

Silverfish Simulation

 D E N N I S J O H A N S S O N

 Bachelor of Science Thesis
 Stockholm, Sweden 2012

Silverfish Simulation

 D E N N I S J O H A N S S O N

 DD143X, Bachelor’s Thesis in Computer Science (15 ECTS credits)
 Degree Progr. in Computer Science and Engineering 300 credits
 Royal Institute of Technology year 2012
 Supervisor at CSC was Henrik Eriksson
 Examiner was Mårten Björkman

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/
 johansson_dennis_K12041.pdf

 Royal Institute of Technology
 School of Computer Science and Communication

 KTH CSC
 SE-100 44 Stockholm, Sweden

 URL: www.kth.se/csc

This document focuses on simulation of silverfish in an application

that makes use of a simple method, which is proven to be inadequate.

With this method the genes are represented by integers that are used

by an automaton to control the silverfish. A foot killing silverfish is

proven to be enough to alter the evolution.

Table of Contents

1 Introduction ... 2

2 Problem statement.. 2

2.1 Application... 2

3 Background .. 2

3.1 Methods .. 2

3.1.1 Simulated genes .. 3

3.1.2 Artificial Neuron Network ... 3

3.1.3 The choice of method .. 3

4 Approach ... 3

4.1 Application... 4

4.1.1 Performance .. 7

4.1.2 Tag Explanation and Colors ... 8

4.2 The Silverfish ... 9

4.3 The Automaton ... 9

4.3.1 The genes impact on the automaton .. 10

4.4 Mutation .. 10

5 Results ... 11

5.1 Test results .. 11

6 Conclusion ... 14

7 References ... 15

1

Tables

Table 1: A short description of each type of gene, and the letter used by the tags to describe it. 8

Table 2: The tags part that describes the size of a parameter. ... 9

Table 3: Simulation results of the first test. .. 11

Table 4: Simulation results of the second test. ... 12

Table 5: Simulation results of the third test. ... 13

Table 6: Results from a longer simulation at max speed. ... 13

Table 7: Test two repeated with neither AI nor stomping. ... 13

Table 8: Test two repeated with neither AI nor stomping and with more food spawning, leading to an

interesting population boom early on. ... 14

Figures

Figure 1: Wrappers for the interface objects. ... 4

Figure 2: The hierarchy and automaton. ... 5

Figure 3: The foot and Artificial Intelligence ... 6

Figure 4: The Application class .. 6

Figure 5: Image of the Application. ... 7

Figure 6: The four states of the automaton used by the silverfish. .. 10

Figure 7: The algorithm used when applying mutations to the children where the mutation_value is

controlled by the slider control for mutation rate. .. 11

2

1 Introduction
This essay targets simulation of silverfish with focus on an application that I have made for the

purpose of this essay. The application is used to discuss the possibility of simulating silverfish through

the use of a simple automaton and a few variables representing different genes for each silverfish.

These variables may differ for each spawned silverfish to simulate mutations in the genes and allows

for some interesting results. To make it further more exciting we introduce a foot that can be

controlled either by an artificial intelligence or by interaction, and is used to stomp the silverfish to

death.

2 Problem statement
The main problem, simulating evolution, requires natural selection for the silverfish. Usually this

requires silverfish that can move around and eat food, and finally reproduce. However to make

things a bit less mainstream we introduce a flashlight and a foot, which represent a human trying to

kill the silverfish in a dark room. Non-lit silverfish cannot be seen, and are considered safe. The final

results should help answering whether it really is possible to simulate evolution with simple tools and

if the foot truly alters evolution.

2.1 Application
The purpose of the application is to simulate silverfish evolution. To do this we need an environment

that can be controlled by the application in real-time. We also require silverfish and food in this

environment where the silverfish neither survive nor reproduce without food. To introduce evolution

the silverfish must mutate, which can be done in three different ways brought up in section 3.1. Once

we have silverfish in an environment we introduce a stomping foot to alter their evolution.

