General Purpose Computing on the GPU

Characteristics of suitable problems

LJUNGSTROM

LJUNGSTROM @ﬁb
oS T Ay
EFKTHS

VETENSKAP
39 OCH KONST %

Mo

KTH Computer Science
and Communication

Bachelor of Science Thesis
Stockholm, Sweden 2012

General Purpose Computing on the GPU

Characteristics of suitable problems

LJUNGSTROM
LJUNGSTROM

DD143X, Bachelor’s Thesis in Computer Science (15 ECTS credits)
Degree Progr. in Computer Science and Engineering 300 credits
Royal Institute of Technology year 2012

Supervisor at CSC was Marten Bjérkman

Examiner was Marten Bjérkman

URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/
ljungstrom_simon_OCH_ljungstrom_viktor_K12049.pdf

Kungliga tekniska hdgskolan
Skolan fér datavetenskap och kommunikation

KTH CSC
100 44 Stockholm

URL: www.kth.se/csc

Abstract

In a society that grows more and more dependent on fast digital
data processing, many developers have turned their attention toward
performing general-purpose computations on the graphics processing
unit. This thesis explores what types of problems might be, or might
not be, suitable for implementation on the GPU by taking a look at
both classical and modern GPU concepts. Two computational prob-
lems — matrix multiplication and maximum value of a matrix — are
implemented for both multi-core CPU and GPU and a comparison is
presented. We reach the conclusion that the GPU can be an extremely
potent computation unit as long as the problem is highly parallelizable,
has no or very few branches and is computationally intensive.

Referat

Generella berakningar pa GPU:n

I ett samhélle som blir allt mer beroende av snabb digital databehan-
dling har utvecklare och forskare borjat rikta sitt intresse at att utfora
generella berdkningar pa datorns grafikprocessor, GPU:n. I detta exa-
mensarbete undersoks vilken typ av berdkningar som ar lampade, eller
inte lampade, att behandlas av GPU:n genom att ta en titt pa bade
klassiska och moderna GPU koncept. Utdver detta tar vi ocksd en dju-
pare titt pa hur tva problem, matrismultiplikation och att hitta maxima
i en matris, presterar pa flerkdrnig CPU och GPU och jamfor resultaten.
Vi har kommit till slutsatsen att GPU:n kan vara en mycket kraftfull
berdkningsenhet, sa lange problemet i fraga dr hogeligen paralleliserbart,
saknar eller har véldigt fa villkorliga forgreningar samt ar berdkningsin-
tensivt.

Statement of Collaboration

This text and associated code is a collaboration between the two authors Simon
Ljungstrém and Viktor Ljungstrom. Work was divided as follows. Any sections
of text not explicitly mentioned below are considered to be written with equal, or
close to equal, effort from both authors.

Author Sections / Code

1, 2.3, 2.5, 5.2, Matrix Maximum for
CPU, Matrix Multiplication for GPU
2.1, 2.2, 4.1, 4.2, 5.1, Matrix Maximum
for GPU, Matrix Multiplication for CPU

Simon Ljungstréom

Viktor Ljungstrom

Definitions

Abbreviation | Term Definition
AMD Advanced Micro One of the worlds leading CPU
Devices and GPU manufacturers
An interface used for application
API Application programming. Often consists of
Programming Interface | header-files in C, abstracting
complex assmbler routines
Central Processing The processing unit that is
CPU . :
Unit normally used for computations
An API for C, used to program
CUDA ¢ for CUDA CUDA devices
Compute Unified An architecture implemented in
Device Architecture recent NVIDIA devices
When a problem can be
. parallelized by running a
DLP Data Level Parallelism function on different data in
parallel
FLOPS Floatmg Point A common way to measure
Operations per Second | throughput
General Purpose Performing non-graphics
GPGPU Computing on the & grab
computations on the GPU
GPU
Graphics Processing A pr‘oc.e ssing unit that is
GPU . specialized on
Unit . .
graphics-computations
The time you have to wait for
Latency Latency something to finish
NVIDIA NVIDIA One of the worlds leading GPU
manufacturers

Abbreviation | Term Definition
An open programming
OpenClL Open Computing language/API with a focus on
P Language portability between different
systems and/or devices
. . An API for performing graphics
L hics L
OpenG Open Graphics Library computations on the GPU
A processing model where the
same instruction is applied to
SIMD Single Instruction different data. Has historically
Multiple Data been used mostly for image
processing and graphics
computations
SPMD Single Program Same as SIMD but with support
Multiple Data for conditional branching
When a problem can be
TLP Task Level Parallelism parallelized by dividing it into
several sub-problems that can
be performed independently
The total number of
Throughput Throughput computations performed during

a time interval. Usually
measured in FLOPS

Contents

Statement of Collaboration

Definitions
1 Introduction

2 Background

2.1 The Classic Graphics Pipeline
2.2 Shader Processors
2.3 Unified Shaders
2.4 Graphics Memory L
2.5 A Brief OpenCL Overview

2.5.1 Kernels

2.5.2 Memory Model oL

2.5.3 Work
3 Methodology

4 Implementation

items, work groups and work sizes

4.1 Matrix Multiplication oo
4.2 Matrix Maximum

5 Results and Discussion
5.1 Matrix Multiplication Lo
5.2 Matrix Maximumo

6 Conclusion
Bibliography
Appendices

A Code

A.1 Matrix Multiplication

A.2 Matrix Max

EN BEN R eI NG S SOV -t

©

11
11
12

15
15
17

21

23

23

B Execution Output

35

Chapter 1

Introduction

As society grows ever more dependent on digital systems for everything from bank-
ing to elections, expectations on these systems are constantly rising. The systems
are expected to be able to process an increasing amount of data without any in-
crease in latency. This means that there is a constantly increasing demand for faster
processing for these systems, and as new more data intensive systems emerge this
demand grows at an even higher pace.

In the early days of digital computing this demand was met by CPU manu-
facturers optimizing for low latency by dividing the pipeline into a larger amount
of smaller steps as well as increasing the CPU clock speed and number of cache
levels. But this development could not continue indefinitely due to the difficulty
of dividing the pipeline further, and the correlation between high clock speeds and
high temperatures.

Today, we instead see an increase in parallelism with multi-core processors be-
coming the norm. More and more software is written to utilize these multiple cores,
often leading to a great boost in performance. As it is, this development can not
continue unhindered either. Due to the large amount of logic and hardware used to
reduce latency, processor cores become rather large and it is not physically possible
to squeeze more cores into the same area without removing some of the latency
reducing functionality or reducing transistor size.

There is, fortunately, already a type of processor that is inherently parallel
and massively multi-core to begin with — the graphics processing unit. The GPU
is, however, a specialized piece of hardware focused on graphics calculations and
making specialized hardware do general computations is not trivial. Thus, utilizing
this innate parallelism has been a subject of research for some time now and has also
more recently awakened an interest throughout the general development community,
mainly due to the emergence of higher level APIs targeting this audience such as
CUDA and OpenCL [1].

Many developers and consumers are interested in the topic of General-Purpose
computing on the GPU (GPGPU or GPU computing), but do not fully understand
what types of software may be suitable for GPU acceleration. One of the reasons for

CHAPTER 1. INTRODUCTION

this is that in order to write efficient programs for the GPU, one needs to possess
some basic knowledge of its architecture. This text aims to shed some light on
this underlying architecture as well as identify some traits that make a problem or
algorithm more or less suitable for GPU computing.

More explicitly, we are looking to answer the following two questions.

e« What are the main characteristics of problems that perform well on
the GPU?

e Is the GPU a viable alternative to the CPU?

To facilitate this, we shall also take a closer look at and implement two com-
putational problems: matrix multiplication and finding the maximum element of
a matrix. The first as an example of a problem that should see a significant per-
formance boost on a GPU, and the second as a problem that should not. These
implementations are tested and their performance evaluated in order to confirm
whether or not they perform as anticipated.

We start off by explaining why the GPU is so parallel by taking a look at the
graphics pipeline and its evolution including a brief overview of the Unified Shader
Model, GPU latency hiding and the GPU memory model as well as a short intro-
duction to OpenCL. This is followed by an explanation of the actual implementation
details for our chosen problems. Finally, we present our results, discuss these and
present our conclusions.

Chapter 2

Background

Before the graphics processing unit was invented, developers of graphical user inter-
faces and games struggled to make their creations run smoothly and without delay
on the CPU. There was clearly a need to offload the CPU by performing these
demanding computations elsewhere. This was the birth of the GPU. In contrast
to the very general CPU the GPU only had to do one thing, compute what colors
the pixels on the screen should have. This meant that the GPU could be very
specialized for this purpose. The key ingredient in this specialization is the fact
that the color of each pixel can be computed almost entirely independently from
the other pixels. This resulted in a GPU design that was much more parallel than
the CPU, but one that ran at a slower clock speed. The focus of this design was
to maximize throughput for multiple tasks, rather than minimizing latency for a
single task [2, 3].

In the following sections we present some basic background information that
helps with the understanding of why the graphics processing unit is so parallel and
what problems it may be good for. We take a look at the graphics pipeline and
its evolution including the Unified Shader concept and graphics memory along with
a short overview of some OpenCL concepts that will be used both in the problem
implementations and when discussing the results.

2.1 The Classic Graphics Pipeline

The classic graphics pipeline is built upon one simple fact: almost all operations
used for computing graphics have both task level parallelism (TLP) and data level
parallelism (DLP) [4]. This means that (1) there are several independent stages in
the computations of the image output, and (2) the data in one stage can be processed
in parallel. Graphics manufacturers exploit this parallelism in many ways, which
we shall now take a closer look at.

The pipeline is split into several stages, all of which can be computed in parallel.
The first step is vertex operations, where a programmer-provided input stream of ge-
ometric primitives (points, lines and triangles) represented by vertices is normalized

3

CHAPTER 2. BACKGROUND

into screen space and shaded, typically by calculating their interaction with the light
sources in the virtual environment. A typical scene can have hundreds of thousands
of vertices, all of which can be computed independently in parallel [1, 2, 3, 5].

The next stage is primitive assembly, where the vertices are assembled into
triangles, the fundamental hardware-supported building block in the GPU. The
following step, rasterization, determines which screen-space triangles are covered
by which triangles. Every triangle generates a fragment at every pixel location that
it covers. Many triangles may cover the same pixel location and it may therefore
be affected by multiple fragments in the next step, fragment operations.

By using color information from the vertices and possibly fetching textures from
global memory, the fragments are shaded to determine their color. This can be done
in parallel and is generally considered to be the most computationally demanding
stage of the GPU pipeline. When all the fragment colors have been computed, we
move on to the last step, composition.

In this final step of the pipeline, the fragments are merged together in order to
calculate the final color of the pixels in the output image that will be sent to the
screen.

Many of the steps in the pipeline above are performed on shader processors.
These are special processors with a very limited instruction set, specific to the task
they perform. Two examples of shader processors are fragment shaders and vertex
shaders.

Historically, the vertex and fragment shaders have not been programmable, only
configurable. The programmer was only in control of the positions and color of the
lights, not their interaction with the objects in the scene [1]. In the following
sections we will have a closer look at the actual hardware that has evolved from the
challenges presented by the very parallel nature of graphics calculations.

2.2 Shader Processors

The graphics processor has evolved over time from a completely fixed-function
pipeline to a relatively programmable, fairly flexible ditto. Programmers needed
more flexibility in order to implement more advanced graphical effects. This lead to
a dire need for more programmable shader units, which was also a first step toward
making GPGPU possible at all.

The shader units, or shader processors, are implemented using the Single In-
struction Multiple Data (SIMD) processing model. This means that the shader
units perform the same instructions on multiple data at the same time by sharing
control structures between multiple shader processors. The number of shader pro-
cessors sharing these control structures is called the SIMD-width and is usually a
power of two. A larger SIMD-width means that a larger part of the chip-area can
be used for actual computations rather than instruction decoding [1, 3, 6].

There is, however, a large disadvantage with the SIMD-model when doing gen-
eral computations. Since the data differs between the cores, different paths may be

2.3. UNIFIED SHADERS

followed when a conditional branch is reached. This kind of behaviour is not defined
in the standard SIMD-model. To handle this behaviour, a new, similar model is
required. This is called the Single Program Multiple Data (SPMD) model. It is the
same as SIMD, but with the addition of branch-support. This is however a modified
truth. When a branch is detected in a SPMD-unit, all threads that diverge are put
on hold to be computed later. This means that if half of the threads go one way
and the other half another way, the execution will take twice as long as if all threads
had taken the same path. You can imagine how much impact this would have on a
program with multiple conditional branches. Because of this, it is not recommended
to use conditional branches unless it is absolutely necessary [1, 3, 6].

In the next section we shall have a look at how the different kinds of shaders
have been merged together into a more general and programmable shader unit.

2.3 Unified Shaders

One problem with a pipeline using fixed vertex and fragment processors is the hugely
varying level of demand on these resources. Certain calculations may require vertex
processing almost exclusively, while only utilizing a small amount of the fragment
processors and vice versa [1, 2, 3, 5]. A solution was needed to be able to make use
of all the provided hardware, all the time. This lead to the conception of the Unified
Shader Model, a term which is often used to describe two separate, but nonetheless
intertwined, concepts [1].

The actual Unified Shader Model is the concept of using a unified instruction
set to communicate with all different shader processor types. This greatly simplifies
the task of writing shader programs. It is also a necessary step towards the related
Unified Shader Architecture concept [1].

A “Unified Shader Architecture” is a GPU architecture where the shader proces-
sors are physically unified, that is, every shader unit is a more general computation
device, able to do all types of shader work. If a computation only needs vertex
shading, all the processors can do vertex computations, leading to much better load
balancing. This is also a move away from the task-parallel hardware-fixed pipeline
from earlier, allowing for a single step in the pipeline to operate almost exclusively
instead of all steps executing in parallel all the time.

