

What Is Higher Order Logic?

Propositional logic
No quantifiers
All variables have type bool
First Order Logic
Quantification over values of base type
Terms and formulas are syntactically distinct
Higher Order Logic
Quantification over functions and predicates
Consistency by typing
Formula = term of type bool
Predicate = function with codomain bool
$\lambda_{\rightarrow}+$ a few types and constants

Natural Deduction

Two kinds of rules for each logical operator \oplus Introduction rules:

How can $A \oplus B$ be proved?
Elimination rules:
What can be inferred from $A \oplus B$?

Natural deduction calculus:
Proof trees may have unproven leaves = assumptions
Assumptions can be introduced and discharged
Sequent calculus:
All assumptions (and alternative conclusions)
represented explicitly in proof judgments

Rule Notation

Write $\frac{A_{1} \quad \ldots \quad A_{n}}{A}$ RuleName
Instead of $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Rightarrow A$
In other words:
Stipulating an inference rule "RuleName"
Same as:
Declaring an Isabelle metalogic term $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Rightarrow A$ to
be provable by named rule
Derived rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Rightarrow A$
Rule is provable in Isabelle's metalogic

Proof by Assumption

Implicit in Isabelle's metalogic

$$
\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Rightarrow A_{i} \text { provable for any i: } 1 \leq i \leq n
$$

In isabelle:
apply assumption
proves

1. $\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Rightarrow C$
by unifying C with some $B_{i}, 1 \leq i \leq n$
Note: This may cause backtracking!

Rule Application

Rule: $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Rightarrow A$
Subgoal:

1. $\llbracket B_{1} ; \ldots ; B_{m} \rrbracket \Rightarrow C$

Substitution:
$\sigma(\mathrm{A})==\sigma(\mathrm{C})$
(recall: == means "same term as")
New subgoals:

1. $\sigma\left(\llbracket B_{1} ; \ldots ; B_{m} \rrbracket \Rightarrow A_{1}\right)$
n. $\quad \sigma\left(\llbracket B_{1} ; \ldots ; B_{m} \rrbracket \Rightarrow A_{n}\right)$

Command:
apply (rule <RuleName>)

Exercises

Exercise 2: Prove the following in HOL. Pen and paper is fine. If you use Isabelle, use only basic HOL rules corresponding to rules given in previous slides - no simplifiers

1. $A \vee(B \vee C) \rightarrow(A \vee B) \vee C$
2. $(A \rightarrow(B \rightarrow C)) \rightarrow(A \wedge B) \rightarrow C$
3. $A \vee A \rightarrow A \wedge A$
4. $A \vee B \rightarrow \neg A \rightarrow B$
5. $A \wedge(B \vee C) \rightarrow(A \wedge B) \vee C$
6. $(A \wedge \neg B) \vee(B \wedge \neg A)=(A=\neg B)$
7. $\neg(A \wedge B) \rightarrow(\neg A) \vee(\neg B)$
Elimination Rules in Isabelle

Tactic erule assumes that first rule premise is assumption
to be eliminated:
apply (erule <RuleName>):
Example:
Rule: $\llbracket ? P \wedge ? Q ; \llbracket ? P ; ? Q \rrbracket \Rightarrow$?R』 \Rightarrow ?R
Subgoal: $\llbracket X ; A \wedge B ; Y \rrbracket \Rightarrow Z$
Unifier: ?R $==Z, ? P==A, ? Q==B$
New subgoal: $\llbracket X ; Y \rrbracket \Rightarrow \llbracket A ; B \rrbracket \Rightarrow Z$
Same as: $\llbracket X ; Y ; A ; B \rrbracket \Rightarrow Z$

Safe and Unsafe Rules

Recall: Rules applied bottom up
Safe rules: Provability is preserved (in bottom up direction)
Examples: $\wedge \mathrm{I}, \rightarrow \mathrm{I}, \neg \mathrm{I}$, iffl, refl, ccontr, classical, $\wedge \mathrm{E}, \vee \mathrm{E}$
Unsafe rules: Can turn provable goal into unprovable one:
Examples: VI1, VI2, $\rightarrow \mathrm{E}$, iffD1, iffD2, $\neg \mathrm{E}$

$$
\Rightarrow \text { VS. } \rightarrow
$$

Theorems should be written as
$\rrbracket A_{1} ; \ldots ; A_{n} \rrbracket \Rightarrow A$
Not as

$$
A_{1} \wedge \ldots \wedge A_{n} \rightarrow A
$$

Exception: Induction variable must not occur in premises
Example:
$\llbracket A ; B(x) \rrbracket \Rightarrow C(x)$, not good
Use instead: $A \Rightarrow B(x) \rightarrow C(x)$
Scope

Scope of parameters: Whole subgoal
Scope of HOL connectives:
Never extend to meta-level
l.e. ends with ; or \Rightarrow
$\wedge x y . \llbracket \forall y . P y \rightarrow Q z y ; Q x y \rrbracket \Rightarrow \exists x . Q x y$
means
$\wedge x y . \llbracket\left(\forall y_{1} . P y_{1} \rightarrow Q z y_{1}\right) ; Q x y \rrbracket \Rightarrow \exists x_{1} . Q x_{1} y$

Natural Deduction, Predicate Logic

Two Successful Proofs	
1. $\forall x . \exists y \cdot x=y$ apply (rule $\forall I$) 1. $\wedge x . \exists y \cdot x=y$	
Best practice apply (rule_tac $x=" x "$ in \exists) 1. $\wedge x \cdot x=x$ apply (rule refl)	Exploration apply (rule $\exists \mathrm{I}$) 1. $\wedge x . x=? y x$ apply (rule refl) ?y $\mapsto \lambda z . z$
Simpler and clearer	Shorter and trickier

Two Unsuccessful Proofs

1. $\exists \mathrm{y} \cdot \forall \mathrm{x} \cdot \mathrm{x}=\mathrm{y}$
apply (rule tac $x=$??? in $\exists \mathrm{I}$) apply (rule $\exists \mathrm{Il}$)
???
2. $\forall x \cdot x=? y$
apply (rule $\forall \mathrm{I}$)
3. $\wedge x \cdot x=? y$
apply (rule refl)
? $y \mapsto x$ yields $\wedge x^{\prime} . x^{\prime}=x$
???

Safe and Unsafe Rules
Safe: $\forall I, \exists E$
Unsafe: $\forall E, \exists l$
Create parameters first, unknowns later

Exercises, Predicate Logic

Exercise 3. Prove or disprove the following formulas. If you prove the formulas, use Isabelle, as in exercise 2. For a disproof it is sufficient to show that the formulas are false in ordinary first-order logic.

1. $\forall x . \forall y . R x y=\forall y . \forall x . R x y$
2. $(\exists x . P x) \vee(\exists y . Q y)=\exists z .(P z) \vee(Q z)$
3. $\neg \forall x . P x \Rightarrow \exists y . \neg(P y)$
4. $\exists x .(P x \rightarrow \forall y . P y)$

Renaming Parameters

Careful with Isabelle-generated names

1. $\forall x . \exists y \cdot x=y$
apply (rule $\forall I$)
2. $\wedge x . \exists y . x=y$
apply (rule tac $x=" x "$ in $\exists 1$)
What if the above used in context which already knows some x ? Instead:
apply (rename tac $x x x$)
3. $\wedge x x x . \exists y . x=y$
apply (rule tac $x=$ " $x x x^{\prime \prime}$ in \exists I)

