Advanced Formal Methods

Lecture 4: Isabelle - Types and Terms

> Mads Dam
> KTH/CSC

Some material from Paulson

Types in Isabelle
Types:
$\mathrm{T}::=\mathrm{A}|\mathrm{X}| \mathrm{X}:: \mathrm{C}|\mathrm{T} \Rightarrow \mathrm{T}|\left(\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{n}}\right) \mathrm{K}$
where:

- $A \in\{$ bool, int, ...\} base type
- $\mathrm{X} \in\left\{{ }^{\prime} \alpha,{ }^{\prime} \beta, \ldots\right\}$ type variable
- $K \in\{$ set, list,...\} type constructor

Used for defining new types

- $C \in\{$ order, linorder, type,...\} type classes

Used for associating axioms to types
Examples:

- int list, int set ,...
- nat :: order, int :: field, ...

Introducing New Types
Types in Isabelle are nonempty
Theorem in HOL: $\exists x:: T . x=x$
So all types must be inhabited

Three basic mechanisms:

- Type declarations
- Type abbreviations
- Recursive type definitions

Type Declarations

Syntax:
typedecl K
Example:
typedecl addr

Introduces an abstract type of addresses

Nothing known of an x :: addr

But: Some x :: addr exists

Type Abbreviations
Syntax: types $\left({ }^{\prime} \alpha_{1}, \ldots,{ }^{\prime} \alpha_{n}\right) \mathrm{K}=\mathrm{T}$ Examples: types number $=$ nat tag $=$ string ' α taglist $=($ ' $\alpha \times$ tag $)$ list All type abbreviations are expanded in Isabelle Not visible in internal representation or Isabelle output

Recursive Type Definitions

datatype ' α list $=$ Nil | Cons ' α (' α list)
Defines a recursive datatype with associated constants:
Nil :: ' α list
Cons :: ' $\alpha \Rightarrow{ }^{\prime} \alpha$ list $\Rightarrow{ }^{\prime} \alpha$ list
Plus axioms:
Distinctness: Nil $=$ Cons x xs
Injectivity: (Cons $\mathrm{x} x \mathrm{~s}=$ Cons $\mathrm{y} y s)=(\mathrm{x}=\mathrm{y} \wedge \mathrm{xs}=\mathrm{ys})$
Also axioms for induction

Datatypes Generally

datatype (' α_{1}, \ldots, ,' α_{n}) $\mathrm{K}=$
constr $_{1} T_{1,1} \ldots T_{1, n_{1}}$
constr $_{m} T_{m, 1} \ldots T_{m, n_{m}}$
Constants and types as previous slide

Note:
Simplifier automatically extended with distinctness and injectivity
Induction must be handled explicitly
Not trivial that ($\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{n}}$) K exists!
Proof goals automatically added and discharged

This Scheme Does Not Always Work
Consider
datatype lam $=\mathrm{mkfun}(\mathrm{lam} \Rightarrow$ lam $)$

Note: Can interpret untyped lambda calculus using lam!
Problematic definition:
Cardinality of $\mathrm{T} \Rightarrow \mathrm{T}$ as set is strictly greater than that of T , for any T
So need to rule out most functions
LCF and domain theory: $\mathrm{T} \Rightarrow \mathrm{T}$ is set of continuous functions on complete lattice or cpo
LCF embedding in Isabelle exists

Simple Recursion

datatype (' $\left.\alpha_{1}, \ldots,{ }^{\prime} \alpha_{n}\right) \mathrm{K}=$
constr $_{1} \mathrm{~T}_{1,1} \ldots \mathrm{~T}_{1, \mathrm{n}_{1}}$
constr ${ }_{m} T_{m, 1} \ldots T_{m, n_{m}}$
Each type $\mathrm{T}_{\mathrm{i}, \mathrm{j}}$ can be either:

- Non-recursive: All type constants K^{\prime} in $\mathrm{T}_{\mathrm{i}, \mathrm{j}}$ are defined "prior" to the definition of K
- An expression of the form $\left(T_{1}, \ldots, T_{n}{ }^{\prime}\right) K$ where each $T_{k}{ }^{\prime}$ is non-recursive

