

A Lisp Compiler for the JVM

 A N T O N K I N D E S T A M

 Bachelor of Science Thesis
 Stockholm, Sweden 2012

A Lisp Compiler for the JVM

 A N T O N K I N D E S T A M

 DD143X, Bachelor’s Thesis in Computer Science (15 ECTS credits)
 Degree Progr. in Computer Science and Engineering 300 credits
 Royal Institute of Technology year 2012
 Supervisor at CSC was Mads Dam
 Examiner was Mårten Björkman

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/
 kindestam_anton_K12043.pdf

 Royal Institute of Technology
 School of Computer Science and Communication

 KTH CSC
 SE-100 44 Stockholm, Sweden

 URL: www.kth.se/csc

iii

Sammanfattning

Att implementera dynamiska och mestadels funktionella programmerings-
språk på miljöer som JVM är allt mer i tiden. Språk såsom Clojure, Scala eller
Python. För att åstadkomma duglig prestanda och Java interoperation bör
ett sådant språk helst kompileras. Denna essä handlar om tekniker som kan
användas för att implementera dynamiska, funktionella programmeringsspråk
på JVM:en med speciallt focus på Lisp och Scheme. En implementation av en
liten Lisp-kompilator har genomförts för att illustrera några av dessa tekniker.

Abstract

Implementing dynamic, mostly functional, languages on top of an environ-
ment such as the JVM is getting ever more popular. Languages such as Clojure,
Scala, or Python. To achieve reasonable performance and Java interoperability
such a language usually needs to be compiled. This essay features techniques
for implementing dynamic and functional languages on the JVM with a focus
on Lisp and Scheme, as well as an implementation of a small Lisp compiler
demonstrating some of these techniques.

Contents

Contents iv

I Report 1

1 Introduction 3
1.1 Why Lisp? . 3
1.2 Why JVM? . 4

2 Background 5
2.1 Definitions . 6
2.2 Prior Work . 7
2.3 Preliminary Issues . 7

2.3.1 Scoping . 7
2.3.2 About Lisp . 10
2.3.3 Tail-call optimization . 16
2.3.4 Bootstrapping . 18

2.4 Problem statement . 19
2.5 Test cases . 19

3 Methods 21
3.1 General . 21

3.1.1 Overview of compilation . 21
3.2 Functions and function application 22
3.3 Literals . 25

3.3.1 Constants . 25
3.3.2 Complex constants . 26

3.4 Tail-call optimization implementation strategies 28
3.4.1 Handling self-tail-calls . 28
3.4.2 Method-local subroutine approach 29
3.4.3 Trampolines . 30

3.5 Scoping . 31
3.5.1 Static Scope . 31
3.5.2 Lexical Scope and Closures 32

iv

CONTENTS v

3.5.3 Dynamic Scope . 34

4 Results 37
4.1 Benchmarks . 37
4.2 Conclusions . 38
4.3 The future? . 39

5 References 41

II Appendices 45

6 Appendix A 47

Part I

Report

1

Chapter 1

Introduction

A compiler is a program that transforms code written in a source programming
language to a target programming language.

The Java Virtual Machine, or JVM, is an ever more popular target for language
designers. Languages like Groovy, Scala and Clojure all implemented on the JVM,
have recently been gaining attention in particular due to their interoperability with
Java. There have even been ports of popular dynamic languages such as Python
and Ruby, Jython and JRuby respectively, to the JVM. Interestingly the above-
mentioned Clojure is an implementation of modern Lisp dialect.

This thesis aims to investigate what goes into creating a compiler for a dynamic
language that compiles to the JVM using a small and simple Lisp dialect as the
source language in a hands-on approach.

1.1 Why Lisp?

Despite, or perhaps because of, its age Lisp shares a lot of common ground, and
thus implementation issues, with more recent and popular dynamic programming
languages such as Python, Ruby or Clojure. The latter is in fact a modern dialect
of Lisp operating on top of the JVM.

Lisp is well suited for a project like this in particular due to its ease of implemen-
tation. The inherent ability of the language to do a lot given very little is going to
make possible to compile interesting programs without having the compiler support
the entire language (which is fairly small anyway). There is no need to spend time
implementing a parser since one is already available from the LJSP interpreted envi-
ronment. Writing the compiler in and for Lisp, and in this case even in LJSP itself,
becomes very efficient since Lisp code is represented using Lisp data structures so
the compiler can easily be built as a dispatch-on-type set of recursive functions.

3

4 CHAPTER 1. INTRODUCTION

1.2 Why JVM?
“Attracted by a generally available, machine-independent platform, implementors
of other languages are turning to the Java virtual machine as a delivery vehicle for
their languages.” [JVMSpec] (§1.2).

Other advantages include that the JVM includes native garbage collection giving
more time for actually implementing the language and not a garbage collector, which
is a big investment in development time.

Disadvantages include inefficiencies and having to deal with how the JVM is
closely built around Java, with no inherent support for first-class functions nor the
call-stack manipulations typically used to implement tail-call optimization.

Chapter 2

Background

This section explains the choices of source language its feature set as well as some
of the vocabulary used in this thesis. The benefits, as well as the drawbacks, of
targeting a virtual machine such as the JVM are explored.

5

6 CHAPTER 2. BACKGROUND

2.1 Definitions
Term Definition
Lisp LISt Processing A family of dynamic pro-

gramming languages commonly programmed
using a functional programming style, but
also capable of imperative programming for
side-effect.

Functional Programming (FP) A programing style focusing chiefly on func-
tion application and side-effect free comput-
ing.

Imperative Programming A programming style where computation is
expressed in terms of statements that change
program state.

Virtual Machine (VM) A computer model implemented in software.
JVM Java Virtual Machine A VM originally imple-

mented for the Java programming language.
Java (and more recently a whole flock of dif-
ferent JVM-based languages such as Clojure)
compiles to Java Byte Code which the JVM
then executes. Since there are implementa-
tions of the JVM for different processor ar-
chitectures and environments the same code
runs on portably across many architectures
and operating systems without the need for
recompiling.

Java Byte Code The virtual instruction set supported by the
JVM.

Jasmin A program capable of converting a simple
text representation of Java Byte Code in-
structions to actual Java Byte Code. The
same role an Assembler performs for a reg-
ular (usually implemented in hardware) pro-
cessor architecture.

Source Language The language a compiler reads as its input.
Implementation Language The language the compiler is implemented in.
Target Language The language a compiler outputs.
REPL Read-Eval-Print-Loop: Traditional name for

the Lisp interactive command line
Bootstrapping The art of pulling oneself up by ones own

bootstraps. In the context of compilers this
usually refers to the act of writing a compiler
capable of compiling itself.

2.2. PRIOR WORK 7

Fixed Arity Pertaining to a function; a function that ac-
cepts only a fixed number of arguments.

Variable Arity Pertaining to a function; a function that ac-
cepts a variable amount of arguments.

2.2 Prior Work

Before starting this thesis the author had implemented a small interpreter and Lisp
system for Java called LJSP, for silly reasons1. This system will be used as a base,
as well as implementation language, for the compiler and classes implemented for
the interpreter will be able to be conveniently reused for implementing the compiler,
with only minimal changes to them neccessary.

Tricky issues, like mixed-type arithmetic, is already handled in these classes
giving more time to work on the core parts of the compiler.

The interpreter features an interface to Java (currently somewhat quirky and
limited but still useful) using Javas reflection features. This can, among other
things, be used to load generated class files into the runtime after compilation.

2.3 Preliminary Issues

2.3.1 Scoping

This section explains the different variable scoping terms used in this thesis.
Useful terms when speaking about variable scoping [CLtL2] (§3):

Scope The textual portion of a program during which a variable may be referenced.

Extent The interval of time during which references may occur.

Lexical Scoping

A lexically scoped binding can only be referenced within the body of some construct
enclosing part of the program. The scope extends to the bodies of enclosing con-
structs within the outer body, allowing for instance nested functions to access, and
mutate, bindings introduced by the function that created them.

The bindings are said to be of indefinite extent, that is they can be kept as
long as something is using them. If a function closing over a binding is returned
that binding will be kept so long as there is an active reference to that function, or
closure.

Example (pseudo-code):
1Anything that has something to do with Java ought to have a “J” in the name, and the

interchangeability of the letters “i” and “j” in old alphabets made this silly, and unpronouncable
using modern orthographical rules, substitution obvious.

8 CHAPTER 2. BACKGROUND

function foo(x):-
function bar(y):-

return y + x
return bar(x) + x

The free variable x in bar is resolved to the x introduced by foo. Running foo(t)
will thus yield t+t+t.

Example with mutation:

function make-incrementer(x):-
function inc(y):-

x = x + y
return x

return inc
...

>> a = make-incrementer(2)
<closure inc 1>
>> a(2)
4
>> a(1)
5
>> b = make-incrementer(123)
<closure inc 2>
>> b(5)
128
>> a(6)
11

Erratic example:
function foobar(a):-

function baz(b):-
return b + a

return baz(a) + b ; b not defined in this scope
This is an error for lexically scoped a and b. Since bs scope only extends throughout
the body of baz, however the variable a is reachable in both foobar and baz.

Static Scoping

While often used synonymously with lexical scoping static scoping, as used in this
essay, will refer to the subset of lexically scoped variable bindings that are never
captured by any function other than the function in which the bindings were defined.
That is the variables scope exists only in the body of the function that established
the variable binding, and not in the bodies of any nested functions. This is somewhat
similar to the C model of variable scope, disregarding for a while that C typically
lacks nested functions.

2.3. PRELIMINARY ISSUES 9

Example:

function foo(x):-
function bar(x):-

return x*3
return bar(x) + 2

is valid for a statically scoped x, since all x:s are local to their defining functions.

function foo(w):-
function bar():-

return w*3
return w + bar()

Would however result in an error since the free variable w is not in scope in bars
environment, where as it would be with true lexical scoping.

This is the only scoping supported by the example LJSP compiler built for this
thesis (but further extension of the compiler is planned, see section 4.3 The future?
on page 39).

Dynamic Scoping

Dynamically scoped variables are said to have indefinite scope, that is they can be
referenced anywhere in the code, and dynamic extent. The latter means that they
are referenceable between establishment and explicit disestablishment, at runtime,
thus mirroring the actual runtime call stack.

In fact one convenient way of thinking of dynamically bound variables are as
stacks with the most recent binding at the top.

Example (all variables are dynamically bound):
function bar(b):-

print(a) ; can access a here if called from foo
print(b) ; the b here will however be 12 when

; called from foo, and not 18, since that
; b has been shadowed by the b in the arguments to bar

function foo(a, b):-
bar(12)

...

>> foo(123, 18)
123
12
<void>
>> bar(23) ; this will fail since a is not defined
<somefail>

10 CHAPTER 2. BACKGROUND

Some implementations of dynamic scoping, such as the one used by the LJSP in-
terpreter, will default to nil when accessing a non-defined variable thus failing in
a much more subtle way for the last call to bar.

This is the only kind of scoping available in the LJSP interpreter.
Interestingly this kind of semantic dichotomy, which the LJSP interpreter and

compiler currently displays, between the compiler implementation (static scoping
only/by default) and interpreter implementation (dynamic scoping only/by default)
is typical of old Lisp implementations. This is usually so since implementation-
wise dynamically scoped variables are easier to implement more efficiently in an
interpreter, while the statically scoped variables are more easily compiled to efficient
code.

2.3.2 About Lisp
This section briefly presents some basic Lisp data types, special operators, common
constructs and functions used throughout the essay to aid the reader unfamiliar
with Lisp.

A feature that sets Lisp apart from most programming languages is its ho-
moiconicity, the fact that Lisp code is represented by Lisp data structures. Code is
data. (+ a 4) is a list that contains the symbols + and a as well as the number 4.
Put that list in a different context however, that is evaluate it, and it means: call
the function + with the arguments variable a and literal 4.

This also makes writing a compiler or interpreter for Lisp in Lisp itself relatively
simple since it is merely the matter of writing a program working on the normal
Lisp data structures, interpreting them as code.

Macros

This homoiconicity also allows for something relatively unusual outside of Lisp pro-
gramming which is macro programming. That is most Lisp environments allow
for the inclusion of Lisp programs that generate Lisp code. This is feasable since
Lisp code is Lisp data. These receive Lisp data as their input, are usually run at
compile-time and the code at the call-site of the macro is replaced with the code
that the macro generated. Macros can be used to define many constructs of the
language in the language itself without special compiler support. It naturally also
allows definition of new constructs specialized for a certain specific problem.

To read more about Lisp macros in the context of Common Lisp [Graham] (§7)
is recommended.

Data types

We now move on to present some Lisp data types.

Lists The single most important data structure in Lisp is the list. Lisp is after all
an acronym of list processing. A list in a traditional Lisp is a regular singly-linked

2.3. PRELIMINARY ISSUES 11

list. The nodes in a Lisp linked list are traditionally known as cons cells or conses.
The two-argument function used to construct them is consequently known as cons.

(cons 1 2) ⇒ (1 . 2)

cons cells typically contain two pointers to Lisp objects. However many Lisp imple-
mentations store some objects such as integer values directly in the pointer fields to
be more efficient. Interestingly the next-pointer, or second field, is not required to
point to another cons cell but can point to any Lisp object. The end of list-marker
is usually written () and is in most traditional Lisp environments synonymous with
nil which is the Lisp equivalent of the null pointer or null reference. Some more
modern variants of Lisp such as Scheme instead distinguish between () and nil
[R5RS].

The value-field of a cons cell, or the head of the list, is accessed using the car
function. The next-pointer-field, effectively the tail of the list, is accessed using
the cdr function. Thus these are also known as the car and cdr fields. These
seemingly strange names are a holdover from some low-level details of the machine
on which the first Lisp implementation was made. car stands for contents of the
address part of register and cdr stands for contents of the decrement part of register
[McCarthy60] (§4) (p. 28).

