Advanced Formal Methods

Lecture 3: Simply Typed Lambda calculus

Mads Dam
 KTH/CSC

Some material from B. Pierce: TAPL + some from G. Klein, NICTA

Typing λ-terms

The uptyped λ-calculus allows "strange" terms to be formed:

- $D D={ }_{\beta} \operatorname{not}(D D)$
- succ (pair ff ff)

Solution: Rule out ill-formed terms using types (Church 1940)

III-formed term: Computation can "go wrong"

- succ (pair ff ff): Cannot complete computation to produce a sensible value = normal form
- Type unsafety - runtime error

Types

Simply typed λ-calculus, λ_{\rightarrow} :
Only two types, base types and function types
Syntax:
$\mathrm{T}::=\mathrm{A} \mid \mathrm{T} \rightarrow \mathrm{T}$

- A: Base type, e.g. bool, int, float, array[int], ...
- $\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$:

Type of functions from T_{1} to T_{2}
Type constructor \rightarrow right-associative:
$\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2} \rightarrow \mathrm{~T}_{3}=\mathrm{T}_{1} \rightarrow\left(\mathrm{~T}_{2} \rightarrow \mathrm{~T}_{3}\right)$

Typed λ-terms

$\lambda x . t$: Must be of function type $T_{1} \rightarrow T_{2}$
But where to find T_{1} ?

Alt. 1: Give domain type explicitly as typed λ-term λx : $T_{1} . \mathrm{t}$
Example: λx :int. $x+x$: int \rightarrow int
Used here initially
Alt. 2: Keep untyped syntax
Use types as well-formedness predicate
$\lambda x . \mathrm{x}+\mathrm{x}:$ int \rightarrow int
$\lambda x . x$: int \rightarrow int, but also $\lambda x . x$: bool \rightarrow bool, etc.

The Typing Relation		
Typing relation		
	-t:T	
Γ : Type environment		
Also: Type context, type assumptions Finite function $\mathrm{x} \mapsto \mathrm{T}_{\mathrm{x}}$		
Must have $\mathrm{FV}(\mathrm{t}) \subseteq \operatorname{dom}(\Gamma)$	Γ omitted if empty	Function update: $x \notin \operatorname{dom}(\Gamma)$
Typing rules:		
$\frac{x: T \in \Gamma}{\Gamma \vdash x: T}$	$\frac{x: T_{1} \vdash t}{\vdash \vdash \lambda x: T_{1}}$	$\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
$\Gamma \vdash \mathrm{ts}: \mathrm{T}_{2}$		

Base Types		
Easy to extend to base types		
Example: Booleans		
Base type Bool		
Terms $t::=x\|\lambda x: T . t\| t t \mid$ rue \|false	if then t else $t \mid \ldots$	
New typing rules (+ one for false too):		
$\overline{\Gamma \vdash \text { true : bool }}$	$\frac{\Gamma \vdash \mathrm{t}: \text { bool } \quad \Gamma \vdash \mathrm{s}_{1}: T \quad \Gamma \vdash \mathrm{~s}_{2}: T}{\Gamma \vdash \text { if } \mathrm{t} \text { then } \mathrm{s}_{1} \text { else } \mathrm{s}_{2}: T}$	

Terms, Notation, Reduction

Same syntactic conventions for typed terms:

- $\lambda \mathrm{x}: \mathrm{T}_{1} \mathrm{y}: \mathrm{T}_{2} \cdot \mathrm{~T}==\lambda \mathrm{x}: \mathrm{T}_{1} \cdot \lambda \mathrm{y}: \mathrm{T}_{2} . \mathrm{T}$

Sometimes use, as separator for clarity

- Similar for associativity

Alpha-conversion, substitution, free and bound variables
Reduction:

$$
\begin{aligned}
& \overline{(\lambda x: T . t) s \rightarrow_{\beta} t[s / x]} \\
& \frac{s \rightarrow_{\beta} s^{\prime}}{s t \rightarrow_{\beta} s^{\prime} t} \\
& \frac{t \rightarrow_{\beta} t^{\prime}}{s t \rightarrow_{\beta} s t^{\prime}} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{\lambda x: T . t \rightarrow_{\beta} \lambda x: T . t^{\prime}}
\end{aligned}
$$

Properties of the Typing Relation

Lemma 1:

1. If $\Gamma \vdash x: T$ then $x: T \in \Gamma$
2. If $\Gamma \vdash \lambda x: T_{1} . t: S$ then $S=T_{1} \rightarrow T_{2}$ for some S such that $\Gamma, x: T_{1} \vdash t: T_{2}$
3. If $\Gamma \vdash t \mathrm{~s}: \mathrm{T}_{2}$ then there is some T_{1} such that $\Gamma \vdash t: T_{1} \rightarrow T_{2}$ and $\Gamma \vdash s: T_{1}$

Exercise 3: Prove this statement
Exercise 4: Is there any context Γ and type T such that $\Gamma \vdash$ $\mathrm{x} x$: T ? If so, give a type derivation. If not, prove it.