We further increase the realism of the application with an interface where the user can control both

the flashlight and the foot. We all know that evolution requires many generations to make things

interesting, which calls for an artificial intelligence to control the flashlight and foot until the user is

ready to take over.

3 Background
Simulation of silverfish is not much different from what has already been done, however interaction

with the evolution is rare to say the least. Therefore the difference comes with the foot that interacts

with the simulated evolution. The application (especially the interface) is inspired by a similar

application [1] which has critters that reproduce when they have enough energy and mutate in

different directions. In that application you can introduce a wall segment that the critters can collide

with, which is very similar to the foot.

3.1 Methods
There are three major solutions to this problem; parameter based and module based simulated

genes along with artificial neuron networks. I understood the approach with simulated genes best

however neuron networks caught my interest, as it is a versatile tool that can be applied to almost

anything [2].

3

3.1.1 Simulated genes

Simulating genes is a simpler technique than neuron networks. While it is easy to implement, it has

consequences, mainly you have to define exactly what the genes affect, which can be difficult to

know beforehand. Predefined genes cause two problems, it is difficult to get it right, and it may also

lower the quality of the end result. Finally a pool of genes may cause problems when different genes

coincide in a bad manner.

3.1.1.1 Parameter Based

The parameter based approach is by far the simplest. Each gene is represented by a parameter,

which in turn alters the behavior of the objects. Mutation is very easy to implement with parameter

based genes as they can be anything between their minimum and maximum value respectively.

3.1.1.2 Module Based

This is the approach used by the similar application [1]. A module represents a gene, which can either

control parameters, such as increased lifespan or more directly via behavior. In an example on

Wikipedia [3] a module controls a leg of a creature to move it up and down with a frequency.

However if this gene makes use of an internal parameter it is useless without another gene to set it.

This pool of different modules controls the creatures’ behavior. In order for this to have any greater

impact we need a lot of modules. Mutations in module based simulated genes describes how we

alter the pool of modules, where we can remove or add a module as a mutation.

3.1.2 Artificial Neuron Network

Neuron networks are complex in nature, and therefore very versatile. However the versatility of

neuron networks work both in favor of, and against the resulting application. They require a lot of

processing time for training [2], which really is not an option for an interface based application. As

emulation is required for a neuron network to function properly [2], along with my inexperience with

neuron networks, the end result is hard to determine in advance.

3.1.3 The choice of method

Parameter based simulated genes, the simplest of the three options has one issue; it may be too

simple as it is got a finite amount of states, which can be too few with a small amount of parameters.

The module based approach gives better results, but may be hard to apply on simple silverfish

without implementing a huge amount of modules. Finally artificial neuron networks are just too

complicated to work with. The main reason for my choice is time, as both module based simulation

and artificial neuron networks may take a significant amount of time to implement they are

discarded. So we are left with parameter based simulated genes as they are easy and quick to

implement.

4 Approach
As I am a seasoned C++ programmer it felt like a good choice to implement the application in C++.

However the C++ standard does not come with any API for drawing, therefore I used the Windows

GDI [4] for drawing, as I am fairly used to it. The Windows GDI does all the application demands and

works well with Windows dialogs. The dialogs are easy to create in visual studio, which is the main

reason why the application uses it. Other libraries may not work well with dialog boxes and therefore

it is probably a bad idea to use them.

4

4.1 Application
As seen in Figure 2 there is only one important hierarchy in the application with Object as the base.

The purpose of Object is to connect the drawing of rectangles with the report list control on the

right-hand side of the applications window (see Figure 5 on page 7). The objects have a tag

associated with them which is connected to a color in a ColorList, see Figure 1. This color is used by

the report list control to associate its counts with the drawn simulation on the left-hand side of the

applications window, where the silverfish are drawn as colored rectangles. You can only see the

silverfish where the flashlight is revealing them; also this is where the foot will stomp.

Figure 1: Wrappers for the interface objects.