In most Lisp dialects the car and cdr of a cons cell can be set using the procedure
rplaca, for replace car, and rplacd, for replace cdr, respectively. In some Lisp
variants they might be known by other names or, in the case of some side-effect-
free, dialect not exist at all.

Building some lists using cons:

(cons 1 (cons 2 ())) ⇒ (1 . (2 . ())) ⇔ (1 2)
(cons 4 (cons 3 4)) ⇒ (4 . (3 . 4)) ⇔ (4 3 . 4)

Note the more convenient textual representation of lists furthest to the right. Note
in the latter example how Lisp traditionally allows for what is called improper lists,
that is lists that don’t end in with the list terminator (). This is due to how the
second field of the cons cell can point to any lisp object.

Symbols Lisp as a language was originally developed for symbolic computation.
A symbol is a uniquely named object written as a string. Symbols are used either
as data items in symbolic processing or as a variable name when evaluated as code.

Symbols are typically represented using interned strings. A table of all symbols
is kept. Whenever a new symbol is created, either by the parser or using the function
intern which accepts one string as its argument, the table is first searched for an
existing symbol by that name and returns it if found, otherwise a new symbol object
is created, inserted in the table and then returned. This allows, among other things,
for efficient equality checks between symbols amounting to a simple pointer check
since all references to a symbol with the same name will point to the same object.

12 CHAPTER 2. BACKGROUND

Boolean values Most traditional Lisp implementations have no specific boolean
type and represent falsehood as nil and truth as everything that isn’t nil. LJSP
behaves accordingly. By tradition functions that return a boolean value return the
symbol t for truth.

A notable exception is Scheme which has a special boolean type [R5RS] (§6.3.1).

Numbers It can be argued that lists together with symbols is all that is needed
for a language to be called Lisp, however numeric computations becomes very in-
convenient and slow without some specialized data types for numbers.

LJSP supports fixnums, for integers between −263 and 263−1 inclusive, bignums
for arbitrarily large integers and flonums for floating point values. LJSP automat-
ically promotes fixnums to bignums on integer overflow. Thus the more efficient
fixnums can be used as long as the value is in range without loosing precision.

Some Lisp languages such as Common Lisp even come with fully-integrated
support for complex numbers as well as rationals [CLtL2] (§12).

Notable is how Lisp is without special infix operators to operate on numbers
instead using regular functions.

Some LJSP functions that operate on numbers:

(+ a b) a + b

(- a b) a− b

(* a b) a ∗ b

(/ a b) a/b

(= a b) Returns the symbol t if a and b compare equal and returns nil otherwise.

(> a b) As above but if a is larger than b.

Example: (* (+ a (/ w 2)) 3) can be more conventionally written as:(
a + w

2

)
· 3

Arrays Many Lisp dialects also provide arrays as an alternative container to
linked lists when constant access time and other properties of arrays are of greater
importance than the flexibility of linked lists. In LJSP array elements can be ac-
cessed using the function aref and they can be set using the function aset.

Example:

(aref #(5 4 3) 1) ⇒ 4
(aset array 3 1337) ; array[3] = 1337

2.3. PRELIMINARY ISSUES 13

Strings While it is possible to implement strings as linked lists of symbols or
numbers most modern Lisp implementations include some sort of string data type
for convenience and optimization. Strings are usually represented as the subset
of arrays which consist only of, or are constrained to, containing only objects of
character type.

In LJSP strings are written as "florp" and characters, of which strings are
composed, are written #\e. Strings can be handled using aref and aset since they
are a special form of an array.

Special forms and other common constructs

This subsection explores some Lisp semantics, some built-in functions used in this
essay but not yet mentioned, and in particular some constructs with special semantic
importance called special forms; so called since they are essentially special cases in
a Lisp compiler or interpreter of what otherwise would semantically be a function
call.

Worth to note at this point is that Lisp doesn’t have statements in the usual
sense. Everything is an expression and has a return value when evaluated [AIM443]
(p. 2) [CLtL2] [R5RS]. For instance the closest approximation of a Lisp if expression
in C or Java is the ternary operator.

Function call When a list is evaluated the first element is interpreted as a func-
tion, unless it is a symbol whose name corresponds to a special form, and the rest of
the list is interpreted as the arguments. The arguments are evaluated and the values
gotten from evaluating the arguments are passed to the function. Thus (foo + e)
means run the function foo on the variables + and e, or in more common notation:
foo(+,e).

An exception to this evaluation rule are the special forms. Whenever the first
element of a list is a symbol and that symbol matches the name of a special form the
list is not interpreted as a function call but instead along the rules of that special
forms. Special forms are, in a way, the reserved keywords of Lisp.

Special form lambda Whenever the compiler or interpreter comes across a list
starting with the symbol lambda the list is interpreted as an anonymous function.
The second element in the list is interpreted as the formal argument list with the
rest of the list being the function body.

The function body is a list of expressions evaluated in order. The value resulting
from evaluating the last expression is used as the return value of the function while
eventual preceding expressions are merely evaluated for side-effect. Thus in Lisp
code written in a functional programming style function bodies usually consist of
only one expression.

Examples:

;; an anonymous function of two arguments

14 CHAPTER 2. BACKGROUND

(lambda (a b) ...)

;; calling an anonymous function
((lambda (a) (+ a 2)) 4) ⇒ 6

;; a becomes bound to 1, b to 2 and rst to (3 4)
((lambda (a b . rst) rst) 1 2 3) ⇒ (3 4)

;; all becomes bound to (44 3)
((lambda all (cons ’a all)) 44 (+ 1 2)) ⇒ (a 44 3)

Note how anonymous functions can be called without binding them to any variable
name. Note in the third example how an improper list specifies a rest-parameter
where superfluous parameters are gathered to a list. The example thus accepts two
or more arguments. Also note in the last example how specifying a symbol instead
of a list as the formal argument list gathers all arguments passed to the function as
a list. This example accepts any number of arguments, including none. LJSP thus
handles formal argument lists similarily to Scheme [R5RS] (§4.1.4).

Special form nlambda Due to the current LJSP compiler only supporting static
scoping a special form for self-recursive functions becomes neccessary. The function
itself needs to be bound to some name throughout the body of the function.

Enter nlambda (mmnemonic: named lambda)! nlambda is like a regular lambda
with the addition of a name-parameter to which the function itself is bound for the
extent of its body.

Example:

(nlambda foo (a b) ...)

This function takes two arguments a and b and the identifier foo is bound inside
the function body.

Special form quote When evaluating a list as code and the first element is the
symbol quote the rest of the list is not evaluated but the enclosed data structure
is returned as is. Thus evaluating (quote (+ 1 2)) yields the list (+ 1 2) as the
result and not 3.

Since usage of quote is so ubiquitous typical Lisp readers, or Lisp parsers, have
special syntax such that, for instance ’foo == (quote foo) for convenience [R5RS]
(§4.1.2) [CLtL2] (§1.2.7).

Special form if As mentioned before the Lisp if expression, or special form, is
analogous to the C or Java ternary operator in that it always returns a value.

Whenever the compiler or interpreter comes across a list beginning with the
symbol if it evaluates the expression that is in the second element of the list. If

2.3. PRELIMINARY ISSUES 15

that expression evaluated to non-nil, or true, the third element in the list is evaluated
and the result returned as the value of the if expression. If the conditional expression
on the other hand evaluated to nil, that is false, the fourth element in the list is
evaluated and the result returned. If the conditional expression evaluated to nil
and the if expression doesn’t have a fourth element nothing is evaluated and nil is
returned.

Since only either the third or the fourth element are evaluted the Lisp if expres-
sion may also be used for side-effect, or rather lack of it.

Examples:

(if 234 (+ 2 3) (- 2 3)) ⇒ 5
(if nil (+ 2 3) (- 2 3)) ⇒ -1
(if t (print ’eeyup) (print ’nnope)) ; prints only eeyup
(if nil (+ 33 44)) ⇒ nil

The construct let let introduces new variables and a new scope. Similar to
the braces of C or Java. let can usually be implemented in terms of lambda but
many times is implemented as part of the interpreter or compiler as a special form
for performance or other reasons. In LJSP let is implemented as a macro that
expands to a function call to an anonymous function.

let syntax:

(let (<binding>*) <body>)

<binding> is either (<varname> <expression>) which binds <varname> to
the value of evaluating <expression> or just <varname> which binds <varname>
to nil.

<body> is a sequence of expressions. Just like the body of a lambda expression
they are evaluated in order and the value of evaluating the last expression is returned
as the value of the let expression.

(let ((a (+ 1 1)) (b 3))
(print a)
(+ a b))

⇒
;; prints 2
5 ; evaluates to 5

is equivalent to

((lambda (a b) (print a) (+ a b)) (+ 1 1) 3)

or similar to the pseudo-C-code:

...
{

int a = 2;
int b = 3;

16 CHAPTER 2. BACKGROUND

print(a);
... = a + b;

}
...

The function eq? The built-in function eq? is equivalent to a pointer compare
in C or the comparison operator in Java as used on object references. What it tests
is if two references are referencing the same object.

The function set and the macro setq The built-in function set takes two
arguments. The first argument must be a symbol and the second can be any object.
The value the symbol is currently bound to is set to the value received in the second
argument:

(set (quote foo) 23) ; set variable foo to 23

Note how foo must by quoted so that it is not evaluated. The quoting ensures that
the actual symbol foo is sent to the function.

Since the most common use of set requires use of quote this can quickly become
cumbersome. Thus most Lisp environments provide a macro traditionally named
setq which expands to a call to set with quote around the first argument:

(setq bar 33) == (set (quote bar) 33)

defun (defun <name> <arglist> <body>) is a macro, or sometimes a special
form, that defines a function globally as the name <name>. The function that is
defined by this construct is equivalent to (lambda <arglist> <body>).

defvar (defvar <varname> <init>) defines dynamically scoped global variables
into existance and optionally binds them to an initial value. Thus <init> may or
may not be present.

2.3.3 Tail-call optimization
Functional languages often eschew iteration constructs in favor of plain recursion
[AIM353]. Recursion has one disadvantage however, it uses up stack frames and
can lead to stack overflows given indefinite recursion. Tail-calls are a special case
of recursion that lends itself to optimization allowing for boundless recursion.

What is a Tail-Call?

Whenever the last action, or the expression in tail position, in a function is to
call another function this is a tail-call. For meaningful results the true and false
expressions respectively of an if expression in tail position also need to be defined

2.3. PRELIMINARY ISSUES 17

inductively as themselves being in tail position [R5RS] (§3.5). This makes sense
since an if expression chooses what block of code will be the last one in this case.

What is tail-call optimization (TCO)?

Whenever the last action of a function is but to return the result of another function
there is no longer any need to keep the stack frame of the calling function, since
the variables therein will inevitably be referenced no longer. By eliminating the call
instruction of a tail-call, instead replacing it by a goto instruction, allows for what
syntactically is a function call, in tail position, while saving stack space.

Consider the following function:

(defun foo (a)
(bar (+ a 2)))

Which might be compiled to something like (pseudo-assembly, RISC-style):

foo:
pop a ; receive argument a on stack
add temp, a, 2 ; (+ a 2) -> temp register

push ret-reg ; save our return address on stack, so it doesn’t
; get clobbered by the call to bar

push temp ; argument to bar

call bar ; run (bar temp) -> result to result-reg.
; ret-reg is set to program counter.

pop ret-reg ; restore our return address
goto-reg ret-reg ; return to address in ret-reg. the return instruction.

; result-reg has ben set by bar,
; this is what constitues the return value.

Replacing the call instruction with a goto one obtains:

foo:
pop a
add temp, a, 2
push temp ; argument to bar
goto bar ; transfer control to bar. which receives the

; argument. ret-reg remains unchanged. bar sets
; result-reg and then immediately returns to
; the caller of foo (the value of ret-reg)

No longer is it neccessary to use the stack to save the return address. Leaving
ret-reg untouched will have bar jump directly to foos caller. The argument to

18 CHAPTER 2. BACKGROUND

bar, pushed on the stack, is popped inside bar, keeping the stack from growing at
all. Any stack usage, for spilled registers or the like, inside foo would have to be
popped before the goto. Even if bar uses the stack for some temporaries the stack
size would remain bounded. This is of course given that bar has also had its own
tail-calls, to other functions as well as to itself, eliminated. [AIM443]

While eliminating tail-calls can be thought of as an optional optimization in
many languages, for example GCC optimizes tail-calls for the C language which by
no means requires it [gcc], for many (mostly) functional programming languages
proper tail-recursion is a requirement of the language [R5RS] (§3.5).

This is so since those languages might either have a few iteration constructs,
but whose usage is generally considered non-idiomatic or non-functional in nature2,
or completely lack regular iteration statements relying completely on recursion for
iterative tasks, perhaps even implementing some iterative constructs by way of re-
cursion as library functions/syntax not in the core language [AIM353] (§1.2). LJSP,
which lacks any regular iteration constructs, has this done in its core library im-
plementing (currently a subset of the functionality of) dolist and dotimes from
Common Lisp [CLtL2] (§7.8.3) by way of macros and recursive higher-order func-
tions.

One of the big issues this thesis will tackle is how to implement TCO on top of
the JVM. The JVM, being a virtual machine optimized for Java specifically, has no
way of jumping between subroutines like above. In fact it completely lacks regular
subroutines3 and has only methods associated with either classes (static methods)
or objects, since this is all that Java needs.

