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Advanced Formal Methods

Lecture 3: Simply Typed Lambda calculus

Mads Dam
KTH/CSC

Course 2D1453, 2006-07

Some material from B. Pierce: TAPL + some from G. Klein, NICTA 

Typing λ-terms

The uptyped λ-calculus allows ”strange” terms to be 
formed:

• D D =β not(D D)
• succ (pair ff ff)

Solution: Rule out ill-formed terms using types
(Church 1940)

Ill-formed term: Computation can ”go wrong”
• succ (pair ff ff):  Cannot complete computation to 

produce a sensible value = normal form
• Type unsafety – runtime error

Types

Simply typed λ-calculus, λ�:
Only two types, base types and function types

Syntax:
T ::= A | T � T

• A: Base type, e.g. bool, int, float, array[int], ...
• T1 � T2:

Type of functions from T1 to T2

Type constructor � right-associative:
T1 � T2 � T3 == T1 � (T2 � T3)

Typed λ-terms

λx.t: Must be of function type T1 � T2

But where to find T1?

Alt. 1: Give domain type explicitly as typed λ-term λx:T1.t
Example: λx:int.x + x : int � int

Used here initially

Alt. 2: Keep untyped syntax
Use types as well-formedness predicate
λx.x + x : int � int
λx.x: int � int, but also λx.x: bool � bool, etc. 

The Typing Relation

Typing relation
Γ � t : T

Γ: Type environment
Also: Type context, type assumptions
Finite function x � Tx

Must have FV(t) � dom(Γ)

Typing rules:

Γ, x : T1 � t : T2
Γ � λx : T1. t : T1 � T2

x : T � Γ
Γ � x : T

Γ � t : T1 � T2 Γ � s : T1
Γ � t s : T2

Function update:
x ∉ dom(Γ)

Γ omitted 
if empty

Base Types

Easy to extend to base types

Example: Booleans

Base type Bool

Terms t ::= x | λx : T . t | t t | true | false | if t then t else t | ...

New typing rules (+ one for false too):

Γ � t : bool     Γ � s1 : T     Γ � s2 : T
Γ � if t then s1 else s2 : T

−
Γ � true : bool



2

Terms, Notation, Reduction

Same syntactic conventions for typed terms:
• λ x : T1 y : T2 . T == λ x: T1 . λ y : T2 . T

Sometimes use , as separator for clarity
• Similar for associativity

Alpha-conversion, substitution, free and bound variables

Reduction: -
(λx : T . t) s �β t[s/x] 

s �β s’
s t �β s’ t 

t �β t’
s t �β s t’ 

t �β t’
λx : T . t �β λx : T . t’ 

Typing, Examples

Exercise 1: Give type derivations to show:
1. � λx : A,  y : B . x : A � B � A
2. � λx : A � B, y : B � C, z : A . y (x z) : 

(A � B)� (B � C) � A � C

Exercise 2: Find a context under which f x y has type A. 
Can you give a simple description of all such contexts?

Properties of the Typing Relation

Lemma 1:
1. If Γ � x : T then x : T � Γ
2. If Γ � λ x : T1. t : S then S = T1 � T2 for some S such 

that Γ, x : T1 � t : T2

3. If Γ � t s : T2 then there is some T1 such that 
Γ � t : T1 � T2 and Γ � s : T1

Exercise 3: Prove this statement

Exercise 4: Is there any context Γ and type T such that Γ �
x x : T? If so, give a type derivation. If not, prove it.

Unique Typing and Normal Forms

Lemma 2: If Γ � t : T1 and Γ � t : T2 then T1 = T2

Exercise 5: Prove this statement.

Unique typing fails for many richer languages

Values:
v � Val ::= x | x v ... v | λx : T . v

Lemma 3: t �β iff t � Val
Exercise 6: Prove (or disprove) this statement.

Substitution Lemma

Γ � ∆: For all x, Γ(x) is defined implied ∆(x) is defined and 
then Γ(x) = ∆(x)

Proposition 1: If Γ � t : T and Γ � ∆ then ∆ � t : T

Lemma 4 [Substitution]: If Γ, x : S � t: T and Γ � s : S 
then Γ � t[s/x] : T

We’ll prove this statement in class.