Typing, Examples

Exercise 1: Give type derivations to show:

1. $\vdash \lambda x: A, y: B \cdot x: A \rightarrow B \rightarrow A$
2. $\vdash \lambda x: A \rightarrow B, y: B \rightarrow C, z: A \cdot y(x z):$

$$
(\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{B} \rightarrow \mathrm{C}) \rightarrow \mathrm{A} \rightarrow \mathrm{C}
$$

Exercise 2: Find a context under which $f x y$ has type A. Can you give a simple description of all such contexts?

Unique Typing and Normal Forms
Lemma 2: If $\Gamma \vdash \mathrm{t}: \mathrm{T}_{1}$ and $\Gamma \vdash \mathrm{t}: \mathrm{T}_{2}$ then $\mathrm{T}_{1}=\mathrm{T}_{2}$
Exercise 5: Prove this statement.

Unique typing fails for many richer languages
Values:
$\mathrm{v} \in \mathrm{Val}::=\mathrm{x}|\mathrm{x} v \ldots \mathrm{v}| \lambda \mathrm{x}: \mathrm{T} . \mathrm{v}$
Lemma 3: $t \overbrace{\beta}$ iff $t \in \operatorname{Val}$
Exercise 6: Prove (or disprove) this statement.

Substitution Lemma

$\Gamma \leq \Delta$: For all $x, \Gamma(x)$ is defined implied $\Delta(x)$ is defined and then $\Gamma(x)=\Delta(x)$

Proposition 1: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\Gamma \leq \Delta$ then $\Delta \vdash \mathrm{t}: \mathrm{T}$

Lemma 4 [Substitution]: If $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$ and $\Gamma \vdash \mathrm{s}: \mathrm{S}$ then $\Gamma \vdash \mathrm{t}[\mathrm{s} / \mathrm{x}]: T$
We'll prove this statement in class.
Theorem 1 [Subject Reduction]: If $\Gamma \vdash t: T$ and $t \rightarrow_{\beta} t^{\prime}$ then $\Gamma \vdash \mathrm{t}^{\prime}: T$
Exercise 7: Prove this statement (hint: Use induction on the derivation of $\Gamma \vdash t: T$)

Extensions - Products

Many extensions possible, see TAPL for more
First: Product types
Types: $\mathrm{T}::=\ldots \mid \mathrm{T} \times \mathrm{T}$
Terms: $\mathrm{t}::=\ldots|(\mathrm{t}, \mathrm{t})|$ fst \mid snd
Reduction: Use generic \rightarrow instead of \rightarrow_{β}
Can support different evaluation orders

Products - Reduction and Typing

Reduction rules:

$$
\frac{-}{\mathrm{fst}(\mathrm{t}, \mathrm{~s}) \rightarrow \mathrm{t}}
$$

$\mathrm{snd}(\mathrm{t}, \mathrm{s}) \rightarrow \mathrm{s}$

+ rules for context closure:
$\frac{\mathrm{t} \rightarrow \mathrm{t}^{\prime}}{(\mathrm{t}, \mathrm{s}) \rightarrow\left(\mathrm{t}^{\prime}, \mathrm{s}\right)} \quad \frac{\mathrm{s} \rightarrow \mathrm{s}^{\prime}}{(\mathrm{t}, \mathrm{s}) \rightarrow\left(\mathrm{t}, \mathrm{s}^{\prime}\right)} \frac{\mathrm{t} \rightarrow \mathrm{t}^{\prime}}{\mathrm{fst} \mathrm{t} \rightarrow \mathrm{fst} \mathrm{t}^{\prime}} \quad \frac{\mathrm{t} \rightarrow \mathrm{t}^{\prime}}{\mathrm{snd} \mathrm{t} \rightarrow \mathrm{snd} \mathrm{t}^{\prime}}$
Typing rules:

$$
\begin{gathered}
\frac{\Gamma \vdash \mathrm{t}: \mathrm{T}}{\Gamma \vdash(\mathrm{t}, \mathrm{~s}): \mathrm{T} \times \mathrm{S}} \mathrm{~S} \\
\frac{-}{\Gamma \vdash \mathrm{fst}: \mathrm{T} \times \mathrm{S} \rightarrow \mathrm{~T}} \quad \frac{-}{\Gamma \vdash \mathrm{snd}: \mathrm{T} \times \mathrm{S} \rightarrow \mathrm{~S}}
\end{gathered}
$$