2.3.4 Bootstrapping

A compiler that is capable of compiling itself is also capable of freeing itself from the
original environment. A compiler that has been bootstrapped is sometimes referred
to as self-hosting in the sense that to generate a new version of the compiler program
no other “host” system but the compiler program is required.

The extent to which the compiler can free itself of the original environment is not
necessarily the same for every compiler. This holds true for dynamic programming
languages especially, for which the runtime environment and the environment of the
compiler need not be, and usually is not, disjoint. This is even more complicated
on top of an environment such as the JVM. E.g. the case presented in this thesis
still depends on some data structures originally defined in Java and, if made to
bootstrap while still directly using the defined-in-Java data structures inherited
from the LJSP interpreter, can’t be considered fully self-hosting. Additional work

2An example would be the do-loop in Scheme, where recursion as a means of iteration is
considered more idiomatic.

3This is not entirely true, the JVM has a form of subroutines that are local to a method used for
compiling the finally-clause of a try-catch-finally exception-handling construct [JVMSpec] (chapter
6 operations jsr, jsr_w and ret as well as section 7.13).

2.4. PROBLEM STATEMENT 19

on the compiler to give it the ability define the data structures independently of
Java could, however, result in a truly independent compiler.

2.4 Problem statement

Implement a compiler for a, possibly extended, subset of the Lisp language LJSP.
The compiler shall be written itself in LJSP in a manner that will make it

possible to, with further work than presented in this thesis, eventually bootstrap.
Due to time constraints and the focus of this thesis the compiler will only be worked
towards bootstrapping as a long-term goal rather than actually bootstrapping.

The compiler shall be able to compile a naive implementation of a recursive
function computing the fibonacci series, as well as a more efficient tail-recursive
implementation.

The compiler should exhibit proper tail-recursion as defined by [R5RS], if at all
possible.

2.5 Test cases

The goal is to run these two test cases with different parameters n and note the
time it takes for the computations to finish. First they will be run interpretatively
using the existing LJSP interpreter, and then they will be compiled using the LJSP
compiler written for this thesis. The resulting compiled code will then be run
and clocked, as well as verified to compute the same results as when the code is
interpreted. Then the execution speed of the interepreted vs. the compiled versions
will be compared to see if there has been any execution speed improvements with
compilation.

These are the test cases:

20 CHAPTER 2. BACKGROUND

;; Recursive fibonacci
(nlambda fib (n)

(if (= n 0)
0
(if (= n 1)

1
(+ (fib (- n 1))

(fib (- n 2))))))

;; Tail-recursive/iterative fibonacci
(lambda (n)

((nlambda calc-fib (n a b)
(if (= n 0)

a
(calc-fib (- n 1) b (+ a b))))

n 0 1))

They both compute the n:th number of the fibonacci sequence. They use the naive
recursive definition (time complexity: O(2n)) and a tail-recursive, or iterative if you
prefer, version (time complexity: O(n)) respectively.

The first test, due to its time complexity and amount of function calls, is a very
good performance test for small integer arithmetics and non-tail-recursive function
calls, and will likely be the case where the compiler is expected to excel, since
the interpreter carries significant function call overhead in particular due to how
variable bindings are handled (but the full discussion of that is better suited to a
paper on interpreter internals).

The second test is a good test of self-tail-recursion and is expected to be vastly
faster both interpreted as well as compiled. Due to its speed it can realistically
be tested with n big enough for a bignum result. This test probably won’t have
the interpreter at an as big disadvantage in part due to the interpreter being very
efficient at handling tail-recursion yet a significant improvement is still expected of
the compiled version.

While these two tests alone make great benchmarks due to their heavy use
of function calls, and in the first test also heavy stack usage, they are not quite
adequate as a test suite. Had more time been available a test suite to test the
compiler for correctness would have been ideal. Since a complex program like a
compiler is very prone to bugs a test suite helps immensly in finding and correcting
bugs and mis-features.

Chapter 3

Methods

This chapter deals with the implementation techniques used, and not used, and
(possibly) slated to be used for the LJSP compiler some time in the future. Most
techniques presented are also useful in the general context of implementing dynamic
languages on the JVM since some of the issues this section tackles, like first-class
functions and closures, are had in common with Lisp.

3.1 General

3.1.1 Overview of compilation
General description of compiler passes in a Lisp or Lisp-like compiler on the JVM
or similar environment [Kawa] (§7).

Reading
Reads the input from a a file, string, or the interactive prompt (REPL). Parses
the indata to LJSP data structures.

Semantic Analysis
Macro expansion takes place. Lexical analysis of free variables is performed,
and closures are annotated. Different sorts of rewrites are performed.
The LJSP compiler currently lacks this step, but it is planned and will be
neccessary for implementing some of the more advanced features discussed
later in this chapter.

Code Generation
Run on the resulting code form the semantic analysis. Takes LJSP datastruc-
tures and dispatches recursively, based on type and structure, on it generating
bytecode fit for feeding in to Jasmin.

Assembly
The output of the code generator is run through jasmin producing a Java class
file.

21

22 CHAPTER 3. METHODS

Loading
The generated Java class file is loaded into the JVM, an object is instantiated
and bound to a variable so the function may be called.

3.2 Functions and function application

Java doesn’t have functions as first-class values. First-class functions is a prominent
feature of any functional language and LJSP is just like Scheme in this regard.

Achieving this in Java is pretty straight-forward however: A Procedure class can
be created for representing function, or procedure1, objects. Then by subclassing
and overriding a virtual method run2 to contain code generated from the function
body function objects in the Scheme sense becomes possible, by way of instantiating
such a subclass and passing it around.

A Procedure class was already available from the LJSP interpreter used for,
among other things, defining the various built-in functions. An advantage of using
this already-available class is ready interoperability with the interpreter. That is
the compiled functions can be run directly from the interpreters REPL (Read-
Eval-Print-Loop or simply put a sort of command line) and called from interpreted
functions with no changes to the interpreter.

Example of what a Procedure class might look like:

abstract class Procedure extends LispObject {
...
public abstract LispObject run(LispObject[] args);

}

Using this class the primitive function car might be implemented in pure Java as
follows 3:

class car extends Procedure {
public LispObject run(LispObject[] o) {

return ((o[0]) == null) ? null : ((Cons)o[0]).car;
}

}

1Which might be better nomenclature since they are not functions in the strict mathematical
sense, since they can have side-effects. For instance Scheme prefers this nomenclature. However
primarily “function” will be used throughout this thesis (with a few obvious exceptions).

2In most other literature concerning Lisp on the JVM this method is named apply but due to
implementation details of the LJSP interpreter this name was not available.

3Notably omitted: Checks to ensure that the correct amount of arguments is passed. At the
time of writing this is implemented in a fashion optimized for ease of implementation of primitive
functions exported from the interpreter (using constructor arguments to Procedure to tell it how
to do such checking). This is however slated to change to benefit the compiled version which
preferrably compiles in a hard-coded equivalent of such checks. Currently compiled code simply
ignores receiving too many arguments.

3.2. FUNCTIONS AND FUNCTION APPLICATION 23

Variable arity functions

The run method takes as its argument an array of LispObjects and can thus
support any number of arguments, including functions with variable arity, at the
expense of a slightly clumsy calling convention. This is neccessary since there is
no support for variable arity methods in the JVM, the variable arity methods in
Java merely being syntactic sugar for passing extra arguments in an array [JLS3]
(§15.12.4.2).

Due to how functions are first-class values in this language the caller may in
many situations have no idea of what the actual parameter list of the function it
calls looks like. The caller cannot know at compile-time how many arguments the
function expects nor whether it expects to receive a rest-parameter list from say the
3rd argument onward. Perhaps the function expects only a rest-parameter list. This
is in contrast with Java where the signature of the method being called is always
known, and has to be known, at compile-time. If the caller was responsible for
creating the list for eventual rest-parameters, like in Java [JLS3] (§15.12.4.2), every
function call site would have to include multiple cases and select one at runtime.
This would quickly become messy and inefficient.

The sensible solution is thus to make it the responsibility of the callee to create
the linked list structure needed for any rest-parameter, and have the caller send
along arguments in the same way it would for a fixed-arity procedure. This is
somewhat similar to how variable arity procedures calls are handled by most C
compilers, however at a much higher level of abstraction where the callee receives
meta-information such as the number of arguments passed as well as their types
(unsurprisingly given the dynamically typed nature of Lisp) implicitly.

An optimization for calling fixed-arity functions

While having run recieve an array of LispObjects allows for all functions to be
represented using the same Java method signature it is rather ineffecient, and a
toll on the garbage collector, to construct an array to hold the arguments for every
function call.

Since most functions in practice are of just a small fixed number of arguments,
usually less than 4, the price of the generality this affords is pretty high.

However using this fact an optimization becomes possible. All functions of fixed
arity below some arbitrary finite number K + 1 can be compiled to a Java method
of the same fixed arity: runx where x is the number of arguments, overloading a
method defined in the Procedure superclass. K is picked by the compiler imple-
mentor as the largest argument count a function can have and still be called without
the caller constructing a LispObject array. The need for the Procedure superclass
to define all functions that can be overloaded is what bounds this technique to a
finite K.

For variable arity functions and functions with an amount of arguments greater
than K the runN method, accepting a LispObject array with arguments, is over-

24 CHAPTER 3. METHODS

loaded.
Modified Procedure class:

abstract class Procedure extends LispObject {
public abstract LispObject runN(LispObject[] args);
public abstract LispObject run0();
public abstract LispObject run1(LispObject arg1);
public abstract LispObject run2(LispObject arg1, LispObject arg2);
...

}

This continues up to the method runK.
car, taking exactly one argument, could then be constructed as follows:

class car extends Procedure {
public LispObject runN(LispObject[] o) {

if (o.length != 1)
throw new WrongArguments();

return this.run1(o[0]);
}
public LispObject run0() {

throw new WrongArguments();
}
public LispObject run1(LispObject arg) {

return (arg == null) ? null : ((Cons)arg).car;
}
public LispObject run2(LispObject arg1, LispObject arg2) {

throw new WrongArguments();
}
...

}

Note how the other run methods are still overloaded to signal an argument count
error. runN is overloaded to pass on the arguments received in the array to the run1
which is where car is actually implemented, unless the count of arguments received
is bad. Thus this implementation of car can be invoked using any run method but
only successfully with either run1 and a single argument or runN with an array of
length 1.

An example of how a variable arity procedure might be compiled:

class foo extends Procedure {
public LispObject runN(LispObject[] args) {

// Do stuff with args. If applicable check that enough
// arguments were received.
return some_result;

}

3.3. LITERALS 25

public LispObject run0() {
return this.runN(new LispObject[]{});

}
...
public LispObject run2(LispObject arg1, LispObject arg2) {

return this.runN(new LispObject[]{arg1, arg2});
}
...

}

This example instead has all run methods except runN call runN. This function is
thus also invokeable using any of the run methods.

This makes it possible for compiled code to avoid costly construction and de-
construction of Java arrays to pass arguments to functions. Always knowing the
number of arguments it sends4 the caller simply picks which run method to call
based on this number, letting the callee handle any array and/or linked list con-
struction in the case of variable arity functions. The compiler defaults to emitting
code that calls runN if there are more than K arguments at the callers call-site.
[Kawa] (§6)

3.3 Literals
This section elaborates on techniques to compile in literal constants in LJSP code.

3.3.1 Constants

Whenever the compiler stumbles across an expression like (+ a 1) an appropriate
representation of the 1 (which according to semantics evaluates to itself) needs to
be emitted.

Now 1 is a small enough integer to be represented with LispFixnum which is
used for all integers that will fit into a Java long, that is a 64-bit signed two’s
complement integer [JVMSpec] (§2.4.1).

The simple, but probably not very efficient, solution is to simply emit code for
creating a new LispFixnum object with a value of 1 at the very spot the literal is
found. This can be done using the LispFixnum(long) constructor. An equivalent
Java expression of how the compiler emits a literal 1 would be:

new LispFixnum(1)

or in the Jasmin representation of Java bytecode (actual compiler output with
comments for clarity):

4With the notable exception of calling using the function apply which takes as it’s arguments
a function and a list, calling the function with the elements of the list as the actual arguments.
This is neatly resolved by compiling apply to always call using the runN method.

26 CHAPTER 3. METHODS

new LispFixnum
dup
ldc2_w 1 ; load 1 in long representation (uses two stack positions)
invokenonvirtual LispFixnum.<init>(J)V ; Constructor. uses up

; top three stack positions
;; a reference to the object is now on top of the stack

Similar code would be generated for floating point numbers, however instead
creating an object of type LispFlonum, using the LispFlonum(double) constructor.
The same is true of character and string constants using constructors LispChar(char)
and LispString(java.lang.String) respectively. Even the arrays (LispArray)
receive roughly the same treatment.

The process is similar for bignums, integers of arbitrary size, but due to their
nature of possibly not fitting in the native integer types of Java instead the number
is emitted as a string (in decimal) and then passed to the static method

public static LispBignum LispBignum.parse(java.lang.String)

which then parses the string into a LispBignum interpretation5. Example compiler
output (with extra comment):

ldc_w "1231312312312312312312312312312313123"
invokestatic LispBignum.parse(Ljava.lang.String;)LLispBignum;
;; a LispBignum reference is now on top of the stack

3.3.2 Complex constants

A Lisp typically has a quote special form that suppresses evaluation of the en-
closed expression and instead returns the data structure as is allowing for complex
constants of lists possibly containing sublists and more.

Code for constructing the same structure could be recursively generated and
inserted into the exact place where the quote-expression occurred, similar to how
numbers were handled in the previous section. Thus making:

(lambda () (quote (1 a)))

equivalent to the code

(lambda () (cons 1 (cons (intern "a") nil)))

The calls to cons recreate the nodes of the list-structure and the call to intern
recreates the symbol.

