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Advanced Formal Methods

Lecture 4: Isabelle – Types and Terms

Mads Dam
KTH/CSC

Course 2D1453, 2006-07

Some material from Paulson 

Types in Isabelle

Types:
T ::= A | X | X :: C | T � T | (T1,...,Tn) K

where:
• A � {bool, int, ...} base type
• X � {’α, ’β,...} type variable
• K � {set, list,...} type constructor

Used for defining new types
• C � {order, linorder, type,...} type classes

Used for associating axioms to types

Examples:
• int list, int set ,... 
• nat :: order, int :: field, ... 

Introducing New Types

Types in Isabelle are nonempty

Theorem in HOL: ��x :: T . x = x

So all types must be inhabited

Three basic mechanisms:
• Type declarations
• Type abbreviations
• Recursive type definitions

Type Declarations

Syntax:
typedecl K

Example:
typedecl addr

Introduces an abstract type of addresses

Nothing known of an x :: addr

But: Some x :: addr exists

Type Abbreviations

Syntax:
types (’α1,...,’αn) K = T

Examples:
types number = nat

tag = string
’α taglist = (’α � tag) list

All type abbreviations are expanded in Isabelle
Not visible in internal representation or Isabelle output

Recursive Type Definitions

datatype ’α list = Nil | Cons ’α (’α list)

Defines a recursive datatype with associated constants:
Nil :: ’α list
Cons :: ’α � ’α list � ’α list

Plus axioms:
Distinctness: Nil ≠ Cons x xs
Injectivity: (Cons x xs = Cons y ys) = (x = y � xs = ys)

Also axioms for induction
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Datatypes Generally

datatype (’α1,...,’αn) K =
constr1 T1,1 ... T1,n1

...
constrm Tm,1 ... Tm,nm

Constants and types as previous slide

Note:
Simplifier automatically extended with distinctness and 
injectivity
Induction must be handled explicitly
Not trivial that (T1,...,Tn) K exists!
Proof goals automatically added and discharged

This Scheme Does Not Always Work

Consider
datatype lam = mkfun (lam � lam)

Note: Can interpret untyped lambda calculus using lam!

Problematic definition:
Cardinality of T � T as set is strictly greater than that of 
T, for any T
So need to rule out most functions
LCF and domain theory: T � T is set of continuous 
functions on complete lattice or cpo
LCF embedding in Isabelle exists

Simple Recursion

datatype (’α1,...,’αn) K =
constr1 T1,1 ... T1,n1

...
constrm Tm,1 ... Tm,nm

Each type Ti,j can be either:
• Non-recursive: All type constants K’ in Ti,j are defined 

”prior” to the definition of K 
• An expression of the form (T1’,...,Tn’) K where each Tk’ is 

non-recursive

Mutual Recursion

datatype
(’α1,...,’αn) K =

constr1 T1,1 ... T1,n1
...

constrm Tm,1 ... Tm,nm
and

(’α1’,...,’αn’’) K’
constr1’ T1,1’ ... T1,n1’’

...
constrm’’ Tm’,1’ ... Tm’,nm’’

’

Each Ti,j, Ti,j’ is either 
non-recursive or of 
the form ... K or ... K’

Covariance and Contravariance
Introduce relations X �+ T and X �- T
• X �+ T: T is covariant in X
• X �- T: T is contravariant in X

Covariance = monotonicity: As sets, if X �+ T then A � B 
implies T[A/X] � T[B/X]

Contravariance = antimonotonicity: If X �- T then A� B 
implies T[B/X] � T[A/X]

-
X �+ X

X �+ T1 X �- T
2

X �- T1 � T2

X �- T1 X �+ T
2

X �+ T1 � T2

X �+ Ti 1� i� n
X �+ (T1,...,Tn) K

X �- Ti 1� i� n
X �- (T1,...,Tn) K

Nested Recursion

datatype (’α1,...,’αn) K =
constr1 T1,1 ... T1,n1

...
constrm Tm,1 ... Tm,nm

Each type Ti,j is of form 
T[(T1,1’,...,T1,n’) K/X1,..., [(Tk,1’,...,Tk,n’) K/Xk]

such that
• Xi �

+ T for all i: 1 � i � k
• Any K’ occurring in T is defined prior to K

Note: Simple recursion is special case
Mutual, nested recursion possible too
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Type Classes

Used to associate axioms with types

Example:  Preorders

axclass ordrel < type
consts le :: (’α :: ordrel) � ’α � bool

axclass preorder < ordrel
orderrefl: le x x
ordertrans: (le x y) � (le y z) � le x z

Advanced topic – return to this later

Terms in Isabelle

Terms:
t ::= x | c | ?x | t t | λx. t

where:
• x � Var – variables
• C � Con – constants

• ?x – schematic variable
• λx. t - must be typable

Schematic variables:
• Free variables are fixed
• Schematic variables can be instantiated during proof

Schematic Variables

State lemma with free variables
lemma foobar : f(x,y) = g(x,y)

...
done

During proof: x, y must never be instantiated!