Sums

Types: $\mathrm{T}::=\ldots \mid T+T$
Terms: $\mathrm{t}::=\ldots\left|\mathrm{in}_{1}\right| \mathrm{in}_{2} \mid$ cases $\mathrm{in}_{1}=>\mathrm{t}| | \mathrm{in}_{2}=>\mathrm{t}$
Syntax slightly uncommon. Often use sugared version, something like:
case t of $\mathrm{in}_{1}\left(\mathrm{x}: \mathrm{T}_{1}\right) \Rightarrow \mathrm{s}_{1} \| \mathrm{in}_{2}\left(\mathrm{y}: \mathrm{T}_{2}\right) \Rightarrow \mathrm{s}_{2}$ $==\left(\right.$ cases $\left.\mathrm{in}_{1}=>\lambda x: \mathrm{T}_{1} \cdot \mathrm{~s}_{1} \| \lambda y: \mathrm{T}_{2} \cdot \mathrm{~s}_{2}\right) \mathrm{t}$

Sums - Reduction and Typing
 Reduction rules:
 $$
\begin{gathered} \left(\text { cases } \mathrm{in}_{1}=>\mathrm{s}_{1} \| \mathrm{in}_{2}=>\mathrm{s}_{2}\right)\left(\mathrm{in}_{1} \mathrm{t}\right) \rightarrow \mathrm{s}_{1} \mathrm{t} \\ - \\ \left(\text { cases } \mathrm{in}_{1}=>\mathrm{s}_{1} \| \mathrm{in}_{2}=>\mathrm{s}_{2}\right)\left(\mathrm{in}_{2} \mathrm{t}\right) \rightarrow \mathrm{s}_{2} \mathrm{t} \end{gathered}
$$

Exercise: Give suitable context closure rules for sums
Typing:

$$
\begin{array}{cl}
\frac{-}{\Gamma \vdash \mathrm{in}_{1}: \mathrm{T} \rightarrow \mathrm{~T}+\mathrm{S}} & \\
\Gamma \vdash \mathrm{in}_{2}: \mathrm{S} \rightarrow \mathrm{~T}+\mathrm{S} \\
\Gamma \vdash \mathrm{~s}_{1}: \mathrm{T}_{1} \rightarrow \mathrm{~S} & \Gamma \vdash \mathrm{~s}_{2}: \mathrm{T}_{2} \rightarrow \mathrm{~S} \\
\hline \Gamma \vdash \text { cases in1 }=>\mathrm{s} 1 \| \text { in2 }=>\mathrm{s} 2: \mathrm{T}_{1}+\mathrm{T}_{2} \rightarrow \mathrm{~S}
\end{array}
$$

Exercise 8: Unique typing fails for the type system with sums. Why?

General Recursion

fix is not definable in λ_{\rightarrow} (see later), but can be introduced as new constant

Terms: t ::= ... | fix

Reduction: fix $f \rightarrow f($ fix f)

Typing: $\quad \frac{-}{\Gamma \vdash \text { fix }:(T \rightarrow T) \rightarrow T}$
Exercise 9: Add a natural number base type, and define equal, plus, times, and factorial using fix

More Exercises

Exercise 10: Add the following constructs to simply typed lambda calculus, with reduction and typing rules:
$\mathrm{t}::=\ldots \mid$ let $\mathrm{x}: \mathrm{T}=\mathrm{t}_{1}$ in $\mathrm{t}_{2} \mid$ letrec $\mathrm{x}: \mathrm{T}=\mathrm{t}_{1}$ in t_{2}
The intention (of course) is that "let" is used for nonrecursive definitions, and "letrec" for recursive ones.
Give reduction and typing rules for "let" and "letrec".
Show how "let" and "letrec" can be coded in λ_{\rightarrow}. Do the same for mutually recursive definitions:

$$
t::=\ldots \mid \text { letrec } x_{1}: T_{1}=t_{1}, \ldots, x_{n}: T_{n}=t_{n} \text { in } t
$$

Note: In more realistic languages one will generally want type annotations $\mathrm{T}, \mathrm{T}_{1}, \ldots$ to be inferred automatically by the type checker

The ML Language

With the extensions above λ_{\rightarrow} is a "grandmother" of many typed functional languages
ML:

