefore de�ned as:

F = −K(XDh−Xe) where XDh is the position of the door handle as can be
seen in �gure 3.1. When F has been calculated, it can through a basis change
give the force acting in the radial direction of the door, FR, and the force acting
in the tangential direction of the door, FT . The value of |FR| is a measurement
of how much pressure is applied towards or away from the door hinge. If it
becomes too large, either the door or the arm of the robot arm would break in
a real-world situation. The tangential force, FT , is in turn the one that a�ects
the rotation of the door. In the physics model used, the torque of the door is
de�ned as the following: τ = FT rD = cθ̇, where rD is the door radius (seen in
3.1), c is a friction constant and θ̇ is the angular velocity. Basic algebra then
gives an equation for θ̇:

θ̇ =
FT rD
c

In the formulas for F and θ̇, two constants are present. The values of those
constants can be chosen a bit freely, but a rule of thumb is:

9

DD143X

1. K should be a diagonal 2×2matrix with the same value in the two diagonal
positions. Since K represent the sti�ness of an imaginary spring between
the end-e�ector and the handle of the door, and that spring should be very
sti�, this value should be large. In the simulations done in this thesis, the
value 1000 has been used on the two diagonal position of K.

2. c should be a relatively small value compared to K. Di�erent values on c
results in di�erent behaviours of a door. In the simulations done in this
thesis, c has been set to 5.

3.1.2 Time Step

When the physics model was in place, the implementation of the controller could
�nally be done. After the controller was done, only one thing remained to have
a working simulation was to introduce some form of time simulation. This was
done by introducing a time step, dt. In the simulations done in this thesis, dt
has been set to 0.001 seconds. That means that the system is updated 1000
times per second. With this time step, the position of the end-e�ector could be
updated like this:

Xt+1 = Xt + Ẋtdt
This formula and the implemented physics model is what enables the con-

troller to do its work in the simulations done in this thesis. As a side note,
calculations of integrals use numerical estimation, which means that they are
calculated by multiplying dt with the current value of the variable to integrate
and adding it to the integral sum.

3.2 Evaluating OpenRAVE

Evaluating the suitability of OpenRAVE was impossible to do in an entirely
objective way. Therefore, the verdict of the suitability of OpenRAVE was a
highly subjective impression based on the time spent and the experiences gained
by the authors of this thesis, while trying to setup the simulations.

3.3 Measuring Results

In order for the results of the simulations to make sense and relate to each other,
a way to measure how well the performance of the door opening was de�ned.
First of all, the door were considered to have been completely opened when the
angle θ, seen in �gure 3.1, surpassed 60◦. But more importantly, the way of
measuring the performance of the controller was by calculating the force in the
radial direction fr = r>F. The value of fr should converge to the desired radial
force, frd. This force is also very interesting for the reason that it measures
how much force the robot actually puts on the door. If this force is too large,
either the robot or the door could break, so looking at this force over time could
provide a good insight into how safe the door opening process would be. If the
magnitude of the force exceeds the desired radial force (fr) by a large factor,
the structure of the door would probably be in danger.

Another interesting value to look at is how the planar angle of r̂ changed
during the course of the simulation. This is interesting since this represents

10

DD143X

the robots approximation of the sum of θ and the small additional angle that is
generated from the protruding handle of the door. The angle of r̂ is supposed to
converge towards the actual value of θ added with that small additional angle.

11

Chapter 4

Results

This chapter covers the results of the experiments. The �rst section of this
chapter describes how the simulation creation in OpenRAVE progressed, while
the rest covers data gathered regarding the actual simulations.

4.1 Simulation creation in OpenRAVE

The robot intended for simulation already existed in the OpenRAVE example
�les and there was also a model of a door in another example. This door
model included a joint to simulate the door rotating on its hinges. Therefore,
the �rst step in creating the simulation was to merge these two models into
one environment, and the result can be seen in �gure 4.1. The door was later
modi�ed to be slightly smaller, in order for the robot to open it further.

Figure 4.1: The robot and the door.

12

DD143X

The next step was to achieve the supposed �xed grasp of the handle of the
door. After that, it was time to implement the physics of the door opening pro-
cess. This had to be implemented manually in Python, as OpenRAVE currently
lacks the functionality to handle it[2]. After this step was completed, the door
would start to move slightly if the end-e�ector was given some constant velocity
to hold throughout the simulation. The result appears in �gure 4.2.

Figure 4.2: The robot and the door, now somewhat opened.

