

Typing λ -terms

The uptyped λ -calculus allows "strange" terms to be formed:

- $D D =_{\beta} not(D D)$
- succ (pair ff ff)

Solution: Rule out ill-formed terms using types (Church 1940)

Ill-formed term: Computation can "go wrong"

- succ (pair ff ff): Cannot complete computation to
- produce a sensible value = normal form
- Type unsafety runtime error

Types

Simply typed λ -calculus, λ_{\rightarrow} : Only two types, base types and function types Syntax:

- $T ::= A | T \rightarrow T$
- A: Base type, e.g. bool, int, float, array[int], ...
- $T_1 \rightarrow T_2$: Type of functions from T_1 to T_2

 $\begin{array}{l} \mbox{Type constructor} \rightarrow \mbox{right-associative:} \\ \mbox{T}_1 \rightarrow \mbox{T}_2 \rightarrow \mbox{T}_3 = = \mbox{T}_1 \rightarrow (\mbox{T}_2 \rightarrow \mbox{T}_3) \end{array}$

Properties of the Typing Relation

Lemma 1:

1. If $\Gamma \vdash x : T$ then $x : T \in \Gamma$

- 2. If $\Gamma\vdash\lambda$ x : T_1. t : S then S = T_1 \to T_2 for some S such that $\Gamma,$ x : T_1 \vdash t : T_2
- 3. If $\Gamma \vdash t \, s : T_2$ then there is some T_1 such that

 $\Gamma \vdash t: \mathsf{T_1} \to \mathsf{T_2} \text{ and } \Gamma \vdash s: \mathsf{T_1}$

Exercise 3: Prove this statement

Exercise 4: Is there any context Γ and type T such that $\Gamma \vdash x x : T$? If so, give a type derivation. If not, prove it.

Unique Typing and Normal Forms

Lemma 2: If $\Gamma \vdash t$: T_1 and $\Gamma \vdash t$: T_2 then $T_1 = T_2$ **Exercise 5**: Prove this statement.

Unique typing fails for many richer languages

 $\begin{array}{l} \text{Values:} \\ v \in \text{Val} ::= x \mid x \; v \; ... \; v \mid \lambda x : T \; . \; v \end{array}$

 $\label{eq:lemma} \begin{array}{l} \mbox{Lemma 3: } t \nrightarrow_{\beta} \mbox{iff } t \in Val \\ \mbox{Exercise 6: Prove (or disprove) this statement.} \end{array}$

Substitution Lemma

 $\Gamma \leq \Delta :$ For all x, $\Gamma (x)$ is defined implied $\Delta (x)$ is defined and then $\Gamma (x) = \Delta (x)$

Proposition 1: If $\Gamma \vdash t$: T and $\Gamma \leq \Delta$ then $\Delta \vdash t$: T

Lemma 4 [Substitution]: If Γ , $x : S \vdash t$: T and $\Gamma \vdash s : S$ then $\Gamma \vdash t[s/x] : T$

We'll prove this statement in class.

Theorem 1 [Subject Reduction]: If $\Gamma \vdash t$: T and $t \rightarrow_{\beta} t'$ then $\Gamma \vdash t'$: T

Exercise 7: Prove this statement (hint: Use induction on the derivation of $\Gamma \vdash t:T$)

Extensions - Products

Many extensions possible, see TAPL for more First: Product types

Types: T ::= ... | T × T Terms: t ::= ... | (t, t) | fst | snd

Reduction: Use generic \rightarrow instead of \rightarrow_{β}

Can support different evaluation orders

More Exercises

 $\begin{array}{l} \label{eq:constructs} \textbf{Exercise 10:} \ \mbox{Add the following constructs to simply typed} \\ \mbox{lambda calculus, with reduction and typing rules:} \\ t ::= ... | let x : T = t_1 in t_2 | letrec x : T = t_1 in t_2 \\ \mbox{The intention (of course) is that "let" is used for non-recursive definitions, and "letrec" for recursive ones. \\ \mbox{Give reduction and typing rules for "let" and "letrec".} \\ \mbox{Show how "let" and "letrec" can be coded in λ_{\rightarrow}. Do the same for mutually recursive definitions: \\ t ::= ... | letrec x_1 : T_1 = t_1, \ldots, x_n : T_n = t_n in t \\ \end{array}$

Note: In more realistic languages one will generally want type annotations T, $T_1,...$ to be inferred automatically by the type checker

inference, polymorphic types

ML, Haskell, PCF

ML and other languages:

- ML was influenced by Landin's ISWIM
- SML Standard ML of 1997
- Comprehensive formal transition semantics and type system by [Milner-Tofte-Harper, 1990]
- Check out: SML of New Jersey, OCAML
- SML used in descendants of LCF: HOL, Isabelle
- Haskell is a descendant with cbn (lazy) semantics (and other twists)
- PCF [Plotkin-77]
- λ_{\rightarrow} + naturals + more types + recursion
- Popular in theoretical studies

Strong Normalization

We are now addressing the base calculus λ_{\rightarrow} with a single base type A Strong normalization:

 $\begin{array}{l} t\in SN_n \text{ iff any } \rightarrow_\beta \text{derivation } t=t_0 \rightarrow_\beta t_1 \rightarrow_\beta \cdots \rightarrow_\beta t_n \rightarrow_\beta \\ \cdots \text{ has length at most } n \end{array}$ $SN = \{t \mid \exists n. t \in SN_n\}$

Theorem 2 [Strong Normalization]: If \vdash t : T then t \in SN

This immediately shows that all terms of functional type must express total functions on closed terms

Thus, general recursion cannot be encoded in λ .