To facilitate an easier SIMD implementation, the unified shaders are usually
grouped together into what NVIDIA calls "streaming multiprocessors'. These con-
tain several shader processors, sharing resources such as instruction fetching and
caches. One or more of these multiprocessors can then be grouped together to form
a larger SIMD array where every processor executes the same instruction at the
same time. The size of these arrays is equal to the SIMD-width of the GPU [1].

CHAPTER 2. BACKGROUND

2.4 Graphics Memory

As any experienced programmer knows, a lot of the run time of a program is spent
fetching data from memory. While data is being fetched, the CPU is blocked. This
is of course not very productive and slows execution by an unacceptable amount.
CPU-manufacturers have solved this delay by implementing several layers of cache-
memory. The number and size of these caches is constantly increasing as new CPU
models are introduced. The problem with this approach is that you will experience
the full latency time the first time a memory block is accessed. The GPU has very
little cache memory, often around 16k per stream multiprocessor, and thus handles
the problem very differently.

When a thread starts fetching data from memory, the processing unit that han-
dles that thread immediately switches to another thread. As long as the switch is
done quickly, this behaviour allows for the processing unit to hide almost all latency.
For this reason, modern GPUs support a huge amount of hardware threads. When
the data fetch operation is finished for the waiting thread, it is queued for processing
again. As long as there are more threads to switch to, most data fetching latency
can be hidden [1, 2, 3, 4].

Lately, we have seen a large increase in the amount of on-board memory in
high-end graphics cards. However, access time to this memory is often undesirably
slow, even though GPUs generally do provide higher bandwidth to memory than
CPUs do. As mentioned earlier, GPUs do have a bit of cache memory, even though
they employ latency hiding. The cache memory is however different from the cache
memory used by the CPU.

2.5 A Brief OpenCL Overview

OpenCL is an API for homogenous systems (systems with more than one type of
computation device). In this thesis we will be using this API to implement the
GPU versions of the chosen problems. More details on why this choice of API was
made can be found in chapter 3.

At first glance, OpenCL programming may seem very daunting. As can be seen
in Appendix A (specifically, the runOnGPU() methods), there is a fair amount of
setup before you can actually use the GPU to perform calculations. But once you
have overcome this hurdle, doing it again is not difficult since the setup is close to
identical each time. At least when tackling the relatively simple problems we deal
with in this text. We will not consider the setup further as it is outside the scope
of this thesis.

In the following sections we will take a look at a few basic OpenCL concepts;
kernels, the OpenCL memory model as well as work groups, work items and work
sizes.

2.5. A BRIEF OPENCL OVERVIEW

2.5.1 Kernels

In OpenCL (as well as in CUDA) the code which is run on the so called "OpenCL
device" — in the case of this text, the GPU — is known as a kernel. Kernels are
always declared using the keyword __ kernel and can be compiled either at runtime
or not. To ensure correct compilation, the slightly performance-reducing runtime
compilation should be used if the device the kernel will run on is not known before-
hand [7, 8]. Note that code not run on the device, that is, the code that controls
the device, is known as host code.

2.5.2 Memory Model

In the OpenCL memory model — which refers to the memory used by the device
used to run kernels — there are four types of memory: global, constant, local and
private [7, 8].

Global memory is the main memory used by the device; in the case of the GPU
this refers to the on-board graphics memory [8].

Constant memory is the same as global memory, except it may be used more effi-
ciently than global memory if the device has special hardware for handling constant
memory caching. Most modern GPUs have such hardware.

Local memory is the shared memory on each compute unit [8]. On the GPU this
corresponds to the shared memory within each stream multiprocessor, as discussed
in sections 2.3 and 2.4.

Private memory is memory accesible only within the current unit of work [8].
For the GPU, this means the registers available to each stream processor.

2.5.3 Work items, work groups and work sizes

A work item is a unit of work that is to be executed on a single core.

The work items are then further grouped into work groups. All the work items
in a work group can access memory shared within the work group, corresponding
to the local memory discussed in the previous section.

How a work group is processed is not specified in OpenCL and thus depends
on the device and its OpenCL drivers. On the GPU, however, the work group is
usually represented as a group of threads (work items) executed on the same stream
multiprocessor, using threads that cannot be processed straight away to hide latency
as described in section 2.4.

The number of work items in a work group is called the local work size or simply
work size. The maximum work size depends on the device to be used, and as we
will se later on in the text, using a larger than maximum work size may lead to a
system crash.

Chapter 3

Methodology

As discussed earlier, we implement and evaluate two problems both on the GPU
using a GPGPU API and on the CPU. Below we consider some options for the
implementation and performance evaluation of the problems.

There are not many options to choose from when deciding which GPGPU API
to use. The two most well known and widely supported alternatives are CUDA and
OpenCL. The C for CUDA API from NVIDIA is most likely more mature since
it has been around for quite some time, but the fact that it is a closed standard
only supported on NVIDIA hardware makes it a less attractive choice than the fully
open OpenCL [7, 9]. As for programming languages, there are several alternatives
available. There are wrappers for the OpenCL API for more or less all widely used
programming languages [10, 11]. In the end C was chosen, mainly for two reasons.
First, the available implementations of OpenCL which are used for all the wrappers
are written in C or assembler, and second, for the performance gained by writing
code that is so close to the hardware.

Due to the above decision, the alternatives for the CPU implementations are
quite limited. Choosing a different language than C would make the comparison of
the CPU and GPU results much more difficult as most other languages are not as
close to the hardware layer. Thus, C was used to write the CPU implementations
of the problems as well. Since most modern CPUs are in fact multi-core the CPU
implementations have been made as parallel as possible in order to be able to make
fair comparisons between CPU and GPU performance. There are two appealing
choices of threading libraries to use for this parallelization: pthreads and OpenMP.
Using the low level pthreads library gives a higher level of control over the CPU,
compared to OpenMPs higher abstraction level. As loss of control could possibly
affect the end result in a negative fashion, pthreads was used.

CHAPTER 3. METHODOLOGY

The performance evaluation was performed as follows:
Hardware

A HP Pavilion dm4-2000eo laptop with:

« 6 GB RAM
o Intel Core i5 2410M @ 2.3 GHz (2 cores + hyperthreading)

o AMD Radeon HD 6470M Graphics (1 GB, 160 stream processors)

Note that the amount of stream processors is low compared to modern, high-end
GPUs where the processor count can reach 2048 and above.

Method

1. Each problem was tested for both CPU and GPU using several different matrix
sizes.

2. Each CPU test was run with 4 worker threads.

3. For the GPU, each matrix size was tested several times with different work
sizes.

4. The maximum matrix and work sizes used in the tests were determined by trial
and error, using "when the computer crashes due to the graphics card" as a
cutoff. This cutoff was lower than expected due to a bug in the AMD OpenCL
implementation leading to 75% of the graphics memory being inaccessible.

5. Each test was run ten times, taking the average runtime as the end result.

6. Any runtimes that were equal to or longer than twice the length of the median
runtime were discarded and not used in the calculation of the average.

10

=

O © 00D Uk W =

Chapter 4

Implementation

In this chapter we take a closer look at the two problems we have chosen to imple-
ment and test, matrix multiplication and finding the maximum value in a matrix.
We explain in-depth which parts of the problem solution that make the problems
more or less suited for a GPGPU implementation as well as have a look at some
sample code.

4.1 Matrix Multiplication

When we chose an algorithm that should perform well on the GPU we were looking
for a compution intensive and highly parallelizable algorithm, without conditional
branching. Naive matrix multiplication seemed to do the trick. At a time complexity
of O(n?), it is definitely not a quick algorithm. There is no doubt that it is highly
parallelizable; every element in the result matrix can be calculated independently
of the others. To top it off, there is no branching. The sequential version of this
algorithm is a simple triple-loop, which you can see below.

Pseudo code: sequential matrix multiplication
void matrix_mult(float x a, float x b, float % c, int n){
int i, j, k;
for(i = 0; i < n; i++)
for(j = 0; j < ni j+4)
for(k = 0; k < n; k++){
c[i1[i] += alillkl*b[k][j]:
}
}
}

The parallel version of this algorithm is quite simple, each thread asks for a row,
and then computes all elements of that row. When this is finished, either compute
a new row or terminate, depending on whether there are any rows left. See pseudo
code below.

11

O © 00Uk W

—

© 00Uk W

CHAPTER 4. IMPLEMENTATION

Pseudo code: parallel matrix multiplication
void matrix_mul(float * a, float x b, float x c, int n){
int i, j, k;
while (i=get_row ()){
for(j = 0; j < n; j++){
for(k = 0; k < n; k++){
, L0T = Dbk,
}
}
}

The GPU version of the algorithm is actually the simplest of them all, since the
OpenCL library hands out work to the cores, all we have to do is tell it how one
element of the final matrix is calculated. See code below. The full code, including
host code and comments, is available in appendix A.

OpenCL code: matrix multiplication
__kernel void matMul(__global floatx* a,
__global float* b,
__global floatx c,
int width) {
int row = get_global_id(1);
int col = get_global_id (0);
float sum = 0;
for (int k = 0; k < width; k++) {
sum += a[rowxwidth+k] * b[kxwidth+col];
c[rowxwidth+col] = sum;
}

Now we need to clarify a few things. The code above is not optimized, in the
sense that we have not made any variables local in the OpenCL version and have
not spent time trying to polish the CPU version. The code is compiled with the -O2
flag using the g++ compiler, but that is all. Our intention is to make the different
implementations as similar as possible. We believe that the results we have recorded
speak a clear message even without optimization.

4.2 Matrix Maximum

The requirements for an algorithm that most likely would not perform well on the
GPU are pretty much the opposite of the characteristics of matrix multiplication.
We require an algorithm that performs few computations per data unit and has
frequent conditional branching. Finding the maximum of a matrix fulfills these
requirements. It is also easily parallelizable, making the comparison a bit more fair.
The sequential algorithm is extremely simple, just look at all the elements in some
order and save the current maximum. See below.

12

—
O © 00Utk W

= =
N =

© 00O U W

U W N =

4.2. MATRIX MAXIMUM

Pseudo code: sequential matrix maximum
float matrix_max(float % matrix, int n){
int i,j;
float max;
for(i = 0; i < n; i++)
for(j = 0; j < n; j++){
if (matrix[i][j] > max){
max = matrix[i][j];
}
}
}
return max;
}

This algorithm can be parallelized in many ways. We chose to calculate the
maximum of each row, and then the maximum of that. In the CPU implementa-
tion, a thread keeps track of the largest value that it has encountered, and keeps
calculating one row at a time until no rows remain. Each thread then compares
their local maximum to a global maximum and changes it if necessary. See below.

Pseudo code: parallel matrix maximum

global float max = FLOAT.MIN;
global float * matrix;
thread Worker(){
int i,j;
float local_max;
while (i=get_row ()){
for(j = 0; j < n; j++){
if (matrix[i][j] > local_max){
local_max = matrix[i][]]
}
}

lock (max);
if (local_max > max){

max = local_max;

unlock (max);

As with the matrix multiplication algorithm, we have tried to keep the GPU-
and CPU-algorithms as similar as possible. However, when we are to merge together
the maximums of the rows, we have to make a small adjustment in order to not
cripple the GPU code. We perform the final maximum of maximums computation
on the CPU, in order to avoid having to send data back and forth between the host
and the device. See below.

OpenCL code: matrix maximum

__kernel void matrixMax(__global const float* matrix,
__global floatx out,
int width){
int row = get_global_id (0);
if (row < width){

13

el el el ol
N U WN OO D

CHAPTER 4.

IMPLEMENTATION

float max = matrix [rowxwidth];
float current;

for(int i = 0; i < width; i+4+){
current = matrix [rowswidth + i];
if(current > max){
max = current;
}

out[row] = max;

14

Chapter 5

Results and Discussion

In this section we present our findings and discuss them. The results from the GPU
are those that were achieved with the optimal work size for the particular problem.
The complete output of our tests can be seen in appendix B.

5.1 Matrix Multiplication

In this section we present and discuss the results from our matrix multiplication
executions. We start off by comparing the execution times for different work sizes
on our largest matrix to determine the optimal work size. As is depicted in fig. 5.1,
the execution time decreases as we increase the work size. Since 16x16 — 256 work
items — was the largest work size that did not induce a system crash, it is our
optimum. All execution times mentioned from now on in this section will be from
executions using work size 16x16.

A comparison of the runtime on the CPU and GPU is depicted in table 5.1 and
fig. 5.2. Note that the scale of the horizontal axis is not uniform. As can be seen in
the table, the GPU is only 2.44 times faster than the CPU on a 128x128 matrix, but
as we increase the size of the matrix the achieved speed-up also increases. When
we reach a matrix size of 1024x1024 the speed-up factor suddenly increases by 20.
It is likely due to all the GPU’s processors now being kept busy. At larger sizes
the difference in performance slowly levels off to around 30-35. In section 4.1 we
hypothesized that matrix multiplication would be very efficient on the GPU. It
seems that we were correct. However, if a different matrix multiplication algorithm
were to be chosen, there is room for an even larger performance gain from using
the GPU. For example, there are algorithms with lower time complexity where the
matrix is split up into squares that are calculated independently of each other and
later multiplied together. An algorithm like that can utilize local memory in the
GPU, something that our naive algorithm does not. This would likely lead to an
even larger speed-up on the GPU compared to the same algorithm run on the CPU.

In the next section, we will have a look at how our implementation of finding
the maximum of a matrix performed.

15

CHAPTER 5. RESULTS AND DISCUSSION

Execution time (seconds)

90

80

70

@
=]

@
=}

8

w
=]

20

10

3072x3072

T
8x8

Work size

1
16x16

Figure 5.1. Matrix multiplication: Execution time in seconds for different work
sizes on 3072x3072 matrices. Lower is better.

Matrix size

Execution time Execution time

GPU speed-up

GPU CPU
128x128 0.0036s 0.0088s 2.44
256x256 0.0085s 0.0637s 7.49
512x512 0.0535s 0.4738s 8.86
1024x1024 0.3998s 11.536s 28.9
1536x1536 1.3299s 39.417s 29.6
2048x2048 3.1459s 102.57s 32.6
3072x3072 10.572s 361.99s 34.2

Table 5.1. Matrix multiplication: Comparison of execution time in seconds on CPU
and GPU for different matrix sizes with work size 16x16 on the GPU.