5At the time of writing it simply uses the BigInteger(java.lang.String) constructor of the
Java standard library’s java.math.BigInteger (the internal representation currently used for
LispBignum:s).

3.3. LITERALS 27

This is however not quite optimal, since constantly recreating constant data
in this fashion upon every call to the function would make many cases with com-
plex constants be significantly slower than their interpreted counterparts, due to
excessive allocation.

This also deviates from the interpreted semantics where

(let ((f (lambda () (quote (1 a)))))
(eq? (f) (f))) ⇒ t

holds, since the same object, the very same one that constitues part of the function
body, is always returned by the function.

Furthermore Scheme, with which LJSP happens to share a good deal of its
semantics, requires quoted constants to always evaluate to the same object ([Incre-
mental] (§3.11) cf. [R5RS] (§7.2)).

A method for initializing constants in a function at load-time is neccessary.
In Java static final fields may be initialized at class load time using a static
initializer [JVMSpec] (§2.11) [JLS3] (§8.7).

By declaring a static final field, in the class for the function object, for each
quoted literal in the body of the function being compiled and emitting code in the
static initializer for constructing the literal. Now that the quoted literal has been
constructed at load-time, code to fetch the static field can be emitted at the place
where the literal is used.

The previous example compiles to something like:

public class f extends Procedure {
private static final lit1;

static { // Initializer
f.lit1 = new Cons(new LispFixnum(1),

new Cons(Symbol.intern("a"), null));
}

public LispObject run(LispObject[] o) {
return f.lit1;

}

// some constructor stuff omitted
...

}

Thus the code for recreating the quoted constant is run once at class load-time, and
(eq? (f) (f)) ⇒ t holds.

Of course the “simple” constants of the previous subsection would likely benefit
(both performance-wise as well as being semantically closer to the interpreter) from
a similar treatment as the constants written quote with the quote form in this sec-
tion, and a planned feature is to emit all constants to private static final fields

28 CHAPTER 3. METHODS

of the generated class with extra logic to avoid duplicate constants, and duplicate
fields, as long as the data structures involved are immutable (which holds for all
numerical types used in LJSP as well as for characters and symbols).

3.4 Tail-call optimization implementation strategies

This section will describe a number of approaches to implement tail-call optimiza-
tion on the JVM, why they seem plausible and why they work/don’t work.

3.4.1 Handling self-tail-calls

Probably the most important and most common case of tail-calls are tail-calls from
a function to itself, otherwise known as tail recursion. Implementing this special
case of tail-call elimination is likely the simplest, of the practically implementable
alternatives presented in this thesis, since no circumvention of the fact that the
JVM can only perform jumps within a method [JVMSpec] (§4.8.1) needs to be
performed; for this case jumps need only be performed within the method.

The method to implement this is almost exactly the same as the conventional,
and completely general on a machine permitting jumps between functions, goto-
based approach

A label is inserted at the of the generated run method. Whenever the compiler
find a self-tail-call the compiler generates code to first set the argument variables,
instead of pushing them to stack, and then jumping the the label. Special care, in
the form of use of temporaries, needs to be taken when setting the variables so the
values don’t change until after the arguments in the call have been evaluated.

Example:

(nlambda fact (n acc)
(if (= 0 n)

acc
(fact (- n 1) (* n acc))))

Roughly compiles to (Java pseudocode with goto, and stack):

3.4. TAIL-CALL OPTIMIZATION IMPLEMENTATION STRATEGIES 29

...
public LispObject run(LispObject[] o) {

LispObject fact = this; // (nlambda fact ...)
// prologue to take apart the argument array
// and store them in local variables
LispNumber n = (LispNumber)o[0];
LispNumber acc = (LispNumber)o[1];

Lselftail:
if (null != (o[0].equals(new LispFixnum(0)) ? t : null))

return acc;
else {

stack.push(n.sub(new LispFixnum(1))); // we cannot assign n directly
stack.push(n.mul(acc)); // since n is used on this row
acc = stack.pop()
n = stack.pop()

goto Lselftail;
}

}
...

If compiling without eliminating the tail-call the call-site would instead look
something like :

...
if (null != (o[0].equals(new LispFixnum(0)) ? t : null))

return acc;
else

return this.run(new LispObject[]{n.sub(new LispFixnum(1)), n.mul(acc)});
...

Even if implementing another more general approach to TCO on the JVM im-
plementing this approach to the special case of self-tail-calls is still very useful as
a further optimization. It is by far the most common case of tail-recursion and
this approach is much faster than most alternatives of implementing general TCO
[Kawa].

This is the only kind of TCO implemented in the LJSP compiler as of writing.

3.4.2 Method-local subroutine approach
The only way of performing method calls on the JVM is by using the invoke* series
of instructions, and returns performed using the *return of instructions [JVMSpec].
The method invocation instructions take their arguments (including the object on
which the method is invoked for instance methods, which in a way can be considered
the first argument) on the stack and automatically store the arguments in the

30 CHAPTER 3. METHODS

method local variables before transferring control to the first instruction in the
method body. The call convention of the JVM is thus, in a sense, fixed and there is
no way to directly manipulate stack frames. It is not possible to perform a goto to
another method nor is it possible to assign to another methods local variables since
they are associated with the current frame, which is created every time a method
is invoked [JVMSpec] (§3.6).

To escape this call convention imposed by the JVM functions could be im-
plemented as subroutines all within one method and defining a new function call
convention, using the operand stack of the current frame, for these subroutines. The
JVM comes with three instructions, jsr <label>, jsr_w <label> and ret <local variable>,
that in conjunction can be used to implement subroutines. Since this calling conven-
tion is done on the JVM operand stack direct stack manipulation would be possible,
and for all tail-calls gotos could be issued, like in the example of section 2.3.3 (p.
17).

This is however not possible on a modern and standards-compliant JVM im-
plementation since the subroutine instructions can not be used in a truly recursive
manner, since the verifier forbids it [JVMSpec] (§4.8.2). In the specification for the
new java standard, Java SE 7, jsr, jsr_w and ret have been deprecated altogether
(not without backwards compatibility for code compiled conforming to an older
version) [JVMSpec SE 7] (§4.10.2.5). However this may be a useful, if non-portable
technique, given that there are a handful of JVM implementations that seem to
blatantly disregard this part of the specification6.

3.4.3 Trampolines

One method of achieving general tail-recursion is trampolines [Baker]. By setting
up an iterative procedure like (pseudo-code):

function trampoline(fn, args):-
obj = make-tramp-thunk(lambda: apply(fn, args)) ; create starter thunk
while tramp-thunk?(obj): ; continue ’til we get something

; that isn’t fit for bouncing
obj = apply-tramp-thunk(obj())

return obj

By now transforming functions to return a thunk, essentially just a function of
no arguments, containing the expression in tail position of the function one can
implement tail-recursion on a machine lacking direct stack manipulation by way of
constantly bouncing up and down.

Any non-tail-calls are made to call the trampoline function, such that functions
called in non-tail-position also can achieve proper tail-recursion for themselves.

6Or perhaps, the author suspects in particular due to the examples of recursive jsr usage
floating across the net, conforms to an older edition of the JVM specification (of which the author
has been unable to procure a copy of)

3.5. SCOPING 31

An example tail-recursive implementation of factorial adapted to be run by a
trampoline, like the one above:

(defun fact (n acc)
(if (zero? n)

acc
(make-tramp-thunk (lambda () (fact (1- n) (* n acc))))))

Thus instead of performing the tail-call a thunk containing the next action to
take is returned to the trampoline, the current stack frame is thus discarded, which
then continues by performing the tail-call fact would have normally performed on
its own.

The trampoline loop could be implemented in Java and the transformation could
be made in the semantic analysis pass of the compiler.

3.5 Scoping
This section discusses how to handle the different scoping methods in compiled code.

Note that these scoping methods are not exclusive of each other. Even if an
implementation has true lexical scoping with closures the implementation method
for statically scoped variables serves as a useful optimization for variables that the
compiler can prove as not having been captured.

3.5.1 Static Scope
Static scope, as described in section 2.3.1 (p. 8), is very straightforward to imple-
ment on the JVM since each frame can have up to 65535 local variables [JVMSpec]
(§4.10). These local variables can be viewed as registers, but associated with the
current stack frame, from an assembly language point of view. By simply map-
ping received values to these variables static scoping is achieved as static scoping is
natively supported by the JVM.

nlambda

See also 2.3.2 on page 14. The nlambda construct is implemented by binding the
local variable 0, corresponding to Javas this for all instance methods [JVMSpec]
(§7.6), to the variable specified as the name of the function.

Example:

(nlambda foo (a b) ...)

⇒

.method public run([LLispObject;)LLispObject;
.limit stack 255 ; java requires these be set, set

32 CHAPTER 3. METHODS

.limit locals 255 ; them to some generic big-enough size

;; function prologue deconstructing arguments array
aload_1 ; the first method argument is gotten in local variable 1
ldc_w 0
aaload
astore 5
aload_1
ldc_w 1
aaload
astore 6
;; end prologue

... do stuff (aload) with local variables 0 = foo, 5 = a and 6 = b ...

areturn
.end method

3.5.2 Lexical Scope and Closures
Simple copying

Let’s first consider lexical scoping, and specifically lexical closures7, where the closed
over variable bindings are never mutated, that is set is never used on them.

Example code (nlambda names provided for clarity, not for any self-recursion):

;; Bind function to global variable foo
(defvar foo

(nlambda foo (a)
(nlambda bar (x) (+ x a))))

...
;; usage could look like:
;; (hoge and pyon are already declared variables, perhaps declared special)
>> (setq hoge (foo 12))
<closure 1 bar>
>> (setq pyon (foo 11))
<closure 2 bar>
>> (hoge 2)
14
>> (pyon 33)
44
>> (hoge 1)
13

7Which is what sets true lexical scoping apart from the statically scoped local variables in the
previous section.

3.5. SCOPING 33

In this case the inner lambda, bar, has a free variable in a. However it doesn’t
mutate the binding of a so we may simply copy it into the Procedure subclass,
at function construction. Thus closures can take their free variables as constructor
arguments and save these to fields (which can be made final for extra guarantees
of not mutating the binding). These can be treated in the same way as statically
scoped/local variables in the previous section, but instead the variable a in bars
body would be mapped to a final instance variable in the closure object.

It could be compiled as such:

class foo extends Procedure {
public foo() {}
public LispObject run(LispObject[] o) {

return new bar(o[0]); // return closure
}

}

class bar extends Procedure {
private final LispObject free1;
public bar(LispObject free1) {

this.free1 = free1;
}
public LispObject run(LispObject[] o) {

// (+ x a) argument x, closed-over variable a
return ((LispNumber)o[0]).add((LispNumber)free1);

}
}

Mutating “functions” such as rplaca (replace car/head of list), rplacd (replace
cdr/tail of list) and aset (set element in array) don’t count as mutating the variable
binding. They don’t change the variable bindings like set does, instead they mutate
the data structure that the captured variable binding is referencing. Thus even
though data is being mutated just copying all free variable references like before
will have correct semantics.

In fact the situation is very similar to the only conditions under which Java has
lexical closures; inner classes in a non-static context can refer to local variables and
instance varibles declared in the enclosing class/scope given that they have been
declared final (Go to [JLS3] (§8.1.3) and check if I was right.)

Now a fully-fledged LJSP compiler isn’t quite complete without set. Does this
spell the end for this approach to lexical closures?

No. The compiler could check for usage of set, both in closures and the function
in which the variable was defined, of captured/free variables in the semantic analysis
stage and use this method to implement lexical closures in the absence of set. At
the same time the semantic analysis will assess all function bodies for free variables
and annotates them for the code generator.

34 CHAPTER 3. METHODS

Even better: In the presence of set the compiler could exploit that rplaca,
rplacd and aset can mutate state without having to touch the binding of the free
variable (which also is impossible since the instance variable was declared final).
In the case were the set is used the reference free variable is rewritten using one
level of indirection, with the help of a mutable data type, in this case the array.

An example of this nifty rewrite (adapted from [Incremental] to fit LJSP):

(let ((f (lambda (c)
(cons (lambda (v) (set ’c v))

(lambda () c)))))
(let ((p (f 0)))

((car p) 12)
((cdr p))))

⇒
(let ((f (lambda (t0)

(let ((c (make-array (list t0))))
(cons (lambda (v)

(aset c 0 v)
v)

(lambda () (aref c 0)))))))
(let ((p (f 0)))

((car p) 12)
((cdr p))))

This rewrite can be done in the semantic analysis stage. Thus the code generator
only has to handle closures over immutable bindings [Incremental] (§3.9, §3.12) .
Naturally this could be done using conses or other mutable datastructures allowing
for this sort of indirect referencing.

3.5.3 Dynamic Scope

In Common Lisp a variable can be declared special (locally as well as globally,
however for the purposes of this paper only the global case will be considered) having
that variable be dynamically bound, allowing to mix the differently scoped sorts of
variables in a way fitting the problem at hand8. Using defvar and defparameter
to define global variables also has the effect of making the variable special [CLtL2]
(§9.2, §5.2).

There are two main approaches, that are basically the same for both interpreted
and compiled code. Aside from that book keeping is neccessary to keep track of

8Useful examples include global variables that can be temporarily overridden by rebinding.
For instance rebinding the global variable *standard-output* in Common Lisp has the effect of
redirection the standard output stream, since output functions define to output to the stream
object pointed to by *standard-output*. In fact LJSP also has a global value *standard-output*
used in the same way.

3.5. SCOPING 35

what symbols have ben declared as a special, this can simply be implemented as
a property of the Symbol object.

