Advanced Formal Methods

Lecture 2: Lambda calculus

Mads Dam
 KTH/CSC

Some material from B. Pierce: TAPL + some from G. Klein, NICTA

λ-calculus

- Alonzo Church, 1903-1995
- Church-Turing thesis
- First undecidability results
- Invented λ-calculus in '30's
- λ-Calculus
- Intended as foundation for mathematics
- Discovered to be inconsistent, so interest faded (see later)
- Foundational importance in programming languages
- Lisp, McCarthy 1959
- Programming languages and denotational semantics - Landin, Scott, Strachey 60's and 70's
- Now an indispensable tool in logic, proof theory, semantics, type systems

Untyped λ-calculus - Basic Idea

- Turing complete model of computation

Function application

- λ-abstraction sufficient for introducing functions
- Notation for abstract functions

$\lambda \mathrm{x} . \mathrm{x}+5$:

Name of function that takes one argument and adds 5 to it
I.e. a function $\mathrm{f}: \mathrm{x} \mapsto \mathrm{x}+5$

But:

- Basic λ-calculus talks only about functions
- Not numbers or other data types
- They are not needed!
- To use functions need to be able to
- Refer to them:

Use variables $\mathrm{x}, \mathrm{y}, \mathrm{z}$
For instance in $\lambda x . x$ - the identity function

- Apply them to an argument:

Application fx , same as $\mathrm{f}(\mathrm{x})$
$(\lambda x . x+5) 4$

- To compute with functions need to be able to evaluate them
$-(\lambda x \cdot x+5) 4$ evaluates to $4+5$
- But language is untyped $-(\lambda x . x+5)(\lambda y . y)$ is also ok

Terms, Variables, Syntax

Assume a set of variables x, y, z
Term syntax in BNF:
$t::=x|\lambda x . t| t t$
Conventions:

- List bound variables

$$
\lambda x y . t=\lambda x .(\lambda y . t)
$$

- Application binds to left:

$$
x y z=(x y) z
$$

- Abstraction binds to right:

$$
\lambda x . x y=\lambda x .(x y)
$$

Example: $\lambda x y z . x z(y z)$

β-reduction

The fundamental principle of computation in λ-calculus is replacement of formal by actual parameters

Example: $(\lambda x y . f(y x)) 5(\lambda x . x)$

Substitution:

- $\mathrm{t}[\mathrm{s} / \mathrm{x}]$ is t with s substituted for variable x
- Must avoid variable capture
β-reduction: $\frac{-}{(\lambda x . t) s \rightarrow_{\beta} t[s / x]} \quad \frac{s \rightarrow_{\beta} s^{\prime}}{s t \rightarrow s_{\beta}^{\prime} t}$

$$
\frac{t \rightarrow_{\beta} t^{\prime}}{s t \rightarrow_{\beta} s t^{\prime}} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{\lambda x . t \rightarrow_{\beta} \lambda x . t^{\prime}}
$$

Side Track: Evaluation Order

Redex: Term of the shape ($\lambda x . \mathrm{t}) \mathrm{t}$ '
As defined, β-reduction is highly nondeterministic
Not determined which redex to reduce next
Example:

$$
(\lambda x . x)((\lambda y x \cdot x)(\lambda z . z z))
$$

Evaluation Order, II

Full β-reduction: \rightarrow is \rightarrow_{β}
$(\lambda x . x)((\lambda y x .(\lambda y . y) x)(\lambda z . z z))$
$\rightarrow(\lambda x . x)((\lambda y x . x)(\lambda z . z z))$
$\rightarrow(\lambda y x . x)(\lambda z . z z)$
$\rightarrow(\lambda x . x)$
Normal order reduction:
Reduce leftmost, outermost redex first
$(\lambda x . x)((\lambda y x .(\lambda y . y) x)(\lambda z . z z))$
$\rightarrow(\lambda y x .(\lambda y . y) x)(\lambda z . z z)$
$\rightarrow \lambda \mathrm{x}$. $(\lambda \mathrm{y} . \mathrm{y}) \mathrm{x}$

$$
\rightarrow \lambda x \cdot x
$$

Evaluation Order, III

Call-by-name reduction:
Leftmost, outermost, but no reduction under λ
$(\lambda x . x)((\lambda y x .(\lambda y . y) x)(\lambda z . z z))$

$$
\rightarrow(\lambda y x .(\lambda y . y) x)(\lambda z . z z)
$$

$\rightarrow \lambda \mathrm{x}$. ($\lambda \mathrm{y} . \mathrm{y}) \mathrm{x}$
Call-by-need: Variant that uses sharing to avoid reevaluation (Haskell)

