
School of Computer Science and Communication, KTH

2D1260 Finite Element Methods: Written Examination

Saturday 2006-10-21, kl 8-13

Coordinator: Johan Hoffman

Aids: none. Time: 5 hours.

Answers may be given in English or in Swedish. All answers should be explained
and calculations shown unless stated otherwise. A correct answer without expla-
nation can be left without points. You do not have to solve the resulting systems
of equations in Problem 1(b)-(c). Each of the 5 problems gives 10 p, resulting in

a total of 50 p: 20 p for grade 3, 30 p for grade 4, and 40 p for grade 5.

Problem 1: Consider the problem:

−∆u(x) = 1, x ∈ Ω ⊂ R
2,

u(x) = 0, x ∈ ∂Ω,

with x = (x1, x2) and Ω the square defined in Fig. 1.

(a) Formulate a finite element method (FEM) using a continuous piecewise linear
approximation (cG(1)) defined on the mesh in Fig. 1.
(b) Compute the corresponding matrix and vector.
(c) Compute the matrix and vector, with a non homogeneous Dirichlet condition

u(x) = 1, for x1 = 2, 0 < x2 < 2 (that is, not for the corner nodes),

with still homogeneous Dirichlet boundary conditions for the rest of the boundary.
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Figure 1: Triangulation (mesh) of domain Ω.

Note: The exam continues on the next page!
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Problem 2: Consider the problem:

−∆u(x) + u(x) = f(x) x ∈ Ω ⊂ R
3 (1)

∂nu(x) = g(x) x ∈ ∂Ω

with ∂nu = ∇u · n, and n the outward normal of the boundary ∂Ω.

(a) State the Lax-Milgram theorem.
(b) For the problem (1), derive a bilinear form a : V × V → R and a linear form
L : V → R, and specify the Hilbert space V and the norm ‖ · ‖V .
(c) Show that the assumptions of the Lax-Milgram theorem are satisfied for this
problem, and specify sufficient conditions on f and g.

Problem 3: Consider an abstract variational problem: Find u ∈ V such that

a(u, v) = L(v)

for all v ∈ V , with V a Hilbert space, and a(·, ·) and L(·) are bilinear and linear
forms on V satisfying the conditions in the Lax-Milgram theorem. The abstract
Galerkin method for this problem is formulated as: Find U ∈ Vh such that

a(U, v) = L(v)

for all v ∈ Vh, with Vh a finite dimensional subspace of V .

(a) Prove the Galerkin orthogonality: a(u − U, v) = 0, for all v ∈ Vh.
(b) Prove that: ‖u − U‖V ≤ C‖u − v‖V , and specify the constant C > 0.
(c) Define the energy norm ‖ · ‖E . What is the constant C in (b) if ‖ · ‖V = ‖ · ‖E?
(d) Now consider the case of V = H1

0 (0, 1), and Vh = {continuous piecewise linear
functions v on Th with v(0) = v(1) = 0}, with Th a subdivision of the interval
(0,1). Define

a(u, v) =

∫ 1

0
u′(x)v′(x) dx, L(v) =

∫ 1

0
f(x)v(x) dx.

The energy norm ‖ · ‖E for this problem is defined as ‖v‖E = ‖v′‖, with ‖ · ‖ the
L2 norm. Prove the a priori error estimate: ‖u − U‖E ≤ Ci‖hu′′‖
(e) Prove the a posteriori error estimate: ‖u − U‖E ≤ Ci‖hR(U)‖

The residual R(U) = f + U ′′ is defined on each subinterval Ii = (xi−1, xi), where
xi are the nodes, and Ci is an interpolation constant.

Note: The exam continues on the next page!
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Problem 4: For a(x) > 0 and c(x) ≥ 0, consider the problem:

−(a(x)u′(x))′ + c(x)u(x) = f(x) x ∈ (0, 1)

u(0) = u(1) = 0

(a) Formulate the cG(1) method for the problem (FEM with a continuous piece-
wise linear approximation on a subdivision Th of (0,1)).
(b) Prove the a posteriori error estimate:

‖u − U‖L2(0,1) ≤ SCi‖h
2R(U)‖L2(0,1)

where U is the cG(1) solution, and

S = max
ξ∈L2(0,1)

‖ϕ′′‖L2(0,1)

‖ξ‖L2(0,1)

with ϕ the solution to the dual problem:

−(a(x)ϕ′(x))′ + c(x)ϕ(x) = ξ(x) x ∈ (0, 1)

ϕ(0) = ϕ(1) = 0

(c) Prove that if a > 0 and c ≥ 0 are constants, then S ≤ a−1.
(d) How should you choose ξ(x), the data to the dual problem, to prove an a
posteriori error estimate of the mean value of the solution u:

1

|ω|

∫
ω

u(x) dx, with |ω| =

∫
ω

dx = the area of ω

Problem 5: Answer the following questions related to standard FEM algorithms
(it may be helpful to illustrate some of your answers with pictures):

(a) What is a least squares stabilized finite element method?
(b) Describe how a mapping to a reference element is used to compute element
integrals, in the case of triangular elements (you do not have to carry out any
computations, just illustrate the idea and function of the algorithm).
(c) What is a hanging node?
(d) Describe the steps in a red-green mesh refinement algorithm for triangles.
(e) Describe the steps in an adaptive algorithm for local mesh refinement based
on a posteriori error estimation.