Theorem 1 [Subject Reduction]: If Γ � t : T and t �β t’ 
then Γ � t’ : T

Exercise 7: Prove this statement (hint: Use induction on 
the derivation of Γ � t : T)

Extensions - Products

Many extensions possible, see TAPL for more
First: Product types

Types: T ::= ... | T � T

Terms: t ::= ... | (t, t) | fst | snd

Reduction: Use generic � instead of �β

Can support different evaluation orders
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Products – Reduction and Typing

Reduction rules:

+ rules for context closure:

Typing rules:

-
fst(t,s) � t

-
snd(t,s) � s

t � t’
(t,s) � (t’,s)

s � s’
(t,s) � (t,s’)

t � t’
fst t � fst t’

t � t’
snd t � snd t’

Γ � t : T     Γ � s : S
Γ � (t, s) : T � S

−
Γ � fst : T � S � T

−
Γ � snd : T � S � S

Sums

Types: T ::= ... | T + T
Terms: t ::= ... | in1 | in2 | cases in1 => t || in2 => t

Syntax slightly uncommon. Often use sugared version, 
something like:

case t of in1(x : T1) => s1 || in2(y : T2) => s2

== (cases in1 => λx : T1 . s1 ||λy:T2. s2) t

Sums – Reduction and Typing
Reduction rules:

Exercise: Give suitable context closure rules for sums

Typing:

Exercise 8: Unique typing fails for the type system with 
sums. Why?

-
(cases in1 => s1 || in2 => s2) (in1 t) � s1 t

-
Γ � in1 : T � T + S

Γ � s1 : T1 � S       Γ � s2 : T2 � S
Γ ��cases in1 => s1 || in2 => s2 : T1 + T2 � S

-
(cases in1 => s1 || in2 => s2) (in2 t) � s2 t

-
Γ � in2 : S � T + S

General Recursion

fix is not definable in λ� (see later), but can be introduced 
as new constant

Terms: t ::= ... | fix

Reduction: fix f � f (fix f)

Typing: 

Exercise 9: Add a natural number base type, and define 
equal, plus, times, and factorial using fix

-
Γ � fix : (T � T) � T

More Exercises

Exercise 10: Add the following constructs to simply typed 
lambda calculus, with reduction and typing rules:

t ::= ... | let x : T = t1 in t2 | letrec x : T = t1 in t2
The intention (of course) is that ”let” is used for non-
recursive definitions, and ”letrec” for recursive ones. 
Give reduction and typing rules for ”let” and ”letrec”. 
Show how ”let” and ”letrec” can be coded in λ�. Do the 
same for mutually recursive definitions:

t ::= … | letrec x1 : T1 = t1, … , xn : Tn = tn in t

Note: In more realistic languages one will generally want 
type annotations T, T1,… to be inferred automatically by 
the type checker

The ML Language

With the extensions above λ� is a ”grandmother” of many 
typed functional languages

ML:
– Highly influential programming language
– Originally developed as a MetaLanguage for the LCF 

theorem prover [Gordon-Milner-Wadsworth-79]
– ML used for programming proof search in LCF

Introduce base type ”theorem”
The metalanguage must ensure type safety:
The only values of type ”theorem” are those that 
really are theorems in the logic being represented

– ML main features: cbv semantics, automatic type 
inference, polymorphic types
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ML, Haskell, PCF

ML and other languages:
– ML was influenced by Landin’s ISWIM
– SML – Standard ML of 1997

Comprehensive formal transition semantics and type 
system by [Milner-Tofte-Harper, 1990]

– Check out: SML of New Jersey, OCAML
– SML used in descendants of LCF: HOL, Isabelle
– Haskell is a descendant with cbn (lazy) semantics 

(and other twists)
– PCF [Plotkin-77]

λ� + naturals + more types + recursion
Popular in theoretical studies

Strong Normalization

We are now addressing the base calculus λ� with a single 
base type A

Strong normalization: 
t � SNn iff any �β-derivation t = t0 �β t1 �β��β tn �β
� has length at most n
SN = {t | �n. t � SNn}

Theorem 2 [Strong Normalization]: If � t : T then t � SN

This immediately shows that all terms of functional type 
must express total functions on closed terms

Thus, general recursion cannot be encoded in λ�

Logical Relations

Exercise 11: Why is normalization tricky to prove?

