

A Nineteen Tone Scale Synthesizer

 A N D R E A S L I N D S T R Ö M
 a n d A L B E R T W I F S T R A N D

 Bachelor of Science Thesis
 Stockholm, Sweden 2012

A Nineteen Tone Scale Synthesizer

 A N D R E A S L I N D S T R Ö M
 a n d A L B E R T W I F S T R A N D

 DD143X, Bachelor’s Thesis in Computer Science (15 ECTS credits)
 Degree Progr. in Computer Science and Engineering 300 credits
 Royal Institute of Technology year 2012
 Supervisor at CSC was Anders Askenfelt
 Examiner was Mårten Björkman

 URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/
 lindstrom_andreas_OCH_wifstrand_albert_K12047.pdf

 Kungliga tekniska högskolan
 Skolan för datavetenskap och kommunikation

 KTH CSC
 100 44 Stockholm

 URL: www.kth.se/csc

Abstract

According to theoretical considerations involving acoustics, math-
ematics and human perception of sound, the 19-tone equal tempera-
ment scale, or 19-TET in short, might be a fascinating alternative to
the common 12 tone scale (12-TET). The mathematical properties of
19-TET are examined. We show that instruments and music notation
designed for 12-TET can be made to favorably correlate with these
items for 19-TET, and how well the intervals of 19-TET approximate
just intervals, making 19-TET an eligible alternative to (or even sub-
stitute for) 12-TET. 19-TET is also applied in a computer program
intended for sequencing of musical pieces, which is used to perform
listener tests with musicians and non-musicians alike.

Our study suggests that listeners accustomed to 12-TET can enjoy
19-TET music to some extent, but not as much as 12-TET music.
Without the cultural bias, however, it might be the other way around,
considering the mathematical properties of 19-TET.

Sammanfattning (Swedish abstract)

Den liktempererade 19-tonsskalan kan enligt teoretiska övervägan-
den som innefattar akustik, matematik och hur människor uppfattar
ljud vara ett fascinerande alternativ till den vedertagna 12-tonsskalan.
19-tonsskalans matematiska egenskaper undersöks. Vi visar att in-
strument och notsystem avsedda för 12-tonsskalan med fördel går att
anpassa för 19-tonsskalan, samt hur väl intervallen i 19-tonsskalan ap-
proximerar strikt matematiskt rena intervall, vilket gör 19-tonsskalan
till ett lämpligt alternativ (eller till och med ersättare för) 12-tonsskalan.
19-tonsskalan appliceras också i ett datorprogram avsett för sekvenser-
ing av musikstycken, vilket används för att utföra lyssnartester med
både musiker och icke-musiker.

Vår studie antyder att musiklyssnare som är vana vid 12-tonsmusik
kan uppskatta 19-tonsmusik i någon utsträckning, men inte lika mycket
som 12-tonsmusik. Sett till 19-tonsskalans matematiska egenskaper
hade det dock kunnat vara tvärtom, om vi bortser från kulturella pref-
erenser.

1

Contents

1 Introduction 4

2 Statement of collaboration 4

3 Theoretical background 5
3.1 Intervals and just tuning . 5
3.2 Equally tempered scales . 6
3.3 Why 19-TET? . 6
3.4 Previous research . 9

4 Method 11
4.1 ChucKpond: A 12 and 19-TET software synthesizer 11
4.2 ChucK as our choice of audio programming language 11
4.3 Lilypond and MIDI . 12
4.4 Implementation . 13

4.4.1 A Lilypond-like notation for scores 13
4.4.2 Distinguishing features of ChucK and how they are

utilized . 14
4.4.3 ChucKpond prerequisites and usage 15

4.5 Listener tests . 16

5 Results 17

6 Discussion 19

7 Conclusion 21

8 References 21
8.1 Printed material . 21
8.2 WWW . 22

A Glossary 22

B Online material 24
B.1 Our extended version of ChucK 24
B.2 ChucKpond 0.1.0, archived 24
B.3 A four-part harmony arrangement of “Ode to Joy” generated

by ChucKpond . 24

2

C Source code for ChucKpond 0.1.0 25
C.1 chuckpond_main.ck . 25
C.2 main.ck . 28
C.3 parse_and_play.ck . 29
C.4 string_fifo.ck . 35
C.5 tuning.ck . 37
C.6 voice.ck . 40

3

1 Introduction

In Western music, the octave is divided into 12 steps by means of the 12
tone equal temperament scale (12-TET), and it has been the de facto scale
for virtually every music genre since the beginning of the 19th century. How-
ever, there are many ways of dividing the octave, and 12-TET is merely one
of them. According to theoretical considerations involving acoustics, math-
ematics and human perception of sound, 19-TET could be a fascinating
alternative to the standard 12 tone scale.

We will explore the 19-TET scale in two ways:

• theoretical discussions regarding the mathematical properties of 19-
TET and how it compares to other scales (in particular 12-TET)

• the construction of a software synthesizer using 12 and 19-TET, which
we will use for auditory tests with musically educated subjects as well
as casual music listeners

By doing this exploration, we want to find answers to a few questions
concerning how the 19-TET scale is perceived and appreciated by people:

• Most music listeners are accustomed to the 12 tone scale to such an
extent that most other scales will be percieved as dissonant or otherwise
foul-sounding. Is it possible to convert music written for 12-TET to
19-TET, in a way that is satisfactory to the human ear? If so, for what
kind of compositions?

• With 12-TET songs that has been adjusted (converted) for 19-TET,
listeners will have expectations on how the music should sound if they
have heard said songs in the past. How is 19-TET music percieved by
listeners, considering that the frequencies are altered?

2 Statement of collaboration

We have both worked on all parts of the project interchangeably. How-
ever, Lindström focused on writing about the theoretical and mathematical
properties of scales, the listener tests, the discussion in section 6 and the con-
clusions in section 7. Wifstrand focused on the programming of the software
synthesizer (described in section 4.1) and its documentation (most of section
4), LATEX formatting and the compilation of the online material (software,
source code and audio files) in section B.

4

3 Theoretical background

3.1 Intervals and just tuning

A musical interval is a combination of two notes, and can be seen as a ratio
fi:fj between the two notes respective frequencies. An interval is called
harmonic if the two notes are played simultaneously, melodic if the notes
are played in succession. If fi/fj can be reduced to a fraction of small
integers (more often than not between 1 and 7), the interval is called a justly
tuned interval. Justly tuned intervals are generally considered consonant
and pleasant to the human ear because of the absence of acoustic beats that
can be heard in non-just intervals. Acoustic beats are perceived as periodic
changes in volume and arises when two or more sounds of slightly different
frequencies are played together [9].

Just intervals are given different names depending on the values of fi
and fj . For instance, the justly tuned perfect fifth has a frequency ratio of
3:2, the fourth 4:3, the major third 5:4 and the minor third 6:5. The octave
has a frequency ratio of 2:1 and notes with this frequency relation are said
to belong to the same pitch class, even though their absolute pitch differs.
This is related to the concept of octave equivalence. The human ear hears
notes an octave apart as being “the same” due to the numerous common
harmonics of the two tones [11]. Notes an octave apart are given the same
name in Western music notation. Since a scale is considered to start over
when the octave is reached, it is sufficient to divide the octave interval into
different steps to fully define a scale.

There is a commonly used unit for measuring musical intervals, namely
cent. The cent is a logarithmic unit and defined in such a way that the
distance between 12-TET semitones (i.e. adjacent keys on a piano) is always
100 cents. It follows that the size of an octave is 1200 cents. Generally, with
two tones of frequencies a and b, the distance n in cents is

n = 1200 log2(b/a)

This unit allows for easy comparison of intervals in different tuning systems.
If just intervals are considered the most pleasing to the human ear, why

not just tune all instruments in just tuning? The problem is that if an
instrument with fixed frequencies (i.e. a piano or a fretted guitar played
without bends or other frequency-altering techniques) would be tuned justly,
intervals would only be justly tuned within one key, and only relative to one
note. When playing in other keys than the justly tuned, intervals can be

5

far from just and sound “off” to listeners. It is impossible to divide the
octave into smaller just intervals. For example, four stacked just minor
thirds almost, but not exactly, make up a just octave and no stack of just
perfect fifths will fit exactly into a stack of octaves [12]. Since variety is an
attribute generally expected in music [1], a tuning system is needed that can
both offer the possibility to transpose music and to modulate between keys,
while still approximating the justly tuned intervals frequency ratios to avoid
beating intervals.

