2D1260, Finite Element Methods, HT03, Ninni Carlsund Levin, Exercise 1

Example 2

$$-u'' = f \qquad 1 < x < 2$$

Solve the problem with 1D FEM and tent functions and discretization points $x_1 = 1$, $x_2 = 1.5$, $x_3 = 1.7$ and $x_4 = 2$

- a) Calculate the stiffness matrix and load vector assuming f = 1 and boundary conditions u'(1) = u'(2) = 0.
- b) The system obtained in a cannot be solved, the stiffness matrix is singular. Why?
- c) Solve assuming f = 1 and boundary conditions u(1) = 5 and u(2) = 7.
- d) Solve assuming f = x and boundary conditions u(1) = 5 and u(2) = 7.

******* Short answer *******

a) A weak formulation is

$$\int_{1}^{2} u' v' \, dx = \int_{1}^{2} f \, v \, dx$$

i.e.

$$a(u, v) = \int_{1}^{2} u' v' dx$$
 $L(v) = \int_{1}^{2} f v dx$

The FEM system of equations then become (from the ansatz $U = \sum_{i} c_i \phi_i(x)$):

$$a(U, \phi_i) = L(\phi_i), \quad i = 1..4$$

leading to

where

$$\mathbf{S}_{ij} = a(\phi_i, \phi_j)$$
 and $\mathbf{f}_i = L(\phi_i)$ for $i = 1..4$

 $\mathbf{S}\,\mathbf{c}~=~\mathbf{f}$

Calculation is done elementwise. Start with number 1:

$$\mathbf{S}_{ij}^{(1)} = \int_{x_1}^{x_2} \phi_i' \, \phi_j' \, dx$$

Basis functions are

$$\phi_1^{(1)} = \frac{x_2 - x}{x_2 - x_1} = \frac{x_2 - x}{L_1} \implies \phi_1' = \frac{-1}{L_1}$$
$$\phi_2^{(1)} = \frac{x - x_1}{x_2 - x_1} = \frac{x - x_1}{L_1} \implies \phi_2' = \frac{1}{L_1}$$

giving

$$\mathbf{S}_{11}^{(1)} = \int_{x_1}^{x_2} \left(\phi_1'\right)^2 \, dx = \int_{x_1}^{x_2} \left(\frac{-1}{L_1}\right)^2 \, dx = \frac{1}{L_1}$$

2D1260, Finite Element Methods, HT03, Ninni Carlsund Levin, Exercise 1

$$\begin{aligned} \mathbf{S}_{12}^{(1)} &= \int_{x_1}^{x_2} \phi_1' \, \phi_2' \, dx = \int_{x_1}^{x_2} \left(\frac{-1}{L_1}\right) \left(\frac{1}{L_1}\right) \, dx = \frac{-1}{L_1} = \mathbf{S}_{21}^{(1)} \\ \mathbf{S}_{22}^{(1)} &= \int_{x_1}^{x_2} \left(\phi_2'\right)^2 \, dx = \int_{x_1}^{x_2} \left(\frac{1}{L_1}\right)^2 \, dx = \frac{1}{L_1} \end{aligned}$$

Thus the element matrix is

$$\mathbf{S}^{(1)} = \frac{1}{L_1} \begin{bmatrix} 1 & -1\\ -1 & 1 \end{bmatrix}$$

Element load vector elements are

$$\mathbf{f}_{1}^{(1)} = \int_{x_{1}}^{x_{2}} 1 \cdot \phi_{1} \, dx = \int_{x_{1}}^{x_{2}} \frac{x_{2} - x}{L_{1}} \, dx = \frac{L_{1}}{2}$$
$$\mathbf{f}_{2}^{(1)} = \int_{x_{1}}^{x_{2}} 1 \cdot \phi_{2} \, dx = \int_{x_{1}}^{x_{2}} \frac{x - x_{1}}{L_{1}} \, dx = \frac{L_{1}}{2}$$

