
Final Exam
Mathematical Models, Analysis and Simulation. DN2266. Fall 2011.

Instructor: Anna-Karin Tornberg
Tuesday, Dec 20, 2011. 8-13.

Remember to show your work, motivate your answers well, and to clearly state the final
answer. Partial credit will be given to partial solutions.

1. (4p). For each statement below, mark if it is true or false. (No motivation required).
For a statement to be true, it needs to be true for all cases. Read each statement
carefully.

a) If the n× n matrix A is diagonalizable, then A is invertible.

b) If Q1 and Q2 are orthogonal matrices, then Q3 = Q1Q2 is an orthogonal
matrix.

c) Let σ1, σ2, . . . , σn be the singular values of a square matrix A.
If σ1 ·σ2 · . . . ·σn > 0 then Ax = b has a unique solution, for any n× 1 vector b.

d) If the square matrix A is positive definite, then A−1 exists and is positive
definite.

2. (8p). Here, we will consider two minimization problems.

a) Minimize Q = 1
2y

2
1 + 1

6y
2
2 subject to y1 + y2 = 3.

i) Write down the Lagrangian function including the Lagrange multiplier λ for
this minimization problem.

ii) Derive the resulting linear system for (x, y, λ).

b) Now consider a minimization problem given by

Q = yTKy, (1)

with K ∈ R2×2 a symmetric matrix, y =

(
y1
y2

)
, and the (nonlinear) constraint

y21 + y22 = 1. (2)

i) Formulate the problem given above in matrix-vector notation using a Lagrange
multiplier, i.e. write down the Lagrangian in matrix-vector notation.

ii) Calculate the derivatives ∂L
∂y1

, ∂L
∂y2

, and ∂L
∂λ and derive the resulting (nonlinear)

system.

iii) Assume now that the constraint (2) is satisfied. Write down the system of
equations for ∂L

∂y1
and ∂L

∂y2
in matrix-vector notation. This formulation should

look familiar to you. What kind of problem is it? What meaning does the
constraint (2) have in this new problem? How does the minimum value of Q
relate to the value of the Lagrange multiplier λ?



3. (8p). The equation of motion for the damped oscillations of a pendulum of mass m
is given by

d2x

dt2
+

c

m

dx

dt
+
g

a
sinx = 0, (3)

where g is the gravitational acceleration, a the length of the pendulum, and c is a
positive constant. Here, x denotes the angle; at x = 0 the pendulum hangs straight
down.

a) What are the critical points (if any) of (3)?

b) What are the conditions on the parameters c,m, q, a to get a stable spiral? What is
the corresponding physical behaviour of the pendulum?

c) What are the conditions on the parameters c,m, g, a to get a stable node? What is
the corresponding physical behaviour of the pendulum?

d) Let u1, u2 denote the first and second variable in the system formulation of (3). In
the case when we have a stable node, what is the limit

lim
t→∞

u2(t)

u1(t)

(Hint: the limit will depend on the initial conditions.)

4. (8p). Consider

ut + aux = −cu 0 ≤ x <∞, t ≥ 0,

u(x, 0) = g(x) (∗)
u(0, t) = f(t) t > 0,

where a, c > 0.

a) Write the characteristic equations (dXdt = . . . , du(X(t),t)
dt = . . .). For which part

of the positive quadrant x > 0, t > 0 is the solution completely determined by
the initial condition? By the boundary condition at x = 0?

b) For this part, you can assume periodicity on x ∈ [0, 1]. Introduce
unj = u(xj , tn), xj = j∆x, ∆x = 1/N , j = 0, . . . , N and tn = n∆t, n = 0, 1, . . ..
Consider the scheme

un+1
j − unj

∆t
+ a

unj+1 − unj−1
2∆x

= −cuni .

Apply von Neumann analysis and compute the growth/amplification factor.

i) Show that for c = 0, this scheme is always unstable for ∆t > 0.

ii) For c > 0, derive the stability limit for ∆t.



5. (8p). Korteweg and de Vries derived a model for waves in a long straight channel,
such that only one space dimension remains. The equation for the elevation of the
wave is

∂η

∂t
=

√
g

d

∂

∂x

(
d · η +

3

4
η2 +

1

2
σ
∂2η

∂x2

)
, −∞ < x <∞, t ≥ 0,

where g is the gravitational constant, d the water depth, and σ = d3/3− µd/(ρg),
where µ is the surface tension and ρ the water density.

a) Show that by a proper choice of length and time scales, L and T , η = Lu,
x = Lx′ and t = Tt′, the equation becomes

∂u

∂t′
=

∂

∂x′

(
u+

3

4
u2 +

1

2
a
∂2u

∂x′2

)
.

What are L, T and a?

b) Applying yet another transformation, another more common form of the KdV
equation is

ut − 6uux + uxxx = 0. (4)

Consider this equation with periodic boundary conditions on x ∈ [0, 1], and
periodic initial conditions.

Let uN (x, t) =
∑N/2−1

k=−N/2 ûk(t)e
2πikx
L be a spectral expansion of u.

i) Derive the Galerkin equations for the expansion coefficients ûk(t).

ii) Introduce a simple time-stepping scheme and describe a pseudo-spectral
algorithm (i.e. without removing aliasing errors).

6. (4p). The discrete Fourier transform (DFT) for a real or complex function f is
given by

fj =

N−1∑
k=0

cke
i2πjk/N , j = 0, . . . , N − 1

where the discrete Fourier coefficients are given by

ck =
1

N

N−1∑
j=0

fje
−i2πjk/N , k = 0, . . . , N − 1.

Now, assume that f and g are real functions with DFT coefficients ck and dk
(k = 0, . . . , N − 1), respectively. Introduce the complex function ϕ = f + ig and let
bk, k = 0, . . . , N − 1, be the DFT coefficients of ϕ.

Show that

ck =
1

2

(
bk + b̄N−k

)
, dk =

i

2

(
b̄N−k − bk

)
.

where b̄ denotes the complex conjugate.

Hint: Start by expressing bk and b̄N−k in terms of ck and dk.