3.2 Equally tempered scales

An equally tempered scale is a scale where the ratio of frequencies is equal
for all pairs of adjacent notes. To construct an equally tempered scale with
N tones that preserves the octave, one must first choose a reference tone to
derive all other frequencies from. This reference tone is by convention often
set to 440 Hz (A4) in Western music. Since the octave is preserved, it is
set to the just interval 2:1. The octave is then divided into N parts so that
each interval has a frequency ratio of 2x/N , where x is the number of steps
from the first tone in the scale. The reason why equally tempered scales are
used in music is that they allow for musical pieces to be played in different
keys without retuning the instrument. With an equally tempered scale, an
interval’s approximation of the corresponding justly tuned interval is equally
good or bad in all keys. With equally tempered scales using a carefully
selected value of N , the composer or musician also has many (relatively)
consonant intervals to choose from for any given starting note [1]. The
drawback with equal temperament is that no interval is justly tuned except
for the unison and the octave, since all other frequency ratios are irrational.

3.3 Why 19-TET?

Why is 19-TET of special interest? Why have we chosen that particular
scale for comparison with the standard 12-TET, and not some other N-
tone equal temperament scale? One could also ask why 12-TET has been
established as the standard scale for Western music. The answer to these
questions lies mainly in the intervals that the scales generate and how close
these intervals approximate just intervals. The most important just intervals
and the corresponding approximations in 12 and 19-TET are written out in
Table 1.

The pairs of intervals that make up an octave when stacked are called
inverses. To invert an interval, the root note is raised an octave. For exam-

6

Interval Just,
ratio

Just,
cents

12-
TET,
cents

12-
TET,
error

19-
TET,
cents

19-
TET,
error

12-
TET,
steps

19-
TET,
steps

19-TET, 18 steps N/A N/A N/A N/A 1136.84 N/A N/A 18
Major seventh 15:8 1088.27 1100 11.73 1073.68 -14.58 11 17
Minor seventh 7:4 968.83 1000 31.17 1010.53 41.70 10 16
19-TET, 15 steps N/A N/A N/A N/A 947.37 N/A N/A 15
Major sixth 5:3 884.36 900 15.64 884.21 -0.15 9 14
Minor sixth 8:5 813.69 800 -13.69 821.05 7.37 8 13
19-TET, 12 steps N/A N/A N/A N/A 757.89 N/A N/A 12
Perfect fifth 3:2 701.96 700 -1.96 694.74 -7.22 7 11
Augmented fourth 10:7 617.49 600 -17.49 631.58 14.09 6 10
Diminished fifth 7:5 582.51 600 17.49 568.42 -14.09 6 9
Perfect fourth 4:3 498.04 500 1.96 505.26 7.22 5 8
19-TET, seven steps N/A N/A N/A N/A 442.11 N/A N/A 7
Major third 5:4 386.31 400 13.69 378.95 -7.37 4 6
Minor third 6:5 315.64 300 -15.64 315.79 0.15 3 5
19-TET, three steps N/A N/A N/A N/A 252.63 N/A N/A 4
Major second 9:8 203.91 200 -3.91 189.47 -14.44 2 3
Minor second 16:15 111.73 100 -11.73 126.32 14.58 1 2
19-TET, one step N/A N/A N/A N/A 63,16 N/A N/A 1

Table 1: Cent values for intervals in just tuning, 12 and 19-TET,
along with deviations (error) from just intervals for 12 and 19-TET.

The steps value represents the interval’s size in scale steps from the root note.

ple: C to G makes a perfect fifth, and G to C makes a perfect fourth - the
perfect fourth is the inverse of the perfect fifth. An interval has the same
absolute value error (but inverted sign) as its inverse in the given scale.

As can be seen in the table, 12-TET closely (an error of 1.96 cents)
approximates the just perfect fifth and its inverse the perfect fourth. 19-
TET does not approximate the fifth as accurately (the fifth has an error of
7.22 cents) but approximates the just minor third and its inverse the major
sixth extremely accurately (error of 0.15 cents). The just major third and
its inverse the minor sixth are also closer approximated in 19-TET than in
12-TET (errors with absolute values of 7.37 and 13.69 cents, respectively).

How much these errors affect human perception of music played in the
both scales will be evaluated in the listener tests, but an intelligent guess

7

about the qualities of the both scales can be made already at this stage; 12-
TET might be better suited for music which relies heavily on the consonance
of fifths and fourths, while 19-TET might be better suited for music which
relies on consonant thirds and sixths.

Further analytical comparisons of the two scales have been made in the
past. These studies are summarized and discussed in section 3.4.

One fascinating aspect of 19-TET is the possibility to map the frequencies
of 19-TET to a keyboard similar to the keyboard of a standard 12-TET piano.
This was first suggested by composer Joseph Yasser, who made a design for
a 19-TET keyboard of which we have drawn a sketch that you can see in
Figure 1 [5]. The frequencies of a diatonic C major / A minor scale can be
mapped onto the white keys, just like on a 12-TET keyboard. Each black key
of the piano is divided into two black keys, and to name the notes of these
split keys it is convienient to use the already standardized suffixes [and].
This means that, for example, the black key on the right hand side of C will
be named C], and the black key right next to C] will be named D[. Since
this splitting of the black keys in addition to the white keys has given us
17 keys, there are two more notes to name and map to the keyboard. Since
there are two pairs of white keys which have no black key in between them
on a standard 12-TET keyboard, namely between E and F and between B
and C, it is convienient to add one black key between each of these pairs
(these are colored gray in the figure). Each of these notes will have double
names since they are not split in two: both names E] and F[corresponds
to the key between E and F , and names B] and C[corresponds to the key
between B and C.

This new keyboard layout with updated note names allows (quite remark-
ably!) for easy “translation” of notated 12-TET music to 19-TET. The white
keys and their names, like previously stated, already maps to a diatonic C
major / A minor scale. But how does a musician trying to play this new
instrument know which black key to play of the “split” ones? For example, if
a minor third interval from C is notated, should D] or E[be played (these
notes are in 12-TET mapped to the same key)? Luckily, since a minor third
consists of five steps in 19-TET, we should play E[. This is desirable since
the minor third in C minor has the name E[in standard notation, and not
D] (there are no sharps in the key of C minor). Even though we have not
implemented an interactive keyboard, this is still very helpful in our soft-
ware since we can, at least with diatonic music, parse notation written for
12-TET and play the 19-TET version of the musical piece by mapping the
note names to the corresponding frequencies in 19-TET.

For atonal music, the translation is not as simple and more intricate

8

DC E F G A B C

C# Db D# Eb F# Gb G# Ab A# Bb

E#

Fb

B#

Cb

C# Db

Figure 1: Yasser’s design for a 19-TET claviature. Note that C] and D[
and the rest of the black keys in this figure are separate notes, whereas

note pairs E] / F[and B] / C[are not.

rules of which notes to play when translating from 12-TET to 19-TET would
have to be worked out. These approaches of translation need not necessarily
be as consistent as when translating diatonic music; one could just as well
choose the notes that seem to fit best given the musical context, style and
surrounding notes.

3.4 Previous research

As stated in the introduction of this report, the 12-tone equal temperament
has been the de facto scale in Western music for quite some time. Reasons for
using an equally tempered N -tone scale have already been stated, but some
discussion on the choice of N is necessary to further deepen the understand-
ing of why certain tuning systems are more suitable than others. Yunik and
Swift try to “determine, as objectively as possible, the most ‘pleasing’ and
useful division of a musical octave into k equally spaced tones” [3]. They first
define degree of consonance (c) of two tones. It is mathematically defined as

c =
1√
mn

where m and n are integers and m/n corresponds to the frequency ratio
of the two tones. The value of c depends on the distance between the lowest
common harmonic of the two tones and the geometric mean of the two tones
themselves. A long distance results in a low value of c and vice versa. It
is shown, not surprisingly, that the degree of consonance is greatest for in-

9

tervals with small integer ratios, such as 2:1 (octave), 3:2 (perfect fifth), 4:3
etc. The unison interval (1:1) has a c-value of 1, which is the highest possible
value. In order to be able to objectively compare equal tempered scales, the
authors calculate the merit values for different scales. This is done by first
dividing the octave into an arbitrary number of N steps (in the article it is
done for 1 ≤ N ≤ 60), and then comparing each tone of the scale with 50
intervals that correspond to the 50 highest values of c. The comparison is
made by checking if the tones of a scale are within 0.5% of any consonant
ratio. The value 0.5% is derived from the mean frequency “errors” of the
12-TET approximations of the most important intervals (3:2, 4:3, 5:3 and
5:4). This deviation is considered what “musicians have endured all these
years”, and could be considered an acceptable frequency error which could
be tolerated by most listeners accustomed to Western music. Thus, a “hit” is
registered if a tone of a compared scale lies within 0.5% of any top-50 ratio
frequency. The hits are weighted depending on the c-value of the approxi-
mated just interval. The sum of the hits are then divided by the number of
tones in the scale, in order to “penalize” the scale for intervals in the scale
that do not approximate any just interval. The result is defined as the merit
of the scale. A function is plotted with the merit on the y-axis and the N -
value on the x-axis (ranging from 0 to 60). A number of peaks are apparent,
and the highest peak is that of N = 19 with a merit value of approximately
0.13. N = 12 is also clearly visible as a peak, although with a lower merit
value of approximately 0.092. It is however the first value of N that gives a
reasonably high merit value. The conclusion is drawn that both the 12-TET
and 19-TET scales are reasonable choices; the 12-tone scale mainly because
it is practical (containing a relatively small number of tones fitting the di-
mensions of the human hand, which is an important factor in the design of
musical instruments), the 19-tone scale because it has a significantly better
merit value that any other N between 2 and 60. This conclusion justifies
our decision to further investigate the 19-TET scale and compare it to the
12-TET scale.

