

Isabelle's Metalogic

Basic constructs:

- $t=s$

Equations on terms

- $A_{1} \Rightarrow A_{2}$

Implication
Example: $x=y \Rightarrow$ append $x x s=$ append $y x s$
If A_{1} is valid then so is A_{2}
$\wedge x$. A
Universal quantification
$A[t / x]$ is valid for all t (of appropriate type)
These are meta-connectives, not object-logic connectives

Isabelle Proof Goals

Proof goals, or judgments:

- The basic shape of proof goal handled by Isabelle
- Local proof state, subgoal

General shape: $\wedge x_{1}, \ldots, x_{m} . \llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Rightarrow A$

- $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$: Local variables
- A_{1}, \ldots, A_{n} : Local assumptions
- A: local proof goal

Meaning: For all terms t_{1}, \ldots, t_{m}, if all $A_{i}\left[t_{1} / x_{1}, \ldots, t_{m} / x_{m}\right]$ are provable then so is $A\left[t_{1} / x_{1}, \ldots, t_{\mathrm{m}} / x_{m}\right]$

Global Proof State

An Isabelle proof state consists of number of unproven judgments

$$
\begin{aligned}
& \text { 1. } \wedge x_{1,1}, \ldots, x_{m, 1} \cdot \llbracket A_{1,1} ; \ldots ; A_{n, 1} \rrbracket \Rightarrow A_{1} \\
& \quad \ldots . \\
& \text { k. } \wedge x_{1, k}, \ldots, x_{m, k} \llbracket A_{1, k} ; \ldots ; A_{n, k} \rrbracket \Rightarrow A_{k}
\end{aligned}
$$

If $k=0$ proof is complete
Judgment \#1 is the one currently being worked on
Commands to list subgoals, toggle between subgoals, to apply rules to numbered subgoals, etc.

Unification

Substitution:
Mapping σ from variables to terms
[$t / x]$: Substitution mapping x to t, otherwise the identity
tб: Capture-avoiding substitution σ applied to t
Unification:
Try to make terms t and s equal
Unifier: Substitution σ on terms s, t such that $\mathrm{s} \sigma=\mathrm{t} \sigma$ Unification problem: Given t, s, is there a unifier on s, t

Higher-Order Unification

In Isabelle:

Terms are terms in Isabelle $=$ extended λ_{\rightarrow} Terms
Equality on terms are modulo α, β, η
Variables to be unified are schematic
Schematic variables can have function type
(= higher order)
Examples:
$? \mathrm{X} \wedge$? $\mathrm{Y}=_{\alpha \beta \eta} \mathrm{X} \wedge \mathrm{X} \quad$ under $[\mathrm{X} / ? \mathrm{X}, \mathrm{x} / \mathrm{?} \mathrm{Y}]$
$? P x={ }_{\alpha \beta \eta} x \wedge x \quad$ under $[\lambda x . x \wedge x / P P]$
$P(? f x)={ }_{\alpha \beta \eta} ? Y x \quad$ under $[\lambda x . x / ? f, P / Y]$

First Order Unification

Decidable

Most general unifiers (mgu's) exist:
σ is mgu for t and s if σ unifies t and s
Whenever σ^{\prime} unifies t and s then $t \sigma$, $t \sigma^{\prime}$, and $s \sigma$, s σ^{\prime} are both unifiable

Exercise 1: Show that $[\mathrm{h}(? \mathrm{Y}) / ? \mathrm{X}, \mathrm{g}(\mathrm{h}(? \mathrm{Y})) / ? \mathrm{Z}]$ is mgu for $f(? X, g(? X))$ and $f(h(? Y), ? Z)$.

Applications in e.g. logic programming

Higher Order Unification

HO unification modulo α, β is semi-decidable
HO unification modulo α, β, η is undecidable
Higher order pattern:
Term tin β normal form (value in slides for lecture 3)
Schematic variables only in head position
? $\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}}$
Each $t_{i} \eta$-convertible to n distinct bound variables

Unification on HO patterns is decidable

Exercises

Exercise 2: Determine whether each pair of terms is unifiable or not. If it is, exhibit a unifier. If it is not, show why.

1. $f\left(x_{1}, ? x_{2}, ? x_{2}\right)$ and $f\left(? y_{1}, ? y_{2}, k\right)$
2. $f\left(x_{1}, ? x_{2}, ? x_{2}\right)$ and $f\left(y_{1}, g ? x_{2}, k\right)$
3. $f(? p x y(h z))$ and ?q $(g(x, y), h(? r))$
4. ?p $\left(g x_{1}\right)\left(h x_{2}\right)$ and ? $q\left(g y_{2}\right)\left(h y_{1}\right)$
5. ?p (g ?q, h z) and f(h ?r, h ?r)