The Food class is minimal and only defines the tag for food, logically defined as “Food”; however the

Silverfish class defines a whole lot more which is covered in section 4.2. Each of the silverfish owns an

automaton described in section 4.3 that controls its actions. Also as the silverfish derives from the

Object class it must define its own tag; how this is accomplished is described in section 4.1.2.

5

Figure 2: The hierarchy and automaton.

The foot is either controlled by the human or by an AI, which uses a tiny automaton with a move and

a stomp state. It uses the same move state as the automaton explained in section 4.3. The foot is

controlled via the applications OnLeftMouseDown and OnMouseMove methods respectively (see

Figure 4). These are either passed into the application from the user (via an external message

procedure) or via the artificial intelligence.

6

Figure 3: The foot and Artificial Intelligence

The Application class binds all of these components together. The Application class handles the

controls on the lower right corner of Figure 5 to alter internal variables used by the different classes

and also for spawning the initial set of silverfish and food. The speed control defines how often the

internals get their update functions called and hence the speed of the simulation. The internals is the

three first fields in the Application class (see Figure 4) along with the objects in the m_mms

multimap. The interface is redrawn separately from the updates, which makes the implementation of

the pause really easy – stop calling the update functions. A general AddObject is defined for adding

new objects, as they are shared in three data structures, m_fv, m_sv and the multimap. Removal of

the objects is accomplished in an update via the virtual remove_object function defined in Object

(see Figure 2) which returns true if the object is discardable, or via the KillSilverfishInArea method of

the Application class.

Figure 4: The Application class

The applications interface is split into three separate areas, the drawing, simulation info and the

simulation control. The drawing area is used to illustrate the simulation in real-time, and is also used

7

to interact with the silverfish via the foot and flashlight. The flashlight always follows the mouse and

the foot stomps wherever the flashlight is when the user hits the left mouse button as described

earlier. The simulation info shows a top-7 most common list of objects. If there are more objects

than six present in the application the rest will be “summed up” and called “Others”. The runtime for

the simulation and number of species is also shown below. Simulation control is used to initiate the

simulation as well as pausing and/or altering it. The artificial intelligence can be switched on or off on

demand if the user wants to interact himself.

Figure 5: Image of the Application.

4.1.1 Performance

As the application was near completion one could see a bottleneck in the application, where it spent

most of its time on handling user timers. It had a massive impact on the performance as more than

90% of the CPU time was spent handling these user timers. User timers are not designed to be used

the way the application demands. There are two ways to solve this issue, either we change the type

of timer or we design our own timer. There are two timer choices in the Windows API, waitable

timers and thread pool timers. Waitable timers use the asynchronous procedure call (APC) queue on

the thread. An APC queue is filled up by the kernel or other threads and freed up by the thread that

owns it. As a single thread handles everything when using a waitable timer no thread synchronization

is required. Thread pool timers have the advantage of being even more effective as it spreads out the

handling on several threads. However as the application was not built with thread synchronization in

mind, there was but one choice… waitable timers! There is one big problem with waitable timers

though. Remember that it is the kernel that is filling up my APC queue with requests. As the

8

application uses four different timers, all firing at given intervals, this APC queue fills up quite rapidly

and only the main thread can empty it. However the kernel will not care if the thread cannot handle

all the requests and continues to spam it with APC requests causing the application’s user interface

to hang as the thread spends all of its time handling the APC requests instead of user input. As you

can see this is a really dangerous solution.

The second choice is to discard the Windows API timers and create my own. The main advantage

here is that there is no way to create a deadlock, livelock or hang with this solution. However it does

demand a smaller internal rebuild, which is exactly what has been done for this application. This is

obviously the best choice given the major flaws of the other solutions.

4.1.2 Tag Explanation and Colors

To understand the test results, a thorough explanation of the object tags is necessary. First of all

there are two tags that are easily understood, “Food” and “Others”, where the tag “Others” is virtual

in the sense that it does not exist internally, as it is only calculated as simulation info. The tags are

connected to colors which are used to draw the rectangles representing objects. Only the top six

most common objects are assigned a unique color, the rest share the color assigned to “Others”.