In another paper highly relevant to this report, Hartmann compares dif-
ferent equal temperament scales by examining how well they can represent
the just intervals 3:2, 4:3, 5:4, 5:3 and different combinations of these [2].
The comparison is made by defining an error function E(N), which depends
on how close an N -tone equal temperament scale can approximate the listed
just intervals. Even though this paper takes a more strictly mathematical
approach than that of Yunik and Swift [3] (no assumptions of human toler-
ance levels for frequency errors are made), the results and conclusions are
remarkably similar. The error function has clearly defined local minimums

10

at both N = 19 and N = 12, further implying that these values for N are
of special interest when constructing N -tone equal temperament scales.

4 Method

4.1 ChucKpond: A 12 and 19-TET software synthesizer

We have written a software synthesizer in the audio programming language
ChucK that essentially renders textual descriptions of notes to music, using a
notation for music similar to that of the music engraving program Lilypond,
but our notation is much simpler than Lilypond’s1. We call our program
ChucKpond and the Lilypond-like syntax it utilizes was defined by us with
the intention of using it solely for version 0.1.0 of the program. Each note
is rendered into an audible tone using the sawtooth unit generator (ChucK
terminology) SawOsc, a digital function generator which is programmed with
a pre-calculated frequency corresponding to the note name, along with a
generic ADSR envelope. This way, Lilypond-like text is effectively rendered
into WAVE files of music.

We chose to build a sequencer of this variety instead of a synthesizer
program that responds to, say, MIDI events from a USB-connected MIDI
claviature. Granted, it would have been exciting to build an actual, physical
Yasser-like 19 tone keyboard, but we have neither the time nor the resources.
In addition, there are usability issues of a 19 tone keyboard that you would
have to be a highly skilled piano player to be able to deal with. These factors
makes it more appealing to create a sequencing mechanism that allows us to
hear what 19-TET would sound like applied on well-known musical pieces,
rather than creating a program intended for playing with in real-time.

4.2 ChucK as our choice of audio programming language

We investigated the audio programming languages ChucK, Csound, Nsound,
Pure Data, sfront and SuperCollider. We established that we needed a lan-
guage that allowed for low-level modelling of sounds, a means of effectively
parsing text for processing and an option to output sound to WAVE or
AIFF files for convenient demonstration; that is, a way of listening to the
output of our program on any system with an audio player. We also took
into consideration our collective experience of programming and computing
environments, and lastly, our personal preferences.

1The Lilypond syntax has, amongst other things, commands for how notes are rendered
onto paper or PDF. These features are, naturally, unnessecary for us.

11

For our purposes, we believe ChucK has five advantages. It is sample
accurate, meaning that its algorithms are constructed in such a manner that
given a specific source file, sound events consistently occur at the same mo-
ments (measured in samples) upon each render, as opposed to most threaded
audio system in which the rendering or timing of sound events can be inter-
fered by other processes in the operating system or concurrent sound events
in the audio system itself.

Not only is ChucK sample accurate—you can also program sound events
at the sample level. This allows for full control of audio rendering that could
prove helpful when modelling acoustic instruments2.

It comes with a set of example source files that demonstrates separate
components in a way that is easily understandable for novices, whereas in
general, the example source files of the other programs are rather made to
impress and as such are somewhat complex to use as learning material.

We are already familiar with the imperative programming paradigm of
ChucK. ChucK is object oriented (albeit in a primitive way) and the syntax
is nearly identical to that of Java, a language we have used extensively in our
previous studies. What distinguishes ChucK from Java is the multi-purpose
ChucK operator which we explain briefly in section 4.4.

Lastly, it has a convenient command line interface.
Our reasons for excluding the other languages were mainly that they

generally required programming skills we could not gather within reason-
able time, that they were poorly documented and that some of them were
controlled through rather non-usable GUI:s.

4.3 Lilypond and MIDI

Without careful consideration, it would seem that we could use the MIDI
file format for our exploration of 19-TET. The problem is that MIDI files,
as most other music related file formats, are only designed for conventional
12-TET. There is a way to circumvent this limitation by using the pitch
bend feature of MIDI: you make a mapping of 19-TET notes and their fre-
quency adjacency to 12-TET notes and then adjust pitches relatively3. This
technique is used in a Wikipedia article on 19-TET for demonstration [10].

2This, however, was not one of our top priorities. For our purposes, which we expand
upon in section 4.5, a simple sawtooth wave generator (ChucK’s SawOsc) was sufficient,
but admittedly somewhat perfunctory compared to the sound of a more vivid, acoustic
instrument.

3If a tone has the frequency f in 12-TET and f − x in 19-TET, you adjust the pitch
x steps downwards using the MIDI pitch bend.

12

While this will work logically, there is a risk of confusion since you define
one system (19-TET) relative to another system (12-TET) and both of these
systems are—from a computer science point of view—arbitrary methods of
selecting discrete frequency points.

Lilypond even has a MIDI rendering feature that can, with appropriate
configuration, utilize this technique. However, we would not have full control
over the actual frequencies since MIDI files are rendered differently on dif-
ferent systems, or to be specific, different MIDI players. We are dealing with
very fine variations of frequency and if a tone rendered out of any music file
we use in our project is off by even two or three cents with some frequency
inaccurate MIDI player, it will clearly disrupt one of the main topics of our
work.

A solution would be to write our very own MIDI player, in which we
would always know what frequencies are played. However, it is more difficult
to parse and interpret MIDI files4 compared to parsing our own simplified
variant of the Lilypond format.

4.4 Implementation

4.4.1 A Lilypond-like notation for scores

As stated earlier, ChucKpond parses Lilypond-like text files. The text files
contains brace bracket separated blocks of voices and in each of these blocks
there are space separated note tokens defined as

<note name><octave selection><note duration>

A specification of the token definition follows5.

Note name: in lower case letters. Sharp and flat notes are suffixed with -is
and -es, respectively.
Octave selection: optional. Specified with one apostrophe for each increase
of octave, or one comma for each decrease of octave. You cannot have both
apostrophes and commas. The starting point for octave selection, which will
also be the note’s octave if you leave out this parameter altogether, is the
fourth octave (in which notes usually are suffixed with the number 3) on a

4Mostly since it is a binary format, i.e. you cannot edit and view MIDI files with a
common text editor—you need to use a domain specific program such as Sibelius.

5Note that as for version 0.1.0 of ChucKpond, you cannot have double dotted notes,
neither can you have ties between notes. However, these features were not needed for the
songs in our listener tests.

13

piano.
Note duration: optional. The format is <xy>, where x = 2n (0 ≤ n ≤
5, n ∈ Z) is the note duration’s denominator and y is an optional dot for
dotted note lengths. If you leave out this parameter, the duration of the
note will be the same as that of the preceding note.

Some examples of note tokens are dis which is a D]3 with the duration
of the preceding note, e’ which is an E4, also with the duration of the pre-
ceding note, f,16 which is an F2 sixteenth note, and ges”4. which is a G[5
dotted quarter note.

4.4.2 Distinguishing features of ChucK and how they are utilized

ChucK is an interpreted language for programming audio and graphics [6]. In
ChucK, there are two major concurrent processes: the conventional program
logic flow consisting of common control structures such as if / else, while and
for, and the audio flow controlled by the ChucK operator which is denoted
as => or @=>, depending on the context [7]. As such, the language lends
itself to programming audio. The semantic is that you alternate between
computing variables and “allowing time to pass” using the keyword now
[8]. We have used this paradigm in ChucKpond according to the following
pseudo-code:

while (voice.hasTokens ())
token = parseToken ()

oscillator.setFrequency(token.getFrequency ())
envelope.setRelease(token.getDuration ())

/* prepare for triggering the envelope as if pressing down
a key on a claviature */

envelope.keyDown ()

/* let time pass for one sample. this will trigger the
envelope */

1:: samp => now

/* release the key */
envelope.keyUp()

/* let the duration of the note pass , minus the one sample
we needed to trigger the envelope */

token.getDuration () - 1:: samp => now

14

It turned out during development that a substring function for strings was
absent from the API of ChucK, which we needed for the parsing functions.
We implemented this tool in the source code of ChucK 1.2.1.3 itself, which is
written in C++, by writing a “wrapper” for the underlying substr method
of C++.

