Utilizing Particle Systems
for Strand Animation

MAGNUS RAUNIO &

LB %,
EFKTHS

VETENSKAP
39 OCH KONST oF

Y

KTH Computer Science
and Communication

Bachelor of Science Thesis
Stockholm, Sweden 2012

Utilizing Particle Systems
for Strand Animation

MAGNUS RAUNIO

DD143X, Bachelor’s Thesis in Computer Science (15 ECTS credits)
Degree Progr. in Computer Science and Engineering 300 credits
Royal Institute of Technology year 2012

Supervisor at CSC was Michael Minock

Examiner was Marten Bjérkman

URL: www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/
raunio_magnus_K12057.pdf

Royal Institute of Technology
School of Computer Science and Communication

KTH CSC
SE-100 44 Stockholm, Sweden

URL: www.kth.se/csc

Utilizing Particle Systems for Strand
Animation

Magnus Raunio, 900531-5131
Phone: 0760380227
Address: Héaggviagen 15 A, Tyresd 13552
mraunio@kth.se

Kungliga Tekniska hogskolan
Degree Project in Computer Science, First Level - DD143X
Supervisor: Michael Minock

May 20, 2012

Abstract

In this paper we look at earlier research into particle systems and
particularly on how they have been used for creating strands. We use
this knowledge to implement our own particle system to simulate
strands, in order to understand the strengths and weaknesses of
particle systems better. What we find is that particle systems give
highly detailed images but that they are very costly to compute when
the number of particles increase. As such, when implementing
particle systems you should create different level of details of the
particle system which limits the number of particles depending on the
distance from the viewer as well as try to use approximative fast
algorithms to compute the particles behaviours.

mailto:mraunio@kth.se

Contents

(1__Introduction|

2 Background|

APP

[4 Implementation|

4.1 Particle System Structure|00

4.2 Particle System Rules|

5 Resultl
6D orl

12

13

15

16

1 Introduction

Particle systems is a pretty old technique that was first mentioned in a article
by William T. Reeves [9]. The purpose being to model "fuzzy” objects which
do not have a specific shape but instead behave and change according to a
pattern. The idea about these "fuzzy” objects was created in order to create
a flame effect for a movie but Reeves also mentions the ability to use the
same technique in order to model more tangible objects like grass. As such;
particle systems were one of the first approaches to creating strand models
which is a research area that later has been further developed in order to
create realistic fur or hair in animated movies.

The modern approach to model strands is usually more advanced than
the way suggested by Reeves in ’83 since it can be quite costly to use a
particle system where each particles lifespan represents a strand. But most
of these methods are still at their essence based on particle systems which is
why it’s interesting and required to understand the basics of particle systems
if you wish to create realistic strand animations.

Because of this we will try to gain an in depth understanding of strand
animation using particle systems by trying to implement a fast real time
running particle system. We hope that this will highlight the strengths
and weaknesses of the traditional approach to strand animations as well as
give readers a good idea of how to implement their own system for strand
animations. This is of interest mainly because these kinds of systems are
being more and more used in games since the hardware exists to support
these kinds of real time computations of large particle systems. When you
have the ability to pre render the particle system, like for a movie, the issues
of computation speed it not as important.

1.1 Overview of the document

In section [2] we will review earlier research into strand animation and particle
systems as well as bring up other techniques for modelling strands. Section
contains information on the general structure of the strand implementa-
tion and what we aim to achieve with the implementation. The detailed
description of the implementation is given in section [In section [we
describe what the final implementation was able to achieve in comparison
to the goals we set up in section [3] Section [6] evaluates the strengths and
weaknesses of our implementation of a strand animation system and what
you could do to improve the current implementation. Finally section [7] will

contain information about the project as whole and summarise sections
and [6l

2 Background

As mentioned in section [I] strand animation using particle systems has been
around since 1983 [9]. A particle system is structured such as there is a
source for particles, called an emitter, which creates, updates and kills parti-
cles. Once a particle is created its life cycle begins and the particles attributes
are updated by the emitter until the life cycle end and the particle is killed.
When using particle systems for strand animation you allow a particles life
cycle represent a strand. This is done by calculating the particles initial at-
tributes for the the whole lifespan in the creation phase, so the time between
the creation and destruction of the particle determines the strands length.
In the update phase you then update all the points that compose the strands
structure.