Note that the “Food” tag is not necessarily among these top six most common objects and does not

always have a unique color.

Each silverfish species has a unique tag assigned to it, which describes the current set of genes. We

can split the tag into parts to understand what it tells us. Each part consists of a gene tag (see Table

1) and a representation of the state of the gene, see Table 2.The genes are represented by values

internally, so we can split these into five different areas; very small, small, normal, large and very

large. So a very fast silverfish would have the tag part “S>>”. With this knowledge we can easily see

how common a characteristic is among the top 5-6 silverfish just by looking at these tag parts.

Gene Tag Part Description

S Speed of the silverfish; the m_speed field of the Silverfish class in
Figure 2 on page 5.

L Lifespan of the silverfish; the m_lifespan field of the Silverfish class
in Figure 2 on page 5.

D The maximum distance to the center of the light source where the
silverfish is scared, see section 4.2 and 4.3 for more information.
This is the m_maxdist field in the Silverfish class in Figure 2 on
page 5.

E Reproduction energy, the energy required to reproduce, see
section 4.2 and 4.3 for more information. This is the
m_reproduce_energy field in the Silverfish class in Figure 2 on
page 5.

B The energy boundary is the maximum amount of energy for when
the silverfish ignores fear; see section 4.2 and 4.3 for more
information. This is the m_energy_boundary field in the Silverfish
class in Figure 2 on page 5.

T The minimum age before reproduction is possible. See section 4.2
and 4.3 for more information. This is the m_reproduce_time field
in the Silverfish class in Figure 2 on page 5.

Table 1: A short description of each type of gene, and the letter used by the tags to describe it.

9

Table 2: The tags part that describes the size of a parameter.

4.2 The Silverfish
The silverfish class is quite simple; all the hard work is done for it by the Application and Automaton.

There are three important methods in the Silverfish class, the update, nearbyFood and

consumeNearbyFood. When the update method is called three things are done, first we request the

nearby food from the Application (see Figure 4 on page 6) to be used by the other two methods.

Then we calculate the distance to the center of the light source. Finally we call the update method of

the internal Automaton. NearbyFood and consumeNearbyFood is used by the automaton when it is

in the feed state (explained in section 4.3).

Fear is used quite a lot by the automaton and therefore we have a method flee to reflect whether

the silverfish is ready to flee because it is scared. Internally this method makes use of two variables,

namely the energy boundary and the max distance (B and D in Table 1).

4.3 The Automaton
The following subsection explains how the automaton works, so please refer to Figure 6 when

reading.

The automaton is made up of four different states (see Figure 6), where it can move around, feed or

breed. By far the most common one is move, which moves the silverfish in any of four directions,

namely left, right, up and down. To make the silverfish appear a bit smarter it saves the last

direction, which is more likely to be chosen again the next move. These movement rates are constant

among all silverfish even though it could change the behavior and success of a species. A silverfish

can come upon food when moving around and will move into the feed state as long as it is fearless.

Fear is a big factor here, as it will get stuck in the move state if scared. A scared silverfish will always

run away from the light source to the safety of darkness and this can be thought of as an extra state.

A silverfish that is feeding will continue to do so until there is no more food at its position. With each

pass through the feed state it will eat one, and only one bit of food. The final part of a silverfish life is

breeding. Once breeding there is no running away, the silverfish will continue until the delivery state.

As a shorter breeding period is preferable in all situations it is constant among all silverfish. After the

fixed amount of breeding the silverfish enters the delivery state and will produce two new silverfish

with or without mutations depending on the mutation rate. These children start in the move state

and will share the energy given from its parent. Finally after the delivery the automaton will continue

to move if it is scared or cannot find food, otherwise to the feed state.

Gene Value Tag part

Very small <<

Small <

Normal Nothing

Large >

Very large >>

10

Figure 6: The four states of the automaton used by the silverfish.

4.3.1 The genes impact on the automaton

We have five genes that directly impact the automaton. Even if the lifespan does not impact the

automaton itself, it controls whether the automaton should update the silverfish at all. When the age

exceeds the silverfish’s lifespan, it will die and hence the automaton is not used anymore.