The code is executed in separate shreds by using the keyword spork (these
are analogous to thread and fork, respectively), like so:

for each voice
spork ~ playVoice ()

A shred is essentially a thread that is always computed in the same man-
ner (inside ChucK’s virtual machine) for each time you run the ChucK source
file it belongs to. This means that shreds cannot, by priority schemes or oth-
erwise, be interfered by other shreds or processes in the underlying operating
system, thus ensuring the aforementioned sample accuracy (see section 4.2).

4.4.3 ChucKpond prerequisites and usage

To run ChucKpond 0.1.0 which is supplied in section B.2, you need6

• Mac OS X 10.6.8 or later, or

• Windows 7 with

◦ Cygwin 1.7.11-1 or later, or

◦ complementary Cygwin DLL files supplied in section B.1

• our extended version of ChucK (chuck-aw), also supplied in section B.1

ChucKpond is then run from cmd or a Unix terminal. Assuming that
the binary of the extended ChucK (chuck-aw or chuck-aw.exe) is in your en-
vironment path, and that you are located in the folder with the source code
files (suffixed .ck) of ChucKpond, it is invoked like so:

computer:∼/chuckpond-0.1.0$ chuck-aw main:<tuning of choice>:<file
name>:<WAVE file name>

6You can also run ChucKpond on GNU/Linux. However, you will have to build our
extended version of ChucK yourself from source, as we have not pre-built any binaries for
GNU/Linux. See section B.1 for instructions.

15

where <tuning of choice> is 12 or 19, <file name> is a file with Lilypond-
like text and <WAVE file name> (optional) is used if you want to output a
WAVE file as you listen to the score.

An example of playing to “Ode to Joy” in 19-TET and simultaneously
creating a WAVE file could look like so: chuck-aw main:19:ode-to-joy:“ode-
19.wav”. Section B.3 consists of the source file ode-to-joy and the corre-
sponding WAVE file ode-19.wav, which was also used in the listener tests in
section 4.5.

4.5 Listener tests

In order to compare the 19-TET scale to the 12-TET scale and how they
are perceived by humans, listener tests were performed. The purpose of the
tests was to, as objectively as possible, see how humans perceive intervals and
musical pieces in 19-TET and 12-TET—to what extent do they differ, and
what intervals and musical pieces played in the tuning systems are pleasant
sounding to the human ear? Both musically trained subjects and casual
music listeners (non-musicians) were used as test subjects. A listening test
session with a test subject consisted of eleven different test cases. Each test
case consisted of two parts a and b, which corresponded to playing an interval
or a musical piece with frequencies derived from 19-TET or 12-TET. Which
scale was used as the a part varied throughout the test session to prevent the
effect of “adjusting” the listener’s ears to the same scale in every test case.
A random binary number generator was used to decide which scale should
be used as a part in each test case.

The intervals and musical pieces had been rendered with ChucKpond
beforehand into WAVE files. This means that there were 22 sound clips
played in one test session. After each sound clip had been played, the listener
was asked to answer how the sound clip had been perceived—was the interval
or musical piece pleasant to listen to? This was done by marking a point
on a horizontal line. A marking on the right part of the line corresponded
to “pleasant sounding”, while a marking on the left part corresponded to
“unpleasant sounding”. After the listener had heard both the 19-TET version
and the 12-TET version of a test case, the listener was asked to mark the
perceived difference between the two sound clips in a similar manner. No
information about the scales used was given to the listener beforehand. Of
note is that we did not give the listeners any more information than this
prior to playing the sound clips, as the test was designed for learning how
listeners subjectively perceived and experienced 12 and 19-TET—we did not
want to imply that there ever was a “scientifically correct” scale (since there

16

is no such scale), or in other words, that one scale is better than the other,
let alone that they should hear a difference in the first place. The test cases
were carried out in the following order: first, simple intervals were played
harmonically. The intervals chosen were

• Perfect fifth

• Perfect fourth

• Major third

• Minor third

The reason why we chose these particular intervals is that they are con-
sidered important intervals in music and they all have a high degree of con-
sonance in just tuning (see section 3.1).

Second, two simple tunes were played in one voice (no harmonies). The
tunes chosen were

• Twinkle, Twinkle, Little Star in C major

• “Ode to Joy” (Beethoven’s Ninth Symphony, final movement) in G
major [4]

Third, the four intervals were played again but this time melodically.
Last, “Ode to Joy” was played in a four-part harmony arrangement, which
is also available for download in section B.3.

All tests were recorded using A0 (the lowest key on the piano with the
frequency 440 / 16 = 27.5 Hz) as the reference tone, for both 12-TET and
19-TET. For the harmonic and melodic intervals we used A4 (440 Hz) as
the lower tone frequency since we wanted the intervals to start at the same
frequency for both 12-TET and 19-TET; reason being that it makes for easier
comparison of the scales when one of the interval notes is in a fixed frequency
position.

5 Results

Table 2 gives the results from the listener tests in section 4.5. The values
are given as a percentage of where on each horizontal line the test subjects
drew a point, and as such are degrees of pleasantness for the 12 and 19-TET
versions of each test item (0% being “unpleasant sounding” and 100% being

17

“pleasant sounding”), and perceived difference between the two versions (0%
being equal and 100% being fully separate). There were seven test subjects,
and the Subject # column contains indices of these, i.e. each row of values
were given by a particular person.

Subject # Harmonic intervals Melodic intervals Songs
Minor
third

Major
third

Perfect
fourth

Perfect
fifth

Minor
third

Major
third

Perfect
fourth

Perfect
fifth

Twinkle,
...

Ode...,
one
voice

Ode...,
four
voices

12-TET

1 69 60 49 52 48 52 46 48 54 69 81
2 30 84 75 99 27 80 76 76 14 80 98
3 24 85 73 94 27 99 59 3 94 92 95
4 28 63 58 55 95 92 93 95 84 89 96
5 32 64 46 48 49 49 46 49 64 50 69
6 64 84 70 75 59 59 63 81 69 85 80
7 64 85 66 79 52 47 36 29 31 36 77

Average 44 75 62 72 51 68 60 54 59 71 85
Median 32 84 66 75 49 59 59 49 64 80 81

19-TET

1 67 62 50 50 47 53 49 47 36 47 69
2 35 21 53 93 52 48 79 75 7 83 48
3 87 23 19 57 70 3 43 98 30 1 61
4 28 55 55 55 95 71 93 95 84 89 96
5 37 59 57 47 42 45 57 31 69 39 54
6 60 79 71 75 39 40 74 59 63 68 65
7 34 85 65 78 53 47 38 31 32 68 96

Average 50 55 53 65 57 44 62 62 46 56 70
Median 37 59 55 57 52 47 57 59 36 68 65

Difference

1 5 19 11 6 3 18 14 7 11 47 24
2 62 97 99 84 35 25 3 3 8 5 60
3 95 95 72 64 96 92 60 60 71 97 99
4 3 9 9 7 1 18 1 1 1 3 1
5 18 19 24 3 47 27 56 53 12 18 53
6 32 49 20 15 74 50 43 42 26 60 38
7 55 1 4 1 2 2 2 2 2 33 21

Average 38 41 34 26 37 33 26 24 19 37 42
Median 32 19 20 7 35 25 14 7 11 33 38

Table 2: Results from the listener tests.

General averages and medians of all interval and song values for 12-TET,
19-TET and difference separately follows. For instance, the first number in
the following list is an average of all percentage values spanning from 12-
TET, subject #1, minor third to 12-TET, subject #7, Ode..., four voices.

18

Average of 12-TET: 64%.

Median of 12-TET: 64%.

Average of 19-TET: 56%.

Median of 19-TET: 55%.

Average of difference: 33%.

Median of difference: 20%.

6 Discussion

Both the harmonic and melodic version of the minor third were preferred in
19-TET. This complies with our initial guess based on the fact that the 19-
TET approximation of a minor third has a much smaller deviation from the
just ratio of 6:5 compared to the 12-TET approximation. The test subjects
also generally heard a relatively big difference between the 12-TET and 19-
TET versions of the interval. The major third, on the other hand, was
preferred in 12-TET even though the 12-TET approximation of the just
major third has a larger error than 19-TET. The reason for this could be
that the 12-TET major third is slightly sharp and the 19-TET major third
is slightly flat with respect to the just major third. Since our test subjects
were used to Western music and the 12-TET scale, they might have found
the 19-TET major third odd sounding because of its flatness, even though
the absolute value of the error is smaller than that of 12-TET.