Call-by-value
Outermost, arguments must be value ($=\lambda$-abstraction)
($\lambda x . x)((\lambda y x .(\lambda y . y) x)(\lambda z . z z))$
$\rightarrow(\lambda x . x)((\lambda x .(\lambda y . y) x))$
$\rightarrow(\lambda x .(\lambda y . y) x)$

Programming in λ-Calculus

Can encode lots of stuff:

- Turing machines, functional programs
- Logic and set theory

Booleans: Define
$\mathrm{tt}=\lambda \mathrm{x} \mathrm{y} . \mathrm{x}$
$\mathrm{ff}==\lambda x \mathrm{y} . \mathrm{y}$
if $==\lambda x y z . x y z$
and $==\lambda x y . x y f f$
Example: if tt s , and tt t
Exercise 1: Define boolean "or" and "not" functions

Pairing
Define: $\begin{aligned} & \text { pair }==\lambda f \mathrm{sb} . \mathrm{bfs} \\ & \mathrm{fst}==\lambda p . \mathrm{ptt} \\ & \text { snd }==\lambda p . \mathrm{Pff} \end{aligned}$ Example: Try fst(pair ts)

Church Numerals

```
Church numerals:
    0}==\lambda\textrm{s z. z
    1== \lambda s z.s z
    \underline{2}==\lambda s z.s (s z)
    3 == \lambda s z.s(s (s z))
```

That is, \underline{n} is the function that applies its first argument n times to its second argument!
iszero $==\lambda n . n(\lambda x . \mathrm{ff}) \mathrm{tt}$
succ $==\lambda n \mathrm{~s}$ z. $\mathrm{s}(\mathrm{n} \mathrm{s} \mathrm{z)}$
plus $=\lambda \mathrm{mnsz} . \mathrm{ms}_{\mathrm{n}} \mathrm{n} \mathrm{z}$)
times $=\lambda \mathrm{m}$ n.m (plus n$) \underline{0}$

Church Numerals - Exercises

Exercise: Define exponentiation, i.e. a term for raising one Church numeral to the power of another.

Predecessor is a little tricky
$z z==$ pair $\underline{0} \underline{0}$
ss == λ p. pair (snd p) (succ (snd p))
prd $==\lambda n$. fst (n ss zz)

Exercise 2: Use prd to define a subtraction function

Exercise 3: Define a function equal that test two numbers for equality and returns a Church boolean.

Church Numerals, More Exercises

Exercise 4: Define "Church lists". A list $[x, y, z]$ can be thought of as a function taking two arguments c (for cons) and n (for nil), and returns cx (c y (c zn)), similar to the Church numerals. Write a function nil representing the empty list, and a function cons that takes arguments h and (a function representing) a list tl , and returns the representation of the list with head h and tail tl. Write a function isnil that takes a list and return a Church boolean, and a function head. Finally, use an encoding similar to that of prd to write a tail function.

Normal Forms and Divergence
Normal form for \rightarrow : Term t for which no s exists such that $\mathrm{t} \rightarrow \mathrm{s}$
There are terms in λ-calculus without normal forms:
omega $==(\lambda \mathrm{x} . \mathrm{x} \mathrm{x})(\lambda \times \mathrm{x} . \mathrm{x})$
\rightarrow omega

omega is said to be divergent, non-terminating

Fixed Points

Define:
fix $f==(\lambda x . f(\lambda y . x \times y))(\lambda x . f(\lambda y . x \times y))$
We see that:
fix $f \rightarrow(\lambda x . f(\lambda y . x x y))(\lambda x . f(\lambda y . x x y))$
$\rightarrow f(\lambda y .(\lambda x . f(\lambda y . x x y))(\lambda x . f(\lambda y . x x y)) y)$
$"=" f(\lambda x . f(\lambda y . x \times y))(\lambda x . f(\lambda y . x \times y))$
$==f($ fix f)
$"="$ is actually η-conversion, see later
fix can be used to define recursive functions
Define first $g=\lambda f$."body of function to be defined" f
Then fix g is the result