The computation of this can get quite expensive depending on which rules
you apply and on the number of strands you create. Usually when trying to
model strand animations you require thousands of strands to create a good
image so a rule with time complexity O(n?) or greater will become very
expensive. Collision between strands would fall within that time complexity
and this is one of the problems that many strand animation techniques try
to overcome since the lack of collision between strands can become very
noticeable when the strands get longer and get larger reach.

A normal problem among strand animation is when you try to create
long human hair where the interaction between the strands are essential to
create a realistic look. There’s mainly two techniques for trying to tackle this
issue. The first is to reduce the amount of stands generated by the particle
system and instead use the strand generated to create duplicates of them,
also known as wisps [§]. The second technique used is to instead of each
particle represent a individual strand the particles represent a continuum
which behaves like a fluid or similar and you render the strands on this
continuum [IJ.

When creating short strands you do not necessarily have to consider the
interaction between strands since the reach is so short, but there exists other
methods that are cheaper than particle systems for short strand animation.
They do however not provide as much flexibility as particle systems does,
but if you’re interested in only creating a simple strand animation like fur
the following reference is recommended [4].

3 Approach

What we aim to achieve with the strand animation is a realistic as possible
animation of hair. The focus will be on the use of particle systems to create
a realistic model of the hair movement and behaviour but we will also try
and add features such as self shadowing of the hair and whatever else will
give the final animation a realistic feel as possible. As such we the project
is basically divided into two parts, modelling and presentation.

For the modelling part we will aim to achieve the following effects/rules
for the hair behaviour:

Elasticity The strands should try to remain a constant length with al-
lowance of some stretching.

Gravity The strands should fall towards the ground.

Emitter motion The strands should react to change in the emitters posi-
tion and follow it in a realistic way.

Wind The strands should be able to react to a gust of wind and react
differently depending on how the strand lies against the wind.

Collision The strands should be able to collide with object which are given
as solid. At collision the strands should give way to the solid object.
The strands will however not collide with each other because of the
limitations of the approach to strand animation using particle systems
which is given in section 2]

Stiffness The strands should have a certain amount of stiffness which would
counteract the gravity effect which should make the strands bend to-
wards the ground instead of fall.

After we’ve successfully implemented these rules we will focus on the
presentation of the strands which will include the following:

Smoothness The strands should be smooth and not have jagged edges.
This effect could also be achieved in the modelling part by sampling
more points from the particles lifespan but this would increase the
computation cost of rules since there’s more points to calculate. The
smoothing effect should therefore be cheap to compute and still give a
good result.

Self Shadowing The strands should be self shadowing and this should cre-
ate a more realistic image of the strands.

4 Implementation

The particle system will be implemented in C# and XNA 4.0 and we will
try to give a top down view of the system in this section.

4.1 Particle System Structure

The particle system basically consists of Emitters which has a list of Strands
which it can apply a set of EmitterRules on as described in figure [l The
Application class described only handles set up of windows, the initialization
of Emitters and provides a loop for updating the rules/emitter and drawing
the strands/emitter so it does not really handle anything of interest. Once
a emitter has been initialized and none of the rules have been applied it will
look like the image in figure

StrandParticle Application
|
Tn 1
1 n
Strand Emitter ¥ EmitterRule
< > |

Figure 1: A overview of the particle system.

The Emitter class is initially
based on the emitter structure by
Jeff Lander [3] but has been mod-
ified in order to allow for strands
instead of particles. We've mod-
ified the FEmitter structure to al-
low for easier implementation of new
rules by extracting the rules from
the Emitter to a separate Emitter-
Rule class. The Strand class is basi-
cally a list of StrandParticles which
are created in the Strand construc-
tor from the given parameters.