The harmonic perfect fourths and fifths were generally preferred in 12-
TET, which was to be expected since they do not deviate as much from
the corresponding just intervals in this tuning as in 19-TET. It is worth
noting, however, that the median value of the perceived difference between
a 12-TET and a 19-TET harmonic perfect fifth was only 7%. The results
from the melodic fourths and fifths are harder to interpret. The melodic
perfect fourth seems to have been perceived as almost equally pleasant in
both tunings, while the perfect fifth seems to have been preferred in 19-TET
by a small margin. The median value of the perceived difference of a melodic
perfect fifth in 19-TET and 12-TET is only 7% (just like the harmonic version
of the interval) which suggests that the preference should not be weighted
too heavily.

19

The songs were all generally preferred in 12-TET, and the greatest dif-
ference was perceived in the song with four voices (“Ode to Joy”). It was
probably easier for the test subjects to differentiate between the different tun-
ings when hearing full chords and four-part harmonies, compared to when
hearing simple two-note intervals.

One important factor to consider when trying to interpret the results
from the listener tests is of course the fact that all test subjects were used to
the 12-TET scale and very unfamiliar with the 19-TET scale. Intervals and
musical pieces written for 12-TET might sound odd and even out of tune in
19-TET simply because 12-TET intervals are expected, even though certain
intervals in 19-TET are less dissonant from a physical-acoustic point of view.
These expectations could very well be the reason why 12-TET got a higher
overall average “score” than 19-TET.

Another factor that might have biased the test subjects is the order in
which the sound clips were played. One test subject stated that he might
have found a musical piece played right after a series of simple intervals
pleasant, only because it provided a change from the dull and rather non-
musical intervals. It is also hard to say to what degree the tests with simple
intervals represent the musical qualities of said intervals; it is quite a big
difference between hearing a simple interval played alone for a short period
of time and hearing the same interval in a more complex musical context
with several instruments of different timbres playing together.

The test subjects might also have been affected by the synthesizer’s sound
characteristics when judging the pleasantness of a song or interval. As stated
in section 4, our program used a sawtooth wave generator to generate sound.
Since that shape of sound is generally associated with certain genres of elec-
tronic music, the test subjects’ musical genre preferences might have affected
their judgement in addition to their perception of intervals and pitch.

On a related note, our selection of songs might have been unappealing
to some of the listeners, in which case they will not consider any subtle
differences in the two versions of each song: the result is that the listener
perceives both versions as equally unpleasant, and that there is no difference
between them. The opposite case is that if a listener does appreciate a
certain song, they are more alert to these differences. It follows that a wider
variety of genres for the songs in the listener tests might have allowed us to
even more accurately understand the listeners’ degree of appreciation for the
19-TET scale.

We would definitely have benefitted from having more test subjects. It
is difficult to say, and also outside of the scope of the project, how many test
subjects we would have needed for the test results to be statistically relevant,

20

and to whom—in the largest sense, our subject is relevant to everyone in
general, and the Western world in particular. The test results are also,
naturally, affected by the subjects’ own musical abilities and sense of pitch,
which is yet another reason for having more test subjects.

7 Conclusion

The results from the listener tests suggest that the test subjects generally
preferred music and intervals from the 12-TET scale. Both the general av-
erage and median values in section 5 support this conclusion. There were
however some interesting exceptions from this rule. The minor third was
generally regarded as more pleasant sounding in 19-TET than in 12-TET,
even though it was by a small margin. A bigger difference between the
scales was perceived by listeners when they listened to songs and not simple
intervals.

With our software, translation of musical pieces from 12-TET to 19-TET
is straightforward and notation originally intended for 12-TET instruments
may be used to play the same notated music with frequencies derived from
the 19-TET scale.

The translated pieces of music turned out to be satisfactory for the listen-
ers, but not quite as satisfactory as the original 12-TET versions—it goes to
show that we are creatures of habit, in the sense that in our formative years
we (as Westeners) are exposed to mostly 12-TET when listening to music
and become accustomed to it. In addition, we are conditioned to perceive
certain kinds of arts and music (and within that, scales) as beautiful; you
could say that we are “taught” what is pleasant.

8 References

8.1 Printed material

[1] Douthett, J., & Krantz, R. J. Construction and interpretation of
equal-tempered scales using frequency ratios, maximally even sets, and
P-cycles. 2000.

[2] Hartmann, G. C. A numerical exercise in musical scales. 1986.

[3] Swift, G. W., & Yunik, M. Tempered Music Scales for Sound Syn-
thesis. 1980.

21

8.2 WWW

[4] Beethoven, L. V. Ode to Joy. http://www.mutopiaproject.org/
ftp/BeethovenLv/ode/ode.ly, c. 1800. Typeset by Peter Chubb
(Viewed on 2012-04-11).

[5] Keislar D. History and principles of microtonal keyboard de-
sign. https://ccrma.stanford.edu/files/papers/stanm45.pdf,
1988. (Viewed on 2012-04-11).

[6] The ChucK team. ChucK - [Developer’s Guide]. http://chuck.cs.
princeton.edu/doc/develop/. (Viewed on 2012-04-04).

[7] The ChucK team. ChucK - [Language Specification : Operators &
Operations]. http://chuck.cs.princeton.edu/doc/language/oper.
html. (Viewed on 2012-04-03).

[8] The ChucK team. The ChucK tutorial. http://chuck.cs.
princeton.edu/doc/learn/tutorial.html. (Viewed on 2012-03-19).

[9] Wikipedia. Beat (acoustics). http://en.wikipedia.org/wiki/Beat_
%28acoustics%29. (Viewed on 2012-04-11).

[10] Wikipedia. File:19-et diatonic scale on C.mid. http:
//en.wikipedia.org/wiki/File:19-et_diatonic_scale_on_C.mid.
(Viewed on 2012-04-03).

[11] Wikipedia. Octave. http://en.wikipedia.org/wiki/Octave.
(Viewed on 2012-04-10).

[12] Wikipedia. Pythagorean tuning. http://en.wikipedia.org/wiki/
Pythagorean_tuning. (Viewed on 2012-04-10).

A Glossary

ADSR Attack, Decay, Sustain, Release. A common paradigm for consecu-
tive increasing and decreasing of volume (also known as envelope) in synthe-
sizer sounds. Commonly used in the design of electronic models of instru-
ments.

atonal Lacking key and/or tonal center.

beat An interference between two sounds of slightly different frequencies,

22

http://www.mutopiaproject.org/ftp/BeethovenLv/ode/ode.ly
http://www.mutopiaproject.org/ftp/BeethovenLv/ode/ode.ly
https://ccrma.stanford.edu/files/papers/stanm45.pdf
http://chuck.cs.princeton.edu/doc/develop/
http://chuck.cs.princeton.edu/doc/develop/
http://chuck.cs.princeton.edu/doc/language/oper.html
http://chuck.cs.princeton.edu/doc/language/oper.html
http://chuck.cs.princeton.edu/doc/learn/tutorial.html
http://chuck.cs.princeton.edu/doc/learn/tutorial.html
http://en.wikipedia.org/wiki/Beat_%28acoustics%29
http://en.wikipedia.org/wiki/Beat_%28acoustics%29
http://en.wikipedia.org/wiki/File:19-et_diatonic_scale_on_C.mid
http://en.wikipedia.org/wiki/File:19-et_diatonic_scale_on_C.mid
http://en.wikipedia.org/wiki/Octave
http://en.wikipedia.org/wiki/Pythagorean_tuning
http://en.wikipedia.org/wiki/Pythagorean_tuning

perceived as periodic variations in volume whose rate is the difference be-
tween the two frequencies [9].

Cygwin Linux-like environment for Windows.

diatonic Derived from the major scale, belonging to one key.

DLL file Dynamic Link Library: a system file containing functions that
can be shared between programs.

dotted (note) Musical notation indicating an increase of note length by
50%.

duration (note) Time length of a played note.

interval A combination of two notes, or a ratio of their frequencies.

key (music) A set of notes with a root note as tonal center.

Lilypond A computer program for engraving of sheet music.

MIDI Musical Instrument Digital Interface: electronic musical instrument
industry specification for digital communication between audio devices.

note (music) A mapping of a name or symbol to a tone.

octave Interval with frequency ratio 2:1. The human ear hears notes an
octave apart as being “the same” because of the numerous common harmon-
ics of the two notes.

sample (audio) A discretized point (of a signal) derived from, or simu-
lating, a continuous audio signal. The smallest unit of sound data in an
audio file.

Sibelius A music notation software.

thread (computing) One of many parallell instruction sequences within
a computer program’s process.

tie (music)Musical notation indicating that the duration of one note should

23

be prolonged with the duration of the note it is tied to.

tone (music) A frequency in a musical context.