16

5.2. MATRIX MAXIMUM

350 7

300 /
=4=CPU
=i—GPU

Execution time (seconds)
) ™~
S G
1 S

o
@
<}

om - -/'./j -—

128x128 256x256 512x512 1024x1024 1536x1536 2048x2048 3072x3072

Matrix size

Figure 5.2. Matrix multiplication: Comparison of execution time in seconds on
CPU and GPU for different matrix sizes with work size 16x16 on the GPU. Lower is
better.

5.2 Matrix Maximum

In this section we take a look at the results of the performance evaluation of the
maximum matrix value implementation. We begin, again, by taking a look at the
GPU performance for different work sizes as shown in fig. 5.3. Recall from section 5.1
that the maximum work size for our hardware is 256 work items.

The figure depicts results quite different from those in the case of matrix multi-
plication. Instead of an execution time that always decreases, the faster execution
only happens up to a certain point — work size 16 — followed by markedly dimin-
ishing performance. The initial performance increase is likely due to two reasons:
at low work sizes not all shader processors in a work group can be put to use at
the same time, and as a few more work items are added some latency hiding is
possible. When the work size increases above 16, however, the negatives of branch-
ing under the SPMD model show themselves quite clearly. As noted in section 2.2,
when a branch is detected in a SPMD unit, in this case the whole work group, some
branches will have to be run later. This means that the work group will take at
least twice as long to complete computation. Obviously, the impact gets larger as
work size increases. Since the best work size for this problem on the specific GPU
used for testing has been determined to be 16, the rest of the GPU results presented
here use that work size.

17

CHAPTER 5. RESULTS AND DISCUSSION

2048x2048

0,1

0,04 \ /

w

Execution time (seconds)

0,02

4 8 16 32 64 128 256

Work size

Figure 5.3. Matrix maximum: GPU execution time in seconds for different work
sizes on a 2048x2048 matrix. Lower is better.

Let us now take a look at the differences in execution time between the CPU and
GPU implementations, as seen in table 5.2 and fig. 5.4. Just as we hypothesized
earlier in the text, the CPU wins over the GPU in terms of performance on a
branch-intensive problem such as this. Since the resulting execution times are so
low, they cannot give a definite answer due to differences in system load at the time
of testing. We do, however, get a fair indication. For lower matrix sizes the CPU
hovers around 4-5 times speed-up over the GPU after which the performance boost
increases slightly more. This trend is expected to continue past the tested matrix
sizes as larger matrices mean more potential branches as well as larger amounts of
data to transfer to the GPU’s global memory. Unfortunately, performance for larger
matrices cannot be evaluated as the test-system crashes when trying to transfer the
matrix to the graphics memory. A telling sign of the effects of branching on the
GPU is the non-linear slowdown of execution as matrix size increases as depicted in
fig. 5.4. Note that since the horizontal axis values increase in a quasi-exponential
manner, linear slowdown will not be represented as a straight-line in the figure.

18

5.2. MATRIX MAXIMUM

Matrix size Execution éllr)n[(; Execution (tjllr)ng CPU speed-up
128x128 0.00224s 0.00046s 4.87
256x256 0.00269s 0.00051s 5.27
512x512 0.00359s 0.00075s 4.79

1024x1024 0.00854s 0.00187s 4.57
2048x2048 0.02940s 0.00474s 6.20
4096x4096 0.10520s 0.01679s 6.26

Table 5.2. Matrix maximum: Comparison of execution time in seconds on CPU
and GPU for different matrix sizes with work size 16 on the GPU

0,1

0,08

0,06

Execution time [seconds)

0,04

/

0,02

s CPU
=fli=GPU (Work size 16)

.

0 = - : : —

128x128 256x256 512x512 1024x1024 2048x2048 40964096

Matrix size

Figure 5.4. Matrix maximum: Comparison of execution time in seconds on CPU
and GPU for different matrix sizes with work size 16 on the GPU. Lower is better.

Chapter 6

Conclusion

Throughout this text we have identified three important characteristics of problems
that are suited for the GPU. The first and most important characteristic is that
the problem needs to be highly parallel to begin with. There needs to be a high
level of data parallelism in order for a programmer to even implement a sensible
solution for the GPU. The second characteristic is that the problem needs to be
computationally intensive (high amount of work per data), in order for the GPU
not to be idle, waiting for more data from memory. The third and final characterstic
is that conditional branching should be non-existent or be triggered very seldom —
if every work item takes the same branch, there will be no impact on performance.
The architectural details presented in chapter 2 support these claims and the results
presented in chapter 5 back this up; both of our hypotheses seem to be correct.

We have chosen not to take pricing into account in previous parts of our text,
since it is not relevant from a scientific perspective. However, to determine whether
the GPU is a viable alternative to the CPU, we need to; we are already at a point
in time where scientist are far from alone in being interested in GPU computing.
In practice, pricing is one of the larger factors affecting whether GPGPU will be a
success or not. And the matter of the fact is, that GPU performance to currency
ratio is very high. High-end consumer graphics cards have, during recent years,
never had a price tag greater than 7000 SEK. A high-end consumer CPU, on the
other hand, can cost almost twice as much. To top it off, as of OpenCL 1.1 it is
quite simple to program for multiple GPUs. This has opened up the possibility for
cheap GPU clusters and these are already deployed in some of the worlds fastest
super computers.

To summarize, the GPU is not the successor of the CPU. It is however a very
potent processing unit that should be considered for all problems that work on
large sets of data. Sadly enough, all problems are not suited for GPU computing.
However, what it lacks in generality it makes up for in performance.

21

Bibliography

1]

J. D. Owens et al. GPU Computing. Proceedings of the IEEE, 96(5):879-899,
May 2008.

D. Luebke and G. Humpreys. How GPUs Work. IEEE Computer, 40(2):96-100,
February 2007.

K. Fatahalian and M. Houston. A closer look at GPUs. Communications of
the ACM, 51(10):50-57, October 2008.

V. W. Lee et al. Debunking the 100x GPU vs CPU myth: an evaluation of
throughput computing on CPU and GPU. ACM SIGARCH Computer Archi-
tecture News - ISCA 10, 38(3):451-460, June 2010.

J. D. Owens et al. A survey of general-purpose computation on graphics hard-
ware. Computer Graphics Forum, 26(1):88-113, March 2007.

H. Wong et al. Demystifying GPU microarchitecture through microbench-
marking. In 2010 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 235-246, March 2010.

Khronos OpenCL API Registry. http://www.khronos.org/registry/cl/.

Fixstars Corporation. The OpenCL Programming Book. Fixstars Corporation,
March 2010.

NVIDIA GPU Computing Documentation. http://developer.nvidia.com /nvidia-
gpu-computing-documentation.

[10] Java Bindings for OpenCL. http://jocl.org/.

[11] PyOpenCL - OpenCL for Python. http://mathema.tician.de/software/pyopencl.

23

© 00U WN -

© 00O U WK

Appendix A

Code

A.1 Matrix Multiplication

matmul.cl

__kernel void matMul(__global floatx a,
__global floatx b,
__global floatx c,
int width) {

// get index of current row
int row = get_global_id (1);
// get index of current column
int col = get_global_id(0);

// keep track of element sum in a register
float sum = 0;

// calculate 1 element of the sub—matrix
for (int k = 0; k < width; k++) {
sum += a[rowxwidth+k] * b[kxwidth+col];

}
// write to output memory
c[rowxwidth+col] = sum;
}
matmul.cpp

#ifndef ___REENTRANT
#define ___REENTRANT
#endif

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include <CL/cl.h>
#include <pthread.h>

#define MAX_SOURCE_SIZE (0x10000)

#define LOCAL_TILE_SIZE (16)

#define DEFAULT_WIDTH (LOCAL_TILE_SIZE * 128)
#define NUM_REPETITIONS (10)

25

APPENDIX A. CODE

int row = 0; /* the bag of tasks x/
unsigned int n = 1024; /x Width/Height of the matrix*/
unsigned int workGroupWidth = 16;

/* matrices in host memory x*/
float*x h_mem_a;
float* h_mem_b;
float*x h_mem_c;

pthread_mutex_t block; /* mutex lock for the bag */

/* timer x/

double read_timer () {
static bool initialized = false;
static struct timeval start;
struct timeval end;

if(linitialized){
gettimeofday(&start , NULL);
initialized = true;

}
gettimeofday(&end, NULL);
return (end.tv_sec — start.tv_sec) + 1.0e—6 * (end.tv_usec — start.tv_usec);

}

/* Each worker calculates the values in one strip of the matrix.x/
void *Worker (voidx) {
unsigned int sum, i, j, k;

while (true) {
/* get a row number from the bag x*/
pthread_mutex_lock (&block);
i = row++;
pthread_mutex_unlock (&block);

if (i >=n) break;

/* multiply the row %/
for (j = 0; j < n:i j++) {
sum = 0;
for(k = 0; k < n; k++){
sum += h_mem_a[i*nt+k]xh_mem_b[kxn+j];

h_mem_c[i*n+j] = sum;

}

pthread_exit (NULL);
return NULL;

}

/* Multiplies two matrices and
* returns the time the calculation took x/
double runOnCPU(int numWorkers) {
int i;
double start_time, end_time;
pthread_attr_t attr;
pthread_t workerid [numWorkers];

/* set global thread attributes x/
pthread_attr_init (&attr);

pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM);
pthread_mutex_init (&block , NULL);

/* do the parallel work: create the workers %/
start_time = read_timer ();

for (i = 0; i < numWorkers; i++)
pthread_create (&workerid[i], &attr, Worker, NULL);

for (i = 0; i < numWorkers; i++)

26

A.1l. MATRIX MULTIPLICATION

pthread_join (workerid[i], NULL);

/* get end time x/
end_time = read_timer ();

return end_time — start_time;

/* Matrix mutltiplication of nxn matrices on an opencl device,
assumes even numbered matrix width */
double runOnGPU(int buffer_time_included) {
/* OpenCL kernel related variables x/
char xsource_str;
size_t source_size;
cl_program program;
cl_kernel kernel;

/* Device and Platform related variables x*/
cl_platform_id platform_id;

cl_uint ret_num_platforms;

cl_device_id device_id;

cl_uint ret_num_devices;

/* context */
cl_context context;

/* command queue x/
cl_command_queue command_queue;

/* memory buffers x/
cl_mem d_mem_a, d_mem_b, d_mem_c;

/* error return value x/

cl_int ret;

int size = n % n % sizeof(float);
double startTime, endTime;

/* OpenCL setup x*/

/* Load OpenCL kernel x/

FILE xfp;

char fileName[] = "./matmul.cl";

/* Load kernel source x*/

fp = fopen(fileName, "r");

if (1) {
fprintf(stderr, "Failed to load kernel.\n");
exit(1);

}

source_str = (charx)malloc (MAX_SOURCE_SIZE);
source_size = fread(source_str, 1, MAX_SOURCE_SIZE, fp);
fclose (fp);

/* Get Platform and Device infox/

&ret_num_devices);
/* Context creation x*/
/* Command queue creation x*/
command_queue = clCreateCommandQueue(context, device_id,

/* Create memory buffers x/
/* Write—buffers x/

ret = clGetPlatformIDs (1, &platform_id, &ret_num_platforms);
ret = clGetDevicelDs(platform_id, CL_DEVICE_TYPE_GPU, 1, &device_id,

context = clCreateContext (NULL, 1, &device_id, NULL, NULL, &ret);

0, &ret);

27

APPENDIX A. CODE

}

/xcall

d_mem_a
d_mem_b

/* Read—buffer x/

d_mem_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, size, NULL, &ret);

/* create kernel program x/

program = clCreateProgramWithSource(context ,
(const char *x)&source_str, (const size_t

/* build kernel program x/

ret = clBuildProgram (program, 1, &device_id, NULL, NULL, NULL);

/* create kernel x/

clCreateBuffer (context, CL_MEM_READ_ONLY,
clCreateBuffer (context, CL_MEM_READ_ONLY,

1,

kernel = clCreateKernel (program, "matMul", &ret);

if(buffer_time_included)
startTime = read_timer ();

/* Write to buffers x/
ret = clEnqueueWriteBuffer (command_queue, d
(const void *)h_mem_a, 0, 0, NULL);

ret = clEnqueueWriteBuffer (command_queue, d_mem_b, CL_TRUE, 0, size,

(const void *)h_mem_b, 0, 0, NULL);

f(!buffer_time_included)
startTime = read_timer ();

/* set kernel arguments %/

clSetKernelArg (kernel, 0, sizeof(c
clSetKernelArg (kernel , 1, sizeof(cl_
clSetKernelArg (kernel , 2, sizeof(c
clSetKernelArg (kernel , 3, sizeof(i

/* set work dimensions x*/

size_t globalWorkSize[2], localWorkSize [2];
globalWorkSize [0]

globalWorkSize [1]

localWorkSize [0] = workGroupWidth;
localWorkSize [1] = workGroupWidth;

/* Execute kernel x/

clEnqueueNDRangeKernel (command_queue, kernel ,

localWorkSize, 0, NULL, NULL);

/* read kernel result into C %/
clEnqueueReadBuffer (command_queue, d_mem_c,
0, 0, NULL);

endTime = read_timer ();

/* free resources #*/

clFlush (command_queue);

clFinish (command_queue);
clReleaseMemObject (d_mem_a);
clReleaseMemObject (d_mem_b);
clReleaseMemObject (d_mem_c);
clReleaseCommandQueue (command_queue);
clReleaseContext (context);
clReleaseKernel (kernel);
clReleaseProgram (program);

free(source_str);

return endTime—startTime;

with "matmul n workGroupWidth numWorkers" x/

int main(int argc, char xargv[]) {

unsigned int i;

_mem_a, CL_TRUE, 0, size,

I_mem), (voidx)&d_mem_a);
I_mem), (voidx)&d_mem_b);
I_mem), (voidx)&d_mem_c);
nt), (voidx)&n);