- Highly influential programming language
- Originally developed as a MetaLanguage for the LCF theorem prover [Gordon-Milner-Wadsworth-79]
- ML used for programming proof search in LCF Introduce base type "theorem"
The metalanguage must ensure type safety:
The only values of type "theorem" are those that really are theorems in the logic being represented
- ML main features: cbv semantics, automatic type inference, polymorphic types

ML, Haskell, PCF

ML and other languages:

- ML was influenced by Landin's ISWIM
- SML - Standard ML of 1997

Comprehensive formal transition semantics and type system by [Milner-Tofte-Harper, 1990]

- Check out: SML of New Jersey, OCAML
- SML used in descendants of LCF: HOL, Isabelle
- Haskell is a descendant with cbn (lazy) semantics (and other twists)
- PCF [Plotkin-77]
$\lambda_{\rightarrow}+$ naturals + more types + recursion
Popular in theoretical studies

Strong Normalization

We are now addressing the base calculus λ_{\rightarrow} with a single base type A

Strong normalization:
$\mathrm{t} \in \mathrm{SN}_{\mathrm{n}}$ iff any \rightarrow_{β}-derivation $\mathrm{t}=\mathrm{t}_{0} \rightarrow_{\beta} \mathrm{t}_{1} \rightarrow_{\beta} \cdots \rightarrow_{\beta} \mathrm{t}_{\mathrm{n}} \rightarrow_{\beta}$ \cdots has length at most n
$\mathrm{SN}=\left\{\mathrm{t} \mid \exists \mathrm{n} . \mathrm{t} \in \mathrm{SN}_{\mathrm{n}}\right\}$
Theorem 2 [Strong Normalization]: If $\vdash \mathrm{t}: \mathrm{T}$ then $\mathrm{t} \in \mathrm{SN}$
This immediately shows that all terms of functional type must express total functions on closed terms

Thus, general recursion cannot be encoded in λ_{\rightarrow}

Logical Relations

Exercise 11: Why is normalization tricky to prove?

As always, the trick is to find the right inductive argument

Proof here follows Tait [JSL-67] and Girard-Lafont-Taylor, Proofs and Types, CUP'89

Define predicate R_{T} on closed terms by:
$-R_{A}=\{t \mid t \in S N\}$
$-R_{S \rightarrow T}=\left\{t \mid\right.$ whenever $s \in R_{S}$ then $\left.t s \in R_{T}\right\}$
Note: Do not require $t \in R_{T}$ implies $\vdash t: T$.

Proof of Normalization

Lemma 6: If $t \rightarrow_{\beta} t^{\prime}$ and $t \in R_{T}$ then $t^{\prime} \in R_{T}$ Proof: By structural induction on the structure of T

Exercise 12: Prove lemma 6.

Neutral term: Either a variable or an application

Lemma 7:

1. If $t \in R_{T}$ then $t \in S N$
2. If t is neutral and for all $t^{\prime}, t \rightarrow{ }_{\beta} t^{\prime}$ implies $t^{\prime} \in R_{T}$, then $t \in$ R_{T}

Proof of Lemma 7

Proof by simultaneous induction on T
$\mathrm{T}=\mathrm{A}$. Both 1 and 2 are immediate
$\mathrm{T}=\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$.
1: Let $t \in R_{T}$. By the induction hypothesis (2), $x \in R_{T_{1}}$, so $t x \in R_{T_{2}}$. Then $t x \in S N$, so $t \in S N$ as well.
2: Suppose t is neutral and whenever $t \rightarrow_{\beta} t^{\prime}$ then $t^{\prime} \in$ R_{T}. Let $t_{1} \in R_{T_{1}}$. We show $t_{1} \in R_{T_{2}}$. By the induction hypothesis (1), $t_{1} \in S N_{n}$ for some n. We proceed by nested induction on n. It is sufficient to show $t_{2} \in R_{T_{2}}$ whenever $t_{1} \rightarrow_{\beta} t_{2}$, by the induction hypothesis (2), and since $t t_{1}$ is neutral. Since t is neutral, either $t \rightarrow_{\beta} t^{\prime}$ and $t_{2}=t^{\prime} t_{1}$, or else $t_{1} \rightarrow_{\beta} t_{1}{ }^{\prime}$, and $t_{2}=t t_{1}$. In the first case, t_{2} $\in R_{T_{2}}$ by the assumptions, and in the second, $\mathrm{t}_{1}{ }^{\prime} \in \mathrm{R}_{\mathrm{T}_{1}}$. Then $t_{1}{ }^{\prime} \in \mathrm{SN}_{\mathrm{n}^{\prime}}, \mathrm{n}^{\prime}<\mathrm{n}$. So by the inner i.h. $\mathrm{Tt}_{1}{ }^{\prime} \in \mathrm{R}_{\mathrm{T}_{2}}$.