Logical Relations

Exercise 11: Why is normalization tricky to prove?

As always, the trick is to find the right inductive argument

Proof here follows Tait [JSL-67] and Girard-Lafont-Taylor, Proofs and Types, CUP'89

Define predicate R_T on closed terms by: $- R_A = \{t \mid t \in SN\}$

- $R_{S \, \rightarrow \, T}$ = {t | whenever $s \in R_S$ then t $s \in R_T$ } Note: Do not require $t \in R_T$ implies $\vdash t : T$.

Proof of Normalization

Lemma 6: If $t \rightarrow_{\beta} t'$ and $t \in R_T$ then $t' \in R_T$ Proof: By structural induction on the structure of T

Exercise 12: Prove lemma 6.

Neutral term: Either a variable or an application

Lemma 7:

1. If $t \in R_{\tau}$ then $t \in SN$

2. If t is neutral and for all t', $t \rightarrow_{\beta} t'$ implies $t' \in R_T$, then $t \in$ R_T

Proof of Lemma 7

Proof by simultaneous induction on T

T = A. Both 1 and 2 are immediate

```
\mathsf{T}=\mathsf{T}_1\to\mathsf{T}_2.
```

1: Let $t\in R_T$. By the induction hypothesis (2), $x\in R_{T_1}$, so t $x\in R_{T_2}$. Then t $x\in SN$, so $t\in SN$ as well. 2: Suppose t is neutral and whenever $t \rightarrow_{\beta} t'$ then $t' \in$ $R_{T}.$ Let $t_{1} \in R_{T_{1}}.$ We show t $t_{1} \in R_{T_{2}}.$ By the induction hypothesis (1), $t_{1} \in SN_{n}$ for some n. We proceed by nested induction on n. It is sufficient to show $t_2 \in R_{T_2}$ whenever $t \ t_1 \rightarrow_\beta t_2$, by the induction hypothesis (2), and since t t_1 is neutral. Since t is neutral, either $t \rightarrow_\beta t'$ and $t_2 = t' \ t_1$, or else $t_1 \rightarrow_\beta t_1'$, and $t_2 = t \ t_1'$. In the first case, t_2 $\in \mathsf{R}_{\mathsf{T}_2}$ by the assumptions, and in the second, $t_1{'} \in \mathsf{R}_{\mathsf{T}_1}.$ Then $t_1' \in SN_{n'}$, n' < n. So by the inner i.h. T $t_1' \in R_{T_2}$.

Fundamental Lemma

 $\begin{array}{l} \textbf{Lemma 9: Suppose } x_1:T_1,...,x_n:T_n\vdash t:T. \mbox{ If } t_i\in R_{T_i} \mbox{ for all } i:1\leq i\leq n, \mbox{ then } t[t_1/x_1,...,t_n/x_n]\in R_T. \end{array}$

Note: This proves theorem 2, for n = 0.

Proof: By induction on size of the type derivation. Let $\Gamma = x_1$: $T_1,...,x_n : T_n$ and $\underline{t/x}$ abbreviate $t_1/x_1,...,t_n/x_n$.

- $t=x_i$. Then $t[\underline{t/x}]=t_i,\ T=T_i,$ and $t_i\in R_{T_i}$ by the assumptions.
- $t = t^{*} t^{"}$: By the induction hypothesis, $t^{'}[\underline{t}'\underline{x}] \in \mathsf{R}_{T \to T}$ and $t^{"}[\underline{t}'\underline{x}] \in \mathsf{R}_{T}^{'}$. Then $t[\underline{t}'\underline{x}] = (t^{*}t^{"})[\underline{t}'\underline{x}] = (t^{*}[\underline{t}'\underline{x}]) \in \mathsf{R}_{T}^{'}$.
- $t = \lambda x^{"}$: T". t'. Then $T = T^{"} \rightarrow T'$. Let $t^{"} \in R_{T'}$ be arbitrary. By the induction hypothesis, $t'[\underline{t}/\underline{x}, t''/x''] \in R_{T'}$. But then λx : T". $t'[\underline{t}/\underline{x}] = t[\underline{t}/\underline{x}] \in R_{T}$ as desired.

Exercise

Exercise 13: We did not require that $t \in R_T$ only if $\vdash t : T$. Why was that?