

Investigating NoSQL
from a SQL Perspective

 P E T E R S Ö D E R G R E N
 a n d B J Ö R N E N G L U N D

 Bachelor of Science Thesis
 Stockholm, Sweden 2011

Investigating NoSQL
from a SQL Perspective

 P E T E R S Ö D E R G R E N
 a n d B J Ö R N E N G L U N D

 Bachelor’s Thesis in Engineering and Management (15 ECTS credits)
 at the School of Industrial Engineering and Management
 Royal Institute of Technology year 2011
 Supervisor at CSC was Cristian Bogdan
 Examiner was Stefan Arnborg

URL: www.csc.kth.se/utbildning/kandidatexjobb/teknikmanagement/2011/
 sodergren_peter_OCH_englund_bjorn_K11103.pdf

 Royal Institute of Technology
 School of Computer Science and Communication

 KTH CSC
 SE-100 44 Stockholm, Sweden

 URL: www.kth.se/csc

Abstract
This report investigates the current branches in the selection of databases available today. What do
the new, non-relational databases have to offer? What differentiations can be found? What are their
pros and cons?

First off we will cover more specifically what these benefits are, and in this first part of the report
cover a broader spectrum of databases. Amongst others, we look at characteristics such as sharding
and replication. As examples, we also look specifically at five databases to compare them with each
other: Dynamo (Amazon S3), BigTable (Google App Engine), CouchDB, MongoDB and Neo4j.

In the second part we will run a performance test on three of the databases, namely CouchDB,
MongoDB and Neo4j. We will for this test use a type of data that most accurately can be described
as data found when running a social network, containing persons, blog posts, relations, events and
comments.

The purpose of this investigation is to look into who could benefit from putting their SQL database
in the attic, and to start using a non-relational database instead.

More than just explaining the different characteristics of non-relational databases, we present a table
in the results section where we compare the five different databases with each other. We also have a
section under the results chapter covering the general pro's and con's that can be found for using
SQL vs NoSQL databases depending on what type of data you store.

The performance test results shows us that MongoDB was the fastest one, because it was the best
suited database for our type of data and queries. Neo4j also performed good, especially in regards to
execution speed as function of data size. CouchDB produced the slowest execution times since our
data and queries suited the database poorly. This ment that CouchDB had to send large amounts of
data to our program for external filtering and thus performed worse.

2

Sammanfattning
Denna rapport utreder de i dagsläget olika typerna av databaser som finns tillgängliga. Vad har de
nya, icke-relationella databaserna att erbjuda? Vilka skillnader finns? Vad är deras respektive för-
och nackdelar?

I den första delen av rapporten så kommer vi att mer specifikt undersöka vilka fördelarna är med
hjälp av ett bredare spektrum av databaser. Bland annat så tittar vi på egenskaper så som sharding
och replication. För vår jämförelse så har vi valt att fokusera på fem databaser: Dynamo (Amazon
S3), BigTable (Google App Engine), CouchDB, MongoDB samt Neo4j.

I den andra delen kör vi ett prestandatest på tre av databaserna, nämligen CouchDB, MongoDB och
Neo4j. För detta test använder vi en typ av data som bäst kan liknas med den data man stöter på för
sociala nätverk. Vi använder oss av: personer, blogginlägg, relationer, evenemang samt
kommentarer.

Syftet med denna utredning är att försöka få en bild över vem som faktiskt kan tänkas dra nytta av
att lägga undan sin SQL-databas på vinden, och istället börja använda en icke-relationell databas
istället.

Utöver att bara förklara skillnaderna sammanställer vi även de olika egenskaperna för de olika
databaserna i en tabell för att göra jämförelsen mer lättöverskådlig. Vi förser även läsaren med ett
avsnitt i resultat-delen som behandlar olika typer av data och deras lämplighet med olika typer av
NoSQL-databaser. Prestandatesterna visade att MongoDB var snabbast eftersom den var bäst
lämpad för den data och de frågor som vi testade med. Neo4J gav även goda resultat framför allt
med avseende på skillnaden i tidsåtgång beroende på datastorlek. CouchDB visade sig ta längst tid
av alla de NoSQL-databaserna vi testade på grund av att den inte lämpade sig för den data och de
frågor vi valde. Detta gjorde att CouchDB behövde sända stora mängder data till programmet för
extern filtrering, vilket fick längre tidsåtgång som följd.

3

Table of Contents
Abstract..2
1 Introduction...6

1.1 Background...6
1.2 Problem description..6
1.3 Purpose of the report...6
1.4 Delimitations...6
1.5 Target group..6

2 Method..7
2.1 Motivating the chosen methods..7

3 State of the art and theory...8
3.1 Technical terms...8

3.1.1 ACID...8
3.1.2 Atomicity...8
3.1.3 Consistency...8
3.1.4 Isolation...9
3.1.5 Durability...9
3.1.6 MapReduce..9
3.1.7 CAP-theorem...9
3.1.8 Replication...10
3.1.9 Sharding...10
3.1.10 REST...10
3.1.11 DBMS, database..10
3.1.12 RDBMS...10
3.1.13 JSON...10

3.2 Focus of research..10
3.2.1 The different types of NoSQL...11

3.2.1.1 Key-value stores ...11
3.2.1.2 Document oriented databases..12
3.2.1.3 Graph databases...12

3.3 State of the art, examples..12
3.3.1 Amazon S3..12

What is Amazon S3?..12
Features of Amazon S3..13
Quick introduction to Amazon S3 database handling...13

3.3.2 Google App Engine...13
What is Google App Engine?..13
Features of Google App Engine...13
Quick introduction to Google App Engine database handling..14

3.3.3 CouchDB...14
What is CouchDB?..14
What CouchDB is:...14
What CouchDB is not:...14
Features of CouchDB..15
Quick introduction to CouchDB database handling..15

3.3.4 MongoDB..15
What is MongoDB?...15
Features of MongoDB...16

4

Quick introduction to MongoDB database handling...16
3.3.5 Neo4j...17

What is Neo4j?..17
Features of Neo4j...17
Quick introduction to Neo4j database handling..17

3.4 Differences when moving from RDBMS to NoSQL..19
3.4.1 Atomicity...19
3.4.2 Consistency...20
3.4.3 Isolation...20

Multiversion concurrency control...20
3.4.4 Durability...21
3.4.5 Queries...21
3.4.6 MapReduce..22
3.4.7 CAP-theorem...22
3.4.8 Unrelational characterstics..22
3.4.9 Replication...23
3.4.10 Sharding...23

4 Research..24
4.1 Analysis: What types of data benefit from NoSQL use?..24

4.1.1 General types of data...24
4.1.1.1 Structured data...24
4.1.1.2 Semi-structured and unstructured data..25

Semi-structured data...25
Unstructured data..26

4.1.2 Specific types of data..28
4.1.2.1. Object data..28
4.1.2.2. Document data..29
4.1.2.3. Complex data..29
4.1.2.4. Relation-heavy data..30

4.2 Performance test..31
5 Results...33

5.1 General advice on picking the right database...33
5.1.1 Does structured data benefit from NoSQL use?..33

Flexibility..33
Performance..33

5.1.2 Does semi-structured and unstructured data benefit from NoSQL use?.....................33
Flexibility..33
Performance..34

5.1.3 Additional comments 1: The RDBMS's requirements on the data..............................34
5.1.4 Additional comments 2: The ACID aspect..34
5.1.5 Attribute summary table of our five investigated databases..35
Consequences for application development...36

5.2 Performance test results..36
Benchmarking..36

6 Discussion...37
7 Conclusions...38

Different types of data...38
Structured data..38

Flexibility...38
Performance...38

5

Semi-structured and unstructured data...38
Flexibility...38
Performance...38

The performance test...38
8 Future research..39
Citations and sources...40
Appendix..42

Appendix A – Results..42
A1. Neo4J...42
A2. MongoDB..44
A3. CouchDB...46

Appendix B – Program Code..48

6

1 Introduction
1.1 Background
Databases are an important element in today's information society. They have been around almost
as long as we have been having computers. The norm for databases over the years have been of a
relational nature. One of the bigger reasons for this is that relational databases are well fit for
storing data when you require the data to be consistent and error-handling to be swift and fully
functional. These attributes put requirements on the databases, and it lowers performance,
especially as the amount of data grows. Some companies ran into these performance issues, and
decided to develop new models for how data is stored in a database, typically lowering consistency
but increasing performance at high data levels.

Over recent years we have been seeing more and more alternative models for databases and how
they work, so called non-relational (or NoSQL) databases.

1.2 Problem description
What benefits and drawbacks do the different types of databases have? What type of data benefit
from what type of database? Is scalability (performance at high volumes of data) the only upside
with NoSQL databases?

1.3 Purpose of the report
The purpose is to investigate the database systesms which are commonly classified as NoSQL
database systems and their aspects while also giving guidelines on what type of database you should
use for maximum efficiency and flexibility depending on the type of data you want to store. In
addition we will also try to establish the properties of each database system.

1.4 Delimitations
The intended size of this report implies that we cannot investigate and run performance tests on all
the different types of data and databases. We will pick one type of data and test it with a selection of
relevant databases.

1.5 Target group
The target group for the report is those who are interested in databases, and especially those who are
looking for the best database for their program/business. The requirements needed to understand
this report are not high, since the nature of the report is that we explain most of the technical terms
that we use. Anyone who is used to working with computers should be able to follow without any
greater difficulty.

7

2 Method
In order to understand who could benefit from transitioning from SQL to NoSQL databases, we will
in this report have two foci:

1. A general search for information, covering the different attributes and aspects of different
NoSQL databases and the different types of data that is supposed to be stored in them. We
will compare the databases both to their SQL alternatives and each other.

2. A performance and usability test of MongoDB, Neo4j and CouchDB.

The first part is done by searching for and reading scientific articles covering the different types of
databases and their pros and cons. We will then compile the information we gathered and present it
in a summarizing manner in the report.

The second part is done by generating our own data and putting the data into the three chosen
databases. We will then compare their speeds in handling this type of data that we stored in them,
and also see if there are any differences in usability and/or flexibility regarding for example the
complexity of queries.

In the final parts of this report we will give recommendations as to who can benefit from
transitioning from a SQL to a NoSQL database. We will also present the results of the performance
test, showing which one of the tested databases was the best suited one for the type of data that we
chose to store.

2.1 Motivating the chosen methods
• The time frame available: The general information search will require a rather large amount

of time. Combined with the performance test, there is no room for additional methods to be
used in the report considering the time frame available and the intended size of this report.

• The nature of the research: The focus of the report is to give a picture of the database
situation today and to cover what kinds of up- and downsides the relatively new NoSQL
databases have, and in the end present a performance test executed by ourselves. The large
amount and broad spectrum of information that needs to be gathered motivates a general
search for what databases are available and what they offer, and also what already has been
written on the subject. This is done by looking at specific databases and reading articles
covering the subject.
The performance test is made to compare some of the NoSQL databases available in how
they can handle the type of data that we chose, giving some hands-on test results to give our
recommendations on which one of the databases we tested that is the most suitable one for
this type of data.

• General search vs performance test: We use two main methods in this report. The general
search covers many different aspects of the NoSQL databases, whereas the performance test
is limited to testing a very small portion of the things we have been covering in the more
general compilation of scientific articles. The ultimate report would have included a test of
all aspects covered in the general compilation, but that is not possible because of several
reasons, one being that it would be completely out of scope of the intended size of this
report. We still wanted to have a performance test, and hence it will in this report not be
possible to cover more than just a few aspects of this subject.

8

3 State of the art and theory
3.1 Technical terms
In this section we will try to cover all technical terms used throughout this thesis in order to
establish our interpretation of these in order to avoid any misunderstandings.

3.1.1 ACID
ACID stands for

• Atomicity

• Consistency

• Isolation

• Durability

ACID was first stated as an acronym in the 1980's to provide a standard for properties required to
make a RDBMS run without exceptions or data loss even when errors in storage or network
occurred.[15] These are all requirements which are usually implemented in standard RDBMS's.
They are put in place to ensure that the database runs without any errors and as expected. Without
ACID the database run the risk of becoming inconsistent. Most NoSQL databases exploit the fact
that all of these properties does not have to be fulfilled or that they can be avoided by adding these
properties outside of the database layer.