CL_TRUE,

*)&source_size , &ret);

2, NULL, globalWorkSize,

size , NULL, &ret);
size , NULL, &ret);

0, size, (void#*)h_mem_c,

28

Al

MATRIX MULTIPLICATION

n = (argc > 1) ? atoi(argv[1l]) : n;
workGroupWidth (argec > 2) 7 atoi(argv[2]) : workGroupWidth;
int numWorkers (arge > 3) 7 atoi(argv[3]) : 2;

if (n%workGroupWidth = 0){
printf("n needs to be a multiple of workGroupWidth\n");
exit (1);

}

/* Initialize matrices */

h_mem_a
h_mem_b
h_mem_c

(floatx) malloc(n*nxsizeof(float));
(float*) malloc(n*nxsizeof(float));
(float*x) malloc(nxnxsizeof(float));

srand ((unsigned) time(NULL));

for(i = 0; i < n*n; i++){
h_mem_a[i] (float)
h_mem_b][i] (float)

1 (float)rand ()/(float)RAND_MAX;
1 (float)rand ()/(float)RAND_MAX;

++

}

for(i = 0; i < nxn; i+4+){
h_mem_c[i] = 0;
}

printf ("Runnning matrix_multiplication on an %dx%d matrix\n", n, n);
printf("Local Work Size = %dx%d\n",workGroupWidth , workGroupWidth);
printf("Number of CPU workers = %d\n" , numWorkers);

printf ("ITER\tGPU(EX.BUF)\ t\tGPU(INC.BUF)\ t\tCPU\n");

/* Start performance testing x*/

double gpu_time_yes_buffer_sum = 0;

double gpu_time_no_buffer_sum = 0;

double cpu_time_sum = 0;

for(i = 0; i < NUM_REPETITIONS; i++){
double tmp_no_buf = runOnGPU (0);
double tmp_yes_buf = runOnGPU(1);
double tmp_cpu = runOnCPU(numWorkers);

gpu_time_no_buffer_sum 4= tmp_no_buf;
gpu_time_yes_buffer_sum += tmp_yes_buf;
cpu_time_sum 4= tmp_cpu;

printf("%d\t%gs\t\t%gs\t\tlhgs\n",
i, tmp_no_buf, tmp_yes_buf, tmp_cpu);
row = 0;

}

printf (" \n");
printf ("WHAT\t\t\t\t\tTIME(TOT)\tTIME(AVG)\n");
printf ("GPU time (Transfer time excluded)\t %gs\t%gs\n",

gpu_time_no_buffer_sum, gpu_time_no_buffer_sum/NUM_REPETITIONS);

printf ("GPU time (Transfer time included)\t %gs\t%gs\n",

gpu_time_yes_buffer_sum, gpu_time_yes_buffer_sum/NUM_REPETITIONS);

printf("CPU time\t\t\t\t %gs\t%gs\n",

cpu_time_sum, cpu_time_sum/NUM_REPETITIONS);
free (h_mem_a);
free (h_mem_b);

free (h_mem_c);

return O;

29

© 001Uk W

© 00O U W

A.2 Matrix Max

APPENDIX A. CODE

matrixmax.cl
__kernel void matrixMax(__global const float* matrix,
__global floatx out,
int width){
int row = get_global_id (0);
if (row < width){
float max = matrix [rowxwidth];
float current;
for(int i = 0; i < width; i++){
current = matrix [rowswidth + i];
if(current > max){
max = current;
}
out[row] = max;
}
}
matrixmax.cpp

#ifndef _REENTRANT
#define _REENTRANT
#endif

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <stdbool.h>
#include <time.h>
#include <sys/time.h>

#ifdef _ APPLE__

#include <OpenCL/opencl.h>
#else

#include <CL/cl.h>

#endif

#define MAX_SOURCE_SIZE (0x100000)
size_t matrixSize, rowSize;

/* default size of local work on gpu */
size_t localSize = 16;

/* default number of workers in cpu—implementation x/
unsigned int numWorkers = 4;

/* default size of the n x n matrix %/
unsigned int n = 2048;

/* default value for including matrix—to—gpu transfer time %/
bool gpu_buffer_time_included = true;

unsigned int NUM_REPETITIONS = 10;
float *h_mem_matrix;

int gmax;
int row = 0; /* the bag of tasks x/

pthread_mutex_t Imax; /* mutex lock for result %/
pthread_mutex_t block; /x mutex lock for the bag */

30

A.2. MATRIX MAX

xsource_str = (charx) malloc (MAX_SOURCE_SIZE);
xsource_size = fread(*source_str, 1, MAX_SOURCE_SIZE, fp);
fclose(fp);

}

/* timer x/
double read_timer() {
static bool initialized = false;
static struct timeval start;
struct timeval end;
if(linitialized)
{
gettimeofday (&start, NULL);
initialized = true;

}
gettimeofday(&end, NULL);
return (end.tv_sec — start.tv_sec) + 1.0e—6 * (end.tv_usec — start

}

/* Calculates the maximum value of a matrix and
* returns the time the calculation took.
* Uses multiple worker threads and a bag of tasks.x/
double runOnCPU(int numWorkers) {
int i;
double start_time, end_time;
pthread_attr_t attr;
pthread_t workerid [numWorkers];

/* set global thread attributes x*/
pthread_attr_init (&attr);
pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM);

/* initialize mutexes %/
pthread_mutex_init(&Imax, NULL);

pthread_mutex_init (&block , NULL);
gmax = h_mem_matrix[0];
/* do the parallel work: create the workers %/
start_time = read_timer();
for (i = 0; i < numWorkers; i++)
pthread_create (&workerid[i], &attr, Worker, NULL);
for (i = 0; i < numWorkers; i++)
pthread_join (workerid[i], NULL);
/* get end time x*/
end_time = read_timer ();
return end_time — start_time;

}

/* Each worker determines the max value in one strip of the matrix.
* After each updates the global max if the local is lager x/

void *Worker (voidx) {
int max, worked = 0;
unsigned int i, j;
max = h_mem_matrix[0];

while (true) {
/* get a row number from the bag x*/

void *Worker (void x);
void getFileContent(const charx filename, char%x source_str, size_t* source_size){
FILEx fp;
fp = fopen(filename, "r");
if (1fp){
fprintf(stdout, "Failed to load file\n");
exit (1);
}

.tv_usec);

31

APPENDIX A. CODE

}

pthread_mutex_lock (&block);
i = row++;
pthread_mutex_unlock (&block);

if (i >= n) break;
if (!worked) worked = 1;

/* update local max with elements in the row %/
for (j = 0; j <n; j++) {
if (max < h_mem_matrix[i*xn+j]) {
max = h_mem_matrix [i*n+j |;
}

}

}
if (worked) {
/* update global max x/
if (gmax < max) {
pthread_mutex_lock(&Imax);
if (gmax < max) {
gmax = max;

pthread_mutex_unlock(&Imax);

}

}
pthread_exit (NULL);
return 0; /x avoid compiler warning %/

/* return the runtime on the GPU x/

double runOnGPU () {

const char file_name[] = "./matrix_max.cl"
char x source;

size_t source_size;

double start_time, end_time;
start_time = end_time = 0.0;

float *xh_mem_result;

cl_mem d_mem_matrix;
cl_mem d_mem_result;

cl_platform_id platform;
cl_device_id device;
cl_context context;
cl_command_queue queue;
cl_program program;
cl_kernel kernel;

/* Load OpenCL kernel source code %/
getFileContent(file_name, &source, &source_size);

h_mem_result = (floatx) malloc(rowSize);

size_t globalSize;
cl_int err;

globalSize = ceil(n/(float)localSize)xlocalSize;

/* Get platform and device info x*/

err = clGetPlatformIDs (1, &platform , NULL);

err = clGetDevicelDs(platform , CL_DEVICE_TYPE_GPU, 1, &device, NULL);
context = clCreateContext(0, 1, &device, NULL, NULL, &err);

queue = clCreateCommandQueue(context, device, 0, &err);

program = clCreateProgramWithSource(context, 1, (const char *x) &source,

(const size_tx) &source_size, &err);

32

A.2. MATRIX MAX

}

/* Compile kernel source x/
clBuildProgram (program, 0, NULL, NULL, NULL, NULL);

/* Create kernel x/
kernel = clCreateKernel(program, "matrixMax", &err);

/* Create memory buffers x*/

d_mem_matrix = clCreateBuffer(context, CL_MEM_READ_ONLY, matrixSize , NULL,

NULL);
d_mem_result = clCreateBuffer(context, CL_MEM_WRITE_ONLY, rowSize, NULL,
NULL);

/* if we want to include time to copy data to GPU,
* start timer now x/
if (gpu_buffer_time_included)

start_time = read_timer();

/* Copy matrix to GPU x/
err = clEnqueueWriteBuffer(queue, d_mem_matrix, CL_TRUE, 0, matrixSize,
h_mem_matrix, 0, NULL, NULL);

/* if we don’'t want to include time to copy data to GPU,
* start timer now x/
if (! gpu_buffer_time_included)

start_time = read_timer();

/* Set kernel arguments %/

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_mem_matrix);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_mem_result);
err |= clSetKernelArg(kernel, 2, sizeof(unsigned int), &n);

/* Execute kernel x/

err = clEnqueueNDRangeKernel (queue, kernel, 1, NULL, &globalSize , &localSize

0, NULL, NULL);
clFinish (queue);

/* Read kernel result x*/

clEnqueueReadBuffer(queue, d_mem_result, CL_TRUE, 0, rowSize, h_mem_result,

NULL, NULL);

/* Calculate global max x/
float max = 0;
unsigned int i;
for(i = 0; i < n; i++){
if (h_mem_result[i] > max){
max = h_mem_result[i];
}

}
end_time = read_timer ();

/* Free resources x*/

clFlush (queue);

clFinish (queue);
clReleaseMemObject (d_mem_matrix);
clReleaseMemObject (d_mem_result);
clReleaseCommandQueue (queue);
clReleaseContext(context);
clReleaseKernel (kernel);
clReleaseProgram (program);

free(source);
free (h_mem_result);

return end_time—start_time;

/* Argl: n (for an n x n matrix)

* Arg2: local work size when running on GPU
* Arg3: numWorkers for CPU calculation x/

0,

33

APPENDIX A. CODE

int main(int argc, charx argv[]){

/* read command line x/

n = (argc > 1) ? atoi(argv[1l]) : n;

localSize = (argc > 2) ? atoi(argv[2]) : localSize;
numWorkers = (argc > 3) ? atoi(argv([3]) : numWorkers;

matrixSize = nxnxsizeof(float);
rowSize = nxsizeof(float);
h_mem_matrix = (float*) malloc(matrixSize);

srand ((unsigned) time(NULL));

/* initialize matrix with random floats x/
unsigned int i;
unsigned int j;
for(i = 0; i < n; i++){
for(j = 0; j < n; j++){
h_mem_matrix[i*n+j] = ((float)rand()/(float)RAND_MAX)*2000;
}

}

/* Total times x/

double gpu_time_buffers_included_sum = 0.0;

double gpu_time_buffers_excluded_sum = 0.0;

double cpu_time_sum = 0.0;

printf("Running matrix_max on an %d x %d matrix\n", n, n);

printf("Local Work Size = %d\n", localSize);
printf("Number of CPU workers = %d\n", numWorkers);
printf ("ITER\tGPU(EX.BUF)\ t\tGPU(INC.BUF)\ t\tCPU\n");

/* run calculations x/
for(i = 0; i < NUM_REPETITIONS; i++){

gpu_buffer_time_included = true;
double tmp_gpu_included = runOnGPU ();

gpu_buffer_time_included = false;
double tmp_gpu_excluded = runOnGPU ();

double tmp_cpu = runOnCPU(numWorkers);

gpu_time_buffers_included_sum 4= tmp_gpu_included;
gpu_time_buffers_excluded_sum += tmp_gpu_excluded;
cpu_time_sum 4= tmp_cpu;

printf ("%d\t%gs\t\t%gs\t\tlgs\n",
i, tmp_gpu_excluded, tmp_gpu_included, tmp_cpu);
row = 0;

}

printf (" \n");
printf ("WHAT\t\t\t\t\tTIME(TOT)\tTIME(AVG)\n");
printf ("GPU time (Transfer time excluded)\t %gs\t%gs\n",
gpu_time_buffers_excluded_sum ,
gpu_time_buffers_excluded_sum /NUM_REPETITIONS);
printf ("GPU time (Transfer time included)\t %gs\t%gs\n",
gpu_time_buffers_included_sum,
gpu_time_buffers_included_sum /NUM_REPETITIONS);
printf("CPU time\t\t\t\t %gs\t%gs\n",
cpu_time_sum, cpu_time_sum/NUM_REPETITIONS);

34

© 00O U W

Appendix B

Execution Output

Runnning matrix_multiplication on an 128x128 matrix
Local Work Size = 4x4
Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.014544s 0.006908s

1 0.006921s 0.008005s

2 0.006097s 0.008721s

3 0.007118s 0.008943s

4 0.006907s 0.008053s

5 0.006178s 0.008495s

6 0.006963s 0.006974s

7 0.007048s 0.008876s

8 0.006978s 0.008522s

9 0.006996s 0.008615s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.07575s
GPU time (Transfer time included) 0.082112s
CPU time 0.100163s
Runnning matrix_multiplication on an 128x128 matrix
Local Work Size = 8x8

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.002142s 0.004609s

1 0.002447s 0.003991s

2 0.00295s 0.004738s

3 0.00289s 0.004231s

4 0.002992s 0.004124s

5 0.002995s 0.004022s

6 0.002773s 0.00312s

7 0.002745s 0.003945s

8 0.00287s 0.003956s

9 0.00209s 0.004641s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.026894s
GPU time (Transfer time included) 0.041377s
CPU time 0.07998s
Runnning matrix_multiplication on an 128x128 matrix
Local Work Size = 16x16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC .BUF)
0 0.0024545s 0.003739s