It’s quite a simple structure and the difficulty we’re faced with after this
is creating subclasses of EmitterRule which makes the particle system come
alive. We also add a Shape class which is used by the collision rule and also
by the Emitter class to set the initial position and direction of strands.

Figure 2: A view of the Emitter once
all strands have been drawn but none
of the rules are applied.

4.2 Particle System Rules

All the rules for the particle systems are trying to
update particles in a strand. We will use the nota-
tion p; for the particle they are trying to update at
the moment and p; for the same particle but with
updated position. The ¢ indicates the distance from
the root particle which is attached to the emitter.
Once all the rules are applied it will look something
like figure [3]

Elasticity For the elasticity rule we've used a
known constraint rule [8]. The position p; is the
one being updated and p;_; is the position which
p; is trying to stay close to. L is the distance
the that the particles are trying to keep to each
other.

L—|pi—pi—1]

P = pi+ (i = pim1) R

The approximation ensures that the strands parti-
cles don’t move too far from each other and allows
a certain degree of freedom, a example of how the
elasticity rule looks once applied can be seen in fig-

Figure 3: The result of
all the particle system
rules applied.

Figure 4: Gravity rule
applied with elastic
rule not applied to the
left and elastic rule ap-
plied to the right.

ure @l The drawback of this approach is however if particle p; and p;—
would be in the same position it would cause a division by zero so we have
to implement a special case for this when we don’t move the particle at all

since we don’t know in which direction to move it.

Gravity The gravity rule is quite simple to implement and the result can
be seen in figure [l We have a vector g which determines the direction to-
wards the centre of gravity as well as the strength of the pull and At is
the time that has passed since the last update. We apply this rule on all
the strand particles except the first one since it’s in a fixed position by the

emitter.

p; = pi + gAt?

Emitter motion To implement the emitter mo-
tion rule we simply have to apply the change in the
emitters position to each strands root particle and
the elasticity rule will make sure the hair follows the
change in the emitters position naturally as seen in
figure [5] This is the only rule that is applied to the
root of the strand and which isn’t applied to the
other strand particles.

Wind The wind
sive to calculate
force on the strands to
which angle the wind hits them, see fig-
ure for the wind rule in action. We
use a known formula [5] to calculate the im-
pact of the wind on a particle where w
is the wvector which represents the wind, At
is the elapsed the last update
and d is the direction from p;,—1 to p;, i.e.
Pi — Pi—1- We then change the value of
w with small values over time to have the
effect of the wind increasing and decreas-
ing.

somewhat
we want the winds
change depending on

rule is
since

expen-

time since

|wxd|
w

Collision For the collision rule,
see figure [7] we simply check if any
particle is inside a Shape object and
the Shape object returns a vector
with which to adjust the particle
with so it ends up outside the Shape
(We don’t check the root particles
though, since they are static except
for them following the emitter). The
only Shape objects we have imple-
mented is spheres which makes the

p;=pi+ (r—|pi—ol|) *d

Figure 5: Hair moving
to the right with grav-
ity, elastic and motion
rule applied

Figure 6: Hair with
gravity, elasticy and a
wind vector from the
right

Figure 7: The hair from the emitter
collides with the emitter sphere and a
bigger sphere
collision detection very simple since we only need to check the distance from
the spheres origin, o, to the particle, p;, and if the vectors length between
these two points is less than the spheres radius, r, we adjust the particle
with the following amount where d is the normalized vector p; — o:

Stiffness The stiffness rule, figure [§]
we apply tries to make the strands
go back to their original position as
shown in figure and it’s stronger
the closer the particle is to the root
of the strand. We apply the rule
on all particles except the root parti-
cle. The rule has a strength factor
s that says how strongly the stiffness
rule is applied on a strand of length
l.

Figure 8: Hair with and with-
out the stiffness rule applied
di = pi-1 — pi-2 while under the effect of the

d,2 = Pi = Pi-1) gravity and elasticity rule.
D, = Di + (l — Z)S(d1 — dg)At

In case ¢ = 1 then we set dy to the direction of the strand instead which
is given by the emitter when the strand is created. There’s also an excep-
tion to the rule, if the scalar (I —)sAt? is greater than 1 we simply set
p; = p;i(dy — d2). This is done in order to prevent the strands from swaying,
since if they moved further than vector d; —ds they would in the next update
have to move back a bit, which may result in them moving too far again and
it may go back and forth like that.