3.1.2 Atomicity
Atomicity is a property which means that each transaction should be atomic. If each transaction is
atomic then a defined set of calls to the database is either all committed to the database or none of
the calls are committed. This property ensures that should the database encounter an error in the
middle of a running transaction then none of the calls made will be committed to the database
permanently. To ensure these demands a standard RDBMS uses a log file where it writes all
operations corresponding to each transaction and only when the last operation of a transaction has
been written to disk the changes to the database are permanent. In that case, should an error occur to
the database between the time of the last log write and the last write to the database then these will
be written when the database is restarted and if the error occurred before the first write to the log
then the database will be rolled back to the state it was in before the transaction.

3.1.3 Consistency
Consistency is a property which describes a database that will only go from one consistent state to
another and that it will never at any time be at a state where its rules are broken or it is giving
different processes a different value for the same key at different database nodes. This is quite hard
to ensure and in standard RDBMS this is enforced and means that a change has to propagate to all
the relevant database nodes before the value may be read again. It also means data the database
system may never be in a state where the restrictions made to the data do not apply.

3.1.4 Isolation
Isolation is a property which states that each transaction should run in isolation of all other
transactions and more specifically each transaction should execute in such a manner that all
transactions that have been committed to the database would have yielded the same results as if they

9

had been executed serially, meaning that no other transaction would begin before the previous one
had committed. This property is very hard to implement and standard RDBMS's use the log, read
and write locks, deadlock detection and rollbacks in order to ensure this property.

3.1.5 Durability
Durability means that any committed transactions must be preserved in the database even if a crash
occurs. In standard RDBMS's this is done with a log which is committed before the acutal write to
disk. In the event that the database crashes, the client redoes the committed transactions which have
not had their updates committed to disk.

3.1.6 MapReduce
MapReduce is technique which was patented by Google in 2004 and described in a corresponding
article. [22] MapReduce is a technique to fetch large amounts of data fast, by splitting up the
fetching and filtering between severeal different computers in a network. The main idea behind
map reduce is that each MapReduce operation uses two specified functions, map() and reduce().
These functions are then loaded onto each computer in the cluster and each function is then
executed with the data as parameters.

The map function takes a key and a value as parameters and produces an intermediate key-value
pair. When all intermediate key-value pairs have been produced they are combined and then each
distinct key is sent to the reduce function with its corresponding iterator of values associated with
the specific key.

map(String key,String value) → list(String key,String value)
reduce(String key, Iterator values) → list(String value)

By implementing mapreduce the developer can make fectches of data using arbitrary filters.
Another benefit of using mapreduce is the possibility to ask the database questions which are no
less restricted than the possibilities of the programming language in which the mapreduce pattern is
implemented. The only potential problem with mapreduce regarding the limit of the question-span
is the fact that mapreduce is constructed to execute each map and reduce function in isolation and
thus makes it impossible to execute a function which needs the data to be processed in
synchronization.

3.1.7 CAP-theorem
The CAP-theorem was introduced by Eric Brewer in 2000. [23] The CAP-theorem states that
databases or web services can only support two out of three of the CAP properties which are.

• Consistency

• Availablility

• Partition tolerance

Consistency was covered in an earlier section [3.2.2.2], availability is the notion that each request is
always answered with a result. Partion tolerence is a property that indicate that the service is able to
remain functional and operating during a network partion e.g. when a database distributed over two
nodes cannot successfully communicate between the nodes.

3.1.8 Replication
Replication is a method used to increase the speed of read operations of a database. This is done by
creating copies - replicas - of the database, and spreading them out over different nodes. This means

10

that you can distribute all read operations over several nodes, processing large amounts of requests
simultaneously.

3.1.9 Sharding
Sharding is a method used to increase the speed of read and write operations of a database, and also
to increase the capacity of it. This is done by dividing the data over many nodes. This way, read and
write operations are quickly spread out over the different nodes, allowing many simultaneous
operations on the database. In order to increase the capacity of the database, all you need to do is to
add new nodes.

3.1.10 REST
REST stands for representational state transfer and is provided as an API to some DBMSs . In the
NoSQL area this is usually implemented by using the HTTP protocol. By requesting a resource
together with method and parameters you can retrieve or modify the resource.

3.1.11 DBMS, database
DBMS stands for database management system. This is the system that is used to interact with the
underlying the data. Traditionally DBMS and the database do infers different things, the DBMS is
the management system and the database is the data. However in this thesis these will be used
synonomously and infer the complete entity, both data and management system.

3.1.12 RDBMS
Relational database management system in this thesis denotes a standard SQL DBMS.

3.1.13 JSON
JSON is an object representation which is aimed to be easily readible. It is popular due to its simple
syntax and is very common in the NoSQL area.

3.2 Focus of research
As this report could be very extensive in size if we were to look at all available NoSQL solutions
we have chosen to confine ourselves to three main categories of NoSQL solutions. These are:

• Key-value stores
• Document oriented databases
• Graph databases

These categories will be covered in a general sense and be evaluated based on the criteria above. As
you will notice the different solutions adhering to the different categories will not always share the
same characteristics even when from the same category. To bridge this issue we have chosen to also
look more closely at a few specific databases which were chosen by their recognition and
importance to the field. These are:

• Dynamo (Amazon S3)
• BigTable (Google App Engine)
• MongoDB
• CouchDB

11

• Neo4j

3.2.1 The different types of NoSQL
We have already mentioned that NoSQL databases can be structured into categories. These
categories are based upon how data is structured in the databases and the functionality provided
regarding how to query, add and change the data in the database. The types of NoSQL databases we
have chosen to focus on are:

• Key-value stores
• Document oriented databases
• Graph databases

The different types of databases to include when talking about NoSQL differs and there are different
opinions on what is a NoSQL database and what is not. We view NoSQL as databases which are
unrelational in nature and which do at most include limited support for transactions hence giving us
a wide range of different types of databases to choose from.[7] We decided upon the above stated
types since they each provide interesting characteristics as well as being fairly comparable to one
another as we soon will see. We have deliberately not considered object relational databases or
horizontally scaling RDBMS since these are similar to standard RDBMS systems and thus not in
our scope.[7] We have also chosen to neglect XML databases and other databases which do not fall
under a specific category. This decision was made in order to make this report less extensive and
more lucid. At last the reader will also note that we have left out column-databases. Column
databases are a type of NoSQL database where the data is not stored row by row but rather column
by column.[8] Column databases are widely popular since they have attracted big companies like
Amazon (S3), Google (App Engine) and Facebook(Cassandra).[8] We have however chosen not to
include this type of database because of their similarity to traditionally RDBMS's and complexity.
Additionally the greatest database providers in this field, Google and Amazon, do not provide full
access to their database system but does instead use proxies in form of Google App Engine and
Amazon S3.[10] These databases will however be covered individually as much as possible.

3.2.1.1 Key-value stores
A key value store is the simplest form of NoSQL database. The main idea behind the Key-value
store is that it should store objects.[9] These types of databases were created in response to the
back-end in many web servers whose logic is based on an object oriented rather than a tabular
approach.[26] The model in these types of databases is instead very simple. It stores every object in
a single index with a unique key for each object. The values in the key-value stores is usually a
serialized form of the object and provides no additional functionality. All lookups in the database
are based on the index and no lookups can be made with restrictions based on the values stored in
the database. Each value is usually only binary data with a few exceptions. As a result these type of
databases are completely schema free. Amazon S3 and Scalaris are examples of well known key-
value databases.[9] Google App Engine positions itself somewhere between the key-value stores
and the document oriented databases explained next. It lacks support of integrated objects but
supports multiple values per key like standard tabular databases however you can add more
properties on the go. We will further in this report regard Google App Engine as a key-value store
since it doesn't fully support integrated objects.

3.2.1.2 Document oriented databases
Document oriented databases do as the key-value store provide a soliution for storing objects,
which in these cases are called documents. The main difference however is that in document
oriented databases the values are given meaning and indexes can be defined on arbitrary properties

12

in each document.[7] Most document oriented databases do also support integrated objects and
arrays. Document oriented databases were created with the dynamic web in mind and thus use no
schema. This does enable the application to add functionality while the database is running and does
not pose the requirement for every document to include null values for all properties they do not
contain. To make this possible, document oriented databases usually use a data format for
transmitting objects between programs such as XML or JSON.[9] Popular document oriented
databases are MongoDB[11] and CouchDB[12].

3.2.1.3 Graph databases
Graph databases do have many similarities with the previous types in that they have no schema.
However in contrast with the other alternatives graph databases are made to fascilitate relations in
the database layer.[9] Graph databases demand that the data is stored in a tree format. They also
have some limited support for joins but are best used for their possibility to traverse nodes in the
graph.[13] This makes them good for finding the shortest route or traversing relations with a
specific goal or specific depth. N4j is an example of a well known graph database.[14]

3.3 State of the art, examples
In order to give a brief overview of the different NoSQL databases available today, we decided to
breifly cover Amazon S3, Google App Engine, MongoDB, CouchDB and Neo4j in the following
part of the report. The reason we specifically picked these five is that they are some of the more
famous NoSQL databases on the market today.

3.3.1 Amazon S3
What is Amazon S3?
Amazon S3, also known as Amazon Simple Storage Service, is classified as "Infrastructure as a
Service (IaaS)", and is a key-value storage system designed to make web-scale computing easier for
developers. They offer a underlying database-related infrastructure for your applications. The idea is
that you pay for the amount of data that you want to store per month, and in exchange they provide
the storage space required and the database with all its functionality through a web interface. This
makes the end user/the customer not have to worry about:

• How to store your data

• Whether the storing will be safe and secure

• Having enough storage available

• Paying the upfront costs of setting up your own storage solution

• Maintaining and scaling its storage servers

Features of Amazon S3
• Scalable: Amazon S3 was built to scale efficiently with the amount of data stored

• Reliable: High durability and availability is guaranteed

• Fast: Built to handle high-performance applications

• Inexpensive: Amazon S3 is built from inexpensive commodity hardware components, and
the eventual failure of certain hardware must not affect the overall system.

• Simple: Aims to be easy to use for any application, anywhere.

13

Quick introduction to Amazon S3 database handling
The first part of setting up your own database with Amazon S3, where everything is done through
the web interface, is to create a so called Bucket. Buckets are nothing more than a way to specify in
which region of the world the data is to be stored. This feature is a way to remedy latency problems
and in this way improve performance.

The next step is to add an object to the selected bucket. This is simply done by pressing the "Add
files" button in the web interface, and a file selection dialog box will appear. From here, you
navigate to the file you want to upload to the database and click "Open". After this, the file will be
uploaded, and when the upload has been completed, you can add so called meta data - assisting info
to the file if needed - and then you're done.

Amazon S3, by itself, does not offer an advanced query language towards the database. In
order to access such features, you must turn to Amazon's other services, such as Amazon's
SimpleDB.

3.3.2 Google App Engine
What is Google App Engine?
Google App Engine (GAE) is classified as "Platform as a Service (PaaS)", and likewise to Amazon
S3, it is a "external" solution for data storage. Whereas Amazon S3 is a solution for the database
infrastructure alone, the App Engine is a solution within which you, in addition to gaining access to
a database infrastructure solution, also run the applications. The App Engine uses Google's key-
value database BigTable. Using the App Engine is free up till the point that your application
exceeds either 500 MB of storage or 5 million page views a month.

Features of Google App Engine
• Dynamic web serving, including full support for common web technologies

• Persistent storage with queries, sorting and transactions

• Automatic scaling and load balancing

• API's for authenticating users and sending email using Google Accounts

• A fully featured local development environment that simulates Google App Engine on your
computer

• Task queries for performing work outside of the scope of a web request

• Scheduled tasks for triggering events as specified times and regular intervals

Quick introduction to Google App Engine database handling
The App Engine supports Python and Java, or any programming language using a JVM-based
interpreter or compiler, such as JavaScript or Ruby.