Abstraction Lemma

Lemma 8: If $t_{1}[t / x] \in R_{T_{2}}$ whenever $t \in R_{T_{1}}$ then $\lambda x: T_{1} . t_{1} \in R_{T_{1} \rightarrow T_{2}}$ Proof: Assume $t \in R_{T_{1}}$. We must show

By 7.1, $t \in S N_{n_{2}}$ and $t_{1} \in S N_{n 1}$ for some n_{1}, n_{2}. Then $n_{1}+n_{2}$ is an upper bound on the number of reduction steps that can be
performed before the outermost redex in t' must be reduced, so we
proceed by induction on $n_{1}+n_{2}$. By 7.2 it is sufficient to show $t^{\prime \prime} \in R_{T_{2}}$ whenever $\mathrm{t}^{\prime} \rightarrow_{\beta} \mathrm{t}^{\prime}$. Check out the possible cases:
$-\mathrm{t}^{\prime \prime}=\mathrm{t}_{1}[\mathrm{t} / \mathrm{x}]$. We are done by the assumptions.
$t^{\prime \prime}=\left(\lambda x: T_{1} \cdot t_{1}\right) s$ and $t \rightarrow_{\beta} s$. Then $s \in R_{T_{1}}$ by
Lemma 6 and $s \in \mathrm{SN}_{\mathrm{n}_{2}}, \mathrm{n}_{2}{ }^{\prime}<\mathrm{n}_{2}$ so we're done by
the induction hypothesis.
$\mathrm{t}^{\prime \prime}=\left(\lambda \mathrm{x}: \mathrm{T}_{1} \cdot \mathrm{t}_{1}{ }^{\prime}\right) \mathrm{t}$ and $\mathrm{t}_{1} \rightarrow_{\mathrm{B}} \mathrm{t}_{1}$. By lemma 6, $\mathrm{t}_{1}{ }^{\prime}[\mathrm{t} / \mathrm{x}] \in \mathrm{R}_{\mathrm{T}_{2}}$, and
$\mathrm{t}_{1}{ }^{\prime} \in \mathrm{SN}_{\mathrm{n}_{1}}$ for some $\mathrm{n}_{1}{ }^{\prime}<\mathrm{n}_{1}$. So $\mathrm{t}^{\prime \prime} \in \mathrm{R}_{\mathrm{T}-2}$.

Fundamental Lemma

Lemma 9: Suppose $x_{1}: T_{1}, \ldots, x_{n}: T_{n} \vdash t: T$. If $t_{i} \in R_{T_{i}}$ for all $i: 1 \leq i \leq n$, then $t\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right] \in R_{T}$.
Note: This proves theorem 2, for $\mathrm{n}=0$.
Proof: By induction on size of the type derivation. Let $\Gamma=x_{1}$ $: T_{1}, \ldots, x_{n}: T_{n}$ and t / x abbreviate $t_{1} / x_{1}, \ldots, t_{n} / x_{n}$.

- $t=x_{i}$: Then $t[t / x]=t_{i}, T=T_{i}$, and $t_{i} \in R_{T_{i}}$ by the assumptions.
- $t=t^{\prime} t^{\prime \prime}$: By the induction hypothesis, $t^{\prime}[t / x] \in R_{T^{\prime} \rightarrow T}$ and $t^{\prime \prime}[t / x] \in R_{T}^{\prime}$. Then $t[t / x]=\left(t^{\prime} t^{\prime \prime}\right)[t / x]=\left(t^{\prime}[t / 1 / x]\right)\left(t^{\prime \prime}[t / x]\right) \in R_{T}$.
- $t=\lambda x^{\prime \prime}: T^{\prime \prime}$. t^{\prime}. Then $T=T^{\prime \prime} \rightarrow T^{\prime}$. Let $t^{\prime \prime} \in R_{T^{\prime \prime}}$ be arbitrary. By the induction hypothesis, $\mathrm{t}^{\top}\left[\mathrm{t} / \mathrm{x}, \mathrm{t}^{\prime \prime} / \mathrm{x}^{\prime \prime}\right] \in \mathrm{R}_{\mathrm{T}}$. But then $\lambda x: T^{\prime \prime} . t^{\prime}[t / x]=t[t / x] \in R_{T}$ as desired.

Exercise

Exercise 13: We did not require that $t \in R_{T}$ only if $\vdash t: T$. Why was that?