B Online material

B.1 Our extended version of ChucK

Executable for Mac OS X 10.6.8 or later.
URL: http://www.wifstrand.se/albert/dkand12/chuck-aw-120328.gz

Archive with executable for Windows 7 along with complementary Cygwin
DLL files. You can also run the executable (chuck-aw.exe) from inside the
Cygwin terminal, in which case you will not need the DLL files supplied in
this archive.
URL: http://www.wifstrand.se/albert/dkand12/chuck-aw-with-cygwin-dll-files-120328.
zip

C++ source code for our modifications in ChucK 1.2.1.3. The following
four source code files (which were already in the ChucK source tree) were
modified; our modifications can be traced by searching for C++ comments
containing the string awifstrand. For simplicity’s sake, we supply this set of
source code files in its entirety. In order to get a working copy of our ChucK
branch, replace the source files in the official release of ChucK 1.2.1.3 with
these.
http://www.wifstrand.se/albert/dkand12/chuck_lang.cpp
http://www.wifstrand.se/albert/dkand12/chuck_lang.h
http://www.wifstrand.se/albert/dkand12/util_string.cpp
http://www.wifstrand.se/albert/dkand12/util_string.h

B.2 ChucKpond 0.1.0, archived

http://www.wifstrand.se/albert/dkand12/chuckpond-0.1.0.tgz

B.3 A four-part harmony arrangement of “Ode to Joy” gen-
erated by ChucKpond

http://www.wifstrand.se/albert/dkand12/ode-to-joy

http://www.wifstrand.se/albert/dkand12/ode-12.wav

24

http://www.wifstrand.se/albert/dkand12/chuck-aw-120328.gz
http://www.wifstrand.se/albert/dkand12/chuck-aw-with-cygwin-dll-files-120328.zip
http://www.wifstrand.se/albert/dkand12/chuck-aw-with-cygwin-dll-files-120328.zip
http://www.wifstrand.se/albert/dkand12/chuck_lang.cpp
http://www.wifstrand.se/albert/dkand12/chuck_lang.h
http://www.wifstrand.se/albert/dkand12/util_string.cpp
http://www.wifstrand.se/albert/dkand12/util_string.h
http://www.wifstrand.se/albert/dkand12/chuckpond-0.1.0.tgz
http://www.wifstrand.se/albert/dkand12/ode-to-joy
http://www.wifstrand.se/albert/dkand12/ode-12.wav

http://www.wifstrand.se/albert/dkand12/ode-19.wav

C Source code for ChucKpond 0.1.0

C.1 chuckpond_main.ck

1 // arg 0: scale
2 // arg 1: name of .ly file
3 // arg 2: wave file name
4 // arg 3: if set to 1, use debug prints
5
6 Std.atoi(me.arg(3)) => int LOCAL_DEBUG; // atoi: string to

int
7
8 // render to wav
9 me.arg(2) @=> string wav_filename;
10 Gain g;
11 WvOut w;
12 if (wav_filename.length () > 0) {
13 dac => g => w => blackhole;
14 wav_filename => w.wavFilename;
15 .97 => g.gain;
16 }
17
18 // event for voices
19 Event finish;
20
21 // associative array of voice objects
22 voice voices [0];
23
24 // can we use FileIO w. StringTokenizer ?? YES
25 FileIO file_io;
26
27 // tuning object
28 tuning main_tuning;
29
30 /* INITIALIZE THINGS BEFORE READING FROM FILE */
31
32 // open file
33 file_io.open(me.arg(1), FileIO.READ);
34 if(! file_io.good()) {
35 cherr <= "can’t␣open␣file" <= IO.newline(); // IO ??
36 me.exit();
37 }
38
39 // choose scale (i.e., fill freqs array with freqs).

25

http://www.wifstrand.se/albert/dkand12/ode-19.wav

40 // C0 is the reference freq., dervied from the lowest key on a
piano (A0, 27.5 Hz)

41 <<< "using", me.arg (0), "TET" >>>;
42 main_tuning.init(me.arg(0));
43
44 // init. parser/player
45 parse_and_play main_parser_player;
46 if (LOCAL_DEBUG) <<< "init.␣main_parser_player" >>>;
47 main_parser_player.set_event(finish);
48 main_parser_player.set_freqs(main_tuning.get_freqs ()); // TODO

: objects passed around haphazardly. fix
49
50 if (LOCAL_DEBUG) { // can we look at these now?
51 <<< "main_parser_player ,␣freqs:", main_parser_player.

get_freqs () >>>;
52 // <<< "main_parser_player , freqs without the get function:",

main_parser_player.freqs >>>;
53 <<< "main_parser_player ,␣event:", main_parser_player.

get_event () >>>;
54 }
55
56 /* FILE READING LOOP */
57
58 0 => int do_parse;
59 0 => int voice_index; // counter for the ass. array of voices
60
61 while(file_io.more()) {
62 file_io.readLine () @=> string line;
63
64 if (line.length () == 0) { // skip empty lines
65 continue;
66 }
67
68 if (do_parse) { // manage parsable line
69 if (main_parser_player.index_of(line , "}") != -1) { // end

of "bracket block"
70 0 => do_parse;
71 voice_index ++;
72 continue; // go immediately to the next line
73 }
74
75 //if (LOCAL_DEBUG) <<< "parsable line:", line >>>;
76
77 // found a line
78 // voices ["voice" + voice_index]. get_fifo ().push(line);

// obsolete
79
80 // add the tokens from this line

26

81 StringTokenizer tok; // TODO: split not only on whitespace
but also bar signs etc.?

82 tok.set(line);
83
84 while(tok.more()) {
85 tok.next() @=> string token;
86
87 /* FORMAT: at least 1 char of letters a..z (name)
88 * possibly 1 or more chars of ’ or , (octave)
89 * possibly duration , that is
90 * possibly integer
91 * possibly 1 dot (TODO: 2 dots)
92 * possibly ~
93 */
94
95 if (main_parser_player.is_parsable(token)) { // skip

sheet formatting things
96 voices["voice" + voice_index]. get_fifo ().push(token);
97 }
98 }
99 } else { // outside of "bracket blocks"

100 // look for { at end of line
101 if (line.length () > 0 && line.substring(line.length () - 1,

1) == "{") { // TODO: remove line.length () > 0 check
102 if (LOCAL_DEBUG) <<< "found␣{" >>>;
103
104 1 => do_parse;
105 }
106
107 /* PUT VOICE IN ASSOCIATIVE ARRAY AND SET META -DATA */
108 new voice @=> voices["voice" + voice_index];
109
110 // look for transpose command in that line and set the

field in the voice object
111 // TODO: proper transpose. for now , always use 2
112 if (main_parser_player.index_of(line , "\\ transpose") != -1)

{
113 if (LOCAL_DEBUG) <<< "found␣\\ transpose" >>>;
114 voices["voice" + voice_index]. set_transpose (2);
115 }
116 }
117 }
118
119 /* SPORK */
120
121 // put each of the voices in a separate thread ("spork" in

ChucK terminology)
122 for (0 => int i; i < voice_index; i++) {
123 <<< "playing/sporking␣voice␣#", i>>>;

27

124 spork ~ main_parser_player.play_voice(voices["voice" + i]);
125 }
126
127 // allow time to pass
128 finish => now;

C.2 main.ck

1 /*
2 * ChucKpond 0.1.0
3 *
4 * by Albert Wifstrand (albert@wifstrand.se) and Andreas

Lindström (andlinds@kth.se), 2012
5 *
6 * Usage:
7 * chuck -aw main:<tuning of choice >:<file name >:<WAVE file

name >
8 *
9 * <tuning of choice > (arg 0): 12 or 19
10 * <file name > (arg 1): sheet music file with Lilypond -like

syntax
11 * <WAVE file name > (arg 2): if this arg is used , a WAVE

file with the chosen name will be created
12 */
13
14 // TODO: rests
15 // note bindings
16 // code clean -up (comments)
17 // error handling for substring startpos > str.length (if

necessary)
18 // proper definition of args in all files
19 // refactoring (to Java -style), i.e. for
20 // (almost) every variable from the this_is_a_variable style

to the thisIsAVariable style
21 // classes: ThisIsAClass (capital letter in beginning of

class name), instances of classes: thisIsAnInstance
22 // render straight to hdd (instead of "chucking" with rec.ck)
23 // do away with (strictly "return or assignment" mannered)

setters and getters since everything is public anyway
24 // render to wave "directly", without passing through dac
25
26 0 => int DEBUG;
27
28 // add .ck files in the right order
29 Machine.add("string_fifo.ck");
30 Machine.add("voice.ck");
31 Machine.add("tuning.ck:" + DEBUG);
32 Machine.add("parse_and_play.ck:" + DEBUG);