Mutual Recursion

datatype

(' $\alpha_{1}, \ldots,{ }^{\prime} \alpha_{n}$) K =
constr $_{1} \mathrm{~T}_{1,1} \ldots \mathrm{~T}_{1, \mathrm{n}_{1}}$
constr $_{m} T_{m, 1} \ldots T_{m, n_{m}}$
and
Each $\mathrm{T}_{\mathrm{i}, \mathrm{j}}, \mathrm{T}_{\mathrm{i}, \mathrm{j}}$ ' is either
(' $\left.\alpha_{1}, \ldots, \ldots, \alpha_{n}{ }^{\prime}\right) K^{\prime}$ the form ... K or ... K'
constr $_{1}{ }^{\prime} \mathrm{T}_{1,1}{ }^{\prime} \ldots \mathrm{T}_{1, n_{1}}$,
$\operatorname{constr}_{m^{\prime}}{ }^{\prime} \mathrm{T}_{\mathrm{m}^{\prime}, 1}, \ldots \mathrm{~T}_{\mathrm{m}^{\prime}, n_{m^{\prime}}}$,

Covariance and Contravariance

Introduce relations $\mathrm{X} \leq+\mathrm{T}$ and $\mathrm{X} \leq-\mathrm{T}$

- $X \leq+T$: T is covariant in X
- $\mathrm{X} \leq-\mathrm{T}$: T is contravariant in X

$$
\begin{array}{cccc}
\frac{-}{X \leq+X} & \frac{X \leq+T_{1}}{X \leq-T_{1} \Rightarrow T_{2}} & \frac{X \leq-T_{1}}{X \leq+T_{1} \Rightarrow T_{2}} \\
\frac{X \leq+T_{i}}{X \leq+} \quad 1 \leq i \leq n \\
X & \frac{\left.X \leq T_{1}, \ldots, T_{n}\right) K}{} & \frac{1 \leq i \leq n}{X \leq-\left(T_{1}, \ldots, T_{n}\right) K}
\end{array}
$$

Covariance $=$ monotonicity: As sets, if $X \leq+T$ then $A \subseteq B$ implies $T[A / X] \subseteq T[B / X]$
Contravariance $=$ antimonotonicity: If $X \leq T$ then $A \subseteq B$ implies $T[B / X] \subseteq T[A / X]$

Nested Recursion

datatype (' $\alpha_{1}, \ldots,{ }^{\prime} \alpha_{n}$) K =
constr $_{1} \mathrm{~T}_{1,1} \ldots \mathrm{~T}_{1, \mathrm{n}_{1}}$
constr ${ }_{m} T_{m, 1} \ldots T_{m, n_{m}}$
Each type $\mathrm{T}_{\mathrm{i}, \mathrm{T}}$ is of form

$$
\mathrm{T}\left[\left(\mathrm{~T}_{1,1}, \ldots, \mathrm{~T}_{1, n}{ }^{\prime}\right) \mathrm{K} / \mathrm{X}_{1}, \ldots,\left[\left(\mathrm{~T}_{\mathrm{k}, 1}{ }^{\prime}, \ldots, \mathrm{T}_{\mathrm{k}, \mathrm{n}}{ }^{\prime}\right) \mathrm{K} / \mathrm{X}_{\mathrm{k}}\right]\right.
$$

such that

- $X_{i} \leq+$ T for all $i: 1 \leq i \leq k$
- Any K^{\prime} occurring in T is defined prior to K

Note: Simple recursion is special case
Mutual, nested recursion possible too

Type Classes

Used to associate axioms with types

Example: Preorders
axclass ordrel < type
consts le :: (' $\alpha::$ ordrel) $\Rightarrow{ }^{\prime} \alpha \Rightarrow$ bool
axclass preorder < ordrel
orderrefl: le xx
ordertrans: $(\mathrm{le} x \mathrm{y}) \wedge(\mathrm{le} \mathrm{y} z) \Rightarrow \mathrm{le} x \mathrm{z}$

