
Lecture 5

Deductive systems



Deductive systems
The previous lectures have mainly been about 
the use of observations in science. This lecture 
will be concerned with the deductive side of 
science. The lecture is in three parts:


• A general discussion about formal systems.
• Paradoxes and impossibility theorems.
• The mathematization of the world.



Users of formal systems
• Mathematicians - use them to prove 

mathematical theorems.
• Computer scientists - use them to design 

algorithms that solve problems.
• Philosophers - use them to define and analyze 

things.



Mathematics and Formal Logic

What is the connection between Mathematics 
and Formal Logic? Here are some suggestions:



Formal Logic is a part of Mathematics

This would probably be 
what mathematicians 

think



Mathematics is a part of Formal Logic

This is what the pioneers in 
Formal Logic thought



Neither is a part of the other

Nowadays, this seems 
to be natural view



Three components of a deductive system

• Vocabulary 


• Deduction Rules


• Axioms



Vocabulary
We will look at some text from different 
disciplines all using formal syntax. It is normally 
rather easy to recognize the discipline.



Mathematics



Theoretical physics



Formal Logic



Computer Science



Chemistry



Mathematical Economics



Linguistics



Vocabularies
• In a deductive system the vocabulary is roughly 

the syntax of the language we use in the system.
• Less formally, we can say that the vocabulary 

defines the type of expressions you can expect to 
find in the system.

• For instance, in text on evolutionary theory you 
would expect to find words like natural selection 
and so on.

• In formal logic the vocabulary is defined in a very 
precise way. 



Deduction rules
• All deduction systems have some set of formal 

and informal rules which tells us what conclusions 
we can prove from other statements.

• In physics the rules are somewhat informal and 
established by praxis.

• In formal logic the deduction rules are where 
precisely defined.

• In mathematics it can happen that the deduction 
rules are implicitly understood. They can, 
however, be exactly stated (one would hope?) 



Axioms
• The main idea is that the axioms are basic truths 

(intuitive truths maybe). 
• Starting with axioms and using the deduction rules we 

create theorems.
• The axioms and theorems are the only truths in the 

system.
• In formal systems we divide the axioms into logical and 

non-logical axioms.
• In some systems with very strong deduction rules we 

have no logical axioms at all. Natural deduction is one 
example.



Do the axioms have to be true?

• The classic idea was that the axioms should be 
basic and fundamental truths.

• But later mathematicians realized that we could 
regard the axioms as assumptions and deduce 
consequences of these assumption. 

• And important example of this is Non-Euclidian 
Geometries, developed in the 19th century.



Methodology?
• It seems to be very hard to give prescriptions for how 

research with deductive methods should be done.
• Its not that hard to learn techniques for checking if 

proofs are correct. The difficult thing is to find good 
theorems and theories.

• This is essentially a creative activity. And there are 
no recipes for creativity.

• Or are there? The best way of learning how to find 
proofs is to imitate existing proofs.

• Some other tricks will be described in a later lecture.  



Paradoxes and impossibility theorems

• We will give a brief discussion of some 
problems and paradoxes related to deductive 
systems and mathematics.

• We will describe two great crisis in the history 
of logic and mathematics



Russell's paradox
• The first crisis was in 

the early 20th century.
• We will start with some 

history.



Frege and 
mathematical logic

• Gottlob Frege created the modern 
mathematical logic at the end of 
the 19th century. 

• He tried to construct all 
mathematics with logic. 

• The starting point was a 
formalized version of set theory. 

• Among other things Frege 
postulated that if P(x) is any 
predicate there always exists a set 
of all objects x such that P(x) is 
true:   



Bertrand Russell
•In the beginning of the 20th century 
Russell showed that Frege's axiom 
leads to contradictions. 

•If we define 

And  

What happens then? Is  

or  

true?



Some related paradoxes
• The liar paradox - 'I am lying'. True or false?
• Grelling paradox - Among English adjectives there 

are some, such as 'short', 'polysyllable', 'English', 
which apply to themselves. Let us call such adjectives 
autological; all others are heterological. Thus 'long', 
'monosyllable', 'green' are heterological. But what 
about 'heterological'? Is it heterological or not?

• Berry paradox - Consider the phrase  "The smallest 
positive integer not definable in under eleven words". 
There must be such an integer (why?). But this 
integer is definable in ten words!



Russel's solution
• Russell found that Frege's axiom must be restricted in some 

way.
• His idea was to block the possibility that a set could be a 

member of itself.
• In order to do that he developed the so called type theory of 

sets.
• Other solutions came soon. The paradox is not considered a 

problem any more.
• But a disturbing fact is that Frege was one of the greatest 

logicians ever and he felt that his axiom was (intuitively) 
obvious. If he could make such a mistake, can we ever be 
certain that we don't make similar logical mistakes? 



The ghost of self-reference  
• Frege's problem was that an unexpected self-

reference occurred. 
• An analysis of the other paradoxes seem to 

show that the also are the victims of self-
reference.