Recursion
Define factbody $==\lambda f . \lambda n$. if (equal $n \underline{0}) \underline{1}$ (times $n(f(p r d n)))$ factorial $==$ fix factbody Exercise 5: Compute factorial \underline{n} for some n Exercise 6: Write a function that sums all members of a list of Church numerals

Free and Bound Variables

Now turn to some formalities about λ-terms
$\mathrm{FV}(\mathrm{t})$: The set of free variables of term t
$F V(x)=\{x\}$
$\mathrm{FV}(\mathrm{t} \mathrm{s})=\mathrm{FV}(\mathrm{t}) \cup \mathrm{FV}(\mathrm{s})$
$F V(\lambda x . t)=F V(t)-\{x\}$
Example.
Bound variable: In $\lambda x . t, x$ is a bound variable
Closed term t: $\mathrm{FV}(\mathrm{t})=\emptyset$

Substitution, I

Tricky business

Attempt \#1:
$x[s / x]=s$
$y[s / x]=y$, if $x \neq y$
($\lambda \mathrm{y} . \mathrm{t})[\mathrm{s} / \mathrm{x}]=\lambda \mathrm{y} .(\mathrm{t}[\mathrm{s} / \mathrm{x}])$
$\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)[\mathrm{s} / \mathrm{x}]=\left(\mathrm{t}_{1}[\mathrm{~s} / \mathrm{x}]\right)\left(\mathrm{t}_{2}[\mathrm{~s} / \mathrm{x}]\right)$

But then:
$(\lambda x . x)[y / x]=\lambda x . y$
The bound variable x is turned into free variable y !

Substitution, II

Attempt \#2:
$x[s / x]=s$
$y[s / x]=y$, if $x \neq y$
$(\lambda y . t)[s / x]=\lambda y . t$, if $x=y$
($\lambda \mathrm{y} . \mathrm{t})[\mathrm{s} / \mathrm{x}]=\lambda \mathrm{y}$. $(\mathrm{t}[\mathrm{s} / \mathrm{x}])$, if $x \neq y$
$\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)[\mathrm{s} / \mathrm{x}]=\left(\mathrm{t}_{1}[\mathrm{~s} / \mathrm{x}]\right)\left(\mathrm{t}_{2}[\mathrm{~s} / \mathrm{x}]\right)$
Better, but now:
$(\lambda x . y)[x / y]=\lambda x . x$
Capture of bound variable

Substitution, III

Attempt \#3:
$\mathrm{x}[\mathrm{s} / \mathrm{x}]=\mathrm{s}$
$y[s / x]=y$, if $x \neq y$
$(\lambda y . t)[s / x]=\lambda y . t$, if $x=y$
$(\lambda y . t)[s / x]=\lambda y .(t[s / x])$, if $x \neq y$ and $y \notin F V(s)$
$\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)[\mathrm{s} / \mathrm{x}]=\left(\mathrm{t}_{1}[\mathrm{~s} / \mathrm{x}]\right)\left(\mathrm{t}_{2}[\mathrm{~s} / \mathrm{x}]\right)$
Even better, but now $(\lambda x . y)[x / y]$ is undefined

Alpha-conversion

Solution: Work with terms up to renaming of bound variables

Alpha-conversion: Terms that are identical up to choice of bound variables are interchangeable in all contexts
$t_{1}={ }_{\alpha} t_{2}: t_{1}$ and t_{2} are identical up to alpha-conversion
Convention: If $\mathrm{t}_{1}={ }_{\alpha} \mathrm{t}_{2}$ then $\mathrm{t}_{1}=\mathrm{t}_{2}$
Example: $\lambda \mathrm{xy}$. xyz
Really working with terms modulo $={ }_{\alpha}$
All operations must respect $=\alpha$