Advanced topic - return to this later

Schematic Variables

State lemma with free variables
lemma foobar: $f(x, y)=g(x, y)$
done
During proof: x, y must never be instantiated!
After proof is finished, Isabelle converts free var's to schematic var's

$$
f(? x, ? y)=g(? x, ? y)
$$

Now can use foobar with ? $\mathrm{x} \mapsto \mathrm{f}$ and $? \mathrm{y} \mapsto \mathrm{a}$, say

Schematic Variables
State lemma with free variables lemma foobar $: ~$ $f(x, y)=g(x, y)$ \ldots
done
During proof: x, y must never be instantiated!
After proof is finished, Isabelle converts free var's to
schematic var's
$f(? x, ? y)=g(? x, ? y)$
Now can use foobar with ?x $\mapsto f$ and ?y $\mapsto a$, say

Terms in Isabelle

Terms:

$$
t::=x|c| ? x|t| \lambda x . t
$$

where:

- $x \in \operatorname{Var}$ - variables
- C \in Con - constants
- ?x-schematic variable
- λx. t - must be typable

Schematic variables:

- Free variables are fixed
- Schematic variables can be instantiated during proof

Defining Terms

Three basic mechanisms:

- Defining new constants non-recursively

No problems
Constructs: defs, constdefs

- Defining new constants by primitive recursion Termination can be proved automatically Constructs: primrec
- General recursion

Termination must be proved
Constructs: recdef
$\left.\begin{array}{|l|}\hline \text { Non-Recursive Definitions } \\ \hline \begin{array}{l}\text { Declaration: } \\ \text { consts } \\ \text { sq }:: ~ n a t ~\end{array} \Rightarrow \text { nat } \\ \text { Definition: } \\ \text { defs } \\ \text { sqdef: } s q n=n \text { * } n \\ \text { Or combined: } \\ \text { constdefs } \\ \text { sq :: nat } \Rightarrow \text { nat } \\ \text { sq } n=n * n\end{array}\right]$

Unfolding Definitions
Definitions are not always unfolded automatically by Isabelle
To unfold definition of sq:
apply(unfold sqdef)
Tactics such as simp and auto do unfold constant
definitions

Definition by Primitive Recursion

consts

append $::$ ' α list \Rightarrow ' α list \Rightarrow ' α list

primrec

append Nil ys = ys
append (Cons $x \times s$) ys $=$ Cons x (append $x s y s)$

Append applied to strict subterm xs of Cons x xs:
Termination is guaranteed

Primitive Recursion, General Scheme

Assume data type definition of T with constructors constr $_{1}, \ldots$, constr $_{m}$

Let $\mathrm{f}:: \mathrm{T}_{1} \Rightarrow \ldots \Rightarrow \mathrm{~T}_{\mathrm{n}} \Rightarrow \mathrm{T}^{\prime}$ and $\mathrm{T}_{\mathrm{i}}=\mathrm{T}$

Primitive recursive definition of f :
$f x_{1} \ldots\left(\right.$ constr $\left._{1} y_{1} \ldots y_{k_{1}}\right) \ldots x_{n}=t_{1}$
$f x_{1} \ldots\left(\right.$ constr $\left._{m} y_{1} \ldots y_{k_{m}}\right) \ldots x_{n}=t_{m}$

Each application of f in t_{1}, \ldots, t_{m} of the form $f t_{1}{ }^{\prime} \ldots y_{k_{j}} . . t_{n}$,

Partial Functions

datatype ' α option $=$ None \mid Some ' α
Important application:
$\mathrm{T} \Rightarrow$ ' α option \approx partial function:
None \approx no result
Some $t \approx$ result t
Example:
consts lookup :: ' $\alpha \Rightarrow$ (' $\alpha \times$ ' β) list \Rightarrow ' β option

The Case Construct

Every datatype introduces a case construct, e.g. (case xs of Nil \Rightarrow. . . (Cons y ys) \Rightarrow... y ... ys ...)