Value slot

Each symbol object can be made to have one field value that points to the current
top-level binding of the variable. Whenever the variable is rebound the old variable
is saved in either a local variable, thus implicitly utilizing the native java stack, or
pushed down an explicit stack for retrieval upon exit of the new binding and the
restoring of the old one [MACLISP] (§3.2, §6.1).

This approach has the benefit of access speed to the detriment of rebinding
speed. Due to the global shared state it imposes it is also fundamentally threading-
incompatible.

This is the model currently implemented by the LJSP interpreter.
The latter approach to value slot based dynamical bindings, with a separate

push-down stack, has the benefit of being able to eliminate tail-calls even in an
environment with only dynamic variables (The LJSP interpreter uses this to great
effect) [DynaTail].

Environments

Another approach would be to supply each function invocation with an easily ex-
tendable environment object of some sort. This dynamic environment object would
then be used to lookup dynamically bound variables at runtime.

This would require a slight rewrite of the, for this particular example non-
optimized, Procedure class proposed in section 3.2 (p. 22):

abstract class Procedure extends LispObject {
...
public abstract LispObject run(LispObject[] o,

Environment dynamicEnvironment);
}

This environment is passed on at every function call site so if foo calls bar bar
will inherit the dynamic environment of foo, possibly extending it. In the case of a
mixed lexical/dynamic scoping environment like Common Lisp if the name of one
of the arguments of bar coincides with the name of a variable declared special the
environment will be augmented shadowing the old declaration of that variable until
bar returns.

This method of handling dynamically scoped variables mimics almost exactly
how environments are passed around in many Lisp interpreters, including the very
first one [McCarthy60].

This method has the benefit that, for suitably built environment data structures,
threads in a multi-threaded application would be able to share the same base-level
binding of a dynamic variable yet capable of shadowing this binding with their

36 CHAPTER 3. METHODS

own to have a thread-local top-level dynamic variable binding. Different threads
will reference the same base environment, but will have their own environment
extensions on top of this. This can perhaps be thought of as having a multi-headed
stack of some sort, with one top per thread.

The drawbacks include slower lookup of dynamic variables as well as extra over-
head due to always passing on the dynamic environment, even in cases were it
might not be needed (a sufficiently smart compiler might be able to alleviate this
somewhat however).

Chapter 4

Results

4.1 Benchmarks

The y axles represents execution time in milliseconds. The x axles represents the
size of the argument passed to the functions.

0

10000

20000

30000

40000

50000

60000

70000

20 25 30 35 40

compiled (fib x)
interpreted (fib x)

Figure 4.1. comparison of fib speeds

37

38 CHAPTER 4. RESULTS

0

100

200

300

400

500

600

0 20000 40000 60000 80000 100000

compiled (fib-trec x)
interpreted (fib-trec x)

Figure 4.2. comparison of fib-trec speeds

The differences betweeen the compiled fib-trec and interpreted ditto is smaller
than the difference between fib compiled and non-compiled. Likely since fib-trec
is tail-recursive (time complexitiy of O(n)) and the result gets big very fast before
it starts getting slow. Likely most of the execution time of the fib-trec taken up
by bignum arithmetics. The difference in speed here was expected to be bigger but
is logical considering the bignum overhead.

However in the case of the naive fib the execution time is almost improved
tenfold. This magnitude of improvement was somewhat unexpected.

4.2 Conclusions

The JVM, despite it’s quirks and heavy optimization towards Java, is a suitable
platform for a Lisp environment, having both run-time loading of code and garbage
collection for free. With the notable inconvenience of the inability to support proper
tail-calls without using major kludges to the detriment of speed and Java interop-
erability.

A lot of time was spent on finding out just how hard it is to have proper tail-

4.3. THE FUTURE? 39

recursion, as per [R5RS], in Java. In particular how jsr was found to be inadequate
for implementing subroutines with direct stack control, thus enabling TCO. Finally
the conclusion that only self-tail-calls were practical enough to be implementable
during the time frame of the project was reached, thus falling slightly short of that
goal.

It was found that significant speed gains can be had even with a simple un-
optimizing compiler like the one presented. This was expected but the extent of
the speedup of the naive fibonacci test case was somewhat surprising, given how
no arithmetics are open-coded and are performed as method calls on objects, like
LispFixnum, allocated on the heap.

I have found that working on the compiler of a dynamic language from the inside
of an existing interpreter environment, and extending it, is a very efficient way to
develop a compiler quickly.

I have found that writing a compiler takes a lot of effort and a fairly long time,
even for a very simple one. The project was initially much more ambitious and
intended to have a fully bootstrappable compiler of an extended variant of the full
language the LJSP interpreter supports, yet many things had to be scrapped due
to time constraints and only a subset was implemented. Things like implementing
support for lexical scope with lexical closures or even something as simple as Lisp
macro support in the compiler, However by writing this report a lot of the steps to
take the compiler further have been outlined and thoroughly investigated.

4.3 The future?
• Have compiled functions handle receiving, by causing an error condition, too

many arguments instead of silently ignoring it.

• Implement the optimization for function calls in section 3.2 (p. 22) at the
same time as the above (this makes sense as that model makes checking for
function arity much more effective than otherwise.)

• Implement compiler support for variable arity procedures.

• Implement a semantical analysis stage of compilation.

• Have the compiler support macros with a macro-expansion pass prior to se-
mantic analysis and code generation.

• Implement lexically and dynamically bound variables, preferably while re-
taining the current model of statically scoped variables, as an optimization,
when semantic analysis has found a variable neither captured by a closure nor
declared as dynamically bound.

• Implement set and have it work for lexical scoping (to keep it fun; closures
would be too trivial otherwise) and dynamic scoping alike.

40 CHAPTER 4. RESULTS

• Replace or fix the old reader currently used by the LJSP interpreter.

• Have the compiler bootstrap.

• Find out how much of the reflection-based model of Java interoperability, used
by the interpreter, can be salvaged and made into a newer better defined and
more easily compiled approach to Java interoperability.

Chapter 5

References

[AIM353]
Guy Lewis Steele Jr. and Gerald Jay Sussman

Lambda: The Ultimate Imperative
AI Memo 353, MIT Artificial Intelligence Laboratory, Cambridge, Massachusetts,
March 1976

[AIM443]
Guy Lewis Steele Jr.

Debunking The “Expensive Procedure Call” Myth, or,
Procedure Call Implementations Considered Harmful, or,
Lambda: The Ultimate GOTO
In Proceedings of the ACM National Conference, pp. 153-162, Seattle, Octo-
ber 1977. Association for Computing Machinery. Revised version published
as AI Memo 443, MIT Artificial Intelligence Laboratory, Cambridge, Mas-
sachusetts, October 1977.

[Baker]
Henry G. Baker

CONS Should Not CONS Its Arguments, Part II: Cheney on the
M.T.A.
DRAFT for comp.lang.scheme.c Feb. 4, 1994
In ACM Sigplan Notices 30, 9 (Sept. 1995), 17-20.

[CLtL2]
Guy L. Steele Jr, Thinking Machines, Inc.

Common Lisp the Language, 2nd edition
Digital Press, 1990
ISBN 1-55558-041-6

41

42 CHAPTER 5. REFERENCES

[DynaTail]
Darius Bacon
Tail Recursion with Dynamic Scope
Available from (fetched April 13, 2012):
http://wry.me/~darius/writings/dynatail.html

Originally published on comp.lang.scheme, date unknown. Otherwise un-
published.

[gcc]
Using and Porting the GNU Compiler Collection – GCC version
3.0.2
§17 Passes and Files of the Compiler
Available from, among others (fetched April 13, 2012):
http://sunsite.ualberta.ca/Documentation/Gnu/gcc-3.0.2/html_mono/
gcc.html#SEC170

[Graham]
Paul Graham
On Lisp
Prentice Hall, 1993
ISBN 0130305529

[Incremental]
Abdulaziz Ghuloum
An Incremental Approach to Compiler Construction
Proceedings of the 2006 Scheme and Functional Programming Workshop Uni-
versity of Chicago Technical Report TR-2006-06
Department of Computer Science, Indiana University, Bloomington, IN 47408

[JLS3]
James Gosling, Bill Joy, Guy Steele, Gilad Bracha
The Java™ Language Specification – Third Edition
Addison Wesley (June 24, 2005)
ISBN 0-321-24678-0

[JVMSpec]
Tim Lindholm, Frank Yellin.
The Java™ Virtual Machine Specification – Second edition
Prentice Hall (April 24, 1999)
ISBN 0-201-43294-3

http://wry.me/~darius/writings/dynatail.html
http://sunsite.ualberta.ca/Documentation/Gnu/gcc-3.0.2/html_mono/gcc.html#SEC170
http://sunsite.ualberta.ca/Documentation/Gnu/gcc-3.0.2/html_mono/gcc.html#SEC170

43

[JVMSpec SE 7]
Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley
The Java™ Virtual Machine Specification – Java SE 7 Edition
Oracle, JSR-000924 (July 2011)
Available online: http://docs.oracle.com/javase/specs/jvms/se7/html/
index.html

[Kawa]
Per Bothner, Cygnys Solutions
Kawa: Compiling Scheme to Java
Revision of Kawa – Compiling Dynamic Languages to the Java VM ,
which was presented at the USENIX Annual Technical Conference. New Or-
leans, Louisiana. June 15-19, 1998
Available online (as of May 20, 2011): http://per.bothner.com/papers/

[MACLISP]
David A. Moon
MACLISP Reference Manual
Project MAC, MIT
Cambridge, Massachusetts
Revision ∅
April 1974

[McCarthy60]
John McCarthy
Recursive Functions of Symbolic Expressions and Their Computa-
tion by Machine, part 1
Massachussetts Institute of Technology, Cambridge, Mass.
In Communications of the ACM , April, 1960

[R5RS]
R. Kelsey W. Clinger, J. Rees (eds.)
Revised5 Report on the Algorithmic Language Scheme
In Higher-Order and Symbolic Computation, Vol. 11, No. 1, August, 1998
and ACM SIGPLAN Notices, Vol. 33, No. 9, September, 1998

http://docs.oracle.com/javase/specs/jvms/se7/html/index.html
http://docs.oracle.com/javase/specs/jvms/se7/html/index.html
http://per.bothner.com/papers/

Part II

Appendices

45

Chapter 6

Appendix A

Contains the compiler code in all it’s messy (it is still littered with old code in
comments, how horrible!) glory.

Also available, together with the neccessary runtime environment, at:

http://www.nada.kth.se/~antonki/programmering/ljsp-kandx.tar.bz2

1 ;−∗− Mode : Lisp −∗−
2
3 ; ; ; IDEA: (doesn ’ t r e a l l y be long here ?) S t a r t having f e x p r s (or
4 ; ; ; s i m i l a r) so you can be meaner in how you handle macros (as
5 ; ; ; s t a t i c a l l y as CL f o r instance) .
6
7 ; ; ; Can you somehow coerce the JVM i nto t h i n k i n g duck−typing i s a good idea ?
8
9 ; ; TODO: DONE−ish add argument to p r e t t y much e v e r y t h in g to keep track of

t a i l − c a l l or not
10 ; ; ∗ Judicious f i n a l s everywhere (we don ’ t s u b c l a s s the generated c l a s s e s

a f t e r a l l)
11 ; ; ∗ Perhaps move classname out of the environment p l i s t ?
12 ; ; ∗ More correct−amount−of−args−checking and the l i k e s
13 ; ; ∗ Make a l l environtment be ONE environment and convey s t a t i c / l e x i c a l /

dynamic using the p l i s t ins tead ? ! ? ! ?
14 ; ; ∗ ins tead of having the creepy %l i t e r a l − v a r s% and %l i t e r a l − i n i t% type

v a r i a b l e s scan code ahead of
15 ; ; time to generate a t a b l e of constants ? (we don ’ t win much on t h i s move

except
16 ; ; having c leaner code with l e s s s i d e − e f f e c t s
17
18
19 (require ’ java)
20
21 ; ; Perhaps move t h i s to s t u f f . l j s p due to i t ’ s b o o t s t r a p p i n e s s i s h n e s s ?
22 (unless (running−compiled ?)
23 (defmacro defvar (a)
24 (unless (symbol−value (cadr a)) ; un less a lready bound
25 (l i s t ’ s e t q (cadr a) (caddr a)))))
26
27
28 ; ; FOR NOW
29 (defvar c f i b ’ (nlambda f i b (n) (i f (= n 0) 0 (i f (= n 1) 1 (+ (f i b (− n 1)) (f i b

(− n 2)))))))
30
31 (defvar c f i b − t r e c ’ (lambda (n)
32 ((nlambda c a l c − f i b (n a b)
33 (i f (= n 0)
34 a
35 (c a l c − f i b (− n 1) b (+ a b))))
36 n 0 1)))

47

http://www.nada.kth.se/~antonki/programmering/ljsp-kandx.tar.bz2

48 CHAPTER 6. APPENDIX A

37
38 (defvar f c o l l a t z ’ (nlambda c o l l a t z (n) (print n) (i f (= n 1) n i l (c o l l a t z (i f (= (

mod n 2) 0) (/ n 2) (+ 1 (∗ n 3)))))))
39
40 ; ; d i f f e r s s e m a n t i c a l l y s l i g h t l y from the mapcar1 in s t u f f . l j s p (as ide from wierd

binding−s tu f f s , i t doesn ’ t use end? f o r end of l i s t)
41 (defvar mopcor1 ’ (nlambda mapcar1 (fnx l s t x) (i f l s t x (cons (fnx (car l s t x)) (

mapcar1 fnx (cdr l s t x))) n i l)))
42
43 ; ; d i f f e r s s e m a n t i c a l l y s l i g h t l y from the assq in s t u f f . l j s p (as ide from wierd

binding−s tu f f s , i t doesn ’ t use end? f o r end of l i s t)
44 ; ; l e f t some crud in ((lambda n i l n i l)) (from macro expansion) , f o r t e s t i n g , in i t

but removed others t h a t wouldn ’ t work in s t a t i c scoping . . .
45 (defvar cassq ’ (nlambda assq (key a l i s t) (i f (eq? a l i s t n i l) ((lambda n i l n i l)) (

i f (eq? key (car (car a l i s t))) (car a l i s t) (assq key (cdr a l i s t))))))
46
47 (defvar quote−test (subst−symbols
48 ’ (lambda (a)
49 (cons a ’(#\W (1231312312312312312312312312312313123 .