4.3 Presentation

The presentation part of the implementation is where we discuss effect we
apply on the strands to make them look better but which does not have to
do with their behaviour which is controlled by the particle system.

Smoothness Tosmooth the jagged
edges of a strand we implement
Bézier curves to calculate points in
between the strand particles. The
difficulty in the implementation is
to create good control points for the
Bézier curve. A good approach is to
calculate the tangents for a strand
particle and use them to set the con-
trol points. To get the tangent [2]
for a particle p; we calculate vectors
v =p; —pi—1 and w = p; —p;—2 and
then calculate u = v x w. Then we
calculate t; = u X (v + w) and get

Figure 9: A four point strand that has
been smoothened by Bézier curve.

the tangent t;. We don’t want control points to have too much effect though
so we normalize the tangent and multiply it by a third of a strands seg-
ment length, . So the control points between two points p;_; and p; are
pi—1 — ti—1l/3 and p; +t;1/3.

If the points p;—1, p; and p;41 are collinear however we can’t calculate
the cross product for v and v and we then simply set t; = 0. When we
implement this however it appears that if the points p;—1, p; and p;41 are
almost collinear but not quite the cross product of v and © becomes unstable,
probably because of precision errors when calculating the cross product. So
instead of checking if they are collinear we check if the vectors v and v + w
have a length greater than 0.1.

We also need to apply special cases for the first and last point since we
can’t calculate vectors v and w then. For the first point we set the tangent
in the direction of the strand and for the last point we set the tangent to 0.
In figure [9] you can see one smoothed strand (red) as well as the tangents
(black and white) for each of the points that make out the strand.

Self Shadowing For self shadow-
ing we first need to create a light
source and have the hair reflect the
light. This we do by applying a
known model for achieving realis-
tic light reflection on hair known as
the Marschner reflectance model [6].
The model for this is quite long and
is not directly related to particle sys-
tems so we won’t go into detail how
it works and recommend looking up
the cited source instead. The result
of the reflectance model can be seen
in figure flectance model

Now we're ready to move on to creating the self shadowing of the strands.
We look up different techniques that have been applied before but they are
too complex to implement in the time we have left of the project [6],[LT],[10].
Instead we draw inspiration of what we have read and create a simple model
which is fast to implement but does not achieve the same good results.

We create a depth map of all the strands which essentially is a texture
which tells us what are the closest and furthest away positions per texel that
the strands are being drawn at as seen from the light, see figure [II] This
we can do on the GPU by creating a shader that calculates the vector from
the light to the strands position which we normalizes. We then write the z
value of this vector to the depth map textures red and alpha channel using a
minimum respectively maximum blending function, and as such we get the

Figure 10: Result of the Marschner re-

10

closest value in the red channel and the furthest away value in the alpha
channel.

We can then use this depth
map to create an interval in which
all the strand lie, and depend-
ing on how close the strands are
to the deepest position in com-
parison to the closest position we
shadow the strand more. If r is
the closest position to the light
and a is the furthest away posi-
tion and d is the position of the
strand at that texel we then cal-
culate z using the following for-
mula:

S}
3

xr=

U
3

Figure 11: A depth map of strands as
The factor x is then a value in [0,1] seen from the light source
which tells us how deep down strand
is with 0 being on the surface and lbeing at the bottom. We then let the
light diminish exponentially using the following formula:

We then get a value y between [0, 1] which tells us how strong the shadow
is. We simply multiply 1.0 — y by the light intensity/color before we apply
it to the strands color. The result can be seen in figure

Figure 12: To the left unshadowed strands, to the right shadowed strands.