In general: one case per constructor

- No nested patterns, e.g. Cons y_{1} (Cons $\left.y_{2} y s\right)$
- But cases can be nested
primrec
lookup k [] = None
Case distinctions:
apply(case_tac t)
creates k subgoals
$\mathrm{t}=$ constr $_{\mathrm{i}} \mathrm{y}_{1} \ldots \mathrm{y}_{\mathrm{k}_{\mathrm{i}}} \Rightarrow \ldots$
one for each constructor constr ${ }_{i}$

Mutual and Nested Primitive Recursion

Primitive recursion scheme applies also for mutual and nested recursion

Assume data type definition of T^{1} and T^{2} with constructors constr ${ }_{1}{ }^{1}, \ldots$, constr ${ }_{m_{1}}{ }^{1}$, constr $_{1}{ }^{2}, \ldots$, constr ${ }_{m\{2\}}{ }^{2}$, respectively

Let:
$f:: T_{1} \Rightarrow \ldots \Rightarrow T_{n_{f}} \Rightarrow T_{f}^{\prime}, T_{i}=T^{1}$,
$g:: T_{1} \Rightarrow \ldots \Rightarrow T_{n_{g}} \Rightarrow T_{g}^{\prime}, T_{j}=T^{2}$

Mutual and Nested Recursion, II

Mutual, primitive recursive definition of f and g :
$\mathrm{f} \mathrm{x}_{1} \ldots\left(\right.$ constr $\left._{1}{ }^{1} \mathrm{y}_{1} \ldots \mathrm{y}_{\mathrm{k}_{1,1}}\right) \ldots \mathrm{x}_{\mathrm{n}_{\mathrm{f}}}=\mathrm{t}_{1, \mathrm{f}}$
$f x_{1} \ldots\left(\right.$ constr $\left._{m_{1}}{ }^{1} y_{1} \ldots y_{k_{m}, 1}\right) \ldots x_{n_{f}}=t_{m_{1}, f}$
g x $x_{1} \ldots\left(\right.$ constr $\left._{1}{ }^{2} y_{1} \ldots y_{\mathrm{k}_{1,2}}\right) \ldots \mathrm{x}_{\mathrm{n}_{\mathrm{g}}}=\mathrm{t}_{1, \mathrm{~g}}$
$g x_{1} \ldots\left(\right.$ constr $\left._{m}{ }^{2} y_{1} \ldots y_{k_{m 2}, 2}\right) \ldots x_{n_{g}}=t_{m_{2}, g}$
Each application of f or g in $t_{1, f}, \ldots, t_{m_{1}, f}, t_{1, g}, \ldots, t_{m_{2}, g}$ of the form
$h t_{1}{ }^{\prime} \ldots y_{k} \ldots t_{n}{ }^{\prime}, h \in\{f, g\}$
Slightly more general schemes possible too

General Recursion

In Isabelle, recursive functions must be proved total before they "exist"
General mechanism for termination proofs: Well-founded induction

Definition: Structure (A, R) is well-founded, if for every nonempty subset B of A there is some $b \in B$ such that not b ' $R b$ for any $b^{\prime} \in B$.

Well-foundedness ensures that there cannot exist any infinite sequence $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ such that $a_{n+1} R a_{n}$ for all $\mathrm{n} \in \omega$. Why?

Examples: The set of natural numbers under < is wellordered. The set of reals is not.

Well-founded Induction

Principle of well-founded induction:
Suppose that (A, R) is a well-founded structure.
Let B be a subset of A.