28

33 Machine.add("chuckpond_main.ck:" + me.arg (0) + ":" + me.arg(1)
+ ":" + me.arg(2) + ":" + DEBUG);

C.3 parse_and_play.ck

1 // TODO: program crashes if the first note of an .ly-like file
doesn’t have duration value. fix

2 // TODO (possibly !): separation of parsing and playing
3
4 // arg 0 is debug
5 Std.atoi(me.arg(0)) => int LOCAL_DEBUG; // atoi: string to

int
6
7 public class parse_and_play {
8 Event event;
9 float freqs [];
10
11 fun void set_event(Event e) { e @=> event; }
12 fun void set_freqs(float f[]) { f @=> freqs; }
13
14 fun Event get_event () { return event; }
15 fun float [] get_freqs () { return freqs; }
16
17 // return pos. if found , -1 if not found
18 fun int index_of(string in, string search_str) {
19 for (0 => int i; i <= (in.length () - search_str.length ());

i++) {
20 int j;
21
22 for(0 => j; j < search_str.length (); j++) {
23 if(search_str.substring(j, 1) != in.substring(i + j, 1)

) {
24 break;
25 }
26 }
27
28 if(j == search_str.length ()) {
29 return i;
30 }
31 }
32
33 return -1;
34 }
35
36 // somewhat ad hoc; checks if the first char of note is a

letter in [a..z]
37 // if it is , the token SHOULD be a note
38 // TODO: fix.
39 fun int is_parsable(string note) {

29

40 note.substring(0, 1) => string c;
41 return c >= "a" && c <= "z";
42 }
43
44 fun void play_voice(voice in_voice) {
45 dur player_dur;
46
47 if (LOCAL_DEBUG) <<< "in_voice:", in_voice , ",␣transpose:",

in_voice.get_transpose () >>>;
48
49 in_voice.get_envelope () @=> ADSR envelope;
50 in_voice.get_fifo () @=> string_fifo voice_fifo;
51 in_voice.get_oscillator () @=> SawOsc oscillator;
52
53 if (LOCAL_DEBUG) {
54 <<< "envelope:", envelope , ",␣voice_fifo:", voice_fifo , "

,␣oscillator:", oscillator >>>;
55 <<< "q␣empty?␣", voice_fifo.is_empty () >>>;
56 }
57
58 while(! voice_fifo.is_empty ()) {
59 // TODO: wrappers for parse functions (with or without

var. i)
60 // > 0 means that there’s an index
61 // -1 means that the function needs to find it’s chars on

its own
62
63 int i; // parser index for note string
64 voice_fifo.pop() @=> string note;
65 parsed_tone current_tone;
66 current_tone.init(freqs);
67
68 if (LOCAL_DEBUG) <<< "play_voice ,␣before␣parsing.␣note␣="

, note >>>;
69
70 /* PARSE START. uses parse_note_name , parse_octave ,

parse_duration */
71
72 // I. note name (always present)
73 current_tone.parse_note_name(note) => i;
74
75 // II. octave MULTIPLIER (possible chars: ’ , nothing)
76 current_tone.parse_octave(note , i) => i;
77
78 // TODO: some kind of loop here for managing ties
79 // III. duration (always comes after octave)
80 current_tone.parse_duration(voice_fifo , player_dur , note ,

i);
81

30

82 // if the current duration differs from the previous
duration , change the actual duration var. that the
ChucK -specific code uses

83 if (player_dur != current_tone.duration) {
84 current_tone.duration => player_dur;
85 }
86
87 // calculate actual freq.
88 current_tone.set_freq(in_voice.transpose);
89
90 // TODO: check if there’s anything left to parse (??)
91
92 // note info print
93 <<< " ---\nvoice", in_voice >>>; // TODO: print voice

index
94 <<< "note␣string:", note >>>;
95 <<< "note␣duration:", player_dur , "samples" >>>;
96 <<< "note␣freq:", current_tone.freq , "Hz" >>>;
97
98 /* PARSE END */
99

100 /* PLAY */
101
102 current_tone.freq => oscillator.freq;
103
104 envelope.set (0::ms, 0::ms , .5, 2 * player_dur); // why .5

?
105 envelope.keyOn();
106 1:: samp => now;
107 envelope.keyOff ();
108 player_dur - 1:: samp => now;
109 }
110
111 event.broadcast (); // broadcast when the entire voice

has been parsed
112 }
113 }
114
115 class parsed_tone {
116 float freqs []; // from parse_and_play
117
118 100 => int tempo; // TODO: tempo shouldn ’t be here
119
120 string name; // fetched from note_names in tuning.ck
121 int octave;
122 float freq;
123 dur duration; // if we find ties , they are compounded into

this field (i.e. tokens c4~ c will end up in the same
parsed_tone object)

31

124
125 /* CONSTRUCTOR START */
126
127 dur durations [0]; // associative array of possible duration

values
128 // init. durations
129 240000:: ms / (1 * tempo) => durations["1"]; //

whole
130 240000:: ms / (2 * tempo) => durations["2"]; // half
131 240000:: ms / (4 * tempo) => durations["4"]; //

quarter
132 240000:: ms / (8 * tempo) => durations["8"]; //

eighth
133 240000:: ms / (16 * tempo) => durations["16"]; //

sixteenth
134 240000:: ms / (32 * tempo) => durations["32"]; // 32

nd
135
136 (durations["2"] + durations["4"]) => durations["2."]; //

dotted half
137 (durations["4"] + durations["8"]) => durations["4."]; //

dotted quarter
138 (durations["8"] + durations["16"]) => durations["8."];

// dotted eight
139 (durations["16"] + durations["32"]) => durations["16."];

// dotted sixteenth
140
141 /*
142 240000:: ms / (3 * tempo) => durations [" half_trip "];

// half triplet
143
144 240000:: ms / (5 * tempo) => durations [" quarter_quint "];

// quarter quintuplet
145 240000:: ms / (6 * tempo) => durations [" quarter_trip "];

// quarter triplet
146 240000:: ms / (7 * tempo) => durations [" quarter_sept "];

// quarter septuplet
147
148 240000:: ms / (10 * tempo) => durations [" eighth_quint "];

// eighth quintuplet
149 240000:: ms / (12 * tempo) => durations [" eigth_trip "];

// eighth triplet
150 240000:: ms / (16 * tempo) => durations [" sixteenth "];

// sixteenth
151 */
152
153 /* CONSTRUCTOR END */
154
155 fun void init(float f[]) {

32

156 f @=> freqs;
157 }
158
159 fun void set_freq(int transpose) {
160 transpose * octave * freqs[name] => freq;
161 }
162
163 fun int parse_note_name(string note) {
164 0 => int i;
165 string c;
166
167 if (LOCAL_DEBUG) {
168 <<< "parse_note_name ,␣note␣string:", note , "note␣string␣

length:", note.length () >>>;
169 }
170
171 // only allow (english) chars a - z, small letters
172 do {
173 // substring usage: the_string.substring(

start_pos_of_wanted_substring , length_from_start_pos)
174 note.substring(i, 1) @=> c; // pick a single char
175 i++;
176 } while (c >= "a" && c <= "z"); // parse single chars until

we arrive at something that isn’t in [a..z]
177
178 if (LOCAL_DEBUG) {
179 <<< "parse_note_name:", note.substring(0, i - 1) >>>;
180 }
181
182 note.substring(0, i - 1) @=> name;
183
184 return name.length ();
185 }
186
187 fun int parse_octave(string note , int parser_index) {
188 if (LOCAL_DEBUG) <<< "parse_octave.␣note␣string:", note

>>>;
189
190 4 => int ret_octave; // default octave multiplier
191 parser_index => int i;
192
193 string pre_c , c;
194 while (true) {
195 note.substring(i, 1) @=> c;
196
197 if (c == "’") { // increase
198 ret_octave << 1 => ret_octave;
199 } else if (c == ",") { // decrease
200 ret_octave >> 1 => ret_octave;

33

201 } else {
202 if (LOCAL_DEBUG) <<< "parse_octave.␣break" >>>;
203 break;
204 }
205
206 if (i > parser_index && c != pre_c) {
207 <<< "ly␣syntax␣error␣(octaves)" >>>;
208 me.exit();
209 }
210
211 i++;
212 c => pre_c;
213 }
214
215 ret_octave => octave;
216
217 if (LOCAL_DEBUG) {
218 <<< "parse_octave.␣octave␣=", octave , ",␣name␣=", name

>>>;
219 }
220
221 return parser_index + Math.abs(Math.log2(octave) $ int - 2)