13

DD143X

Finally, the adaptive force/velocity controller was implemented to achieve a
complete door opening. After some tweaking of the di�erent controller gains,
the robot was �nally able to open the door to a full 60 degrees. The result can
be seen in �gure 4.3.

Figure 4.3: The door successfully opened to 60 degrees.

As a side note, the location of the robot's base was found, not surprisingly,
to play an important part in how far the door could be opened. Therefore, the
robot's base was placed at a location where the robot had the possibility to
open the door 60◦ in all the simulations made for this thesis work.

It can also be noted that opening of an average sized door was not possible
without the used robot's base moving. Doors that are signi�cantly smaller than
the robot arm � such as a cupboard door � can work, but a large door big enough
for a person to walk through would require a longer arm than the one that the
robot used in the simulations, had. This was discovered while the physics model
was being implemented. That is why the �gures from that stage and onwards
can be seen to have a smaller door than before.

4.2 Controller Gains

As expected, the performance of the door opening varied a lot depending on
the starting guess of the center of rotation and on the values of the di�erent
controller gains.

The next �gure, 4.4, shows the performance of the controller in a �rst ex-
periment.

14

DD143X

Figure 4.4: The �rst experiment. The diagram shows the radial force along the
time.

0 0.2 0.4 0.6 0.8 1

-8

-6

-4

-2

0

2

4

6

8

Desired Radial Force
Radial Force
Estimated Radial
Force

Time (s)

F
o

rc
e

 (
N

)

This experiment had a correct starting guess of the center of rotation, which
resulted in a complete door opening. The following control objectives: vd = 0.5
and frd = 0.5 were used, and the following controller gains were used in that
experiment: γ = 0.001, α = 0.05, kf = 0.002 and kI = 0.0015. Despite a correct
starting guess, both the estimated radial force and the actual radial force seem
to move around the desired radial force rather than converging towards it, as
seen in �gure 4.4. The forces involved were almost 6 times larger than the
desired radial force, which means that the structure of the door could be in
danger. This probably indicates that the gains used were not optimal.

Figure 4.5: The second experiment. The diagram shows the radial force along
time.

0 0.2 0.4 0.6 0.8 1

-20

-15

-10

-5

0

5

10

15

20

25

Desired Radial Force
Radial Force
Estimated Radial
Force

Time (s)

F
o

rc
e

 (
N

)

Figure 4.5 shows another test run were the starting guess was moved to
2 decimeters o� the correct position along the axis of the door frame. The
control objectives were still the same as in the �rst experiment, though the

15

DD143X

controller gains were increased slightly in order to improve on the results in
the last experiment. They were changed to γ = 0.01, α = 0.05, kf = 0.02 and
kI = 0.015. Despite this, the same behaviour can be observed as in the �rst
experiment � there was no convergence going on. The behaviour was actually
even worse and the forces involved were now almost 20 times the desired in the
radial direction. This means that something probably would have broken in
a real life scenario. In the simulation though, the door were still successfully
opened.

The �gure 4.6 shows the change of the planar angle of r̂ over the course of
the second experiment.

Figure 4.6: How the angle of the estimated radial direction changed over time
compared to how much the door had been opened.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60

70

80

90

100

Estimated Radial Angle
Theta

Time (s)

A
n

g
le

 (
d

e
g

re
e

s)

With the guess o� two decimeters along the axis of the door frame, the angle
should start out to be a little too big and shrink to a correct value. What �gure
4.6 shows, is that it indeed starts high but that it does not converge towards
the actual value of θ throughout the simulation. The behaviour of r̂ seen in
the �gure 4.6 indicates that the initial guess is not actually updated that much.
To try to change this, one could try additional control gains, but in the limited
time frame of this project, it was unfortunately not possible to do so.

A number of other experiments with too high control gains failed completely,
giving insanely high forces that would de�nitely have broken the door or the
robot. Therefore, the best solution appears to be to keep them small and in-
crease them later if it turns out they are to weak. This minimizes the risk that
something will break and also works very well with a decent starting guess. If
the starting guess is only a couple of decimeters o� it is likely to work, and the
robot can probably calculate a starting guess within those limits based on visual
information of the door.

16

Chapter 5

Discussion

OpenRAVE proved to be far from easy to learn, despite the extensive documen-
tation available. The original plan was to do the coding in C++, but since all
examples were written in Python, it was decided that at least the simulation
would be created using Python. As a result, additional time had to be placed
on learning the basics of Python. Luckily, Python is fairly easy to read, but
programming in an unfamiliar programming language is always a rather time
consuming task.

