2D1260, Finite Element Methods, HT03, Ninni Carlsund Levin, Exercise 1

Example 2

$$
-u^{\prime \prime}=f \quad 1<x<2
$$

Solve the problem with 1D FEM and tent functions and discretization points $x_{1}=1, x_{2}=1.5, x_{3}=1.7$ and $x_{4}=2$
a) Calculate the stiffness matrix and load vector assuming $f=1$ and boundary conditions $u^{\prime}(1)=u^{\prime}(2)=0$.
b) The system obtained in a cannot be solved, the stiffness matrix is singular. Why?
c) Solve assuming $f=1$ and boundary conditions $u(1)=5$ and $u(2)=7$.
d) Solve assuming $f=x$ and boundary conditions $u(1)=5$ and $u(2)=7$.
a) A weak formulation is

$$
\int_{1}^{2} u^{\prime} v^{\prime} d x=\int_{1}^{2} f v d x
$$

i.e.

$$
a(u, v)=\int_{1}^{2} u^{\prime} v^{\prime} d x \quad L(v)=\int_{1}^{2} f v d x
$$

The FEM system of equations then become (from the ansatz $U=\sum_{i} c_{i} \phi_{i}(x)$):

$$
a\left(U, \phi_{i}\right)=L\left(\phi_{i}\right), \quad i=1 . .4
$$

leading to

$$
\mathbf{S c}=\mathbf{f}
$$

where

$$
\mathbf{S}_{i j}=a\left(\phi_{i}, \phi_{j}\right) \quad \text { and } \quad \mathbf{f}_{i}=L\left(\phi_{i}\right) \quad \text { for } \quad i=1 . .4
$$

Calculation is done elementwise. Start with number 1:

$$
\mathbf{S}_{i j}^{(1)}=\int_{x_{1}}^{x_{2}} \phi_{i}^{\prime} \phi_{j}^{\prime} d x
$$

Basis functions are

$$
\begin{aligned}
\phi_{1}^{(1)} & =\frac{x_{2}-x}{x_{2}-x_{1}}=\frac{x_{2}-x}{L_{1}} \quad \Longrightarrow \quad \phi_{1}^{\prime}=\frac{-1}{L_{1}} \\
\phi_{2}^{(1)} & =\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{x-x_{1}}{L_{1}} \quad \Longrightarrow \quad \phi_{2}^{\prime}=\frac{1}{L_{1}}
\end{aligned}
$$

giving

$$
\mathbf{S}_{11}^{(1)}=\int_{x_{1}}^{x_{2}}\left(\phi_{1}^{\prime}\right)^{2} d x=\int_{x_{1}}^{x_{2}}\left(\frac{-1}{L_{1}}\right)^{2} d x=\frac{1}{L_{1}}
$$

$$
\begin{gathered}
\mathbf{S}_{12}^{(1)}=\int_{x_{1}}^{x_{2}} \phi_{1}^{\prime} \phi_{2}^{\prime} d x=\int_{x_{1}}^{x_{2}}\left(\frac{-1}{L_{1}}\right)\left(\frac{1}{L_{1}}\right) d x=\frac{-1}{L_{1}}=\mathbf{S}_{21}^{(1)} \\
\mathbf{S}_{22}^{(1)}=\int_{x_{1}}^{x_{2}}\left(\phi_{2}^{\prime}\right)^{2} d x=\int_{x_{1}}^{x_{2}}\left(\frac{1}{L_{1}}\right)^{2} d x=\frac{1}{L_{1}}
\end{gathered}
$$

Thus the element matrix is

$$
\mathbf{S}^{(1)}=\frac{1}{L_{1}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Element load vector elements are

$$
\begin{aligned}
& \mathbf{f}_{1}^{(1)}=\int_{x_{1}}^{x_{2}} 1 \cdot \phi_{1} d x=\int_{x_{1}}^{x_{2}} \frac{x_{2}-x}{L_{1}} d x=\frac{L_{1}}{2} \\
& \mathbf{f}_{2}^{(1)}=\int_{x_{1}}^{x_{2}} 1 \cdot \phi_{2} d x=\int_{x_{1}}^{x_{2}} \frac{x-x_{1}}{L_{1}} d x=\frac{L_{1}}{2}
\end{aligned}
$$

Thus the element load vector is

$$
\mathbf{f}^{(1)}=\frac{L_{1}}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