Good Luck!

Johan
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Solutions to exam

Problem 1: See pages 360-363 in the CDE book.

(a) Find U ∈ Vh such that
∫

Ω
∇U(x) · ∇v(x) dx =

∫
Ω

v(x) dx ∀v ∈ Vh (2)

(b) Vh = {continuous piecewise linear functions v on Th such that v=0 on ∂Ω},
with Th the triangulation of Ω in Fig. 2, with h = 1. There is 1 degree of freedom;
the node N1.

A basis for Vh is {φ1}; with φ1 ∈ Vh, and φ1(N1) = 1 and φ1 = 0 in all other
vertices (nodes). Set U(x) = ξ1φ1(x), then (2) is equivalent to Aξ = b where A
and b are scalars, given by

A11 =

∫
Ω
∇φ1(x) · ∇φ1(x) dx, b1 =

∫
Ω

φ1(x) dx

A11 involves integration over elements e2, e3, e4, e5, e6, e7, where e2, e7 are of the
type in Fig.15.8 at page 362 in the CDE book, with integral

∫
e2
∇φ1 ·∇φ1 dx = 1,

and e3, e4, e5, e6 are of the type in Fig.15.9, with integral
∫
e3
∇φ1 · ∇φ1 dx = 1/2.

Thus

A11 =

∫
e2

+

∫
e3

+

∫
e4

+

∫
e5

+

∫
e6

+

∫
e7

= 1 + 1/2 + 1/2 + 1/2 + 1/2 + 1 = 4

b1 =

∫
Ω

φ1(x) dx = volume under φ1 = 6 ×
h2

2 × 1

3
= h2 = 1.

(c) We still have only one degree of freedom, but we will get a contribution to the
right hande side from the non homogeneous boundary condition at node N2. Set
U(x) = ξ1φ1(x) + ξ2φ2(x), with ξ2 = U(N2) = 1.

We can move the known data ξ2 to the right hand side:

A11ξ1 = b1 − A12ξ2

A11 = 4 as before.

A12 involves integration over elements e4, e7, which are of the type in Fig.15.10 at
page 363 in the CDE book, with integral

∫
e4
∇φ1 · ∇φ2 dx = −1/2. Thus

A12 =

∫
e4

+

∫
e7

= −1/2 − 1/2 = −1,

b1 = 1 as before, so the total right hand side vector b is

b = b1 − A12ξ2 = 1 − (−1) × 1 = 2
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Figure 2: Triangulation (mesh) of domain Ω.

Problem 2:

(a) Theorem 21.1 in the CDE book.
(b)-(c) Section 21.4.1 and 21.4.4. in the CDE book.

Problem 3:

(a) Section 21.3

(b) Theorem 21.3

(c) Section 21.1 and Theorem 21.3.

(d) Section 8.2.1 with a = 1.

(e) Section 8.2.2 with a = 1.
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Problem 4:

(a) Find U ∈ Vh such that

∫ 1

0
(aU ′v′ + cUv) dx =

∫ 1

0
fv dx ∀v ∈ Vh

(with Vh as in Problem 3)

(b) Section 15.5.2 in the CDE book.

(c) Multiply the dual problem by −ϕ′′ and integrate from 0 to 1:

∫ 1

0
(aϕ′′ϕ′′ − cϕϕ′′) dx = −

∫ 1

0
ϕ′′ξ dx

a‖ϕ′′‖2 + c

∫ 1

0
(ϕ′)2 dx = −

∫ 1

0
ϕ′′ξ dx ≤ ‖ϕ′′‖ ‖ξ‖ ≤

a

2
‖ϕ′′‖2 +

1

2a
‖ξ‖2

a

2
‖ϕ′′‖2 + c‖ϕ′‖2 ≤

1

2a
‖ξ‖2 ⇒ ‖ϕ′′‖2 +

2c

a
‖ϕ′‖2 ≤

1

a2
‖ξ‖2

⇒ ‖ϕ′′‖ ≤
1

a
‖ξ‖ ⇒

‖ϕ′′‖

‖ξ‖
≤

1

a

(d) ξ =
χω

|ω|
, χω(x) = 1 if x ∈ ω, and 0 else

Problem 5: See section 18.3 in the CDE book, and the lecture notes from lecture
2, slides avaliable at:
http://www.csc.kth.se/utbildning/kth/kurser/2D1260/fem06/
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