1 0.002217s 0.003702s

2 0.00138s 0.003782s

3 0.0022955s 0.003935s

4 0.001965s 0.002118s

5 0.002067s 0.0038625s

CPU
.027684s
.007776s
.007641s
.007415s
.008947s
.010691s
.007507s
.007663s
.00744s
.007399s

[eNeNeNoleNo oo No ol

TIME (AVG)
0.007575s
0.0082112s
0.0100163s

CPU
.012336s
.00741s
.007363s
.007529s
.00739s
.007769s
.007511s
.007384s
.007417s
.007871s

[eNeNeNoleNoNo oo Nol

TIME (AVG)
0.0026894s
0.0041377s
0.007998s

CPU
0.010249s
0.007481s
0.00745s
0.007502s
0.007514s
0.010289s

35

APPENDIX B. EXECUTION OUTPUT

6 0.002362s 0.003275s

7 0.002318s 0.003925s

8 0.002377s 0.004092s

9 0.002124s 0.003987s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.021559s
GPU time (Transfer time included) 0.036412s
CPU time 0.084265s
Runnning matrix_multiplication on an 256x256 matrix
Local Work Size = 4x4

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.047152s 0.048985s

1 0.047153s 0.048146s

2 0.047097s 0.048916s

3 0.047138s 0.048837s

4 0.047322s 0.048462s

5 0.046546s 0.049s 0.058146
6 0.047019s 0.048893s

7 0.047099s 0.049944s

8 0.046271s 0.048926s

9 0.046692s 0.048705s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.469489s
GPU time (Transfer time included) 0.488814s
CPU time 0.592368s
Runnning matrix_multiplication on an 256x256 matrix
Local Work Size = 8x8

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.013063s 0.013069s

1 0.012985s 0.0144s 0.058684
2 0.012305s 0.015225s

3 0.013208s 0.014056s

4 0.012204s 0.013156s

5 0.012187s 0.01369s

6 0.012257s 0.014892s

7 0.012228s 0.013297s

8 0.012079s 0.013533s

9 0.0123s 0.013678s 0.059022
WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.124816s
GPU time (Transfer time included) 0.138996s
CPU time 0.623895s
Runnning matrix_multiplication on an 256x256 matrix
Local Work Size = 16x16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.006952s 0.00807s

1 0.006935s 0.007612s

2 0.006991s 0.007632s

3 0.006937s 0.007787s

4 0.006924s 0.007701s

5 0.006826s 0.008497s

6 0.007877s 0.009768s

7 0.007949s 0.009742s

8 0.007892s 0.009748s

9 0.007751s 0.008269s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.073034s
GPU time (Transfer time included) 0.084826s
CPU time 0.694411s
Runnning matrix_multiplication on an 512x512 matrix
Local Work Size = 4x4

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.36394s 0.369404s

0.007396s
0.007549s
0.010567s
0.008268s

TIME (AVG)

0.0021559s
0.0036412s
0.00842655

CPU
.061802s
.05825s
.06081s
.059228s
.058271s

.05831s

.058315s
.058278s
.060958s

[eNeNeNelNe ool Nl

TIME (AVG)

0.0469489s
0.0488814s
0.0592368s

CPU
0.062792s
s
0.06699s
0.062544s
0.060832s
0.069126s
0.05856s
0.065233s
0.060112s
s

TIME (AVG)

0.0124816s
0.0138996's
0.0623895s

CPU
.082145s
.078144s
.081516s
.077798s
.077695s
.05988s
.058996s
.058145s
.058245s
.061847s

[eNeNeNololoNo oo No]

TIME (AVG)

0.0073034s
0.0084826's
0.0694411s

CPU
0.475085s

36

1 0.365542s 0.368877s

2 0.364422s 0.368729s

3 0.364867s 0.368139s

4 0.365211s 0.367603s

5 0.364226s 0.367755s

6 0.364707s 0.367439s

7 0.3653345s 0.368103s

8 0.36468s 0.367493s

9 0.365196s 0.367271s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 3.64812s
GPU time (Transfer time included) 3.68081s
CPU time 4.7184s
Runnning matrix_multiplication on an 512x512 matrix
Local Work Size = 8x8

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.093214s 0.101403s

1 0.09406s 0.09623s

2 0.094295s 0.097246s

3 0.092446s 0.096514s

4 0.093139s 0.096261s

5 0.093233s 0.096633s

6 0.093517s 0.096412s

7 0.093264s 0.095925s

8 0.093687s 0.095954s

9 0.093502s 0.095945s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.934357s
GPU time (Transfer time included) 0.968523s
CPU time 4.73459s
Runnning matrix_multiplication on an 512x512 matrix
Local Work Size = 16x16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.051152s 0.054221s

1 0.051684s 0.053914s

2 0.050385s 0.051905s

3 0.050783s 0.053953s

4 0.050828s 0.053437s

5 0.050096s 0.053974s

6 0.050905s 0.053441s

7 0.050841s 0.053495s

8 0.050821s 0.053476s

9 0.050831s 0.053445s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.508326s
GPU time (Transfer time included) 0.535261s
CPU time 4.76259s
Runnning matrix_multiplication on an 1024x1024 matrix
Local Work Size = 4x4

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 2.9067s 2.91092s 11.4591s
1 2.90139s 2.90811s

2 2.90752s 2.90925s

3 2.89842s 2.91144s

4 2.90246s 2.90893s

5 2.90252s 2.90519s

6 2.90845s 2.91526s

7 2.9083s 2.9067s 11.3131s
8 2.90104s 2.90797s

9 2.90034s 2.91257s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 29.0371s
GPU time (Transfer time included) 29.0963s
CPU time 113.824s

472146
.475139s
.471157s
.473709s
.473935s
.467896s
.469914s
.469593s
.46983s

OCOO0OO0OO0OO0OOO0OO0O

TIME (AVG)
0.364812s
0.368081s
0.47184s

CPU

.479275s
.479455s
.475197s
.466775s
.467282s
.472997s
467624 s
.479448s
.46823s
.478312s

OCOO0OO0OO0OO0OOOOO0O

TIME (AVG)
0.0934357s
0.0968523s
0.473459s

CPU
.480828s
478244 s
4742665
.491792s
.46962s
.470617s
.4863s
.470826s
.470212s
.469887s

[eNeNoNololoNoNoNoNol

TIME (AVG)
0.0508326's
0.0535261s
0.476259s

CPU

.3965s
.4244s
.4002s
.5065s
.3982s
.2742s

.39555s
.2565s

TIME (AVG)
2.90371s
2.90963s
11.38245s

37

APPENDIX B. EXECUTION OUTPUT

Runnning matrix_multiplication on an 1024x1024 matrix

Local Work Size = 8x8

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.732165s 0.745469s

1 0.729733s 0.736106s

2 0.731051s 0.735587s

3 0.730153s 0.736223s

4 0.730235s 0.736733s

5 0.73018s 0.736837s

6 0.729615s 0.735408s

7 0.729015s 0.738169s

8 0.728292s 0.735792s

9 0.728999s 0.733398s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 7.29944s
GPU time (Transfer time included) 7.36972s
CPU time 117.611s
Runnning matrix_multiplication on an 1024x1024 matrix
Local Work Size = 16x16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.394965s 0.409668s

1 0.392015s 0.398419s

2 0.391848s 0.39935s

3 0.391784s 0.398754s

4 0.391632s 0.398469s

5 0.391253s 0.399194s

6 0.391657s 0.39804s

7 0.391634s 0.399436s

8 0.392128s 0.398106s

9 0.39186s 0.399134s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 3.92078s
GPU time (Transfer time included) 3.99857s
CPU time 114.656s
Runnning matrix_multiplication on an 1536x1536 matrix
Local Work Size = 4x4

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 9.79704s 9.80289s

1 9.79296s 9.80364s

2 9.79746s 9.80418s

3 9.78764s 9.80714s

4 9.80338s 9.81078s

5 9.80744s 9.82036s

6 9.8015s 9.8157s 39.3647s
7 9.81195s 9.81367s

8 9.80586s 9.81067s

9 9.7926s 9.80951s 39.2807s
WHAT TIME(TOT)
GPU time (Transfer time excluded) 97.9978s
GPU time (Transfer time included) 98.0985s
CPU time 395.392s
Runnning matrix_multiplication on an 1536x1536 matrix
Local Work Size = 8x8

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 2.46612s 2.48582s

1 2.45816s 2.4707s 40.2424s
2 2.45953s 2.47398s

3 2.46116s 2.47415s

4 2.46024s 2.47284s

5 2.45948s 2.4725s 39.9242s
6 2.45944s 2.47295s

7 2.45958s 2.47353s

8 2.45824s 2.47239s

9 2.46103s 2.47358s

.8158s
.7965s
.7032s
.7488s
.7934s
.6443s
.7064s
.8337s
.7321s
.8367s

TIME (AVG)
0.729944s
0.736972s
11.7611s

.5972s
.5878s
.4787s
.3879s
.3492s
A4741s
.5484s
.324s

.4123s
.4966s

TIME (AVG)
0.392078s
0.399857s
11.4656s

.6244s
.5768s
.0286s
.7419s
.4886's
.4701s

.4671s
.349s

TIME (AVG)
9.79978s
9.80985s
39.5392s

CPU
40.0789s

.2495s
.0477s
.5299s

.8136s
.5433s
.643s

.1815s

38

WHAT TIME(TOT)

GPU time (Transfer time excluded) 24.603s

GPU time (Transfer time included) 24.7424s

CPU time 399.254s
Runnning matrix_multiplication on an 1536x1536 matrix
Local Work Size = 16x16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 1.3248s 1.33917s 39.0588s
1 1.31587s 1.32876s

2 1.31722s 1.3285s 38.893s
3 1.31604s 1.32837s

4 1.31618s 1.32476s

5 1.31581s 1.32906s

6 1.31627s 1.3292s 38.6317s
7 1.31639s 1.3309s 38.6012s
8 1.31632s 1.33138s

9 1.31621s 1.32875s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 13.1711s

GPU time (Transfer time included) 13.2988s

CPU time 387.874s
Runnning matrix_multiplication on an 2048x2048 matrix
Local Work Size = 4x4

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 23.209s 23.2351s 104.623s
1 23.2174s 23.2117s

2 23.1939s 23.2181s

3 23.1905s 23.2172s

4 23.226s 23.2317s 104.133s
5 23.1873s 23.2741s

6 23.1944s 23.2185s

7 23.2106s 23.2143s

8 23.2202s 23.2483s

9 23.2119s 23.2179s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 232.061s

GPU time (Transfer time included) 232.287s

CPU time 1044.1s
Runnning matrix_multiplication on an 2048x2048 matrix
Local Work Size = 8x8

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 5.82678s 5.85154s

1 5.81994s 5.84253s

2 5.81964s 5.84165s

3 5.82112s 5.83922s

4 5.8215s 5.84715s 101.826s
5 5.82161s 5.84122s

6 5.81516s 5.84573s

7 5.81573s 5.83851s

8 5.8212s 5.84242s 101.28s
9 5.82119s 5.84431s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 58.2039s

GPU time (Transfer time included) 58.4343s

CPU time 1016.48s
Runnning matrix_multiplication on an 2048x2048 matrix
Local Work Size = 16x16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 3.13105s 3.15585s

1 3.12284s 3.14552s

2 3.12185s 3.14306s

3 3.12214s 3.14661s

4 3.12221s 3.14241s

TIME (AVG)
2.4603s

2.47424s
39.92545

CPU

39.1052s
38
39
38

.6614s
.1071s
.9687s

38
38

.2786s
.5687s

TIME (AVG)
1.31711s
1.32088s
38.7874s

CPU

106.
104.
104.

212s
377s
21ls

.622s
.404s
.911s
.384s
.226s

TIME (AVG)
23.2061s
23.2287s
104.41s

.643s
.954s
.538s
.686s

.546s
.865s
.014s
101.131s
TIME (AVG)
5.82039s
5.84343s
101.648s

CPU
100.52s
101.578s
100.062s
100.995s
102.571s

39

APPENDIX B. EXECUTION OUTPUT

5 3.12263s 3.14389s

6 3.12108s 3.14248s

7 3.11968s 3.15114s

8 3.12159s 3.14272s

9 3.12126s 3.14502s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 31.2263s
GPU time (Transfer time included) 31.4587s

CPU time

Runnning matrix_multiplication on an 3072x3072 matrix
Local Work Size = 4x4

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 78.3929s 78.4727s

1 78.3602s 78.4396s

2 78.3588s 78.4062s

3 78.4473s 78.397s 362.749s
4 78.4221s 78.4819s

5 78.4357s 78.4805s

6 78.3524s 78.4014s

7 78.3476s 78.4139s

8 78.3749s 78.4088s

9 78.4087s 78.4945s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 783.901s
GPU time (Transfer time included) 784.397s

CPU time 3610.29s
Runnning matrix_multiplication on an 3072x3072 matrix
Local Work Size = 8x8

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 19.8566s 19.8859s

1 19.8333s 19.8493s

2 19.8469s 19.8502s

3 19.8299s 19.8811s

4 19.8087s 19.8395s

5 19.8425s 19.8577s

6 19.8396s 19.8495s

7 19.8175s 19.846s 361.469s
8 19.8262s 19.8789s

9 19.8246s 19.8713s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 198.326s
GPU time (Transfer time included) 198.609s

CPU time 3636.69s
Runnning matrix_multiplication on an 3072x3072 matrix
Local Work Size = 16x16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 10.5373s 10.5816s

1 10.5306s 10.5658s

2 10.5282s 10.574s 362.444s
3 10.5277s 10.572s 361.273s
4 10.5269s 10.5765s

5 10.5272s 10.5745s

6 10.5328s 10.5674s

7 10.5274s 10.5645s

8 10.528s 10.5761s 360.777s
9 10.5249s 10.5667s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 105.291s
GPU time (Transfer time included) 105.719s