A main part of the simulation was the idea that the robot end-e�ector would
be directly locked to the handle, as the task of actually grabbing the handle with
a robot hand was not part of this experiment. It was planned that OpenRAVE
would take care of these simulations, but this turned out to be impossible, or
at least very unstable.[2] As the project still required this behaviour, a new,
simple physics engine for this speci�c purpose had to be implemented. While
this was not particularly di�cult in the end, much time elapsed before it could
be concluded that this was the only way out.

5.1 Additional Testing

Due to these delays, the �nal steps of the simulation were developed in the
last few weeks of the project, much later than estimated in the original plan.
This late schedule probably increased the possibility of errors in the code, even
though it has been written with readability in mind. Some of the results were
certainly confusing, like the radial force not converging to its desired value,
but hopefully this was due to what type of door was used rather than simple
programming errors.

The late schedule unfortunately made it impossible to extend the project
to the level it �rst was intended, as there was not enough time left. One of
the things that could have been expanded more was the testing of di�erent
controller gains. Since there are so many combinations to try, it would have
taken up much more time than originally anticipated to do it thoroughly, and
with the delays mentioned, there was even less time than planned to do it. This
testing is not di�cult to do and could be a potential future extension to this
work.

17

DD143X

5.2 The Physics Model

The physics model used in this thesis relies on the robot end-e�ector being
connected by a spring to the handle of a door. This may not be the best way
to do this simulation. Even though it works well as an approximation, this is
not what is going on in the real world.

This thesis only works the position of the end-e�ector. In a more detailed
simulation, one could also choose to include the orientation of the end-e�ector.
In the performed simulations, the orientation is automatically updated to stay
perpendicular to the door, only to make sure the arm can reach slightly longer.
The orientation could instead be made part of the simulation by assigning a
desired angle and updating the orientation to be perpendicular to the estimated
radial direction rather than to the door. This would make the simulation more
accurate, but would also introduce more room for errors.

18

Bibliography

[1] Rosen Diankov. Automated Construction of Robotic Manipulation Programs.
PhD thesis, Carnegie Mellon University, Robotics Institute, August 2010.
URL http://www.programmingvision.com/rosen_diankov_thesis.pdf.

[2] Rosen Diankov. Openrave mailing list � grab part of a kin-
body. http://openrave-users-list.185357.n3.nabble.com/

Grab-part-of-a-KinBody-tc3828672.html, April 2012.

[3] Rosen Diankov et. al. Openrave custom xml format. http://openrave.

programmingvision.com/wiki/index.php/Format:XML, April 2012.

[4] D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics. 8th ed.,
Extended. John Wiley & Sons, Inc., New Jersey, 2008. ISBN 9780471758013.

[5] Y. Karayiannidis, C. Smith, P. Ögren, and D. Kragic. Adaptive force/ve-
locity controls for opening unknown doors. Has not been published at the
time of this report.

[6] Richard Paul. Robot manipulators: mathematics, programming, and control:
the computer control of robot manipulators. MIT Press, Cambridge, 1981.
ISBN 9780262160827.

[7] J. J. Uicker, G. R. Pennock, and J. E. Shigley. Theory of Machines and Mech-
anisms. Oxford University Press, New York, 2003. ISBN 9780195155983.

19

Appendix A

Source code

A.1 dooropening.py

#!/ usr / b in /env python
−∗− coding : u t f−8 −∗−

from __future__ import with_statement # for python 2.5

import time
import openravepy
i f not __openravepy_build_doc__ :
from openravepy import ∗
from numpy import ∗

class DoorOpener :
def l ength (s e l f , a) :
return s q r t (vdot (a , a))

def norm(s e l f , a) :
return a / s e l f . l ength (a)

def BlackBox (s e l f , xPos , f) :
Here are some cons tan t s
vd = 0 .5
f rd = 0 .5

These are the con t r o l ga ins
gamma = 0.001
alpha = 0.05
k f = 2
kI = 5

Ca lcu l a t e the r a d i a l e s t imate
rad ia lEs t imate = s e l f . h ingeEst imate − xPos

20

DD143X

Ignore z a x i s
rad ia lEs t imate [2] = 0

Print the error
e r r o r = 1 − dot (s e l f . norm(rad ia lEs t imate) , s e l f .

r a d i a lD i r e c t i o n)
#pr in t ("%.2 f \ t%.4 f " % ((s e l f . i ∗ s e l f . d t) , e r ror))