* Suppose $x \in A$ and $y \in B$ whenever $y R x$ implies $x \in B$. Then A = B

Here: A is the type, B is the property. Goal is $\forall \mathrm{a}:: \mathrm{A} . \mathrm{a} \in \mathrm{B}$

Proof: For a contradiction suppose $A \neq B$. Then $A-B$ is nonempty. Since (A,R) is well-founded, there is some a $\in A-B$ such that not $a^{\prime} R$ a for all $a^{\prime} \in A-B$. But $a \in A$ and whenever $y R$ a then $y \in B$. But then by (*), $a \in A$, a contradiction

Well-founded Induction in Isabelle

consts

$$
\mathrm{f}:: \mathrm{T}_{1} \times \ldots \times \mathrm{T}_{\mathrm{n}} \Rightarrow \mathrm{~T}
$$

recdef $f R$
$f\left(\right.$ pattern $_{1,1}, \ldots$, pattern $\left._{1, n}\right)=t_{1}$
$f\left(\right.$ pattern $_{m, 1}, \ldots$, pattern $\left._{m, n}\right)=t_{m}$
where

1. R well-founded relation on T
2. Defining clauses are exhaustive
3. Definition bodies t_{1}, \ldots, t_{m} can use freely
4. Whenever $f\left(t_{1}, \ldots, t_{n}{ }^{\prime}\right)$ is a subterm of t_{i} then $\left(t_{1}{ }^{\prime}, \ldots, t_{n}{ }^{\prime}\right) R$ (pattern ${ }_{i, 1}, \ldots$, pattern $_{\mathrm{i}, \mathrm{n}}$)

Recdef Using Progress Measures
Let $\mathrm{g}:: \mathrm{T}_{1} \times \ldots \times \mathrm{T}_{\mathrm{n}} \rightarrow$ nat
Define: measure $\mathrm{g}=\left\{\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \mid \mathrm{g} \mathrm{t}_{1}<\mathrm{g} \mathrm{t}_{2}\right\}$
Then can use instead:
recdef f (measure g)
$\mathrm{f}\left(\right.$ pattern $_{1,1}, \ldots$, pattern $\left._{1, \mathrm{n}}\right)=\mathrm{t}_{1}$
...
$\mathrm{f}\left(\right.$ pattern $\mathrm{m}_{\mathrm{m}, 1}, \ldots$, pattern $\left._{\mathrm{m}, \mathrm{n}}\right)=\mathrm{t}_{\mathrm{m}}$
and condition 4. becomes:

- Whenever $f\left(\mathrm{t}_{1}{ }^{\prime}, \ldots, \mathrm{t}_{\mathrm{n}}{ }^{\prime}\right)$ is a subterm of t_{i} then $\mathrm{g}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}{ }^{\prime}\right)<$ $g\left(\right.$ pattern $_{i, 1}, \ldots$, pattern $\left._{i, n}\right)$

Example: Fibonacci

```
consts fib :: nat }=>\mathrm{ nat
recdef fib (measure ( }\lambda\textrm{n}.\textrm{n})\mathrm{ )
    fib 0=0
    fib (Suc 0) = 1
    fib (Suc(Suc x)) = fib x + fib (Suc x)
```

Many more examples in tutorial

Exercises

Exercise 1:
Define a little imperative language of booleans b and commands c as
follows
$\mathrm{b}::=\mathrm{b}_{\mathrm{a}} \mid$ not $\mathrm{b} \mid \mathrm{b}$ and b
$\mathrm{c}::=\mathrm{c}_{\mathrm{a}} \mid$ if $\mathrm{bc} \mathrm{c} \mid$ while $\mathrm{b} c|\mathrm{c} ; \mathrm{c}|$ done
b_{a} is an atomic boolean, and c_{a} an atomic command. Represent the languages as a mutually recursive datatype in Isabelle. Define the
semantics of booleans as a function
boolsem :: boolean \Rightarrow state \Rightarrow bool
cmdsem :: cmd \Rightarrow state \Rightarrow cmd \Rightarrow state \Rightarrow bool
where state is a primitive type. The idea of cmdsem is that cmdsem c1 s 1 $\mathrm{c} 2 \mathrm{s2}=$ true iff one step of evaluation of c 1 in state s 1 results in state s 2
with command c 2 left to evaluate. Make suitable assumptions on atomic booleans and commands. In particular, assume that evaluation of atomic
commands is deterministic. Represent the languages and semantics in
Isabelle, and prove that command evaluation is deterministic.
Exercise 2: Derive (pen and paper) natural number induction from well-
founded induction founded induction

