

Introducing New Types

Types in Isabelle are nonempty

Theorem in HOL: $\exists x :: T \cdot x = x$

So all types must be inhabited

Three basic mechanisms:

- Type declarations
- Type abbreviations
- Recursive type definitions

Type Declarations

Syntax: typedecl K

Example: typedecl addr

Introduces an abstract type of addresses

Nothing known of an x :: addr

But: Some x :: addr exists

Type Abbreviations

Syntax:

types (' $\alpha_1,...,\alpha_n$) K = T

Examples:

types number = nat tag = string ' α taglist = (' $\alpha \times$ tag) list

All type abbreviations are expanded in Isabelle Not visible in internal representation or Isabelle output

Recursive Type Definitions datatype ' α list = Nil | Cons ' α (' α list) Defines a recursive datatype with associated constants:

```
Nil :: 'α list
```

```
\text{Cons}::\text{`}\alpha \Rightarrow \text{`}\alpha \text{ list} \Rightarrow \text{`}\alpha \text{ list}
```

```
Plus axioms:
Distinctness: Nil \neq Cons x xs
Injectivity: (Cons x xs = Cons y ys) = (x = y \land xs = ys)
```

Also axioms for induction

Datatypes Generally

datatype ('
$$\alpha_1$$
,...,' α_n) K =
constr₁ T_{1,1} ... T_{1,n1}
...

$$constr_m T_{m,1} \dots T_{m,n_m}$$

Constants and types as previous slide

Note:

Simplifier automatically extended with distinctness and injectivity Induction must be handled explicitly Not trivial that $(T_1,...,T_n)$ K exists! Proof goals automatically added and discharged

This Scheme Does Not Always Work

Consider

datatype lam = mkfun (lam \Rightarrow lam)

Note: Can interpret untyped lambda calculus using lam!

Problematic definition: Cardinality of T \Rightarrow T *as set* is strictly greater than that of T, for *any* T So need to rule out most functions LCF and domain theory: T \Rightarrow T is set of continuous functions on complete lattice or cpo LCF embedding in Isabelle exists

Type Classes

Used to associate axioms with types

Example: Preorders

axclass ordrel < type consts le :: (' α :: ordrel) \Rightarrow ' α \Rightarrow bool

axclass preorder < ordrel orderrefl: le x x ordertrans: (le x y) \land (le y z) \Rightarrow le x z

Advanced topic - return to this later

Terms in Isabelle

Terms:

t ::= x | c | ?x | t t | λx. t

- where: • $x \in Var - variables$
- $C \in Con constants$
- ?x schematic variable
- λx. t must be typable

Schematic variables:

· Free variables are fixed

· Schematic variables can be instantiated during proof

Schematic Variables

State lemma with free variables **lemma** foobar : f(x,y) = g(x,y)

done

During proof: x, y must never be instantiated!

After proof is finished, Isabelle converts free var's to schematic var's f(?x,?y) = g(?x,?y)

Now can use foobar with $?x \mapsto f$ and $?y \mapsto a$, say

Defining Terms

- Three basic mechanisms:
- Defining new constants non-recursively No problems
- Constructs: defs, constdefs
- Defining new constants by primitive recursion Termination can be proved automatically Constructs: primrec
- General recursion
 Termination must be proved
 Constructs: recdef

$\label{eq:constraint} \begin{array}{l} \mbox{Non-Recursive Definitions} \\ \mbox{Declaration:} \\ \mbox{consts} \\ \mbox{sq} :: nat \Rightarrow nat \\ \mbox{Definition:} \\ \mbox{defs} \\ \mbox{sqdef:} sq n = n * n \\ \mbox{Or combined:} \\ \mbox{constdefs} \\ \mbox{sq} n = n * n \\ \mbox{sq} n = n * n \end{array}$

Definition by Primitive Recursion

consts

append :: ' α list \Rightarrow ' α list \Rightarrow ' α list primrec

append Nil ys = ys append (Cons x xs) ys = Cons x (append xs ys)

Append applied to strict subterm xs of Cons x xs: Termination is guaranteed

Assume data type definition of T with constructors $constr_1,..., constr_m$

Let $f::T_1 \Rightarrow ... \Rightarrow T_n \Rightarrow T'$ and $T_i = T$

```
Primitive recursive definition of f:
f x_1 \dots (constr<sub>1</sub> y_1 \dots y_{k_1}) \dots x_n = t_1
```