Time
Desired r a d i a l f o r c e
Radia l f o r c e
Estimated r a d i a l f o r c e
pt = s e l f . i ∗ s e l f . dt
p r f = dot (t ranspose (s e l f . r a d i a lD i r e c t i o n) , f)
p e r f = dot (s e l f . norm(t ranspose (rad ia lEs t imate)) , f)
print ("%.2 f \ t0 . 5\ t%.4 f \ t%.4 f " % (pt , prf , p e r f))

Create the t rans format ion to the o ther b a s i s
R = array ([[0 , −1, 0] ,

[1 , 0 , 0] ,
[0 , 0 , 1]])

Ca lcu l a t e the es t imated v e l o c i t y d i r e c t i o n
ve l o c i t yD i r e c t i onEs t imat e = dot (R, s e l f . norm(

rad ia lEs t imate))

Remove the v e r t i c a l component
ve l o c i t yD i r e c t i onEs t imat e [2] = 0

And f i n a l l y , c a l c u l a t e the es t imated v e l o c i t y
ve l o c i t yEs t imate = ve l o c i t yD i r e c t i onEs t ima t e ∗ vd − alpha

∗ s e l f . norm(rad ia lEs t imate) ∗ s e l f .
r ad i a lFo r c eEs t imat eEr ro r In t eg ra l

Let ' s update the handle p o s i t i o n es t imate !
Ca luc l a t e the r a d i a l f o r c e e s t imate t h i n gy s
rad ia lForceEst imate = dot (t ranspose (s e l f . norm(

rad ia lEs t imate)) , f)
rad ia lForceEst imateError = rad ia lForceEst imate − f r d
s e l f . r ad i a lFo r c eEs t imat eEr ro r In t eg ra l += s e l f .

physicLoopsPerControlLoop ∗ s e l f . dt ∗
rad ia lForceEst imateError

rad ia lLength = s e l f . l ength (rad ia lEs t imate)

Ca lcu l a t e the es t imated hinge p o s i t i o n change
f a c t o r = (gamma / rad ia lLength) ∗ ((k f + 1) ∗

rad ia lForceEst imateError + kI ∗ s e l f .
r ad i a lFo r c eEs t imat eEr ro r In t eg ra l)

hingePosit ionChangeEst imate = f a c t o r ∗ t ranspose (s e l f .
xVel)

21

DD143X

Fina l l y , update the e s t i a t e d hinge p o s i t i o n
s e l f . h ingeEst imate += s e l f . physicLoopsPerControlLoop ∗

s e l f . dt ∗ hingePosit ionChangeEst imate

return ve l o c i t yEs t imate

def OpenDoor (s e l f , env , opt ions) :
"Main example code . "
env . Load (opt ions . scene)

#raw_input (" Press ENTER to s t a r t ! ")

Get the robo t and s e l e c t the l e f t arm
robot = env . GetRobots () [0]
robot . SetAct iveManipulator (' l e f t a rm ')

Lock environment
with env :
Create the in v e r s e k inemat ic s model
ikmodel = databases . i nv e r s ek i n emat i c s .

InverseKinematicsModel (robot=robot , ik type=
IkParameter i za t ion . Type . Transform6D)

i f not ikmodel . load () :
ikmodel . autogenerate ()

basemanip = i n t e r f a c e s . BaseManipulation (robot)

Get the door handle
door = env . GetKinBody (' door ')
handle = door . GetLink (' handle ')
handleTransform = handle . GetTransform ()

Get the s p e c i f i c box t ha t i s the handle
geom = handle . GetGeometries () [1]

Ca l cu l a t e the world transform of the box
handleTransform = dot (handleTransform , geom . GetTransform

())

Move l e f t arm to door handle
param = openravepy . IkParameter i za t ion (handleTransform ,

IkParameter i za t ion . Type . Transform6D)
s o l = robot . GetActiveManipulator () . FindIKSolut ion (param ,

IkF i l t e rOpt i on s . I gno r eEndE f f e c t o rCo l l i s i on s) # ge t
c o l l i s i o n −f r e e s o l u t i o n

time . s l e e p (1)

Were we ab l e to f i nd a s o l u t i o n ?
i f (s o l i s not None and l en (s o l) > 0) :

22

DD143X

Let ' s move the arm to the s t a r t p o s i t i o n !
time . s l e e p (1)
robot . SetDOFValues (so l , ikmodel . manip . GetArmIndices ())