11

5 Result

We successfully implemented all the particle system rules we set out to do.
The collision rule and stiffness rule may however be too simple since there
exists some faults with them. Firstly the collision rule is point based and not
segment based which makes it possible for strands to pass through objects if
the segment length is great enough. The trade off is that its quite fast which
allows for more strands to be animated. It would have been good to test the
collision rule on different objects other than spheres as well but the reason
we only implemented it for spheres now is that checking if a point is inside
the sphere is very fast.

The stiffness rule suffers from that it’s very sensitive to if the time steps,
At, changes between updates which causes the strand to vibrate. By having
a rule that is more based on a real phenomenon it could probably be made
more stable. As long as the time steps between the updates are consistent
it works quite well though.

The Béizer curve we implemented allows us to create smooth strands
without having to have so many particles. Our implementation of it does
however not look great when all three points after each other are collinear
because of the problem mentioned before in section When we check to
see what performance impairing effect using Béizer curves has it takes about
30%-50% depending on how many extra segments we create which is very
expensive. Maybe there’s some way to improve our way of calculating Béizer
curves but at this points it seems better to simply use more control points
since the rules seems to be cheap to calculate in comparison.

The self shadowing of the strands is not ideal but it’s better than noth-
ing and at least it’s fast, taking about 5% of the CPU time to create the
depth map. The problems with the current model is that it does not handle
thickness of the strands so the diminishing effect as the depth increases is
not affected but the number of strands. It also can give jagged edges or
shadow poorly if the strands are too far from the light source. As such the
shadowing model should really be replaced and the best alternatives that we
could find were either deep opacity maps [11] or a model by Erik Sintorn
and Ulf Assarsson [10].

12

6 Discussion

Our implementation of a strand animation using a particle systems works
quite well, but there’s certain limitations to it, for example, in our implemen-
tation we render each strand as a line. That means that they don’t really
have any body and if you look up close on the emitter it becomes very visi-
ble. We could of course create a cylinder around each strand but this would
be expensive to calculate. If we could have done it on the GPU it may have
been fast enough, but we would need a geometry shader for that which XNA
4.0 does not support. The need for giving the strand a body is probably not
worth the computation it would take even with a geometry shader unless
you want to give the strand another shape than a cylinder though, since it
would be something you wouldn’t even notice in most simulations. If you’d
do this you should probably introduce different level of detail so that you
only render them with a body once they are close.

A geometry shader could also have been used to implement the Béizer
curve on the GPU which would have eased the load on the CPU by about
50%. So we would recommend to use a library which supports geometry
shaders if you would like to create strands using particle systems even if
you’re not thinking of giving them a body. You should probably here as well
introduce different level of detail since it’s unnecessary to smooth strands
which are very far away from you.

Our particle system is quite limited in the number of particles it can
create and render, at most we managed to render about 100000 particles
with 10000 strands and still have an good frame rate around 25-30 fps.
For comparison, using PhysX you can create a particle system using 840000
particles and 100000 strands [7] where the particle system is run on the GPU
instead of CPU. So our implementation does not really have any value when
it comes to real world application in games or animations since it does not
utilize the hardware to the full extent like modern particle system engines
does.

Our particle system serves it’s purpose as a learning tool though and
has helped us gain a better understanding of particle systems and strand
animation but for practical application of particle systems you really need
to utilize SDK libraries which takes advantage of the hardware power better.
It can also be seen that once the particle system gets further away from the
viewer the need for a high number of strands decreases as one can’t tell very
much difference between the rendered images, suggesting that it would be a
good idea to try and limit the number of strands rendered once the particle
system is further away from the viewer. This would free up the hardware for
other tasks or more emitters, see figure [L3] and figure [14] for comparisons.

13

Figure 13: To the left 1000 rendered strands, in the middle 5000 rendered
strands, to the right 10000 rendered strands. Rendered a distance of 50 units
from the camera.

Figure 14: To the left 1000 rendered strands, in the middle 5000 rendered
strands, to the right 10000 rendered strands. Rendered a distance of 150
units from the camera.