Term Rewriting	
Use equations $t=s$ as rewrite rules from left to right	
Example: Use equations: 1. $0+n=n$ 2. $($ suc $m)+n=\operatorname{suc}(m+n)$ 3. (suc $m \leq \operatorname{suc} n)=(m \leq n)$ 4. $(0 \leq m)=$ true Then:	
$0+\operatorname{suc} 0 \leq(\operatorname{suc} 0)+\mathrm{x}$	(by (1))
$=\operatorname{suc} 0 \leq(\operatorname{suc} 0)+x$	(by (2))
$=\operatorname{suc} 0 \leq \operatorname{suc}(0+x)$	(by (3))
$=0 \leq 0+x$	(by (4))

More Formally

Rewrite rule $\mathrm{I}=\mathrm{r}$ is applicable to term $\mathrm{t}[\mathrm{s} / \mathrm{x}]$ if:

- There is a substitution σ such that $l \sigma=_{\alpha \beta \eta} \mathrm{S}$
- σ unifies I and s

Result of rewrite is $\mathrm{t}[\mathrm{s} \sigma / \mathrm{x}]$

Note: $\mathrm{t}[\mathrm{s} / \mathrm{x}]=\mathrm{t}[\mathrm{s} \sigma / \mathrm{x}]$
Example:
Equation: $0+\mathrm{n}=\mathrm{n}$
Term: $a+(0+(b+c))$
Substitution: $[b+c / n]$
Result: $a+(b+c)$

Conditional Rewriting

Assume conditional rewrite rule
RId: $A_{1} \Rightarrow \ldots \Rightarrow A_{n} \Rightarrow I=r$
Rule RId is applicable to term $\mathrm{t}[\mathrm{s} / \mathrm{x}]$ if:

- There is a substitution σ such that $l \sigma=_{\alpha \beta \eta} \mathrm{s}$
- σ unifies I and s
- $A_{1} \sigma, \ldots, A_{n} \sigma$ are provable

Again result of rewrite is $\mathrm{t}[\mathrm{s} \sigma / \mathrm{x}]$

Basic Simplification

Goal: $\llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Rightarrow B$
Apply(simp add: eq $\mathrm{q}_{1}, \ldots, \mathrm{eq}_{n}$)
Simplify B using

- Lemmas with attribute simp
- Rules from primrec and datatype declarations
- Additional lemmas eq ${ }_{1}, \ldots$, eq $_{n}$
- Assumptions $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}$

Variation:

- (simp ... del: ...) removes lemmas from simplification set
- add, del are optional

Termination

Isabelle uses simp-rules (almost) blindly from left to right Termination is the big issue

Example: $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x})$

Rewrite rule
$\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Rightarrow I=r$
suitable for inclusion in simplification set only if rewrite from I to r reduces overall complexity of the global proof state So: I must be "bigger" than r and each A_{i}

$$
\begin{array}{ll}
\mathrm{n}<\mathrm{m}=\operatorname{true} \Rightarrow(\mathrm{n}<\text { suc } \mathrm{m})=\text { true } & \text { (may be good) } \\
\text { (suc } \mathrm{n}<\mathrm{m})=\text { true } \Rightarrow \mathrm{n}<\mathrm{m}=\text { true } & \text { (not good) }
\end{array}
$$

Case Splitting

$P($ if A then s else $t)=(A \rightarrow P(s)) \wedge(\neg A \rightarrow P(t))$
Included in simp by default
$P\left(\right.$ case t of $0 \Rightarrow s_{1} \mid$ Suc $\left.n \Rightarrow s_{2}\right)$

$$
=\left(\mathrm{t}=0 \rightarrow \mathrm{P}\left(\mathrm{~s}_{1}\right)\right) \wedge\left(\forall \mathrm{n} . \mathrm{t}=\operatorname{Suc} \mathrm{n} \rightarrow \mathrm{P}\left(\mathrm{~s}_{2}\right)\right)
$$

Not included - use (simp split: nat.split)
Similar for other datatypes T: T.split

Ordered Rewriting

Problem: ?x + ? y = ?y + ?x does not terminate
Isabelle: Use permutative rewrite rules only when term becomes lexicographically smaller
Example: $? \mathrm{~b}+\mathrm{?} \mathrm{a} \rightsquigarrow \mathrm{?} \mathrm{a}+\mathrm{?}$ b but not $\mathrm{a}+\mathrm{a} \mathrm{b} \rightsquigarrow \mathrm{?} \mathrm{b}+\mathrm{?} \mathrm{a}$

For types nat, int, etc.

- Lemmas add_ac sort any sum
- Lemmas times_ac sort any product

Example: (simp add:add-ac) yields
$(b+c)+a \rightsquigarrow a+(b+c)$

Preprocessing

Simplification rules are preprocessed recursively:

$$
\begin{aligned}
& \neg A \mapsto A=\text { False } \\
& A \rightarrow B \mapsto A \Rightarrow B \\
& A \wedge B \Rightarrow A, B \\
& \forall x . A(x) \mapsto A(? x) \\
& A \mapsto A=\text { True }
\end{aligned}
$$

Example:
$(p \rightarrow q \wedge \neg r) \wedge s$
$\mapsto p=$ True $\Rightarrow q=$ True, $p=$ True $\Rightarrow r=$ False, $s=$ True

