Example 1

$$
\begin{gathered}
-\left(k u^{\prime}\right)^{\prime}=f \\
u(0)=0 \quad u^{\prime}(1)=\gamma
\end{gathered}
$$

Assume $k=x, f=x^{2}$ and $\gamma=-1 / 3$.
a) Solve the problem with Galerkin's method using an ansatz of a quadratic polynomial.
b) Solve the problem with Galerkin's method using an ansatz of a cubic polynomial.
c) Calculate the analytical solution u.
d) Solve the problem with Galerkin's method using an ansatz of a quadratic polynomial and changing the boundary conditions to $u(0)=2$ and $u^{\prime}(1)=-1 / 3$.

```
******* Answers ********
```

a) Derive a weak formulation of the differential equation

$$
-\left(k u^{\prime}\right)^{\prime}=f \Rightarrow \int_{0}^{1}-\left(k u^{\prime}\right)^{\prime} v d x=\int_{0}^{1} f v d x
$$

Partial integration gives

$$
\begin{aligned}
\int_{0}^{1}-\left(k u^{\prime}\right)^{\prime} v d x & =\left[-\left(k u^{\prime}\right) v\right]_{0}^{1}+\int_{0}^{1} k u^{\prime} v^{\prime} d x= \\
& =-k(1) u^{\prime}(1) v(1)+k(0) u^{\prime}(0) v(0)+\int_{0}^{1} k u^{\prime} v^{\prime} d x= \\
& =-k(1) \gamma v(1)+0+\int_{0}^{1} k u^{\prime} v^{\prime} d x
\end{aligned}
$$

Thus

$$
\int_{0}^{1} k u^{\prime} v^{\prime} d x=\int_{0}^{1} f v d x+k(1) \gamma v(1)
$$

The variational equation is thus

$$
a(u, v)=L(v)
$$

with

$$
a(u, v)=\int_{0}^{1} k u^{\prime} v^{\prime} d x \quad \text { and } \quad L(v)=\int_{0}^{1} f v d x+k(1) \gamma v(1)
$$

The ansatz should be a second degree polynomial $\left(\rightarrow U=c_{0}+c_{1} x+c_{2} x^{2}\right)$ which fulfills essential boundary conditions $(u(0)=0 \rightarrow U(0)=0)$. Thus, $U=c_{1} x+c_{2} x^{2}$. From this U we have the basis functions $\phi_{1}=x$ and $\phi_{2}=x^{2}$ giving $U=c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)$.

The Galerkin method is: Given the ansatz $U(x)=\sum_{i=1}^{n} c_{i} \phi_{i}(x)$, solve the system of equations $a\left(U, \phi_{i}\right)=$ $L\left(\phi_{i}\right)$ for all,$i=1 \ldots n$.

Here, the equations thus are $a\left(U, \phi_{2}\right)=L\left(\phi_{2}\right)$ and $a\left(U, \phi_{2}\right)=L\left(\phi_{2}\right)$. Since $a(u, v)$ is bilinear and symmetric we have

$$
a\left(U, \phi_{1}\right)=a\left(c_{1} \phi_{1}+c_{2} \phi_{2}, \phi_{1}\right)=c_{1} a\left(\phi_{1}, \phi_{1}\right)+c_{2} a\left(\phi_{2}, \phi_{1}\right)=c_{1} a\left(\phi_{1}, \phi_{1}\right)+c_{2} a\left(\phi_{1}, \phi_{2}\right)=L\left(\phi_{1}\right)
$$

and

$$
a\left(U, \phi_{2}\right)=a\left(c_{1} \phi_{1}+c_{2} \phi_{2}, \phi_{2}\right)=c_{1} a\left(\phi_{1}, \phi_{2}\right)+c_{2} a\left(\phi_{2}, \phi_{2}\right)=c_{1} a\left(\phi_{2}, \phi_{1}\right)+c_{2} a\left(\phi_{2}, \phi_{2}\right)=L\left(\phi_{2}\right)
$$

giving the linear system of equations

$$
\left(\begin{array}{ll}
a\left(\phi_{1}, \phi_{1}\right) & a\left(\phi_{1}, \phi_{2}\right) \\
a\left(\phi_{1}, \phi_{2}\right) & a\left(\phi_{2}, \phi_{2}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{L\left(\phi_{1}\right)}{L\left(\phi_{2}\right)}
$$

Calculations now give

$$
\begin{aligned}
& a\left(\phi_{1}, \phi_{1}\right)=\int_{0}^{1} k\left(\phi_{1}^{\prime}\right)^{2} d x=\int_{0}^{1} x \cdot 1^{2} d x=1 / 2 \\
& a\left(\phi_{1}, \phi_{2}\right)=\int_{0}^{1} k \phi_{1}^{\prime} \phi_{2}^{\prime} d x=\int_{0}^{1} x \cdot 1 \cdot 2 x d x=2 / 3 \\
& a\left(\phi_{2}, \phi_{2}\right)=\int_{0}^{1} k\left(\phi_{2}^{\prime}\right)^{2} d x=\int_{0}^{1} x(2 x)^{2} d x=1
\end{aligned}
$$

and

$$
\begin{aligned}
& L\left(\phi_{1}\right)=\int_{0}^{1} f \phi_{1} d x+k(1) \gamma \phi_{1}(1)=\int_{0}^{1} x^{2} x d x+1 \cdot \gamma \cdot 1=1 / 4+\gamma=-1 / 12 \\
& L\left(\phi_{2}\right)=\int_{0}^{1} f \phi_{2} d x+k(1) \gamma \phi_{2}(1)=\int_{0}^{1} x^{2} x^{2} d x+1 \cdot \gamma \cdot 1^{2}=1 / 5+\gamma=-2 / 15
\end{aligned}
$$

since $\gamma=-1 / 3$. The solution then is

$$
\left(\begin{array}{cc}
1 / 2 & 2 / 3 \\
2 / 3 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{-1 / 12}{-2 / 15} \Rightarrow\binom{c_{1}}{c_{2}}=\binom{1 / 10}{-1 / 5}
$$

Thus $U(x)=x / 10-x^{2} / 5$.
Note that $U^{\prime}(x)=1 / 10-2 x / 5 \Rightarrow U^{\prime}(1)=--3 / 10 \neq-1 / 3$, i.e.not exactly fulfilled.
b) Use ansatz $U=c_{1} x+c_{2} x^{2}+c_{3} x^{3}$.
c) $u=-x^{3} / 9$. Since this is a cubic polynomial, the subspace chosen i b contains the solution, hence we find the correct one.