CPU time 3612.4s
1016.44s 101.644s

Running matrix_max on an 128 x 128 matrix

Local

Work Size = 4
Number of CPU workers

4

101.934s
101.878s
101.923s
102.572s
102.403s

TIME (AVG)
3.12263s
3.14587s

.76s
.861s
.334s

A4T77Ts
.152s
.459s
.539s
.499s
.463s

TIME (AVG)
78.3901s
78.4397s
361.029s

.059s
.537s
.345s
.895s
.145s
.016s
.937s

.374s
.91s

TIME (AVG)
19.8326s
19.8609s
363.669s

CPU
361.763s
361.001s

.639s
.781s
.028s
.654s
359.035s
TIME (AVG)
10.5291s
10.5719s
361.24s

40

ITER GPU(EX . BUF) GPU(INC . BUF)

0 0.000897s 0.002459s

1 0.001386s 0.002301s

2 0.001552s 0.002576s

3 0.001649s 0.002389s

4 0.0014s 0.00245s 0.000142
5 0.001004s 0.002377s

6 0.001415s 0.000991s

7 0.001462s 0.002622s

8 0.001685s 0.00261s

9 0.001537s 0.002275s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 0.013987s
GPU time (Transfer time included) 0.02305s

CPU time 0.00446s
Runnning matrix_multiplication on an 3072x3072 matrix
Local Work Size = 4x4

Number of CPU workers = 4

ITER GPU(EX . BUF) GPU(INC .BUF)

0 78.3929s 78.4727s

1 78.3602s 78.4396s

2 78.3588s 78.4062s

3 78.4473s 78.397s 362.749s
4 78.4221s 78.4819s

5 78.4357s 78.4805s

6 78.3524s 78.4014s

7 78.3476s 78.4139s

8 78.3749s 78.4088s

9 78.4087s 78.4945s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 783.901s

GPU time (Transfer time included) 784.397s

CPU time 3610.29s
Runnning matrix_multiplication on an 3072x3072 matrix
Local Work Size = 8x8

Number of CPU workers = 4

ITER GPU(EX . BUF) GPU(INC .BUF)

0 19.8566s 19.8859s

1 19.8333s 19.8493s

2 19.8469s 19.8502s

3 19.8299s 19.8811s

4 19.8087s 19.8395s

5 19.8425s 19.8577s

6 19.8396s 19.8495s

7 19.8175s 19.846s 361.469s
8 19.8262s 19.8789s

9 19.8246s 19.8713s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 198.326s
GPU time (Transfer time included) 198.609s

CPU time 3636.69s
Runnning matrix_multiplication on an 3072x3072 matrix
Local Work Size = 16x16

Number of CPU workers = 4

ITER GPU(EX . BUF) GPU(INC . BUF)

0 10.5373s 10.5816s

1 10.5306s 10.5658s

2 10.5282s 10.574s 362.444s
3 10.5277s 10.572s 361.273s
4 10.5269s 10.5765s

5 10.5272s 10.5745s

6 10.5328s 10.5674s

7 10.5274s 10.5645s

8 10.528s 10.5761s 360.777s
9 10.5249s 10.5667s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 105.291s

CPU
0.002947s
0.000126s
0.000204s
0.000162s
s
0.00013s
0.000243s
0.000157s
0.000187s
0.000162s

TIME (AVG)
0.0013987s
0.002305s
0.0004465s

.76s
.861s
.334s

477s
.152s
.459s
.539s
.499s
.463s

TIME (AVG)
78.3901s
78.4397s
361.029s

CPU

365.
363.
363.

059s
537s
345s
364.895s
364.145s
365.016s
362.937s

363.
362.

374s
91s

TIME (AVG)
19.8326s
19.8609s
363.669s

.763s
.001s

.639s
.781s
.028s
.654s
359.035s

TIME (AVG)
10.5291s

41

APPENDIX B. EXECUTION OUTPUT

GPU time (Transfer time included) 105.719s
CPU time 3612.4s
Running matrix_max on an 128 x 128 matrix

Local Work Size = 8

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC .BUF)

0 0.000652s 0.001052s

1 0.002327s 0.001952s

2 0.001269s 0.002122s

3 0.001411s 0.001187s

4 0.000872s 0.001357s

5 0.001387s 0.002209s

6 0.001072s 0.001346s

7 0.001291s 0.00224s

8 0.00136s 0.001077s

9 0.001343s 0.001522s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.012984s
GPU time (Transfer time included) 0.016064s
CPU time 0.00457s
Running matrix_max on an 128 x 128 matrix

Local Work Size = 16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC .BUF)

0 0.001214s 0.002315s

1 0.001161s 0.001305s

2 0.001136s 0.002218s

3 0.001169s 0.002483s

4 0.001069s 0.002606s

5 0.0012109s 0.002912s

6 0.001446s 0.002332s

7 0.001459s 0.002196s

8 0.001116s 0.002303s

9 0.000798s 0.001805s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.011787s
GPU time (Transfer time included) 0.022475s
CPU time 0.004331s

Running matrix_max on an 128 x 128 matrix

Local Work Size = 32
Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC .BUF)

0 0.002256s 0.002659s

1 0.001104s 0.002447s

2 0.001607s 0.001493s

3 0.0011s 0.0022s 0.000137s

4 0.001496s 0.001978s

5 0.001525s 0.003187s

6 0.001503s 0.002482s

7 0.001508s 0.00247s

8 0.001451s 0.002497s

9 0.001335s 0.002292s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 0.014885s
GPU time (Transfer time included) 0.023705s
CPU time 0.00461s

Running matrix_max on an 128 x 128 matrix

Local Work Size = 64
Number of CPU workers = 4
GPU(EX.BUF)

0 0.001582s
0.001441s
0.001541s
0.001085s
0.001577s
0.001313s
0.000906s
0.001042s

GPU(INC . BUF)
0023555
.002108s
002106
002548
002477s
.002331s
0013855
0022195

[=NeNololelelele]

10.5719s
361.24s

CPU
.00304s
.000138s
.00017s
.000215s
.000149s
.000151s
.000173s
.000131s
.000236s
.000167s

[oNoNoNoNeNoNo oo Ne]

TIME (AVG)
0.0012984
0.0016064
0.000457s

n n

CPU
.003017s
.000147s
.000152s
.000146s
.000147s
.000159s
.000162s
.000122s
.000129s
.00015s

[oNeNoNoNeNoNo oo Ne]

TIME (AVG)
0.0011787s
0.0022475s
0.0004331s

CPU

0.003209s
0.000149s
0.000245s

.000137s
.000171s
.000122s
.000119s
.000155s
.000166s

[oNeNoNoNoNe)

TIME (AVG)
0.0014885s
0.00237055
0.000461s

CPU

.003233s
.000122s
.000159s
.000146s
.000166s
.000191s
.000158s
.000145s

[=NeoNololelolele]

42

8 0.001406s 0.001531s

9 0.001475s 0.002322s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.013368s
GPU time (Transfer time included) 0.021382s
CPU time 0.004745s
Running matrix_max on an 128 x 128 matrix

Local Work Size = 128

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC .BUF)

0 0.001166s 0.002359s

1 0.001147s 0.000991s

2 0.001552s 0.002307s

3 0.001647s 0.00249s

4 0.000923s 0.002384s

5 0.001337s 0.001148s

6 0.000822s 0.001856s

7 0.00089s 0.002228s

8 0.000692s 0.001153s

9 0.001345s 0.001294s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.011521s
GPU time (Transfer time included) 0.01821s
CPU time 0.011611s
Running matrix_max on an 128 x 128 matrix

Local Work Size = 256

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC .BUF)

0 0.000592s 0.002583s

1 0.000597s 0.001216s

2 0.001406s 0.002086s

3 0.000706s 0.00217s

4 0.000928s 0.002013s

5 0.001447s 0.001383s

6 0.000926s 0.002435s

7 0.001596s 0.002584s

8 0.000921s 0.002177s

9 0.0014s 0.001418s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.010519s
GPU time (Transfer time included) 0.020065s
CPU time 0.004888s
Running matrix_max on an 256 x 256 matrix

Local Work Size = 4

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC .BUF)

0 0.002058s 0.002926s

1 0.001675s 0.002633s

2 0.001843s 0.002728s

3 0.001829s 0.002599s

4 0.001959s 0.003095s

5 0.002033s 0.002957s

6 0.002038s 0.002937s

7 0.001865s 0.001716s

8 0.001564s 0.00257s

9 0.002022s 0.003117s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.018886s
GPU time (Transfer time included) 0.027278s
CPU time 0.005351s
Running matrix_max on an 256 x 256 matrix

Local Work Size = 8

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC .BUF)

0 0.001733s 0.002496s

1 0.001563s 0.001583s

2 0.000974s 0.002618s

0.000186

0.000152s
0.000273s

TIME (AVG)

0.0013368s
0.0021382s
0.0004745s

CPU

.010251s
.000135s
.000128s
.000126s
.000142s
.000165s
.000126s
.000127s
.000123s
.000288s

[oNeNeNoNeNoNo oo Ne]

TIME (AVG)
0.0011521s
0.001821s
0.0011611s

CPU
0.003145s
0.000133s
0.000151s
0.000152s
0.00016s
0.000169s
0.000256s
0.00015s
0.000386s
s

TIME (AVG)

0.0010519s
0.00200655
0.0004888s

CPU

.003533s
.000193s
.000257s
.000196s
.000207s
.000193s
.000195s
.000193s
.000196s
.000188s

[eNeNoNoNeNoNoNoNoNe]

TIME (AVG)

0.0018886s
0.0027278s
0.0005351s

CPU

0.003082s
0.000292s
0.000197s

43

APPENDIX B. EXECUTION OUTPUT

3 0.001788s 0.002666s

4 0.001691s 0.002968s

5 0.001525s 0.002397s

6 0.001605s 0.002426s

7 0.001568s 0.002352s

8 0.001411s 0.002353s

9 0.001358s 0.002808s

WHAT TIME (TOT)
GPU time (Transfer time excluded) 0.015216s
GPU time (Transfer time included) 0.024667s
CPU time 0.005086s

Running matrix_max on an 256 x 256 matrix

Local Work Size = 16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.00172s 0.002676s

1 0.002563s 0.002492s

2 0.001315s 0.002299s

3 0.001518s 0.002548s

4 0.001532s 0.002389s

5 0.001725s 0.002478s

6 0.001715s 0.002639s

7 0.001725s 0.002646s

8 0.001766s 0.002621s

9 0.001716s 0.004157s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.017295s
GPU time (Transfer time included) 0.026945s
CPU time 0.005069s

Running matrix_max on an 256 x 256 matrix

Local Work Size = 32

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC .BUF)

0 0.001528s 0.002729s

1 0.001557s 0.002734s

2 0.001804s 0.002561s

3 0.00175s 0.002776s

4 0.001835s 0.002278s

5 0.001528s 0.002406s

6 0.001716s 0.00247s

7 0.001519s 0.0023s 0.000205
8 0.001529s 0.002291s

9 0.001776s 0.002629s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.016542s
GPU time (Transfer time included) 0.025174s
CPU time 0.012027s
Running matrix_max on an 256 x 256 matrix

Local Work Size = 64

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC .BUF)

0 0.00159s 0.002474s

1 0.001488s 0.0022s 0.00029s
2 0.00157s 0.002674s

3 0.001762s 0.002774s

4 0.001338s 0.002666s

5 0.000919s 0.002831s

6 0.001885s 0.00233s

7 0.001746s 0.002618s

8 0.00154s 0.002643s

9 0.001595s 0.001548s

WHAT TIME (TOT)
GPU time (Transfer time excluded) 0.015433s
GPU time (Transfer time included) 0.024758s
CPU time 0.005129s

Running matrix_max on an 256 x 256 matrix

Local Work Size = 128

.000205s
.000206s
.000253s
.000235s
.000216s
.000205s
.000195s

[=NeNeNoNeNeNe)

TIME (AVG)

0.0015216's
0.0024667s
0.0005086's

CPU
.00316s
.000188s
.000207s
.0002s
.000279s
.000199s
.000239s
.000185s
.000204s
.000208s

[eNeNeNoNeNoNo oo Ne]

TIME (AVG)

0.0017295s
0.0026945s
0.0005069s

CPU

.010113s
.000177s
.000209s
.000227s
.000216s
.000194s
.000208s

.000192s
.000286s

[Nl NeNeNeNo oo Ne]

TIME (AVG)

0.0016542s
0.0025174s
0.0012027s

CPU
0.003036s

.000191s
.000193s
.00018s

.000205s
.000356s
.000192s
.000203s
.000283s

[oNeNeNeNoNoNeNe)

TIME (AVG)

0.0015433s
0.0024758s
0.0005129s

44

Number of CPU workers
ITER GPU(EX.BUF)

GPU(INC . BUF)

0 0.001456s 0.002627s

1 0.001544s 0.003878s

2 0.00148s 0.002359s

3 0.001736s 0.002755s

4 0.001806s 0.002383s

5 0.001759s 0.002853s

6 0.001758s 0.002761s

7 0.001748s 0.002698s

8 0.00144s 0.002319s

9 0.001519s 0.002384s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.016246s
GPU time (Transfer time included) 0.027017s
CPU time 0.004921s

Running matrix_max on an 256 x 256 matrix

Local Work Size = 256
Number of CPU workers

ITER GPU(EX.BUF) GPU(INC .BUF)

0 0.000763s 0.003019s

1 0.001494s 0.001471s

2 0.00149s 0.002564s

3 0.001676s 0.002821s

4 0.001794s 0.001528s

5 0.001692s 0.002221s

6 0.001723s 0.003359s

7 0.001805s 0.002571s

8 0.001471s 0.001451s

9 0.00136s 0.002619s

WHAT TIME (TOT)
GPU time (Transfer time excluded) 0.015268s
GPU time (Transfer time included) 0.023624s
CPU time 0.004965s

Running matrix_max on an 512 x 512 matrix

Local Work Size = 4
Number of CPU workers

ITER GPU(EX.BUF) GPU(INC . BUF)