 $f x_1 \dots (constr_m y_1 \dots y_{k_m}) \dots x_n = t_m$

Each application of f in $t_1, ..., t_m$ of the form f $t_1' ... y_{k_i} ... t_n'$

Partial Functions

datatype ' α option = None | Some ' α

 $\begin{array}{l} \mbox{Important application:} \\ T \Rightarrow '\alpha \mbox{ option \approx partial function:} \\ None \approx no result \\ Some t \approx result t \\ \mbox{Example:} \\ \mbox{consts lookup :: 'α \Rightarrow ('α x '$\beta) list \Rightarrow '$\beta option \\ \mbox{primec} \\ \mbox{lookup k [] = None} \\ \mbox{lookup k (x#xs) =} \\ \mbox{(if fst $x = k$ then Some(snd x) else lookup k xs) } \end{array}$

The Case ConstructEvery datatype introduces a case construct, e.g.
(case xs of Nil \Rightarrow ... | (Cons y ys) \Rightarrow ... y ... ys ...)In general: one case per constructorIn general: one case per constructorNo nested patterns, e.g. Cons y₁ (Cons y₂ ys)But cases can be nestedCase distinctions:
 apply(case_tac t)
 creates k subgoals
 t = constr_i y₁ ... y_{ki} \Rightarrow ...
 one for each constructor constr_i

Assume data type definition of T¹ and T² with constructors $constr_1^{,1}$,..., $constr_{m_1}^{,1}$, $constr_1^{,2}$,..., $constr_{m(2)}^{,2}$, respectively

Let:

$$\begin{split} &f::T_1 \Rightarrow ... \Rightarrow T_{n_f} \Rightarrow T_f', T_i = T^1, \\ &g::T_1 \Rightarrow ... \Rightarrow T_{n_g} \Rightarrow T_g', T_j = T^2 \end{split}$$

General Recursion

- In Isabelle, recursive functions must be proved total before they "exist
- General mechanism for termination proofs: Well-founded induction
- Definition: Structure (A,R) is *well-founded*, if for every non-empty subset B of A there is some $b \in B$ such that *not* b' R b for any $b' \in B$.
- Well-foundedness ensures that there cannot exist any infinite sequence a_0 , a_1 ,..., a_n ,... such that $a_{n+1} R a_n$ for all $n \in \omega$. Why?
- Examples: The set of natural numbers under < is well-ordered. The set of reals is not.

Well-founded Induction

Principle of well-founded induction: Suppose that (A,R) is a well-founded structure. Let B be a subset of A.

Suppose $x \in A$ and $y \in B$ whenever $y \in R$ x implies $x \in B$. Then A = B

Here: A is the type, B is the property. Goal is $\forall a :: A. a \in B$

Proof: For a contradiction suppose $A \neq B$. Then A - B is nonempty. Since (A,R) is well-founded, there is some a $\in A - B$ such that not a' R a for all a' $\in A - B$. But a $\in A$ and whenever y R a then $y \in B$. But then by (*), $a \in A$, a contradiction.

Well-founded Induction in Isabelle

consts $f :: T_1 \times ... \times T_n \Rightarrow T$ recdef f R $f(pattern_{1,1},...,pattern_{1,n}) = t_1$

```
f(pattern_{m,1},...,pattern_{m,n}) = t_m
```

where

- 1. R well-founded relation on T
- 2. Defining clauses are exhaustive
- 3. Definition bodies $\boldsymbol{t}_1, ..., \boldsymbol{t}_m$ can use f freely
- 4. Whenever $f(t_1',...,t_n')$ is a subterm of t_i then $(t_1',...,t_n')$ R (pattern_{i,1},...,pattern_{i,n})

Recdef Using Progress Measures

Let $g :: T_1 \times ... \times T_n \rightarrow nat$ Define: measure g = {(t_1, t_2) | g $t_1 < g t_2$ } Then can use instead: recdef f (measure g)

- $f(pattern_{1,1},...,pattern_{1,n}) = t_1$
- $f(pattern_{m,1},...,pattern_{m,n}) = t_m$

and condition 4. becomes:

- Whenever $f(t_1`,...,t_n`)$ is a subterm of t_i then $g(t_1`,...,t_n`) <$ g(pattern_{i,1},...,pattern_{i,n})

Example: Fibonacci

consts fib :: nat \Rightarrow nat

recdef fib (measure (λn. n)) fib 0 = 0fib (Suc 0) = 1 fib (Suc(Suc x)) = fib x + fib (Suc x)

Many more examples in tutorial