Example in Java:
DatastoreService datastore =

DatastoreServiceFactory.getDatastoreService();

Entity student = new Entity("Student");
student.setProperty("firstname", "Ellen");
student.setProperty("surname", "Johnson");
Date addedToDb = new Date();
student.setProperty("addedToDb", addedToDb);

14

student.setProperty("passedMathExam", false);

datastore.put(student);

3.3.3 CouchDB
What is CouchDB?
CouchDB is an open-source document-oriented database. Taken from CouchDB's official website
[3], we find some quick info on what CouchDB is and what it is not:

What CouchDB is:
• A document database server, accessible via a RESTful JSON API.

• Ad-hoc and schema-free with a flat address space.

• Distributed, featuring robust, incremental replication with bi-directional conflict detection
and management.

• Query-able and index-able, featuring a table oriented reporting engine that uses JavaScript
as a query language.

What CouchDB is not:
• A relational database.

• A replacement for relational databases.

• An object-oriented database. Or more specifically, meant to function as a seamless
persistence layer for an OO programming language.

Features of CouchDB
• Document Storage: CouchDB stores documents in their entirety.

• ACID Semantics: Although CouchDB is a non-relational database, it still offers the
guarantees of ACID, which usually can only be seen in relational databases, to assure no
conflicts will occur while having a high amount of concurrent readers and writers.

• Map/Reduce Views and Indexes: CouchDB uses Google's Map/Reduce methods to create
so called views, which are a method of aggregating and reporting on the documents in the
database. They are built dynamically and you can have as many different view
representations of the same data as you like. CouchDB can then index those views for later
use, and keep them updated as documents are added, removed or updated, in order to avoid
going through the time-consuming process of creating a view.

• Distributed Architecture with Replication: With CouchDB you can have multiple replicas
with copies of the same data, and you can then modify this data on the different replicas, and
synchronize at a later time.

• REST API: Communication with the database, like performing a Create, Read, Update or
Delete operation, can be done through the well known HTTP methods POST, GET, PUT and
DELETE. This way, you can issue requests to the database from any environment that
allows HTTP requests.

Quick introduction to CouchDB database handling
CouchDB supports many different programming languages for interaction with the database. They

15

also have a web interface available, called futon.
A typical CouchDB JSON document may look like this:
{

"_id": "ellen_",
"_rev": "1-98321jhhjha78y31ah7a77dahdujjhak",
"type": "Student",
"firstname": "Ellen",
"surname": "Johnson",
"personalid": "861010-0123",
"skills": ["Math", "Biology", "Physics"]

}
Example in Java:

Session s = new Session("localhost",5984);
Database db = s.getDatabase("studentsdb");

Document newdoc = new Document();
newdoc.put("firstname","George"); //same as JSON: { firstname: "George"; }
db.saveDocument(newdoc); //creates auto-generated id given by the database

Document doc = db.getDocument("ellen_johnson");
doc.put("personalid","861010-0123");
db.saveDocument(doc);

3.3.4 MongoDB
What is MongoDB?
MongoDB is a scalable, high-performance, open source, document-oriented database written in C+
+. They describe some of the features of MongoDB on the official website[2]:

Features of MongoDB
• Document-Oriented Storage:

 - Documents (objects) map nicely to programming language data types
 - Embedded documents and arrays reduce need for joins
 - Dynamically-typed (schemaless) for easy schema evolution
 - No joins and no multi-document transactions for high performance and easy scalability

• Replication & High Availability: MongoDB offers the use of Master-slave replication.
This means that you can run "slave"-copies of the master database, and in this way increase
the ability to read the database efficiently. MongoDB's replication also offers a automatic
master failover system, electing a new master if the current one goes down.

• High Performance:
 - No joins and embedding makes reads and writes fast
 - Indexes including indexing of keys from embedded documents and arrays
 - Optional streaming writes (no acknowledgements)

• Auto-Sharding: Scale horizontally without compromising functionality. Sharding is a
method used to divide and spread the database over different machines, making the database
considerably quicker to work with, and especially read, as the amount of requests and
amount of data stored grows.

• Map/Reduce Views and Indexes: MongoDB uses Google's Map/Reduce methods to create
so called views, which are a method of aggregating and reporting on the documents in the
database. They are built dynamically and you can have as many different view

16

representations of the same data as you like. CouchDB can then index those views for later
use, and keep them updates as documents are added, removed or updated, in order to avoid
going through the time-consuming process of creating a view.

• Rich Query Language

Quick introduction to MongoDB database handling
MongoDB supports a long list of programming languages, including all the most frequently used
ones.

Example in Java:

BasicDBObject doc = new BasicDBObject();

doc.put("name", "Ellen");
doc.put("surname", "Johnson");

BasicDBObject info = new BasicDBObject();

info.put("weight", 58);
info.put("lenght", 171);
info.put("age", 24);

doc.put("info", info);

coll.insert(doc);

3.3.5 Neo4j
What is Neo4j?
Neo4j is an open-source object-oriented graph database. Graph databases use nodes for each object
stored, and excell at expressing relationships between those nodes. An example of a typical
application that can benefit from this type of database is social networks.

Features of Neo4j
• Intuitive and flexible: Neo4j is an intuitive and flexible graph model for data representation

which emphasizes the use of nodes, relationships and properties instead of tables, rows and
columns.

• Disk-based: Neo4j is a disk-based, native storage manager optimized for storing graph data
with high performance and scalability.

• High scalability: Neo4j can handle billions of nodes, relationships and properties on a
single machine, and can be sharded - split over multiple machines - to scale efficiently.

• Traversal: As a graph database, Neo4j offers the subsequent high-speed traversal benefits in
the node space.

• Simple and convenient object-oriented API

• ACID Semantics

• REST API

Quick introduction to Neo4j database handling
Neo4j supports different programming languages for interaction with the database. They also have a

17

web interface available.

Example in Java:

public enum MyRelationshipTypes implements RelationshipType{
KNOWS

}

GraphDatabaseService graphDb = new EmbeddedGraphDatabase("var/graphdb");

Transaction tx = graphDb.beginTx();
try{

Node firstNode = graphDb.createNode();
Node secondNode = graphDb.createNode();
Relationship relationship =

firstNode.createRelationShipTo(secondNode,
MyRelationshipTypes.KNOWS);

firstNode.setProperty("firstname", "Ellen");
secondNode.setProperty("firstname", "George");
relationship.setProperty("message", " knows ");

}
finally{

tx.finish();
}

System.out.print(firstNode.getProperty("firstname"));
System.out.print(relationship.getProperty("message"));
System.out.print(secondNode.getProperty("firstname"));

graphDb.shutdown();
The example above prints the following:

Ellen knows George

18

3.4 Differences when moving from RDBMS to NoSQL
When moving from or deciding whether to move from an RDBMS(Relational Database
Management System) to a NoSQL solution it is imperative to look at key differences between these
two categories. First and foremost it must be said that no NoSQL solution is another alike and as the
word NoSQL has gained in popularity so has the number of implementations.[4] Intially NoSQL
was a database. Now NoSQL has become a buzzword for databases which are faster or more
scalable than traditional RDBMS's by the renouncement of key features. The term was barely
written about before 2009 but has generated far more intrest since then.[5] The name NoSQL often
leads to the misunderstanding that NoSQL databases becomes more fast or scalable simply by
changing the query-language. However contrary to this misunderstanding a database with a
grammar similar to SQL could be just as fast or scalable and many belive NoSQL should be read
”not only SQL” instead of the intutive ”no SQL”.[6]

This section is intended to give the reader a good outlook on what to expect when moving from an
RDBMS to a NoSQL solution. It will begin by a short look on what has influenced the NoSQL
movement and then move on to discussing the different types of NoSQL solutions. After the two
initial subsections we will cover a few different key aspects where NoSQL differs from traditonal
RDBMS. These aspects are:

• Atomicity
• Consistency
• Isolation
• Durability
• Queries
• Map-reduce
• CAP-theorem
• Unrelational characteristics
• Replication
• Sharding

3.4.1 Atomicity
Depending on which NoSQL solution you use the atomicity of the transactions you make differs.
When using key-value stores it differs from solution to solution. They usually support atomicity on
a single key, but whether they provide it for multiple keys depend on the provider. Amazon S3
offers full atomicity over several keys[10] while Google App Engine simply offers it over a single
key.[16]

Document oriented databases do also have different solutions to this problem depending on how
much scalability and speed they are willing to sacrifice for atomic operations. The atomicity that is
offered is usually at least on a document level, this is true for MongoDB[17] while CouchDB offers
full atomicity.

Regarding graph databases it is hard to define general atomicity level although many of them offer
complete atomicity and this is true as well for Neo4j.

3.4.2 Consistency
When talking about consistency there are two distinct types of consistency. Strong consistency and
eventual consistency.[10] Strong consistency enforces that the database is always consistent as

19

shown above while eventual consistency has a time window where the database is not consistent but
as the change is replicated across the servers the whole database system will eventually become
consistent.

When it comes to consistency NoSQL solutions differ depending on where they position themselves
in the CAP triangle which will be covered later. The consistency offered is also dependent on what
server setup you are running. A master-slave replicating setup will be far more likely to provide
strong consistency than a master-master replicating one. Master-master and master-slave are
covered in the replication section. Google App Engine provides strong consistency while Amazon
S3 only provides eventual consistency. The document oriented databases differ as well. MongoDB
only provides eventual consistency while CouchDB provides strong consistency but only for
master-slave replication. Nothing general can be said about graph databases either but neo4j
enforces strong consistency.

3.4.3 Isolation
IThis property is very hard to implement and standard RDBMS's use the log, read and write locks,
deadlock detection and rollbacks in order to ensure this property. This process is quite complex and
deals with many exceptions and will not be covered in this report.

Rather we choose to focus on the way in which NoSQL solutions deal with the problems of
isolation. The standard way of ensuring isolation is a very expensive solution and thus does not
favour scalability or speed. Instead many NoSQL databases have looked toward other solutions.
The first and easiest one to discard is isolation or only implement it across single key-value or a
single document. This is easily implemented and not extremely costly. However if support for
bigger transactions are to be implemented there is a need for another type of isolation ensurer and
the solution most in used today are forms of multiversion concurrency control.[10]

Multiversion concurrency control
Multiversion concurrency control is a method which allows for multiple processes to access the
same data without corrupting it.[10] There are basically two different methods for multiversion
concurrency control, vector clocks and hash histories. These are methods for detection of conflicts.
If a conflict is detected the database usually forwards the problem to the client to decide how to deal
with the problem.

Vector clocks is a list consisting of key value pairs which are associated with each value in the
database. For each update every process adds itself as key to this list and a incremented number
based on the maximum number available as the value. By doing this the database can see which
process updated this value at the latest time and in which order this value was updated.

Hash histories works similarly to the vector clock but instead of storing the process which updated
the value it stores the hash value of the corresponding value. This means that updates with the same
value will not cause a conflict and that the list grows with the amount of updates instead of the
amount of processes.

Amazon S3 is an example of a NoSQL solution without processes running in isolation. It's the latest
write that will count at all times. Google App Engine however uses MVCC and re-queues the
transaction over again if a conflict is detected. MongoDB offers no MVCC support while CouchDB
offers MVCC by storing old revisions of the document. However isolation is not ensured over
several nodes.[18] At last neo4j provides complete support for isolation but uses locks like standard
RDBMS's.[19]

20

3.4.4 Durability
Durability means that any committed transactions must be preserved in the database even if a crash
occurs. In standard RDBMS's this is done with a log which is committed before the acutal write to
disk. In the event that the database crashes, the client redoes the committed transactions which have
not had their updates committed to disk.

Durability is quite easily implemented in most databases but for distributed databases the meaning
of durability has changed. Durability in distributed databases now means how durable the database
is in the event of a catastrophe. Amazon claims their S3 solution will offer durability even if one of
their data centers were destroyed. Google App Engine offers customers to choose from a high
replicating and thus more durable solution that is less consistent or a solution which does not
replicate but only supports standard durability.[20]

Both MongoDB and CouchDB support durability. MongoDB does so through a log, called a journal
and CouchDB by always flushing its information to the disk and simply and keeping older
revisions. Neo4j does as well support standard durability.