After proof is finished, Isabelle converts free var’s to 
schematic var’s

f(?x,?y) = g(?x,?y)

Now can use foobar with ?x � f and ?y � a, say

Defining Terms

Three basic mechanisms:
• Defining new constants non-recursively

No problems
Constructs: defs, constdefs

• Defining new constants by primitive recursion
Termination can be proved automatically
Constructs: primrec

• General recursion
Termination must be proved
Constructs: recdef

Non-Recursive Definitions

Declaration:
consts

sq :: nat � nat

Definition:
defs

sqdef: sq n = n * n

Or combined:
constdefs

sq :: nat � nat

sq n = n * n

Unfolding Definitions

Definitions are not always unfolded automatically by 
Isabelle

To unfold definition of sq:
apply(unfold sqdef)

Tactics such as simp and auto do unfold constant 
definitions
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Definition by Primitive Recursion

consts
append :: ’α list � ’α list �’α list

primrec
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

Append applied to strict subterm xs of Cons x xs:
Termination is guaranteed

Primitive Recursion, General Scheme

Assume data type definition of T with constructors 
constr1,..., constrm

Let f :: T1 � ... � Tn � T’ and Ti = T

Primitive recursive definition of f:
f x1 ... (constr1 y1 ... yk1

) ... xn = t1
...

f x1 ... (constrm y1 ... ykm
) ... xn = tm

Each application of f in t1,...,tm of the form f t1’ ... ykj
.. tn’ 

Partial Functions

datatype ’α option = None | Some ’α

Important application:
T  ’α option � partial function:

None � no result
Some t � result t

Example:
consts lookup :: ’α  (’α × ’β) list  ’β option
primrec

lookup k [] = None
lookup k (x#xs) =

(if fst x = k then Some(snd x) else lookup k xs)

The Case Construct

Every datatype introduces a case construct, e.g.
(case xs of Nil  . . . | (Cons y ys)  ... y ... ys ...)

In general: one case per constructor
• No nested patterns, e.g. Cons y1 (Cons y2 ys)
• But cases can be nested

Case distinctions:
apply(case  tac t)

creates k subgoals
t = constri y1 . . . yki

 . . .
one for each constructor constri

Mutual and Nested Primitive Recursion

Primitive recursion scheme applies also for mutual and 
nested recursion

Assume data type definition of T1 and T2 with constructors 
constr1

1,..., constrm1
1, constr1

2,...,constrm{2}
2, respectively

Let:
f :: T1 � ... � Tnf

� Tf’, Ti = T1, 
g :: T1 � ... � Tng

� Tg’, Tj = T2

Mutual and Nested Recursion, II

Mutual, primitive recursive definition of f and g:
f x1 ... (constr1

1 y1 ... yk1,1
) ... xnf

= t1,f

...
f x1 ... (constrm1

1 y1 ... ykm1,1) ... xnf
= tm1,f

g x1 ... (constr1
2 y1 ... yk1,2

) ... xng
= t1,g

...
g x1 ... (constrm

2 y1 ... ykm2,2) ... xng
= tm2,g

Each application of f or g in t1,f,...,tm1,f, t1,g,...,tm2,g of the form 
h t1’ ... yk ... tn’ , h � {f,g}

Slightly more general schemes possible too
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General Recursion

In Isabelle, recursive functions must be proved total before 
they ”exist”

General mechanism for termination proofs: Well-founded 
induction

Definition: Structure (A,R) is well-founded, if for every non-
empty subset B of A there is some b � B such that not b’ 
R b for any b’ � B .

Well-foundedness ensures that there cannot exist any 
infinite sequence a0, a1,...,an,... such that an+1 R an for all 
n � ω. Why?

Examples: The set of natural numbers under < is well-
ordered. The set of reals is not.

Well-founded Induction

Principle of well-founded induction:
Suppose that (A,R) is a well-founded structure.
Let B be a subset of A.

* Suppose x � A and y � B whenever y R x implies x � B.

Then A = B

Here: A is the type, B is the property. Goal is 	a :: A. a � B

Proof: For a contradiction suppose A ≠ B. Then A – B is 
nonempty. Since (A,R) is well-founded, there is some a 
� A – B such that not a’ R a for all a’ � A – B. But a � A 
and whenever y R a then y � B. But then by (*), a � A, a 
contradiction.

Well-founded Induction in Isabelle

consts
f :: T1 � ... � Tn � T

recdef f R
f(pattern1,1,...,pattern1,n) = t1

...
f(patternm,1,...,patternm,n) = tm

where
1. R well-founded relation on T
2. Defining clauses are exhaustive
3. Definition bodies t1,...,tm can use f freely
4. Whenever f(t1’,...,tn’) is a subterm of ti then (t1’,...,tn’) R 

(patterni,1,...,patterni,n) 

Recdef Using Progress Measures

Let g :: T1 � ... � Tn 
 nat

Define: measure g = {(t1,t2) | g t1 < g t2}
Then can use instead:

recdef f (measure g)
f(pattern1,1,...,pattern1,n) = t1

...
f(patternm,1,...,patternm,n) = tm

and condition 4. becomes:
• Whenever f(t1’,...,tn’) is a subterm of ti then g(t1’,...,tn’) < 

g(patterni,1,...,patterni,n) 

Example: Fibonacci

consts fib :: nat � nat

recdef fib (measure (λn. n))
fib 0 = 0
fib (Suc 0) = 1
fib (Suc(Suc x)) = fib x + fib (Suc x)

Many more examples in tutorial

Exercises
Exercise 1:

Define a little imperative language of booleans b and commands c as 
follows

b ::= ba | not b | b and b
c ::= ca | if b c c | while b c | c ; c | done

ba is an atomic boolean, and ca an atomic command. Represent the 
languages as a mutually recursive datatype in Isabelle. Define the 
semantics of booleans as a function

boolsem :: boolean � state � bool
cmdsem :: cmd � state � cmd � state � bool

where state is a primitive type. The idea of cmdsem is that cmdsem c1 s1 
c2 s2 = true iff one step of evaluation of c1 in state s1 results in state s2 
with command c2 left to evaluate. Make suitable assumptions on atomic 
booleans and commands. In particular, assume that evaluation of atomic 
commands is deterministic. Represent the languages and semantics in 
Isabelle, and prove that command evaluation is deterministic.

Exercise 2: Derive (pen and paper) natural number induction from well-
founded induction