Wait f o r a l i t t l e wh i l e b e f o r e s t a r t i n g the s imu la t i on
time . s l e e p (1)

Setup the c o n t r o l l e r e s t ima t e s
s e l f . h inge = [−0.5 , −0.3 , 0]
s e l f . h ingeEst imate = [−0.5 , −0.2 , 0]

Set the cons tant va l u e s
K = 1000 ∗ i d e n t i t y (3)
c = 5
s e l f . dt = 0.001
rad iu s = 0 .5
goa l = math . rad ians (60)
s e l f . r ad i a lFo r c eEs t imat eEr ro r In t eg ra l = 0
s e l f . physicLoopsPerControlLoop = 10

Set s t a r t va l u e s
s e l f . xVel = [0 . 0 , 0 . 0 , 0 . 0]

s e l f . i = 0
while (True) :
i f (door . GetDOFValues () [0] >= goa l) :
print ("Door opened the f u l l %d degree s ! " % math . c e i l (

math . degree s (goa l)))
break

i f (s e l f . i >= 10000) :
print ("The phys i c s loop ran f o r too many i t e r a t i o n s .

Door opened %d degree s ! " % math . degree s (theta))
break

s e l f . i += 1
Update the end e f f e c t o r p o s i t i o n
xPos = robot . GetActiveManipulator () . GetTransform ()

[0 : 3 , 3]
xTrans = robot . GetActiveManipulator () . GetTransform ()
xVelDelta = [x∗ s e l f . dt for x in s e l f . xVel]
xPos += xVelDelta
xTrans [0 : 3 , 3] = xPos

Get handle p o s i t i o n
handleTransform = dot (handle . GetTransform () , geom .

GetTransform ())
handlePos = handleTransform [0 : 3 , 3]

Ca l cu l a t e the f o r c e between the door and handle
hand l eDi r ec t i on = xPos − handlePos

23

DD143X

hand leDi r ec t i on [2] = 0
f o r c e = dot (K, hand l eDi r ec t i on)

Get the door ang le
theta = door . GetDOFValues () [0]

Create the t rans format ion to the o ther b a s i s
R = array ([[math . cos (theta) , −math . s i n (theta) , 0] ,

[math . s i n (theta) , math . cos (theta) , 0] ,
[0 , 0 , 1]])

Transform the f o r c e to the door b a s i s
doorForce = dot (R, f o r c e)

Update the ang l e
thetaVel = s e l f . dt ∗ (doorForce [0] ∗ rad iu s / c)
theta += thetaVel
door . SetDOFValues ([theta , 0])
s e l f . r a d i a lD i r e c t i o n = s e l f . h inge − xPos

Update the ang l e o f the "hand" so i t s t a y s
perpend i cu l a r to the wa l l .

R = array ([[math . cos (− thetaVel) , −math . s i n (− thetaVel) ,
0] ,

[math . s i n (− thetaVel) , math . cos (− thetaVel) , 0] ,
[0 , 0 , 1]])

xTrans [0 : 3 , 0 : 3] = dot (R, xTrans [0 : 3 , 0 : 3])

Move the arm
param = openravepy . IkParameter i za t ion (xTrans ,

IkParameter i za t ion . Type . Transform6D)
s o l = robot . GetActiveManipulator () . FindIKSolut ion (param

, IkF i l t e rOpt i on s . I gno r eEndE f f e c t o rCo l l i s i on s)

Stop i f we can ' t move the end e f f e c t o r t he r e .
i f (s o l i s None or l en (s o l) == 0) :
print ("Cannot move the arm any f u r t h e r . Door opened %d

degree s ! " % math . degree s (theta))
break

Update the end e f f e c t o r to i t s new po s i t i o n
robot . SetDOFValues (so l , ikmodel . manip . GetArmIndices ())

Run the magic func t i on !
i f (s e l f . i % s e l f . physicLoopsPerControlLoop == 0) :
s e l f . xVel = s e l f . BlackBox (xPos , f o r c e)

Take a nap
time . s l e e p (s e l f . dt)

24

DD143X

Did we manage to open the door?
i f (door . GetDOFValues () [0] > goa l) :
Make v i c t o r y g e s t u r e wi th the r i g h t arm
time . s l e e p (1)
robot . SetAct iveManipulator (' r ightarm ')
basemanip . MoveManipulator (goa l=[math . rad ians (90) , math .

rad ians (90) , 0 , 0 , 0 , 0 , 0])