3.4.5 Queries
As discussed before NoSQL does not really imply anything about the query language. However it is
interesting to note that since most NoSQL databases support a far less rich feature set than standard
RDBMS's they usually choose other forms of query language. In this section we will try to establish
what type of queries the different databases support and what type of query languages and access
methods they incorperate.

AmazonS3 and Google App Engine support storage of objects in their databases however the key
difference is that Amazon S3 is completely unaware of the contents of its objects while Google App
Engine supports searches based on the objects properties. However Google does not support
searches that deal with arrays or objects inside of another object. Amazon has two API:s to access
its data, REST(HTTP) and SOAP(XML) which have been covered earlier. These API makes it
possible to traverse buckets(directories) as well as store and delete objects(files). The REST API
also makes Amazon S3 usable as an effective CDN(Content Delivery Network), a secondary server
for static content on a website. Google App Engine uses a language for queries which they call
GQL. GQL is quite similar to SQL in syntax but does only support a few of the standard SQL
features. It can constrain selections by conditions but does only support logical AND operations for
these conditions. Google App Engine can also be used to order the result and only output a subset of
the selection. The standard of most key-value stores is to only support limited to none selection
conditions but as stated earlier Google App Engine positions itself somewhere between a

MongoDB and CouchDB feature a richer feature set than key-value stores which is something that
they share with most document oriented databases. MongoDB support selections based on several
conditions and can use both, logical and & logical or, operations with the exception of nested
logical or operations.[21] MongoDB also has support for grouping and aggregation functions.
CouchDB on the other hand has a radically different approach. It uses map-reduce functions for all
its selection. Map-reduce will be further explained in the next section.

Finally Neo4j which serves as our example of a graph database provides a completely different api.
Neo4j is built for traversing nodes and thus provides an API for defining recursive functions. These
traversing functions need to know to which relations they should traverse and issue a recursive call
as well as when to stop traversing. Neo4J offers API's for java, python, ruby and a REST API for
their Neo4j server.

21

3.4.6 MapReduce
map(String key,String value) → list(String key,String value)
reduce(String key, Iterator values) → list(String value)

By implementing mapreduce the developer can make fectches of data using arbitrary filters.
Another benefit of using mapreduce is the possibility to ask the database questions which are no
less restricted than the possibilities of the programming language in which the mapreduce pattern is
implemented. The only potential problem with mapreduce regarding the limit of the question-span
is the fact that mapreduce is constructed to execute each map and reduce function in isolation and
thus makes it impossible to execute a function which needs the data to be processed in
synchronization.

Mapreduce is not traditionally found in standard RDBMSs since standard RDBMSs use the
restrictions of SQL to ensure all the properties of the database. Mapreduce is however very usual in
many NoSQL-solutions where the mapreduce operation can run asynchronous with other
operations, either by rejecting the isolation property or by using a work-around solution.

3.4.7 CAP-theorem
Standard RDBMSs are usually positioned to be consistent and available while having lower
tolerence for network partitions. This is contrasted by most NoSQL-solutions which tend to
sacrifice either consistency or availability in order to gain partion tolerence. The properties of the
databases examined throughout this report will be stated below[23][24]

• Amazon S3 - Availability, Partion tolerence

• Google App Engine - Consistency, Partion tolerence

• MongoDB – Consistency, Partion tolerence

• CouchDB - Availability, Partion tolerence

• Neo4j – Information not available

3.4.8 Unrelational characterstics
In SQL there is a built in support for relations between different rows in different tables. This
relational support manifests itself in the form of JOIN-operations and foreign keys. In a SQL-
implemententation it is thus possible to fetch data by from a virtual table, created by a JOIN-
operation. This JOIN operation combines two sets of table rows with one another by creating a new
virtual table consisting of all possible combinations of a row in Table A and a row in Table B that
honours the restrictions specified together with the JOIN-operation. In addition virtual tables can
also be combined with other virtual tables. The ability to choose a foreign key poses a restriction to
a certain table so that a row will not be allowed to be added if its foreign key columns have no
direct corresponding row in another table sepecifed together with the foreign key.

These operations are crucial to standard RDBMSs and while they are an integral part they certainly
are a great liability aswell. This becomes even more true the more the database grows since a bigger
database means more rows and thus more rows to scan when joining tables.

3.4.9 Replication
As mentioned in section 3.1 replication increases the simultaneous read capacity to the database by
replicating the data. Howerver there's also this problem with hardware failing. Earlier we've been
trying to prevent failures by buying expensive hardware[25]. With replication you don't have to

22

spend excessive resources on preventing failures, but rather if one of the nodes fail, then you have
at least one other node that has the same data that can replace the one that failed.

The downside with replication is when you want to write to the database. If anything needs to be
written to the database, then you need to write that to every node that is supposed to store that piece
of data. It can be done in two ways: master-slave scheme or master-master/multi-master scheme.
Master-slave scheme means that you first write to one node, the master, and then its state is
transferred to the replicas, the slaves. This way of doing it insures availability, but not consistency.
The other way, using the master-master scheme, is that any replica commits the write operation and
then transfers its state.

3.4.10 Sharding
As mentioned in section 3.1 sharding can be used to divide reads and writes over several servers.
However there are some problems with sharding though. The first one is that sharding makes some
more advanced database operations very complex and inefficient. Typically these come in the form
of the classical join operations seen in relational databases. Therefore, join operations are not
supported in most sharded databases. The second downside is that the more nodes you add, the
higher the probability of having a node failing. To handle this, sharding is usually combined with
replication.

23

4 Research
4.1 Analysis: What types of data benefit from NoSQL use?
"Like we have this web 2.0 kind of sites where people just put in all their crap, and then by no
means does fit within any relational database."
Jan Lehnardt, co-worker on CouchDB [28]

4.1.1 General types of data
The amount of data available has increased dramatically in recent years [29]. This data comes in
different forms.

What form the data comes in and what the data is used for makes big differences on the
different needs and requirements on the characteristics of the databases. Some types of data requires
more flexible storing than others. Some types of data requires more secure types of storing than
others, and some types of data requires higher processing speeds when writing to and reading from
the databases.

The data that today's databases are supposed to handle can be categorized into three overall
forms:

• Structured data

• Semi-structured data

• Unstructured data

When it comes specifically to what kind of data that benefits from the use of NoSQL DBMS, there
are two relevant arguments/aspects; performance and flexibility [30]. Therefore we evaluate the data
types from these two aspects.

4.1.1.1 Structured data
Some data comes in a structured form. This means that in every unique instance of data, every post
has the same attributes; they adhere to a certain kind of form that they fit into. If you have an
application handling all the students in a school, then every student can be defined from for
example a first name, a surname, a personal ID number, a telephone number, an address and so on.
Hence they all fit into the same structured form and they can easily be stored in a relational
database. The reason that we chose to display the examples in a way that reminds you of RDBMS is
that it is a intuitional and descriptive way to do so.

Structured Data

First Name Surname Personal ID Nr Telephone Nr Address

Ellen Johnson 861010-0123 123-12312312 3 John's Street

George Pearson 870101-4321 234-23423423 14 Pear's Street

4.1.1.2 Semi-structured and unstructured data
The two following types of data – semi-structured and unstructured – are becoming more and more
common. Some argue that already today, 80% of all potentially usable business information comes
in unstructured form [31]. The original source for these numbers is IBM, but it is hard to find the
exact documents covering the research, which is why you should not take these numbers for certain.

24

But by just looking at my own daily usage of data, then it is true that a very prominent part of it
comes in the form of reading or writing e-mails, reports, articles, chatting, listening to audio or
watching videos on youtube.

Moreover, there are other sources where multiple analysts, once again, estimate that more
than 70-80% of all data within organizations comes in an unstructured form [32]. They also
estimate that the total amount of available data will grow by 800% during the coming five years,
and that the unstructured data is growing by 10-50 times more than structured data.

Semi-structured data
Some data comes in a semi-structured form. This means that every record has an overall structure
that it adheres to, but the contents of some particular structural elements are not always consistent
[33]. While some semi-structured data look very much like structured data, we will see that this is
not always the case.

One type of semi-structured data could be that you have an application handling all the
students in a school, where one student could be defined from a subset of all possible data
associated with a student. The student could be defined from a first name, a surname, a personal ID
number and an address, while another student could be defined from a first name, a last name, a
telephone number and an address. This means that they follow some kind of common structure, but
they do not always have information in the same fields. Some fields are missing out.

Semi-structured Data

First Name Surname Personal ID Nr Telephone Nr Address

Ellen Johnson 861010-0123 3 John's Street

George Pearson 234-23423423 14 Pear's Street

We could also find ourselves in a situation where we are having a database that puts together
students from databases from different countries. They all have a country, a first name, a surname,
some kind of way of handling a personal ID number, a telephone number and an address. Since
different countries can have different ways of handling for example ID numbers or addresses, we
will have these elements entered on different forms into our database. This means that we will have
the personal ID numbers of all the students, but they may look very different. This is also
considered to be semi-structured data [29].The following example is a combination of different
formatting and missing fields.

Semi-structured Data

Country First Name Surname Personal ID Birthdate Telephone Nr Address

Sweden Ellen Johnson 861010-0123 123-12312312 3 John's Street

Iran George Pearson 104 870101 234-23423423 14 Pear's Street

In general, semi-structured data arises when data from sources that have differences to them are
combined and/or when the data is stored in sources that do not impose a rigid structure, such as on
the Internet.

Another example of this is an article [29] which discusses the OEM - Object Exchange
Model - as a means of exchanging semi-structured data between object-oriented databases. They
have an example covering some of the problems faced, as seen in the figure below: "Observe that,

25

for example, (i) restaurants have zero, one or more addresses; (ii) an address is sometimes a string
and sometimes a complex structure; (iii) a zipcode may be a string or an integer; (iv) the zipcode
occurs in the address for some and directly under restaurant for others; and (v) price information is
sometimes given and sometimes missing."

[29]

If comparing the first and the last example of semi-structured data, we can see that the amount of
shared structure found in different posts can differ widely.

As a summary, semi-structured data can be defined as "data that has no absolute schema
fixed in advance, and whose structure may be irregular or incomplete." [34]

Unstructured data
Some data, and some would argue more than just "some", comes in a unstructured form. A quick
definition of unstructured data in the context of relational databases is: data that can not be stored in
rows and columns [35]. This definition needs some explanation though. What can be said more
elaborately is that unstructured data, unlike structured data, "lacks the explicit semantic structure
necessary for computerized interpretation" [36]. The unstructured data contains elements which by
themselves do not consist of data that a computer can find any relevant structure in, or rather, which
a computer can not interpret in a sufficient way.

Unstructured data is sometimes also refered to as raw data. Although there is sometimes a
need for distinction of unstructured data from raw data.

Raw data is data in a form that a database by itself cannot analyze and do anything useful
with. The major types of raw data are texts, graphics, images, audio and video data [36]. The texts
can be for example e-mails, news, letters, chats and web pages [35].

26

Unstructured data can be just that; raw data. But it can also contain more than just raw data.
Often the raw data comes packaged with additional information about it, also known as meta data.
Meta data can for example be information about author, type or date of creation, which makes for a
combination of structured and unstructured data. In such cases, the unstructured data can often look
more like semi-structured data, although it would still be categorized as unstructured data [35].
Following is an example of unstructured data that only consists of raw data.

Unstructured Data

Raw Data

"Non-interpretable" audio file data

Depending on the source of the unstructured data, it may or may not contain meta data. Even if it
does contain meta data, the meta data given can be different depending on the source. Meta data in
one file/document may consist of just info about the type, while the meta data in another document
may contain info about both type, author and date of creation, and more.

Unstructured Data

Meta Data Raw Data

Type

mp3 "Non-interpretable" audio file data

Unstructured Data

Meta Data Raw Data

Type Author Date of Creation YY-MM-DD

mp3 Author123 11-01-01 "Non-interpretable" audio file data

27

4.1.2 Specific types of data
4.1.2.1. Object data
Many different data-types can be seen as objects. An object in this case is of the same type as the
ones you find in object-oriented programming; you save all the attributes of an object within the
object itself. If you for example have a "Student" object, then it could contain information about
name, phone number and address.