;
222 }
223
224 // call without any start pos.
225 fun void parse_duration(string_fifo voice_fifo , dur

player_dur , string note) {
226 parse_duration(voice_fifo , player_dur , note , -1);
227 }
228
229 // TODO: entire function is logically correct but messed up;

fix
230 // TODO: allow for dotted notes without putting an integer

value in front of the dot
231 // TODO: double dotted. we can only parse single dots atm
232 fun void parse_duration(string_fifo voice_fifo , dur

player_dur , string note , int parser_index) {
233 if (parser_index < 0) { // parser_index is -1, find the

first integer
234 if (LOCAL_DEBUG) <<< "␣␣␣␣ parser_index␣<␣0" >>>;
235
236 string c_init;
237
238 do {
239 parser_index ++;
240 note.substring(parser_index , 1) @=> c_init; // pick a

single char

34

241 } while (Std.atoi(c_init) == 0 && parser_index < note.
length ());

242 }
243
244 parser_index => int i;
245 if (LOCAL_DEBUG) <<< "␣␣␣␣ parse_duration.␣i␣=", i >>>;
246
247 string c;
248
249 if (LOCAL_DEBUG) <<< "parse_duration ,␣note␣string:", note ,

"note␣string␣length:", note.length () >>>;
250
251 // TODO: inappropriate to evaluate this in here
252 if (i == note.length ()) { // previously: note.length () == 0
253 player_dur => duration;
254 return;
255 } else if (i > note.length ()) {
256 cherr <= "parse_duration ,␣i␣out␣of␣bounds" <= IO.newline

();
257 me.exit();
258 }
259
260 do {
261 note.substring(i, 1) @=> c; // pick a single char
262 i++;
263 } while (c >= "0" && c <= "9");
264
265 // is there a dot at pos. i - 1 ?
266 if (note.substring(i - 1, 1) != ".") {
267 i--;
268 }
269
270 // tie
271 /*
272 // is there a tilde at position i?
273 if (note.substring(i,1) == "~"){
274 durations[note.substring(0, i)] + durations[tok.next]
275 }
276 */
277
278 if (LOCAL_DEBUG) <<< "␣␣␣␣at␣end␣of␣parse_duration ,␣

parser_index:", parser_index , ",␣i:", i >>>;
279
280 durations[note.substring(parser_index , i)] => duration;
281 }
282 }

C.4 string_fifo.ck

35

1 // TODO: try to make a generic queue (Object q) (or perhaps an
ArrayList kind of thing?) so that it becomes a fully
abstract data structure (then you can insert whatever you
want , whereas now it (obviously) only works for strings)

2
3 // TODO: re -arrange this class so that it uses an associative

array for q (currently it’s fixed size , with conventional
integer -index lookup)

4
5 // TODO: warning/error when trying too insert elements beyond

the capacity of q
6
7 // FIFO queue for strings
8 public class string_fifo {
9 int num_elements , first , last;
10 string q[500]; // arbitrary capacity. # of tokens in a voice
11
12 // pre -constructor
13 empty();
14
15 fun int is_empty () {
16 return num_elements == 0;
17 }
18
19 fun void empty() {
20 0 => num_elements;
21 -1 => first;
22 -1 => last;
23 }
24
25 fun void push(string element) {
26 if (is_empty ()) {
27 element @=> q[0];
28 0 => first;
29 0 => last;
30 } else {
31 if (last == (q.cap() - 1)) {
32 0 => last;
33 } else {
34 last ++;
35 }
36
37 element @=> q[last];
38 }
39
40 num_elements ++;
41 }
42
43 fun string pop() {

36

44 if (is_empty ()) {
45 cherr <= "list␣is␣empty";
46 me.exit();
47 }
48
49 q[first] @=> string element;
50 if (first == (q.cap() - 1)) {
51 0 => first;
52 } else {
53 first ++;
54 }
55
56 num_elements --;
57
58 return element;
59 }
60
61 fun string peek() {
62 return q[first];
63 }
64
65 fun int size() {
66 return num_elements;
67 }
68 }

C.5 tuning.ck

1 // TODO: the whole k_select thing is obsolete , fix
2
3 // arg 0 is debug
4 Std.atoi(me.arg(0)) => int LOCAL_DEBUG; // atoi: string to

int
5
6 public class tuning {
7 // tuning selector
8 int k_select;
9

10 // global reference freq.
11 float ref_freq;
12
13 // frequency (associative) array mapped to names in

note_names
14 float freqs [];
15
16 /*
17 Lilypond syntax (can also be defined for actual .ly files)

array. is: sharp , es: flat

37

18 for 12-tone: c|bis cis|des d dis|ees e|fes eis|f fis|ges g
gis|aes a ais|bes b|ces

19 for 19-tone: c cis des d dis ees e eis|fes f fis ges g gis
aes a ais bes b bis|ces

20 (pipe sign indicates that the tones have a common freq.)
21 */
22
23 // definitions for TET
24 0 => int TET_12;
25 1 => int TET_19;
26
27 [
28 [// pos. 0: 12TET
29 ["c", "bis"],
30 ["cis", "des"],
31 ["d"],
32 ["dis", "ees"],
33 ["e", "fes"],
34 ["eis", "f"],
35 ["fis", "ges"],
36 ["g"],
37 ["gis", "aes"],
38 ["a"],
39 ["ais", "bes"],
40 ["b", "ces"]
41],
42 [// pos. 1: 19TET
43 ["c"],
44 ["cis"],
45 ["des"],
46 ["d"],
47 ["dis"],
48 ["ees"],
49 ["e"],
50 ["eis", "fes"],
51 ["f"],
52 ["fis"],
53 ["ges"],
54 ["g"],
55 ["gis"],
56 ["aes"],
57 ["a"],
58 ["ais"],
59 ["bes"],
60 ["b"],
61 ["bis", "ces"]
62]
63] @=> string note_names [][][];
64

38

65 fun void set_freqs(float f[]) { f @=> freqs; }
66
67 fun float [] get_freqs () { return freqs; }
68
69 fun void init(string arg) {
70 if (arg == "12") {
71 calculate_freq (27.5, 3, 12) => ref_freq; // 3 steps from

A to C for 12TET
72 TET_12 => k_select;
73 } else {
74 calculate_freq (27.5, 5, 19) => ref_freq; // 5 steps from

A to C for 19TET
75 TET_19 => k_select;
76 }
77
78 calculate_freqs(k_select) @=> freqs;
79 }
80
81 fun float calculate_freq(float local_ref_freq , int i, int k)

{
82 i / k $ float => float f;
83 return local_ref_freq * Math.pow(2, f);
84 }
85
86 // k_select: selector for # of tones in equal temp. scale
87 fun float [] calculate_freqs(int k_select) {
88 int k;
89
90 // set k
91 if (k_select == TET_12) {
92 12 => k;
93 } else {
94 19 => k;
95 }
96
97 float ret_freqs[k]; // not necessary to declare capacity

k ??
98
99 for(0 => int i; i < k; i++) {

100 calculate_freq(ref_freq , i, k) => float freq;
101
102 // store freq in freqs
103 for (0 => int j; j < note_names[k_select][i].size(); j++)

{
104 freq => ret_freqs[note_names[k_select][i][j]];
105 }
106 }
107
108 return ret_freqs;

39

109 }
110 }

C.6 voice.ck

1 // TODO: refactor queue names
2 // voice container class with ChucK -specific variables ,

Lilypond -like tokens (in the FIFO queue) and meta -data
3 public class voice {
4 // ChucK
5 SawOsc oscillator; // TODO: oscillator change from command

line arg
6 ADSR envelope;
7
8 // Lilypond -like tokens
9 string_fifo q;
10
11 // meta -data
12 int transpose;
13
14 // pre -constructor. default values
15 1 => transpose;
16 .5 => oscillator.gain;
17
18 // chuck things
19 oscillator => envelope => dac;
20
21 fun void set_fifo(string_fifo sf) { sf @=> q; }
22 fun void set_transpose(int t) { t => transpose; }
23
24 fun ADSR get_envelope () { return envelope; }
25 fun int get_transpose () { return transpose; }
26 fun string_fifo get_fifo () { return q; }
27 fun SawOsc get_oscillator () { return oscillator; }
28 }

40

www.kth.se

	Introduction
	Statement of collaboration
	Theoretical background
	Intervals and just tuning
	Equally tempered scales
	Why 19-TET?
	Previous research

	Method
	ChucKpond: A 12 and 19-TET software synthesizer
	ChucK as our choice of audio programming language
	Lilypond and MIDI
	Implementation
	A Lilypond-like notation for scores
	Distinguishing features of ChucK and how they are utilized
	ChucKpond prerequisites and usage

	Listener tests

	Results
	Discussion
	Conclusion
	References
	Printed material
	WWW

	Glossary
	Online material
	Our extended version of ChucK
	ChucKpond 0.1.0, archived
	A four-part harmony arrangement of ``Ode to Joy'' generated by ChucKpond

	Source code for ChucKpond 0.1.0
	chuckpond_main.ck
	main.ck
	parse_and_play.ck
	string_fifo.ck
	tuning.ck
	voice.ck