As always, the trick is to find the right inductive argument

Proof here follows Tait [JSL-67] and Girard-Lafont-Taylor, 
Proofs and Types, CUP’89

Define predicate RT on closed terms by:
– RA = {t | t � SN}
– RS � T = {t | whenever s � RS then t s � RT}

Note: Do not require t � RT implies � t : T.

Proof of Normalization

Lemma 6: If t �β t’ and t � RT then t’ � RT

Proof: By structural induction on the structure of T

Exercise 12: Prove lemma 6.

Neutral term: Either a variable or an application 

Lemma 7:
1. If t � RT then t � SN
2. If t is neutral and for all t’, t �β t’ implies t’ � RT, then t �

RT

Proof of Lemma 7

Proof by simultaneous induction on T
T = A. Both 1 and 2 are immediate
T = T1 � T2. 

1: Let t � RT. By the induction hypothesis (2), x � RT1
, 

so t x � RT2
. Then t x � SN, so t � SN as well.

2: Suppose t is neutral and whenever t �β t’ then t’ �
RT. Let t1 � RT1

. We show t t1 � RT2
. By the induction 

hypothesis (1), t1 � SNn for some n. We proceed by 
nested induction on n. It is sufficient to show t2 � RT2
whenever t t1 �β t2, by the induction hypothesis (2), and 
since t t1 is neutral. Since t is neutral, either t �β t’ and 
t2 = t’ t1, or else t1 �β t1’, and t2 = t t1’. In the first case, t2
� RT2

by the assumptions, and in the second, t1’ � RT1
. 

Then t1’ � SNn’, n’ < n. So by the inner i.h. T t1’ � RT2
.

Abstraction Lemma
Lemma 8: If t1[t/x] � RT2 

whenever t � RT1
then λx : T1. t1 � RT1 � T2

Proof: Assume t � RT1
. We must show 

t’ = (λx : T1. t1) t � RT-1 . 
By 7.1, t � SNn2

and t1 � SNn1
for some n1, n2

. Then n1+n2 is an 
upper bound on the number of reduction steps that can be 
performed before the outermost redex in t’ must be reduced, so we 
proceed by induction on n1+n2. By 7.2 it is sufficient to show t’’ � RT2
whenever t’ �β t’’. Check out the possible cases:

- t’’ = t1[t/x]. We are done by the assumptions.
- t’’ = (λx : T1. t1) s and t �β s. Then s � RT1

by
Lemma 6 and s � SNn2’, n2’<n2 so we’re done by

the induction hypothesis.
- t’’ = (λ x : T1. t1’) t and t1 �β t1’. By lemma 6, t1’[t/x] � RT2

, and 
t1’ � SNn1’ for some n1’ < n1. So t’’ � RT-2. 
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Fundamental Lemma

Lemma 9: Suppose x1 : T1,...,xn : Tn � t : T. If ti � RTi
for all 

i: 1� i� n, then t[t1/x1,...,tn/xn] � RT.

Note: This proves theorem 2, for n = 0.
Proof: By induction on size of the type derivation. Let Γ = x1

: T1,...,xn : Tn and t/x abbreviate t1/x1,...,tn/xn.
• t = xi: Then t[t/x] = ti, T = Ti, and ti � RTi

by the 
assumptions.

• t = t’ t’’: By the induction hypothesis, t’[t/x] � RT’ � T and 
t’’[t/x] � RT’. Then t[t/x] = (t’ t’’)[t/x] = (t’[t/x]) ( t’’[t/x]) � RT.

• t = λx’’ : T’’. t’. Then T = T’’ � T’. Let t’’ � RT’’ be 
arbitrary. By the induction hypothesis, t’[t/x,t’’/x’’] � RT’. 
But then λx : T’’. t’[t/x] = t[t/x] � RT as desired.

Exercise

Exercise 13: We did not require that t � RT only if � t : T. 
Why was that?