Many non-relational databases have a natural way of handling objects, whereas relational databases
do not. The benefit of this, except for being a more natural and intuitive way of storing the data, is
that you eliminate the need of JOIN-operations between the classical relational database tables. In
relational databases you rely on the ability to join different tables together and in that way gather all
the needed information for your operations towards the database. A object-oriented approach of
storing the data means that you can easily split the different objects over partitions, enabling
sharding for much more efficient scaling.

Sharding opens up for higher performances as the number of records in the database
increases since you are not bound to have all data on one single machine or to make complex and
slow solutions to split the data over partitions. This is the biggest reason why many non-relational
databases scale linearly or log-linearly with the amount of data.

28

Student

name = ”Ellen”

phone = ”123-12312312”

address = ”3 John’s Street”

Student

name = ”Ellen”

phone = ”123-12312312”

address = ”3 John’s Street”

4.1.2.2. Document data
The structural philosophy of document-type data is basically the same as that of objects. You stuff
all related object information into a so called "document", which in this way works just like an
object.

What is special about documents though is that they never save the information of an object
as a mass of data, also known as BLOB, which can be seen in key value stores. In key value stores,
you cannot query the specific attributes of an object.

In document stores though, you can. This means that the term "documents" means that you
have an object, and you can save more complex types of data within the different attributes of the
document, and query them.

Another reason for the need for specifying that something is a document instead of just an
object comes from the fact that documents often contain growing amounts of data. You could for
example have a document that contains student information and blog posts.

4.1.2.3. Complex data
We use complex data as a name for a type of composite data: it consists of different components, or
is in other ways complicated. An example of this is the "blogs" attribute of the example above.
Relational databases have no efficient ways to deal with complex types of data. The table structure
they use were not built to contain complex sub-data as attributes.

Non-relational databases change this with their non-table-oriented approaches to saving
data. There are different solutions to this, and one of them is the previously discussed document-
type data handling.

29

student_id

name = ”Ellen”

phone = ”123-12312312”

address = ”3 John’s Street”

blogs = […]

post = ”Friday 13th”

text = ”Today is Friday 13th”

date = ”fri 11th jan 2011”

comments = […]

student_id = ”…”,
comment = ”No, today is Friday 14th”

student_id = ”…”,
comment = ”No, today is Friday 12th, stupid”

student_id

name = ”Ellen”

phone = ”123-12312312”

address = ”3 John’s Street”

blogs = […]

post = ”Friday 13th”

text = ”Today is Friday 13th”

date = ”fri 11th jan 2011”

comments = […]

student_id = ”…”,
comment = ”No, today is Friday 14th”

student_id = ”…”,
comment = ”No, today is Friday 12th, stupid”

4.1.2.4. Relation-heavy data
Some types of data rely heavily on relations to other data. An example of this is a social network
where you have one person that have the relation "classmate" to another person. This opens up for
new types of queries where you for example would be interested in finding a series of objects
(nodes) that fulfill a certain criteria for their relations. The example below shows the principle of
handling relation-heavy data-storage within a database.

The tables of relational databases cannot handle relations between posts effectively. There is no
efficient solution for relations within the tables' framework, since the more relations you want to
store, JOIN-operations require quickly growing amounts of data processing power [37].

30

ID: 1
Name: Ellen

Age: 24

ID: 3
Type: Class

Name: Mathematics

ID: 2
Name: George

Age: 23

ID: 100
Label: is_classmate_to
Since: 2011/01/01

ID: 101
Label: is_classmate_to
Since: 2011/01/01

ID: 103
Label: Attendants

ID: 102
Label: attendant_to
Since: 2011/01/01

ID: 104
Label: attendant_to
Since: 2011/01/01

ID: 105
Label: Attendants

ID: 1
Name: Ellen

Age: 24

ID: 3
Type: Class

Name: Mathematics

ID: 2
Name: George

Age: 23

ID: 100
Label: is_classmate_to
Since: 2011/01/01

ID: 101
Label: is_classmate_to
Since: 2011/01/01

ID: 103
Label: Attendants

ID: 102
Label: attendant_to
Since: 2011/01/01

ID: 104
Label: attendant_to
Since: 2011/01/01

ID: 105
Label: Attendants

4.2 Performance test
To analyze these databases we decided to perform benchmarking test using different queries and
data-sources. As a first disclaimer it must be pointed out that the results obtained in these
benchmarks can in no way be used to compare the different database-solutions presented. First off
we had to use different data in order to make the tests work. Neo4j for example has trouble handling
huge amounts of data and thus was tested on a substantially smaller amount of data. In addition the
data models while trying to remain true to the original data model idea had to be slightly modified
in order to satisfy certain conditions in the databases while in many cases still remaining suboptimal
for the different solutions. However these results can give the reader a general idea of the
performance in the different solutions and also provide a result which can be used to link the speed
of the databases to increases in database size.

These tests were performed locally on a Ubuntu-system. We chose not to test Amazon S3 and
Google app engine since they are only provided as internet services and thus would provide poor
conditions for establishing any distinctive results.

To begin the tests we had to establish a data model suitable for doing these tests on. We decided to
construct a rather simple system imitating a social network. The basic units of our data model were
as follows:

• Person
• Event
• Blog post
• Comment

Where each person wrote a random number of blog posts and had a random number of other
persons as their friends. The events were hosted by a single person and had a random number of
invites sent which were accepted or rejected at random. In addition each blog post and event had a
random amount of comments written by a friend or invited person.
To keep this random data consistent over all the test the data was generated by a program in the
beginning and saved to a file. This process was then repeated with slightly different variables to
create another set of data with another set of characteristics. These different data sets were then
inserted into the databases and then queried with two different queries.

Q1: Find the people who has posted comments on a certain persons blog posts.
Q2: Find all people who have attended the same party as a certain person.

To conduct the tests we created Java programs for generating, inserting and querying. These can be
found in Appendix B.

The program generated the data based on parameters. Here we show the size of the data desribed in
a few different terms for both the small and the big data size. The big datasize were made to be
twice as large as the small data size. Any deviation is due to small random data sizes within the
larger controlled data sizes as mentioned before.

Small Big

31

Persons 5000 10000
Friendships 392705 792501
Events 2500 5000
Event comments 14068 27632
Blog posts 25048 49554
Blog post comments 85830 173044

32

5 Results
5.1 General advice on picking the right database
As the result of our research we have found three distinct points to keep in mind when choosing a
NoSQL-solution for your application development.

• The attributes of the DBMSs

• The natural data-format

• Extra application development efforts

The attributes of the data correspond to section 3.2 of our research. When designing an application
with a NoSQL solution in mind the attributes of the DBMS are of great concern. Each single
attribute can make or break an application depending on its individual requirement. When looking
at the attributes specified in the table at section 3.2.10 it is important to not neglect speed and
scalability, the two main arguments for NoSQL to begin with. These attributes however are very
hard to quantify since they completely depend on the use-case and any attempt to implement these
attributes in this reasearch would be a source of subjectiveness and selection.

The data format corresponds to section 4.1 of our reasearch. The natural data format of the database
solution may sometimes play a critical role when choosing your NoSQL-solution. Any application
development benefits greatly by a storage solution which requires no serialization of data as well as
featuring fetching of data corresponding well to the use cases of the application.

Depending on the type of data you want to store, you might or might not want to look into
transitioning over to a NoSQL database.

5.1.1 Does structured data benefit from NoSQL use?
Flexibility
For structured data a transition to NoSQL databases is in general not necessary. Although NoSQL
databases do not have any problem handling structured data, the SQL databases work well. They are
,after all, designed to handle this kind of data.

Performance
NoSQL databases in general scale much more efficiently than SQL databases [37]. If you are going
to store very big amounts of data, then you would want to consider transitioning to a NoSQL
database in order to get effective scaling.

5.1.2 Does semi-structured and unstructured data benefit from NoSQL use?
Flexibility
Yes, they do. Semi-structured and unstructured data does not fit well into the tables of relational
databases because of the following reasons:

• Missing fields. Some fields may be missing out.

• Loose or no structure. They do not follow a fixed structure.

• Raw data handling. Raw data is hard or impossible for a database to interpret and the data is
even less able to be sorted into a table and still make sense. There - in general - shouldn't be
any kind of "expectations" on the raw data from the database.

33

This shows that the high requirements on the data from the relational databases are unnecessary and
creates a situation where you try to fit the data to the database, instead of fitting the database to the
data.

It should be mentioned though that one way to handle these problems is to save the data as BLOBs
in your RDBMS. This way you can store the data, but this is however only a storage solution. When
you store the data as a BLOB, the database cannot interpret the data in the BLOB as anything else
than a series of bytes.

Performance
Yes, they do benefit from NoSQL use.

• Scaling. We have the general fact that non-relational databases scale better than relational
databases when you are dealing with increasing amounts of data [37].

• Complexity. The complexity increases when trying to fit non-structured data into a relational
database. While the complexity of the relational databases by themselves are already high,
this makes for an unintuitive, hard-to-understand and possibly slower database as you either
have to increase the number of columns as you try to fit the new data into the database or
when you try to fit the raw data into the database.

5.1.3 Additional comments 1: The RDBMS's requirements on the data
In order for a unique instance of data, a record, to fit into a relational database, you need to in
before-hand have information about the elements of the instance/record in order to build the
required table. The columns need to be defined in the beginning, and ever since that moment, all the
instances of data needs to fit into that table.

This makes for a complex, difficult and slow database environment to work with if the data
is not structured [37]. This way of handling the data would also seem rather unintuitive and
unnecessary.

The only time that relational databases provide better flexibility is when you can not foresee
what kinds of questions will be queried to the database in the future [38]. In this case, the strict
structure of the relational database makes it possible to use SQL with combinations of
elements/attributes that you did not even know when you designed the database.

5.1.4 Additional comments 2: The ACID aspect
RDBMS's usually follow the ACID semantics very strongly, and hence make a very good way to
store data that requires security, fail-safe operations and consistent data. The typical example of data
with these requirements are the ones saved in banks, where errors can not be accepted. As
mentioned though, some NoSQL databases puts an emphasis on providing ACID semantics, but
usually do so with a limited feature set.

34

5.1.5 Attribute summary table of our five investigated databases
Amazon S3 Google App

Engine
CouchDB MongoDB Neo4j

Atomicity Multi-key Single-key Full Document level Full

Consistency Strong Eventual Strong (master-
slave only)

Eventual Strong

Isolation No Yes Yes No Yes

Durability Yes Yes Yes Yes Yes

Queries Primary keys Yes Primary keys +
static views

Yes Transitional
queries

Map-reduce No Yes Yes Yes Not applicable

CAP -
Consistency

No Yes Yes No N/A

CAP -
Availability

Yes No No Yes N/A

CAP - Partition
tolerance

Yes Yes Yes Yes N/A

Replication Yes Yes Yes Yes No**

Sharding Manual* Not applicable* Manual or by
plug-in

Yes Yes

* The underlying technology uses sharding
** But they are working on it. Check out the High Availability Cluster project (HA)

35

Consequences for application development
As NoSQL-solutions in most cases only provide limited support for error-correction, consistency
and recoverability as discussed in 3.2, this forces application developers to undertake a different
approach when dealing with these issues. The databases must be examined together with the
application in order to establish which types of errors are possible and whether they are crucial for
the application. These problems must then be handled in the application-layer of the program. This
creates an additional task for the developer and this task might be very hard to solve especially
when making an application which has very tight restrictions regarding data storage properties.
There are both benefits and drawbacks by using a database which forces error preventing code to be
written in the application layer.

The main benefit is the increase in speed as well as scalability the absense of several features and
attributes in NoSQL DBMSs allows for this. This has been the strongest argument from the
NoSQL-movement for switching to NoSQL.[4][27]

5.2 Performance test results
Benchmarking
As indicated before the performance test did not include Google app Engine or Amazon S3

The performance test results are provided in Appendix A. The small and big keywords in each
header provides which data set was used and Q1 and Q2 reflects whether query 1 or query 2 was
used. The numbers below each header is the amount of milliseconds it took to complete each query.
It is immidiately observable that MongoDB was faster than Neo4j which in turn was faster than
CouchDB and all the databases fared well with increasing data size.