Done .
raw_input (' Press any key to qu i t . . . ')
else :
Nope , something i s wrong .
print ' Unable to reach the door . Try to move something

in the environment ! '

def main (env , opt ions) :
opener = DoorOpener ()
opener . OpenDoor (env , opt ions)

from optparse import OptionParser
from openravepy . misc import OpenRAVEGlobalArguments

@openravepy . with_destroy
def run (args=None) :
pa r s e r = OptionParser (d e s c r i p t i o n="A door opening . ")
OpenRAVEGlobalArguments . addOptions (par s e r)
par s e r . add_option ('−−scene ' ,

a c t i on=" s t o r e " , type=' s t r i n g ' , des t=' scene ' , d e f au l t='
ourdoor . env . xml ' ,

he lp=' Scene f i l e to load ')
(opt ions , l e f t a r g s) = par s e r . parse_args (args=args)
env = OpenRAVEGlobalArguments . parseAndCreate (opt ions ,

d e f au l t v i ewe r=True)
main (env , opt ions)

i f __name__ == "__main__" :
run ()

A.2 ourdoor.env.xml

<Environment >

<bkgndcolor >1 1 1</bkgndcolor >

<camtrans >0.870919 1.170534 3.276345 </camtrans >

<camrotationaxis >

-0.498347 -0.817255 0.289388 170.509065

</camrotationaxis >

<Robot file="robots/schunk -lwa3 -dual.robot.xml">

<translation >0.18 0.12 0.57</translation >

<rotationAxis >0 0 1 -30</rotationAxis >

25

DD143X

</Robot>

<KinBody name="door">

<translation > -0.5 0 0</translation >

<rotationaxis >1 0 0 90</rotationaxis >

<rotationaxis >0 0 1 -90</rotationaxis >

<Body name="frame" type="static">

<Geom type="box">

<extents >1.5 0.215 0.0274 </extents >

<translation >0 2.27 0</translation >

<diffusecolor >0.36 0.25 0.0667 </diffusecolor >

</Geom>

<Geom type="box">

<extents >0.65 1.245 0.0274 </extents >

<translation > -0.96 1.245 0</translation >

<diffusecolor >0.36 0.25 0.0667 </diffusecolor >

</Geom>

<Geom type="box">

<extents >0.65 1.245 0.0274 </extents >

<translation >0.96 1.245 0</translation >

<diffusecolor >0.36 0.25 0.0667 </diffusecolor >

</Geom>

</Body>

<Body name="door" type="dynamic">

<Geom type="box">

<extents >0.3 1.025 0.0174 </extents >

<translation >0 1.025 0</translation >

<diffusecolor >0.818 0.6157 0.0941 </diffusecolor >

</Geom>

<Geom type="cylinder">

<RotationAxis >1 0 0 90</RotationAxis >

<radius >0.03</radius >

<height >0.005</height >

<translation > -0.25 0.95 -0.02</translation >

</Geom>

</Body>

<Body name="handle" type="dynamic">

<Translation >0.15 0 -0.02</Translation >

<Geom type="cylinder">

<RotationAxis >1 0 0 90</RotationAxis >

<radius >0.015</radius >

<height >0.08</height >

<translation > -0.4 0.95 -0.0374</translation >

</Geom>

<Geom type="box">

<translation > -0.35 0.95 -0.0704</translation >

<extents >0.05 0.015 0.007</extents >

</Geom>

<Geom type="box">

26

DD143X

<translation > -0.31 0.95 -0.049</translation >

<extents >0.014 0.01 0.03</extents >

</Geom>

</Body>

<Joint name="doorhinge" type="hinge">

<body>frame</body>

<body>door</body>

<anchor >0.3 0 -0.0348</anchor >

<axis>0 -1 0</axis>

<limitsdeg >0 120</limitsdeg >

</Joint>

<Joint name="handlehinge" type="hinge">

<body>door</body>

<body>handle </body>

<anchor > -0.4 0.95 0</anchor >

<axis>0 0 -1</axis>

<limitsdeg >0 0</limitsdeg >

</Joint>

</KinBody >

<KinBody name="floor">

<Translation >0 0 -.010</Translation >

<RotationAxis >0 1 0 90</RotationAxis >

<Body type="static">

<Geom type="box">

<extents >0.005 1.500 2.000</extents >

<diffuseColor >.3 1 .3</diffuseColor >

<ambientColor >0.3 1 0.3</ambientColor >

</Geom>

</Body>

</KinBody >

</Environment >

27

www.kth.se