The gene with most impact is the speed, as it controls the amount of passes through the

automaton’s update function for each tick. As described earlier in section 4.3 a silverfish will get

stuck in the move state if scared. If a silverfish is closer to the light source than a minimum distance it

is scared and will run away, though there is one exception to this rule as it is willing to take the risk

when it is running out of energy. That is when the lower boundary for energy is crossed. The last two

genes impact when the silverfish can reach the breed state. The first gene describes when the

silverfish is mature enough to produce children and the second one the energy required. All of these

genes are briefly described in Table 1 on page 8.

4.4 Mutation
As explained in section 4.1 each gene is represented by a value internally. This value has a maximum

and minimum value. With an easy function (see Equation 1) we can calculate a new value for the

mutated gene given the parents gene. In the equation we use the parent value, a minimum and

maximum value for the gene along with a maximum difference between the parent’s and the

mutated gene value. The function rand(a, b) gives us a random value between (a-b) and (a+b). The

mod (modulo) operation always returns the smallest positive result. The function is designed to wrap

the final value if it becomes lower or larger than the min and max values.

Equation 1: () () ()

Depending on the value set with the slider control for mutation rate, Equation 1 will be used to alter

any of the genes. See Figure 7 for an algorithm describing how the mutation function is applied.

11

Figure 7: The algorithm used when applying mutations to the children where the mutation_value is controlled by the
slider control for mutation rate.

5 Results
The results are shown as snapshots of the simulation info part of the simulation window (see Figure 5

on page 7); where the characteristics of each species among the most common ones can be deduced

via their tags (refer to section 4.1.2 for a detailed description of the tags). The AI was used with the

same settings in the first four simulations, where it stomped franticly. Note though that it is hard to

get the exact same settings in the simulations. Also the AI moves around in a random fashion which

might produce different results.

5.1 Test results
The first test (see Table 3) started out with a completely randomized silverfish that reproduced

without any interference for a few seconds. When the numbers reached above 800 the AI was

switched on and mutation introduced. At first the mutation rate was set very low in an attempt to

discover how even tiny changes can create completely new species. Due to these low settings it took

a few minutes before any truly different species started gaining in numbers. Finally, after 16 minutes

of simulation, the results started to coincide again where similar species appeared as most common.

Table 3: Simulation results of the first test.

The second test (see Table 4) let a species start out with all gene values set to their minimum. Again

the initial species gained in numbers before mutation was introduced. Also, a low mutation rate was

spawn_children(parent, given_energy):
for i: 1 to 2
 child = copy(parent)
 child.energy = given_energy / 2
 child.time = 0
 child.automaton.reset()

 x = -1
 c = rand(1, MAX_MUT_COUNT + 1)
 for j: 1 to c
 x = rand(1, mutation_value * 2)
 if x == 1
 speed = Mutate(speed,MIN_SPEED,MAX_SPEED,SPEED_DIFF)
 elseif x == 2
 lifespan = Mutate(lifespan,MIN_LIFESPAN,MAX_LIFESPAN,LIFESPAN_DIFF)

12

used for the first 11 minutes. As the species had not changed much with these settings the mutation

rate was maxed out for one minute, which clearly gave results. To see which of these species were

the strongest, the mutation rate was decreased to zero again to see a final victor in the last snapshot

of Table 4.

An important thing to notice here is the fact that the reproduction energy and energy boundary

never increased drastically from the lowest values, while the speed and reproduce time changed

constantly throughout the simulation. Also the lifespan and distance genes remained steady around

the normal values. There are two reasons why a value stays at the minimum; either the silverfish that

gain from the increased gene value cannot survive or the gene is not viable at all at higher values.

At the 11 minute mark of the simulation two silverfish outnumbered the others. These had

profoundly different tactics to survive. The species tagged with a red color relies on reproducing

faster than the foot can kill, as they mature early and require little energy to reproduce. On the other

hand the pink species relies on survival by being fast enough to escape the foot while reproducing

less often.