0 0.003581s 0.005311s

1 0.003582s 0.004912s

2 0.003549s 0.004037s

3 0.003546s 0.005449s

4 0.003427s 0.005251s

5 0.003328s 0.004118s

6 0.003635s 0.005577s

7 0.002633s 0.005227s

8 0.003376s 0.004945s

9 0.003091s 0.00494s

WHAT TIME (TOT)
GPU time (Transfer time excluded) 0.033748s
GPU time (Transfer time included) 0.049767s
CPU time 0.009591s

Running matrix_max on an 512 x 512 matrix

Local Work Size = 8
Number of CPU workers
ITER GPU(EX.BUF)
0.002372s
0.002362s
0.002784s
0.002342s
0.002386s
0.001958s
0.002367s
0.002134s
0.002645s
0.002637s

PU(INC .BUF)
.002607s

.003144s
.002736's
.003731s
.003967s
.00393s
.003991s
0031155
.00306's

G
0
0
0
0
0
0
0
0
0
0.004239s

§ ©CO~NOUIAWNH=O
_'

TIME(TOT)

CPU

.003016s
.000215s
.000207s
.000207s
.000213s
.000185s
.000207s
.000193s
.000211s
.000267s

[eNeNeNoNeNoNo oo No]

TIME (AVG)
0.0016246s
0.0027017s
0.0004921s

CPU
.002969s
.000187s
.000203s
.000196s
.000215s
.00023s
.000223s
.000202s
.000255s
.000285s

[eNeNoNoNeNoNo oo Ne]

TIME (AVG)
0.0015268s
0.0023624s
0.0004965s

CPU
.006013s
.000372s
.00039s
.000385s
.000399s
.000489s
.000389s
.000379s
.000402s
.000373s

[oNeNeNoNeNoNo oo Ne]

TIME (AVG)
0.0033748s
0.0049767s
0.0009591s

CPU
.003433s
.00039s
.000377s
.000516s
.000393s
.000396s
.000385s
.00039s
.00036s
.000376s

[eNeNoNoNeNoNo oo Ne]

TIME (AVG)

45

APPENDIX B. EXECUTION OUTPUT

GPU time (Transfer time excluded) 0.023987s
GPU time (Transfer time included) 0.03452s
CPU time 0.007016s
Running matrix_max on an 512 x 512 matrix

Local Work Size = 16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.001427s 0.006169s

1 0.002124s 0.00367s

2 0.002405s 0.00406s

3 0.001305s 0.003754s

4 0.002041s 0.002682s

5 0.002204s 0.004033s

6 0.001409s 0.002312s

7 0.002095s 0.003267s

8 0.00203s 0.003635s

9 0.002061s 0.002369s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.019101s
GPU time (Transfer time included) 0.035951s
CPU time 0.017945s
Running matrix_max on an 512 x 512 matrix

Local Work Size = 32

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.00462s 0.005915s

1 0.004092s 0.006272s

2 0.004315s 0.006022s

3 0.00464s 0.006097s

4 0.004555s 0.006319s

5 0.004618s 0.005079s

6 0.004564s 0.006543s

7 0.004732s 0.00629s

8 0.004601s 0.005026s

9 0.004628s 0.006035s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.045365s
GPU time (Transfer time included) 0.059598s
CPU time 0.013915s
Running matrix_max on an 512 x 512 matrix

Local Work Size = 64

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.004532s 0.00656s

1 0.004591s 0.006119s

2 0.004628s 0.004923s

3 0.004503s 0.005256s

4 0.004758s 0.006546s

5 0.004707s 0.006483s

6 0.0048s 0.006491s 0.000397
7 0.004751s 0.006485s

8 0.004783s 0.00559s

9 0.004844s 0.006159s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.046897s
GPU time (Transfer time included) 0.060612s
CPU time 0.006638s
Running matrix_max on an 512 x 512 matrix

Local Work Size = 128

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.004497s 0.005994s

1 0.003917s 0.005922s

2 0.004545s 0.006247s

3 0.004814s 0.00636s

4 0.004244s 0.005759s

5 0.004457s 0.004633s

6 0.005942s 0.006509s

0.0023987s
0.003452s
0.0007016s

CPU

.014051s
.000494s
.000411s
.000395s
.000506s
.000398s
.000386s
.000383s
.000504s
.000417s

[eNeNeNoNoNoNo oo No]

TIME (AVG)

0.0019101s
0.0035951s
0.0017945s

CPU
.010312s
.0004s
.000394s
.000398s
.000371s
.000427s
.000397s
.000383s
.000438s
.000395s

[eNeNeNoNeNoNo oo No]

TIME (AVG)

0.00453655
0.0059598's
0.0013915s

CPU

.003189s
.000386s
.000406s
.000388s
.000373s
.000368s

.000363s
.0004s
.000368s

[eNeNeRNeNeNe oo Nl

TIME (AVG)

0.0046897s
0.0060612s
0.0006638s

CPU

.003219s
.000391s
.000376s
.000387s
.000393s
.000391s
.000373s

[=NeNeNoNeNeNe]

46

7 0.004811s 0.006163s

8 0.004805s 0.00611s

9 0.004453s 0.005198s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.046485s
GPU time (Transfer time included) 0.058895s
CPU time 0.006703s
Running matrix_max on an 512 x 512 matrix

Local Work Size = 256

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.004612s 0.005496s

1 0.004806s 0.006357s

2 0.004594s 0.005249s

3 0.004532s 0.005147s

4 0.004701s 0.006346s

5 0.004534s 0.006227s

6 0.004788s 0.00643s

7 0.004566s 0.006088s

8 0.004744s 0.005411s

9 0.00381s 0.005289s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.045687s
GPU time (Transfer time included) 0.05804s
CPU time 0.012706s
Running matrix_max on an 1024 x 1024 matrix

Local Work Size = 4

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.009783s 0.013521s

1 0.009828s 0.016197s

2 0.009617s 0.0138s 0.00118s
3 0.009765s 0.011175s

4 0.009567s 0.013369s

5 0.009699s 0.013311s

6 0.009629s 0.01356s

7 0.00982s 0.012597s

8 0.008899s 0.013642s

9 0.009707s 0.012726s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.096314s
GPU time (Transfer time included) 0.133898s
CPU time 0.014907s
Running matrix_max on an 1024 x 1024 matrix

Local Work Size = 8

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.00602s 0.007891s

1 0.006157s 0.009102s

2 0.00606s 0.011089s

3 0.006023s 0.009611s

4 0.006284s 0.009754s

5 0.006116s 0.009796s

6 0.006089s 0.00886s

7 0.005985s 0.009824s

8 0.006149s 0.010218s

9 0.00585s 0.009659s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.060733s
GPU time (Transfer time included) 0.095804s
CPU time 0.022907s
Running matrix_max on an 1024 x 1024 matrix

Local Work Size = 16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.004852s 0.007888s

1 0.004668s 0.008571s

0.000383s
0.00038s
0.00041s

TIME (AVG)

0.0046485s
0.0058895s
0.0006703s

CPU
.008763s
.000387s
.00041s
.000528s
.000393s
.000379s
.000467s
.000462s
.000455s
.000462s

[eNeNeNoNoNoNo oo No]

TIME (AVG)
0.0045687s
0.005804s
0.0012706's

CPU
0.004329s
0.001169s

.00116s

.001163s
.001209s
.00118s

.001182s
.001167s
.001168s

[=NeNeNoNoNoNe)

TIME (AVG)

0.0096314s
0.0133898s
0.0014907s

CPU
.011243s
.001177s
.001151s
.001272s
.001159s
.001167s
.002135s
.00126s
.001168s
.001175s

[eNeNeNoNoNoNo oo No]

TIME (AVG)

0.0060733s
0.0095804s
0.0022907s

CPU
0.003961s
0.00272s

47

APPENDIX B. EXECUTION OUTPUT

2 0.005048s 0.008662s

3 0.00498s 0.008991s

4 0.005059s 0.008952s

5 0.004067s 0.008756s

6 0.004773s 0.008607s

7 0.004751s 0.008759s

8 0.004799s 0.008623s

9 0.004764s 0.007621s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.047761s
GPU time (Transfer time included) 0.08543s
CPU time 0.016552s

Running matrix_max
Local

on an 1024 x 1024 matrix

Work Size = 32

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.015142s 0.017043s

1 0.021241s 0.025413s

2 0.015065s 0.025127s

3 0.015205s 0.018223s

4 0.020599s 0.017911s

5 0.015305s 0.018813s

6 0.020905s 0.019487s

7 0.0156s 0.01823s

8 0.015499s 0.024815s

9 0.021106s 0.018921s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.175667s
GPU time (Transfer time included) 0.203983s
CPU time 0.014625s
Running matrix_max on an 1024 x 1024 matrix

Local Work Size = 64

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.027427s 0.030744s

1 0.028529s 0.02936s

2 0.029176s 0.029449s

3 0.029704s 0.032546s

4 0.028593s 0.030487s

5 0.028324s 0.033259s

6 0.027266s 0.033412s

7 0.028815s 0.029342s

8 0.027337s 0.033338s

9 0.027946s 0.030395s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.283117s
GPU time (Transfer time included) 0.312332s
CPU time 0.018603s
Running matrix_max on an 1024 x 1024 matrix

Local Work Size = 128

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.027443s 0.031353s

1 0.028296s 0.032279s

2 0.029408s 0.031936s

3 0.029217s 0.029927s

4 0.027704s 0.032497s

5 0.027188s 0.031925s

6 0.027231s 0.030137s

7 0.028792s 0.032743s

8 0.027958s 0.030945s

9 0.027412s 0.033447s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.280649s
GPU time (Transfer time included) 0.317189s
CPU time 0.021586s

Running matrix_max

on an 1024 x 1024 matrix

0.001307

.001186s
.001211s
.001186s
.001177s
.001454s
.001201s
.001187s
.001269s

[eNeNeNoeNoNeNe)

TIME (AVG)
0.0047761s
0.008543s
0.0016552s

CPU
0.003967s
0.001209s
0.001166s
0.001158s
0.001195s
0.001155s
0.001162s
s

0

0

001143s
001163s

TIME (AVG)

0.0175667s
0.0203983s
0.0014625s

CPU
.007786s
.001164s
.001277s
.001145s
.00116s
.001152s
.001177s
.001182s
.001286s
.001274s

[eNeNeNoNeNoNo oo No]

TIME (AVG)

0.0283117s
0.0312332s
0.0018603s

CPU
.010925s
.001181s
.001178s
.001168s
.001176s
.001178s
.001185s
.001168s
.00126s
.001167s

[eNeNeNoNeNoNo oo Nol

TIME (AVG)

0.0280649s
0.0317189s
0.0021586's

48

Local Work Size = 256
Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.026769s 0.029023s

1 0.027628s 0.030637s

2 0.02746s 0.030373s

3 0.027631s 0.031535s

4 0.027323s 0.030836s

5 0.027196s 0.026719s

6 0.027129s 0.031038s

7 0.027836s 0.030373s

8 0.026442s 0.030461s

9 0.027806s 0.032078s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 0.27322s

GPU time (Transfer time included) 0.303073s
CPU time 0.021436s
Running matrix_max on an 2048 x 2048 matrix

Local Work Size = 4

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.037975s 0.044523s

1 0.034144s 0.046313s

2 0.034182s 0.047215s

3 0.034537s 0.047141s

4 0.034357s 0.046892s

5 0.033332s 0.04485s

6 0.034521s 0.047309s

7 0.034373s 0.04499s

8 0.034246s 0.046476s

9 0.034176s 0.046729s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 0.345843s
GPU time (Transfer time included) 0.462438s
CPU time 0.045611s
Running matrix_max on an 2048 x 2048 matrix

Local Work Size = 8

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.019552s 0.031673s

1 0.019347s 0.031547s

2 0.019734s 0.03188s

3 0.019609s 0.029883s

4 0.019546s 0.031881s

5 0.019449s 0.032877s

6 0.019939s 0.03216s

7 0.019309s 0.031995s

8 0.019084s 0.030489s

9 0.019495s 0.026772s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 0.195064s
GPU time (Transfer time included) 0.311157s
CPU time 0.051958s
Running matrix_max on an 2048 x 2048 matrix

Local Work Size = 16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.016829s 0.028146s

1 0.017173s 0.027926s

2 0.016533s 0.030183s

3 0.017411s 0.030866s

4 0.01724s 0.029749s

5 0.017385s 0.030135s

6 0.017242s 0.027609s

7 0.016919s 0.030108s

8 0.017344s 0.029764s

9 0.016754s 0.02951s

CPU
.010639s
.001155s
.001168s
.0015s
.001161s
.001158s
.001165s
.001154s
.001177s
.001159s

[eNeNeNoloNoNo ol Nol

TIME (AVG)
0.027322s
0.0303073s
0.0021436's

CPU

.007314s
.004208s
.004219s
.004189s
.004176s
.004295s
.004217s
.004199s
.004546s
.004248s

[eNeNeNoleNeNo oo Nol

TIME (AVG)

0.0345843s
0.0462438s
0.0045611s

CPU
.01173s
.004211s
.004216s
.004774s
.004177s
.004188s
.004882s
.004182s
.004291s
.005307s

[eNeNeNoleNoNo oo Nol

TIME (AVG)

0.0195064s
0.0311157s
0.0051958s

CPU

.007165s
.004239s
.004226s
.004184s
.004207s
.004214s
.004327s
.004211s
.004185s
.004325s

[eNeNeNoNeNoNo oo Nol

49

APPENDIX B. EXECUTION OUTPUT

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.17083s
GPU time (Transfer time included) 0.293996s
CPU time 0.045283s
Running matrix_max on an 2048 x 2048 matrix

Local Work Size = 32

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.03854s 0.059666s

1 0.04447s 0.053674s

2 0.041393s 0.051144s

3 0.037739s 0.056971s

4 0.063651s 0.052132s

5 0.038427s 0.049212s

6 0.04236s 0.051234s

7 0.038562s 0.058057s

8 0.053482s 0.048596s

9 0.044194s 0.051001s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.442818s
GPU time (Transfer time included) 0.531687s
CPU time 0.049721s
Running matrix_max on an 2048 x 2048 matrix