As for the required time to accomplish the different queries, these are the main results that were
given:

Average time (ms) MongoDB Neo4j CouchDB

Query nr 1 / BIG 10,1 95,6 295,05

Query nr 2 / BIG 44,25 103,05 1867,6

Query nr 1 / SMALL 6,25 103,85 204,65

Query nr 2 / SMALL 22,45 85,9 956,3

Query nr 1 / MULTIPLIER 1,616 0,9205584978 1,4417297826

Query nr 2 / MULTIPLIER 1,8829787234 1,1996507567 1,9529436369

The multiplier values in the result describes the percentual increase in query time resulting from a
twice as large data size as mentioned in section 4.2.

For more data and graphs please see Appendix A.

36

6 Discussion
From the research we can conclude that each of the DBMSs certainly has its uses and problems.
The usability of the databases is very much application and data model dependent. An application
using very little dynamic filtering might favor CouchDB while an application having to process
deep relational problems would benefit from using Neo4J. In order to make it simple we have come
up with these different use cases for our three main databases.

Neo4j – relational querying
CouchDB - static filtering on dynamic data
MongoDB - dynamic filtered data

With this in mind the test data speaks very clearly. In the test queries we used dynamic filtering
which is very similar to relational querying but in most aspects completely different to static filtered
data. This caused CouchDB especially in test 2 to receive far worse benchmarks than the other
databases. It must however be pointed out that these databases such as MongoDB which handle data
similar to a standard RDBMS still drops some properties in favor of speed.

All databases had good results for their multiplier as seen in 5.2 and Appendix A. However Neo4j
provided remarkable results in that regard. It increases slightly in execution time in one query and
decreases in the other. The reason for this must be its graph design. The graph design allows Neo4j
to ignore the size of the total data stored in the databased. The data we provided did simply increase
the amount of persons and events. The amount of blogposts per person, friends per person, invites
per event stayed the same. This gave Neo4j an edge since it never had to filter through all the data
but just the data that did not increase in size.

CouchDB showed good results in a totally different regard. To achive the goal of both of the querys
with CouchDB we had to statically filter the data in CouchDB, send it to our querying application
and then in the application extract the vital information we needed. This meant that CouchDB did
filtering for all persons in both querys and sent to the application. With that in mind CouchDB
seems fast. The reason CouchDB can achieve that is because it caches its static filterings.

When looking at the knowledge we have extracted from our research we can see that all three
database solutions caters to completely different scenarios. You could say that NoSQL is not about a
specific issue but NoSQL is about custom tailored databases solving very specific problems.

37

7 Conclusions
Different types of data
NoSQL DBMS's were created to handle more loosely defined types of data, where you for example
have growing amounts of data within a single object. In this report we have both looked at a few
specific databases - and compared them in different aspects – and investigated how different types
of data can benefit from the use of a NoSQL DBMS from the aspects of flexibility and
performance.

The attribute comparison for our specific databases is presented under the 'Results' chapter.

As for the different types of data and how they can benefit from the use of a NoSQL DBMS, this is
what we concluded:

Structured data
Flexibility
From a flexibility perspective, structured data in general doesn't specifically benefit from the use of
a NoSQL DBMS.

Performance
From a performance perspective, structured data can benefit from the scalability strenghts of
NoSQL DBMS if the amount of data stored grows big.

Semi-structured and unstructured data
Flexibility
From a flexibility perspective, semi-structured and unstructured data does benefit from the use of a
NoSQL DBMS, for the following reasons: some fields may be missing out, there is no coherent
structure or the data contains raw data.

Performance
From a performance perspective, semi-structured and unstructured data does benefit from the use of
a NoSQL DBMS, for the following reasons: scaling is more effective and you avoid the increasing
complexity of trying to fit unstructured data into a relational database, which possibly will make the
database slower.

The performance test
From our test results we understood that CouchDB was not made for dynamic queries filtering on
anything else than the primary key. We have also learned that to truly test the databases you have to
take a far more wide range of factors into aspect. We can however see that the databases scale quite
well with the increasing amount of data even while doing queries heavy in data processing.
However our tests did not contain tests on sharded and replicated data and did not test inserts and
selections simultaneously. This could certainly be done but is dependent on additional hard
controlled parameters such as network latency and order of inserts and selections.

38

8 Future research
As mentioned in section 2.1 in the methods chapter, the performance test we did by far doesn't
cover all the different aspects and twists of the subject. We only tested one type of data, from a few
aspects, on three databases. There are lots and lots of additional tests that can be done. For future
research we suggest testing:

• Other types of data
• Other databases
• Other functions of the databases, such as sharding and replication
• Other aspects of the performance, such as consistency and availability
• Other types of queries and other types of data models

39

Citations and sources
[1]: 2011-04-30, http://docs.amazonwebservices.com/AmazonS3/latest/gsg/

[2]: 2011-09-21, http://www.mongodb.org/

[3]: 2011-05-01, http://couchdb.apache.org/docs/intro.html

[4]: List of NoSQL databases http://nosql-database.org/

[5]: Google Trends NoSQL, http://www.google.com/trends?q=nosql

[6]: Michael Stonebreaker, 2010, SQL Databases v. NoSQL Databases, Communications of the
ACM April Vol 53 NO 4

[7]: Rick Catell, 2011, Scalable SQL and NoSQL Data Stores, ACM SIGMOD Record Volume 39
Issue 4

[8]: Daniel J. Abadi, Peter A. Boncz, Stavros Harizopoulos, 2009, Column-oriented Database
Systems, Proceedings of the VLDB Endowment Volume 2 Issue 2 August

[9]: Natalia Söderberg, Jan Eriksson, 2010, Utredning av NoSQL-databaser för Sogeti I Gävle,
Högskolan i Gävle Akademin för teknik och miljö

[10]: Orend Kai, 2010, Analysis and Classification of NoSQL Databases and Evaluation of their
Ability to Replace an Object-relational Persistance Layer, Technical University Munich Faculty of
Informatics

[11]: MongoDB, http://www.mongodb.org/

[12]: CouchDB, http://couchdb.apache.org/

[13]: Renzo Angles, Claudio Gutierrez, 2008, ACM Computing Surveys (CSUR) Volume 40 Issue
1 February

[14]: Neo4j, http://neo4j.org/

[15]: Principles of transaction-oriented database recovery, Theo Haerder, Andreas Reuter, ACM
Computing Surveys (CSUR) Volume 15 Issue 4, December 1983

[16]: Google Groups Thread: Is db.put() atomic, http://groups.google.com/group/google-
appengine/browse_thread/thread/2ce6e772bb9735d5?pli=1 , 2011-04-27

[17]: MongoDB atomic operations, http://www.mongodb.org/display/DOCS/Atomic+Operations,
2011-04-27

[18]: CouchDB Consistancy, http://guide.couchdb.org/draft/consistency.html, 2011-04-27

[19]: Neo4j Transactions, http://docs.neo4j.org/chunked/snapshot/transactions.html, 2011-04-27

[20]: Google App Engine Choosing a datastore, http://code.google.com/intl/sv-
SE/appengine/docs/python/datastore/hr/, 2011-04-27

[21]: MongoDB Advanced Queries,
http://www.mongodb.org/display/DOCS/Advanced+Queries#AdvancedQueries-%7B%7Bgroup
%28%29%7D%7D

[22]: Jeffrey Dean, Sanjay Ghemawat, 2004, MapReduce: Simplified Data Processing on Large
Clusters, OSDI’04: Proceedings of the 6th conference on Symposium on Opearting Systems Design
& Implementation Volume 6

[23]: Seth Gilbert, Nancy Lynch, 2002, Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-Tolerant Web Services, Seth Gilbert, Nancy Lynch, ACM SIGACT News,

40

http://docs.amazonwebservices.com/AmazonS3/latest/gsg/
http://www.mongodb.org/display/DOCS/Advanced+Queries#AdvancedQueries-%7B%7Bgroup()%7D%7D
http://www.mongodb.org/display/DOCS/Advanced+Queries#AdvancedQueries-%7B%7Bgroup()%7D%7D
http://code.google.com/intl/sv-SE/appengine/docs/python/datastore/hr/
http://code.google.com/intl/sv-SE/appengine/docs/python/datastore/hr/
http://docs.neo4j.org/chunked/snapshot/transactions.html
http://guide.couchdb.org/draft/consistency.html#figure/3
http://www.mongodb.org/display/DOCS/Atomic+Operations
http://groups.google.com/group/google-appengine/browse_thread/thread/2ce6e772bb9735d5?pli=1
http://groups.google.com/group/google-appengine/browse_thread/thread/2ce6e772bb9735d5?pli=1
http://neo4j.org/
http://couchdb.apache.org/
http://www.mongodb.org/
http://www.google.com/trends?q=nosql
http://nosql-database.org/
http://couchdb.apache.org/docs/intro.html
http://www.mongodb.org/

Volume 33 Issue 2, pg. 51-59

[24]: Visual guide to NoSQL systems, http://blog.nahurst.com/visual-guide-to-nosql-systems, 2011-
05-01

[25]: The common principles behind the NoSQL alternative,
http://blog.gigaspaces.com/2009/12/15/the-common-principles-behind-the-nosql-alternatives/ ,
2011-09-22

[26]: Marc Seeger, 2009, Key – Value Stores: a practical overview, Hochschule der Medien
Computer Science, Stuttgart Germany

[27]: SQL vs. NoSQL, Daniel Bartholomew, Linux Journal, Issue 195, 2010

[28]: Jan Lehnardt at the FLOSS Weekly podcast nr 36: CouchDB

[29]: Serge Abiteboul, info gathered 2011-04-19, Querying semi-structured data
[30]: Michael Stonebraker, 2010, SQL Databases v. NoSQL Databases
[31]: Christopher C. Shilakes and more, 2011-04-19, p15, http://ikt.hia.no/perep/eip_ind.pdf

[32]: Noel Yuhanna, 2010, Today’s Challenge in Government: What to do with Unstructured
Information and Why Doing Nothing Isn’t An Option
[33]: Denise L. Draper, 2003, US Patent, Method and apparatus for storing semi-structured data in
a structured manner
[34]: Dallan Quass and more, 1997, Querying Semistructured Heterogeneous Information
[35]: Robert Blumberg and more, 2003, The problem with unstructured data
[36]: Li Wei and more, 2010, A tetrahedral data model for unstructured data management
[37]: Neal Leavitt, 2010, Will NoSQL Databases Live Up to Their Promise
[38]: Natalja Söderberg and more, 2010, p45, Utredning av NoSQL-databaser

41

http://ikt.hia.no/perep/eip_ind.pdf
http://blog.gigaspaces.com/2009/12/15/the-common-principles-behind-the-nosql-alternatives/
http://blog.nahurst.com/visual-guide-to-nosql-systems

Appendix

Appendix A – Results
The results are divided by each DBMS and is first represented by the raw data collected. This is
each querys total runtime to finish in milliseconds. Then graphs are presented visualising the
increase in query time when the data size grows. In addition graphs are provided for only run 2-20
of each query.