• Conjecture (the lecturer's): All 'paradoxes' are 
in some sense caused by self-reference.

• So if we just somehow can block all self-
references there will be no paradoxes. Or ... ?



Gödel's Theorem



Gödel


• Kurt Gödel studied formal deductive 
systems of a special kind. 

• He showed that all formulas in such 
a system can be given a so called 
Gödel number. 

• He also showed that it is possible to 
construct a predicate that 
represents provability. 

• Then he showed that there are 
sentences that cannot be proved in 
the system but still, in some more 
general sense, are true.



More details

• The Gödel Sentence:


• Gödel's theorem can be stated in at least two different forms.
• One form is that a sufficiently strong and (efficiently) 

decidable formal system must contain 'true' sentences which 
cannot be proved inside the system.

• Another form is that such a system must contain sentences 
which cannot be proved or disproved inside the system.

• To make things more complicated, there is a Gödel's second 
incompleteness theorem which says that the system cannot 
be proved to be consistent with methods inside the system.  



Implications
• One thing Gödel's proof shows is that self-

reference cannot actually be blocked. It is in a 
certain sense unavoidable.

• It also shows that the powers of formal systems are 
limited.

• We could of course accept these facts.
• Or we could just give up the idea of using formal 

systems.
• There are however some related theorems which 

are even more disturbing.



Tarski


• Alfred Tarski showed that the 
definition of truth is much more 
complicated than expected. 

• The Tarski type of truth definition is 
like this: 'Snow is white' if and only if 
snow is white. 

• This type of definition requires a 
meta-level. Truth comes in layers, 
so to say. 

• And there is no way to define truth 
in any effectively decidable way.



Turing


• As we all know, Alan Turing 
defined the Turing Machine. 

• He proved that there are natural 
problems which cannot be 
solved in an 'mechanical' way. 

• An example is the halting 
problem. 

• Another is the problem of 
finding proofs in first order logic.



So what are the conclusions of all this?

• Obviously, deductive systems cannot generate 
truths all in a mechanical way.

• We must sometime rely on other methods for 
finding truths. (But maybe still work inside a formal 
system?) 

• Truth cannot be defined in a mechanical way.
• There are problems which cannot be solved in a 

mechanical way.
• But still, we will continue to use deductive systems.



The 'mathematization' of the world

• One of the reasons for the success of mathematics 
in science is the possibility of measuring things and 
then doing mathematical processing of the data.

•  This fact can lead to the opinion that only 
measurable facts can be the subject of science.

• But in Social Sciences it is often claimed that 
qualitative data are as important as quantitative.

• We will illustrate how it is possible to use how it is 
possible to use mathematics to define measures on 
seemingly qualitative and subjective observations.  



Weber's law
• Does 10 kg feel 

twice as 'heavy' as 5 
kg?

• If we have a body 
with of weight m, can 
we find a function 
f(m) which measures 
the subjective 
'heaviness' we 
experience?

• Yes, it is possible.



Weber's law II
• Let dm be the smallest change in mass that we 

(subjectively) can detect with our senses.
• In the beginning of the 19th century Weber 

showed that dm is linearly dependent on m, i.e. 
dm = cm for some constant m. (In an 
appropriate interval.) 

• From this it is not hard to see that a natural 
definition of the subjective experience of 
'heaviness' has the form k log m + w0 for some 
constants k, w0.



Utility theory
• Would you like to go to 

an interesting early 
morning lecture at KTH?

• Or would you rather 
sleep some hours more?

• Can you measure how 
much you want different 
things?

• John von Neumann 
suggested a way of 
measuring subjective 
preferences in an exact 
way.



Utility theory II

• In Game Theory and Mathematical Economics we make the 
assumption the we can personally order different things a, b, c ,... In 
preference order. 

• We also make the assumption that we can measure how much we 
want different things by a utility function u. 

• This means that we prefer e to q if and only if u(e) > u(q).
• How is it possible to define such a function?



"What do you chose? 
5000 $ or the secret box?"


• The idea von Neumann had was to imagine a virtual lottery. Let a be 

the thing we prefer most of everything and z the thing we prefer least of 
everything.

• Now, let L1 be a lottery with two possible outcomes: You get a or you 
get z. You get a with probability p and z with probability (1-p). 

• And then, we take a thing k and imagine a trivial lottery L2 where you 
get k with certainty.

• Which one do you prefer? L1 or L2? It must depend on p.
• There should be a number p such that you are indifferent between L1 

and L2. This p is the utility of k, i.e. u(k) = p.
• This means that u(a) =1 and u(z) = 0.



Is it a realistic measure?
• To put it a little extreme, let us say that we want to compare everything. 
• Let us then assume that a is "Happiness beyond all imagination" and z 

is "A horrible and painful death". Let k be "Attending a lecture in The 
Theory of Science".

• So L1 is the lottery [P(Happiness beyond all imagination) = p, P(A 
horrible and painful death) = (1-p)]

• And L2 is the lottery [Attending a lecture in The Theory of Science with 
certainty].

• For what p are you indifferent between L1 and L2?