Local Work Size = 64

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.09886s 0.112406s

1 0.07567s 0.111075s

2 0.073248s 0.117349s

3 0.095706s 0.086189s

4 0.10048s 0.110765s

5 0.10083s 0.084656s

6 0.096937s 0.089828s

7 0.09979s 0.086881s

8 0.096096s 0.085355s

9 0.098991s 0.113271s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.936608s
GPU time (Transfer time included) 0.997775s
CPU time 0.045156s

Running matrix_max on an 2048 x 2048 matrix

Local Work Size = 128

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.104191s 0.112773s

1 0.102969s 0.112369s

2 0.103673s 0.112885s

3 0.099153s 0.115232s

4 0.105941s 0.114272s

5 0.105845s 0.11226s

6 0.105462s 0.113682s

7 0.100953s 0.114217s

8 0.102782s 0.114758s

9 0.104498s 0.11809s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 1.03547s
GPU time (Transfer time included) 1.14054s
CPU time 0.049659s
Running matrix_max on an 2048 x 2048 matrix

Local Work Size = 256

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.107878s 0.114359s

1 0.107007s 0.112568s

2 0.109405s 0.118287s

3 0.103465s 0.11491s

4 0.10545s 0.116487s

5 0.101241s 0.123807s

TIME (AVG)
0.017083s
0.0293996's
0.0045283s

CPU
.011355s
.004299s
.004589s
.0042s
.004199s
.00431s
.004207s
.004187s
.004185s
.00419s

[eNeNeNoloNeNo ol Nol

TIME (AVG)

0.0442818s
0.0531687s
0.0049721s

CPU
.007138s
.004304s
.004199s
.004213s
.004206s
.004214s
.00423s
.004231s
.004208s
.004213s

[eNeNeNoleNoNo oo Nol

TIME (AVG)

0.0936608s
0.0997775s
0.0045156's

CPU
.01054s
.004416s
.005257s
.004208s
.004288s
.00418s
.00418s
.004221s
.004191s
.004178s

[eNeNeNoleNoNo oo No]

TIME (AVG)
0.103547s
0.114054s
0.0049659s

CPU
0.006965s
0.004204s
0.004159s
0.004184s
0.004216s
0.00422s

50

6 0.102558s 0.112428s

7 0.105321s 0.120157s

8 0.103111s 0.114123s

9 0.102518s 0.117968s

WHAT TIME(TOT)

GPU time (Transfer time excluded) 1.04795s

GPU time (Transfer time included) 1.16509s

CPU time 0.044737s

Running matrix_max on an 4096 x 4096 matrix

Local Work Size = 4
Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.131658s 0.179302s

1 0.131686s 0.17934s

2 0.133496s 0.172332s

3 0.131699s 0.168124s

4 0.131565s 0.169192s

5 0.131663s 0.179068s

6 0.133576s 0.176722s

7 0.133376s 0.176414s

8 0.133366s 0.166915s

9 0.13288s 0.174505s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 1.32497s
GPU time (Transfer time included) 1.74191s
CPU time 0.167131s

Running matrix_max on an 4096 x 4096 matrix

Local Work Size = 8
Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.076053s 0.115518s

1 0.077227s 0.118312s

2 0.075462s 0.118964s

3 0.077935s 0.120758s

4 0.086644s 0.115309s

5 0.080869s 0.118394s

6 0.076934s 0.117439s

7 0.075285s 0.116531s

8 0.074601s 0.113045s

9 0.075773s 0.117732s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.776783s
GPU time (Transfer time included) 1.172s 0.1172s
CPU time 0.165419s

Running matrix_max on an 4096 x 4096 matrix

Local Work Size = 16
Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.057033s 0.114978s

1 0.061941s 0.09736s

2 0.05934s 0.10736s

3 0.066152s 0.10568s

4 0.067301s 0.103986s

5 0.081248s 0.10584s

6 0.071491s 0.112342s

7 0.070696s 0.104142s

8 0.066575s 0.098806s

9 0.069086s 0.101545s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.670863s
GPU time (Transfer time included) 1.05204s
CPU time 0.165873s

Running matrix_max on an 4096 x 4096 matrix

Local Work Size = 32
Number of CPU workers = 4
ITER GPU(EX.BUF)

0 0.137356s

GPU(INC .BUF)
0.161587s

0.004209s
0.004217s
0.004181s
0.004182s

TIME (AVG)
0.104795s
0.116509s
0.0044737s

CPU
.019246s
.016279s
.016338s
.016302s
.017017s
.016488s
.016252s
.016498s
.01624s
.016471s

OCOO0OO0OO0OO0OOOOOoO

TIME (AVG)
0.132497s
0.174191s
0.0167131s

CPU
.019122s
.01623s
.016383s
.016228s
.016245s
.016238s
.016219s
.016251s
.016265s
.016238s

OCOO0OO0OOOO0OOOO

TIME (AVG)
0.0776783s

0.0165419s

CPU
.019586s
.01624s
.016233s
.016265s
.016206s
.016221s
.016224s
.016285s
.016206s
.016407s

[eNeoNeNoloNoNo oo No]

TIME (AVG)
0.0670863s
0.105204s
0.0165873s

CPU
0.019011s

51

APPENDIX B. EXECUTION OUTPUT

1 0.130635s 0.192045s
2 0.145129s 0.17879s
3 0.114893s 0.169601s
4 0.153264s 0.169223s
5 0.151884s 0.184035s
6 0.144728s 0.211291s
7 0.116898s 0.185365s
8 0.115248s 0.189688s
9 0.15323s 0.16913s
WHAT TIME (TOT)
GPU time (Transfer time excluded) 1.36327s
GPU time (Transfer time included) 1.81076s
CPU time 0.167033s

Running matrix_max on an 4096 x 4096 matrix

Local Work Size = 64
Number of CPU workers = 4
ITER GPU(EX.BUF)

GPU(INC .BUF)

0 0.237582s 0.271394s

1 0.248587s 0.341792s

2 0.317244s 0.357047s

3 0.304983s 0.361604s

4 0.332338s 0.278672s

5 0.305837s 0.344257s

6 0.33021s 0.355925s

7 0.318338s 0.348765s

8 0.331313s 0.35637s

9 0.33192s 0.335312s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 3.05835s
GPU time (Transfer time included) 3.35114s
CPU time 0.169306s

Running matrix_max on an 4096 x 4096 matrix

Local Work Size = 128
Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.331774s 0.32765s

1 0.285925s 0.394738s

2 0.279375s 0.395744s

3 0.33099s 0.397785s

4 0.281085s 0.404075s

5 0.296238s 0.33581s

6 0.331469s 0.392683s

7 0.279669s 0.402449s

8 0.281285s 0.398493s

9 0.328756s 0.39021s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 3.02657s
GPU time (Transfer time included) 3.83964s
CPU time 0.171462s

Running matrix_max on an 4096 x 4096 matrix

Local Work Size = 256
Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF)

0 0.153446s 0.187273s

1 0.147271s 0.188242s

2 0.143291s 0.19893s

3 0.155284s 0.188041s

4 0.148455s 0.191923s

5 0.146254s 0.194932s

6 0.149059s 0.190919s

7 0.147974s 0.191543s

8 0.154037s 0.182802s

9 0.153081s 0.197119s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 1.49815s
GPU time (Transfer time included) 1.91172s
CPU time 0.16937s

.016236s
.016311s
.0163s

.016209s
.016241s
.017821s
.016305s
.016274s
.016325s

OCOO0OO0OO0OO0OOO0OO

TIME (AVG)
0.136327s
0.181076s
0.0167033s

CPU

.019043s
.016213s
.016227s
.016221s
.016305s
.016466s
.017171s
.017051s
.017363s
.017246s

OCOO0OO0OO0OO0OO0OOOO0O

TIME (AVG)
0.305835s
0.335114s
0.0169306s

CPU

.019931s
.018028s
.017022s
.016458s
.016573s
.016262s
.017332s
.016792s
.016691s
.016373s

OCOO0OO0OO0OOOOOOoO

TIME (AVG)
0.302657s
0.383964s
0.0171462s

CPU
.019068s
.016242s
.01631s
.016246s
.016182s
.016243s
.02001s
.016247s
.016589s
.016233s

OCOO0OO0OO0OOO0OOOO0O

TIME (AVG)
0.149815s
0.191172s
0.016937s

52

Running matrix_max on an 8192 x 8192 matrix
Local Work Size = 4
Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF) CPU

0 0.486677s 0.481426s 0.067399s
1 0.478481s 0.486936s 0.064348s
2 0.478843s 0.475862s 0.06434s
3 0.47912s 0.476938s 0.06448s
4 0.477748s 0.475909s 0.06429s
5 0.474912s 0.478002s 0.064853s
6 0.474519s 0.477661s 0.064267s
7 0.477599s 0.475624s 0.064315s
8 0.475162s 0.476265s 0.064265s
9 0.475774s 0.475413s 0.064363s
WHAT TIME(TOT) TIME (AVG)
GPU time (Transfer time excluded) 4.77883s 0.477883s
GPU time (Transfer time included) 4.78004s 0.478004s
CPU time 0.64692s 0.064692s
Running matrix_max on an 8192 x 8192 matrix

Local Work Size = 8

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF) CPU

0 0.245722s 0.244436s 0.067372s
1 0.245343s 0.2448s 0.065246s

2 0.245571s 0.245364s 0.064321s
3 0.245069s 0.244648s 0.066329s
4 0.24552s 0.245168s 0.06469s
5 0.243336s 0.244409s 0.064297s
6 0.245751s 0.246419s 0.064986s
7 0.254729s 0.243795s 0.064239s
8 0.245093s 0.244538s 0.06425s
9 0.244242s 0.243915s 0.065069s
WHAT TIME(TOT) TIME (AVG)
GPU time (Transfer time excluded) 2.46038s 0.246038s
GPU time (Transfer time included) 2.44749s 0.244749s
CPU time 0.650799s 0.0650799s
Running matrix_max on an 8192 x 8192 matrix

Local Work Size = 16

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF) CPU

0 0.138015s 0.138181s 0.067772s
1 0.137435s 0.138433s 0.064527s
2 0.13731s 0.138422s 0.064354s
3 0.137315s 0.138138s 0.064329s
4 0.137493s 0.137672s 0.06508s
5 0.137433s 0.138425s 0.066035s
6 0.136428s 0.137979s 0.064333s
7 0.137609s 0.137346s 0.064326s
8 0.138453s 0.137923s 0.064256s
9 0.137136s 0.136742s 0.064212s
WHAT TIME(TOT) TIME(AVG)
GPU time (Transfer time excluded) 1.37463s 0.137463s
GPU time (Transfer time included) 1.379265s 0.137926s
CPU time 0.649224s 0.0649224s
Running matrix_max on an 8192 x 8192 matrix

Local Work Size = 32

Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC.BUF) CPU

0 0.10669s 0.115407s 0.067092s
1 0.108893s 0.115574s 0.064317s
2 0.115982s 0.120901s 0.06571s
3 0.115868s 0.116144s 0.064247s
4 0.115581s 0.114323s 0.066162s
5 0.1153365s 0.11988s 0.064228s
6 0.115913s 0.115885s 0.064254s
7 0.114442s 0.108985s 0.064281s
8 0.106479s 0.121078s 0.06445s
9 0.105123s 0.115441s 0.064192s

53

APPENDIX B. EXECUTION OUTPUT

WHAT

GPU time (Transfer time excluded)
GPU time (Transfer time included)
CPU time

TIME(TOT)
1.12031s
1.16362s
0.648933s

Running matrix_max on an 8192 x 8192 matrix

Local Work Size = 64
Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC . BUF)

0 0.084819s 0.084835s

1 0.084627s 0.086459s

2 0.086188s 0.086259s

3 0.084569s 0.085386s

4 0.08664s 0.087318s

5 0.083892s 0.085589s

6 0.084584s 0.084735s

7 0.085227s 0.083969s

8 0.086087s 0.085147s

9 0.086052s 0.085495s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 0.852685s
GPU time (Transfer time included) 0.855192s
CPU time 0.64617s

Running matrix_max on an 8192 x 8192 matrix

Local Work Size = 128
Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC . BUF)

0 0.106948s 0.109526s

1 0.107187s 0.113418s

2 0.105224s 0.105687s

3 0.123325s 0.112672s

4 0.117601s 0.105831s

5 0.092825s 0.109842s

6 0.117525s 0.111299s

7 0.105265s 0.106353s

8 0.113094s 0.115145s

9 0.108792s 0.107833s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 1.09779s
GPU time (Transfer time included) 1.09761s
CPU time 0.648488s

Running matrix_max on an 8192 x 8192 matrix

Local Work Size = 256
Number of CPU workers = 4

ITER GPU(EX.BUF) GPU(INC . BUF)

0 0.114115s 0.106475s

1 0.076723s 0.118151s

2 0.112423s 0.108933s

3 0.111586s 0.099482s

4 0.114877s 0.111822s

5 0.108627s 0.112013s

6 0.112327s 0.113743s

7 0.105834s 0.113864s

8 0.110282s 0.090779s

9 0.107973s 0.110524s

WHAT TIME(TOT)
GPU time (Transfer time excluded) 1.07477s
GPU time (Transfer time included) 1.08579s
CPU time 0.647787s

TIME (AVG)
0.112031s
0.116362s
0.0648933s

CPU
.067364s
.064226s
.064337s
.06468s
.064252s
.064227s
.064354s
.064289s
.064296s
.064145s

[eNoloNoNoNoNoNoNeNe)

TIME (AVG)
0.08526855
0.0855192s
0.064617s

CPU
.067848s
.064364s
.064626s
.064766s
.064882s
.064635s
.064337s
.064383s
.06435s
.064297s

[eNeoloNoNeNoNoNoNoNe)

TIME (AVG)
0.109779s
0.109761s
0.0648488s

CPU

.068122s
.064366s
.065309s
.064281s
.064221s
.064338s
.064301s
.064213s
.064328s
.064308s

[eNeoNoNolololoNoNoNol

TIME (AVG)
0.107477s
0.108579s
0.0647787s

54

www.kth.se

