2D1260, Finite Element Methods, HT03, Ninni Carlsund Levin, Exercise 2

Example 1

$$
-\frac{d}{d x}\left(k \frac{d u}{d x}\right)=f \quad \text { in } 1 \leq x \leq 2 \quad \text { with } u(1)=3 \text { and } u^{\prime}(2)=4
$$

Solve the problem with $k(x)=x$ and $f(x)=-4 x$ using 3 linear finite elements with nodes in $x_{1}=1$, $x_{2}=1.3, x_{3}=1.5$ and $x_{4}=2$.

$* * * * * * *$ No answer written yet $* * * * * * * *$

(On the exercise we solved it using two different approches:

1) the theoretical way, calculation all involved integrals over the entire domain.
2) the practical FEM way, calculating elementwise using matrix-notation.)

Example 2

$$
-\nabla \cdot(k \nabla u)=f \quad \text { in } \Omega=\left\{\begin{array}{l}
2<x<4 \\
3<y<5
\end{array}\right\} \quad \text { with } u=g \text { on } \Gamma
$$

Solve the problem with 2D FEM and bilinear standard quad functions. Start with dividing each side in two, giving 4 quad elements. The refine by dividing each side by 2 again.. Use a 1-point (mid-point) quadrature formula.
a) Calculate the stiffness matrix and load vector assuming $k=1, f=1$ and $g=-0.3 x^{2}-0.2 y^{2}$.
b) Calculate the stiffness matrix and load vector assuming $k=x, f=-\left(y^{2}+2 x^{2}\right)$ and $g=x y^{2}$.
(On the exercise we solved part busing the practical FEM way, calculating elementwise using matrixnotation.)