5343412914294967296) (<a> <c>) b #(he j din f i s k (1 2
3)) " potat i smossa " . 1 2 . 4)))

50 ; ; s ince the current reader has no syntax f o r introducing NaN’
s we do t h i s . the compiler needs to handle i t

51 ; ; a f t e r a l l and maybe the reader supports some syntax f o r NaN
in the f u t u r e

52 ’<a> (/ 0 . 0 0 . 0)
53 ’ (/ 1 . 0 0 . 0) ; same f o r pos i n f
54 ’<c> (/ 1 . 0 −0.0))) ; same f o r neg i n f
55
56 (defvar c f a c t ’ (nlambda f a c t (n acc) (i f (= 0 n) acc (f a c t (− n 1) (∗ n acc)))))
57
58 ; ; Blargh my parser i s broken in many strange ways and crazy so l e t ’ s
59 ; ; have a crazy v a r i a b l e f o r t h i s
60 (defvar d b l f n u t t (pr in1−to−str ing ’ | " |))
61
62 (d e f v a r n l "
63 ")
64
65 (d e f v a r ∗compiled−body∗ ’ ())
66
67 (d e f v a r ∗ dynamic−variables ∗ ’ ())
68
69 (d e f v a r ∗ labe l−counter ∗ 0)
70 (d e f v a r ∗ func labe l−counter ∗ 0)
71 (d e f v a r ∗ stat ic−var−counter ∗ 0)
72
73 ; ; These are dynmic v a r i a b l e s l o c a l l y o v e r r i d e d to conta in
74 ; ; i n i t i a l i z i n g code , and the s t a t i c v a r i a b l e d e f i n i t i o n s f o r a l l the
75 ; ; l i t e r a l s , i n t o t h e i r s t a t i c v a r i a b l e s , f o r the c u r r e n t l y compi l ing
76 ; ; c l a s s f i l e . De fvarr ing them l i k e t h i s makes them be SPECIAL (or whatever)
77 (d e f v a r %l i t e r a l − i n i t% n i l)
78 (d e f v a r %l i t e r a l − v a r s% n i l)
79
80 ; ; l o c a l v a r i a b l e s 5 and above are f o r s t a t i c environment . 0 to 5 have
81 ; ; s p e c i a l uses . With 0 always r e f e r r i n g to the t h i s v a r i a b l e . 3 being
82 ; ; a temp v a r i a b l e and the o t h e r s are f o r the time being undef ined .
83 (d e f v a r +r e s e r v e d − r e g s − s p l i t+ 5)
84
85 (defun get− l abe l ()
86 (concat "L" (i n c ∗ labe l−counter ∗)))
87
88 (defun g e t − f u n c l a b e l ()
89 (concat "FUN" (i n c ∗ func labe l−counter ∗)))
90
91 (defun get−static−var−name ()
92 (concat " l i t " (i n c ∗ stat ic−var−counter ∗)))
93
94
95
96 ; ; ; ; Functions implemented us ing java c l a s s e s that perhaps should be
97 ; ; ; ; made b ui l t − in to ease boot−strapping and p o r t a b i l i t y
98
99 ; ; For p o r t a b i l i t y s sake c o n s i d e r makeing t h i s a b u i l t in subr

100 (defun concat s t r s

49

101 (l e t ((sb (send S t r i n g B u i l d e r ’ newInstance)))
102 (d o l i s t (s t r s t r s)
103 (send sb ’ append s t r))
104 (send sb ’ t o S t r i n g)))
105
106 ; ; Same : f o r p o r t a b i l i t y s sake c o n s i d e r making t h i s b u i l t in or s i m i l a r
107 (defun load−proc (name)
108 (l e t ((name (i f (type ? ’ symbol name) (prin1−to−str ing name) name)))
109 (send (send Class ’ forName name) ’ newInstance)))
110
111 (defun concat−nl s t r s
112 (apply concat (f l a t t e n (mapcar (lambda (x) (l i s t x n l)) s t r s))))
113
114 (defun NaN? (a)
115 (send Double ’ isNaN a))
116
117 (defun i n f i n i t e ? (a)
118 (send Double ’ i s I n f i n i t e a))
119
120 ; ; ; ; End f u n c t i o n s us ing java
121
122
123 ; ; ; ; CODE WALKER FOR LEXICAL ANALYSIS
124 ; ; ; ; Used to f i n d f r e e v a r i a b l e s in lambdas (and macros) mainly
125 ; ; This here th ing does NOT want code with macros in i t (HINT :
126 ; ; remember to expand macros way e a r l y) (j u s t th ink about the
127 ; ; c o n f u s i o n l e t would be , f o r i n s t a n c e) . Also think about : l o c a l
128 ; ; macros WTF?
129
130 (defun analyze (a . r s t)
131 (l e t ((l o c a l − v a r i a b l e s (car r s t)))
132 (uniq (s o r t − l i s t (analyze−expr a l o c a l − v a r i a b l e s) hash <) eq ?)))
133
134
135 (defun analyze−expr (a l o c a l − v a r i a b l e s)
136 (i f (atom? a)
137 (i f (and (type ? ’ symbol a)
138 (not (member a l o c a l − v a r i a b l e s))
139 (not (member a ∗ dynamic−variables ∗)))
140 (l i s t a)
141 ’ ())
142 (case (car a)
143 (quote ’ ()) ; no v a r i a b l e s can be captured in a quote
144 (lambda (analyze−lambda a l o c a l − v a r i a b l e s)) ; macro?
145 (i f (a n a l y z e − l i s t a l o c a l − v a r i a b l e s)) ; Treat i f s p e c i a l l y in f u t u r e

? (i s t h e r e a po int in c l o s i n g over the VARIABLE i f ?)
146 (o t h e r w i s e (a n a l y z e − l i s t a l o c a l − v a r i a b l e s)))))
147
148 (defun analyze−lambda (a l o c a l − v a r i a b l e s)
149 (u n l e s s (eq ? (car a) ’ lambda) ; macro?
150 (e r r o r "You ought to supply me with a lambda when you want to analyze f r e e

v a r i a b l e s in a lambda . "))
151 (l e t r e c ((scan (lambda (l s t acc)
152 (cond ((n u l l ? l s t) (r e v e r s e ! acc))
153 ((atom? l s t) (r e v e r s e ! (cons l s t acc)))
154 (t (scan (cdr l s t) (cons (car l s t) acc)))))))
155 (a n a l y z e − l i s t (cddr a) (append (scan (cadr a) n i l) l o c a l − v a r i a b l e s))))
156
157 (defun a n a l y z e − l i s t (a l o c a l − v a r i a b l e s)
158 (l e t r e c ((roop (lambda (l s t acc)
159 (i f (end ? l s t)
160 acc
161 (roop (cdr l s t) (append acc (analyze−expr (car l s t)

l o c a l − v a r i a b l e s)))))))
162 (roop a n i l)))
163
164 ; ; Remember to check i f t h e r e are too many arguments as w e l l in t h i n g s l i k e i f and

p r i n t
165
166 (defun emit− i f (a e t a i l)
167 (l e t ((c o n d i t i o n (cadr a))
168 (true−expr (caddr a))
169 (f a l s e − e xp r (cadddr a))
170 (l a b e l (get− l abe l))

50 CHAPTER 6. APPENDIX A

171 (l a b e l − a f t e r (get− l abe l)))
172 (concat " ; ; " a nl
173 (emit−expr c o n d i t i o n e n i l)
174 " i f n o n n u l l " l a b e l " ; branches to the true−expr " n l
175 (emit−expr f a l s e − e xp r e t a i l)
176 " goto " l a b e l − a f t e r " ; Don ’ t a l s o run the true−expr l i k e a f o o l " n l
177 l a b e l " : " n l
178 (emit−expr true−expr e t a i l)
179 l a b e l − a f t e r " : " n l
180 " ; ; e n d i f " n l)))
181
182 ; ; ; ; Used by emit− funcal l to generate code f o r how to s t r u c t u r e arguments b e f o r e

the a c t u a l c a l l
183 ; ; ; ; This p a r t i c u l a r vers ion i s when passing arguments in an array
184 (defun emit− funargs (args e)
185 (l e t r e c ((roop (lambda (l s t e cn tr asm)
186 (i f (end ? l s t)
187 asm
188 (roop (cdr l s t)
189 e
190 (1+ cnt r)
191 (concat asm
192 " dup " n l
193 " ldc_w " cn tr n l
194 (emit−expr (car l s t) e n i l)
195 " a a s t o r e " n l))))))
196 (l e t ((l e n (length args)))
197 (i f (z e r o ? l e n)
198 (concat " aconst_nul l " n l) ; very s l i g h t opt imizat ion of the no−argument

case
199 (concat " ldc_w " l e n nl
200 " anewarray LispObject " n l
201 (roop args e 0 " "))))))
202
203
204 ; ; Version f o r passing arguments on s tack in r e g u l a r order
205 #; (defun emit−funargs (args e)
206 (i f a rgs
207 (apply concat (mapcar (lambda (x) (emit−expr x e n i l)) args)))
208 " ")
209
210 ; ; This w i l l need to do d i f f e r e n t t h i n g s f o r a non−compiled funct ion a
211 ; ; compiled funct ion a compiled or non−compiled macro according to
212 ; ; t h e i r current b indings (we f e a r l e s s l y ignore t h a t f o r the
213 ; ; dynamical ly scoped case our funct ion bindings might change and
214 ; ; such . This i s l e s s a problem in the l e x i c a l l y scoped case yet s t i l l
215 ; ; a problem f o r some cases (which cases ?))
216 ; ; WHEN JSR−ing (or s i m i l a r) :
217 ; ; Don’ t f o r g e t to reverse the a r g l i s t
218 ; ; Don’ t f o r g e t to push l o c a l vars
219 ; ; TODO: Think up ways to s t o r e v a r i a b l e s t o g e t h e r with some s o r t of type data so

we know when to do what f u n c a l l
220
221 ; ; POSSIBLE OPTIMIZATION: I n l i n e in a nice way when j u s t a r e g u l a r
222 ; ; non−recursive lambda−thingy (l i k e the case the let− or progn macro
223 ; ; would generate (e s p e c i a l l y the l a t t e r one i s t r i v i a l))
224 (defun emit− funca l l (a e t a i l)
225 (l e t ((fun (car a))
226 (args (cdr a)))
227 (i f (and t a i l
228 (type ? ’ symbol fun)
229 (print (get−var iable−property fun ’ s e l f e)))
230 (e m i t − s e l f − r e c u r s i v e − t a i l − c a l l a rgs e)
231 (concat " ; ; " a n l
232 (emit−expr fun e n i l) ; puts the funct ion i t s e l f on the

s t ack
233 " c h e c k c a s t Procedure " n l
234 " ; prepar ing args " n l
235 (emit− funargs args e)
236 " ; end prepar ing args " n l
237 " i n v o k e v i r t u a l Procedure . run ([LLispObject ;) LLispObject ; " n l))))
238
239 ; ; WRITTEN FOR STATIC ONLY
240 ; ; TODO: r e w r i t e when s t u f f changes . . .

51

241 ; ; This c u r r e n t l y assumes a c e r t a i n layout of v a r i a b l e s l a i d out by
emit−lambda−body .

242 ; ; Note how we j u s t reuse the o ld s t a t e l o c a t i o n s s ince a t a i l − c a l l l e t ’ s us
discard the o ld s t a t e f o r t h i s frame e n t i r e l y

243 ; ; However : Before we s t a r t s e t t i n g the l o c a l v a r i a b l e s we have pushed a l l the
r e s u l t s to the s t ack .