A1. Neo4J

Neo4J Q1 Small

470
114
28
150
145
91
109
86
116
27
106
40
92
127
71
93
64
30
50
68

Neo4J Q1 Big

469
39
12
77
74
44
97
35
109
114
107
51
112
85
42
79
89
87
98
92

Neo4J Q2 Small

531
37
11
46
52
53
93
118
112
28
84
10
118
42
81
136
44
46
66
10

Neo4J Q2 Big

414
162
99
62
119
138
47
57
46
88
20
139
12
35
72
140
49
149
75
138

42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

100

200

300

400

500

600

Query times

Neo4J SMALL Q1
Neo4J BIG Q1
Neo4J SMALL Q2
Neo4J BIG Q2

Query number

Q
ue

ry
 ti

m
e

43

1 2
0

20

40

60

80

100

120

Average query time

Query 1
Query 2

Data size (normalized)

Q
ue

ry
 ti

m
e

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0,92

1,20

Query time multiplier

Query 1
Query 2

M
ul

tip
lie

r

1 2
0

10
20
30
40
50
60
70
80
90

100

Average query time run 2-20

Query 1
Query 2

Data size (normalized)

Q
ue

ry
 ti

m
e

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0,90

1,39

Query time multiplier run 2-20

Query 1
Query 2

M
ul

tip
lie

r

A2. MongoDB

MongoDB Q1 Small

39
4
5
6
4
5
5
5
4
4
4
4
5
5
4
4
5
4
5
4

MongoDB Q1 Big

52
9
8
8
7
7
8
7
7
9
7
9
9
9
8
7
8
8
7
8

MongoDB Q1 Small

60
21
21
21
21
22
23
20
21
22
21
20
21
23
21
22
22
23
23
22

MongoDB Q2 Big

71
48
43
44
42
39
42
40
43
44
42
42
42
41
42
42
45
44
43
46

44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

Query times

MONGODB SMALL Q1
MONGODB BIG Q1
MONGODB SMALL Q2
MONGODB BIG Q2

Query number

Q
ue

ry
 ti

m
e

45

1 2
0
5

10
15
20
25
30
35
40
45
50

Average query time

Query 1
Query 2

Data size (normalized)

Q
ue

ry
 ti

m
e

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2

1,62

1,88

Query time multiplier

Query 1
Query 2

M
ul

tip
lie

r

1 2
0

5
10

15

20

25

30
35

40

45

Average query time run 2-20

Query 1
Query 2

Data size (normalized)

Q
ue

ry
 ti

m
e

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2

1,74

1,99

Query time multiplier run 2-20

Query 1
Query 2

M
ul

tip
lie

r

A3. CouchDB

CouchDB Q1 Small

681
306
327
362
218
199
196
180
119
127
139
135
140
145
139
136
139
158
119
128

CouchDB Q1 Big

935
588
377
300
327
236
242
246
236
239
225
208
223
200
233
207
206
247
205
221

CouchDB Q2 Small

1707
1502
941
927
867
904
875
880
856
927
861
864
883
861
860
941
856
866
873
875

CouchDB Q2 Big

2935
2435
1906
1812
1785
1750
1789
1815
1755
1754
1779
1743
1750
1834
1759
1776
1740
1745
1740
1750

46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

3500

Query times

CouchDB SMALL Q1
CouchDB BIG Q1
CouchDB SMALL Q2
CouchDB BIG Q2

Query number

Q
ue

ry
 ti

m
e

47

1 2
0

200
400
600
800

1000
1200
1400
1600
1800
2000

Average query time

Query 1
Query 2

Data size (normalized)

Q
ue

ry
 ti

m
e

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1,44

1,95

Query time multiplier

Query 1
Query 2

M
ul

tip
lie

r

1 2
0

200
400
600
800

1000
1200
1400
1600
1800
2000

Average query time run 2-20

Query 1
Query 2

Data size (normalized)

Q
ue

ry
 ti

m
e

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1,46

1,98

Query time multiplier run 2-20

Query 1
Query 2

M
ul

tip
lie

r

Appendix B – Program Code
Dependencies: org.apache.http , org.json
import java.util.*;
import java.io.*;

public class DataGenerator
{

static String fileName = "data1.ser";
static char [] chars =

{'a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O
','P','Q','R','S','T','U','W','X','Y','Z'};

static int numberOfPersons = 5000;
static int numberOfEvents=2500;
static int numberOfEventInvitesMin=10;
static int numberOfEventInvitesMax=25;
static double numberOfEventCommentsPerUserMin=0.0;
static double numberOfEventCommentsPerUserMax=0.7;
static int numberOfBlogPostsMin=0;
static int numberOfBlogPostsMax=10;
static double numberOfBlogPostCommentsPerUserMin=0.0;
static double numberOfBlogPostCommentsPerUserMax=0.05;
static Calendar personCalMin = new GregorianCalendar(1950,0,1);
static Calendar personCalMax = new GregorianCalendar(2005,12,31);
static Calendar eventCalMin = new GregorianCalendar(2000,0,1);
static Calendar eventCalMax = new GregorianCalendar(2010,12,31);
static Calendar blogPostCalMin = new GregorianCalendar(2000,0,1);
static Calendar blogPostCalMax = new GregorianCalendar(2010,12,31);
static int ownInitiatedFriendsMin=40;
static int ownInitiatedFriendsMax=200;
static int friendsNormalStandardDeviation=200;

static final int UNIFORM_DISTRIBUTION=0;
static final int NORMAL_DISTRIBUTION=1;
static int friendshipType=UNIFORM_DISTRIBUTION;
static int eventInvitesType=UNIFORM_DISTRIBUTION;
static double attendanceChance=0.5;

static Random r = new Random();
/**
 * @param args
 */
public static void main(String[] args)
{

Person [] persons = new Person [numberOfPersons];
System.out.println("GENERATING PERSONS");
for(int i=0;i<persons.length;i++)
{

persons[i]=new Person();
persons[i].id=i;
persons[i].name = generateString(3,20);
persons[i].adress = generateString(10,30);
persons[i].birthdate = generateCalendar(personCalMin,personCalMax);
persons[i].country = generateString(5,15);

}
System.out.println("PERSONS DONE");
System.out.println("GENERATING FRIENDSHIPS");
for(int i=0;i<persons.length;i++)
{

persons[i].totalOwnInitiatedFriends =
generateInt(ownInitiatedFriendsMin,ownInitiatedFriendsMax);

}
for(int i=0;i<ownInitiatedFriendsMax;i++)
{

//System.out.println(i);
for(int j=0;j<persons.length;j++)
{

48

if(persons[j].totalOwnInitiatedFriends<i)
{

makeFriend(persons[j],j,persons);
}

}
}
for(int i=0;i<persons.length;i++)
{

persons[i].finalizeFriends();
}
System.out.println("FRIENDSHIPS DONE");
System.out.println("GENERATING EVENTS");
Event [] events = new Event[numberOfEvents];
for(int i=0;i<events.length;i++)
{

events[i]=new Event();
events[i].id=i;
events[i].eventInfo=generateString(10,200);
events[i].eventDate=generateCalendar(eventCalMin,eventCalMax);
//Random host
int hostIndex=(int)(r.nextDouble()*persons.length);
events[i].host=persons[hostIndex];
//Random amount of guests
int guestAmount=generateInt(numberOfEventInvitesMin,numberOfEventInvitesMax);
for(int j=0;j<guestAmount;j++)
{

makeInvite(events[i],hostIndex,persons);
}
events[i].finalizeInvites(attendanceChance);

int commentAmount=(int)
(guestAmount*generateDouble(numberOfEventCommentsPerUserMin,numberOfEventCommentsPerUserMax));

Comment [] comments = new Comment[commentAmount];
events[i].comments=comments;
for(int j=0;j<commentAmount;j++)
{

comments[j]=makeEventComment(events[i]);
}

}
System.out.println("EVENTS DONE");
System.out.println("GENERATING BLOGPOSTS");
long totalComments =0;
for(int i=0;i<persons.length;i++)
{

int blogPostAmount = generateInt(numberOfBlogPostsMin,numberOfBlogPostsMax);
BlogPost [] blogPosts = new BlogPost[blogPostAmount];
persons[i].blogPosts=blogPosts;
if(i%1000==0)System.out.println(i+"-"+totalComments);
for(int j=0;j<blogPosts.length;j++)
{

blogPosts[j]=new BlogPost();
blogPosts[j].content=generateString(100,1000);
blogPosts[j].publishDate=generateCalendar(blogPostCalMin,blogPostCalMax);
int commentAmount=(int)

(persons[i].friends.length*generateDouble(numberOfBlogPostCommentsPerUserMin,numberOfBlogPostCommentsPerUs
erMax));

Comment [] comments = new Comment[commentAmount];
blogPosts[j].comments=comments;
for(int k=0;k<commentAmount;k++)
{

comments[k]=makeBlogPostComment(blogPosts[j],persons[i].friends);
totalComments++;

}
}

}
System.out.println("BLOGPOSTS DONE");
System.out.println("PREPARING FOR SERIALIZATION");
DataHolder dh = new DataHolder();
dh.persons=persons;
dh.events=events;
dh.prepareForSerialization();
System.out.println("PREPARATION DONE");
System.out.println("STARTING SERIALIZATION");

49

try
{

ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("data1.ser"));
oos.writeObject(dh);
oos.close();
/*dh=null;
persons=null;
events=null;
ObjectInputStream ois = new ObjectInputStream(new FileInputStream("data1.ser"));
DataHolder dh2 = (DataHolder)ois.readObject();
oos = new ObjectOutputStream(new FileOutputStream("data2.ser"));
oos.writeObject(dh2);
oos.close();*/

/*PrintWriter pw = new PrintWriter(new FileOutputStream(new File("data1.ser")));

dh.serialize(pw);
pw.close();
dh=null;
persons=null;
events=null;
Scanner scan = new Scanner(new File("data1.ser"));
DataHolder dh2 = new DataHolder();
dh2.unserialize(scan);
pw=new PrintWriter(new FileOutputStream(new File("data2.ser")));
dh2.serialize(pw);
pw.close();*/

}
catch(IOException io)
{

System.out.println("ERROR IO EXCEPTION WHEN WRITING TO FILE");
io.printStackTrace();

}
catch(Exception e)
{

e.printStackTrace();
}
System.out.println("SERIALIZATION DONE");

}

public static String generateString(int minChar, int maxChar)
{

char [] string = new char [(int)(r.nextDouble()*(maxChar-minChar))+minChar];
for(int i=0;i<string.length;i++)
{

string [i]=chars[(int)(r.nextDouble()*chars.length)];
}
return new String (string);

}
public static int generateInt(int min,int max)
{

return (int)(r.nextDouble()*(max+1-min))+min;
}
public static double generateDouble(double min, double max)
{

return r.nextDouble()*(max-min)+min;
}
public static Calendar generateCalendar(Calendar min, Calendar max)
{

Calendar cal = Calendar.getInstance();
cal.setTimeInMillis((long)(min.getTimeInMillis()+r.nextDouble()*(max.getTimeInMillis()-

min.getTimeInMillis())));
return cal;

}
public static void makeFriend(Person person,int personIndex,Person [] personStack)
{

int count =0;

while(true)
{

count++;
if(count>100)

50

{
System.out.println("WARNING TROUBLE FINDING FRIENDS");

}
if(friendshipType==UNIFORM_DISTRIBUTION)
{

Person friend = personStack[(int)(r.nextDouble()*personStack.length)];
if(friend!=person && !person.areFriends(friend))
{

person.addFriend(friend);
friend.addFriend(person);
break;

}
}
else if(friendshipType==NORMAL_DISTRIBUTION)
{

int indexModifier = (int)(r.nextGaussian()*friendsNormalStandardDeviation);
int friendIndex = (personIndex+indexModifier)%personStack.length;
if(friendIndex<0)friendIndex = personStack.length+friendIndex;

Person friend = personStack[friendIndex];

if(friend!=person && !person.areFriends(friend))
{

person.addFriend(friend);
friend.addFriend(person);
break;

}
}

}
}
public static void makeInvite(Event event,int hostIndex,Person [] personStack)
{

int count =0;
while(true)
{

count++;
if(count>100)
{

System.out.println("WARNING TROUBLE FINDING INVITES");
}
if(eventInvitesType==UNIFORM_DISTRIBUTION)
{

Person guest = personStack[(int)(r.nextDouble()*personStack.length)];
if(guest!=personStack[hostIndex] && !event.isInvited(guest))
{

event.invite(guest);
break;

}
}
else if(eventInvitesType==NORMAL_DISTRIBUTION)
{

int indexModifier = (int)(r.nextGaussian()*friendsNormalStandardDeviation);
int guestIndex = (hostIndex+indexModifier)%personStack.length;
if(guestIndex<0)guestIndex = personStack.length+guestIndex;
Person guest = personStack[guestIndex];
if(guest!=personStack[hostIndex] && !event.isInvited(guest))
{

event.invite(guest);
break;

}
}

}
}
public static Comment makeEventComment(Event e)
{

Comment c = new Comment();
c.comment=generateString(10,150);
long dayInMs=1000l*60l*60l*24l;
Calendar calMin = Calendar.getInstance();
Calendar calMax = Calendar.getInstance();
calMin.setTimeInMillis(e.eventDate.getTimeInMillis()-dayInMs*10l);
calMax.setTimeInMillis(e.eventDate.getTimeInMillis()+dayInMs*10l);
c.date=generateCalendar(calMin,calMax);
c.person=e.invites[(int)(e.invites.length*r.nextDouble())];
return c;