14

7 Conclusions

We manage to create a implementation of a particle system simulating
strands which can create a decent image of moving hair/strands. It demon-
strates the power of particle systems and how many simple rules together can
create realistic effects as long as you create good rules for the system since
it may otherwise spin out of control. We didn’t manage to create smooth
strands to a cheap cost though. To achieve this we should really have con-
sidered our choice of SDK libraries better and not gone with XNA 4.0 but
perhaps instead OpenGL 3.2.

The shadowing effect we created was cheap and fast but not very good
looking when the light source became distant so different techniques for shad-
owing is recommended. But this does not matter much, since the particle
system is slow anyway when compared to modern particle system engines,
and it can’t really be used for anything other than learning purposes or
simple simulations.

The most important lesson we’ve learned regarding particle system is
probably though that you should try and limit the computation cost of the
particle updates and also limit the number of particles. This can be done
by when designing the rules that you perhaps don’t always use the rules
that give the most accurate representation of the real world but instead use
approximations if they are faster. Since the more particles you can simulate
the better looking particle system you can get it’s very important that you
keep the cost of the rules down, perhaps by using precalculated functions if
the rules allow for it.

Another way of limiting the particle system cost is by introducing dif-
ferent level of detail depending on how close to the viewer the system is
which limits the number of particles being drawn. This can be done either
by varying the number of particles for each strand or the number of strands
at a time. Best would probably be to vary the number of strands and not
the particles that a strand consists of since removing strands should both be
easier and not limit the freedom of the strands movements as much.

If it would be more easier to remove strand or particles from strands
would probably depend on the implementation though. In out implemen-
tation each strand in a array of particles which would make it difficult to
remove points on the strand. If we however were to develop the particle sys-
tem on the GPU it may be easier to remove particles if you would store the
strands such as all the root particles are in one texture and each successive
layer is in different texture.

However you do it it would probably be a good idea to implement some
kind of level of detail of particle systems if you wish to incorporate it into
real time running systems.

15

8

[1] Yosuke Bandoy, Bing-Yu Chenz, and Tomoyuki Nishita. Animating
hair with loosely connected particles. Technical report, The University

2]

3]

4]

[5]

(6]

7]

References

of Tokyo, 2003.

Paul Bourke. Piecewise cubic bézier curves.
http://paulbourke.net/geometry/bezier/cubicbezier.html,
March 2000. [Retrived 2012-03-17].

Jeff Lander. The ocean spray in your face. Technical report, Game
Developer, 1998.

Jed Lengyel, Emil Praun, Adam Finkelstein, and Hugues Hoppe.
Real-time fur over arbitrary surfaces. Technical report, Microsoft,
2001.

Steve Lesser. Fast hair simulation and rendering using cuda and
opengl. Technical report, Stanford University, 2011.

Hubert Nguyen and William Donnelly. Chapter 23. hair animation
and rendering in the nalu demo. http://http.developer.nvidia.
com/GPUGems2/gpugems2_chapter23.html, April 2005. [Retrived
2012-04-07].

NVIDIA. Gdc 2012: Tech demo walkthrough part 1 (cam) hd.
http://www.gametrailers.com/video/gdc-2012-nvidia/727874,
March 8 2012. [Retrived 2012-03-17].

[8] Masaki Oshita. Real-time hair simulation on gpu with a dynamic wisp

model. Technical report, Kyushu Institute of Technology, 2007.

[9] William T. Reeves. Particle systems - a technique for modeling a class

of fuzzy objects. Technical report, Lucasfilm Ltd, 1983.

[10] Erik Sintorn and Ulf Assarsson. Hair self shadowing and transparency

depth ordering using occupancy maps. Technical report, Chalmers
University of technology, 2009.

[11] Cem Yuksel and John Keyser. Deep opacity maps. EUROGRAPHICS,

27(2), 2008.

16

http://paulbourke.net/geometry/bezier/cubicbezier.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html
http://www.gametrailers.com/video/gdc-2012-nvidia/727874

www.kth.se

	Introduction
	Overview of the document

	Background
	Approach
	Implementation
	Particle System Structure
	Particle System Rules
	Presentation

	Result
	Discussion
	Conclusions
	References