244 ; ; I f we didn ’ t a l l s o r t s of s i d e − e f f e c t mayhem might occur f o r example f o r
245 ; ; (nlambda foo (a b) (i f (> a 100) a (foo (+ a 2) (∗ a b)))) a i s used twice in

the argument l i s t
246 (defun e m i t − s e l f − r e c u r s i v e − t a i l − c a l l (args e)
247 (l e t r e c ((funargs−push (lambda (l s t e asm)
248 (i f (end ? l s t)
249 asm
250 (funargs−push (cdr l s t)
251 e
252 (concat asm
253 (emit−expr (car l s t) e n i l)))

)))
254 (funargs−pop (lambda (cn tr o f f s e t asm)
255 (i f (z e ro ? cn tr)
256 asm
257 (funargs−pop (1− cn tr)
258 o f f s e t
259 (concat asm
260 " a s t o r e " (+ (1− cn tr) o f f s e t)

n l))))))
261 (concat " ; ; s e l f − r e c u r s i v e t a i l − c a l l a rgs : " args n l
262 (funargs−push args e " ")
263 (funargs−pop (length args) +r e s e r v e d − r e g s − s p l i t+ " ")
264 " goto L s e l f t a i l " n l)))
265
266 (defun emit−quote (a e)
267 (unless (and (eq? (car a) ’ quote)
268 (= (length a) 2))
269 (error (concat " Something ’ s wrong with your quote : " a)))
270 (unless (and (type ? ’ string %l i t e r a l − i n i t %) ; compile−lambda does i n i t i a l i z e

th ese to " " ,
271 (type ? ’ string %l i t e r a l − v a r s %)) ; so they should always be s t r i n g s

when we end up here
272 (error (concat " S p e c i a l v a r i a b l e s %l i t e r a l − v a r s %: " (pr in1−to−str ing %

l i t e r a l − v a r s %)
273 " and %l i t e r a l − i n i t %: " (pr in1−to−str ing %l i t e r a l − i n i t %)
274 " not p r o p e r l y i n i t i a l i z e d ")))
275 (l e t ((s t a t i c − v a r (get−static−var−name))
276 (classname (getf e ’ c lassname)))
277 (s e t q %l i t e r a l − v a r s% (concat %l i t e r a l − v a r s%
278 " . f i e l d p r i v a t e s t a t i c f i n a l " s t a t i c − v a r "

LLispObject ; " n l))
279 (s e t q %l i t e r a l − i n i t% (concat %l i t e r a l − i n i t%
280 (emit−obj (second a) e)
281 " p u t s t a t i c " classname " / " s t a t i c − v a r "

LLispObject ; "))
282 (concat " g e t s t a t i c " classname " / " s t a t i c − v a r " LLispObject ; " n l)))
283
284 (defun emit−java−double (a)
285 (cond ((NaN? a)
286 ; ; KLUDGE: workaround using d i v i s i o n by zero (r e s u l t i n g in NaN) since
287 ; ; jasmin seems to have troub le , or at l e a s t i s l a c k i n g any documention ,
288 ; ; how to load a NaN double as a constant
289 (concat " ; ; jasmin l a c k s a l l s o r t o f documentation on how to push a NaN

double . D i v i s i o n by z ero works as a work−around . " n l
290 " dconst_0 " n l
291 " dconst_0 " n l
292 " ddiv " n l))
293 ((and (i n f i n i t e ? a) (not (neg ? a)))
294 ; ; KLUDGE: same th ing but f o r p o s i t i v e i n f i n i t y
295 (concat " ; ; hackaround f o r p o s i t i v e i n f i n i t y " n l
296 " ldc2_w 1 . 0 d " n l
297 " dconst_0 " n l
298 " ddiv " n l))
299 ((and (i n f i n i t e ? a) (neg ? a))
300 ; ; KLUDGE: same th ing but f o r negat ive i n f i n i t y
301 (concat " ; ; hackaround f o r n e g a t i v e i n f i n i t y " n l
302 " ldc2_w −1.0d " n l

52 CHAPTER 6. APPENDIX A

303 " dconst_0 " n l
304 " ddiv " n l))
305 (t
306 ; ; t h a t d i s important , otherwise we are loading a f l o a t (not double)
307 ; ; constant and introducing rounding errors
308 (concat " ldc2_w " a " d " n l))))
309
310 (defun emit−java−long (a)
311 (concat " ldc2_w " a nl))
312
313 ; ; Emits code to regenerate an o b j e c t as i t i s (quoted s t u f f s use
314 ; ; t h i s)
315 ; ; TODO: ∗ what about procedures and the l i k e , whi le not having a
316 ; ; l i t e r a l r e p r e s e n t a t i o n one might send crazy s h i t to the
317 ; ; compiler . . . ?
318 ; ; ∗ What about uninterned symbols ? (Does i t r e a l l y make a d i f f e r e n c e ?) Very

t r i c k y s h i t t h i s :/
319 (defun emit−obj (obj e)
320 (cond ((eq? obj n i l) (emit−nil))
321 ((type ? ’ fixnum obj)
322 (concat " new LispFixnum " nl
323 " dup " n l
324 (emit−java−long a)
325 " i n v o k e n o n v i r t u a l LispFixnum.< i n i t >(J)V" n l))
326 ((type ? ’ flonum obj)
327 (concat " new LispFlonum " nl
328 " dup " n l
329 (emit−java−double obj)
330 " i n v o k e n o n v i r t u a l LispFlonum.< i n i t >(D)V" nl))
331 ((type ? ’ bignum obj)
332 (concat " ldc_w " d b l f n u t t obj d b l f n u t t n l
333 " i n v o k e s t a t i c LispBignum . parse (Ljava . lang . S t r i n g ;) LLispBignum ; "

n l))
334 ((type ? ’ string obj)
335 (concat " new L i s p S t r i n g " n l
336 " dup " n l
337 " ldc_w " d b l f n u t t obj d b l f n u t t n l
338 " i n v o k e n o n v i r t u a l L i s p S t r i n g .< i n i t >(Ljava . lang . S t r i n g ;)V" n l))
339 ((type ? ’ array obj)
340 (concat " new LispArray " n l
341 " dup " n l
342 (n l e t roop ((c ntr (length obj))
343 (asm (concat " ldc_w " (length obj) n l
344 " anewarray LispObject " n l)))
345 (i f (ze ro ? cnt r)
346 asm
347 (roop (1− cn tr)
348 (concat asm
349 " dup " n l
350 " ldc_w " (1− cn tr) n l
351 (emit−obj (aref obj (1− cn tr)) e)
352 " a a s t o r e " n l))))
353 " i n v o k e n o n v i r t u a l LispArray .< i n i t >([LLispObject ;)V" n l))
354 ((type ? ’ symbol obj)
355 (concat " ldc_w " d b l f n u t t obj d b l f n u t t n l
356 " i n v o k e s t a t i c Symbol . i n t e r n (Ljava . lang . S t r i n g ;) LSymbol ; " n l))
357 ((type ? ’ char obj)
358 (concat " new LispChar " n l
359 " dup " n l
360 " bipush " (char−>i n t e g e r obj) n l
361 " i n v o k e n o n v i r t u a l LispChar .< i n i t >(C)V" nl))
362 ((type ? ’ cons obj)
363 (concat " new Cons " n l
364 " dup " n l
365 (emit−obj (car obj) e)
366 (emit−obj (cdr obj) e)
367 " i n v o k e n o n v i r t u a l Cons.< i n i t >(LLispObject ; LLispObject ;)V" n l))
368 (t (error (concat " Couldn ’ t match type f o r : " a)))))
369
370 (defun emit−return−se l f (obj e)
371 (cond ((type ? ’ symbol obj) (emit−var iab le− re f e rence obj e))
372 ((atom? obj) (emit−obj obj e))
373 (t (error " Arghmewhats? "))))
374

53

375
376
377 ; ; TODO: when/ i f removing m u l t i p l e a l i s t s f o r d i f f e r e n t s o r t s of environments :

REWRITE
378 ; ; THIS IS REALLY A HUGE KLUDGE
379 (defun get−var iable−property (var property e)
380 (or (get−s tat ic−var iab le−property var property e)
381 (ge t − l e x i c a l − va r ia b le − pr oper ty var property e)
382 (get−dynamic−variable−property var property e)))
383
384 (defun get−s tat ic−var iab le−property (var property e)
385 (getf (cddr (assq var (getf e ’ stat ic−environment))) property))
386
387 (defun ge t − l e x i c a l − va r ia b le − pr oper ty (var property e)
388 (getf (cddr (assq var (getf e ’ dynamic−environment))) property))
389
390 (defun get−dynamic−variable−property (var property e)
391 (getf (cddr (assq var (getf e ’ l ex ica l−environment))) property))
392
393
394 ; ; ; ; Variable l i s t s look l i k e ((a <storage− location > . <extra−proper t ies−p l i s t >) (

b . . .) . . .)
395 ; ; ; ; e . g ((a 1) (f i b 0 s e l f t))
396 (defun g e t − s t a t i c − v a r i a b l e (var e)
397 (l e t ((stat ic−environment (getf e ’ stat ic−environment)))
398 (cadr (assq var stat ic−environment))))
399
400 (defun g e t − l e x i c a l − v a r i a b l e (var e)
401 (l e t ((l ex ica l−environment (getf e ’ l ex ica l−environment)))
402 (cadr (assq var lex ica l−environment))))
403
404 (defun get−dynamic−variable (var e)
405 (l e t ((dynamic−environment (getf e ’ dynamic−environment)))
406 (cadr (assq var dynamic−environment))))
407
408 (defun emit−var iab le− re f e rence (a e)
409 (l e t ((stat ic−var−place (g e t − s t a t i c − v a r i a b l e a e))
410 (l ex ica l −var−place (g e t − l e x i c a l − v a r i a b l e a e))
411 (dynamic−var−place (get−dynamic−variable a e)))
412 (cond (stat ic−var−place (concat " aload " stat ic−var−place n l))
413 (l ex ica l −var −place (concat " n o l e x i c a l y e t " n l))
414 (dynamic−var−place (concat " nodynamicyet " n l))
415 (t (error (concat " Var iab le : " a " doesn ’ t seem to e x i s t anywhere . ")))))

)
416
417 (defun emit−ar ithmetic (a e)
418 (unless (= (length a) 3)
419 (error (concat "You can ’ t a r i t h m e t i c with wrong amount o f args : " a)))
420 (concat (emit−expr (second a) e n i l)
421 " c h e c k c a s t LispNumber " n l
422 (emit−expr (third a) e n i l)
423 " c h e c k c a s t LispNumber " n l
424 " i n v o k e v i r t u a l LispNumber . "
425 (case (car a) (+ " add ") (− " sub ") (∗ " mul ") (/ " div "))
426 " (LLispNumber ;) LLispNumber ; " n l))
427
428 (defun emit− integer−binop (a e)
429 (unless (= (length a) 3)
430 (error (concat "You can ’ t integer−binop with wrong amount o f args : " a)))
431 (concat (emit−expr (second a) e n i l)
432 " c h e c k c a s t L i s p I n t e g e r " n l
433 (emit−expr (third a) e n i l)
434 " c h e c k c a s t L i s p I n t e g e r " n l
435 " i n v o k e v i r t u a l L i s p I n t e g e r . "
436 (case (car a) (mod "mod") (ash " ash "))
437 " (L L i s p I n t e g e r ;) L L i s p I n t e g e r ; " n l))
438
439
440 ; ; Used , i n t e r n a l i s h , to emit dere ferencing the v a r i a b l e t (c u r r e n t l y s p e c i a l

hardcoded , put in own funct ion f o r modularity
441 (defun emit−t (e)
442 (l e t ((classname (getf e ’ c lassname)))
443 (concat " g e t s t a t i c " classname " / t LLispObject ; " n l))) ; TODO: in the f u t u r e

t r y to emit a v a r i a b l e re ference to t here ins tead of t h i s hardcoded

54 CHAPTER 6. APPENDIX A

mishmash
444
445 ; ; Used to emit the sequence to convert a java boolean to a more l i s p i s h boolean .

Used in mostly " i n t e r n a l i s h " ways .
446 (defun emit−boolean−to− l isp (e)
447 (l e t ((l a b e l (get− l abe l))
448 (l a b e l − a f t e r (get− l abe l)))
449 (concat " i f e q " l a b e l n l
450 ; ; (emit−return−self 123 n i l) ; TODO: change me to emit t l a t e r
451 (emit−t e)
452 " goto " l a b e l − a f t e r n l
453 l a b e l " : " n l
454 (emit−nil)
455 l a b e l − a f t e r " : " n l)))
456
457 (defun emit−= (a e)
458 (unless (= (length a) 3)
459 (error (concat "You can ’ t = with wrong amount o f args : " a)))
460 (concat (emit−expr (second a) e n i l)
461 ; ; " checkcast LispNumber " nl
462 (emit−expr (third a) e n i l)
463 ; ; " checkcast LispNumber " nl
464 " i n v o k e v i r t u a l java / lang / Object . e q u a l s (Ljava / lang / Object ;) Z" n l
465 (emit−boolean−to− l isp e)))
466
467 (defun emit−neg ? (a e)
468 (unless (= (length a) 2)
469 (error (concat "You can ’ t neg ? with wrong amount o f args : " a)))
470 (concat (emit−expr (second a) e n i l)
471 " c h e c k c a s t LispNumber " n l
472 " i n v o k e v i r t u a l LispNumber . negP () Z" n l
473 (emit−boolean−to− l isp e)))
474
475 (defun emit−eq ? (a e)
476 (unless (= (length a) 3)
477 (error (concat "You can ’ t eq ? with wrong amount o f args : " a)))
478 (l e t ((label−ne (get− l abe l))
479 (l a b e l − a f t e r (get− l abe l)))
480 (concat (emit−expr (second a) e n i l)
481 (emit−expr (third a) e n i l)
482 " if_acmpne " label−ne nl
483 (emit−t e)
484 " goto " l a b e l − a f t e r n l
485 label−ne " : " n l
486 " aconst_nul l " n l
487 l a b e l − a f t e r " : " n l)))
488
489 (defun emit−eql ? (a e)
490 (error " e q l ? not implemented "))
491
492 ; ; TODO: ∗ two−argument vers ion of p r i n t
493 ; ; ∗ implement without temp v a r i a b l e i f p o s s i b l e . Having
494 ; ; temp−variables might grow t r i c k i e r when some method
495 ; ; implementations do away with the need to (always)
496 ; ; deconstruct an array
497 (defun emit−print (a e)
498 (l e t ((l a b e l − n i l (get− l abe l))
499 (l a b e l − a f t e r (get− l abe l)))
500 (concat " ; ; " a n l
501 " g e t s t a t i c java / lang /System/ out Ljava / i o / PrintStream ; " n l
502 (emit−expr (cadr a) e n i l)
503 " dup " n l
504 " astore_2 ; s t o r e in the temp v a r i a b l e " n l
505 " dup " n l
506 " i f n u l l " l a b e l − n i l n l
507 " i n v o k e v i r t u a l java / lang / Object . t o S t r i n g () Ljava / lang / S t r i n g ; " n l
508 " goto " l a b e l − a f t e r n l
509 l a b e l − n i l " : " n l
510 " pop " n l
511 " ldc_w " d b l f n u t t " n i l " d b l f n u t t n l
512 l a b e l − a f t e r " : " n l
513 " i n v o k e v i r t u a l java / i o / PrintStream . p r i n t l n (Ljava / lang / S t r i n g ;)V" n l
514 " aload_2 ; we r e t u r n what we got " n l)))
515