Substitution, IV

Final attempt:
$x[\mathrm{~s} / \mathrm{x}]=\mathrm{s}$
$y[s / x]=y$, if $x \neq y$
$(\lambda y . t)[s / x]=\lambda y .(t[s / x])$, if $x \neq y$ and $y \notin F V(s)$
$\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)[\mathrm{s} / \mathrm{x}]=\left(\mathrm{t}_{1}[\mathrm{~s} / \mathrm{x}]\right)\left(\mathrm{t}_{2}[\mathrm{~s} / \mathrm{x}]\right)$
Clause for case $\mathrm{x}=\mathrm{y}$ not needed due to $=_{\alpha}$
Now:
($\lambda \mathrm{x} . \mathrm{t})[\mathrm{s} / \mathrm{x}]$
$=(\lambda y . t[y / x])[s / x]$, where $y \notin F V(t) \cup\{x\} \cup F V(s)$
$=\lambda y . t[y / x][s / x]$

Confluence

Confluence, or Church-Rosser (CR) property:
if $s \rightarrow{ }^{*} s_{1}$ and $s \rightarrow{ }^{*} s_{2}$ then there is t such that $s_{1} \rightarrow{ }^{*} t$ and
$\mathrm{s}_{2} \rightarrow{ }^{+} \mathrm{t}$

Full β reduction in λ-calculus is confluent Order of reduction does not matter for result Normal forms in λ-calculus are unique

Example: Use example slide 7

Conversion and Reduction

Primary concept is reduction \rightarrow
β-conversion $\mathrm{s}={ }_{\beta}$ t:

- s and t have common reduct under $\rightarrow_{\beta}{ }^{*}$
- Exists s' such that $s \rightarrow_{\beta}{ }^{*}$ s' and $t \rightarrow_{\beta}{ }^{*} s^{\prime}$
t reducible if s exists such that $t \rightarrow s$
- If and only if t contains a redex $\left(\lambda x . t_{1}\right) t_{2}$
- Exercise 7: Show this formally.

Then s is reduct of t under \rightarrow

Normal Forms

If t not reducible then t is in normal form
t has normal form (under \rightarrow):
there is some s in normal form such that $\mathrm{t} \rightarrow{ }^{*} \mathrm{~s}$
Proposition: If \rightarrow is CR then normal forms, if they exist, are unique.
Proof: Diagram chasing

$\frac{\eta \text {-Conversion, II }}{\text { Example: }(\lambda \times . f x)(\lambda y . g \text { y }) \rightarrow_{\eta}^{\cdot} f g}$
$\rightarrow_{\beta \eta \eta}:$ Both β and η reductions allowed
Both \rightarrow_{η} and $\rightarrow_{\beta \eta}$ are CR
Equality in Isabelle is modulo α, β, η

Some History

λ-calculus was originally intended as foundation for mathematics

Frege (predicate logic, ~1879):
Allows arbitrary quantification over predicates
Russell (1901): Paradox $D=\{X \mid X \notin X\}$
Russell and Whitehead (Principia Mathematica, 1910-13):
Types and type orders, fix the problem
Church (1930): λ-calculus as logic

"Inconsistency" of λ-calculus

Logical sentences coded as λ-terms

- $x \in P=P x$
- $\{x \mid P x\}==\lambda x . P x$

Define

- $D==\lambda x \cdot \operatorname{not}(x x)$

Then (Russell's paradox)

- $D D={ }_{\beta} \operatorname{not}(D D)$

Exercise 8

Prove the following lemma concerning the relation \rightarrow_{β} :
Lemma: If $t \rightarrow_{\beta} s$ then $t=t_{1}\left[t_{2} / x\right]$ for some x, t_{1}, t_{2} such that x occurs exactly once in t_{1}, and such that

- t_{2} has the form $\left(\lambda y . t_{2,1}\right) t_{2,2}$ (for some $y, t_{2,1}, t_{2,2}$) $-\mathrm{s}=\mathrm{t}_{1}\left[\mathrm{t}_{2,1}\left[\mathrm{t}_{2,2} / \mathrm{y}\right] / \mathrm{x}\right]$

Use this lemma to conclude that there are t, t ', s , s ' such that $\mathrm{t} \rightarrow_{\beta} \mathrm{t}^{\prime}, \mathrm{s} \rightarrow \beta \mathrm{s}^{\prime}$, but $\mathrm{t} \rightarrow_{\beta} \mathrm{t}^{\prime} \mathrm{s}^{\prime}$ does not hold