51

}
public static Comment makeBlogPostComment(BlogPost bp, Person [] personStack)
{

Comment c = new Comment();
c.comment=generateString(10,150);
long dayInMs=1000l*60l*60l*24l;
Calendar calMin = Calendar.getInstance();
Calendar calMax = Calendar.getInstance();
calMin.setTimeInMillis(bp.publishDate.getTimeInMillis());
calMax.setTimeInMillis(bp.publishDate.getTimeInMillis()+dayInMs*30l);
c.date=generateCalendar(calMin,calMax);
c.person=personStack[(int)(personStack.length*r.nextDouble())];
return c;

}

}

public class CouchDBQuery {
public static HttpClient client = new DefaultHttpClient();
public static int portNumber = 5984;

public static void query1(String databaseName) throws Exception
{

for(int h=0;h<20;h++)
{

long time = System.currentTimeMillis();
String personID="p"+(500+100*h);
HttpGet get = new

HttpGet("http://127.0.0.1:"+portNumber+"/"+databaseName+"/_design/aView/_view/attending");
get.setHeader("Content-Type", "application/json");
HttpResponse response = client.execute(get);
InputStream instream = response.getEntity().getContent();
File bufferFile = new File("bufferFile");
OutputStream outstream = new FileOutputStream(bufferFile);

 try {
 int l;
 byte[] tmp = new byte[2048];
 while ((l = instream.read(tmp)) != -1) {
 outstream.write(tmp, 0, l);
 }
 } finally {
 instream.close();
 outstream.close();
 }
 System.out.println("READ TO BUFFER: "+(System.currentTimeMillis()-time));

 InputStream is =new FileInputStream(bufferFile);
String total="";
byte [] buffer = new byte[1024*1024];
while (true)
{

//System.out.println(total.length());
int read = is.read(buffer);
if(read!=-1)total=total + new String(buffer,0,read);
else break;

}
is.close();

System.out.println("BUFFER READ: "+(System.currentTimeMillis()-time));
JSONObject wrapper = new JSONObject(total);
System.out.println("CONVERTED TO OBJECT: "+(System.currentTimeMillis()-time));
JSONArray objects = wrapper.getJSONArray("rows");
HashSet<String> friendsFromEvents = new HashSet<String>();
for(int i=0;i<objects.length();i++)
{

JSONObject object = objects.getJSONObject(i);
JSONArray attending = object.getJSONArray("value");
for(int j=0;j<attending.length();j++)
{

if(attending.getString(j).equals(personID))
{

for(int k=0;k<attending.length();k++)
{

friendsFromEvents.add(attending.getString(k));

52

}
}

}
}
System.out.println("DONE: "+(System.currentTimeMillis()-time));

}
}
public static void query2(String databaseName) throws Exception
{

for(int h=0;h<20;h++)
{

long time = System.currentTimeMillis();
String personID="p"+(500+100*h);
HttpGet get = new

HttpGet("http://127.0.0.1:"+portNumber+"/"+databaseName+"/_design/aView/_view/comments");
get.setHeader("Content-Type", "application/json");
HttpResponse response = client.execute(get);
InputStream instream = response.getEntity().getContent();
File bufferFile = new File("bufferFile");
OutputStream outstream = new FileOutputStream(bufferFile);

 try {
 int l;
 byte[] tmp = new byte[2048];
 while ((l = instream.read(tmp)) != -1) {
 outstream.write(tmp, 0, l);
 }
 } finally {
 instream.close();
 outstream.close();
 }
 System.out.println("READ TO BUFFER: "+(System.currentTimeMillis()-time));

 InputStream is =new FileInputStream(bufferFile);
String total="";
byte [] buffer = new byte[1024*1024];
while (true)
{

//System.out.println(total.length());
int read = is.read(buffer);
if(read!=-1)total=total + new String(buffer,0,read);
else break;

}
is.close();

System.out.println("BUFFER READ: "+(System.currentTimeMillis()-time));
JSONObject wrapper = new JSONObject(total);
System.out.println("CONVERTED TO OBJECT: "+(System.currentTimeMillis()-time));
JSONArray objects = wrapper.getJSONArray("rows");
HashSet<String> commenters = new HashSet<String>();
for(int i=0;i<objects.length();i++)
{

JSONObject object = objects.getJSONObject(i);
JSONArray blogPost = object.getJSONArray("value");

if(blogPost.getString(0).equals(personID))
{

for(int j=1;j<blogPost.length();j++)
{

commenters.add(blogPost.getString(j));
}

}
}
System.out.println("DONE: "+(System.currentTimeMillis()-time));

}
}
public static void main(String[] args) throws Exception
{

query2("test2");
}

}

53

public class MongoDBQuery {

public static void query1(String databaseName)throws Exception
{

Mongo m = new Mongo("localhost");
DB db = m.getDB(databaseName);
DBCollection eventsColl = db.getCollection("events");
for(int i=0;i<20;i++)
{

long time = System.currentTimeMillis();
int personID = 500+100*i;
BasicDBObject query = new BasicDBObject();
query.put("attending",personID);
DBCursor cur = eventsColl.find(query,new BasicDBObject("attending",1));

while(cur.hasNext())
{

//System.out.println(cur.next());
cur.next();

}
System.out.println(System.currentTimeMillis()-time);

}
}
public static void query2(String databaseName)throws Exception
{

Mongo m = new Mongo("localhost");
DB db = m.getDB(databaseName);
DBCollection blogPostsColl = db.getCollection("blogPosts");
for(int i=0;i<20;i++)
{

long time = System.currentTimeMillis();
int personID = 500+100*i;
BasicDBObject query = new BasicDBObject();
query.put("author",personID);
DBCursor cur = blogPostsColl.find(query,new BasicDBObject("comments.person",1));

BasicDBList persons = new BasicDBList();
while(cur.hasNext())
{

DBObject dbo = cur.next();
BasicDBList comments = (BasicDBList)dbo.get("comments");
for(int j=0;j<comments.size();j++)
{

persons.add(((BasicDBObject)comments.get(j)).get("person"));
}

}
System.out.println(System.currentTimeMillis()-time);

}
}
/**
 * @param args
 */
public static void main(String[] args)throws Exception
{

query2("test1");

}

}

import java.io.*;

import org.apache.http.*;
import org.apache.http.client.*;
import org.apache.http.client.methods.*;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.DefaultHttpClient;

public class Neo4jQuery {

public static HttpClient client = new DefaultHttpClient();

54

public static void query1()throws Exception
{

for(int i=0;i<20;i++)
{

int personID = 500+100*i;
long time = System.currentTimeMillis();
String query = "{\"order\" : \"breadth_first\",\"return_filter\" :

{\"body\" : \"position.length()==2;\",\"language\" : \"javascript\"},\"uniqueness\" : \"node_global\",\"relationships\" :
[{\"direction\" : \"in\",\"type\" : \"attending\"}, {\"direction\" : \"out\",\"type\" : \"attending\"}],\"max_depth\" : 2}";

HttpPost post = new
HttpPost("http://127.0.0.1:7474/db/data/node/"+personID+"/traverse/node");

post.setHeader("Content-Type", "application/json");
post.setEntity(new StringEntity(query));
HttpResponse response = client.execute(post);

response.getEntity().getContent().close();
System.out.println((System.currentTimeMillis()-time));
/*BufferedReader br = new BufferedReader(new

InputStreamReader(response.getEntity().getContent()));
String line = "";
while ((line = br.readLine()) != null)
{

System.out.println(line);
}
br.close();*/

}
}
public static void query2() throws Exception
{

for(int i=0;i<20;i++)
{

int personID = 500+100*i;
long time = System.currentTimeMillis();
String query = "{\"order\" : \"breadth_first\",\"return_filter\" :

{\"body\" : \"position.length()==3;\",\"language\" : \"javascript\"},\"uniqueness\" : \"node_global\",\"relationships\" :
[{\"direction\" : \"out\",\"type\" : \"blogPost\"}, {\"direction\" : \"out\",\"type\" : \"comment\"},
{\"direction\" : \"out\",\"type\" : \"commenter\"}],\"max_depth\" : 3}";

HttpPost post = new
HttpPost("http://127.0.0.1:7474/db/data/node/"+personID+"/traverse/node");

post.setHeader("Content-Type", "application/json");
post.setEntity(new StringEntity(query));
HttpResponse response = client.execute(post);

response.getEntity().getContent().close();
System.out.println((System.currentTimeMillis()-time));
/*BufferedReader br = new BufferedReader(new

InputStreamReader(response.getEntity().getContent()));
String line = "";
while ((line = br.readLine()) != null)
{

System.out.println(line);
}
br.close();*/

}
}
public static void main(String[] args) throws Exception
{

query1();

}

}

55

www.kth.se

	Abstract
	Sammanfattning
	1 Introduction
	1.1 Background
	1.2 Problem description
	1.3 Purpose of the report
	1.4 Delimitations
	1.5 Target group

	2 Method
	2.1 Motivating the chosen methods

	3 State of the art and theory
	3.1 Technical terms
	3.1.1 ACID
	3.1.2 Atomicity
	3.1.3 Consistency
	3.1.4 Isolation
	3.1.5 Durability
	3.1.6 MapReduce
	3.1.7 CAP-theorem
	3.1.8 Replication
	3.1.9 Sharding
	3.1.10 REST
	3.1.11 DBMS, database
	3.1.12 RDBMS
	3.1.13 JSON

	3.2 Focus of research
	3.2.1 The different types of NoSQL
	3.2.1.1 Key-value stores
	3.2.1.2 Document oriented databases
	3.2.1.3 Graph databases

	3.3 State of the art, examples
	3.3.1 Amazon S3
	What is Amazon S3?
	Features of Amazon S3
	Quick introduction to Amazon S3 database handling

	3.3.2 Google App Engine
	What is Google App Engine?
	Features of Google App Engine
	Quick introduction to Google App Engine database handling

	3.3.3 CouchDB
	What is CouchDB?
	What CouchDB is:
	What CouchDB is not:
	Features of CouchDB
	Quick introduction to CouchDB database handling

	3.3.4 MongoDB
	What is MongoDB?
	Features of MongoDB
	Quick introduction to MongoDB database handling

	3.3.5 Neo4j
	What is Neo4j?
	Features of Neo4j
	Quick introduction to Neo4j database handling

	3.4 Differences when moving from RDBMS to NoSQL
	3.4.1 Atomicity
	3.4.2 Consistency
	3.4.3 Isolation
	Multiversion concurrency control

	3.4.4 Durability
	3.4.5 Queries
	3.4.6 MapReduce
	3.4.7 CAP-theorem
	3.4.8 Unrelational characterstics
	3.4.9 Replication
	3.4.10 Sharding

	4 Research
	4.1 Analysis: What types of data benefit from NoSQL use?
	4.1.1 General types of data
	4.1.1.1 Structured data
	4.1.1.2 Semi-structured and unstructured data
	Semi-structured data
	Unstructured data

	4.1.2 Specific types of data
	4.1.2.1. Object data
	4.1.2.2. Document data
	4.1.2.3. Complex data
	4.1.2.4. Relation-heavy data

	4.2 Performance test

	5 Results
	5.1 General advice on picking the right database
	5.1.1 Does structured data benefit from NoSQL use?
	Flexibility
	Performance

	5.1.2 Does semi-structured and unstructured data benefit from NoSQL use?
	Flexibility
	Performance

	5.1.3 Additional comments 1: The RDBMS's requirements on the data
	5.1.4 Additional comments 2: The ACID aspect
	5.1.5 Attribute summary table of our five investigated databases
	Consequences for application development

	5.2 Performance test results
	Benchmarking

	6 Discussion
	7 Conclusions
	Different types of data
	Structured data
	Flexibility
	Performance

	Semi-structured and unstructured data
	Flexibility
	Performance

	The performance test

	8 Future research
	Citations and sources
	Appendix
	Appendix A – Results
	A1. Neo4J
	A2. MongoDB
	A3. CouchDB

	Appendix B – Program Code