55

516 (defun emit−set (a e)
517 (error " s e t not implemented "))
518
519 (defun emit−nil ()
520 (concat " aconst_nul l " n l))
521
522 (defun emit−car−cdr (a e)
523 (unless (= (length a) 2)
524 (error "You can ’ t " (car a) " with wrong amount o f args : " a))
525 (l e t ((l a b e l − n i l (get− l abe l)))
526 (concat (emit−expr (cadr a) e n i l)
527 " dup " n l
528 " i f n u l l " l a b e l − n i l n l
529 " c h e c k c a s t Cons " n l
530 " g e t f i e l d Cons/ " (car a) " LLispObject ; " n l
531 l a b e l − n i l " : " n l)))
532
533 (defun emit−cons (a e)
534 (unless (= (length a) 3)
535 (error "You can ’ t cons with wrong amount o f args : " a))
536 (concat " new Cons " n l
537 " dup " n l
538 (emit−expr (second a) e n i l)
539 (emit−expr (third a) e n i l)
540 " i n v o k e n o n v i r t u a l Cons.< i n i t >(LLispObject ; LLispObject ;)V" n l))
541
542 (defun emit−expr (a e t a i l)
543 (i f (l i s t ? a)
544 (case (car a)
545 ; ; To be a b l e to pass these , where appropriate (e . g : not i f) , as arguments

the b o o t s t r a p code needs to d e f i n e f u n c t i o n s t h a t use thes e b u i l t i n s .
e . g : (defun + (a b) (+ a b))

546 ; ; (running−compiled? (emit−return−self 1337 n i l)) ; TODO: change me to
emit t l a t e r

547 (running−compiled ? (emit−t e))
548 (set (emit−set a e))
549 (eq? (emit−eq ? a e))
550 (eql ? (emit−eql ? a e))
551 ((or + − ∗ /) (emit−ar ithmetic a e))
552 (= (emit−= a e))
553 (neg ? (emit−neg ? a e))
554 ((or mod ash) (emit− integer−binop a e))
555 ((or car cdr) (emit−car−cdr a e))
556 (cons (emit−cons a e))
557 (i f (emit− i f a e t a i l))
558 (print (emit−print a e))
559 ((or lambda nlambda) (emit−lambda a e))
560 (quote (emit−quote a e))
561 (o t h e r w i s e (i f (car a) ; need to be c a r e f u l about n i l ? (

should t h i s t r u l y be here ? . . . w e l l i t i s due to the l i s t ? check (n i l
i s a l i s t))

562 (emit− funca l l a e t a i l)
563 (emit−nil))))
564 (emit−return−se l f a e)))
565
566
567 (defun emit−lambda (a e)
568 (l e t ((function−class−name (compile−lambda a
569 (l i s t ’ s tat ic−environment n i l
570 ’ l ex ica l−environment (getf e ’

l ex ica l−environment)
571 ’ dynamic−environment (getf e ’

dynamic−environment)))))
572 ; ; TODO: save t h i s in a p r i v a t e s t a t i c f i n a l f i e l d in the c l a s s ? (i f
573 ; ; p o s s i b l e of course s ince when I introduce c l o s u r e s there w i l l be cases
574 ; ; where i t may no longer be p o s s i b l e to do i t t h a t way)
575 (concat " new " function−class−name nl
576 " dup " n l
577 " i n v o k e n o n v i r t u a l " function−class−name " .< i n i t >()V" nl)))
578
579
580 ; ; OLD CRAP COMMENT?
581 ; ; TODO?: something e l s e than compile−lambda should output whatever amounts to
582 ; ; dere ferencing a funct ion a f t e r a c t u a l l y having compiled the funct ion and

56 CHAPTER 6. APPENDIX A

583 ; ; s tored i t in an appropriate g l o b a l var (otherwise we would g e t some strange
584 ; ; form of i n l i n e c a l l wherever a lambda i s)
585
586 (defun e m i t − c l a s s f i l e − p r o l o g u e (classname)
587 (concat " . c l a s s " classname "
588 . super Procedure
589
590 . f i e l d p r i v a t e s t a t i c f i n a l t LLispObject ;
591 " %l i t e r a l − v a r s% "
592
593 . method s t a t i c <c l i n i t >()V
594 . l i m i t l o c a l s 255
595 . l i m i t s tack 255
596
597 ldc_w " d b l f n u t t " t " d b l f n u t t "
598 i n v o k e s t a t i c Symbol . i n t e r n (Ljava / lang / S t r i n g ;) LSymbol ;
599 p u t s t a t i c " classname " / t LLispObject ;
600 " %l i t e r a l − i n i t% "
601 r e t u r n
602 . end method
603
604 . method p u b l i c <i n i t >()V
605 . l i m i t s tack 2
606 . l i m i t l o c a l s 1
607
608 aload_0
609 l d c " d b l f n u t t classname d b l f n u t t "
610 i n v o k e n o n v i r t u a l Procedure .< i n i t >(Ljava / lang / S t r i n g ;)V
611 r e t u r n
612 . end method
613
614 . method p u b l i c run ([LLispObject ;) LLispObject ;
615 . l i m i t s tack 255
616 . l i m i t l o c a l s 255
617 "))
618
619 (defun e m i t − c l a s s f i l e − e p i l o g u e (classname)
620 (concat " . end method " n l))
621
622 ; ; Compile a lambda/nlambda in environment e . Store jasmin source in classname . j (

i f suppl ied , o p t i o n a l argument)
623 (defun compile−lambda (a e . r s t)
624 (unless (and (type ? ’ l i s t a)
625 (or (eq? (car a) ’ lambda)
626 (eq? (car a) ’ nlambda)))
627 (error (concat " Are you r e a l l y sure you passed me a lambda : " a)))
628 (l e t ∗ ((classname (i f r s t (car r s t) (g e t − f u n c l a b e l)))
629 (env (l i s t ∗ ’ classname classname e))
630 (% l i t e r a l − v a r s% " ")
631 (% l i t e r a l − i n i t% " ")
632 (body (case (car a) ; s ince we e v a l u a t e the

body a l s o f o r the s i d e e f f e c t s to %l i t e r a l − v a r s%
633 (lambda (emit−lambda−body a env)) ; and %l i t e r a l − i n i t% we

have to e v a l u a t e t h i s b e f o r e emit−c lass f i l e−pro logue
634 (nlambda (emit−nlambda−body a env)))))
635 (with−open− f i le (stream (concat classname " . j ") out)
636 (w r i t e − s t r i n g (concat (e m i t − c l a s s f i l e − p r o l o g u e classname)
637 body
638 (e m i t − c l a s s f i l e − e p i l o g u e classname))
639 stream))
640 ; ; HERE: compile the f i l e j u s t emitted too
641 classname))
642
643 (defun emit−progn (a e t a i l) ; NOT TAIL RECURSIVE
644 (cond ((cdr a) (concat (emit−expr (car a) e n i l)
645 " pop " n l
646 (emit−progn (cdr a) e t a i l)))
647 (a (emit−expr (car a) e t a i l))
648 (t " ")))
649
650 ; ; (nlambda <name> (a b c) . <body>)
651 (defun emit−nlambda−body (a e)
652 (emit−lambda−body (cons ’ lambda (cddr a))
653 e

57

654 ; ; we know o u r s e l v e s by being r e g i s t e r 0 which i s " t h i s " in
Java . t h i s v a r i a b l e

655 ; ; has the s e l f property s e t to the parameter− l i s t o f the
funct ion . emit− funcal l

656 ; ; w i l l thus know i t can do s e l f − t a i l − c a l l − e l i m i n a t i o n and
a l s o how the

657 ; ; parameters are to be i n t e r p r e t e d (when to construct a l i s t
out of some of

658 ; ; them e t c . e t c .)
659 (acons (cadr a) (l i s t 0 ’ s e l f (third a)) n i l)))
660
661 (defun emit−lambda−body (a e . r s t)
662 (l e t r e c ((static−environment−augmentation (f i r s t r s t)) ; Optional argument t h a t

augments the generated s t a t i c environment i f present
663 (args (cadr a))
664 (body (cddr a))
665 (args−roop (lambda (l s t a l i s t asm c ntr o f f s e t) ; TODO: v a r i a b l e a r i t y

rest−parameter s t u f f
666 (i f l s t
667 (args−roop (cdr l s t)
668 (acons (car l s t) (l i s t (+ cntr o f f s e t) ’

s t a t i c t) a l i s t)
669 (concat asm
670 " aload_1 " n l
671 " ldc_w " cnt r n l
672 " aaload " n l
673 " a s t o r e " (+ cnt r o f f s e t) n l)
674 (1+ cn tr)
675 o f f s e t)
676 (cons asm a l i s t))))
677 (a r g s − r e s u l t (args−roop args ’ () " " 0 +r e s e r v e d − r e g s − s p l i t +)) ; +

reserved−regs−sp l i t+ i s the f i r s t r e g i s t e r t h a t i s general−purposey
enough

678 (asm (car a r g s − r e s u l t))
679 (a l i s t (cdr a r g s − r e s u l t))
680 (new−e (l i s t ’ c lassname (getf e ’ c lassname) ’ stat ic−environment (append

a l i s t static−environment−augmentation))))
681 (concat " ; ; " a n l
682 asm
683 " L s e l f t a i l : " n l ; l a b e l used f o r s e l f − t a i l − r e c u r s i v e

purposes
684 (emit−progn body new−e t) ; in a lambda the progn body i s always a

t a i l y − w a i l y
685 " areturn " n l
686 " ; ; endlambda " n l)))
687
688
689 ; ; An emit lambda f o r when a l l arguments are passed to the method
690 ; ; p l a i n . Might be good i f you want to kawa−style optimize when
691 ; ; there ’ s a smal ler than N number of args to a funct ion
692 ; ; (defun emit−lambda (a e . r s t)
693 ; ; (l e t r e c ((static−environment−augmentation (car r s t)) ; Optional argument t h a t

augments the generated s t a t i c environment i f present
694 ; ; (args (cadr a))
695 ; ; (body (cddr a))
696 ; ; (args−roop (lambda (l s t a l i s t cntr)
697 ; ; (i f l s t
698 ; ; (args−roop (cdr l s t)
699 ; ; (acons (car l s t) cntr a l i s t)
700 ; ; (1+ cntr))
701 ; ; a l i s t)))
702 ; ; (new−e (l i s t ’ classname (g e t f e ’ classname) ’ static−environment
703 ; ; (append (args−roop args ’ () 1) ; 0 i s the very s p e c i a l

" t h i s " argument , we don ’ t want to inc lude i t here
704 ; ; static−environment−augmentation))))
705 ; ; (concat " ; ; " a nl
706 ; ; (emit−progn body new−e t) ; in a lambda the progn body i s always

a t a i l y − w a i l y
707 ; ; " areturn " nl
708 ; ; " ; ; endlambda " nl)))
709
710 ; ; TODO: l e x i c a l i guess
711 ; ; Old emit lambda when i was preparing f o r JSR−based s t u f f (might come in handy

again when you t r y your hand at TCO)

58 CHAPTER 6. APPENDIX A

712 ; ; (defun emit−lambda (a e . r s t)
713 ; ; (l e t r e c ((static−environment−augmentation (car r s t)) ; Optional argument t h a t

augments the generated s t a t i c environment i f present
714 ; ; (args (cadr a))
715 ; ; (body (cddr a))
716 ; ; (args−roop (lambda (l s t asm a l i s t cntr)
717 ; ; (i f l s t
718 ; ; (args−roop (cdr l s t)
719 ; ; (concat " astore " cntr nl asm)
720 ; ; (acons (car l s t) cntr a l i s t)
721 ; ; (1+ cntr))
722 ; ; (cons asm a l i s t))))
723 ; ; (args−resu l t (args−roop args "" ’ () +reserved−regs−sp l i t+)) ; +

reserved−regs−sp l i t+ i s the f i r s t r e g i s t e r t h a t isn ’ t reserved
724 ; ; (asm (car args−resu l t))
725 ; ; (new−e (l i s t ’ classname (g e t f e ’ classname) ’ static−environment (

append (cdr args−resu l t) static−environment−augmentation))))
726 ; ; (concat " ; ; " a nl
727 ; ; " as tore 255 ; s t o r e return address in v a r i a b l e 255" nl
728 ; ; asm ; the argsy s t u f f
729 ; ; (emit−progn body new−e t) ; in a lambda the progn body i s always

a t a i l y − w a i l y
730 ; ; " r e t 255" nl
731 ; ; " ; ; endlambda " nl)))
732
733
734
735 (provide ’ compile)

www.kth.se

	Contents
	Report
	Introduction
	Why Lisp?
	Why JVM?

	Background
	Definitions
	Prior Work
	Preliminary Issues
	Scoping
	About Lisp
	Tail-call optimization
	Bootstrapping

	Problem statement
	Test cases

	Methods
	General
	Overview of compilation

	Functions and function application
	Literals
	Constants
	Complex constants

	Tail-call optimization implementation strategies
	Handling self-tail-calls
	Method-local subroutine approach
	Trampolines

	Scoping
	Static Scope
	Lexical Scope and Closures
	Dynamic Scope

	Results
	Benchmarks
	Conclusions
	The future?

	References

	Appendices
	Appendix A