From this we conclude that for element k we have

$$
\mathbf{S}^{(k)}=\frac{1}{L_{k}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{f}^{(k)}=\frac{L_{k}}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

giving

$$
\mathbf{S}^{(1)}=\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right], \quad \mathbf{S}^{(2)}=\left[\begin{array}{cc}
5 & -5 \\
-5 & 5
\end{array}\right] \quad \text { and } \quad \mathbf{S}^{(3)}=\left[\begin{array}{cc}
10 / 3 & -10 / 3 \\
-10 / 3 & 10 / 3
\end{array}\right]
$$

and

$$
\mathbf{f}^{(1)}=\left[\begin{array}{c}
0.25 \\
0.25
\end{array}\right], \quad \mathbf{f}^{(2)}=\left[\begin{array}{l}
0.10 \\
0.10
\end{array}\right] \quad \text { and } \quad \mathbf{f}^{(3)}=\left[\begin{array}{l}
0.15 \\
0.15
\end{array}\right]
$$

giving the global matrices

$$
\mathbf{S}=\left[\begin{array}{cccc}
2 & -2 & 0 & 0 \\
-2 & 2+5 & -5 & 0 \\
0 & -5 & 5+10 / 3 & -10 / 3 \\
0 & 0 & -10 / 3 & 10 / 3
\end{array}\right] \quad \text { and } \quad \mathbf{f}=\left[\begin{array}{c}
0.25 \\
0.25+0.10 \\
0.10+0.15 \\
0.15
\end{array}\right]
$$

b) We then want to solve this system $\mathbf{S c}=\mathbf{f}$. However, we run into trouble: the matrix \mathbf{S} is singular! How come? Well, the reason is that we try to solve an impossible problem! $u^{\prime \prime}=-1$ can be solved analytically: $u^{\prime}=-x+C_{1}$ and $u=-x^{2} / 2+C_{1} x+C_{2}$. The integration constants C_{1} and C_{2} should be determined by the boundary conditions. But the conditions are both on $u^{\prime} ; u^{\prime}(1)=-1+C_{1}=0$ and $u^{\prime}(2)=-2+C_{1}=0$ giving impossible demands on C_{1} and none on C_{2}. Alternative reasoning: no second degree polynomial can have $u^{\prime}=0$ at two different places. Thus no solution exists with these boundary conditions! We thus change the boundary conditions in the next exercise.
c) Now the boundary conditions are $u(1)=5$ and $u(2)=7$ which lead to the same weak form as in exercise a. (but with the added condition that test functions should be zero at $x=1$ and $x=2$. This is no problem except for ϕ_{1} and ϕ_{4} which we deal with now).

When u is known at a point we just replace that line in the system of equations with a 1 on the diagonal in \mathbf{S} and the value of u in the load vector. Thus here

$$
\mathbf{S}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 2+5 & -5 & 0 \\
0 & -5 & 5+10 / 3 & -10 / 3 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{f}=\left[\begin{array}{c}
5 \\
0.25+0.10 \\
0.10+0.15 \\
7
\end{array}\right]
$$

giving

$$
\mathbf{c}=\left[\begin{array}{llll}
5 & 6.125 & 6.505 & 7
\end{array}\right]^{T}
$$

d) Compared to exercise c we have changed f, nothing else. This means that the stiffness matrix \mathbf{S} is unchanged. However, we can no longer give an easy form for $\mathbf{f}^{(k)}$ They have to be calculated properly:

$$
\mathbf{f}_{1}^{(k)}=\int_{x_{k}}^{x_{k+1}} x \cdot \phi_{1}^{(k)} d x=\int_{x_{k}}^{x_{k+1}} x \frac{x_{k+1}-x}{L_{k}} d x
$$

and

$$
\mathbf{f}_{2}^{(k)}=\int_{x_{k}}^{x_{k+1}} x \cdot \phi_{2}^{(k)} d x=\int_{x_{k}}^{x_{k+1}} x \frac{x-x_{k}}{L_{k}} d x
$$

giving

$$
\mathbf{f}^{(1)}=\left[\begin{array}{l}
0.2917 \\
0.3333
\end{array}\right], \quad \mathbf{f}^{(2)}=\left[\begin{array}{l}
0.1567 \\
0.1633
\end{array}\right] \quad \text { and } \quad \mathbf{f}^{(3)}=\left[\begin{array}{l}
0.2700 \\
0.2850
\end{array}\right]
$$

which assemblated is

$$
\mathbf{f}=\left[\begin{array}{c}
0.2917 \\
0.3333+0.1567 \\
0.1633+0.2700 \\
0.2850
\end{array}\right]
$$

and after adjustment for the essential boundary conditions

$$
\mathbf{f}=\left[\begin{array}{c}
5 \\
0.3333+0.1567 \\
0.1633+0.2700 \\
7
\end{array}\right]
$$

Solving $\mathbf{S c}=\mathbf{f}$ we get

$$
\mathbf{c}=\left[\begin{array}{llll}
5 & 6.1875 & 6.5645 & 7
\end{array}\right]^{T}
$$