Table 4: Simulation results of the second test.

The third test (see Table 5) is an attempt to prove or disprove the theories from test two. To repeat

the important steps in test one, the simulation ran for 11 minutes with little mutation. Again the

mutation rate was increased temporarily for a minute, to finally be switched off when only one

species was left.

In this test the slower species had a clear advantage, which is caused either by inexact settings on the

AI, other genes coinciding or pure chance. However we can still see that the distance is in the normal

region, which is the same result we saw in test two while the reproduction time and energy differed

in this simulation, which is a possible reason for the change in the speed gene.

An interesting result that sadly went unseen in Table 5 is that the blue and red species were the only

survivors less than half a minute after the mutation was switched off. Finally the red species won,

even though the only difference here was the energy boundary. This is the same gene that appeared

useless in the earlier tests. Here the red species did not care about dying of starvation, but rather

dying to the foot, which saved it in the end as the other species got stomped to extinction.

13

Table 5: Simulation results of the third test.

An upper boundary for the amount of silverfish can clearly be seen in all tests. However, after more

than one hour of simulation with 5 times as much food spawning only roughly 2.5 times as many

silverfish appeared, as seen in Table 6. As the silverfish count can only be limited by the foot in this

case, we can see that it does have a clear impact on the amount of silverfish; however does it affect

the evolution?

Table 6: Results from a longer simulation at max speed.

To see how the foot impacts the evolution, test two was repeated without any AI (see Table 7). This

time the top 1 silverfish never changed – it was permanently the initial silverfish with the lowest

values on the genes. However maxing out the mutation rate again clearly changed this even though

a very similar species to the first one appeared as the winner. These results suggest that the lowest

values on the genes are preferable without the foot, which indicates that the foot does affect the

evolution!

Table 7: Test two repeated with neither AI nor stomping.

When the previous test was repeated with more food, some unexpected results appeared as shown

in Table 8. One species (with the red color) spawned during the first few seconds with mutation and

instantly started growing in numbers, very rapidly. The population reached past 60000 to suddenly

drop down below a thousand again. Even though the simulation went on for another 30 minutes the

phenomena did not appear again as the initial large amount of food (1500) enabled lots of silverfish

14

to gain enough energy to reproduce quickly to finally die out again once the rich food supply

disappeared.

Table 8: Test two repeated with neither AI nor stomping and with more food spawning, leading to an interesting
population boom early on.

6 Conclusion
The results reflect what is seen in biological evolution; different species survive via different

characteristics as seen in Table 4 on page 12. The application could clearly produce many different

species, even with a simple tactic like parameter based simulated genes. However the results

without the foot clearly lacked profoundly different characteristics of the top species, as only four

genes were involved. This makes me draw the conclusion that the tactic is too simple with few genes

as it is unable to create a well-functioning simulation of evolution.

Altering evolution with the stomping foot was a success; we clearly saw a difference with and

without the foot. Therefore implementing a feature like the foot into an application with module

based simulated genes or artificial neuron networks should give some interesting results!

15

7 References

[1] scotchfaster, "Chaos is Creation: evolution in real time," 10 April 2008. [Online]. Available:

http://www.youtube.com/watch?v=GuWJ1ZiwO2g. [Accessed 4 March 2012].

[2] D. Rios, "NeuroAI Artificial Neural Networks," 2010. [Online]. Available:

http://www.learnartificialneuralnetworks.com/. [Accessed 7 March 2012].

[3] T. T. "Artificial life," Wikipedia, 2 April 2012. [Online]. Available:

http://en.wikipedia.org/w/index.php?title=Artificial_life&oldid=485074045. [Accessed 7 April

2012].

[4] Microsoft, "Windows GDI," Microsoft Developer Network, 7 March 2012. [Online]. Available:

http://msdn.microsoft.com/en-us/library/dd145203(v=vs.85).aspx. [Accessed 7 April 2012].

www.kth.se