Thus the element load vector is

$$\mathbf{f}^{(1)} = \frac{L_1}{2} \begin{bmatrix} 1\\1 \end{bmatrix}$$

From this we conclude that for element k we have

$$\mathbf{S}^{(k)} = \frac{1}{L_k} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{f}^{(k)} = \frac{L_k}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

giving

$$\mathbf{S}^{(1)} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}, \quad \mathbf{S}^{(2)} = \begin{bmatrix} 5 & -5 \\ -5 & 5 \end{bmatrix} \quad \text{and} \quad \mathbf{S}^{(3)} = \begin{bmatrix} 10/3 & -10/3 \\ -10/3 & 10/3 \end{bmatrix}$$

and

$$\mathbf{f}^{(1)} = \begin{bmatrix} 0.25\\ 0.25 \end{bmatrix}, \quad \mathbf{f}^{(2)} = \begin{bmatrix} 0.10\\ 0.10 \end{bmatrix} \quad \text{and} \quad \mathbf{f}^{(3)} = \begin{bmatrix} 0.15\\ 0.15 \end{bmatrix}$$

giving the global matrices

$$\mathbf{S} = \begin{bmatrix} 2 & -2 & 0 & 0 \\ -2 & 2+5 & -5 & 0 \\ 0 & -5 & 5+10/3 & -10/3 \\ 0 & 0 & -10/3 & 10/3 \end{bmatrix} \quad \text{and} \quad \mathbf{f} = \begin{bmatrix} 0.25 \\ 0.25+0.10 \\ 0.10+0.15 \\ 0.15 \end{bmatrix}$$

- b) We then want to solve this system $\mathbf{Sc} = \mathbf{f}$. However, we run into trouble: the matrix \mathbf{S} is singular! How come? Well, the reason is that we try to solve an impossible problem! u'' = -1 can be solved analytically: $u' = -x + C_1$ and $u = -x^2/2 + C_1 x + C_2$. The integration constants C_1 and C_2 should be determined by the boundary conditions. But the conditions are both on u'; $u'(1) = -1 + C_1 = 0$ and $u'(2) = -2 + C_1 = 0$ giving impossible demands on C_1 and none on C_2 . Alternative reasoning: no second degree polynomial can have u' = 0 at two different places. Thus no solution exists with these boundary conditions! We thus change the boundary conditions in the next exercise.
- c) Now the boundary conditions are u(1) = 5 and u(2) = 7 which lead to the same weak form as in exercise a. (but with the added condition that test functions should be zero at x = 1 and x = 2. This is no problem except for ϕ_1 and ϕ_4 which we deal with now).

2D1260, Finite Element Methods, HT03, Ninni Carlsund Levin, Exercise 1

When u is known at a point we just replace that line in the system of equations with a 1 on the diagonal in **S** and the value of u in the load vector. Thus here

$$\mathbf{S} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 2+5 & -5 & 0 \\ 0 & -5 & 5+10/3 & -10/3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{f} = \begin{bmatrix} 5 \\ 0.25+0.10 \\ 0.10+0.15 \\ 7 \end{bmatrix}$$

giving

- $\mathbf{c} = \begin{bmatrix} 5 & 6.125 & 6.505 & 7 \end{bmatrix}^T$
- d) Compared to exercise c we have changed f, nothing else. This means that the stiffness matrix **S** is unchanged. However, we can no longer give an easy form for $\mathbf{f}^{(k)}$ They have to be calculated properly:

$$\mathbf{f}_1^{(k)} = \int_{x_k}^{x_{k+1}} x \cdot \phi_1^{(k)} \, dx = \int_{x_k}^{x_{k+1}} x \, \frac{x_{k+1} - x}{L_k} \, dx$$

and

$$\mathbf{f}_{2}^{(k)} = \int_{x_{k}}^{x_{k+1}} x \cdot \phi_{2}^{(k)} \, dx = \int_{x_{k}}^{x_{k+1}} x \, \frac{x - x_{k}}{L_{k}} \, dx$$

giving

$$\mathbf{f}^{(1)} = \begin{bmatrix} 0.2917\\ 0.3333 \end{bmatrix}, \quad \mathbf{f}^{(2)} = \begin{bmatrix} 0.1567\\ 0.1633 \end{bmatrix} \quad \text{and} \quad \mathbf{f}^{(3)} = \begin{bmatrix} 0.2700\\ 0.2850 \end{bmatrix}$$

which assemblated is

$$\mathbf{f} = \begin{bmatrix} 0.2917 \\ 0.3333 + 0.1567 \\ 0.1633 + 0.2700 \\ 0.2850 \end{bmatrix}$$

and after adjustment for the essential boundary conditions

$$\mathbf{f} = \begin{bmatrix} 5\\ 0.3333 + 0.1567\\ 0.1633 + 0.2700\\ 7 \end{bmatrix}$$

Solving $\mathbf{Sc} = \mathbf{f}$ we get

$$\mathbf{c} = \begin{bmatrix} 5 & 6.1875 & 6.5645 & 7 \end{bmatrix}^T$$

NC 2002-11-05

 \bigodot 2002 Ninni Carlsund Levin